
Roger & Janelle Nicolai 
2663 Blue Bird Rd. 

Falls of Rough, Kentucky 40119 

April 18, 2022 

Kentucky Public Service Commission 
Executive Director 
211 Sower Boulevard, P.O. Box 615 
Frankfort, Kentucky 40602 
Re: Docket #2021-00398 

To Whom It May Concern, 

We, the Nicolais, continue to appreciate the consideration of the Kentucky Public 
Service Commission in all matters regarding Docket #2021-00398.  

This case has been, and will continue to be, solely a matter of property value. We will 
lose property value if the proposed communications compound is erected. 

We did not, and do not, assert this fact. Our knowledge is built on peer-reviewed 
studies from scholars within the Western Kentucky University, the University of South 
Alabama, and the University of Kentucky. All studies we have submitted prove an 
expectation of loss, in our property value, is justified. 

These studies included sample sizes that were orders of magnitude larger than the real 
estate study that Pike Legal has introduced. One of the studies we referenced even 
evaluated properties from the same metropolitan statistical area as the evidence 
provided by Pike Legal/Glen D. Katz; Louisville. Our referenced studies, unlike the one 
provided by Mr. Katz, acknowledge rural localities as a uniquely weighted variable 
when considering impacts on value. Mr. Katz and, by extension, Pike legal seem to 
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think that you can force the round peg of Louisville suburbia into the square hole of 
rural Kentucky. Further, the authors of the studies we presented considered a swath of 
interconnected variables other than, solely, raw real estate appreciation.  

We find it alarming that anyone, as evidenced in the submitted real estate report from 
Pike Legal, would dismiss an impact on property value by citing general appreciation. 
These are two distinct phenomena capable of occurring at the same time. Indeed, the 
more our property appreciates the more this communications facility will cost us in 
actual dollars. Market appreciation does not disprove or deny any depreciation caused 
by specific factors.  It is disingenuous to argue otherwise. 

We have yet to hear anyone dismiss the studies we have cited by arguing contrary 
results. The evidence we have presented has been clear, forthright, and substantial. 
Our property value will decrease. We have proven this; in no way has it been 
disproven. We will be the exclusive recipients of the negative effects of this facility.  

Pike Legal has argued against the use of these studies on the basis of submission 
technicalities. We cited particular studies and provided their publicly available 
locations. We have provided the PSC with any particular opinions from the study 
authors in their full context.  

To the best of our knowledge, no case where intervention was granted, on the basis of 
property value, has submitted the substantial forms of evidence that we have 
provided. It is, therefore, unreasonable for Pike Legal to argue that Equal Protection is 
violated in any way should this CPCN application be denied.  

We recognize the purview of the PSC, and its consideration of property value, as 
stated in KRS 278.650. It is because of the proven expectation of loss that we continue 
to ask the PSC to deny this CPCN.  

Roger & Janelle Nicolai 



Please review the documents included in the email containing this letter: 

1. Wireless Towers and Home Values: An Alternative Valuation Approach Using a Spatial 
Econometric Analysis (Study #1) 

2. The Cost of Convenience: Estimating the Impact of Communication Antennas on Residential 
Property Values (Study #2) 

3. Emails from Reid Cummings & Ermanno Affuso. Authors of Study #1. 

J. Reid Cummings, D.B.A. 

Interim Assistant Dean for Financial Affairs  

Associate Professor of Finance and Real Estate 

Executive Director, SABRE (South Alabama Center for Business Analytics, Real Estate 
and Economic Development)  

Mitchell College of Business, University of South Alabama 

Secretary, American Real Estate Society 

Editor, Journal of Real Estate Practice and Education 

Dr. Ermanno Affuso 

Assistant Professor, Economics and Finance 

Chief Scientific Officer, SABRE (South Alabama Center for Business Analytics, Real 
Estate and Economic Development)  

4. Email Stephen L. Locke. Author of Study #2. 

Stephen L. Locke, Ph.D. 

Associate Professor of Economics  
Western Kentucky University





In less than 20 years, the number of wireless devices in use1 in the United States
increased 1045%, growing from 340,213 in 1985 to over 355 million in 2014 (CTIA
2015). A growing number of Americans now rely solely on their wireless phones for
communication. As of the end of 2014, the Centers for Disease Control and Preven-
tion’s National Center for Health Statistics reports that 44% of American households no
longer subscribe to landline telephone service; they predict that by the end of 2015, a
majority will have severed the cord (Centers for Disease Control and Prevention 2015).
U.S. wireless device numbers are truly staggering: 2014 usage comprised 2.45 trillion
voice minutes, 4.06 trillion megabytes of data, 1.92 trillion text messages, and 151.99
billion multimedia messages (CTIA 2015). Incredibly, even on the heels of a doubling
of wireless data usage from 2012 to 2013, analysts expect data use to surge, growing by
more than 650% by 2018 (Cisco 2013). In 2012, wireless industry employment topped
3.8 million people—2.6% of the U.S. workforce (Entner 2012). Analysts predict the
industry will create 1.2 million new jobs by 2017 (Pearce et al. 2013). U.S. wireless
carriers’ capital investment exceeded $33 billion in 2013—a record annual high—and
wireless industry experts project an additional $260 billion in new capital investment
over the next 10 years (CTIA 2015), adding $2.6 trillion to U.S. gross domestic product
(Summers 2010). Perhaps the most surprising, yet at the same time most impressive
statistic is that by comparison, the total value of the U.S. wireless industry—currently
$196 billion in 2012—exceeds that of agriculture, hotels and lodging, and air trans-
portation (Entner 2012).

Without question, there are many societal benefits offered by the last two decades’
myriad advances in wireless technologies. Ease of use and convenience, lower equip-
ment pricing, increasingly competitive rate plans, surges in wireless industry employ-
ment, considerable economic multiplier effects from large-scale wireless industry
capital investment, and significant realized and projected annual contributions to
GDP all work to make the U.S. wireless industry an ever-increasing, important part
of our daily lives and our national economy. Yet to date, a largely overlooked societal
cost is the potential negative impact on residential property values caused by the
exponential proliferation of the number of cell sites2 necessary to support the wireless
industry’s rapid growth. In 1985, there were only 900 cell sites in the U.S., but by the
end of 2014, the number had increased by 22,778% (CTIA 2015). Of the more than
298,000 cell sites in the U.S., nearly 70% are located on tower structures (Airwave
Management, LLC 2013). Amidst intense competition to meet seemingly unceasing
demand, providers work continually to improve their wireless service coverage. As
they do so, it is logical to expect construction of an increasing number of new wireless
towers, located closer and closer together in many urban and suburban areas. As this
happens, it is also logical to expect an increasing number of homeowners to question if,
and to what extent proximity to a wireless tower affects home values. Those concerned
with such questions might also hope that public policy makers will begin asking the
same questions, and more importantly, consider the ramifications of the answers as they
manage the increasing pressures placed on wireless tower regulatory planning and
approval processes.

1 Wireless devices include special feature phones, smartphones, and tablets.
2 CTIA defines a cell site as the location of wireless antenna and network communications equipment
necessary to provide wireless service in a geographic area (CTIA 2015).
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Considering the expected future increases in wireless device users and the cell sites
supporting them, this is a critically important question for our time. However, only a
few researchers have examined this issue, all yielding somewhat mixed results. In all,
the extant literature includes six relevant studies. The first is perceptions-based, offering
residents’ opinions of how tower proximity influences property values (Bond and
Beamish 2005). The second combines a similar perceptions-based component with
an hedonic model to estimate sales price impacts (Bond and Wang 2005). The
remaining four studies take a strictly empirical approach using hedonic modeling
estimations and different types of spatial analysis techniques (Bond 2007a, b;
Filippova and Rehm 2011; Locke and Blomquist 2016). Unfortunately, each study
suffers from flaws of one sort or another—time invariant issues, inaccurate spatial
modeling techniques, or other troublesome variable misspecifications. In essence, the
results of these studies are either inconclusive or show only minimal negative price
effects due to wireless tower proximity.

In our study though, we use a robust approach for gauging home values relative
to tower proximity. Similar to others, our study includes hedonic modeling to
capture distinctive property characteristics, yet it is distinctly different from others
in two important respects. By performing the analysis within varying radii bands
based on quartiles of the distance from the closest wireless tower, we are able to
detect potential marginal price gradients of each property across the banded space.
More importantly, by conducting a series of robust spatial econometric tests, we
are able to identify and use the most unbiased, efficient spatial model that is best
suited for the inferential analysis of our research question. The results underscore
our concerns that previous studies may potentially suffer from bias due to their
failures to address spatial correlation issues typical in hedonic model studies. Two
significant reasons contribute to our apprehensions. The first is that Ordinary
Least Squares (OLS) estimations are biased and inefficient in the presence of
spatial correlations of dependent variables and residuals. The second is that by not
accounting for spatial autocorrelation, it is unlikely any hedonic model can
correctly disentangle either direct and/or indirect effects of (dis)amenities on
housing prices. Research shows the latter is particularly useful when assessing
the impact of corrective policy solutions subsequent to market failures (LeSage
and Pace 2009). This is important because our research poses potentially signif-
icant policy implications, all of which we believe will most likely, yet for
substantially different reasons, be of keen interest to governmental and planning
officials, wireless tower operators and service providers, neighborhood activist
groups, and private property rights’ advocates.

In the second section of our paper, we discuss the relevant literature. In the third
section, we delineate our data and define our variables. In the fourth section, we
develop our hypotheses and methodology. In the fifth section, we present our empirical
results, and the final section concludes.

Literature Review

McDonough (2003) states B…proximity to a wireless tower needs to be considered as a
negative amenity that may reduce property valuation^ (McDonough 2003, p. 29).
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Despite this recognition and the ongoing rapid expansion of the wireless industry,
research examining the relationship between wireless tower proximity and home values
remains quite limited. Two early studies commissioned by a major wireless service
provider look at potential health and visual impacts that wireless towers3 may have on
property values. Bond and Beamish (2005) report that although the studies’ results
remain secretive, their private review of the results confirms no statistically significant
relationships exist. They note, however, that because the studies involve limited sales
data, and the underwriter is also a service provider, the question of biased results is
potentially concerning.

Some researchers tackle the question using perceptual studies. Bond and Beamish
(2005) survey residents in ten Christchurch, New Zealand suburbs—half being study
areas (residents living within 300 m of a tower) and half being a control group
(residents living more than 1 km from a tower). The authors aim to gauge residents’
perceptions about whether and to what extent wireless tower proximity influences
property values. Not surprisingly, those living far from a tower express less concern
than those living close to one. Distance from a tower largely drove respondents’
answers, but in sum, the authors find expectations of more than a 20% price reduction
for properties within close tower proximity.

Bond and Wang (2005) combine a perceptual study with an empirical investigation.
The perceptual component outcomes are quite similar to those of Bond and Beamish
(2005). Their survey’s respondents believe that proximity to a wireless tower causes
property values to decrease from 10% to more than 20%. The empirical portion of their
study includes approximately 4000 home sales spanning from 1986 to 2002 in four
different suburbs. The authors’ hedonic model includes a dummy variable that captures
whether sales occur before or after tower construction. A potential shortcoming of this
study could be the authors’ choice to measure distances from cell towers not to
individual homes, but rather, to a particular street within the study area. Their hedonic
models do not account for potential spatial dependence of price and error structure.
Their estimations produce mixed results, with negative price effects in two suburbs, a
positive price effect in a third, and no significance in the fourth.

Bond (2007a) offers a methodological improvement by calculating exact distances
between towers and included properties. Using a dummy variable to capture if a sale
occurs before or after tower construction, the author also accounts for sales price time-
effects by deflating sales prices to the consumer price index, and includes a time of sale
variable in the estimations. Using four of the same suburbs from the earlier work of
Bond and Wang (2005), the results show sales price reductions of approximately 15%
after tower construction, diminishing as distance from a tower increases. Past 300 m,
the negative price effect is negligible. Unfortunately, the results lack consistency,
producing a positive price effect in one of the four neighborhoods. This may suggest
a possible model misspecification error, or the effect of some other unobservable
externality.

Bond (2007b) conducts a similar study using Orange County, Florida wireless tower
and sales transaction data. Empirical results indicate a tower’s presence yields a
statistically significant and negative impact on price. Even so, the author notes the
negative price effects are of little consequence.

3 In their paper, the authors refer to wireless towers as cellular phone base stations.
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Filippova and Rehm (2011) investigate tower proximity impacts on property
values using property sales data from Auckland, New Zealand. Their final
geocoded dataset includes approximately 56,000 sales observations dating from
2005 to 2007, and 521 tower locations. Highly critical of earlier studies’ meth-
odologies, the authors emphasize they took care to Bensure that integration dates
of nearest cell towers did not occur after the date of sale^ (Filippova and Rehm
2011, p. 250). To account for negative impacts that non-residential areas might
have on residential area property values (for example, see Bowes and Ihlanfeldt
2001; Grass 1992; Nelson and McCleskey 1990; Mahan et al. 2000), the authors
divide their sample into two parts. The first group includes only the 49 towers
within residential areas, and all properties within a 500-m radius of existing
towers. They also include a dummy variable for tower type, which they describe
as lamppost, single monopole, or armed monopole (one with a triangular structure
at the top). Generally, their residential area estimations produce no statistical
significance. Not surprising, given the extremely close proximity to a tower, the
lone exception is for houses located within 100 m of an armed monopole, which
suffer a 10.7% price reduction. Estimations for the second group, which includes
all towers in the entire study area, yield results similar to those in the first group.
As such, the authors conclude that with the exception of a small number of armed
monopole towers, wireless tower proximity does not negatively affect sales price.

