RECEIVED

MAR 3 0 2020

PUBLIC SERVICE

COMMISSION

COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF CELLCO PARTNERSHIP d/b/a VERIZON WIRELESS FOR ISSUANCE OF A CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY TO CONSTRUCT A WIRELESS COMMUNICATIONS FACILITY IN THE COMMONWEALTH OF KENTUCKY IN THE COUNTY OF BALLARD

) CASE NO.: 2020-00105

SITE NAME: BARLOW SE

* * * * * * *

APPLICATION FOR CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY FOR CONSTRUCTION OF A WIRELESS COMMUNICATIONS FACILITY

Cellco Partnership d/b/a Verizon Wireless ("Applicant"), by counsel, pursuant to (i) KRS §§ 278.020, 278.040, 278.650, 278.665, and other statutory authority, and the rules and regulations applicable thereto, and (ii) the Telecommunications Act of 1996, respectfully submits this Application requesting issuance of a Certificate of Public Convenience and Necessity ("CPCN") from the Kentucky Public Service Commission ("PSC") to construct, maintain, and operate a Wireless Communications Facility ("WCF") to serve the customers of Verizon Wireless with wireless communications services.

In support of this Application, Applicant respectfully provides and states the following information:

 The complete name and address of the Applicant is Cellco Partnership d/b/a Verizon Wireless having an address of One Verizon Way, Mail Stop 4AW100, Basking Ridge, New Jersey 07920. 2. Applicant proposes construction of an antenna tower for communications services, which is to be located in an area outside the jurisdiction of a planning commission, and Applicant submits this application to the PSC for a certificate of public convenience and necessity pursuant to KRS §§ 278.020(1), 278.040, 278.650, 278.665, and other statutory authority.

3. Applicant entity is a Delaware general partnership, and a copy of an Amended Certificate of Assumed Name for Applicant entity on file with the Kentucky Secretary of State is attached as part of **Exhibit A**.

4. Verizon Wireless operates on frequencies licensed by the Federal Communications Commission ("FCC") pursuant to applicable FCC requirements. A copy of Verizon Wireless' FCC licenses to provide wireless services are attached to this Application or described as part of **Exhibit A**, and the facility will be constructed and operated in accordance with applicable FCC regulations. Horvath Communications will build, own and manage the tower and tower compound where Verizon Wireless will place its equipment building, antennas, radio electronics equipment and appurtenances.

5. The public convenience and necessity require the construction of the proposed WCF. The construction of the WCF will bring or improve Verizon Wireless services to an area currently not served or not adequately served by Verizon Wireless by increasing coverage or capacity and thereby enhancing the public's access to innovative and competitive wireless communications services. The WCF will provide a necessary link in Verizon Wireless' communications network that is designed to meet the increasing demands for wireless services in Kentucky's wireless communications service area. The

WCF is an integral link in Verizon Wireless' network design that must be in place to provide adequate coverage to the service area.

6. To address the above-described service needs, Applicant proposes to construct a WCF at Wayside Inn Road, Wickliffe, KY 42087 (37° 01' 45.61" North latitude, 89° 00' 07.63" West longitude), on a parcel of land located entirely within the county referenced in the caption of this application. The property on which the WCF will be located is owned by Lorea and Kenny Turner, pursuant to a Deed recorded at Deed Book 77, Page 464 in the office of the Ballard County Clerk. The proposed WCF will consist of a 290-foot tall tower, with an approximately 5-foot tall lightning arrestor attached at the top, for a total height of 295-feet. The WCF will also include concrete foundations and a shelter or cabinets to accommodate the placement of Verizon Wireless' radio electronics equipment and appurtenant equipment. Verizon Wireless' equipment cabinet or shelter will be approved for use in the Commonwealth of Kentucky by the relevant building inspector. The WCF compound will be fenced and all access gate(s) will be secured. A description of the manner in which the proposed WCF will be constructed is attached as **Exhibit B** and **Exhibit C**.

7. A list of utilities, corporations, or persons with whom the proposed WCF is likely to compete is attached as **Exhibit D**.

8. The site development plan and a vertical profile sketch of the WCF signed and sealed by a professional engineer registered in Kentucky depicting the tower height, as well as a proposed configuration for Verizon Wireless' antennas has also been included as part of **Exhibit B**.

9. Foundation design plans signed and sealed by a professional engineer registered in Kentucky and a description of the standards according to which the tower was designed are included as part of **Exhibit C**.

10. Applicant has considered the likely effects of the installation of the proposed WCF on nearby land uses and values and has concluded that there is no more suitable location reasonably available from which adequate services can be provided, and that there are no reasonably available opportunities to co-locate Verizon Wireless' antennas on an existing structure. When suitable towers or structures exist, Applicant attempts to co-locate on existing structures such as communications towers or other structures capable of supporting Applicant's facilities; however, no other suitable or available co-location site was found to be located in the vicinity of the site.

11. A copy of the Determination of No Hazard to Air Navigation issued by the Federal Aviation Administration ("FAA") is attached as **Exhibit E**.

12. A copy of the approval from the Kentucky Airport Zoning Commission ("KAZC") to construct the proposed tower is attached as **Exhibit F**.

13. A geotechnical engineering firm has performed soil boring(s) and subsequent geotechnical engineering studies at the WCF site. A copy of the geotechnical engineering report, signed and sealed by a professional engineer registered in the Commonwealth of Kentucky, is attached as **Exhibit G**. The name and address of the geotechnical engineering firm and the professional engineer registered in the Commonwealth of Kentucky who supervised the examination of this WCF site are included as part of this exhibit.

14. Clear directions to the proposed WCF site from the County seat are attached as **Exhibit H**. The name and telephone number of the preparer of **Exhibit H** are included as part of this exhibit.

15. Applicant, pursuant to a written agreement, has acquired the right to use the WCF site and associated property rights. A copy of the agreement or an abbreviated agreement recorded with the County Clerk is attached as **Exhibit I**.

16. Personnel directly responsible for the design and construction of the proposed WCF are well qualified and experienced. The tower and foundation drawings for the proposed tower submitted as part of **Exhibit C** bear the signature and stamp of a professional engineer registered in the Commonwealth of Kentucky. All tower designs meet or exceed the minimum requirements of applicable laws and regulations.

17. The identity and qualifications of each person directly responsible for design and construction of the proposed tower are contained in **Exhibits B & C**.

18. As noted on the Survey attached as part of **Exhibit B**, the surveyor has determined that the site is not within any flood hazard area.

19. **Exhibit B** includes a map drawn to an appropriate scale that shows the location of the proposed tower and identifies every owner of real estate within 500 feet of the proposed tower (according to the records maintained by the County Property Valuation Administrator). Every structure and every easement within 500 feet of the proposed tower or within 200 feet of the access road including intersection with the public street system is illustrated in **Exhibit B**.

20. Applicant has notified every person who, according to the records of the

County Property Valuation Administrator, owns property which is within 500 feet of the proposed tower or contiguous to the site property, by certified mail, return receipt requested, of the proposed construction. Each notified property owner has been provided with a map of the location of the proposed construction, the PSC docket number for this application, the address of the PSC, and has been informed of his or her right to request intervention. A list of the notified property owners and a copy of the form of the notice sent by certified mail to each landowner are attached as **Exhibit J** and **Exhibit K**, respectively.

21. Applicant has notified the applicable County Judge/Executive by certified mail, return receipt requested, of the proposed construction. This notice included the PSC docket number under which the application will be processed and informed the County Judge/Executive of his/her right to request intervention. A copy of this notice is attached as **Exhibit L**.

22. Notice signs meeting the requirements prescribed by 807 KAR 5:063, Section 1(2) that measure at least 2 feet in height and 4 feet in width and that contain all required language in letters of required height, have been posted, one in a visible location on the proposed site and one on the nearest public road. Such signs shall remain posted for at least two weeks after filing of the Application, and a copy of the posted text is attached as **Exhibit M**. A legal notice advertisement regarding the location of the proposed facility has been published in a newspaper of general circulation in the county in which the WCF is proposed to be located. A copy of the newspaper legal notice advertisement is attached as part of **Exhibit M**.

23. The general area where the proposed facility is to be located is rural and

sparsely populated. There are no existing residential structures located within 500' of the proposed tower location.

24. The process that was used by Verizon Wireless' radio frequency engineers in selecting the site for the proposed WCF was consistent with the general process used for selecting all other existing and proposed WCF facilities within the proposed network design area. Verizon Wireless' radio frequency engineers have conducted studies and tests in order to develop a highly efficient network that is designed to handle voice and data traffic in the service area. The engineers determined an optimum area for the placement of the proposed facility in terms of elevation and location to provide the best quality service to customers in the service area. A radio frequency design search area prepared in reference to these radio frequency studies was considered by the Applicant when searching for sites for its antennas that would provide the coverage deemed necessary by Verizon Wireless. A map of the area in which the tower is proposed to be located which is drawn to scale and clearly depicts the necessary search area within which the site should be located pursuant to radio frequency requirements is attached as **Exhibit N**.

25. The tower must be located at the proposed location and proposed height to provide necessary service to wireless communications users in the subject area.

26. All Exhibits to this Application are hereby incorporated by reference as if fully set out as part of the Application.

27. All responses and requests associated with this Application may be directed

to:

David A. Pike Pike Legal Group, PLLC 1578 Highway 44 East, Suite 6 P. O. Box 369 Shepherdsville, KY 40165-0369 Telephone: (502) 955-4400 Telefax: (502) 543-4410 Email: dpike@pikelegal.com

WHEREFORE, Applicant respectfully request that the PSC accept the foregoing Application for filing, and having met the requirements of KRS §§ 278.020(1), 278.650, and 278.665 and all applicable rules and regulations of the PSC, grant a Certificate of Public Convenience and Necessity to construct and operate the WCF at the location set forth herein.

Respectfully submitted,

Pavid a Pilse

David A. Pike Pike Legal Group, PLLC 1578 Highway 44 East, Suite 6 P. O. Box 369 Shepherdsville, KY 40165-0369 Telephone: (502) 955-4400 Telefax: (502) 543-4410 Email: dpike@pikelegal.com Attorney for Applicant

LIST OF EXHIBITS

- A Applicant Entity & FCC License Documentation
- B Site Development Plan:

500' Vicinity Map Legal Descriptions Flood Plain Certification Site Plan Vertical Tower Profile

- C Tower and Foundation Design
- D Competing Utilities, Corporations, or Persons List
- E FAA
- F Kentucky Airport Zoning Commission
- G Geotechnical Report
- H Directions to WCF Site
- Copy of Real Estate Agreement
- J Notification Listing
- K Copy of Property Owner Notification
- L Copy of County Judge/Executive Notice
- M Copy of Posted Notices and Newspaper Notice Advertisement
- N Copy of Radio Frequency Design Search Area

EXHIBIT A APPLICANT ENTITY & FCC LICENSE DOCUMENTATION

0	6	4	1	2	2	7		0	7
-	-	-	-	_	_	-	-	-	-

mstratton
AMD

Alison Lundergan Grimes Kentucky Secretary of State Received and Filed: 6/12/2018 2:15 PM Fee Receipt: \$20.00

COMMONWEALTH OF KENTUCKY ALISON LUNDERGAN GRIMES, SECRETARY OF STATE

Division of Business Filings Business Filings PO Box 718 Frankfort, KY 40602 (502) 564-3490 www.sos.ky.gov	Amended Cer (Domestic or Fo	rtificate of Assu preign Business E	med Name ntity)	AAN
Pursuant to the provisions of KR purpose, submits the following s	S 365, the undersigned tatement:	d applies to amend th	e certificate of assumed r	name and, for that
1. The assumed name is Veriz	on Wireless			
(The nar	ne must be identical to the	name on record with the	Secretary of State.)	
2. The certificate of assumed na	ame was filed with the S	Secretary of State on	6/21/2006	
3 The current principal office ac	ldress (if any) is:			
One Verizon Way		Basking Ridge	NJ	07960
Street Address or Post Office Box Nu	mbers	City	State	Zip
4. The principal office address is	hereby changed to:			
Street Address or Post Office Box Nu	mbers	City	State	Zip.
5. This application will be effect	ive upon filing, unless a	delayed effective da	ite and/or time is provided	. The effective date
or the delayed effective date car	inot be prior to the date	e the application is file	d. The date and/or time i	S (Delayed effective date and/or time)
6. The changes in the identity o	f the partners are as for	llows:See Addendu	im for current partners	
I declare under penalty of perjur	y under the laws of Ker GTE Wireless I	ntucky that the forgoir LC	ng is true and correct.	
1 Danial Mara	J. Daniel Mason		Assistant Secretary	6/11/2018
Signature of Applicant	Printed Name		Title	Date

(01/12)

Addendum

The full name of the Partnership is Cellco Partnership, a Delaware general partnership composed of the following partners:

General Partners of Cellco Partnership	Address
Bell Atlantic Mobile Systems LLC	One Verizon Way Basking Ridge, NJ 07920
GTE Wireless LLC	One Verizon Way Basking Ridge, NJ 07920
Verizon Americas Inc.	One Verizon Way Basking Ridge, NJ 07920
GTE Wireless of the Midwest Incorporated	One Verizon Way Basking Ridge, NJ 07920

.

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

COMMUNICATION STORE	Federal Co Wireless RADIO S	mmui Telecoi TATIO	nicatio mmunica N AUTH	ns C tions	on Bui ZAT	1 missio reau FION	n			
LICENSEE: CELL	CO PARTNERSHIP						Sign	File I	Number	
ATTN: REGULAT CELLCO PARTNE	ORY ERSHIP						Radio CL - (Service Cellular		
5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022 Market Numer CMA522 A Sub Market Designator										
ECC Registration Number (ERN): 0003290673										
Market Name Missouri 19 - Stoddard										
Grant Date 08-31-2010	Effective Date 11-01-2016	Exp 1	Diration Da 0-01- 20 20	te	Fiv	e Yr Build-	Out Date	Prin	it Date	
Site Information:		<	Service of the servic	~						
Location Latitude	Longitude	Gi (m	round Elev ieters)	ation	Str (m	ucture Hgt eters)	to Tip 🛛	Antenna St Registratio	ructure n No.	
1 36-49-50.0 N	089-58-20.0 W	16	53.3	100	96.	3	1	005093		
Address: (Dexter) CR 41 City: DEXTER Count	5 v: STODDARD State	e: MO	Constructio	on Dea	dlin	e:				
	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>				0					
Antenna: 1	DD: 11/					and the second second				
Azimuth from true no	KP in Watts: 140.820 orth) 0	45	90	135		180	225	270	315	
Antenna Height AAT (met Transmitting ERP (watts) Antenna: 4	ers) 131.300 535.920	112.700 228.610	156.500 30.140	162.6 3.790	00	151.100 1.070	151.000 3.080	148.600 30.840	136.300 233.940	
Maximum Transmitting E Azimuth(from true no Antenna Height AAT (met	RP in Watts: 140.820 orth) 0 ters) 131.300	45 112.700	90 156.500	135 162.6	00	180 151.100	225 151.000	270 148.600	315 136.300	
Antenna: 5	6.150	64.430	370.760	488.7	60	119.980	14.420	1.690	1.070	
Maximum Transmitting E Azimuth(from true no	RP in Watts: 140.820	45	00	135		180	225	270	315	
Antenna Height AAT (met	ers) 131.300	112.700	156.500	162.6	00	151.100	151.000	148.600	136.300	
	6.750	1.070	1.350	14.76	0	131.550	488.760	370.760	61.330	
						1	an.			
Conditions: Pursuant to §309(h) of the following conditions: Th frequencies designated in license nor the right grant 1934, as amended. See 4 the Communications Act	e Communications Act of is license shall not vest is the license beyond the t ted thereunder shall be a 7 U.S.C. § 310(d). This of 1934, as amended. S	of 1934, as in the lice erm there ssigned or license is ee 47 U.S	s amended, nsee any rig of nor in an r otherwise subject in .C. §606.	47 U.S ght to o y other transfe terms to	S.C. § opera r man rred o the	309(h), this te the station nner than au in violation right of use	s license is n nor any r thorized he of the Con or control	subject to t ight in the t erein. Neith municatio conferred	he use of the her the ns Act of by §706 of	

Call Sign:	KNKN568		File	Number:			Pr	int Date:			
Location	Latitude	Longitud	le 3 4 W	Gre (me	Ground Elevation Structure H (meters) (meters) 130.0				gt to Tip Antenna Structure Registration No.		
- Address:	2 33 MILES WEST	OF	J.4 W	150							
City: POP	LAR BLUFF Cou	inty: BUTI	LER	State: MO	Constru	iction I	Deadline:				
		70						10 ⁻			
Antenna: 1 Maximum Azir Antenna H Transmitti	I Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts)	Watts: 149	9.500 11.600 27.400	45 150.000 126.300	90 167.900 124.500	135 165.30 168.00	180 0 169.800 0 55.600	225 148.300 27.500	270 150.600 38.000	315 122.700 40.700	
Location	Latitude	Longitud	e	Gro (me	ound Eleva eters)	ation	Structure Hgt (meters)	to Tip	Antenna Str Registration	ucture No.	
3	36-21-01.2 N	089-49-5	4.3 W	2							
Address:	0.8 MILES WEST C)F 🧹	A States	139							
City: WA	RDELL County:	PEMISCO	Γ Sta	te: MO	Constructi	on Dea	dline:				
Antenna: 1 Maximum Azin Antenna H Transmitti	l Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts)	Watts: 55. 0 54	100 1.700 40.100	45 52.900 133.800	90 53.100 47.500	135 53.900 30.000	180 57.300 119.300	225 57.800 172.400	270 56.200 38.600	315 55.000 54.500	
Antenna: 2 Maximum	2 Transmitting FRP in	Watte 49	300	No.	10						
Azin Antenna H Transmitti	nuth(from true north) leight AAT (meters) ing ERP (watts)	0 48 1	3.900 13.900	45 47.100 189.000	90 47.300 32.100	135 48.100 60.900	180 51.500 116.500	225 52.000 158.600	270 50.400 70.200	315 49.300 27.300	
Location	Latitude	Longitud	e	Gro (me	ound Eleva eters)	tion	Structure Hgt (meters)	to Tip	Antenna Str Registration	ucture No.	
4	36-12-53.2 N	090-03-50	0.3 W		6						
Address:	East side of County l	Road 504 1	/2 mile	South of		LW					
City: Ken	nett County: DUN	VKLIN S	tate: N	10 Const	ruction De	eadline	:				
Antenna: 1 Maximum Azin Antenna H Transmitti	l Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts)	Watts: 36. 0 34 32	800 1.300 2.300	45 35.800 227.300	90 37.700 267.600	135 39.400 206.10	180 39.300 265.600	225 36.400 181.800	270 36.700 19.200	315 34.700 10.300	
									3		

.