More recently, Locke and Blomquist (2016) explore the question at hand.
They use housing sales (including repeat sales) from 2000 to 2012 occurring in
Louisville and Elizabethtown, Kentucky, geocoding each sold property to the
street address listed in the sales data. They develop a number of tower location-
specific characteristics such as census tract, and distances to major roads,
railroads, and military bases. The authors state that, BHolding all else constant,
the owner of a communication antenna will attempt to locate the antenna in an
area that minimizes the antenna owner’s cost^ (Locke and Blomquist 2016, p.
134). At first glance, this statement seems obvious, if for no other reason than it
makes good business sense. Further thought, however, draws question to the
authors’ additional statement that, BIt appears that communication antennas are in
fact located in areas where properties are less valuable^ (Locke and Blomquist
2016, p. 134). One might infer from this that carriers strive mainly to construct
towers in low-value areas simply to save money. Yet because intuition suggests
carriers increase earnings by increasing subscribers, locating towers only in low-
valued areas, and hence, providing service coverage only to presumably low-
income people does not make good business sense. It seems, therefore, that the
authors miss the other side of the coin, which is, in fact, not all towers appear in
areas where properties are less valuable, but rather, owners will also construct
towers in areas where properties are more valuable in order to fill holes in their
service coverage. Indeed, tower location may be a source of endogeneity. How-
ever, income, population density, and other unobserved neighborhood character-
istics could be instrumental for both homeowners’ property and wireless carriers’
tower location choices.

Inclusion of spatial considerations in addition to hedonic characteristics in their
modeling is a good choice, as it adds robustness to their results. However, as with
previous studies, across all model estimations, the authors do not account for potential
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spatial correlation of price and error structure, finding only slight degrees of price
reductions due to tower proximity, again, diminishing with distance.

Data

To investigate if and to what extent wireless tower proximity impacts home values we
combine two datasets. The first includes 23,309 residential property sales occurring in
Mobile County, Alabama between 1999 and 2015.4 We deflate housing prices to a base
year of 2014 using the U.S. Bureau of Labor Statistics’ Housing Consumer Price Index.
The second includes 149 wireless towers located in Mobile County, Alabama.5 In
addition to certain property characteristics, we also include key census tract-level
demographic data.6

Following Locke and Blomquist (2016), we conduct a visibility analysis of the
wireless towers located in the study area. We do so using Viewshed7 and a 30-m
resolution digital elevation map of Mobile County, Alabama.8 Following Paterson and
Boyle (2002), we calculate the visibility for a 360° circle and 1-km radius, including the
aboveground tower height, and assume that the average height of an observer’s eyes is
1.75 m above the ground at each property’s location. Figure 1, Panel A illustrates the
spatial distribution of towers, and Fig. 1, Panel B illustrates the Mobile County,
Alabama property locations.

At a larger scale, Fig. 2 shows the visibility of towers and properties located in the
most urbanized portion of the Mobile County, Alabama. 9 Fig. 2 helps to clarify
graphically the idea of the indirect effect of a wireless tower. For example, although
some properties lie immediately outside of the border of the visibility range (indicated in
the red area), they are contiguous to properties that lie within the border of the visibility
range. If there are spatial correlations between property values and tower locations, then
we argue that a tower affects both the value of the property location from which the
tower is visible, and indirectly, the values of neighboring properties from which the
tower is not visible. Additionally, towers that are farther away, but that are still visible
from a property, may potentially influence a property’s value through a sort of spillover
effect carried over across neighboring properties within the tower visibility space.

We compute the minimum distance from each housing unit to the closest wireless
tower using the Haversine distance formula, which takes into account the curvature of
the Earth. We calculate the distance of housing unit i to the closest wireless tower j as:

4 Sold properties data draw from the Gulf Coast Multiple Listing Service, Inc., a wholly owned subsidiary of
the Mobile Area Association of Realtors, Inc.
5 These data draw from the U.S. Federal Communication Commission’s Antenna Structure Registration
database, available at http://wireless.fcc.gov/antenna/index.htm?job home.
6 These data draw from the U.S. Census Bureau, available at http://www.census.gov.
7 The Viewshed tool is available as part ESRI ArcGIS® software package.
8 Digital elevation maps draw from publicly available information hosted by the Geospatial Data Gateway of
the U.S. Department of Agriculture’s Natural Resources Conservation Service.
9 An anonymous referee observed that every property within a 1 km radius of a tower is also within the
towers’ viewshed. We believe that this unusual result is consistent with the average height of a wireless tower
in our dataset of approximately 60 m, and, more importantly, with the fact that our property sales data draw
from a fairly flat coastal geographical area (i.e., the average housing elevation of our sample ≈ 11 m above sea
level).
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Hence, the econometric model used to examine the potential external impact of a
wireless tower on property price takes the following form:

ln Priceð Þi ¼ β0 þ β1ln Distanceið Þ þ β2Dþ β3D⋅ln Distanceið Þ þ β4V þ β5V ⋅ln Distanceið Þþ
β6h toweri þ β7V ⋅h toweri þ β8Agei þ β9Bedroomsi þ β10 Bedroomsið Þ2þ

β11Bathroomsi þ β12Onestoryi þ β13Twostoriesi þ β14Carshelteri þ β15Fireplaceiþ
β16Fencei þ β17Decki þ β18Pooli þ β19Bricki þ β20Rurali þ β21distCBDi þ β22Towersiþ

β23ln Incomeið Þ þ β24ln Blackið Þ þ β25Unemploymenti þ ∑2013
t 2008τ tYeartiþ

∑31
j 1δ jZipcodeji þ εi

ð2Þ

where ln(Price) is the natural log of the property sales price; ln(Distance) is the
natural log of the distance between a property and a wireless tower measured in

Table 1 Summary Statistics

Variable Definition Full Sample

Mean SD

Price inflation adjusted property sales price 167,592.3 124,777.1

Distance distance between the property and the tower 2.980 5.453

D* 1 if property sale occurs after tower construction 16,393 69.742

V* 1 if the tower is visible 9448 74.956

h_tower height of the tower 59.148 21.050

Age age of property in years 23.566 19.389

Bedrooms number of bedrooms in a property 3.285 .675

Bathrooms total number of bathrooms in a property 2.135 .671

Onestory* 1 if number of stories is 1 1860 41.371

Twostories* 1 if number of stories is 2 2275 45.310

Car shelter* 1 if a property has a car shelter 15,023 73.078

Fireplace* 1 if a property has a fireplace 15,080 72.965

Fence* 1 if exterior has a fence 9375 74.862

Deck* 1 if exterior has a deck 5377 64.317

Pool* 1 if exterior has a pool 189 13.692

Brick* 1 if construction is primarily brick 16,500 69.426

Rural* 1 if population is less than 2500 per census tract 2644 48.416

distCBD distance to downtown Mobile in kilometers 17.957 8.695

Towers number of wireless towers per census tract 4.305 5.709

Income median income per census tract 66,768.36 20,299.91

Black African American population per census tract expressed in units 1070.72 812.315

Unemployment unemployment rate per census tract expressed in percentage points 9.207 5.417

N number of observations 23,309

The table above presents the summary statistics for the variables included in the entire dataset; year and zip
code dummies are not shown;

*binary variables (assumed to follow the binomial distribution): means and standard deviations for these
variables are computed for the binomial distribution
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kilometers; D is a dummy variable that takes the value of one if the property was
purchased after tower construction, and zero otherwise; V is a dummy variable that
takes the value of one if the closest tower is visible from the property, and zero
otherwise; h tower is a continuous variable that measures the height of the closest
tower above the ground in meters; Age is the age of a property in years; Bedrooms
is the total number of bedrooms in a property; Bathrooms is the total number of

Table 2 Summary Statistics for Variables in Each of the Four Subsamples

Sample 1a

(0.00 0.72Km)
Sample 2b

(0.72Km 1.13Km)
Sample 3c

(1.13Km 1.88Km)
Sample 4d

(1.88Km 41Km)

Mean SD Mean SD Mean SD Mean SD

Price 163,008.8 107,361.6 170,634.6 133,366.5 170,212.1 136,985.5 166,518.6 119,035.9

Distance 0.497 0.156 0.920 0.116 1.425 0.202 9.080 8.295

D* 4087 34.942 4256 33.874 4246 33.942 3804 36.341

V* 5759 8.257 3667 36.869 22 4.682 0 0

h_tower 53.920 20.199 53.436 19.845 56.434 19.090 72.803 18.778

Age 26.148 21.949 25.455 20.128 23.876 18.816 18.784 15.158

Bedrooms 3.269 0.629 3.322 0.634 3.312 0.735 3.238 0.695

Bathrooms 2.113 0.667 2.156 0.710 2.167 0.700 2.104 0.598

Onestory* 459 20.563 499 21.360 528 21.912 374 18.708

Twostories* 573 22.730 615 23.454 642 23.901 445 20.274

Car shelter* 3832 36.227 3858 36.106 3695 36.769 3638 36.968

Fireplace* 3806 36.338 4028 35.265 3910 35.866 3336 37.764

Fence* 2521 37.822 2576 37.910 2380 37.522 1898 35.774

Deck* 1222 31.077 1404 32.645 1369 32.363 1382 32.469

Pool* 51 7.110 44 6.608 47 6.828 47 6.828

Brick* 3856 36.121 4142 34.608 4179 34.379 4323 33.404

Rural* 787 26.091 601 23.217 460 20.584 796 26.216

distCBD 14.625 5.891 15.037 5.601 16.037 5.524 26.131 10.758

Towers 5.523 5.743 5.152 6.474 4.671 6.242 1.875 2.881

Income 68,790.18 23,488.16 69,418.33 22,687.17 67,058.06 20,669.78 61,806.5 10,912.01

Black 1214.973 910.131 1139.579 801.164 1217.888 835.001 710.429 543.371

Unemployment 9.408 6.073 8.900 5.640 8.827 5.130 9.692 4.678

N 5828 5827 5827 5827

The table above presents the summary statistics for the variables within each of the four subsamples included
in the analysis;

*binary variables (assumed to follow the binomial distribution): means and standard deviations for these
variables are computed for the binomial distribution
a Sample 1 is a subsample of properties selected within the first quartile of the minimum distance to the closest
wireless tower (radius ≤ 0.72Km);
b Sample 2 is a subsample of properties within the second quartile of the minimum distance to the closest
wireless tower (0.72Km ≤ distance ≤ 1.13Km);
c Sample 3 is a subsample of properties within the third quartile of the minimum distance to the closest wireless
tower (1.13Km ≤ distance ≤ 1.88Km);
d Sample 4 is a subsample of properties within the fourth quartile of the minimum distance to the closest
wireless tower (1.88Km ≤ distance ≤ 41Km)
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bathrooms and/or half-bathrooms in a property; Onestory and Twostories are
binary variables equal to one if the property has one story or two stories above
the ground level, respectively; Carshelter, Fireplace, Fence, Deck, Pool and Brick
are dummy variables that take the value of one if a property has a car shelter, a
fireplace, a fence around the house, a deck, a pool and/or the exterior construction
is made of bricks respectively, and zero otherwise; Rural is a binary variable
proxy for less dense populated areas that takes value one if the number of
inhabitants per census tract is less than 2500, and zero otherwise; distCBD is a
continuous variable that measures the distance of each property from the Central
Business District of Mobile, Alabama, the largest city in the study area; Towers is
the number of wireless towers per census tract; ln(Income) is the natural log of the
median income per census tract; ln(Black) is the natural log of the African-
American population expressed in units per census tract; and, Unemployment is
the unemployment rate per census tract expressed in percentage points. As in
Jensen et al. (2014), we add the interaction between distance to (dis)amenities and
tower visibility (V), which we label ln(Distance)·V. We use Year, property sale
year dummy variables, to control for the impact of the subprime mortgage crisis.
Finally, following Caudill et al. (2014), we include Zipcode, a set of dummy
variables that attempt to capture additional unobserved neighborhood heterogeneities at
a higher resolution than the census tract. Since we are interested in examining the price
sensitivity of buyers of homes closest to a wireless tower, we follow Locke and
Blomquist (2016) in stating the dependent variable being in logarithmic form. However,
we also use the Akaike Information Criterion (AIC) to test several functional
forms for hedonic price equations by varying the specification of the variables in
the right-hand side of Eq. (2). We do so because by selecting the functional form
having the lowest AIC value, we are able to produce a theoretical specification
with the least possible information loss.

We calculate the average impact of a wireless tower on housing price by subtracting
expected housing values before tower construction from expected housing values after
tower construction, using the equation taking the following form:

E e
Ln cprice� �

jD ¼ 1

" #
−E e

Ln cprice� �
jD ¼ 0

" #
: ð3Þ

We also calculate the total social welfare impact as:

ΔW ¼ ∑N
i¼1 e

Ln cprice� �
i jDi ¼ 1

 !
−

 
e
Ln cprice� �

i jDi ¼ 0

!" #
: ð4Þ

In addition, to examine the spatial price sensitivity of home buyers—the price
elasticity of tower proximity—we partially differentiate Eq. (2) with respect to
ln(Distance), using the equation taking the following form:

∂ln Priceð Þ
∂ln Distanceð Þ ¼ β1 þ β3Dþ β5V½ �%: ð5Þ
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We evaluate Eq. (5) as D = 0 and V = 0 (β1) for sales occurring before tower
construction, and D = 1 and V = 1 (β1 + β3 + β5) for sales occurring after the visible
tower construction. We additionally include D = 1 and V = 0 (β1 + β3), which
accommodates comparison of price sensitivity of buyers of properties from which the
closest tower is not visible.

In certain hedonic studies, it is appropriate to perform statistical tests for spatial
correlation. This is a consequence of Tobler’s first law of geography, which premises the
interrelationship of all things, but that closer things are more related than distant things
(Tobler 1970). We use spatial correlation tests to account for spatial processes in the
dependent variable and estimation residuals. In matrix notation, such a model reads as:

y ¼ ρWyþ Xβþ I−λWð Þ 1u ð6Þ

where y is a n × 1 vector of property prices (previously defined); ρ is a scalar coefficient
of spatial correlation;W is an n x n row, standardized spatial contiguity matrix based on
the three closest neighbors as outlined by Caudill et al. (2014);X is an n × 63 (number of
parameters of Eq. 1 including intercept) data matrix with first column vector 1n; β is a
63 × 1 vector of parameters; I is an n x n identity matrix, λ is a scalar coefficient of
residuals spatial correlation; and, u is an n × 1 vector of Gaussian innovations.