Call Sign	: KNKN568	File	Print Date:						
LocationLatitudeLongitudeGround Elevation (meters)Struct (meters)537-12-06.2 N089-38-07.3 W480.0Address:0.4 miles east of Route M at Rockview, City: Chaffee1.6 miles NE of Construction Deadline:							to Tip	Antenna S Registratio	tructure on No.
Antenna: Maximum Azin Antenna H Transmitt	1 Transmitting ERP in muth(from true north) Height AAT (meters) ting ERP (watts)	Watts: 97.900 0 97.600 24.300	45 107.600 2.800	90 96.400 3.300	135 89.000 27.800	180 85.700 86.400	225 114.400 95.300	270 102.300 95.200	315 90.500 76.900
Location 6 Address: City: Mal	Latitude 36-32-33.2 N 150' West of end of Iden County: DUN	Longitude 090-01-49.3 W County Rd. 208 3.2 VKLIN State: M	Gi (m 88 2 miles Sou O Cons	round Eleva acters) 3.0 uthwest of atruction De	ation eadline:	Structure Hgt (meters) :	to Tip	Antenna S Registratio	tructure n No.
Antenna: Maximum Azin Antenna F Transmitt	1 Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts)	Watts: 67.300 0 68.500 163.000	45 71.400 160.000	90 73.000 162.000	135 73.600 110.000	180 73.100 0 49.000	225 63.700 38.000	270 58.700 49.000	315 56.500 116.000
Location 7 Address: City: Wic	Latitude 36-57-05.2 N Approx. 1 mile SSE kliffe County: BA	Longitude 089-04-53.2 W of ALLARD State:	Gr (m 13 KY Cor	round Eleva neters) 7.2 nstruction 1	ation Deadlin	Structure Hgt (meters) 1e:	to Tip	Antenna Si Registratio	tructure n No.
Antenna: Maximum Azir Antenna H Transmitt	1 Transmitting ERP in muth(from true north) Height AAT (meters) ing ERP (watts)	Watts: 63.400 0 69.800 0.500	45 44.200 33.000	90 51.500 283.800	135 60.000 425.600	180 45.700 0 77.600	225 78.600 2.300	270 77.700 0.400	315 79.600 1.200
Location 8 Address: City: Can	Latitude 36-10-08.2 N 600' West of end of uthersville County	Longitude 089-38-52.3 W Route 363, 0.6 mile y: PEMISCOT S	Gr (m 82 es Southea tate: MO	round Eleva (eters) (.0 (st of Construc	ation	Structure Hgt (meters) eadline:	to Tip	Antenna St Registratio	ructure n No.
Antenna: Maximum Azir Antenna H Transmitt	1 Transmitting ERP in muth(from true north) Jeight AAT (meters) ing ERP (watts)	Watts: 43.700 0 43.100 38.000	45 43.300 9.000	90 43.500 2.000	135 44.000 3.000	180 45.600 23.000	225 44.000 56.000	270 44.200 57.000	315 41.900 57.000

.

Call Sign:	KNKN568	File	Number	:		Pr	int Date	:	
Location	Latitude	Longitude	G (1	Ground Elev meters)	vation (Structure Hgt (meters)	to Tip	Antenna So Registratio	tructure n No.
9	36-38-57.2 N	089-32-59.3 W	9	1.0	1				
Address:	Southwest corner of	intersection of US	Hwy. 61	/62 and, Co	unty Rd.	634, north of			
City: New	Madrid County:	NEW MADRID	State: N	AO Cons	truction	Deadline:			
Antenna: 1 Maximum Azin Antenna H Transmitti	l Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts)	Watts: 65.700 0 60.200 331.000	45 63.700 54.000	90 65.000 12.000	135 65.400 22.000	180 69.000 151.000	225 67.400 349.000	270 68.200 266.000	315 66.800 311.000
Location	Latitude	Longitude	G	Fround Elev	ation S	Structure Hgt	to Tip	Antenna St Registratio	tructure
10	36-55-17 2 N	089-29-57 3 W	8 4	neter sj	,	(meter s)		Registratio	n 190.
Address	3 3 MILES NE OF	007-27-51.5 W	(C)						
City SIKI	FSTON County	SCOTT State. N		nstruction	Doodlino	•			
City. Siki	County.	SCOTT State. I	vio co	iisti uction .	Deaume	•			
Antenna: 1 Maximum Azin Antenna H Transmitti Antenna: 2 Maximum Antenna H Transmitti Antenna H Transmitti Antenna H	Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts) Transmitting ERP in nuth(from true north) leight AAT (meters) ng ERP (watts) Transmitting ERP in nuth(from true north) leight AAT (meters) ng ERP (watts)	Watts: 66.100 0 64.000 414.000 Watts: 66.100 0 64.000 0.700 Watts: 66.100 0 64.000 0.700	45 65.000 50.000 45 65.000 16.000 45 65.000 1.000	90 65.000 3.000 90 65.000 196.000 90 65.000 0.700	135 66.000 0.800 135 66.000 372.000 135 66.000 2.000	180 69.000 1.000 180 69.000 36.000 180 69.000 37.000	225 67.000 0.800 225 67.000 2.000 225 67.000 364.000	270 65.000 13.000 270 65.000 0.700 270 65.000 223.000	315 65.000 156.000 315 65.000 0.800 315 65.000 14.000
Location	Latitude	Longitude	G (r	round Elev neters)	vation S	Structure Hgt (meters)	to Tip	Antenna St Registratio	ructure n No.
11	37-12-25.5 N	089-30-44.0 W	1	28.6	4	50.3		1200145	
Address: (County Road 312					C. Y.S.	1000		
City: Scott	t City County: SC	COTT State: MO) Cons	truction De	adline:		13		
Antenna: 1 Maximum Azim Antenna H Transmitti	Transmitting ERP in nuth(from true north) eight AAT (meters) ng ERP (watts)	Watts: 140.820 0 66.200 21.800	45 59.100 5.200	90 39.900 16.200	135 67.800 80.900	180 52.300 97.700	225 50.500 88.900	270 65.700 100.000	315 59.600 84.700
								5	

Call Sign:	KNKN568	File Number:				Print Date:						
Location	Latitude	Longi	tude		Ground Elevation (meters)		Structu (meters	ire Hg s)	t to Tip	Antenna Structure Registration No.		
12	36-45-47.0 N	090-20	6-05.2 W		122.8		143.2			1229586		
Address:	2579 Roxie Road	0										
City: Popl	lar Bluff County:	BUTLE	R State	: MO	Constructio	n Dead	line:					
	17 73											
Antenna:		1 00										
Maximum	Transmitting ERP in	Watts:	140.820									
Azir Antenna H	nuth(from true north)	E P	0	45	90	135	18	0	225	270	315	
Transmitti	ing FRP (watts)		155.200	142.300	160.400	157.8	00 16	2.400	140.300	122.900	115.500	
Antenna:		Alle	150.000	109.420	29,180	3.080	0.8	90	3.110	27.300	112.740	
Maximum	Transmitting ERP in	Watts:	140.820									
Azir	nuth(from true north)	1000	0	45	90	135	18	0	225	270	315	
Antenna H	leight AAT (meters)		133.200	142.300	160.400	157.8	00 16	2.400	140.300	122.900	115.500	
Antenna:	ing ERP (watts)	-415	6.590	50.710	132.770	139.9	90 80	.370	15.140	1.120	0.480	
Maximum	Transmitting ERP in	Watts:	140.820	1961								
Azir	nuth(from true north)		0	45	90	135	18	0	225	270	315	
Antenna H	leight AAT (meters)		133.200	142.300	160.400	157.8	00 16	2.400	140.300	122.900	115.500	
Transmitti	ing ERP (watts)		16.500	0.310	0.300	10.17	0 68	.980	31.590	28.500	70.890	
_		_	17	N.	/		a					
Location	Latitude	Longi	tude		Ground Elev	ation	Structu	re Hg	t to Tip	Antenna St	tructure	
					(meters)		(meters	;)		Registratio	n No.	
13	36-47-19.2 N	089-32	2-50.5 W	2000	95.4		67.1			1262445		
Address:	County Road 820			10	19							
City: Mat	thews County: NI	EW MA	DRID S	tate: MO) Constru	ction D	eadline:	12-18	-2009			
					- Alter	100						
Antenna:	L				12							
Maximum	Transmitting ERP in	Watts:	140.820		1 in							
Azir	nuth(from true north)		0	45	90	135	18	0	225	270	315	
Antenna H	leight AAT (meters)		63.400	63.200	65.000	67.10	0 64	100	68.200	67.100	64.100	
Transmitti	ing ERP (watts)		167.100	215.270) 47.100	0.470	0.4	70	0.470	0.470	15.590	
Maximum	Transmitting ERP in	Watts:	140 820									
Azir	nuth(from true north)	, ,, accor	0	45	90	135	18	0	225	270	315	
Antenna H	leight AAT (meters)		63.400	63.200	65,000	67.10	0 64	100	68.200	67.100	67.100	
Transmitti	ing ERP (watts)		0.190	0.320	33.340	93.97	0 51	640	1.030	0.280	0.190	
Antenna: 3) Transmitting FDD in	Watter	140 820				19	Contraction of the second	(A			
Azir	nuth(from true north)	walls:	0.020	45	90	135	19	0	225	270	315	
Antenna H	leight AAT (meters)		63.400	63.200	65 000	67 10	0 64	100	68 200	67 100	64 100	
Transmitti	ing ERP (watts)		0.470	0.470	0.470	0.470	9.6	20	145.540	225.410	66.250	
			and the South Is		and the second s		CD1					

Call Sign:	: KNKN568	File	Number	:		Print Date:					
Location	Latitude	Longitude	(Ground Elev meters)	ation S (Structure Hg meters)	to Tip	Antenna S Registratio	tructure on No.		
Addrose	1070 North Highway	009-13-10.5 W		7J. 4	5	50.0					
City. Cha	rleston County N	AISSISSIPPI Sta	te MO	Construct	tion Dead	lline: 06-11-2	010				
				Constitue	ion Deat						
Antenna: 1 Maximum Azir	1 Transmitting ERP in nuth(from true north)	Watts: 140.820	45	90	135	180	225	270	315		
Antenna H Transmitti Antenna: 2	leight AAT (meters) ing ERP (watts) 2	45.700 0.670	47.800 13.980	47.500 29.890	47.000 4.850	48.100 0.220	46.000 0.100	44.400 0.100	46.700 0.100		
Maximum	Transmitting ERP in	Watts: 140.820									
Azir Antenna H Transmitti Antenna: 3	nuth(from true north) leight AAT (meters) ing ERP (watts) 3	0 45.700 0.380	45 47.800 0.380	90 47.500 1.370	135 47.000 32.920	180 48.100 131.080	225 46.000 32.920	270 44.400 1.610	315 46.700 0.380		
Maximum Azin Antenna H Transmitti	Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts)	Watts: 140.820 0 45.700 56.360	45 47.800 3.100	90 47.500 0.490	135 47.000 0.490	180 48.000 0.490	225 46.000 1.350	270 44.400 32.430	315 46.700 166.330		
Location	Latitude	Longitude		Ground Elev meters)	ation S	structure Hgt meters)	to Tip	Antenna S Registratio	tructure on No.		
15	36-39-51.9 N	090-31-24.3 W	(C)	25.5	9	4.1		1247558			
Address:	U.S. Hwy 67 @ U.S	. Highway 160	All and a second	19							
City: Neel	lyville County: B	UTLER State: M	AO Co	onstruction]	Deadline	: 06-11-2010					
Antenna: 1 Maximum Azin Antenna H Transmitti Antenna: 2 Maximum	I Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts) 2 Transmitting ERP in	Watts: 140.820 0 98.500 205.880 Watts: 140.820	45 106.300 87.820	90 121.100 7.830	135 124.700 0.450	180 125.300 0.410	225 121.900 1.790	270 82.500 15.620	315 91.200 89.870		
Azın Antenna H Transmitti	nuth(from true north) leight AAT (meters) ing ERP (watts)	0 98.500 4.610	45 106.300 30.450	90 124.700 132.930	135 124.700 192.140	180 125.300 45.040	225 121.900 2.780	270 82.500 0.710	315 91.200 0.610		
Location	Latitude	Longitude	C (1	Ground Elev meters)	ation S	structure Hgt meters)	to Tip	Antenna S Registratio	tructure on No.		
20	36-33-25.3 N	089-49-01.0 W	8	33.8	8	0.8	- V	1268585			
Address:	(Risco site) Highway	y 62 & NE corner o	of Rogers	Road							
City: Risc	county: NEW	MADRID State:	MO (Construction	n Deadlin	e: 04-28-201	1				
Antenna: 1 Maximum Azin Antenna H Transmitti	l Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts)	Watts: 140.820 0 74.300 219.270	45 75.300 102.560	90 76.800 0.870	135 77.400 0.460	180 78.400 0.440	225 78.100 0.440	270 75.700 1.950	315 75.500 95.710		
								J.	E.		

•

Call Sign: KNKN568 File Number:						Print Date:						
Location 20	Latitude 36-33-25.3 N	Longitude	w	Ground Elev (meters) 83.8	vation (S <mark>tructure Hg</mark> ((meters) 80.8	to Tip	Antenna So Registratio 1268585	tructure n No.			
Address:	(Risco site) Highway	y 62 & NE com	er of Roge	ers Road								
City: Risc	o County: NEW	MADRID St	ate: MO	Constructio	n Deadli	ne: 04-28-201	1					
Antenna: 2 Maximum Azin Antenna H Transmitti Antenna: 3 Maximum Azin Antenna H Transmitti	Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts) Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts)	Watts: 140.820 0 74.300 0.440 Watts: 140.820 0 74.300 0.710	45 75.300 14.490 45 75.300 0.440	90 76.800 155.230 90 76.800 0.440	135 77.400 199.970 135 77.400 0.440	180 78.400 43.750 180 78.400 42.750	225 78.100 0.440 225 78.100 199.970	270 75.700 0.440 270 75.700 158.850	315 75.500 0.440 315 75.500 11.780			
Location	Latitude	Longitude		Ground Elev (meters)	vation S	Structure Hgt (meters)	to Tip	Antenna Sí Registratio	tructure n No.			
21	36-54-24.0 N	089-19-11.1	W	97.5	:	50.0						
Address:	(Charleston) 5801 N	orth 325th Roa	d A	1								
City: Chai	rleston County: N	IISSISSIPPI	State: MC) Construc	tion Dead	dline: 06-06-2	014					
Antenna: 1 Maximum Azin Antenna H Transmitti	Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts)	Watts: 140.820 0 49.300 115.24	45 50.600 40 138.55	90 50.100 50 39.960	135 52.600 1.450	180 51.500 0.300	225 50.500 0.300	270 48.900 0.450	315 46.900 18.260			
Maximum Azin Antenna H Transmitti Antenna: 3	Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts)	Watts: 140.820 0 49.300 0.300	45 50.600 1.520	90 50.100 40.890	135 52.600 141.780	180 51.500 112.620	225 50.500 16.280	270 48.900 0.530	315 46.900 0.300			
Maximum Azin Antenna H Transmitti	Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts)	Watts: 140.820 0 49.300 6.050	45 50.600 0.410	90 50.100 0.300	135 52.600 0.300	180 51.500 6.190	225 50.500 76.140	270 48.900 151.920	315 46.900 76.140			
Location	Latitude	Longitude		Ground Elev (meters)	vation S	Structure Hgt (meters)	to Tip	Antenna St Registratio	ructure n No.			
22	36-27-17.7 N	089-38-26.4	W	85.9		79.6	~	1233494				
Address:	(Portageville) 2470 (County Road 42	21			A straight	-					
City: Porta	ageville County:	NEW MADRII) State:	MO Const	ruction I	Deadline: 06-0	6-2014					
Antenna: 1 Maximum Azin Antenna H Transmitti	l Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts)	Watts: 140.820 0 77.300 102.24	45 75.600 40 91.120	90 977.900 918.180	135 77.800 0.310	180 78.000 0.310	225 78.300 0.310	270 79.100 0.560	315 78.700 25.680			

Call Sigr	Call Sign: KNKN568 File					Print Date:					
Location	Latitude	Longitude	G (n	round Elev neters)	vation S (Structure Hg meters)	t to Tip	Antenna S Registratio	tructure on No.		
<i>22</i>	30-27-17.7 IN	089-38-20.4 W	0.	5.9	/9.6 1233494						
Address	(Portageville) 24	1/0 County Road 421									
City: Por	tageville Cour	ity: NEW MADRID	State: M	O Const	ruction D	Deadline: 06-	06-2014				
Antenna: Maximun Azi Antenna Transmit Antenna: Maximun	2 n Transmitting EF imuth(from true noi Height AAT (meter ting ERP (watts) 3 n Transmitting EF	RP in Watts: 140.820 rth) 0 yrs) 77.300 0.310 RP in Watts: 140.820	45 75.600 0.310	90 77.900 0.560	135 77.800 25.680	180 78.000 102.240	225 78.300 91.120	270 79.100 18.180	315 78.700 0.310		
Azi Antenna	muth(from true nor Height AAT (mete	rth) 0	45	90	135	180	225	270	315		
Transmit	ting ERP (watts)	23 970	0 760	77.900	77.800	78.000	78.300	79.100	78.700		
23 Address: City: Ser	36-07-34.0 N : (Senath) 9353 H hath County: D	090-10-28.9 W wy C OUNKLIN State: M	(n 7' O Cons	neters) 7.4 truction De	4 eadline: 1	meters) 44.2		Registratio	n No.		
Antenna: Maximun	1 n Transmitting EF	RP in Watts: 140.820	1. Carlor	2							
Azi	muth(from true nor	th) 0	45	90	135	180	225	270	315		
Transmit Antenna:	ting ERP (watts)	39.000 30.910	38.000 27.440	41.500 5.820	42.700 0.420	43.100 0.400	41.800 0.400	41.700 0.650	40.300 5.960		
Maximun Azi Antenna	n Transmitting EF muth(from true nor Height AAT (mete	Image: Non-State	45 38.000	90 41.500	135 42.700	180 43.100	225 41.800	270 41.700	315 40.300		
Antenna:	3	0.350	11.680	125.180	161.260	35.280	0.350	0.350	0.350		
Maximun Azi Antenna Transmit	n Transmitting ER muth(from true noi Height AAT (mete ting ERP (watts)	Item Item <th< th=""><th>45 38.000 0.400</th><th>90 41.500 0.400</th><th>135 42.700 0.810</th><th>180 43.100 8.170</th><th>225 41.800 33.560</th><th>270 41.700 23.960</th><th>315 40.300 4.310</th></th<>	45 38.000 0.400	90 41.500 0.400	135 42.700 0.810	180 43.100 8.170	225 41.800 33.560	270 41.700 23.960	315 40.300 4.310		
Control	Points:				<u></u>	(Que	12				
Control 1	Pt. No. 1						13				
Address	500 West Dove	Road					~				
City: Sou	th Lake Coun	ty: TARRANT Sta	te: TX	Telephone	Number	: (800)264-60	520				
				di		65					

Waivers/Conditions:

License renewal granted on a conditional basis, subject to the outcome of FCC proceeding WT Docket No. 10-112 (see FCC 10-86, paras. 113 and 126).

J_

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

COMMUNICATIONS	Federal Cor Wireless RADIO ST	nmunications C Telecommunications FATION AUTHORI	Commission Bureau ZATION	
LICENSEE: KENT	TUCKY RSA NO. 1 PAR	TNERSHIP	Call Sign KNKQ306	File Number
ATTN: REGULAT KENTUCKY RSA 5055 NORTH POR	ORY NO. 1 PARTNERSHIP NT PKWY NP2NE NET	WORK ENGINEERING	Radio CL - C	Service Cellular
ALPHARETTA, G.	A 30022		Market Numer CMA443	Channel Block B
FCC Registration Num	ber (FRN): 0001836709)
Market Name Kentucky 1 - Fulton		V_		
Grant Date 08-30-2011	Effective Date 11-02-2016	Expiration Date 10-01-2021	Five Yr Build-Out Date	Print Date
Site Information: Location Latitude 1 36-20-59.2 N Address: 0.68 MILE SOU City: LASSITER CORNI	Longitude 089-22-12.3 W UTH OF LASSITER COI ER County: LAKE	Ground Elevation (meters) 98.0 RNER & REEL FOOT LA State: TN Construction	Structure Hgt to Tip A (meters) R AKE n Deadline:	Intenna Structure Registration No.
Antenna: 1 Maximum Transmitting E Azimuth(from true no Antenna Height AAT (met Transmitting ERP (watts)	RP in Watts: 135.800 orth) 0 ers) 148.000 133.300	45 90 135 117.000 107.000 117.0 103.500 36.500 4.500	180 225 121.000 147.000 1.500 3.900	270 315 149.000 146.000 38.800 109.600
Conditions: Pursuant to §309(h) of the following conditions: The frequencies designated in license nor the right grant 1934, as amended. See 4 the Communications Act	e Communications Act of is license shall not vest in the license beyond the te ted thereunder shall be as 7 U.S.C. § 310(d). This I of 1934, as amended. Se	f 1934, as amended, 47 U.S the licensee any right to or the licensee any right to or there of nor in any other signed or otherwise transfe license is subject in terms the 47 U.S.C. §606.	S.C. §309(h), this license is a soperate the station nor any riser manner than authorized hered in violation of the Comto the right of use or control	subject to the ght in the use of the rein. Neither the imunications Act of conferred by §706 of

Call Sign:	KNKQ306		File Numb	er:		Pr	int Date	:	
Location	Latitude	Longitude		Ground Ele (meters)	vation	Structure Hgt (meters)	to Tip	Antenna St Registratio	tructure n No.
2	36-45-58.0 N	088-38-50.	0 W	143.0		147.8		1043917	
Address:	416 Jimtown Road								
City: MA	YFIELD County:	GRAVES	State: KY	Constructi	on Deadl	line:			
Antenna: 2 Maximum Azin Antenna H Transmitti	Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts)	Watts: 140.8 0 124. 91.2	20 45 300 120.0 200 87.10	90 00 100.800 00 85.110	135 92.100 85.110	180 88.300 89.130	225 103.100 87.100	270 108.600 89.130	315 100.800 89.130
Location	Latitude	Longitude)	Ground Ele (meters)	vation	Structure Hgt (meters)	to Tip	Antenna St Registratio	ructure n No.
4	36-54-35.5 N	089-04-01.0	6 W	110.3		121.0		1030662	
Address:	(Wickliffe) 353 CR	1307	and the			87° 24 80			
City: Bard	well County: CA	RLISLE S	tate: KY	Construction	n Deadlin	ie:			
Antenna: 4 Maximum Azim Antenna H Transmitti Antenna: 5 Maximum Azim Antenna H Transmitti Antenna H Transmitti Location	Transmitting ERP in nuth(from true north) leight AAT (meters) ng ERP (watts) Transmitting ERP in nuth(from true north) leight AAT (meters) ng ERP (watts) Transmitting ERP in nuth(from true north) leight AAT (meters) ng ERP (watts) Latitude	Watts: 140.8 0 107. 189 Watts: 140.8 0 107. 1.71 Watts: 140.8 0 107. 0.35 Longitude	45 500 98.10 .230 48.64 .20 45 500 98.10 10 64.86 .20 45 .20 98.10 .00 64.86 .20 45 .20 .20 .20 .2	90 0 119.800 1.690 90 0 119.800 368.980 90 0 119.800 1.230 Ground Ele (meters)	135 96,700 0.930 135 96,700 174,58 135 96,700 35,330 vation	180 86.900 0.930 180 86.900 0 8.750 180 86.900 112.440 Structure Hgt (meters)	225 133.300 0.930 225 133.300 0.930 225 133.300 35.270 to Tip	270 130.900 1.810 270 130.900 0.930 270 130.900 1.000 Antenna St Registratio	315 130.400 52.120 315 130.400 0.930 315 130.400 0.350 ructure n No
6	36-31-12 A N	088-50-41	5 W	(meters)		(meters)		1030665	n No.
Address	(Fulton) 550 Powell	Road	~ **			ILL.L	100	1020002	
City: Fulto	on County: HICK	MAN Stat	te: KY C	onstruction D	eadline:	C. Star	1000		
Antenna: 4 Maximum Azin Antenna H Transmitti Antenna: 5 Maximum Azin Antenna H Transmitti	Transmitting ERP in nuth(from true north) leight AAT (meters) ng ERP (watts) Transmitting ERP in nuth(from true north) leight AAT (meters) ng ERP (watts)	Watts: 140.8 0 128. 110 Watts: 140.8 0 128. 0.55	20 200 122.8 .570 412.1 20 45 200 122.8 50 0.550	90 123.200 98.560 90 90 123.200 0.550	135 135.20 4.220 135 135.20 0.550	180 147.500 1.510 180 147.500 1.47.500 1.480	225 157.200 0.920 225 157.200 16.430	270 143.900 0.920 270 143.900 11.480	315 141.700 6.530 315 141.700 0.700
								JL.	

•

Call Sign:	KNKQ306	File	Number:			P	rint Date	:	
Location 6 Address: (City: Fulto	Latitude 36-31-12.4 N Fulton) 550 Powell n County: HICK	Longitude 088-50-41.5 W Road MAN State: K	G (n 14 Y Cons	round Elev neters) 44.2 truction De	vation	Structure Hg (meters) 122.2	t to Tip	Antenna S Registratio 1030665	tructure on No.
Antenna: 6 Maximum Azim Antenna Ho Transmittir	Transmitting ERP in uth(from true north) eight AAT (meters) ng ERP (watts)	Watts: 140.820 0 128.200 135.480	45 122.800 5.650	90 123.200 2.230	135 135.200 0.920	180 147.500 1.320	225 157.200 5.450	270 143.900 78.640	315 141.700 402.820
Location	Latitude	Longitude	G (n	round Elev neters)	vation (Structure Hg meters)	t to Tip	Antenna S Registratio	tructure on No.
/	36-38-26.2 N	088-16-00.1 W		65.8	9	90.8		1030663	
Address: (Murray) 1431 Van	Cleave Road	VY C	matumation	Deadlin				
City: Mull	ay County: CAL	LOWAT State	KI U	ustruction	Deadin		,		
Antenna: 4 Maximum Azim Antenna He Transmittir	Fransmitting ERP in uth(from true north) eight AAT (meters) 1g ERP (watts)	Watts: 140.820 0 106.900 124.240	45 107.100 6.420	90 115.000 0.560	135 106.900 0.560	180 87.400 0.560	225 91.300 0.830	270 86.200 39.630	315 97.500 251.940
Antenna: 5 Maximum Azim Antenna He Transmittir Antenna: 6	Transmitting ERP in uth(from true north) eight AAT (meters) ng ERP (watts)	Watts: 140.820 0 106.900 3.450	45 107.100 96.460	90 115.000 263.070	135 106.900 57.230	180 87.400 1.700	225 91.300 0.560	270 86.200 0.560	315 97.500 0.560
Maximum 1 Azim Antenna He Transmittir	Transmitting ERP in uth(from true north) eight AAT (meters) ng ERP (watts)	Watts: 140.820 0 106.900 0.370	45 107.100 0.370	90 115.000 0.370	135 106.900 12.730	180 87.400 121.110	225 91.300 104.340	270 86.200 9.310	315 97.500 0.370
Location	Latitude	Longitude	G	round Elev	ation 8	Structure Hg	to Tip	Antenna S	tructure
0			(n	neters)	(meters)		Registratio	n No.
8	37-03-51.4 N	088-57-23.6 W	1	16.4	ç	02.4	Tan	1030664	
Address: (La Center) 220 RIC	HARDSON LN		a .		Con all	100		
City: LA C	ENTER County	BALLARD SI	tate: KY	Construc	tion Dea	dline:	133		
Antenna: 2 Maximum 1 Azim Antenna He	Fransmitting ERP in uth(from true north) eight AAT (meters)	Watts: 140.820 0 85.600	45 78,400	90 71 900	135	180 65 300	225 67.000	270 87 700	315 96 100
Transmittin	ng ERP (watts)	2.110	71.430	167.460	63.670	0.330	0.640	0.330	0.330
Antenna: 3 Maximum 7 Azim Antenna He Transmittin	Transmitting ERP in uth(from true north) zight AAT (meters) ig ERP (watts)	Watts: 140.820 0 85.600 1.230	45 78.400 1.000	90 71.900 1.380	135 66.000 23.440	180 65.300 338.840	225 67.000 457.090	270 87.700 66.070	315 96.100 2.240

.