We estimate the spatial model by maximizing the log-likelihood function (MLL)
with respect to the model’s parameters, coefficients of spatial correlation (ρ and λ), and
residual standard errors (σ) using the equation taking the following form:

LL β; ρ;λ;σjyð Þ ¼ −0:5 n ln πð Þ−0:5 n ln σ2
� �

þ ln I−λWj j þ lnjI−ρWjð Þ– 0:5 σ 2
� �

u’ð Þ uð Þ� 	 ð7Þ

where n is the sample size, u = (I - λW) 1(I - ρW)y - (I - λW) -1Xβ; and, ln| I - λW|
and ln|I - ρW| are the terms of the log-Jacobian transformation of u into y. Assuming
the same geographic processes for the dependent variable and residuals (same W), the
large sample Moran’s I test for spatial correlation of the residuals is:

ZI ¼ I−E Ið Þ½ �=Var Ið Þ0:5∼N 0; 1ð Þ ð8Þ

where I is calculated from the residuals of Eq. (2) as ε’Wε/ ε’ε. Since this test is
asymptotically normal, if ZI > 1.96, with 95% confidence, we reject the null hypothesis
that there is no spatial autocorrelation of the residuals.

The econometric models presented in Eqs. (6) and (7) are generic representations of
a spatial model which includes both a spatial autoregressive model—model with
dependent variable spatially autocorrelated: λ = 0, and a spatial error model—model
with residuals spatially autocorrelated: ρ = 0. Following Anselin (1988), in practice, we
select only one of the two models. Following the suggestion of Anselin et al. (1996),
we use Robust Lagrangian Multiplier (RLM) tests (H0: no spatial autocorrelation) of
the residuals, using equations taking the following forms:

RLMρ ¼ ε’Wy=σ2−ε’Wε=σ2
� 	2

= σ2 WXβð Þ’M WXβð Þ þ nσ2
� 	

−n

 � ð9Þ
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RLMλ ¼ ε’Wε=σ2−n
�
σ2

h h
WXβð Þ’M WXβð Þ þ nσ2

�
1ε’Wy=σ2

i i2
=n 1−n

�
σ2

h h
WXβð Þ’M WXβð Þ þ nσ2

�i i 1 ð10Þ

Both Eqs. (9) and (10) follow the χ2 distribution with one degree of freedom and
include M = I-X(X’X) 1X as an idempotent projection matrix. Following Florax and
De Graaff (2004), we select the model with the largest RLM statistics.

Results and Discussion

In this study, we conduct a pseudo-quantile analysis based on quartiles of the
distance of each property from the closest tower. We refer to it as a pseudo-
quantile analysis because we force the estimation of the conditional mean of the
response variable on different values of the distance to the closest tower by
subsampling the full data set for the four quartiles of this variable. The idea is
to test our research hypothesis for properties located within different distance
gradients from wireless towers. We do so by creating four spatial contiguity
matrices (one for each sample). In Table 3, we report the results of both the
Moran’s I and RLM tests for spatial correlation across all four samples.

Table 3 Tests for Spatial Correlation

Sample 1a

(0.00 0.72Km)
Sample 2b

(0.72Km 1.13Km)
Sample 3c

(1.13Km 1.88Km)
Sample 4d

(1.88Km 41Km)

Statistic Value Value Value Value

Moran’s I 0.22 0.21 0.20 0.18

ZI 26.43*** 24.81*** 24.52*** 21.53***

(0.00) (0.00) (0.00) (0.00)

RLMρ 436.83*** 438.42*** 490.10*** 365.60***

(0.00) (0.00) (0.00) (0.00)

RLMλ 0.041 0.24 0.31 0.49

(0.84) (0.62) (0.58) (0.48)

The table above presents the results of spatial correlation tests for all three samples;

H0 No Spatial Autocorrelation, ZI follows the standard normal distribution, RLMρand RLMλ follow the χ2

distribution with one degree of freedom

Confidence intervals presented as ***99%; p values in parentheses;
a Sample 1 is a subsample of properties selected within the first quartile of the minimum distance to the closest
wireless tower (radius ≤ 0.72Km);
b Sample 2 is a subsample of properties within the second quartile of the minimum distance to the closest
wireless tower (0.72Km ≤ distance ≤ 1.13Km);
c Sample 3 is a subsample of properties within the third quartile of the minimum distance to the closest wireless
tower (1.13Km ≤ distance ≤ 1.88Km);
d Sample 4 is a subsample of properties within the fourth quartile of the minimum distance to the closest
wireless tower (1.88Km ≤ distance ≤ 41Km)
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Based on the Moran’s I test results, with 99% confidence for each sample, we reject
the null hypothesis that there is no spatial correlation of the residuals. Based on the
results of the RLM test for dependent variable spatial correlation, we reject the null
hypothesis of no spatial correlation for each subsample with 99% confidence. In
contrast, based on the results of the RLM test for residual spatial correlation, we fail
to reject the null hypothesis of no spatial correlation across all subsamples. Conse-
quently, the spatial autoregressive model is the most appropriate econometric tool to
conduct our analysis (Florax and De Graaff 2004). In Tables 4 and 5, we report the
results of our analysis, comparing the OLS estimates (Table 4) of Eq. (2) to the MLL
estimates (Table 5) of Eq. (6) with λ restricted to zero as a natural consequence of the
Moran’s I and RLM diagnostic tests discussed above.

Although biased, OLS estimates have good explanatory power across all four
samples (the coefficient of determination ranges from 60% to 72%). However, com-
parison of the lower values of the AIC of the spatial autoregressive models to the
corresponding OLS models confirms the hypothesis that the spatial autoregressive
models represent the reality with minimum information loss. Therefore, this additional
information supports our contention that the spatial autoregressive model is the most
appropriate framework for statistical inference in our study.

In general, the spatial autoregressive model estimates have good statistical power and
the expected coefficient signs across the four subsamples. Curiously, though, we find
that the prices of properties purchased in 2009 after the U.S. financial crisis (compared to
the baseline year 2007) are not statistically significant within 1.88 km from the closest
tower (across the first three quartiles of the distance to the closest wireless tower). On the
other hand, although the coefficients for dwelling age, unemployment rate, and the
percentage increase in the African American population per census tract are all statis-
tically significant, none seems to be economically significant in Mobile County. As
expected, the numbers of bedrooms and bathrooms, as well as income are important
predictors of property value in terms of economic magnitude. However, as in Locke and
Blomquist (2016), it appears that the impact of these variables is relative to property
location with respect to the towers. For example, an average household would be willing
to pay between 7% to 8.5%10 more than the average price of a property for an additional
bedroom across the four samples while the household’s willingness to pay for an
additional bathroom ranges between 21% to 27% more than the average across the four
subsamples. Moreover, commensurate with a 10% increase in median income per
census tract, the property price increases range from between 18% to 21% for those
properties located beyond 1.88 km from the closest tower (across Samples 2–4).
However, it seems that the price of properties located within 0.72 km from the closest
tower (Sample 1) is only negligibly sensitive to median income changes.

Turning our analysis to the impact of the wireless tower on the value of residential
properties, our first assessment of the spatial autoregressive model estimate of D for the
properties located within 0.72 km from the closest tower (Sample 1) shows a statistically

10 There is a quadratic relationship between the logarithm of the property price and the number of bedrooms.
We evaluate the semi elasticities at the mean values of the number of bedrooms as reported in Table 2.
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Table 4 Ordinary Least Squares

Sample 1a

(0.00 0.72Km)
Sample 2b

(0.72Km 1.13Km)
Sample 3c

(1.13Km 1.88Km)
Sample 4d

(1.88Km 41Km)

Constant 9.872*** (16.26) 6.362*** (12.2) 6.009*** (15.53) 6.311*** (11.59)

Age 0.004*** (−12.86) 0.006*** (−16.64) 0.007*** (−18.07) 0.008***
(−21.77)

Bedrooms 0.365*** (7.14) 0.417*** (9.76) 0.074*** (6.15) 0.115*** (9.07)

Bedrooms2 0.043*** (−5.75) 0.041*** (−6.99) 0.002*** (−4.03) 0.003*** (−5.87)
Bathrooms 0.329*** (31.83) 0.277*** (30.66) 0.373*** (37.72) 0.278*** (26.44)

Onestory
(0/1)

0.031* (1.65) 0.06*** (3.34) 0.069*** (3.89) 0.17*** (8.14)

Twostories
(0/1)

0.058*** (3.28) 0.112*** (6.49) 0.092*** (5.4) 0.191*** (9.50)

Car shelter
(0/1)

0.179*** (17.32) 0.187*** (17.77) 0.189*** (18.89) 0.239*** (23.03)

Fireplace
(0/1)

0.203*** (17.87) 0.184*** (15.52) 0.158*** (13.74) 0.179*** (17.01)

Fence (0/1) 0.067*** (6.33) 0.019* (1.73) 0.024*** (2.26) 0.036*** (3.23)

Deck (0/1) 0.092*** (7.03) 0.065*** (5.02) 0.075*** (5.96) 0.093*** (7.15)

Pool (0/1) 0.067 (1.36) 0.004 (−0.08) 0.026 (−0.51) 0.118** (2.20)

Brick (0/1) 0.118*** (10.6) 0.098*** (8.48) 0.125*** (11.1) 0.096*** (7.56)

Rural (0/1) 0.065*** (−3.07) 0.119*** (−4.93) 0.066** (−2.25) 0.216888 (5.35)

ln(distCBD) 0.287*** (−10.06) 0.103*** (−3.44) 0.163*** (−4.67) 0.075 (−1.33)
Towers 0.003*** (2.74) 0.003*** (3.63) 0.001 (0.49) 0.002 (−0.75)
ln(Income) 0.155*** (5.58) 0.379*** (14.38) 0.478*** (16.27) 0.388*** (8.001)

ln(Black) 0.066*** (−6.66) 0.091*** (−9.41) 0.065*** (−6.64) 0.023** (−2.38)
Unemployment 0.011*** (−7.44) 0.004*** (−2.68) 0.009*** (5.27) 0.003*** (1.91)

Year 2008 0.075*** (3.95) 0.129*** (6.84) 0.111*** (5.8) 0.100*** (5.26)

Year 2009 0.009 (0.45) 0.011 (0.54) 0.036 (1.69) 0.019 (0.9)

Year 2010 0.116*** (−5.02) 0.087*** (−3.57) 0.118*** (−5.29) 0.062*** (−3.02)
Year 2011 0.288*** (−12.54) 0.297*** (−13.56) 0.235*** (−10.48) 0.185*** (−8.4)
Year 2012 0.346*** (−15.52) 0.304*** (−13.11) 0.26*** (−11.13) 0.21*** (−9.73)
Year 2013 0.321*** (−14.58) 0.331*** (−14.89) 0.307*** (−13.93) 0.249***

(−11.76)
ln(Distance) 1.257*** (−2.95) 0.343 (1.41) 0.055 (0.49) 0.107*** (3.67)

D 0.191*** (−4.82) 0.011 (−0.1) 0.005 (0.05) 0.044 (1.200)

ln(Distance)∙D 0.51*** (5.41) 0.048 (0.28) 0.009 (0.07) 0.031* (−1.72)
V 0.234 (−0.67) 0.123 (0.74) 4.314 (−0.54) NAe

ln(Distance)∙V 0.829** (1.97) 0.241 (−0.99) 5.59 (0.6) NAe

H_tower 0.007 (1.43) 0.001 (0.62) 0.001 (1.62) 0.001*** (3.06)

H_tower∙V 0.006 (−1.14) 0.001** (2.37) 0.006 (−0.75) NAe

Adj. R2 0.715 0.722 0.714 0.605
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significant, negative correlation between property price and sales occurring after tower
construction. The same estimate is statistically equally to zero for those properties
located within 0.72 and 1.88 km from the closest tower (Samples 2 and 3). For properties
that are far from the visibility range of a tower (Sample 4 includes properties located
beyond 1.88 km), the correlation between property price and tower becomes positive
and statistically different from zero. V, the visibility of the tower, is not statistically
significant across the four samples. However, ln(Distance)·V is statistically significant at
the 5% alpha level for properties that are located within 0.72 km from the closest tower
(Sample 1). For these properties, we perform a log-likelihood ratio test for the joint
significance of V, ln(Distance)∙Vand h tower∙V, following the χ2 distribution with three
degrees of freedom equal to the number of restrictions (three estimates simultaneously
equal to zero).We reject the null hypothesis that these three estimates are jointly equal to
zero (p-value =0.071, 90% confidence). Hence, we must include these parameters to
model the relationship between housing price and tower proximity for those properties
that are closer to the wireless tower (Sample 1). However, the opposite is true for
properties located beyond 0.72 km as we fail to reject the null hypothesis when applying
the same test to these properties. In addition, the number of wireless towers per census
tract (Towers) and tower height (h tower) have no significant impact on housing price
across the four samples (statistically and economically).