Call Sign:	KNKQ306	File	Number	:		P	rint Date	:	
Location	Latitude	Longitude	C	Ground Elev meters)	vation	Structure Hg (meters)	t to Tip	Antenna S Registratio	tructure n No.
8	37-03-51.4 N	088-57-23.6 W	ì	16.4		92.4		1030664	
Address:	(La Center) 220 RIC	CHARDSON LN							
City: LA (CENTER County	BALLARD St	ate: KY	Construc	tion De	adline:			
		100							500 S
Antenna: 4 Maximum Azin Antenna H Transmitti	i Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts)	n Watts: 140.820 0 85.600 165.960	45 78.400 6.610	90 71.900 0.910	135 66.000 0.500	180 65.300 0.500	225 67.000 0.890	270 87.700 45.710	315 96.100 223.870
Location	Latitude	Longitude	0	Fround Elev	ation	Structure Hg	t to Tip	Antenna Si Decistratio	tructure
10	36-44-07 0 N	088-58-20 2 11		31 Q		(meters)		Kegistratio	on ino.
Address	3075 State Doute 22	000-30-29.2 W		51.7		72.7		1030723	
City: CLD	NTON County: L	JICKMAN Stat	. KV	Constructio	n Dood	lino			
	County. I		C. KI		n Deau				
Antenna. 2 Maximum Azim Antenna H Transmitti	Transmitting ERP in nuth(from true north) leight AAT (meters) ng ERP (watts)	Watts: 140.820 0 100.500 96.610	45 101.900 96.610	90 98.900 96.610	135 84.700 96.610	180) 107.900) 96.610	225 118.900 96.610	270 119.900 96.610	315 100.400 96.610
Location	Latitude	Longitude	C (1	Fround Elev neters)	ation	Structure Hg (meters)	t to Tip	Antenna St Registratio	tructure n No.
11	37-02-00.0 N	088-22-10.0 W	1	05.5	19	106.7		1040303	
Address: ((Calvert City) 641 J	ary Johnson Rd.			49				
City: Calv	ert City County:	MARSHALL S	tate: KY	Construc	ction De	adline:			
Antenna: 2 Maximum Azin	C Transmitting ERP ir nuth(from true north)	n Watts: 140.820 0	45	90	135	180	225	270	315
Antenna H	eight AAT (meters)	78.900	77.600	88.100	83.000	68.600	85.300	97.900	93.100
Antenna: 3	ng EKP (watts)	23.380	330.300	378.360	36.130	0.970	0.970	0.970	0.970
Maximum	Transmitting ERP in	watts: 140.820				Start Start	A		
Azin Antenna H	nuth(from true north)	0 78 900	45	90	135	180	225	270	315
Transmitti	ng ERP (watts)	0.970	0.970	88.100 0.970	83.000	68.600 240.930	85.300	97.900 49.940	93.100 1.230
Antenna: 4	Tuonamittina EDD in	Watter 140.920							
Azin	nuth(from true north)	0	45	90	135	180	225	270	315
Antenna H	eight AAT (meters)	78.900	77.600	88.100	83.000	68.600	85.300	97.900	93.100
i ransmitti	ng EKP (watts)	63.740	2.060	0.660	0.660	0.660	4.020	107.530	274.970

Call Sign:	KNKQ306		File	Number	:		P	rint Date	:	
Location	Latitude	Longi	tude	()	Ground Elev meters)	ation	Structure Hg (meters)	t to Tip	Antenna Si Registratio	tructure n No.
12	36-34-49.2 N	088-3	1-45.2 W	1	55.5		91.4		1202399	
Address:	12201 SR 97									
City: TriC	ity County: GR	AVES	State: KY	Cons	truction De	adline:				
Antenna: 2										
Maximum	Transmitting ERP	in Watts:	140.820							
Azin	nuth(from true north)	1 Start	0	45	90	135	180	225	270	315
Antenna H	leight AAI (meters)	1	75.100	73.400	74.100	70.100	102.600	100.900	74.700	81.300
Antenna: 3	ing EINI (watts)	A	0.280	4.680	67.610	91.200	13.180	0.450	0.250	0.200
Maximum	Transmitting ERP	in Watts:	140.820							
Azin	nuth(from true north)	100	0	45	90	135	180	225	270	315
Antenna H	eight AAI (meters)		75.100	73.400	74.100	70.100	102.600	100.900	74.700	81.300
Antenna: 4	ing EKF (watts)		0.360	0.200	0.200	0.350	18.200	89.130	66.070	2.630
Maximum	Transmitting ERP	in Watts:	140.820	1 APRIL						
Azin	nuth(from true north)		0	45	90	135	180	225	270	315
Antenna H	eight AAI (meters)		75.100	73.400	74.100	70.100	102.600	100.900	74.700	81.300
	ng EKF (walls)		100.000	38.020	0.200	0.380	0.200	0.200	1.260	42.660
Location	Latitude	Longi	tude 🔪		Fround Elev meters)	ation	Structure Hg (meters)	t to Tip	Antenna St Registratio	tructure n No.
14	37-05-47.2 N	088-4	2-35.2 W	193	04.2		63.4		1200593	
Address:	(Paducah West) 44	15 Merre	dith Rd.	Aller .	and a second					
City: Padu	icah County: M	CCRACE	KEN Stat	te: KY	Construct	on Dead	lline: 07-08-20	014		
Antenna. 4	L				C. State	1				
Maximum	, Transmitting ERP i	n Watts:	140.820		1400	N				
Azin	nuth(from true north)		0	45	90	135	180	225	270	315
Antenna H	eight AAT (meters)		59.900	55.900	65.200	50.700	38.200	34.700	42.800	64.600
Transmitti Antenna: 5	ng ERP (watts)		24.580	50.820	50.310	19.100	0.840	0.330	0.330	1.370
Maximum	Transmitting ERP i	in Watts:	140.820		1	W B				
Azin	nuth(from true north)		0	45	90	135	180	225	270	315
Antenna H	eight AAT (meters)		59.900	55.900	65.200	50.700	38.200	34.700	42.800	64.600
I ransmitti Antenna: 6	ng ERP (watts)		0.440	0.440	12.210	76.570	112.800	57.980	5.460	0.440
Maximum	Transmitting ERP i	in Watts:	140.820				and the second	No.		
Azin	nuth(from true north)		0	45	90	135	180	225	270	315
Antenna H	eight AAT (meters)		59.900	55.900	65.200	50.700	38.200	34.700	42.800	64.600
	ng c.K.r (watts)		20.830	0.780	0.440	0.440	2.790	42.940	108.040	89.900

.

Call Sign	: KNKQ3	06		File	Number:			I	Print Date	:	
Location	Latitude	2 N	Longit	ude 3-28.1 W	G (n 19	round Ele [.] neters) 99.0	vation	Structure Hg (meters)	gt to Tip	Antenna S Registratio	tructure on No.
Address:	14664 Ca	nton Road	000-01	-20.1 W	1.			120.5		1205551	
City: Gold	den Pond	County:	TRIGG	State:	KY Co	nstruction	Deadlin	ne: 05-19-2006	5		
Antenna: 2 Maximum Azir Antenna H Transmitti	2 Transmitt nuth(from t leight AAT ing ERP (v	ting ERP in true north) (meters) vatts)	Watts:	140.820 0 165.000 96.610	45 178.000 96.610	90 160.400 96.610	135 174.5 96.61	180 00 170.600 0 96.610	225 167.000 96.610	270 177.000 96.610	315 183.900 96.610
Location	Latitude	1	Longit	ude	G (n	round Elev neters)	vation	Structure Hg (meters)	gt to Tip	Antenna S Registratio	tructure n No.
16	36-34-03	.0 N	089-10	-30.9 W	<u>i</u> (09.4		91.4		1282534	
Address:	(Hickman	site) Holle	y Street	C. C. C.	TEA .						
City: Hick	kman C	ounty: FUI	LTON	State: K	Y Cons	struction D	eadline	: 05-28-2014			
Antenna: 1 Maximum Azir Antenna H Transmitti Antenna: 2	1 Transmitt nuth(from t leight AAT ing ERP (w 2	ing ERP in rue north) `(meters) vatts)	Watts:	140.820 0 105.500 141.700	45 102.800 118.910	90 96.700 1.140	135 89.30 0.580	180 0 75.700 0.580	225 68.400 0.580	270 107.900 0.580	315 107.300 4.050
Maximum Azir Antenna H Transmitti Antenna: 3	Transmitt nuth(from t leight AAT ing ERP (w 3	ing ERP in rue north) `(meters) vatts)	Watts:	140.820 0 105.500 0.580	45 102.800 4.050	90 96.700 141.730	135 89.300 118.9	180 0 75.700 10 1.140	225 68.400 0.580	270 107.900 0.580	315 107.300 0.580
Maximum Azir Antenna H Transmitti	nuth(from t leight AAT ing ERP (w	ing ERP in rue north) `(meters) vatts)	Watts:	0 105.500 0.460	45 102.800 0.460	90 96.700 0.460	135 89.30 0.460	180 0 75.700 0.460	225 68.400 7.710	270 107.900 45.610	315 107.300 24.600
Location	Latitude		Longit	ude	Ga (m	round Elev neters)	vation	Structure Hg (meters)	gt to Tip	Antenna So Registratio	tructure n No.
17	37-10-55.	4 N	088-56	-43.7 W	10	02.7		99.1		1252613	
Address:	(Monkey's	Eyebrow)	4625 O	dgen Colv	in Circle			199			
City: Kev	il Coun	ty: BALLA	ARD S	State: KY	Constr	ruction De	adline:	10-24-2014	10.23		
Antenna: 1 Maximum Azin Antenna H Transmitti Antenna: 2	l Transmitt nuth(from t leight AAT ing ERP (w	ing ERP in rue north) `(meters) ⁄atts)	Watts:	140.820 0 85.900 7.080	45 83.500 125.890	90 90.600 478.630	135 69.600 112.20	180 0 74.300 00 4.570	225 84.600 1.580	270 86.500 1.000	315 83.200 1.000
Maximum Azin Antenna H Transmitti	Transmitt nuth(from t leight AAT ing ERP (w	ing ERP in rue north) `(meters) ⁄atts)	Watts:	140.820 0 85.900 1.000	45 83.500 1.410	90 90.600 12.020	135 69.600 213.80	180 0 74.300 00 446.680	225 84.600 64.570	270 86.500 2.820	315 83.200 1.000

.

-0

Call Sig	n: KNKQ306	File	Number	:		ł	Print Date	:	
Location	n Latitude	Longitude	C (1	Ground Ele meters)	vation	Structure Hg (meters)	gt to Tip	Antenna St Registratio	tructure on No.
17	37-10-55.4 N	088-56-43.7 W	1	02.7		99.1		1252613	
Address	: (Monkey's Eyebroy	w) 4625 Odgen Col	vin Circle						
City: Ke	vil County: BAL	LARD State: KY	Const	truction De	adline:	10-24-2014			
Maximur Az Antenna Transmit	n Transmitting ERP imuth(from true north) Height AAT (meters) iting ERP (watts)	in Watts: 140.820 0 85.900 2.000	45 83.500 2.000	90 90.600 2.000	135 69.60 2.000	180 74.300 2.000	225 84.600 398.110	270 86.500 549.540	315 83.200 4.900
Control	Points:	(V)							
Control	Pt. No. 3		2						
Address	: 500 W. Dove Rd.	5386	and the second						
City: So	uthlake County:	TARRANT State	e: TX	Telephone	Number	r: (800)264-66	20		

Waivers/Conditions:

License renewal granted on a conditional basis, subject to the outcome of FCC proceeding WT Docket No. 10-112 (see FCC 10-86, paras. 113 and 126).

N

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

SUCCOMMUNICATION STATE	Federa W	al Communic lireless Telecomm	ations Con unications Bu	nmission _{reau}	
COMMISSION	RA	DIO STATION A	UTHORIZA	ΓΙΟΝ	
LICENSEE: CELLCO	PARTNER	SHIP			
ATTN: REGULATORY				Call Sign KNLH404	File Number
CELLCO PARTNERSH 5055 NORTH POINT PI ALPHARETTA, GA 300	IP CWY, NP2)22	NE NETWORK ENG	INEERING	CW	Radio Service - PCS Broadband
CC Registration Number (FR	LN): 0003	290673			
Grant Date 04-24-2017	E	Effective Date 11-30-2017	Expirati 04-28	on Date -2027	Print Date
Market Number BTA339		Chann	el Block D	Su	b-Market Designator 0
		Market Paducah-Murray	Name -Mayfield, KY		
1st Build-out Date 04-28-2002	2nd	Build-out Date	3rd Build-	out Date	4th Build-out Date
aivers/Conditions:					
is authorization is subject to the thorized in an adjacent foreign (45 miles) of the United State	ne conditio 1 territory (es/Canada	n that, in the event tha Canada/United States) border shall be require	t systems using the future coordinated to eliminate any	e same frequenc ion of any base s harmful interfe	ies as granted herein are tation transmitters within 72 rence to operations in the

License renewal granted on a conditional basis, subject to the outcome of FCC proceeding WT Docket No. 10-112 (see FCC 10-86, paras. 113 and 126).

adjacent foreign territory and to ensure continuance of equal access to the frequencies by both countries.

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Call Sign: KNLH404	File N	lumber:	Print Date:	
1 and a start of the start of t				
700 MHz Relicensed A	rea Information:			
Market	Market Name	Buildout Deadline	Buildout Notification	Status
	Ch.			
	The second			
			3	
		S		
			C,	i.
			60	
				200

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

	Federal Communic Wireless Telecomm	ations Communications Bure	nission ^{au}	
COMMISSION	RADIO STATION A	AUTHORIZATI	ON	
LICENSEE: CELLCO P	ARTNERSHIP			
ATTN: REGULATORY		Γ	Call Sign WQGA718	File Number 0007518718
CELLCO PARTNERSHI 5055 NORTH POINT PK ALPHARETTA, GA 300	P WY, NP2NE NETWORK ENC 22	GINEERING	1 AW - AW 21	Radio Service S (1710-1755 MHz and 10-2155 MHz)
C Registration Number (FR	N): 0003290673			
Grant Date 11-29-2006	Effective Date 12-13-2016	Expiration 11-29-20	Date 21	Print Date 02-04-2017
Market Number REA004	Chann	nel Block F	Su	b-Market Designator 15
	Marke Mississip	t Name pi Valley		
1st Build-out Date	2nd Build-out Date	3rd Build-out	t Date	4th Build-out Date
ivers/Conditions:		(0)		
s authorization is conditioned sonable efforts to coordinate f rating in the 1710-1755 MHz	upon the licensee, prior to initia requency usage with known co- band whose facilities could be a	ating operations from channel and adjacent affected by the propos	any base or fi channel incur sed operations	xed station, making nbent federal users . See, e.g., FCC and NTL

Conditions:

2006.

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Coordination Procedures in the 1710-1755 MHz Band, Public Notice, FCC 06-50, WTB Docket No. 02-353, rel. April 20,

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Call Sign: WQGA718

File Number: 0007518718

Print Date: 02-04-2017

700 MHz Relicensed Area Information:

Market	V	Market Name	Buildout Deadline	Buildout Notification	Status
		(VIA			
		E. C. C.			
			B		
		1 and 1			
			and the second second		
			2		
				(\bigcirc)	
				TC.	
				C	and the second

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

AL COMMUNIC	Federal Communics Wireless Telecomm	ations Comm unications Bures	nission au	
COMMISSION -	RADIO STATION A	UTHORIZATI	ON	
LICENSEE: CELLCO	PARTNERSHIP			
	-23-5		Call Sign	File Number
CELLCO PARTNERSH 5055 NORTH POINT PI ALPHARETTA, GA 300	IP KWY, NP2NE NETWORK ENG 022	INEERING	Ra AW - AWS (2110	dio Service 1710-1755 MHz and -2155 MHz)
Registration Number (FR	N): 0003290673			
Grant Date 11-29-2006	Effective Date 11-01-2016	Expiration 11-29-20	Date 21	Print Date
Market Number BEA072	Chann	el Block 3	Sub-1	Market Designator 0
	Market Paducah,	Name KY-IL		
1st Build-out Date	2nd Build-out Date	3rd Build-out	Date	4th Build-out Date
/ers/Conditions: authorization is conditioned	l upon the licensee, prior to initia	ting operations from	any base or fixe	d station, making

reasonable efforts to coordinate frequency usage with known co-channel and adjacent channel incumbent federal users operating in the 1710-1755 MHz band whose facilities could be affected by the proposed operations. See, e.g., FCC and NTIA Coordination Procedures in the 1710-1755 MHz Band, Public Notice, FCC 06-50, WTB Docket No. 02-353, rel. April 20, 2006.

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Call Sign: WQGA960 **Print Date:** File Number: 700 MHz Relicensed Area Information: Market **Market** Name **Buildout Deadline Buildout Notification** Status

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

F	ederal Communic Wireless Telecomm	ations Con	1 mission reau		
-COMMISSION -	RADIO STATION A	AUTHORIZAT	ΓΙΟΝ		
LICENSEE: CELLCO PA	RTNERSHIP				
ATTN: REGULATORY			Call Sigr WQJQ692	File Number 0008587218	
CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022			Radio Service WU - 700 MHz Upper Band (Block C)		
Registration Number (FRN): 0003290673	Environt		Di to Dite	
01-10-2020	01-10-2020	06-13-	2029	01-14-2020	
Market Number REA004	Chan	Channel Block C		Sub-Market Designator 0	
	Marke Mississip	t Name pi Valley	25-2		
1st Build-out Date 06-13-2013	2nd Build-out Date 06-13-2019	3rd Build-	out Date	4th Build-out Date	
vers/Conditions:			I		

W

If the facilities authorized herein are used to provide broadcast operations, whether exclusively or in combination with other services, the licensee must seek renewal of the license either within eight years from the commencement of the broadcast service or within the term of the license had the broadcast service not been provided, whichever period is shorter in length. See 47 CFR §27.13(b).