To assess the average social welfare impact of wireless tower proximity on residen-
tial property values, we estimate the predicted housing value from sales occurring
before and after tower construction using Eq. (3). In Table 6, we report the predicted

Table 4 (continued)

Sample 1a

(0.00 0.72Km)
Sample 2b

(0.72Km 1.13Km)
Sample 3c

(1.13Km 1.88Km)
Sample 4d

(1.88Km 41Km)

AIC 4257 4308 4157 4685

Deg. of Freedom 5773 5774 5774 5773

Sample Size 5828 5827 5827 5827

The table above presents results of the Ordinary Least Square estimates

Zipcode parameter estimates are not reported to save space (available upon request). Ten, twelve, twelve and
eight Zipcode dummy variables were dropped from the analysis of Samples 1, 2, 3 and 4, respectively, because
there were not properties within these zipcode areas

Confidence intervals presented as ***99%, **95%, and *90%; t values in parentheses;
a Sample 1 is a subsample of properties selected within the first quartile of the minimum distance to the closest
wireless tower (radius ≤ 0.72Km);
b Sample 2 is a subsample of properties within the second quartile of the minimum distance to the closest
wireless tower (0.72Km ≤ distance ≤ 1.13Km);
c Sample 3 is a subsample of properties within the third quartile of the minimum distance to the closest wireless
tower (1.13Km ≤ distance ≤ 1.88Km);
d Sample 4 is a subsample of properties within the fourth quartile of the minimum distance to the closest
wireless tower (1.88Km ≤ distance ≤ 41Km);
e Visibility variable was dropped from the analysis because there were not visible towers in Sample 4
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Table 5 Spatial Autoregressive Models

Sample 1a

(0.03Km 0.72Km)
Sample 2b

(0.72Km 1.13Km)
Sample 3c

(1.13Km 1.88Km)
Sample 4d

(1.88Km 41Km)

Constant 6.404*** (11.417) 4.315*** (8.984) 4.109*** (11.697) 5.304*** (10.467)

Age 0.004*** (−11.15) 0.005*** (−14.236) 0.005*** (−14.209) 0.007***
(−19.002)

Bedrooms 0.358 *** (7.728) 0.353*** (9.063) 0.068*** (6.221) 0.104*** (8.902)

Bedrooms2 0.044 *** (−6.522) 0.036*** (−6.755) 0.002*** (−4.066) 0.003*** (−5.887)
Bathrooms 0.256*** (26.873) 0.216*** (25.703) 0.279*** (29.698) 0.241*** (24.491)

Onestory
(0/1)

0.019 (1.111) 0.039** (2.38) 0.042*** (2.591) 0.133*** (6.847)

Twostories
(0/1)

0.043*** (2.673) 0.077*** (4.884) 0.063*** (4.125) 0.155*** (8.296)

Car shelter
(0/1)

0.129*** (13.573) 0.136*** (14.052) 0.142*** (15.426) 0.191*** (19.629)

Fireplace (0/1) 0.142*** (13.643) 0.134*** (12.346) 0.117*** (11.156) 0.152*** (15.428)

Fence (0/1) 0.067*** (6.958) 0.026*** (2.621) 0.04*** (4.164) 0.048*** (4.579)

Deck (0/1) 0.08*** (6.74) 0.059*** (5.035) 0.081*** (7.096) 0.084*** (6.965)

Pool (0/1) 0.04 (0.898) 0.039 (0.807) 0.003 (0.071) 0.089** (1.786)

Brick (0/1) 0.078*** (7.743) 0.076*** (7.249) 0.101*** (9.888) 0.085*** (7.262)

Rural (0/1) 0.015 (−0.791) 0.064*** (−2.908) 0.042 (−1.598) 0.153*** (4.063)

ln(distCBD) 0.218*** (−8.416) 0.089*** (−3.274) 0.108*** (−3.421) 0.084 (−1.612)
Towers 0.002*** (2.666) 0.002** (2.157) 0.001 (0.313) 0.001 (−0.583)
ln(Income) 0.09*** (3.557) 0.207*** (8.428) 0.274*** (10.083) 0.179*** (3.908)

ln(Black) 0.04*** (−4.359) 0.059*** (−6.655) 0.041*** (−4.66) 0.02** (−2.165)
Unemployment 0.007*** (−5.249) 0.003** (−2.204) 0.006*** (3.715) 0.001 (0.779)

Year 2008 0.078*** (4.552) 0.128*** (7.504) 0.114*** (6.589) 0.108*** (6.124)

Year 2009 0.015 (0.843) 0.007 (0.374) 0.031 (1.615) 0.024** (1.209)

Year 2010 0.117*** (−5.581) 0.095*** (−4.276) 0.12*** (−5.934) 0.071*** (−3.714)
Year 2011 0.300*** (−14.474) 0.304*** (−15.253) 0.236*** (−11.639) 0.189*** (−9.255)
Year 2012 0.340*** (−16.871) 0.306*** (−14.514) 0.296*** (−13.986) 0.228***

(−11.364)
Year 2013 0.328*** (−16.461) 0.331*** (−16.388) 0.322*** (−16.132) 0.257***

(−13.074)
ln(Distance) 1.167*** (−3.025) 0.274 (1.232) 0.059 (0.593) 0.09*** (3.318)

D 0.12*** (−3.35) 0.007 (−0.066) 0.003 (0.031) 0.06* (1.773)

ln(Distance)∙D 0.332*** (3.886) 0.043 (0.27) 0.007 (0.062) 0.039** (−2.298)
V 0.453 (−1.432) 0.118 (0.782) 2.747 (−0.377) NAe

ln(Distance)∙V 0.872** (2.291) 0.193 (−0.869) 3.533 (0.421) NAe

H_tower 0.001 (0.151) 0.001 (0.436) 0.001 (1.414) 0.001* (1.934)

H_tower∙V 0.001 (0.02) 0.001 (1.394) 0.003 (−0.451) NAe

ρ 0.362*** (31.59) 0.349*** (30.53) 0.352*** (32.61) 0.310*** (26.89)
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sales value and t-test results of the sale price means for home sales occurring before and
after tower construction.

For properties located within a 0.72-km radius of a wireless tower that are sold after
tower construction (Sample 1), it appears there is indeed a tower-related negative price
effect. We estimate the social cost tower impact as approximately $4132 (p-value
=0.014), which corresponds to a 2.65% decrease in property value. As expected, tower
impacts are negligible for the stratum of housing units located beyond 0.72 km. Along
the same line, we compute the impact of tower visibility for properties sold after tower
construction as E(exp(Xβ|D = 1;V = 1)) - E(exp(Xβ|D = 1;V = 0)). Our calculations,
summarized in Table 7, indicate a tower visible to properties within 0.72 km would
effectively depreciate property values an average of 9.78%, equating to an average
monetary loss of $17,037 (p-value =0.00). The impact of tower visibility would be
statistically equal to zero for those properties beyond the 0.72 km band. In addition, we
use Eq. (4) to gauge the overall social welfare resulting from wireless towers. Com-
puting the sum of the difference between the predicted housing price before and after
tower construction across the sample, we find a staggering aggregate value loss of
$24.0811 million dollars.

11 This figure was calculated using equation (4). Let by1 be a column vector (5828 × 1) of predicted housing
prices obtained by evaluating exp(Xβ) at the average values of all of the price predictors with D 1 (sold after
tower construction) and yb0 the predicted housing prices counterpart with D 0 (sold before tower construc
tion). We define the change in welfare of each household i within Sample 1, as the element by element
subtraction ΔWi yb1i yb0i. Finally, the aggregate welfare impact was obtained by taking the sum of the

elements of the column vector ΔW, i.e., ∑5;828
i 1 ΔWi −24; 081; 385.

Table 5 (continued)

Sample 1a

(0.03Km 0.72Km)
Sample 2b

(0.72Km 1.13Km)
Sample 3c

(1.13Km 1.88Km)
Sample 4d

(1.88Km 41Km)

σ 0.314*** (33.137) 0.317*** (32.781) 0.311*** (33.286) 0.334*** (31.215)

AIC 3347 3457 3243 4022

Deg. of Freedom 5571 5572 5572 5571

Sample Size 5828 5827 5827 5827

The table above presents results of the maximum log likelihood estimations of the spatial autoregressive
models

Zipcode parameter estimates are not reported to save space (available upon request). Ten, twelve, twelve and
eight Zipcode dummy variables were dropped from the analysis of Samples 1, 2, 3 and 4, respectively, because
there were not properties within these zipcode areas

Confidence intervals presented as ***99%, **95%, and *90%; z values in parentheses;
a Sample 1 is a subsample of properties selected within the first quartile of the minimum distance to the closest
wireless tower (radius ≤ 0.72Km);
b Sample 2 is a subsample of properties within the second quartile of the minimum distance to the closest
wireless tower (0.72Km ≤ distance ≤ 1.13Km);
c Sample 3 is a subsample of properties within the third quartile of the minimum distance to the closest wireless
tower (1.13Km ≤ distance ≤ 1.88Km);
d Sample 4 is a subsample of properties within the fourth quartile of the minimum distance to the closest
wireless tower (1.88Km ≤ distance ≤ 41Km);
e Visibility variable was dropped from the analysis because there were not visible towers in Sample 4

670 Affuso et al.



Because we find no evidence that towers impact prices of properties located beyond
0.72 km of a tower, we focus our analysis on the price sensitivity of homebuyers of
properties located within 0.72 km of a tower. Earlier, we mention one of the main
strengths of a spatial econometric analysis is it enables disentanglement of the direct
and indirect effects of tower proximity on property values. This is because of a spatially
correlated dependent variable—that the change in price of house i with respect to the
distance to the closest tower of the neighbor’s house j within the same sample is not
zero (i.e. ∂ln(Price)i/∂ln(Distance)j ≠ 0 with i ≠ j).

LeSage and Pace (2009) derive:

Average Direct Impact ¼ n 1 tr I−ρWð Þ 1Iβk

h i
Average Indirect Impact ¼ n 1 1

0
n I−ρWð Þ 1Iβk

h i
1n−tr I−ρWð Þ 1Iβk

h in o
Average Total Impact ¼ n 1 1

0
n I−ρWð Þ 1Iβk

h i
1n

8>>><>>>:
9>>>=>>>;

ð11Þ

for each predictor βk with k = 1,2,..K. Therefore, we use Eq. (11) to decompose and
calculate the average total impact of the wireless tower on property values within
Sample 1 as reported in Table 8.

Table 6 Social Welfare Analysis of Wireless Tower Impact on Home Values

Expected Value

Before Tower After Tower Impacta

Sample 1b 155,911 151,779 4132**

(91,553) (89,964) (1681)

Sample 2c 161,865 164,068 2204

(131,195) (133,607) (2453)

Sample 3d 162,249 163,485 1236

(113,627) (114,428) (2113)

Sample 4e 159,752 161,770 2107

(101,244) (103,532) (1897)

The table above presents the social welfare analysis of wireless tower impacts on home values

After tower exp.(Xβ)|D 1, Before tower exp.(Xβ)|D 0, Impact exp.(Xβ|D 1) - exp.(Xβ|D 0)

**95% confidence interval; standard deviation in parentheses;
a standard error t test in parentheses; t test H0: E[exp(Xβ|D 1)] E[exp(Xβ|D 0)];
b Sample 1 is a subsample of properties selected within the first quartile of the minimum distance to the closest
wireless tower (radius ≤ 0.72Km sample size 5828);
c Sample 2 is a subsample of properties within the second quartile of the minimum distance to the closest
wireless tower (0.72Km ≤ distance ≤ 1.13Km sample size 5827);
d Sample 3 is a subsample of properties within the third quartile of the minimum distance to the closest
wireless tower (1.13Km ≤ distance ≤ 1.88Km sample size 5827);
e Sample 4 is a subsample of properties within the fourth quartile of the minimum distance to the closest
wireless tower (1.88Km ≤ distance ≤ 41Km sample size 5827)
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We then use Eq. (5) to assess the price sensitivity of buyers with respect to the
distance to the closest visible and non-visible towers after their construction. It appears
that if the tower is not visible, the property price decreases 8.7% for every 10% increase
in distance to the closest tower. The spillover effect on property price due to the
depreciation of the neighbor’s property—the average indirect effect—is 4.41% of price
decrease for every 10% increase in the distance to the closest tower. The total

Table 7 Social Welfare Analysis of Wireless Tower Visibility on Home Values

Expected Value

Non visible Tower Visible Tower Impacta

Sample 1b 174,194 157,157 17,037***

(104,007) (92,447) (1823)

Sample 2c 161,120 164,370 3251

(132,276) (133,740) (2464)

Sample 3d 163,113 163,335 222

(114,055) (114,297) (2115)

Sample 4e 157,454 NAf NAf

(99,875) (NA)f (NA)f

The table above presents the social welfare analysis of the visibility impact of wireless tower on home values
(after tower construction D 1)

Visible tower exp.(Xβ|D 1;V 1), Non-visible tower exp.(Xβ|D 1;V 0), Im-
pact exp.(Xβ|D 1;V 1) - exp.(Xβ|D 1;V 0);

Confidence intervals presented as ***99%; standard deviation in parentheses;
a standard error t test in parentheses; t test H0: E[exp(Xβ|D 1;V 1)] E[exp(Xβ|D 1;V 0)];
b Sample 1 is a subsample of properties selected within the first quartile of the minimum distance to the closest
wireless tower (radius ≤ 0.72Km sample size 5828);
c Sample 2 is a subsample of properties within the second quartile of the minimum distance to the closest
wireless tower (0.72Km ≤ distance ≤ 1.13Km sample size 5827);
d Sample 3 is a subsample of properties within the third quartile of the minimum distance to the closest
wireless tower (1.13Km ≤ distance ≤ 1.88Km sample size 5827);
e Sample 4 is a subsample of properties within the fourth quartile of the minimum distance to the closest
wireless tower (1.88Km ≤ distance ≤ 41Km sample size 5827);
f Visibility variable was dropped from the analysis because there were not visible towers in Sample 4

Table 8 Decomposition of the Price Sensitivity of Home Buyers to Tower Proximity

Average Direct Impact Average Indirect Impact Average Total Impact

ln(Distance) 1.213 0.616 1.828

ln(Distance)∙D 0.345 0.175 0.520

ln(Distance)∙V 0.906 0.460 1.367

The table above presents the results of the sensitivity analysis designed to compare the price sensitivity of
buyers of properties from which the closest tower is not visible

Average Direct Impact ∂ln(Price)i/∂ln(Distance)i, Average Indirect Impact ∂ln(Price)i/∂ln(Distance)j with
i ≠ j, Average Total Impact Average Direct Impact + Average Indirect Impact
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depreciation is 13% for 10% increase in the distance. Therefore, it may well be that
non-visible towers are a potential external benefit for properties located within 0.72 km
of a tower. Although we cannot affirmatively explain this finding, our sense is it may be
due to enhanced wireless coverage resulting in a stronger wireless signal.

It is noteworthy that only 69 of 5828 properties within 0.72 km of the closest tower
are outside of the visibility range of a tower. In contrast, however, the 5759 homebuyers
purchasing properties within 0.72 km of the closest tower that are within visible range
of a tower are not particularly sensitive, on average, to the distance to the visible tower,
despite their perceptions of a visible tower as a negative externality. In fact, housing
prices appreciate approximately 0.4% for each 10% increase in the distance to the
closest visible tower. The average indirect impact of towers on those buyers (price
spillover due to neighbor’s price movement) is approximately 0.2%. This is to say that
buyers of properties located an average of 0.497 km (average minimum distance in
Sample 1) to the closest tower are willing to pay a premium of approximately 0.6% of
the average housing price for every 10% increase in the average distance from a tower
(average total impact). Monetarily, this translates into a value of approximately $962
per 50 linear meters12 of increase in distance from the closest tower.