This authorization is conditioned upon compliance with section 27.16 of the Commission's rules

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Call Sign: WQJQ692

File Number: 0008587218

Print Date: 01-14-2020

700 MHz Relicensed Area Information:

EXHIBIT B

SITE DEVELOPMENT PLAN:

500' VICINITY MAP LEGAL DESCRIPTIONS FLOOD PLAIN CERTIFICATION SITE PLAN VERTICAL TOWER PROFILE

DESCRIPTION PROJECT INFORMATION, SITE MAPS, SHEET INDEX

OVERALL SITE PLAN w/AERIAL OVERLAY

LEGAL DESCRIPTIONS

PROPOSED LEASE AREA

THE FOLLOWING IS A DESCRIPTION OF THE PROPOSED LEASE AREA TO BE LEASED FROM THE PROPERTY CONVEYED TO LOREA & KENNY TURNER AS DESCRIBED IN DEED BOOK 77, PAGE 464 (TRACT 3) OF RECORD IN THE OFFICE OF THE CLERK OF BALLARD COUNTY, KENTUCKY, PARCEL ID: 37-17-03, WHICH IS MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEARING DATUM USED HEREIN IS BASED UPON KENTUCKY STATE PLANE COORDINATE SYSTEM, SINGLE ZONE, NAD 83, FROM A REAL TIME KINEMATIC GLOBAL POSITIONING SYSTEM OBSERVATION USING THE KENTUCKY TRANSPORTATION CABINET REAL TIME GPS NETWORK COMPLETED ON JUNE 28, 2019

COMMENCING AT A FOUND 1/2" REBAR WITH CAP STAMPED "3289" AT THE SOUTHWEST CORNER OF THE PARCEL CONVEYED TO LOREA & KENNY TURNER AS DESCRIBED IN DEED BOOK 77, PAGE 464 (TRACT 3), AND SAID POINT ALSO BEING AT THE NORTHWEST CORNER OF THE PARCEL CONVEYED TO GARY & GERALDINE L KNIGHT AS DESCRIBED IN DEED BOOK 77, PAGE 461 (TRACT 4), FOR REFERENCE, SAID COMMENCEMENT POINT IS \$09*07'52"W 1447.24' FROM THE NORTHWEST CORNER OF SAID TURNER PARCEL (A FOUND 1/2" REBAR WITH CAP STAMPED "3289" BEING SOUTH 509°07'52"W 0.61' FROM SAID NORTHWEST CORNER); THENCE WITH SAID TURNER LINE, N09°07'52"E 697.67'; THENCE LEAVING SAID LINE, TRAVERSING ACROSS THE LAND OF TURNER, S80°52'08"E 115.00'; THENCE S80°52'08"E 30.00' TO A SET 1/2" REBAR, 18" LONG, CAPPED "PATTERSON PLS 3136", HEREAFTER REFERRED TO AS A "SET IPC", AT THE NORTHWEST CORNER OF THE PROPOSED LEASE AREA AND BEING **THE TRUE POINT OF BEGINNING**; THENCE S80°52'08"E 100.00' TO A SET IPC; THENCE S09°07'52"W 100.00' TO A SET IPC; THENCE N80°52'08"W 100.00' TO A SET IPC; THENCE N09°07'52"E 100.00' TO THE POINT OF BEGINNING CONTAINING 10,000.000 SQUARE FEET AS PER SURVEY BY MARK E. PATTERSON, PLS #3136 DATED JUNE 28, 2019.

PROPOSED 30' / VARIABLE WIDTH ACCESS & UTILITY EASEMENT

THE FOLLOWING IS A DESCRIPTION OF THE PROPOSED 30' / VARIABLE WIDTH ACCESS AND UTILITY EASEMENT TO BE GRANTED FROM THE PROPERTY CONVEYED TO LOREA & KENNY TURNER AS DESCRIBED IN DEED BOOK 77, PAGE 464 (TRACT 3) OF RECORD IN THE OFFICE OF THE CLERK OF BALLARD COUNTY, KENTUCKY, PARCEL ID: 37-17-03, WHICH IS MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEARING DATUM USED HEREIN IS BASED UPON KENTUCKY STATE PLANE COORDINATE SYSTEM, SINGLE ZONE, NAD 83, FROM A REAL TIME KINEMATIC GLOBAL POSITIONING SYSTEM OBSERVATION USING THE KENTUCKY TRANSPORTATION CABINET REAL TIME GPS NETWORK COMPLETED ON JUNE 28, 2019

COMMENCING AT A FOUND 1/2" REBAR WITH CAP STAMPED "3289" AT THE SOUTHWEST CORNER OF THE PARCEL CONVEYED TO LOREA & KENNY TURNER AS DESCRIBED IN DEED BOOK 77, PAGE 464 (TRACT 3), AND SAID POINT ALSO BEING AT THE NORTHWEST CORNER OF THE PARCEL CONVEYED TO GARY & GERALDINE L KNIGHT AS DESCRIBED IN DEED BOOK 77, PAGE 461 (TRACT 4), FOR REFERENCE, SAID COMMENCEMENT POINT IS S09'07'52"W 1447.24' FROM THE NORTHWEST CORNER OF SAID TURNER PARCEL (A FOUND 1/2" REBAR WITH CAP STAMPED "3289" BEING SOUTH S09°07'52"W 0.61' FROM SAID NORTHWEST CORNER); THENCE WITH SAID TURNER LINE, N09°07'52"E 697.67'; THENCE LEAVING SAID LINE, TRAVERSING ACROSS THE LAND OF TURNER, S80°52'08"E 115.00' TO THE TRUE POINT OF 697.67; THENCE LEAVING SAID LINE, TRAVERSING ACROSS THE LAND OF TURNER, S80°52'08"E 115.00" TO THE TRUE POINT OF BEGINNING; THENCE LEAVING SAID LINE, TRAVERSING ACROSS THE LAND OF TURNER, S80°52'08"E 115.00" TO THE TRUE POINT OF "SET IPC", AT THE NORTHWEST CORNER OF THE PROPOSED LEASE AREA; THENCE ALONG PROPOSED LEASE AREA, S09°07'52"W 100.00" TO A SET IPC; THENCE LEAVING SAID LEASE AREA, N80°52'08"W 30.00'; THENCE N09°07'52"E 25.00'; THENCE ALONG THE ARC OF A CURVE TO THE LEFT HAVING AN ARC LENGTH OF 15.81', WITH A RADIUS OF 10.00', WITH A CHORD BEARING OF N36°09'46"W, AND A CHORD LENGTH OF 14.21'; THENCE ALONG THE ARC OF A COMPOUND CURVE TO THE LEFT HAVING AN ARC LENGTH OF 54.62', WITH A RADIUS OF 35.00', WITH A CHORD BEARING OF 553°50'14"W, AND A CHORD LENGTH OF 49.24'; THENCE S09°07'52"W 69.51'; THENCE ALONG THE ARC OF A CURVE TO THE RIGHT HAVING AN ARC LENGTH OF 55.81', WITH A RADIUS OF 65.00', WITH A CHORD BEARING OF S33°43'45"W, AND A CHORD LENGTH OF 54.11'; THENCE SS8°19'37'W 63.06' TO THE WEST LINE OF SAID TURNER; THENCE ALONG SAID TURNER LINE, DOORD TO THE LEFT HAVING AN DAC LENGTH OF 55.01' TO THE WEST LINE OF SAID TURNER; THENCE ALONG SAID TURNER LINE, DOORD TO TA SCIENCE ALONG THE ARC OF A DADUKE OF A DADUKE TO THE NOT LENGTH OF ADOLE DOT SAID TURNER; THENCE ALONG SAID TURNER LINE, DOORD TO THE RIGHT HAVING AN ARC LENGTH OF A DADUKE TO THE HEST LINE OF SAID TURNER; THENCE ALONG SAID TURNER LINE, DOORD TO AL TURNER ALONG THE ARC OF A DADUKE TO THE NOT LENGTH OF LENGTH OF LENGTH OF SAID TURNER; THENCE ALONG SAID TURNER LINE, DOORD TURNER ALONG AND A CHORD LENGTH OF 54.11; THENCE SS8'19'37'W 65.06'TO THE WEST LINE OF SAID TORNER; THENCE ALONG SAID TORNER LINE, N09'07'52'E 58.24'; THENCE ALONG THE ARC OF A NON-TANGENT CURVE TO THE LEFT HAVING AN ARC LENGTH OF 68.73', WITH A RADIUS OF 50.00', WITH A CHORD BEARING OF N48*30'45''E, AND A CHORD LENGTH OF 63.45'; THENCE N09'07'52''E 52.64'; THENCE ALONG THE ARC OF A CURVE TO THE RIGHT HAVING AN ARC LENGTH OF 10.88', WITH A RADIUS OF 65.00', WITH A CHORD BEARING OF N54'02'00''E, AND A CHORD LENGTH OF 91.77'; THENCE ALONG THE ARC OF A REVERSE CURVE TO THE LEFT HAVING AN ARC LENGTH OF 15.67', WITH A RADIUS OF 10.00', WITH A CHORD BEARING OF N54'02'00''E, AND A CHORD LENGTH OF 14.12'; THENCE N09'07'52''E 52.00' TO THE POINT OF BEGINNING CONTAINING 11,077.565 SQUARE FEET AS PER SURVEY BY MARK E. PATTERSON, PLS #3136 DATED JUNE 28, 2019.

PARENT PARCEL, LEGAL DESCRIPTION, DEED BOOK 77, PAGE 464 (NOT FIELD SURVEYED)

A TRACT OF LAND LYING ON THE SOUTH SIDE OF TABOR ROAD, AND THE EAST OF WAYSIDE INN ROAD CONSISTING OF 35.27 ACRES AND BEING DESIGNATED AS "TRACT 3" ON A PLAT OF WAVIER SURVEY OF THE MARK KNIGHT, ET AL, PROPERTY AS RECORDED IN PLAT CABINET 2 SLIDE 35 IN BALLARD COUNTY CLERK'S OFFICE. BEING A PART OF THE PROPERTY INHERITED BY GRANTORS MARK KNIGHT, LOREA TURNER, AND GARY KNIGHT, THE CHILDREN OF JIMMY BOB KNIGHT, SEE AFFIDAVIT OF DESCENT AND TRANSFER BY INTESTATE SUCCESSION, DATED MARCH 2, 2001 AND OF RECORD IN CABINET I, DRAWER 20, CARD #42768 IN THE BALLARD COUNTY CLERK'S OFFICE.

TITLE OF COMMITMENT, DEED BOOK 77, PAGE 464 (PARCEL ID: 37-17-03)

THIS SURVEY DOES NOT CONSTITUTE A TITLE SEARCH BY POD GROUP, LLC. AND AS SUCH WE ARE NOT RESPONSIBLE FOR THE INVESTIGATION OR INDEPENDENT SEARCH FOR EASEMENTS OF RECORD, ENCUMBRANCES, RESTRICTIVE COVENANTS, OWNERSHIP TITLE EVIDENCE, UNRECORDED EASEMENTS, AUGMENTING EASEMENTS, IMPLIED OR PRESCRIPTIVE EASEMENTS, OR ANY OTHER FACTS THAT AN ACCURATE AND CURRENT TITLE SEARCH MAY DISCLOSE. INFORMATION REGARDING THESE MATTERS WERE GAINED FROM FIDELITY NATIONAL TITLE, ORDER NO. C1905592LKY, PREPARED FOR VERIZON WIRELESS, DATED JULY 8, 2019 AT 8:00 AM. THE FOLLOWING COMMENTS ARE IN REGARD TO SAID SEARCH AND THE NUMBERS IN THE COMMENTS CORRESPOND TO THE NUMBERING SYSTEM IN SAID REPORT.

SCHEDULE B, PART II (EXCEPTIONS)

- 1. ANY DEFECT, LIEN, ENCUMBRANCE, ADVERSE CLAIM, OR OTHER MATTER THAT APPEARS FOR THE FIRST TIME IN THE PUBLIC RECORDS OR IS CREATED, ATTACHES, OR IS DISCLOSED BETWEEN THE COMMITMENT DATE AND THE DATE ON WHICH ALL OF THE SCHEDULE B, PART I-REQUIREMENTS ARE MET. (NOT A LAND SURVEYING MATTER, THEREFORE POD GROUP, LLC DID NOT EXAMINE OR ADDRESS THIS ITEM.)
- 2. LIEN OF CITY, COUNTY AND OTHER REAL ESTATE TAXES FOR THE PERIOD 2019 AND ALL SUBSEQUENT YEARS, NOT YET DUE AND PAYABLE. (NOT A LAND SURVEYING MATTER, THEREFORE POD GROUP, LLC DID NOT EXAMINE OR ADDRESS THIS ITEM.)
- 3. ANY ENCROACHMENT, ENCUMBRANCE, VIOLATION, VARIATION, OR ADVERSE CIRCUMSTANCE AFFECTING THE TITLE, OR EASEMENTS OR CLAIMS OF EASEMENTS NOT SHOWN BY THE PUBLIC RECORDS THAT WOULD BE DISCLOSED BY AN ACCURATE AND COMPLETE LAND SURVEY OF THE LAND. (POD GROUP, LLC DID NOT PERFORM A BOUNDARY SURVEY OF THE PARENT PARCEL, AND THEREFORE CANNOT ADDRESS THIS ITEM.)
- 4. RIGHTS OF TENANTS IN POSSESSION, AS TENANTS ONLY, UNDER UNRECORDED UNEXPIRED LEASES. (NOT A LAND SURVEYING MATTER, THEREFORE POD GROUP, LLC DID NOT EXAMINE OR ADDRESS THIS ITEM.)
- ALL COAL, OIL, GAS AND OTHER MINERAL RIGHTS HERETOFORE CONVEYED, EXCEPTED, RESERVED OR LEASED, TOGETHER WITH ALL INCIDENTAL RIGHTS THERETO. (POD GROUP, LLC DID NOT EXAMINE OR ADDRESS THIS ITEM.)
- CONDITIONS, STIPULATIONS, RESTRICTIONS, BUILDING LINES AND EASEMENTS, TOGETHER WITH INCIDENTAL RIGHTS, AS PROVIDED FOR ON THE RECORDED PLAT OF RECORD IN PLAT CABINET 2, SLIDE 35, IN THE OFFICE AFORESAID. (PLAT AS RECORDED IN PLAT CABINET 2, SLIDE 35, DOES AFFECT THE PARENT PARCEL, THE PROPOSED LEASE AREA AND THE PROPOSED ACCESS & UTILITY EASEMENT.)

LAND SURVEYOR'S CERTIFICATE

STATE OF KENTUCKY MARK E PATTERSON 3136 **LENSE**

I, MARK E. PATTERSON, HEREBY CERTIFY THAT I AM A LICENSED PROFESSIONAL LAND SURVEYOR LICENSED IN COMPLIANCE WITH THE LAWS OF THE COMMONWEALTH OF KENTUCKY. I FURTHER CERTIFY THAT THIS PLAT AND THE SURVEY ON THE GROUND WERE PERFORMED BY PERSONS UNDER MY DIRECT SUPERVISION, AND THAT THE DIRECTIONAL AND LINEAR MEASUREMENTS BEING WITNESSED BY MONUMENTS SHOWN HEREON ARE TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE. THE "RURAL" SURVEY, AND THE PLAT ON WHICH IT IS BASED, MEETS ALL SPECIFICATIONS AS STATED IN KAR 201 18:150. Mak latter 03/26/2020

MARK PATTERSON, PLS #3136

DATE

3/16/2020

3/26/2020

REVISION LOG

REV * MM/DD/YY

Α

0

SHEET NUMBER ALL SHEETS ALL SHEETS DESCRIPTION OF REVISION ISSUED FOR REVIEW ISSUED AS FINAL

290' SELF SUPPORT TOWER w/S' LIGHTNING ARRESTOR -TOTAL TOWER HEIGHT 295'

M ô Ę VERIZON WIRELESS 11'-EQUIPMENT CANOPY (V VERIZON WIREL U 91 X X Π à \$ 11 ACCESS/UTILITY EASEMENT - SEE SURVEY FOR LOCATION * 999 XI WAYSIDE INN RD (PUBLIC RIGHT OF WAY - WIDTH UNKNOWN) * 290' SELF SUPPORT TOWER w/5' LIGHTNING ARRESTOR --TOTAL TOWER HEIGHT 295' HEFE 100'-0"x100'-0" HORVATH COMMUNCAITONS LEASE AREA - SEE SURVEY FOR DESCRIPTION 9 - NEW 12'-0" GRAVEL ACCESS DRIVE 36"x60" VEHICLE RATED HAND HOLE FOR VZW FIBER SERVICE PROPOSED ±24' FENCE • TO MACH EXISTING FENCE 百 EX. DRIP LINE PROPOSED 14'-0" CATTLE GATE TEMPORARY CONSTRUCTION STABILIZED ENTRANCE PROPOSED ±40' FENCE - TO MACH EXISTING FENCE ±48' OF EX. FENCE TO BE REMOVED A E LEGEND UTILITY POLE £0 Kentucky E! **OVERALL SITE PLAN** ¥ ----FAD Call before you SCALE: 1" = 30" - X - x — X. ---- DHE DHE ------ OHE ---Call Monday thru Friday - 7 am to 6 pm. 1-800-752-6007 - UGFD ----- UGFD ---IN STATE LAW, IT IS AGAINST THE LAW TO ITHOUT NOTIFYING THE UNDERGROUND ____ x ____ x ____ 1"=30 VICE TWO (2) WO _ _

DigiSigner Document ID: 2c1bf9f0-7c8c-4ee2-9519-c928210b389e

-6"x14'-9" RADIO /ZW GC) LESS 11'-6"x19'-6"	1:	L490 BLU LOUIS 50	PODE POWER OF DESIGN UEGRASS PARKWAY VILLE, KY 40299 92-437-5252
		B Sout	DRVATH MMUNICATIONS VEST COLFAX AVE H BEND, IN 46601
		3/26/20 1/1 L 2/1 L	020 DF KENTU MARKE. 16,300 CENSED VONAL ENGINE VONAL ENGINE ERMIT: 3594
		Z	ONING
			AWINGS
	REV.	DATE	DESCRIPTION
	A	3.16.20	
	Ļ	5.20.20	ISSUED AS FINAL
	Γ	site BA	INFORMATION: RLOW SE
	L	W/ WICI BAI	AYSIDE INN RD KLIFFE, KY 42087 LLARD COUNTY
		HORV	ATH SITE NUMBER: HV1388
	Г		WIRELESS SITE NAME: BARLOW SE
	POI		3: 19-42124
	DRA CHE DAT	WN BY: CKED BY: E:	POD MEP 03.10.20
	Γ	S	HEET TITLE:
FIBER OPTIC MARKER PROPOSED LEASE LINE PROPOSED EASEMENT PROPOSED GRAVEL PROPOSED FENCE EVICTING FENCE	0	VERA	LL SITE PLAN
EXISTING OVERHEAD ELECTRIC EXISTING OVERHEAD ELECTRIC EXISTING UNDERGROUND FIBER OPTIC EXISTING PAVEMENT PROPERTY LINE		sн (EET NUMBER:

LEGEND

			PROPOSED LEASE LINE
			- PROPOSED EASEMENT
			PROPOSED GRAVEL
— x —	— x —	— x —	PROPOSED FENCE

EXHIBIT C TOWER AND FOUNDATION DESIGN

March 18, 2020 Kentucky Public Service Commission 211 Sower Blvd. P.O. Box 615 Frankfort, KY. 40602

RE: Site Name – EV Barlow SE Proposed Cell Tower 37 01 45.61 North Latitude, 89 00 07.63 West Longitude

Dear Commissioners:

The Project / Construction Manager for the proposed new communications facility will be Jeff DeLauder. His contact information is (517)394-9562 or <u>idelauder@horvathcommunications.com</u>.