One limitation of our study is that we cannot control for potential endogeneity
associated with the sale date dummy variable (D). Even though homeowners could
choose to buy or not to buy a property after tower construction, we have no information
as to their motivations for buying. Ideally, a difference-in-differences study restricted to
repeat sales of the same property occurring pre- and post-tower construction could
potentially mitigate this source of bias. Unfortunately, within the entire sample of
23,309 housing sales there are only 42 repeat sales. A difference-in-differences ap-
proach based on a sample of 42 observations would clearly suffer from a
micronumerosity problem with negative degrees of freedom (the number of parameters
would exceed the sample size), and would, therefore, lack empirical viability.

Notwithstanding the slight potential for bias, our results are clear: consumers
perceive visible wireless towers as economic externalities. Aggregate social costs are
highly significant relative to those properties within a 0.72 Km radius of a tower.
Additionally, we must also point out that our study does not assess intangible social
benefits of wireless towers, such as high-speed internet access, emergency communi-
cations, and digital forensics enabling national security related wireless communication
monitoring, all of which provide invaluable services to consumers, businesses, and
institutions.

Conclusion

Truly, we currently live in the Age of Information. According to the International
Communication Union of the United Nations, the number of wireless phone subscrip-
tions totaled over 7 billion worldwide in 2015, with wireless coverage extending to
95% of the world’s population (United Nations, International Communication Union
2015). U.S. wireless usage is no less astounding, as evidenced by the 1045% increase in

12 We calculate a 10% increase in the average minimum distance for houses in Sample 1 as 0.49 km ∙ 0.1 ≈ 50 m.
A 0.59% increase in the average housing price of Sample 1 is $163,008.8 ∙ 0.0059 ≈ $ 961.80.
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wireless devise demand over the last 20 years (CTIA 2015). The future looks promising as
well, with expectations that U.S. wireless industry employment will increase more than
31% from 2012 to 2017 (Pearce et al. 2013). Yet, even with the wireless industry poised
for continued growth, it is unlikely it will be without consequences. Certainly, there are
private benefits associated with the use of wireless service, yet there are costs as well. In
this study, we examine one such cost: the impact of wireless towers on home values.

Although previous researchers have examined this issue, our study differs in two
aspects. First, we address the econometric problem of spatial dependence that typically
flaws hedonic price estimation analysis. We contend our empirical analyses are more
efficient than those used in other studies, and as result, our results reveal greater
consistency and reliability. Second, rather than rely solely on neighborhood-based
property sales data, we test our hypothesis using recent property sales and current
wireless tower locational data for an entire metropolitan statistical area,13 which also
happens to be one of the busiest port cities in the United States.14

The results of a series of spatial statistical tests developed by Anselin et al. (1996)
suggest that a spatial autoregressive model is the most appropriate econometric ap-
proach to test our research hypothesis. We conduct a marginal sensitivity analysis for
homes within different radii of distances to the closest visible and non-visible
wireless towers, basing the distance bands on quartiles of the distance to the
wireless tower. Our results reveal wireless tower capitalization only in the value
of those properties that are within approximately 0.72 km of a tower. On average,
the potential external cost of a wireless tower is approximately $4132 per resi-
dential property, which corresponds to a negative price effect of 2.65%. The
negative price impact of 9.78% is much more severe for properties within visible
range of a tower compared to those not within visible range of a tower. This
negative impact vanishes as radii distances exceed 0.72 km. In aggregate, the
social welfare cost for the properties in our sample located within 0.72 km
amounts to an approximate loss of $24.08 million dollars of value.

U.S. federal law prohibits wireless siting denial if no alternative site is available
(FCC 1996; Martin 1997). However, given the apparent social costs associated with
negative price effects, local zoning and regulatory authorities should consider granting
approvals that include impact-minimizing conditions. For example, wireless tower
construction approvals could require development and maintenance of visual or veg-
etative buffer screening. Concurrently or alternatively, approvals could mandate
camouflaging towers to look like trees or flagpoles. Other types of approval conditions
could dictate attachment of communication antennae systems to existing structures
such as buildings, street light poles, electric utility poles, water towers, billboards, or
even sports stadium super-structures. Clearly, society is dependent on wireless communi-
cation, and obfuscating efforts to expand or improve coverage makes little sense. Argu-
ably, however, authorities overseeing the process have definitive obligations, perhaps even
fiduciary ones, to safeguard the interests and well-being of those whom they serve.

13 The U.S. Census Bureau list of metropolitan statistical areas ranks Mobile County, Alabama at number 127.
Data available at http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src bkmk.
14 The Port of Mobile is home to the twelfth busiest port in the U.S., and ninth busiest port along the Gulf Coast,
ranked by cargo tonnage handled as reported by the U.S. Department of Transportation, available at http://www.
rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_57.html.
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The Cost of Convenience: Estimating the Impact of
Communication Antennas on Residential Property

Values
Stephen L. Locke and Glenn C. Blomquist

ABSTRACT. This paper applies hedonic and quasi-
experimental methods to measure the disamenity
value of communication antennas. We take advantage
of a rich dataset of residential housing sales from
central Kentucky that contains an extensive set of
structural housing characteristics and precise loca-
tion information. This allows us to overcome endo-
geneity issues caused by unobservable characteristics
correlated with antenna location. The best estimate
of the impact is that a property with a visible antenna
located 1,000 feet away sells for 1.82% ($3,342) less
than a similar property located 4,500 feet away. The
aggregate impact is $10.0 million for properties lo-
cated within 1,000 feet. (JEL Q51, R21)

I. INTRODUCTION

Accompanying the desirable growth of cell
phone and wireless Internet usage has been
the not-so-desirable appearance of communi-
cation antennas. Cell phone usage worldwide,
and especially in the United States, has grown
fast. According to the Cellular Telephone In-
dustries Association, in December of 1998
there were 69.2 million wireless subscribers.
Fifteen years later, in December 2013, that
number was 335.7 million.1 To put this in per-
spective, the U.S. Census Bureau estimated
the population to be 270.2 million in 1998 and
316.5 million in 2013. The United States has
gone from 25.6% of the population having a
wireless subscription in 1998 to more than
one subscription per person in 2013. With the
advances in mobile technology it is possible
to do nearly every task that was once only

1 Visit http://www.ctia.org/ for more information about
the growth of cellular subscriptions in the United States.
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possible on a desktop computer on a mobile
device that fits in the palm of a hand. Like any
other good or service, the added convenience
of mobile technology has costs.

Economists have long been interested in
estimating impacts of disamenities in urban
areas. For examples see Mieszkowski and
Saper (1978) on airport noise, Kohlhase
(1991) on toxic waste sites, and Kiel and Wil-
liams (2007) on Superfund sites. An area that
has received little attention is the disamenity
associated with cell phone towers and com-
munication antennas. As the demand for cell
phones and mobile technology increases, it is
followed by an increase in demand for reliable
coverage, which in turn leads to an increase
in the number of antennas. In the mid-1990s
there was a sharp increase in the number of
antenna structures to accompany the mobile
phone technology that was becoming more
prevalent. Choosing the location for an an-
tenna involves conflicting incentives for resi-
dents. Land owners may want to have an an-
tenna located on their property because it
provides an additional source of income and
better cell phone reception for residents in its
vicinity.2 However, these structures are visu-
ally unpleasant. Residents tend to object to
having them located nearby because of the vi-
sual disamenity they create or because of ad-
verse health effects they may associate with

2 Airwave Management, LLC, provides some insight
into the amount of income these cell phone towers can gen-
erate for a land owner. According to their website, payments
can reach as high as $60,000 per year (www.cell-tower-
leases.com/Cell-Tower-Lease-Rates.html).

The authors are, respectively, assistant professor, De-
partment of Economics, Western Kentucky Univer-
sity, Bowling Green; and professor, Department of
Economics, Martin School of Public Policy and Ad-
ministration, University of Kentucky, Lexington.
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the antennas.3 Towers are often highly visible,
and potential siting can induce objections
from residents in the receiving neighborhood.
Municipalities have used delays in the ap-
proval process in an attempt to appease pro-
testors and possibly prevent siting.4 Unlike
some disamenities such as airport noise, in-
formation about the visual disamenity is avail-
able.5

Figure 1 illustrates when an externality is
likely to exist, and the situation when a nearby
antenna could provide a net benefit to nearby
residents. In the upper photo, an antenna is
located on a property adjacent to a residential
subdivision. Regardless of any compensation,
the antenna structure is likely to be considered
a disamenity by nearby residents.6 The lower
photo shows an antenna that could provide a
net benefit to nearby residents. The structure
located at point A is hidden behind a thicket
of trees and far enough away from the nearest
neighbor (point C) so as not to impose any
cost. If the owner of the property at point B
owns the land where the antenna is located,
the owner is receiving payments from the an-
tenna’s owner, while nearby residents receive

3 Despite concerns about negative health effects from the
radio waves emitted from mobile devices, a comprehensive
study of the health effects related to cell phone and cell
phone antennas by Röösli et al. (2010) finds that there is no
conclusive evidence that using cell phones or living near cell
phone towers harms human health. Nevertheless, the per-
ception of such risks may be sufficient to alter behavior.

4 See City of Arlington, Texas v. Federal Communica-
tions Commission, 133 S. Ct. 1863.

5 A recent article by Alcantara (2012), with AOL Real
Estate, highlights the concerns residents have about having
a communication antenna located near their property. As
reported, a group of residents in Mesa, Arizona, is protesting
the siting of a cell phone tower in the group’s neighborhood.
One resident is quoted as saying, “Apart from the tower
being so tall, we all feel that property values will go down
if they build it so close. Most people I know wouldn’t want
to buy a house near a cell phone tower.”

6 If the structure was constructed before the residents
moved in or built a house in this subdivision, no uncompen-
sated externality exists. They have preferences such that the
structure does not affect them, or they were compensated for
the visual aspect of the structure though a lower purchase
price. However, if the structure was constructed after the
residents moved in or built in this subdivision, they are af-
fected by the sight of the structure and a lower sales price
if they do decide to sell the property. The land owner where
the structure is located is receiving payments from the an-
tenna’s owner, while all affected nearby residents are not
being compensated.

the benefit of improved coverage. In this sit-
uation the potential disamenity is mitigated by
trees. Having an antenna located nearby
should not decrease property values; it prob-
ably increases property values where the an-
tennas are located.

The purpose of this paper is to apply he-
donic and quasi-experimental methods to
measure any disamenity caused by commu-
nication antennas, controlling for endogenous
antenna location and changes in unobserved
housing and neighborhood characteristics.
Spatial fixed effects are used to control for any
time-invariant unobservables correlated with
proximity to an antenna. The repeat sales
method and quasi-experimental techniques
are used to address time-invariant and time-
varying unobserved characteristics that could
affect the equilibrium hedonic price function.
Quasi-experimental techniques are becoming
increasingly common in the environmental
economics literature and are used instead of
instrumental variables when there is not ran-
dom assignment into treatment and control
groups (Greenstone and Gayer 2009).

II. RECENT WORK ON VALUING
AMENITIES/DISAMENITIES

Omitted variables are a concern when es-
timating hedonic price functions. Following
Rosen (1974), the hedonic price function
of property can be represented byi P =i

, where is the price of propertyP(S ,N ,Q ) Pi i i i
. , , and are the structural, neighbor-i S N Qi i i

hood, and environmental characteristics, re-
spectively. Consumers have utility U =

, which is maximized subjectU(X,S ,N ,Q )i i i
to the budget constraint , whereP + X = M Xi
is a Hicksian composite commodity with price
equal to $1, and is income. This gives theM
following first-order condition:

∂U ∂U ∂Pi
= . [1]( )/( )∂Q ∂X ∂Qi

The marginal rate of substitution between the
environmental characteristic and the compos-
ite good is equal to the slope of the hedonicX
price function (market clearing locus) in the
environmental characteristic . Once the he-Qi
donic price function has been estimated,Pi



92(1) Locke and Blomquist: Communication Antennas and Property Value 133

FIGURE 1
Houses Likely Affected (upper photo) and Houses Likely Not Affected (lower photo) by Nearby Antenna

Source: Google Earth 2014, 2015.

the partial derivative of with respect to thePi
environmental characteristic is equal to theQi
implicit price of the environmental character-
istic. However, when there are characteristics
unavoidably omitted from that are corre-Pi
lated with , the estimate of willingness toQi
pay for will be biased. Endogeneity in theQi
location of the antenna structures is the great-
est concern in estimation. Holding all else
constant, owners of the antenna structures are
going to locate them in areas where it costs

the least. If not taken into account, this incen-
tive will lead to an overestimate of the nega-
tive impact these structures have on property
values. Other issues that have to be addressed
in estimation concern buyers’ sorting (Cam-
eron and McConnaha 2006; Bayer, Keohane,
and Timmins 2009; Bieri, Kuminoff, and
Pope 2012; Kuminoff, Smith, and Timmins
2013) and the stability of the hedonic price
function (Kuminoff and Pope 2014; Haninger,
Ma, and Timmins 2014). To address the sort-
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ing concern, spatial fixed effects are included
to control for unobservables that may influ-
ence both buyers’ location choices and the lo-
cation of communication antennas. The most
recent panel data techniques that address both
time-invariant and time-varying unobserva-
bles are used to account for the possibility of
a changing hedonic price function after the
construction of a nearby antenna.

While Rosen (1974) shows that the partial
derivative of with respect to providesP Qi i
an estimate of the willingness to pay for a
small change in the environmental good ,Qi
the appropriate functional form for the he-
donic price function is uncertain. Cropper,
Deck, and McConnell (1988) use simulations
to determine how different functional forms
perform when there are omitted variables in
the hedonic price regression. They find that
flexible functional forms perform well when
all of the attributes are included, but recom-
mend using a more parsimonious functional
form when there are omitted variables. Since
Cropper, Deck, and McConnell’s (1988)
work, sample sizes have increased dramati-
cally, advances in geographical information
systems allow researchers to control for pre-
viously unobserved spatial characteristics, un-
observed structural housing characteristics are
much less of a concern, and quasi-experimen-
tal techniques have become more prevalent.
Kuminoff, Parmeter, and Pope (2010) find
that Cropper, Deck, and McConnell’s (1988)
recommendations should be reconsidered.
When using cross-section data, Kuminoff,
Parmeter, and Pope (2010) find that the qua-
dratic Box-Cox functional form with spatial
fixed effects performs best. However, for
practical purposes, including spatial fixed ef-
fects significantly reduces bias regardless of
the functional form used.7

Kuminoff, Parmeter, and Pope (2010) also
show that exploiting variation in an environ-
mental amenity for properties that sell multi-
ple times can reduce bias in willingness-to-
pay estimates compared to pooled ordinary
least squares with fixed effects. If the spatially
correlated unobservables are time invariant,

7 Since the quadratic Box-Cox is still computationally
intensive and the coefficients are difficult to interpret, sem-
ilog and linear Box-Cox models are commonly used.

their effect will be purged from the model
when first differences are taken. However, if
the unobservables are not time invariant, the
estimates from a repeat sales model will be
biased. Repeat sales models have recently
been used to estimate the impact of changing
cancer risks (Gayer, Hamilton, and Viscusi
2002), the siting of wind farms (Heintzelman
and Tuttle 2012), Superfund site remediation
(Mastromonaco 2014), and reductions in
three of the U.S. Environmental Protection
Agency’s criteria air pollutants (Bajari et al.
2012).

While there are advantages of using the re-
peat sales method and quasi-experimental
techniques to eliminate the bias caused by
time-invariant unobservables, these methods
estimate a capitalization rate that is not nec-
essarily equal to the marginal willingness to
pay. It is possible that the presence of, or
change in, an environmental (dis)amenity can
cause the hedonic price function to change
over time. Kuminoff and Pope (2014) and
Haninger, Ma, and Timmins (2014) show that
as long as the hedonic price function is con-
stant over time, there should be no difference
between the capitalization rate and the mar-
ginal willingness to pay. Given that the com-
munication antennas are expected to have
relatively small impacts on property values, it
is unlikely that the construction of a new an-
tenna structure will lead to a change in the
hedonic price function. But, this issue will be
addressed.

Kuminoff, Parmeter, and Pope (2010) find
that a generalized difference-in-differences
estimator with interactions between the time-
dummy variables and housing characteristics
to allow the shape of the price function to
change over time performs best when panel
data are available. Linden and Rockoff (2008)
provide a technique for defining treatment and
control groups so that difference-in-differ-
ences can be used to estimate the impact of
environmental (dis)amenities when treatment
and control groups are not clearly defined.
Their technique has recently been used to es-
timate the impact of brownfield remediation
(Haninger, Ma, and Timmins 2014) and shale
gas developments (Muehlenbachs, Spiller,
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and Timmins 2014).8 Parmeter and Pope
(2013) provide a thorough overview of the
difference-in-differences method and other
quasi-experimental techniques. By differenc-
ing over time, the difference-in-differences
method controls for time-invariant unobserv-
ables, just like the fixed effects and repeat
sales methods, but also overcomes problems
with time-varying unobservables with the
“common trends” assumption.9

Mastromonaco (2014) and Bajari et al.
(2012) both propose methods for reducing
bias caused by time-varying spatially corre-
lated unobservables. Mastromonaco (2014)
includes census tract–year fixed effects that
allow the effect of unobservables at the neigh-
borhood level to vary over time in a repeat
sales model. Bajari et al. (2012) also use a
repeat sales model but exploit information
contained in the residual from the first sale to
learn about the characteristics of the house
that the researcher cannot observe directly. In
contrast, the data used in this study have
house characteristics at the time of each sale
and allow for control of time-varying housing
characteristics that are typically unobservable.
In this study the results below show that the
unobservables at the neighborhood level that
are correlated with proximity to a communi-
cation antenna are time invariant and are ad-
equately controlled for using spatial fixed ef-
fects.

III. DATA ON HOUSING AND
ANTENNAS

Housing data covering a period of 12 years
from 2000 to 2011 were extracted from two
multiple listing services that serve the Louis-
ville and Elizabethtown areas in central Ken-

8 Muehlenbachs, Spiller, and Timmins (2014) use a dif-
ference-in-difference-in-differences model. They use the
Linden and Rockoff (2008) technique to find the distance at
which shale gas developments do not impact property val-
ues, but also use the local public water service area to define
a second treatment group. Similar to owners of land where
shale gas wells are drilled, owners of land where commu-
nication antennas are located receive payments from the an-
tenna’s owner.

9 In this study, a majority of communication antennas
were built several years before the property was sold, mak-
ing a visual check of the “common trends” assumption dif-
ficult.

tucky.10 The housing data contain an exten-
sive set of structural housing characteristics,
closing date, and sales price for every prop-
erty sold. All property addresses were geo-
coded, and a standardized address and latitude
and longitude were assigned to each prop-
erty.11 This standardized address is used to
identify houses that are sold multiple times.

These data are much richer than data ex-
tracted from a local property valuation admin-
istrator or data from DataQuick that are com-
monly used. While data from each of those
sources identify properties that are sold more
than once, the structural housing characteris-
tics are recorded only for the most recent
transaction. The data used here identify prop-
erties that are sold more than once during the
sample period and record the structural hous-
ing characteristics each time the property is
sold. This detail allows for a check of the as-
sumption that structural housing characteris-
tics are constant over time, an assumption that
is often made when using the repeat sales
method.

Data for the communication antennas come
from the Federal Communication Commis-
sion’s (FCC) Antenna Structure Registration
database.12 This database includes all com-
munication antennas in the United States that
are registered with the FCC. All antennas that
may interfere with air traffic must be regis-
tered with the FCC to make sure the lighting
and painting requirements are met. These data
contain antenna characteristics such as dates
of construction and demolition, latitude and
longitude, antenna height, and antenna type.
It is possible there are antennas located in the
study area that are not registered, but this is

10 Please contact the author regarding any questions
about the multiple listing service data.

11 One issue with geocoding addresses is that the coor-
dinates will correspond to the location on the street where
the property is located and not the exact coordinates of the
actual house; Filippova and Rehm (2011) were able to over-
come this using the coordinates where the home was located
within the plot. In the current study, properties that were not
assigned a standardized address and a unique latitude and
longitude were excluded from the final sample. Properties
with less than 500 square feet or more than 10,000 square
feet, or zero bedrooms or zero full baths were also dropped.

12 Antenna Structure Registration database available at
http://wireless.fcc.gov/antenna/in-
dex.htm?job = uls_transaction&page = weekly.



February 2016Land Economics136

rare. Since the construction date of each an-
tenna needs to be known to ensure the anten-
nas located near houses were standing when
the properties sold, antennas that did not in-
clude a construction date were dropped.13

Google Earth14 was used to verify whether not
an antenna was standing when the property
sold if there was a dismantled date recorded.
Since the images include the date the image
was captured, it was possible to identify
whether the antenna was standing when the
property sold.15

ArcGIS16 was used to determine several lo-
cation-specific characteristics. They include
(1) the census tract in which each house is
located, (2) the census block group in which
each house is located, (3) distance to the near-
est communication antenna, (4) distance to the
nearest parkway/interstate, (5) distance to the
nearest railroad, and (6) distance to the Fort
Knox military base. Since the visual disamen-
ity of communication antennas is the focus of
this study, all proximity measures were cal-
culated using straight-line distances. All an-
tennas within a 10-mile radius of each prop-
erty that were standing when the property was
sold were identified. This information was
used to determine the number of antennas lo-
cated within specified distances from each
property. In addition, using the Viewshed tool
in ArcGIS, a variable was created that is dis-
tance to the nearest visible communication an-
tenna for each house in the sample. This vari-
able facilitates isolation of the impact of
visual pollution (see Paterson and Boyle
2002; Jensen, Panduro, and Lundhede 2014).
This variable is used along with (uncondi-
tional) distance for comparison.

13 Since the earliest construction year in the sample of
antennas is 1927 and the latest 2011, it cannot be assumed
that the absence of a construction date means the antennas
with missing dates were built before the year 2000 and can
be included in the final sample.

14 See www.google.com/earth/ for access to images.
15 This was a concern for only a handful of antennas.

Multiple antennas were assigned the same coordinates, and
it was determined that this corresponded to multiple anten-
nas being mounted on the same structure. Some demolition
dates indicated that an antenna was removed, and some dem-
olition dates indicated that the actual structure was taken
down. Being dismantled refers to the latter.

16 See www.esri.com/software/arcgis.

Averages or shares for the housing char-
acteristics are given in Table 1. The typical
house sold for $183,609 (in 2011 dollars), has
three bedrooms and two full bathrooms, is
1,655 square feet in size, has a lot size of
about eight-tenths of an acre, and is 33 years
old. Holding all else constant, the owner of a
communication antenna will attempt to locate
the antenna in an area that minimizes the an-
tenna owner’s cost. To check if antennas are
located in areas where property values are low
to begin with, Table 1 also shows averages for
houses within and beyond 4,500 feet of an
antenna.17 Houses within 4,500 feet of an an-
tenna sell for $32,991 (16%) less than houses
more than 4,500 feet away, have slightly
fewer bedrooms and bathrooms, are smaller,
and are on smaller lots. The most notable dif-
ference is that houses within 4,500 feet of an
antenna are about 18 years older on average
than houses more than 4,500 feet away from
an antenna. The differences in means between
houses within and beyond 4,500 feet are sta-
tistically different from zero at usual levels for
all characteristics except for Within 1 Mile Ft.
Knox. It appears that communication anten-
nas are in fact located in areas where proper-
ties are less valuable. While most of the dif-
ference in sales prices for houses within and
beyond 4,500 feet of an antenna can be ex-
plained by differences in the types of houses,
the primary focus of this study is controlling
for differences that are unobservable. The pre-
cise location information for each house pro-
vided in the data is used to control for these
unobservables.18

For the full sample of houses, the median
distance to the nearest visible antenna when a
house is sold is 4,459 feet, or approximately
0.84 miles. The mean distance is 5,959 feet
(1.3 miles) with a standard deviation of 5,334

17 4,500 feet is approximately the median value of dis-
tance to the nearest standing antenna in this sample. Distance
in thousands of feet is used in the analysis that follows.

18 A regression of the number of communication anten-
nas in a census tract on the median sales price and census
tract demographics suggests that the number of antennas in
a census tract is negatively correlated with property values.
However, even though the coefficient has the expected sign,
the coefficient is not statistically different from zero at con-
ventional levels, and the median sales price and demograph-
ics explain only 8% of the variation in the number of com-
munication antennas in a census tract.
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TABLE 1
Mean or Share for Structural Housing Characteristics

Variables All Less than 4,500 ft Greater than 4,500 ft

Sales price (2011 dollars) 183,609 167,235 200,226
Bedrooms 3.241 3.161 3.323
Full bathrooms 1.811 1.687 1.937
Partial bathrooms 0.368 0.346 0.39
Square feet of living space 1,655 1,573 1,739
Lot size (acres) 0.82 0.383 1.263
Lot size missing 0.046 0.044 0.049
Has< in lot dimensionsa 0.127 0.149 0.105
Has > in lot dimensionsa 0.003 0.003 0.004
Age (years) 33.153 42.078 24.096
Age unknown 0.01 0.006 0.014
Fireplace 0.479 0.474 0.484
Basement 0.602 0.613 0.59
Finished basement 0.175 0.153 0.197
Central air 0.909 0.898 0.921
Brick exterior 0.346 0.322 0.37
Vinyl exterior 0.162 0.157 0.168
Metal roof 0.01 0.006 0.013
Composition roof 0.94 0.944 0.935
Ranch style 0.447 0.409 0.485
Modular style 0.014 0.004 0.024
Cape cod style 0.084 0.102 0.066
Carport 0.057 0.066 0.049
Garage 0.663 0.657 0.668
One-car garage 0.169 0.209 0.128
Multiple-car garage 0.563 0.494 0.632
Within 1 mile parkway/Interstate 0.485 0.629 0.338
Within 1 mile railroad 0.511 0.569 0.452
Within 1 mile Ft. Knox 0.014 0.014 0.014
Sample size 142,161 71,604 70,557

a The lot dimensions indicated the lot size was less (greater) than the listed size.

feet. Only 0.4% of houses are within 500 feet
of the nearest visible antenna, while 9.5% of
the houses in the sample have a visible an-
tenna within 2,000 feet. Some houses are
likely affected by the presence of multiple an-
tennas. For example, there are 108 houses that
have two visible antennas between 500 and
1,000 feet and 6 that have three antennas
within that same radius. This variation in an-
tenna density means that estimating the disa-
mentity value caused by communication an-
tennas using distance to the nearest antenna
could be biased due to the presence of mul-
tiple antennas. Estimates would tend to be bi-
ased upward, because all the value of the dis-
amenity would be attributed to the nearest
antenna when it should be attributed to the
combination of antennas.

Before moving to estimation of any disa-
menity value of antennas, it is worth address-
ing an overall concern about housing market

analysis during the Great Recession. The con-
cern is how an equilibrium framework such as
that described by Rosen (1974) can produce
misleading results during a period of disrup-
tion.19 Without question, housing prices de-
clined between 2006 and 2009, but as Carson
and Dastrup (2013) report, there was consid-
erable spatial variation. Across metropolitan
areas, housing prices declined none at all to
more than 60%. The four-quarter percentage
change in the Federal Housing Finance
Agency’s housing price index20 is shown in
Figure 2 for the study area and the Los An-
geles and Miami metropolitan statistical areas
(MSAs). Even though the Louisville MSA
was affected by the recent housing crisis,

19 This issue is discussed in detail by Boyle et al. (2012).
20 Federal Housing Finance Agency Housing Price In-

dex data available at www.fhfa.gov/DataTools/Downloads/
Pages/House-Price-Index.aspx.
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FIGURE 2
Four Quarter Percent Change in the Federal Housing Finance Agency Housing Price Index in the Los

Angeles, Louisville, and Miami Metropolitan Statistical Areas

house prices remained relatively stable com-
pared to the larger MSAs that were affected
the most. This stability alleviates concerns
that the results presented below are being af-
fected by a rapidly changing and unstable
housing market.