Jeff DeLauder has been in the industry completing civil construction and constructing towers since 1996. He has worked at Horvath Communications since August 2016 completing project and construction management on new site build projects.

Thank you,

Jeff DeLauder

Jeff DeLauder

Director of Construction

a:312 West Colfax Ave South Bend, IN 46601

p:574-237-0464 m:517-294-9562 f:574-294-9562

w: www.horvathcommunications.com e: jdelauder@horvathcommunications.com

Structural Design Report 290' S3TL Series HD1 Self-Supporting Tower Site: Barlow, KY Site Number: HV1388

Prepared for: HORVATH COMMUNICATIONS INC by: Sabre Industries TM

Job Number: 20-4208-TJH-R1

March 16, 2020

Tower Profile	1
Foundation Design Summary (Option 1)	2
Foundation Design Summary (Option 2)	3
Maximum Leg Loads	4
Maximum Diagonal Loads	5
Maximum Foundation Loads	6
Calculations	7-24

Designed Appurtenance Loading

Elev	Description	Tx-Line
285	(1) 208 sq. ft. EPA 4000# (no ice)	(6) 1 5/8"
265	(1) 130 sq.ft. (no ice) 140 sq.ft. (ice)	(6) 1 5/8"
255	(1) 130 sq.ft. (no ice) 140 sq.ft. (ice)	(6) 1 5/8"
245	(1) 130 sq.ft. (no ice) 140 sq.ft. (ice)	(6) 1 5/8"

Design Criteria - ANSI/TIA-222-G

ASCE 7-16 Ultimate Wind Speed (No Ice)	106 mph			
Wind Speed (Ice)	30 mph			
Design Ice Thickness	1.50 in			
Structure Class	H			
Risk Category	1	6		
Exposure Category	С			
Topographic Category	1			

Base Reactions

Total Fo	undation	Individual Footing			
Shear (kips)	61.63	Shear (kips)	38.91		
Axial (kips)	164.29	Compression (kips)	482		
Moment (ft-kips)	10718	Uplift (kips)	422		
Torsion (ft-kips)	37.08				

Material List

Display	Value
Α	5.563 OD X .375
В	4.000 OD X .318
С	2.875 OD X .203
D	2.375 OD X .154
E	L 2 1/2 X 2 1/2 X 3/16
F	L 2 X 2 X 3/16
G	L 2 X 2 X 1/8
н	L 2 X 2 X 1/4
1	NONE

Notes

- 1) All legs are A500 (50 ksi Min. Yield).
- 2) All braces are A572 Grade 50.
- 3) All brace bolts are A325-X.
- 4) The tower model is S3TL Series HD1.
- 5) Transmission lines are to be attached to standard 12 hole waveguide ladders with stackable hangers.
- 6) Azimuths are relative (not based on true north).
- 7) Foundation loads shown are maximums.
- 8) All unequal angles are oriented with the short leg vertical.
- 9) Weights shown are estimates. Final weights may vary.
- 10) This tower design and, if applicable, the foundation design(s) shown on the following page(s) also meet or exceed the requirements of the 2018 Kentucky Building Code.
- 11) Tower Rating: 99.03%

ĸ

		Sabre Industries	Job:	20-4208-TJH-R1		
	Sabre Industries	P.O. Box 658	Customer:	HORVATH COMMUNICATIONS INC		
	INNOVATION DELIVERED Sloux City, IA 51102-0658 Phone: (712) 258-6690 Fac: (712) 279-0614 Information contained herein is the scle property of Sabre Communications Corporation, constitutes a trade secret as defined by lowa Code Ch. 550 and shall not be reproduced, copied or used in whole or part for any purpose whatsoever without the prior writime consent of Sabre Communications Corporation.	Sioux City, IA 51102-0658 Phone: (712) 258-6690	Site Name:	Barlow, KY HV138	8	
		Description:	290' S3TL			
		Date:	3/16/2020	By: REB		

Customer: HORVATH COMMUNICATIONS INC Site: Barlow, KY HV1388

290 ft. Model S3TL Series HD1 Self Supporting Tower

.9-.0 1) Concrete shall have a minimum 28-day compressive strength of 4,500 psi, in accordance with ACI 318-11. 2) Rebar to conform to ASTM specification A615 Grade 60. 3) All rebar to have a minimum of 3" concrete cover.

40'-0"

39--6"

Notes:

- 4) All exposed concrete corners to be chamfered 3/4".
- 5) The foundation design is based on the geotechnical report by POD project no. 19-42119, dated: 2/28/20.
- 6) See the geotechnical report for drilled pier installation requirements, if specified.

7) The foundation is based on the following factored loads: Factored uplift (kips) = 422.00 Factored download (kips) = 482.00 Factored shear (kips) = 39.00

8) The bottom anchor bolt template shall be positioned as closely as possible to the bottom of the anchor bolts.

Rebar Schedule per Pier

Anchor Bolts per Leg (6) 1.5" dia. x 78" F1554-105 on a 13.25" B.C. w/ 9.5" max. projection above concrete.

(18) #10 vertical rebar w/ #4 rebar ties, two

(2) within top 5" of pier then 12" C/C

7101 Southbridge Dr - P.O. Box 658 - Sioux City, IA 51102-0658 - Phone 712.258.6690 - Fax 712.258.8250

Pier

ELEVATION VIEW (41.9 cu. vds.)

6'-0'

Dia.

(3 REQUIRED; NOT TO SCALE)

Grade

No.: 20-4208-TJH-R1 Date: 03/16/20 By: REB

Customer: HORVATH COMMUNICATIONS INC Site: Barlow, KY HV1388

290 ft. Model S3TL Series HD1 Self Supporting Tower

(73.4 cu. yds.) (1 REQD.; NOT TO SCALE)

CAUTION: Center of tower is not in center of slab.

Notes:

- 1) Concrete shall have a minimum 28-day compressive strength of 4,500 psi, in accordance with ACI 318-11.
- 2) Rebar to conform to ASTM specification A615 Grade 60.
- 3) All rebar to have a minimum of 3" concrete cover.
- 4) All exposed concrete corners to be chamfered 3/4".
- 5) The foundation design is based on the geotechnical report by POD project no. 19-42119, dated: 2/28/20.
- 6) See the geotechnical report for compaction requirements, if specified.
- 7) The foundation is based on the following factored loads: Factored download (kips) = 71.22 Factored overturn (kip-ft) = 10,718.33 Factored shear (kips) = 61.63
- 8) 4.5' of soil cover is required over the entire area of the foundation slab.
- 9) The bottom anchor bolt template shall be positioned as closely as possible to the bottom of the anchor bolts.

F	Rebar Schedule per Mat and per Pier				
	(18) #8 vertical rebar w/ hooks at bottom w/				
Pier	#4 rebar ties, two (2) within top 5" of pier then				
	11" C/C				
Mat	(61) #9 horizontal rebar evenly spaced each				
	way top and bottom. (244 total)				
	Anchor Bolts per Leg				
(6) 1.5"	(6) 1.5" dia. x 78" F1554-105 on a 13.25" B.C. w/ 9.5"				
~ ~~~	max. projection above concrete.				

Information contained herein is the sole property of Sabre Industries, constitutes a trade secret as defined by Iowa Code Ch. 550 and shall not be reproduced, copied or used in whole or part for any purpose whatsoever without the prior written consent of Sabre Industries.

Maximum

9:52:16

Maximum

12.7

T

15

10

5

0

5

10

0 -

12.7

T

15

RAWFORCE Ver 2.2 (c) Guymast Inc. 2006-2009 Phone: (416) 736-7453	16 mar 2020
icensed to: Sabre Towers and Poles	9:52:16
Maximum	

TOTAL FOUNDATION LOADS (kip, ft-kip)

INDIVIDUAL FOOTING LOADS (kip)

Latticed Tower Analysis (Unguyed) Processed under license at:				(c)2015	Guymast	Inc. 416-	736-7453	
Sabre Towers and Poles						on	: 16 mar	2020 at:	9:52:16
									
MAST GE(DMETRY	(ft)		÷					
PANEL TYPE	NO.OF LEGS	ELEV BOT	'.АТ І ТОМ	ELEV.AT TOP	F.W. BOT	. АТ ГОМ	F.WAT TOF	TYPICA PANE HEIGH	IL IL IT
****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	285 280 275 260 255 220 215 200 180 160 140 120 100 80 40 20 0	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	290.00 285.00 280.00 275.00 255.00 240.00 235.00 220.00 215.00 200.00 180.00 160.00 140.00 120.00 100.00 80.00 60.00 40.00 20.00	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7 9 11 13 15 17 21 23 25 27	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	5.00 5.00 5.00 5.00 5.00 5.00 5.00 7.00 7	5.0 10.0 10.0 10.0 10.0 10.0	000000000000000000000000000000000000000
MEMBER	ROPER	TIES							
	250	BOTTOM	тор	Y-SECTN	PAI	אודנ	FLASTIC	THERMAL	
T	PE	ELEV	ELEV	AREA in.sq	OFG	(RAT in	MODULUS	EXPANSN /deg	
	LE LE LE LE LE DI DI DI DI DI HO HO HO	$\begin{array}{c} 280.00\\ 260.00\\ 240.00\\ 220.00\\ 180.00\\ 120.00\\ 0.00\\ 220.00\\ 120.00\\ 120.00\\ 180.00\\ 160.00\\ 140.00\\ 160.00\\ 140.00\\ 100.00\\ 60.00\\ 0.00\\ 285.00\\ 255.00\\ 255.00\\ 255.00\\ 235.00\\ 215.00\end{array}$	290.00 280.00 240.00 220.00 180.00 290.00 290.00 260.00 180.00 160.00 140.00 100.00 60.00 290.00 280.00 280.00 240.00 220.00	$\begin{array}{c} 1.075\\ 1.704\\ 3.678\\ 6.111\\ 7.952\\ 8.399\\ 12.763\\ 0.484\\ 0.938\\ 0.484\\ 0.715\\ 0.902\\ 1.090\\ 1.688\\ 1.938\\ 0.484\\ 0.484\\ 0.938\\ 0.484\\ 0.938\\ 0.938\\ 0.484\\ \end{array}$		787 787 787 787 787 787 787 626 626 626 626 626 626 626 626 626 62	29000. 29000. 29000. 29000. 29000. 29000. 29000. 29000. 29000. 29000. 29000. 29000. 29000. 29000. 29000. 29000. 29000. 29000. 29000.	0.0000117 0.0000117 0.0000117 0.0000117 0.0000117 0.0000117 0.0000117 0.0000117 0.0000117 0.0000117 0.0000117 0.0000117 0.0000117 0.0000117 0.0000117 0.0000117 0.0000117	
	MEMBE	R RESIST	ANCES						
BOTTOM ELEV ft	TOP ELEV ft	L COMP kip	EGS TENS kip	DIAGON COMP kip	ALS TENS kip	но сомі kij	RIZONTALS P TENS D kip	INT COMP kip	BRACING TENS kip
285.0 280.0 275.0 260.0 255.0 240.0	290.0 285.0 280.0 275.0 260.0 255.0	31.48 31.48 57.04 57.04 142.05 142.05	48.15 48.15 76.50 76.50 165.60 165.60	7.16 7.16 7.16 7.16 14.32 1 14.32 1	7.16 7.16 7.16 7.16 4.32	5.8 0.00 5.8 0.00 10.9	2 5.82 0 0.00 2 5.82 0 0.00 5 10.95 0 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00

20-4208-TJH-R1

					20	-4208-тј	H-R1		
235.0	240.0	254.38	274.95	14.32	14.32	10.95	10.95	0.00	0.00
220.0	235.0	254.38	274.95	14.32	14.32	0.00	0.00	0.00	0.00
215.0	220.0	329.84	327.10	7.16	7.16	5.82	5.82	0.00	0.00
200.0	215.0	329.84	327.10	7.16	7.16	0.00	0.00	0.00	0.00
180.0	200.0	329.84	357.75	5.63	5.63	0.00	0.00	0.00	0.00
160.0	180.0	358.08	378.00	5.14	5.14	0.00	0.00	0.00	0.00
140.0	160.0	358.08	378.00	7.46	7.46	0.00	0.00	0.00	0.00
120.0	140.0	358.08	378.00	10.34	10.34	0.00	0.00	0.00	0.00
100.0	120.0	507.33	457.90	6.98	6.98	0.00	0.00	0.00	0.00
80.0	100.0	507.33	457.90	12.53	12.53	0.00	0.00	0.00	0.00
60.0	80.0	507.33	457.90	10.73	10.73	0.00	0.00	0.00	0.00
40.0	60.0	507.33	457.90	13.43	13.43	0.00	0.00	0.00	0.00
20.0	40.0	507.33	457.90	14.31	14.31	0.00	0.00	0.00	0.00
0.0	20.0	507.33	576.00	12.68	12.68	0.00	0.00	0.00	0.00

* Only 3 condition(s) shown in full * Some wind loads may have been derived from full-scale wind tunnel testing