Changes in census tract demographics21

from 2000 and 2010 for the study area were
also compared to changes for the entire United
States. The only notable difference is that un-
employment more than doubled nationally,
while there was only a 62% increase in the
study area. For the entire United States, the
percentage change in the number of people
who moved in from out of state fell by 71%,
while it increased by 12% in the study area;
since the study area contains the Fort Knox
military base, the above average number of
out-of-state movers is to be expected.22

21 Census data available at http://factfinder.census.gov.
22 A regression of the change in the number of com-

munication antennas in a census tract on the percentage
changes in demographic characteristics in the same tract
suggests that changes in demographics are not leading to
significant changes in the number of communication anten-
nas in an area. There were statistically significant coeffi-
cients for median income, unemployment, percentage of the
population that owns their home, and the percentage of the
population with a bachelor’s degree or higher. However, the
changes in these characteristics required to cause one addi-

Because there is a concern that antennas
could be located in areas with not only lower
property values but also disadvantaged pop-
ulations, demographics for census block
groups that contain antennas were compared
to those within the same census tract that do
not have any antenna structures, for the entire
state of Kentucky in 2010. While small dif-
ferences exist, none are significant at conven-
tional levels. Table 1 shows that houses near
these antennas sell for less than homes farther
away; however, these differences do not ap-
pear to be driven by differences in demo-
graphic characteristics.23

IV. EMPIRICAL MODEL

To determine the impact proximity to an
antenna structure has on property values, he-
donic property value models and quasi-exper-
imental methods are used. The first regres-
sions rely on cross-sectional variation in
distance to the nearest antenna and do not ex-
ploit the panel aspect of the data. The second

tional antenna to be constructed or dismantled are extremely
large. For example, it would take a 1,067% increase in un-
employment to lead to the dismantling of one antenna.

23 Note that this calculation is possible only for census
tracts that have at least one block group without antennas.
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set of regressions exploits the panel aspect of
the data to reduce the potential bias caused by
time-invariant unobservables. The data cover
a period of 12 years, with communication an-
tennas being built and dismantled throughout
the period as well as in between sales of the
same property. These changes allow for esti-
mation of the traditional cross section speci-
fications as well as the repeat sales and dif-
ference-in-differences specifications that are
becoming more prevalent in the hedonic lit-
erature (Gayer, Hamilton, and Viscusi 2002;
Linden and Rockoff 2008; Parmeter and Pope
2013; Haninger, Ma, and Timmins 2014;
Muehlenbachs, Spiller, and Timmins 2014;
Bajari et al. 2012).

Cross-Section Specification and Proximity
Measures

Following Kuminoff, Parmeter, and Pope
(2010) and Heintzelman and Tuttle (2012), a
semilog specification with spatial fixed effects
is used to address the potential bias caused by
time-invariant, spatially correlated unobserv-
ables. The first specification is

ln P = Z β+ X δ+λ +γ + � , [2]ijt ijt ijt t j ijt

where is the natural log of the price ofln Pijt
house at location at time , is the seti j t Zijt
of variables describing proximity to the near-
est antenna structures, includes an exten-Xijt
sive set of structural housing characteristics,

are year-month time dummy variables,λ γt j
are spatial fixed effects, and is the error�ijt
term. To demonstrate the importance of in-
cluding the spatial fixed effects, equation [2]
is estimated without spatial fixed effects and
again with census tract or census block group
fixed effects. If there are unobserved spatial
characteristics that are correlated with the
proximity variables, in equation [2] shouldβ
be more precisely estimated when smaller
geographic fixed effects are used.

Distance to communication antennas is
measured using a continuous quadratic mea-
sure of distance to the nearest visible antenna
that was standing when the property sold.24

24 Banfi, Filippini, and Horehájová (2008) and Bond
(2007a, 2007b) estimate the impact of cell phone towers on

The spatial fixed effects ensure that this con-
tinuous measure of distance is measuring the
impact of a nearby antenna and not proximity
to an area that may be a magnet for commu-
nication antennas. As a robustness check, the
inverse of distance to the nearest antenna that
was standing when the property sold is also
used.

As an additional robustness check, prox-
imity is measured using 500-foot distance
rings that include a dummy variable equal to
1 if a communication antenna is located
within some specified distance. The dummy
variable method is the primary specification
used by Heintzelman and Tuttle (2012) and
allows for a high degree of nonlinearity in the
disamenity caused by these antennas. A short-
coming of this method is that the size of the
distance rings and the distance used as the
omitted category is somewhat arbitrary. If
properties are affected by the presence of mul-
tiple antennas, the dummy variable approach
will overestimate the disamenity caused by
communication antennas. Since multiple
properties in the sample have more than one
antenna nearby, proximity is also measured
using the number of antennas within each
ring. This is the method used by Mastromon-
aco (2014) to estimate the impact of Super-
fund sites on property values in Los Angeles.

Panel Analysis

One strategy for removing time-invariant
unobservables is to exploit the variation in
distance to the nearest antenna for properties
that sell multiple times. During the study pe-
riod, new antennas were constructed and old
antennas were dismantled. These changes cre-
ate variation in distance to the nearest antenna
over time for the same property. This ap-
proach eliminates any time-invariant unob-
servables that may be correlated with the
proximity variables and is the primary method
used by Gayer, Hamilton, and Viscusi (2002),
Heintzelman and Tuttle (2012), Mastromon-
aco (2014), and Bajari et al. (2012). The fol-
lowing regression is estimated:

property values, but their specifications do not fully account
for endogeneity of tower location and correlated unobserv-
ables.
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ln P ln P = (z z )β+(X X )δit it′ it it′ it it′

+λ + � � , [3]t it it′

where is the natural log of the price ofln Pit
house at time , is the distance to thei t zit
nearest standing antenna at time , and aret Xit
structural housing characteristics that may
vary over time. Following Gayer, Hamilton,
and Viscusi (2002), is a set of year vari-λt
ables equal to –1 if the year indicates the first
year the property sold, 1 if the year indicates
the year of the last sale, and 0 for all other
sales.25 This allows for appreciation in hous-
ing values over time. is the error term. This�it
specification is different from the repeat sales
model that is typically estimated. In the typi-
cal repeat sales model, only the proximity
variables that measure distance to the nearest
antenna would be allowed to vary over time,
while the structural housing characteristics are
assumed to be constant. Several recent studies
use data from sources that do not record the
structural housing characteristics each time a
house is sold and make the assumption of con-
stant structural characteristics (Heintzelman
and Tuttle 2012; Mastromonaco 2014; Bajari
et al. 2012). Equation [3] will be estimated
with and without the changing structural
housing characteristics to control for changes
and determine how sensitive the estimate of

is to the assumption of constant structuralβ
characteristics.

There are shortcomings when using the re-
peat sales approach. There is the possibility
that the unobservables are not time invariant.
Kuminoff, Parmeter, and Pope (2010) show
that when the omitted spatial characteristics
are time varying, the bias in the first-differ-
enced estimates increases substantially. Since
not all properties are sold multiple times, the
repeat sales approach leads to much smaller
sample sizes. In addition, properties that sell
multiple times may be systematically different
than properties that sell only once. Properties
that turn over multiple times may be repeat-
edly priced below market value, or more im-

25 Bailey, Muth, and Nourse (1963) introduce this
method of estimating a price index using a repeat sales
framework. The first period (year 2000) is the base year, and
the remaining coefficients can be interpreted as the log price
index.

portantly, the local disamenity has an above-
average effect on those properties. With an
extensive list of housing characteristics at the
time of all sales, the number of time-varying
unobservables is smaller than in studies that
do not have house characteristics at the time
of sale each time the property is sold.26

V. RESULTS

Cross-Section Results

Results that use a continuous measure of
distance to the nearest visible antenna are re-
ported in Table 2, Panel A. In column (1), cen-
sus tract fixed effects are included, and the
results show that holding constant the char-
acteristics of the house, the year, and month
the property was sold, and the area in which
the property is located, consumers are willing
to pay a premium to be located farther away
from a communication antenna. The estimates
in column (1) show that the sales price of a
house is increasing at a rate of approximately
0.74% at a distance of 1,000 feet and at a rate
of about 0.68% at 2,500 feet. No effect is
found beyond 21,093 feet (approximately 4.0
miles). Interestingly, specifications (not
shown) that do not include any spatial fixed
effects indicate that houses with communica-
tion antennas nearby sell for more, not less,
than houses where the nearest antenna is far-
ther away. Column (2) includes census block
group fixed effects, which are more precise
than the census tract fixed effects used in col-
umn (1). These estimates suggest that the
sales price of a house increases at a rate of
about 0.57% at a distance of 1,000 feet, and
a rate of 0.53% at 2,500 feet. No effect is
found beyond 21,583 feet (approximately 4.1
miles). Even though the effect of distance is
identified by variation in distance within a
smaller geographic area, the specification us-
ing census block group fixed effects provides

26 A difference-in-differences specification was also
used to mitigate the effects of time-invariant unobservables.
This technique is discussed in detail by Parmeter and Pope
(2013) and used by Linden and Rockoff (2008), Muehlen-
bachs, Spiller, and Timmins (2014), and Haninger, Ma, and
Timmins (2012) in difference-in-differences. Treatment and
control groups were identified using the method of Linden
and Rockoff (2008).
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TABLE 2
Cross-Section Results for Antenna Impact Using Continuous Measures of Distance

(1) (2)
Variablea ln(Sales price) ln(Sales price)

Panel A

Distance to nearest visible antenna 0.00772*** (0.00150) 0.00600*** (0.00132)
Distance2 to nearest visible antenna −0.000183*** (3.49e–05) −0.000139*** (2.99e–05)
Constant 10.51*** (0.0309) 10.24*** (0.0195)
Observations 141,208 141,208
R-squared 0.853 0.862

Panel B

Distance to nearest antenna 0.0104*** (0.00187) 0.00888*** (0.00173)
Distance2 to nearest antenna −0.000323*** (5.81e–05) −0.000284*** (5.74e–05)
Constant 10.50*** (0.0307) 10.23*** (0.0199)
Observations 142,161 142,161
R-squared 0.853 0.862

Panel C

Inverse distance to nearest visible antenna −0.0359*** (0.00886) −0.0285*** (0.00743)
Constant 10.56*** (0.0299) 10.28*** (0.0187)
Observations 141,208 141,208
R-squared 0.853 0.862
Year-month dummies Yes Yes
Tract fixed effects Yes No
Block group fixed effects No Yes

Note: Distances to antennas are measured in thousands of feet. Standard errors are clustered at the level of included fixed effect.
a Also included in each regression are bedrooms, full bathrooms, partial bathrooms, square feet, square feet2, lot size, lot size missing, age,

age2, age unknown, fireplace, basement, finished basement, central air, exterior type, roof type, style of home, garage, carport, within 1 mile
parkway/interstate, within 1 mile railroad, and within 1 mile Ft. Knox.

*** p<0.01.

estimates that are more precisely estimated
than the census tract specification. This result
provides further evidence that there are spa-
tially correlated unobservables that are nega-
tively correlated with distance to a commu-
nication antenna.27

Panel B uses the same quadratic distance
specification but uses the more naive measure
of distance to the nearest antenna that does not

27 Regressions were estimated that included the per-
centage of rural residents in a census tract instead of census
tract fixed effects. The results show that the sales price of a
house is decreasing as the number of people living in rural
areas increases, and that proximity to a communication an-
tenna has a positive effect on the sales price of a house in
highly urban areas, and a negative effect in more rural areas.
This is consistent with the idea that antennas in more urban
areas are more likely to be disguised than in rural areas,
where the antennas structures tend to be much larger. Urban
areas have multiple structures such as tall buildings, smoke
stacks, clocks, and church steeples that antennas can be lo-
cated on or around. The R2 for the urban/rural specification
was 0.72 compared to 0.85 in the census tract specification
in Table 2.

take into account whether the nearest antenna
is visible from the house. While the effect is
similar, it is estimated with less precision than
the specification that accounts for visibility of
the nearest antenna. For approximately 5% of
the houses in the sample, the nearest antenna
is not visible, and that fact produces measure-
ment error in this specification.28

As a robustness check, the same specifi-
cations are estimated using the inverse of dis-
tance to the nearest visible antenna. These re-

28 As an additional robustness check, a specification was
estimated that uses distance to the nearest tower-type an-
tenna. These structures are larger and are visible at greater
distances than the smaller antenna structures and are ex-
pected to have a larger effect on property values and have
an effect at greater distances if they are visible. If the esti-
mated effect is larger than when all antennas are considered,
this provided additional evidence that households are aware
of this visual disamenity and respond rationally (Pope 2008;
Currie et al. 2015). As expected, the results show that the
tower-type antennas lead to a larger decrease in property
values and have an effect farther away.
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TABLE 3
Cross-Section Results of Antenna Impact Using 500-Foot Distance Rings: Any

Antenna and Number of Antennas

(1) (2)
ln(Sales Price) ln(Sales Price)

Variablea 1 if Within Number Within

0 to 500 −0.0752*** (0.0232) −0.0494** (0.0206)
500 to 1,000 −0.0613*** (0.0134) −0.0390*** (0.0112)
1,000 to 1,500 −0.0630*** (0.0109) −0.0417*** (0.00917)
1,500 to 2,000 −0.0620*** (0.00987) −0.0417*** (0.00691)
2,000 to 2,500 −0.0512*** (0.00918) −0.0289*** (0.00650)
2,500 to 3,000 −0.0450*** (0.00796) −0.0286*** (0.00538)
3,000 to 3,500 −0.0428*** (0.00759) −0.0288*** (0.00473)
3,500 to 4,000 −0.0343*** (0.00652) −0.0248*** (0.00456)
4,000 to 4,500 −0.0128** (0.00593) −0.0167*** (0.00425)
Constant 10.30*** (0.0194) 10.31*** (0.0208)
Observations 141,208 141,208
R-squared 0.862 0.863
Year-month dummies Yes Yes
Tract fixed effects No No
Block group fixed effects Yes Yes

Note: Standard errors are clustered at the census block group.
a Also included in each regression are bedrooms, full bathrooms, partial bathrooms, square feet, square feet2,

lot size, lot size missing, age, age2, age unknown, fireplace, basement, finished basement, central air, exterior
type, roof type, style of home, garage, carport, within 1 mile parkway/interstate, within 1 mile railroad, and
within 1 mile Ft. Knox.

** p<0.05; *** p<0.01.

sults are shown in Table 2, Panel C. When
census tract fixed effects are included, the es-
timates show that the sales price of a house is
increasing at a rate of approximately 3.6% at
a distance of 1,000 feet, and at a rate of about
0.57% at 2,500 feet. When census block group
fixed effects are included, the estimates show
that the sales price of a house is increasing at
a rate of about 2.9% at a distance of 1,000
feet, and a rate of 0.46% at 2,500 feet. Again,
the effect is estimated more precisely as more
precise fixed effects are included. Overall, the
results do not appear to be extremely sensitive
to functional form when using a continuous
measure of distance.

Results from an alternative specification
that uses 500-foot distance rings are shown in
Table 3. Column (1) indicates whether an an-
tenna is located within a specified radius, and
column (2) estimates the marginal effect of an
additional antenna within the same radius by
using the density of nearby antennas. The re-
sults suggest that houses located near an an-
tenna sell for less than a comparable house
farther away and that both distance to the
nearest antenna and the density of nearby an-
tennas have a significant effect on property

values. In both specifications, the effect of
communication antennas on property values
diminishes almost monotonically with dis-
tance.29

29 Bond and Wang (2005) and Bond (2007a) estimate
the impact of cell phone towers on property values in New
Zealand, but the studies have limitations. The first lacks pre-
cise location information for the houses and uses street name
fixed effects as a proxy for distance to a tower. The second
geocodes houses, but the model is misspecified. They use a
continuous distance measure but set distance equal to zero
if the house sold before the tower was constructed. Bond’s
(2007b) is the only study found that uses U.S. data. It is
limited to sales from one area of Orange County, Florida,
and includes the latitude and longitude of each property in
each regression. Banfi, Filippini and Horehájová (2008) look
at the impact of cell phone towers on rents in Zurich Swit-
zerland and find a significant decrease in rents of about 1.5%
on average. Filippova and Rehm’s (2011) is the most recent
study. They use data from the Auckland region of New Zea-
land and also use distance bands and a continuous distance
measure. Their distance band specification yields insignifi-
cant results, and the coefficient of the continuous distance
measure has a significant, but wrong-signed coefficient.
They report a negative but insignificant impact on property
values. The authors fail to consider the interaction terms
between distance and their location variables. Given they
use 50-meter increments for their distance bands, it is likely
there is not enough variation within each band to identify
any impact.
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TABLE 4
Results Using Repeat Sales and a Continuous Measure of Distance: All Repeat Sales

and Sold Only Twice

(1) (2)
Variable Δ ln(Sold price) Δ ln(Sold price)

Panel A

Δ Distance to nearest visible antennaa 0.00537*** (0.000924) 0.00200** (0.000941)
Constant 0.0543*** (0.00308) 0.152*** (0.00527)
Observations 29,759 20,871
R-squared 0.102 0.144

Panel B

Δ Distance to nearest visible antennaa 0.00546*** (0.000869) 0.00254*** (0.000861)
Δ Bedrooms 0.0781*** (0.00562) 0.0613*** (0.00628)
Δ Full bathrooms 0.171*** (0.00802) 0.169*** (0.00912)
Δ Partial bathrooms 0.105*** (0.00959) 0.111*** (0.0114)
Δ Finished basement 0.0211*** (0.00385) 0.00992** (0.00458)
Δ Central air 0.255*** (0.00979) 0.243*** (0.0116)
Δ Carport 0.0585*** (0.0145) 0.0397*** (0.0151)
Δ Garage 0.0152* (0.00783) 0.0220** (0.00914)
Observations 29,759 20,871
R-squared 0.202 0.231
All repeats Yes No
Sold twice No Yes

a Distances to antennas are measured in thousands of feet. Standard errors are clustered at the property level.
* p<0.1; ** p<0.05; *** p<0.01.

The results that account for number of an-
tennas (shown in Table 3, column (2)) are con-
sistent with the argument made by Mastro-
monaco (2014) that considering only distance
to the nearest site will lead to biased estimates
if there are multiple sites that could adversely
affect a property’s sales price. As is expected,
adding an additional antenna near a residential
property has a smaller effect than an antenna
being located near a property that did not pre-
viously have one nearby. Since the absolute
value of the point estimate of almost every
coefficient in column (2) of Table 3 is smaller
than the corresponding coefficient in column
(1), the estimates that measure proximity with
distance to the nearest site are likely biased.
To further explore this possible effect, a spec-
ification (not shown) was estimated that in-
cluded both distance to the nearest visible an-
tenna along with the density of nearby
antennas, using 500-foot rings. Although the
effect of density of nearby antennas remained
significant, the effect of distance to the nearest
antenna was not significant at conventional
levels.

Panel Results

Results from the first repeat sales specifi-
cation that assumes the structural housing
characteristics are constant over time are
shown in Table 4, Panel A. In this specifica-
tion, the change in sales price is assumed to
be a function of the change in distance to the
nearest visible antenna and a set of year
dummy variables that are equal to –1 if the
year indicates the time of the first sale, 1 if
the year indicates the year of the last sale, and
0 for all other sales. Comparing the change in
sales price for houses that are sold more than
once eliminates any bias that could be caused
by time-invariant spatially correlated unob-
servables.

Comparing columns (1) and (2) for each
cross-section specification in Table 2 shows
that as more precise spatial fixed effects are
used, the estimated effect of communication
antennas on the sales price of a house is
smaller and more precisely estimated. This in-
dicates that the spatially correlated unobserv-
ables are negatively correlated with proximity
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to an antenna. If this is true, and the unob-
servables are time invariant, the repeat sales
estimates of the impact communication anten-
nas have on property values should be similar
to the estimates using the more precise census
block group fixed effects.

The results in each column of Table 4 are
consistent with this hypothesis. Column (1)
includes all houses that sold more than once
during the sample period. For every 1,000-
foot change in distance to the nearest antenna,
on average, the sales price of a house in-
creases by 0.54%. Column (2) includes the set
of houses that sold only twice during the 12
years the data cover. Since repeat sales are
identified by the standardized address that was
assigned to each property, limiting the sample
to houses that sold only two times reduces the
chance of including houses that are being con-
sidered repeat sales due to a coding error.
Even though the sample size is reduced by
8,888 observations compared to the sample of
all repeat sales, the R2 increases by 0.042, and
the effect of distance is still precisely esti-
mated. In this specification, for every 1,000-
foot change in distance to the nearest antenna,
on average, the sales price of a house in-
creases by 0.20%.

Of the 29,886 houses that sold more than
once, a nontrivial number experienced a
change in a major structural characteristic be-
tween sales. For example, 4,316 (17%) of
houses had a change in the number of bed-
rooms between sales. The repeat sales results
in Table 4, Panel B are based on relaxing the
assumption that structural housing character-
istics are constant over time. As is expected,
including the changes in structural housing
characteristics leads to a higher R2, increases
in each characteristic lead to a larger positive
change in sales price, and the effect of dis-
tance is more precisely estimated. This result
suggests that the change in distance to the
nearest antenna between sales of the same
property is not completely orthogonal to the
change in housing characteristics, an assump-
tion that must be made when detailed sales
data are not used. When changing structural
housing characteristics are accounted for, the
estimated impact is slightly larger than the es-
timate in Panel A. While these estimates are

not statistically different at conventional lev-
els, a larger effect when the changing struc-
tural housing characteristics are included is
consistent with the results from Bajari et al.
(2012) that show ignoring time-varying cor-
related unobservables leads to underestimates
of the benefits of pollution reduction.30

VI. DISCUSSION AND CONCLUSIONS

Overall, the results from the preferred
specifications that include spatial fixed effects
show that houses located near communication
antennas sell for less on average than com-
parable houses located farther away from an
antenna. There are a few important points to
note about these results. First, regardless of
the specification, time-invariant spatially cor-
related unobservables bias the cross-sectional
estimates of the disamenity associated with
nearby communication antennas when no
controls for neighborhood characteristics are
included. When spatial fixed effects are not
included, the results suggest that houses near
communication antennas sell for more, not
less, than a similar house farther away from
an antenna. When spatial fixed effects are in-
cluded to capture the effect of time-invariant
spatially correlated unobservables, each spec-
ification used indicates that houses near com-
munication antennas sell for less than a simi-
lar house located farther away from an
antenna. When the more precise census block
group fixed effects are included, the estimated
reduction in sales price caused by a commu-
nication antenna becomes smaller and is es-
timated more precisely in each of the cross-
section specifications. This effect reinforces
the importance of carefully controlling for

30 Estimates from the difference-in-differences specifi-
cation show that houses within 2,000 feet of an antenna at
the time they were sold sell for about 3.3% less than a com-
parable house more than 2,000 feet away from an antenna
at the time it was sold. When the equilibrium price function
with respect to structural housing characteristics is allowed
to change over time, an effect of about 2.2% is found but is
not statistically significant at conventional levels. Since
many houses in the sample are affected by the presence of
multiple antennas, defining treatment and control groups us-
ing the method of Linden and Rockoff (2008) that uses dis-
tances to the nearest standing and not-standing antennas may
not be appropriate.
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spatially correlated unobservables that are
correlated with proximity to a localized disa-
menity.

Consistent with the conjecture made by
Mastromonaco (2014), estimating the effect
of communication antennas on property val-
ues using distance to the nearest antenna is
likely biased due to the presence of multiple
nearby antennas. The results in column (2) of
Table 3 indicate that a house located within
500 feet of an antenna sells for 7.5% less than
a similar house more than 4,500 feet away
from its nearest antenna. The results in col-
umn (2) of Table 3 show that adding an ad-
ditional antenna within 500 feet of a house
leads to a smaller reduction in sales price of
4.9%.

The results also suggest that the omitted
spatial characteristics correlated with prox-
imity to a communication antenna are time
invariant and are being captured by the census
block group fixed effects. First, the effect
communication antennas have on nearby
properties is smaller and is estimated more
precisely when census block group fixed ef-
fects are used compared to the census tract
estimates. This confirms that there are unob-
servables spatially correlated with distance to
a communication antenna. Second, the repeat
sales method eliminates any bias caused by
time-invariant unobservables and provides re-
sults that are smaller than the cross-sectional
estimates that include census block group
fixed effects. Since the antennas are located
in areas where property values are lower, the
repeat sales specification that eliminates all
time-invariant unobservables should yield re-
sults with the smallest amount of bias. Since
the sample of houses that are sold multiple
times may not be a random sample of all
houses, some bias could still exist.

The best estimate of reduction in sales
price caused by communication antennas
shows that the sales price of a house is in-
creasing at a rate of about 0.57% ($1,047) at
a distance of 1,000 feet from the nearest an-
tenna (Table 2, Panel A, column (2)). This
suggests that a property located within 1,000
feet of the nearest antenna at the time of sale
will sell for 1.82% ($3,342) less than a similar
house that is 4,500 feet from the nearest an-

tenna. In this specification, time-invariant spa-
tially correlated unobservables are controlled
for with census block group fixed effects. The
repeat sales results in Table 4 provide addi-
tional evidence that the spatially correlated
unobservables are being captured by the fixed
effects. These estimates of the disamenity as-
sociated with communication antennas con-
trols for time-invariant unobservables at the
property level and suggests that a property lo-
cated within 1,000 feet of an antenna will sell
for 0.89% ($1,634) less than a similar house
that is 4,500 feet from the nearest antenna
(Panel B, column (2)). However, since the re-
peat sales are identified by matching a stan-
dardized address, these results could be sen-
sitive to measurement error.

This effect is smaller than the estimated re-
duction caused by similar disamenities. Kroll
and Priestley (1992) provide a review of the
literature concerning overhead transmission
lines and property values through the early
1990s. They find that in studies where a sig-
nificant decrease was found, the decrease in
property values typically fell in the range of
2% to 10%, and the effect diminished beyond
a few hundred feet. Hamilton and Schwann
(1995) estimate the impact of high voltage
electric transmission lines have on property
values, but primarily focus on the importance
of using the correct functional form. They find
that properties adjacent to a line lose about
6.3% of their value, but more distant proper-
ties are hardly affected. Using a repeat sales
model, Heintzelman and Tuttle (2012) find
that having a wind turbine located 0.5 miles
away leads to a reduction in sales price from
8.8% to 15.81%.

The preferred specification for estimating
the disamenity associated with communica-
tion antennas is the continuous measure of
distance using census block group fixed ef-
fects (Table 2, Panel A, column (2)). These
results imply that a property with an antenna
located within 1,000 feet at the time of sale
will sell for 1.82% ($3,342) less than a similar
house that is 4,500 feet from the nearest an-
tenna. In this sample, there are 3,031 houses
within 1,000 feet of an antenna structure. Us-
ing the preferred repeat sales specification as
a lower bound, if each antenna within 1,000
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feet of a property were moved to a distance
of 4,500 feet, there would be an aggregate in-
crease in sales price of $4.95 million. The best
estimate suggests the aggregate increase
would be $10.13 million. These values should
be compared to the cost of camouflaging or
disguising communication antennas near resi-
dential properties to mitigate the effect they
have on property values.

In areas where antennas are highly visible
(Figure 1, upper photo), there is a potential
externality caused by these antennas. If anten-
nas are constructed near residential properties
after the homeowner purchases the property,
those houses suffer a small but nontrivial de-
crease in their property value and their owners
are unlikely to be compensated by the land
owner where the antenna is located or the
owner of the antenna. Camouflaging is one
solution to this problem that has been imple-
mented in some areas. Camouflaged towers
blend in with the landscape or are constructed
in already standing structures such as church
steeples and clock towers. Such developments
will mitigate the disamenity associated with
communication antennas and reduce the cost
of convenience.
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