LOADING CONDITION A

106 mph Ultimate wind with no ice. Wind Azimuth: 0+

PL - 0

MAST LOADING

LOAD	ELEV	APPLYLO	ADAT	LOAD	FORCE	s	MOME	NTS
TYPE		RADIUS	AZI	AZI	HORIZ	DOWN	VERTICAL	TORSNAL
	ft	ft			kip	kip	ft-kip	ft-kip
c	285 0	0.00	0.0	0 0	6 53	4 80	0.00	0 00
č	265.0	0.00	0.0	0.0	4.02	2.40	0.00	0.00
č	255.0	0.00	0.0	0.0	3.99	2.40	0.00	0.00
с	245.0	0.00	0.0	0.0	3.95	2.40	0.00	0.00
D	290.0	0.00	180.0	0.0	0.06	0.04	0.00	0.00
D	285.0	0.00	180.0	0.0	0.06	0.04	0.00	0.00
D	285.0	0.00	42.0	0.0	0.09	0.04	0.03	0.05
D	280.0	0.00	42.0	0.0	0.09	0.04	0.03	0.05
D	280.0	0.00	42.0	0.0	0.09	0.06	0.03	0.05
D	205.0	0.00	42.0	0.0	0.09	0.05	0.03	0.05
n	260 0	0.00	42.0	0.0	0.11	0.06	0.04	0.08
D	260.0	0.00	42.0	0.0	0.12	0.11	0.04	0.08
D	255.0	0.00	42.0	0.0	0.12	0.11	0.04	0.08
D	255.0	0.00	42.0	0.0	0.12	0.11	0.06	0.08
D	245.0	0.00	42.0	0.0	0.12	0.11	0.06	0.08
D	245.0	0.00	42.0	0.0	0.12	0.11	0.07	0.09
D	240.0	0.00	42.0	0.0	0.12	0.11	0.07	0.09
D	235 0	0.00	42.0	0.0	0.13	0.16	0.07	0.08
D	235.0	0.00	42.0	0.0	0.12	0.14	0.07	0.08
D	220.0	0.00	42.0	0.0	0.12	0.14	0.07	0.09
D	220.0	0.00	34.2	0.0	0.13	0.16	0.08	0.08
D	205.0	0.00	38.7	0.0	0.13	0.15	0.08	0.08
D	205.0	0.00	40.9	0.0	0.13	0.15	0.07	0.08
D	200.0	0.00	40.9	0.0	0.13	0.15	0.07	0.08
D	180.0	0.00	27.9	0.0	0.13	0.10	0.10	0.08
D D	180.0	0.00	23 5	0.0	0.14	0.10	0.03	0.08
D	160.0	0.00	26.4	0.0	0.14	0.17	0.11	0.08
D	160.0	0.00	20.2	0.0	0.15	0.18	0.14	0.08
D	140.0	0.00	22.3	0.0	0.15	0.19	0.13	0.08
D	140.0	0.00	17.6	0.0	0.16	0.20	0.16	0.07
D	120.0	0.00	19.2	0.0	0.16	0.20	0.14	0.08
D	110 0	0.00	15.0	0.0	0.15	0.24	0.17	0.07
D	110.0	0.00	16.7	0.0	0.15	0.24	0.17	0.07
Ð	100.0	0.00	16.7	0.0	0.15	0.24	0.17	0.07
D	100.0	0.00	14.2	0.0	0.15	0.28	0.19	0.07
D	90.0	0.00	14.2	0.0	0.15	0.28	0.19	0.07
D	90.0	0.00	14.9	0.0	0.16	0.28	0.18	0.07
D	80.0	0.00	14.9	0.0	0.16	0.28	0.18	0.07
D	80.0	0.00	12.9	0.0	0.15	0.28	0.21	0.06
U	00.0	0.00	T2.2	0.0	0.13	0.29	0.20	0.07

					20-4	1208-TJH-R1		
D	60.0	0.00	11.8	0.0	0.16	0.31	0.23	0.06
D	40.0	0.00	12.3	0.0	0.16	0.31	0.22	0.06
D	40.0	0.00	10.8	0.0	0.15	0.31	0.25	0.05
D	20.0	0.00	11.3	0.0	0.15	0.32	0.24	0.06
D	20.0	0.00	10.0	0.0	0.14	0.32	0.27	0.05
D	0.0	0.00	10.4	0.0	0.14	0.33	0.26	0.05

106 mph Ultimate wind with no ice. Wind Azimuth: 00

PL - 0

PL - 0

MAST LOADING

LOAD	ELEV	APPLYLO	ADAT	LOAD	FORCES		MOME	NTS
TYPE	£+	RADIUS	AZI	AZI	HORIZ	DOWN	VERTICAL	TORSNAL
	10	16			ктр	ктр	тс-ктр	тс-ктр
С	285.0	0.00	0.0	0.0	6.53	3.60	0.00	0.00
С	265.0	0.00	0.0	0.0	4.02	1.80	0.00	0.00
С	255.0	0.00	0.0	0.0	3.99	1.80	0.00	0.00
С	245.0	0.00	0.0	0.0	3.95	1.80	0.00	0.00
D	290.0	0.00	180.0	0.0	0.06	0.03	0.00	0.00
D	285.0	0.00	180.0	0.0	0.06	0.03	0.00	0.00
D	285.0	0.00	42.0	0.0	0.09	0.03	0.02	0.05
D	280.0	0.00	42.0	0.0	0.09	0.03	0.02	0.05
D	280.0	0.00	42.0	0.0	0.09	0.04	0.02	0.05
D	265.0	0.00	42.0	0.0	0.09	0.04	0.02	0.05
D	265.0	0.00	42.0	0.0	0.11	0.05	0.03	0.08
D	260.0	0.00	42.0	0.0	0.11	0.05	0.03	0.08
D D	245.0	0.00	42.0	0.0	0.12	0.08	0.04	0.09
D	245.0	0.00	42.0	0.0	0.12	0.09	0.05	0.09
D	240.0	0.00	42.0	0.0	0.12	0.09	0.05	0.09
D	240.0	0.00	42.0	0.0	0.13	0.11	0.05	0.08
D	220.0	0.00	42.0	0.0	0.12	0.11	0.05	0.09
D	220.0	0.00	34.2	0.0	0.13	0.12	0.06	0.08
D	205.0	0.00	38.7	0.0	0.13	0.11	0.06	0.08
D	203.0	0.00	40.9	0.0	0.13	0.12	0.05	0.08
D	200.0	0.00	27.9	0.0	0.13	0.12	0.08	0.08
D	180.0	0.00	32.4	0.0	0.14	0.12	0.07	0.08
D	180.0	0.00	23.5	0.0	0.14	0.13	0.09	0.08
D	160.0	0.00	26.4	0.0	0.14	0.13	0.08	0.08
D	160.0	0.00	20.2	0.0	0.15	0.14	0.10	0.08
D	140.0	0.00	22.3	0.0	0.15	0.14	0.09	0.08
D	140.0	0.00	10.2	0.0	0.10	0.15	0.12	0.07
D	120.0	0.00	15 8	0.0	0.15	0.13	0.13	0.08
D	100.0	0.00	16.7	0.0	0.15	0.18	0.12	0.07
D	100.0	0.00	14.2	0.0	0.15	0.21	0.15	0.07
D	80.0	0.00	14.9	0.0	0.16	0.21	0.14	0.07
D	80.0	0.00	12.9	0.0	0.15	0.21	0.16	0.06
D	60.0	0.00	13.5	0.0	0.15	0.22	0.15	0.07
D	60.0	0.00	11.8	0.0	0.16	0.23	0.17	0.06
D	40.0	0.00	12.3	0.0	0.16	0.23	0.17	0.06
ň	20.0	0.00	11 3	0.0	0.15	0.24	0.18	0.05
Ď	20.0	0.00	10.0	0.0	0.14	0.24	0.20	0.05
D	0.0	0.00	10.4	0.0	0.14	0.25	0.20	0.05

30 mph wind with 1.5 ice. Wind Azimuth: 0♦

MAST LOADING

LOAD	ELEV	APPLYLOAL	DAT	LOAD	FORCE	s	MOME	NTS
TYPE	ft	RADIUS ft	AZI	AZI	HORIZ kip	DOWN kip	VERTICAL ft-kip	TORSNAL ft-kip
с	285.0	0.00	0.0	0.0	1.56	12.24	0.00	0.00

					20-4	208-TJH-R1		
c c c	265.0 255.0 245.0	$0.00 \\ 0.00 \\ 0.00$	0.0 0.0 0.0	0.0 0.0 0.0	0.43 0.43 0.42	6.09 6.08 6.07	0.00 0.00 0.00	$0.00 \\ 0.00 \\ 0.00$
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$\begin{array}{c} 265.0\\ 245.0\\ 290.0\\ 285.0\\ 285.0\\ 285.0\\ 285.0\\ 285.0\\ 285.0\\ 265.0\\ 265.0\\ 265.0\\ 265.0\\ 265.0\\ 24$	$\begin{array}{c} 0.00\\$	$\begin{array}{c} 0.0 \\ 0.0 \\ 0.0 \\ 180.0 \\ 42.0$		0.43 0.43 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02	$\begin{array}{c} 200 - 101 \\ 6.08 \\ 6.07 \\ 0.18 \\ 0.20 \\ 0.25 \\ 0.225 \\ 0.221 \\ 0.225 \\ 0.221 \\ 0.225 \\ 0.221 \\ 0.225 \\ 0.221 \\ 0.225 \\ 0.221 \\ 0.225 \\ 0.221 \\ 0.225 \\ 0.221 \\ 0.225 \\ 0.221 \\ 0.225 \\ 0.225 \\ 0.221 \\ 0.225 \\ $	0.00 0.00 0.00 0.00 0.122 0.00 0.00	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.01\\$
	100.0 80.0 80.0 60.0 60.0 40.0 40.0	0.00 0.00 0.00 0.00 0.00 0.00	14.2 14.9 12.9 13.5 11.8 12.3 10.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.57 0.58 0.58 0.59 0.63 0.63 0.63	0.64 0.61 0.69 0.66 0.74 0.72 0.78	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00
	40.0 20.0 20.0 10.0 10.0	$0.00 \\ $	$ 10.8 \\ 11.3 \\ 10.0 \\ 10.0 \\ 10.4 \\ 10.4 \\ 10.4 $	$0.0 \\ 0.0 $	0.02 0.02 0.01 0.01 0.01 0.01	0.63 0.64 0.58 0.58 0.59 0.59	0.78 0.76 0.41 0.41 0.67 0.67	$0.00 \\ 0.01 \\ 0.00 \\ $

MAXIMUM TENSION IN MAST MEMBERS (kip)

ELEV ft	LEGS	DIAG	HORIZ	BRACE
290.0	0.29 AC	0.85 s	0.44 k	0.00 A

			20)-4208-TJH-R1
285.0	2.36 1	3,33,1	0.08	T 0.00 A
280.0	11 08 k	3 52 n	1.10	B 0.00 A
275.0	20.23 k	3 82 V	0.18	B 0.00 A
270.0	20.23 K	4 01 n	0.04	m 0.00 A
265.0		4.01 II	0.21	B 0.00 A
260.0	40.41 K	6 77 L	2.34	A 0.00 A
255.0	J4.94 K	0.77 K	0.31	A 0.00 A
250.0	74.17 K	0.00 V	0.03	AD 0.00 A
245.0	94.57 K	8.80 n	0.31	A 0.00 A
240.0	117.76 K	11.06 V	2.16	A 0.00 A
235.0	144.15 K	11.24 K	0.50	A 0.00 A
230.0	174.08 k	11.72 V	0.15	AC 0.00 A
225.0	200.96 k	11.86 AF	0.51	A 0.00 A
220.0	231.18 k	12.24 D	3.12	AC 0.00 A
215.0	247.34 k	3.51 m	0.40	A 0.00 A
210.0	253.73 k	3.27 U	0.03	A 0.00 A
205.0	257.00 k	3.12 m	0.26	A 0.00 A
200.0	262.17 k	3.02 U	0.06	A 0.00 A
195.0	265.75 k	2.99 m	0.18	A 0.00 A
190 0	270.35 k	2.97 U	0.12	
185 0	274.03 k	2.99 m	0.13	
180 0	278.37 k	3.03 U	0.12	A 0.00 A
173 3	282.63 k	3.36 m	0.16	A 0.00 A
166 7	288.19 k	3.39 U	0.10	A 0.00 A
160.0	293.18 k	3.46 m	0.10	A 0.00 A
152.2	298.58 k	3.55 U	0.15	A 0.00 A
146 7	303.64 k	3.65 m	0.09	A 0.00 A
140.7	309.00 k	3.79 U	0.11	A 0.00 A
122.2	314.15 k	3.89 C	0.00	A 0.00 A
133.3	319.52 k	4.08 U	0.12	A 0.00 A
126.7	324.81 k	4.19 AE	0.07	A 0.00 A
120.0	331.49 k	4.80 U	0.10	A 0.00 A
110.0	339.44 k	4.94 AE	0.09	A 0.00 A
100.0	347.42 k	5.16 U	0.09	A 0.00 A
90.0	355.34 k	5.36 U	0.08	A 0.00 A
80.0	363.32 k	5.61 AE	0.07	A 0.00 A
70.0	371.28 k	5.82 U	0.07	A 0.00 A
60.0	379.26 k	6.06 AE	0.06	A 0.00 A
50.0	387.23 k	6.30 U	0.06	A 0.00 A
40.0	395.23 k	6.54 U	0.06	A 0.00 A
30.0	403.21 k	6.75 U	0.05	A 0.00 A

		20-4208	I-TJH-R1
20.0		0.00 k	0.00 A
	411.17 k 6.98 U		
10.0		0.05 A	0.00 A
	419.03 k 7.11 U		
0.0		0.00 A	0.00 A

MAXIMUM COMPRESSION IN MAST MEMBERS (kip)

ELEV ft	LEGS	DIAG	HORIZ	BRACE
290.0			-0.57 s	0.00 A
285.0	-0.66 AU	-0.66 1	-0.05 k	0.00 A
280.0	-5.09 S	-3.59 5	-0.86 AP	0.00 A
275.0	-14.22 S	-3.64 D	-0.12 AD	0.00 A
270.0	-23.93 s	-3.78 n	-0.05 U	0.00 A
265.0	-33.35 T	-4.04 D	-0.16 AD	0.00 A
260.0	-46.16 S	-6.20 D	-2.18 AC	0.00 A
255.0	-61.02 S	-7.09 S	-0.26 AC	0.00 A
250.0	-82.77 S	-8.57 AF	-0.04 B	0.00 A
245 0	-103.58 s	-8.95 D	-0.27 AC	0.00 A
240.0	-129.10 s	-11.04 V	-2.03.40	
240.0	-155.99 s	-11.66 S	-2.03 AC	0.00 A
235.0	-187.46 S	-11.56 AF	-0.46 AC	0.00 A
230.0	-214.89 S	-11.99 v	-0.16 A	0.00 A
225.0	-246.43 S	-12.17 AF	-0.47 AC	0.00 A
220.0	-263.10 S	-3.75 U	-3.36 A	0.00 A
215.0	-270.47 s	 -3.11 m	-0.37 AC	0.00 A
210.0	-274.13 \$	-3.30 U	-0.03 AC	0.00 A
205.0	-280,10,5	-2.90 m	-0.24 AC	0.00 A
200.0	-284, 21, 6	-3 14 11	-0.05 AC	0.00 A
195.0	-204.21 3		-0.17 AC	0.00 A
190.0	-209.33 5	-2.05 C	-0.11 AC	0.00 A
185.0	-293.82 5	-3.15 U	-0.12 AC	0.00 A
180.0	-298.90 S	-2.91 m	-0.11 AC	0.00 A
173.3	-303.91 S	-3.55 U	-0.15 AC	0.00 A
166.7	-310.50 s	-3.35 U	-0.09 AC	0.00 A
160.0	-316.40 S	-3.65 U	-0.12 AC	0.00 A
153.3	-322.84 S	-3.58 U	-0.08 AC	0.00 A
146 7	-328.91 S	-3.86 U	-0.10 AC	0.00 4
140.0	-335.36 S	-3.85 U	-0.07 AC	0.00 A
122.2	-341.59 s	-4.13 U	-0.07 AC	0.00 A
100 7	-348.14 S	-4.20 U	-0.11 AC	0.00 A
126.7	-354.60 s	-4.42 U	-0.06 AC	0.00 A
120.0			-0.09 AC	0.00 A

	262 67 -		20-4208-	-TJH-R1
110.0	-362.87 S	-5.03 U	-0.08 AC	0.00 A
100.0	-372.87 S	-5.23 U	-0.08 AC	0.00 A
00.0	-383.02 S	-5.42 U	-0.07.46	0.00 4
50.0	-393.24 S	-5.64 U	-0.07 AC	0.00 A
80.0	-403.57 s	-5.86 U	-0.07 AC	0.00 A
70.0	-413.93 5	-6.08 U	-0.06 AC	0.00 A
60.0	-424 20 S		-0.06 AC	0.00 A
50.0	-424.33 3	-0.32 0	-0.05 AC	0.00 A
40.0	-434.94 S	-6.55 0	-0.05 AC	0.00 A
30.0	-445.57 s	-6.79 U	-0.05 AC	0.00 A
20.0	-456.23 s	-6.99 U	0.00 AC	0.00 4
20.0	-466.91 S	-7.16 U	0.00 AC	0.00 A
10.0	-477.52 s	-7.38 U	-0.04 AC	0.00 A
0.0			0.00 A	0.00 A

FORCE/RESISTANCE RATIO IN LEGS

MAST	LE	G COMPRE	SSION -		LEG TENS	ION
ELEV	MAX COMP	COMP RESIST	RESIST RATIO	MAX TENS	TENS RESIST	RESIST RATIO
290.00						
285.00	0.66	31.48	0.02	0.29	48.15	0.01
280.00	5.09	31.48	0.16	2.36	48.15	0.05
275 00	14.22	57.04	0.25	11.08	76.50	0.14
270.00	23.93	57.04	0.42	20.23	76.50	0.26
270.00	33.35	57.04	0.58	29.37	76.50	0.38
265.00	46.16	57.04	0.81	40.41	76.50	0.53
260.00	61.02	142.05	0.43	54.94	165.60	0.33
255.00	82.77	142.05	0.58	74.17	165.60	0.45
250.00	103.58	142.05	0.73	94.57	165.60	0.57
245.00	120 10	142 05	0 01	117 76	165 60	0.57
240.00	165.00			144 15	274 05	
235.00	155.99	254.38	0.61	144.15	274.95	0.52
230.00	187.46	254.38	0.74	174.08	274.95	0.63
225.00	214.89	254.38	0.84	200.96	274.95	0.73
220 00	246.43	254.38	0.97	231.18	274.95	0.84
215 00	263.10	329.84	0.80	247.34	327.10	0.76
213.00	270.47	329.84	0.82	253.73	327.10	0.78
210.00	274.13	329.84	0.83	257.00	327.10	0.79
205.00	280.10	329.84	0.85	262.17	327.10	0.80
200.00	284.21	329.84	0.86	265.75	357.75	0.74
195.00	289.55	329 84	0.88	270 35	357 75	0.76
190.00	203 82	320 84	0.00	274 03	357 75	
185.00	233.02	323.04	0.09	274.03		0.77
180.00	298.90	329.84	0.91	278.37	357.75	0.78
	303.91	358.08	0.85	282.63	378.00	0.75

173.33						
166 67	310.50	358.08	0.87	288.19	378.00	0.76
100.07	316.40	358.08	0.88	293.18	378.00	0.78
160.00	322.84	358.08	0.90	298.58	378.00	0.79
153.33	328 01	358 08	0.92	303 64	378 00	0.80
146.67	520.91		0.92			0.80
140.00	335.36	358.08	0.94	309.00	378.00	0.82
122 22	341.59	358.08	0.95	314.15	378.00	0.83
100.00	348.14	358.08	0.97	319.52	378.00	0.85
120.07	354.60	358.08	0.99	324.81	378.00	0.86
120.00	362.87	507.33	0.72	331.49	457.90	0.72
110.00	272 97		0 72	220 44	457 00	
100.00	3/2.0/		0.75	559.44	437.90	0.74
90.00	383.02	507.33	0.75	347.42	457.90	0.76
80.00	393.24	507.33	0.78	355.34	457.90	0.78
80.00	403.57	507.33	0.80	363.32	457.90	0.79
70.00	413.93	507.33	0.82	371.28	457.90	0.81
60.00	121 30	507 33	0.84	370 26	457 00	0.82
50.00	424.33		0.04	379.20	437.90	
40.00	434.94	507.33	0.86	387.23	457.90	0.85
30.00	445.57	507.33	0.88	395.23	457.90	0.86
50.00	456.23	507.33	0.90	403.21	457.90	0.88
20.00	466.91	507.33	0.92	411.17	576.00	0.71
10.00	477 52	507 33	0 94	419 03	576.00	0 73
0.00						

FORCE/RESISTANCE RATIO IN DIAGONALS

	- DIA	G COMPRE	SSION -		DIAG TEN	SION
MAST			FORCE/			FORCE/
ELEV	MAX	COMP	RESIST	MAX	TENS	RESIST
ττ	COMP	RESIST	RATIO	TENS	RESIST	RATIO
290.00						
205 00	0.66	7.16	0.09	0.85	7.16	0.12
205.00	3.59	7.16	0.50	3.33	7.16	0.47
280.00						
275 00	3.64	7.16	0.51	3.52	7.16	0.49
275.00	3.78	7.16	0.53	3.82	7.16	0.53
270.00	4 04	7 16	0.56	4 01	7 16	0.56
265.00	4.04		0.30	4.01	·	
200 00	6.20	7.16	0.87	6.14	7.16	0.86
200.00	7.09	14.32	0.49	6.77	14.32	0.47
255.00					14 22	0 61
250.00	0.3/	14.52	0.60	0.00	14.32	0.01
245 00	8.95	14.32	0.63	8.86	14.32	0.62
245.00	11.04	14.32	0.77	11.06	14.32	0.77
240.00						
235 00	11.66	14.32	0.81	11.24	14.32	0.78
233.00	11.56	14.32	0.81	11.72	14.32	0.82
230.00	11 00	14 22	0.04	11 00	14 22	
225.00	11.99	14.32	0.04	11.00	14.52	0.05
	12.17	14.32	0.85	12.24	14.32	0.85
220.00	3.75	7.16	0.52	3.51	7.16	0.49

20-4208-TJH-R1

					20-4	1208-TJH
215.00	3.11	7.16	0.43	3.27	7.16	0.46
210.00	3,30	7.16	0.46	3.12	7.16	0.44
205.00	2 90	7 16	0 40	3 02	7 16	0 42
200.00	2 14	5 63		2 00	5 63	0.53
195.00					5.05	
190.00	2.05	5.05	0.31	2.97	5.05	0.55
185.00	3.15	5.63	0.56	2.99	5.63	0.53
180.00	2.91	5.63	0.52	3.03	5.63	0.54
173.33	3.55	5.14	0.69	3.36	5.14	0.65
166.67	3.35	5.14	0.65	3.39	5.14	0.66
160 00	3.65	5.14	0.71	3.46	5.14	0.67
152 22	3.58	7.46	0.48	3.55	7.46	0.48
146 67	3.86	7.46	0.52	3.65	7.46	0.49
140.07	3.85	7.46	0.52	3.79	7.46	0.51
140.00	4.13	10.34	0.40	3.89	10.34	0.38
133.33	4.20	10.34	0.41	4.08	10.34	0.39
126.67	4.42	10.34	0.43	4.19	10.34	0.40
120.00	5.03	6.98	0.72	4.80	6.98	0.69
110.00	5.23	6.98	0.75	4.94	6.98	0.71
100.00	5 42	12.53	0.43	5.16	12.53	0.41
90.00	5 64	12 53	0.45	5 36	12 53	0.43
80.00		10 72			10 72	
70.00	5.00	10.75		5.01	10.75	0.32
60.00	6.08	10.73	0.57	5.82	10.73	0.54
50.00	6.32	13.43	0.47	6.06	13.43	0.45
40.00	6.55	13.43	0.49	6.30	13.43	0.47
30.00	6.79	14.31	0.47	6.54	14.31	0.46
20.00	6.99	14.31	0.49	6.75	14.31	0.47
10 00	7.16	12.68	0.56	6.98	12.68	0.55
10.00	7.38	12.68	0.58	7.11	12.68	0.56
0.00						

H-R1

MAXIMUM INDIVIDUAL FOUNDATION LOADS: (kip)

	LOADC	OMPONENTS		TOTAL
NORTH	EAST	DOWN	UPLIFT	SHEAR
38.91 S	29.98 e	482.13 S	-422.31 k	38.91 S

MAXIMUM TOTAL LOADS ON FOUNDATION : (kip & kip-ft)

NORTH	ORIZONTA EAST @	L TOTAL 0.0	DOWN	NORTH	-OVERTURNING EAST	т тотац @ 0.0	ORSION
61.6	-48.4	61.6	164.3	10718.3	-8821.5	10718.3	37.1
S	J	S	AV	S	J	S	h

20-4	208	-TJH	H-R1
------	-----	------	------

PL - 0

Latticed Tower Analysis (Unguyed) Processed under license at:	(c)2015	Guyn	nast	Inc.	416-7	36-7453
Sabre Towers and Poles	on :	16	mar	2020	at:	9:52:43

* Only 1 condition(s) shown in full * Some wind loads may have been derived from full-scale wind tunnel testing

LOADING CONDITION A ______

60 mph wind with no ice. Wind Azimuth: 0+

MAST LOADING ______

TYPE	ft	RADIUS	AZI	AZI	HORIZ	DOWN kip	VERTICAL ft-kip	TORSNAL ft-kip
с с с	285.0 265.0 255.0 245.0	$0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00$	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.19 1.35 1.33 1.32	4.00 2.00 2.00 2.00	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\end{array}$	$0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00$
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	290.0 285.0 285.0 280.0 260.0 240.0 240.0 220.0 205.0 205.0 200.0 200.0 180.0 160.0 140.0 140.0 120.0 120.0 100.0 120.0 100.0 80.0 80.0 80.0 80.0 200.0 20.0 20.0	0.00 0.00	$\begin{array}{c} 180.0\\ 180.0\\ 42.0\\ 42.0\\ 42.0\\ 42.0\\ 42.0\\ 42.0\\ 42.0\\ 42.0\\ 42.0\\ 38.7\\ 40.9\\ 9\\ 27.9\\ 40.9\\ 27.9\\ 40.9\\ 27.9\\ 19.2\\ 23.5\\ 19.2\\ $		0.02 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05	$\begin{array}{c} 0.03\\ 0.04\\ 0.04\\ 0.05\\ 0.05\\ 0.09\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.13\\ 0.14\\ 0.14\\ 0.14\\ 0.14\\ 0.17\\ 0.20\\ 0.23\\ 0.23\\ 0.24\\ 0.26\\ 0.26\\ 0.27\\ 0.27\\ 0.27\\ 0.27\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.02\\ 0.02\\ 0.02\\ 0.03\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.06\\ 0.01\\ 0.01\\ 0.09\\ 0.12\\ 0.15\\ 0.14\\ 0.15\\ 0.14\\ 0.15\\ 0.18\\ 0.17\\ 0.19\\ 0.21\\ 0.20\\ 0.22\\ 0.22\\ \end{array}$	0.00 0.02 0.02 0.02 0.03 0.02

MAXIMUM MAST DISPLACEMENTS:

> -----DEFLECTIONS (ft)---- --TILTS (DEG)---ELEV TWIST

				20-4208-тэн-	R1	
ft	NORTH	EAST	DOWN	NORTH	EAST	DEG
ft 290.0 285.0 275.0 265.0 255.0 255.0 235.0 235.0 235.0 235.0 225.0 225.0 225.0 225.0 225.0 220.0 215.0 220.0 215.0 20.0 215.0 20.0 215.0 20.0 215.0	NORTH 2.001 S 1.915 S 1.915 S 1.741 S 1.655 S 1.571 S 1.409 S 1.331 S 1.255 S 1.182 S 1.182 S 1.182 S 1.182 S 0.980 S 0.921 S 0.981 S 0.981 S 0.981 S 0.714 S 0.626 S 0.585 S 0.547 S 0.498 S 0.585 S 0.498 S 0.498 S 0.498 S 0.585 S 0.498 S	EAST 1.754 b 1.676 b 1.597 b 1.519 b 1.442 b 1.366 b 1.221 b 1.151 b 1.083 b 1.019 b 0.837 b 0.839 b 0.839 b 0.839 b 0.691 b 0.6647 b 0.6666 b 0.530 b 0.461 b 0.345 b 0.345 b 0.226 b 0.226 b 0.202 b 0.20	DOWN 0.020 S 0.020 S 0.019 S 0.017 S 0.015 S 0.015 S 0.015 S 0.012 S 0.011 S 0.011 S 0.011 S 0.010 S 0.010 S 0.010 S 0.009 S 0.009 S 0.008 S 0.008 S 0.007 S 0.007 S 0.006 S 0.006 S 0.005 S	20-4208-TJH- NORTH 0.992 S 0.992 S 0.988 S 0.980 S 0.965 S 0.944 S 0.841 S 0.802 S 0.841 S 0.802 S 0.773 S 0.773 S 0.773 S 0.739 S 0.700 S 0.655 S 0.655 S 0.556 S 0.556 S 0.556 S 0.556 S 0.558 S 0.550 S 0.450 S 0.371 S 0.320 S 0.320 S 0.229 S	R1 EAST 0.894 b 0.890 b 0.882 b 0.868 b 0.847 b 0.802 b 0.779 b 0.779 b 0.779 b 0.7713 b 0.687 b 0.618 b 0.6687 b 0.618 b 0.6687 b 0.618 b 0.655 b 0.618 b 0.577 b 0.577 b 0.577 b 0.577 b 0.514 b 0.486 b 0.485 b 0.412 b 0.390 b 0.343 b 0.319 b 0.319 b 0.2233 b 0.213 b 0.213 b 0.194 b	DEG -0.122 P -0.122 P -0.121 P -0.121 P -0.118 P -0.116 P -0.114 P -0.110 P -0.1107 P -0.107 P -0.100 P -0.107 P -0.100 P -0.092 P -0.063 P -0.063 P -0.063 P -0.063 P -0.063 P -0.063 P -0.053 P -0.053 P -0.053 P -0.048 P -0.035 h 0.032 h 0.022 h 0.022 h 0.020 h
120.0	0.217 S	0.181 b	0.005 S	0.208 S	0.176 b	0.018 h
110.0	0.182 S	0.151 b	0.005 S	0.188 S	0.159 b	0.015 h
100.0	0.150 S	0.124 b	0.004 S	0.169 S	0.142 b	0.013 h
90.0	0.122 S	0.101 b	0.004 S	0.150 S	0.126 b	0.011 h
80.0	0.097 S	0.080 b	0.004 S	0.132 S	0.110 b	0.010 h
70.0	0.075 S	0.061 b	0.003 S	0.114 S	0.095 b	0.009 h
60.0	0.056 S	0.045 b	0.003 S	0.097 S	0.081 b	0.007 h
50.0	0.040 S	0.032 b	0.002 S	0.080 S	0.067 b	0.006 h
40.0	0.026 S	0.021 b	0.002 s	0.063 S	0.053 b	0.005 h
30.0	0.016 S	0.013 b	0.001 d	0.047 S	0.039 b	0.003 h
20.0	0.008 S	0.007 b	0.001 d	0.031 S	0.026 b	0.002 h
10.0	0.002 S	0.002 b	0.001 d	0.015 S	0.013 b	0.001 h
0.0	0.000 A	0.000 A	0.001 d	0.000 A	0.000 A	0.000 A

MAXIMUM TENSION IN MAST MEMBERS (kip)

ELEV ft	LEGS	DIAG	HORIZ	BRACE
290.0	0.00.0	0 34 т	0.10 A	0.00 A
285.0	0.00 A	1 05 P	0.03 s	0.00 A
280.0	2 75 A	1.05 B	0.44 в	0.00 A
275.0	5 70 A	1.14 E	0.08 B	0.00 A
270.0	9.75 A	1.30 W	0.01 o	0.00 A
265.0	0.73 A	1.33 V	0.08 в	0.00 A
260.0	11.96 A	2.05 0	0.83 A	0.00 A
255.0	10.63 A	2.21 A	0.12 A	0.00 A
250.0	22.61 A	2.95 V	0.01 T	0.00 A
245.0	29.46 A	2.95 D	0.12 A	0.00 A
240.0	36.64 A	3./3 V	0.76 A	0.00 A
235.0	45.50 A	3./1 A	0.18 A	0.00 A
230.0	55.26 A	3.99 V	0.05 s	0.00 A
	64.30 A	3.95 D		

			20.120	
225.0			20-4208 0.18 A	3-ТЈН-R1 0.00 А
220.0	74.25 A	4.14 V	0.95 S	0.00 A
215.0	79.66 A	1.13 C	0.14 A	0.00 A
210.0	81.57 A	1.13 U	0.01 A	0.00 A
205.0	82.62 A	1.03 C	0.09 A	0.00 4
200.0	84.17 A	1.03 U	0.02	0.00 A
105 0	85.29 A	1.00 C	0.02 A	0.00 A
195.0	86.69 A	1.02 U	0.07 A	0.00 A
190.0	87.82 A	1.01 c	0.04 A	0.00 A
185.0	89.13 A	1.04 U	0.05 A	0.00 A
180.0	90.44 A	1.14 c	0.04 A	0.00 A
173.3	92.13 A	1.16 U	0.06 A	0.00 A
166.7	93 64 A	1 18 C	0.04 A	0.00 A
160.0	05 38 A	1.10 C	0.05 A	0.00 A
153.3	95.20 A	1.22 0	0.03 A	0.00 A
146.7	96.81 A	1.25 C	0.04 A	0.00 A
140.0	98.43 A	1.30 U	0.03 A	0.00 A
133.3	99.98 A	1.34 C	0.04 A	0.00 A
126.7	101.60 A	1.41 U	0.02 A	0.00 A
120.0	103.18 A	1.44 U	0.04 A	0.00 A
110 0	105.16 A	1.65 U	0.03 A	0.00 A
100.0	107.48 A	1.70 U	0.03	0.00 A
100.0	109.78 A	1.78 U	0.03 A	0.00 A
90.0	112.03 A	1.86 U	0.03 A	0.00 A
80.0	114.29 A	1.94 U	0.03 A	0.00 A
70.0	116.56 A	2.02 U	0.03 A	0.00 A
60.0	118.80 A	2.10 u	0.02 A	0.00 A
50.0	121 03 A	2 19 11	0.02 A	0.00 A
40.0	122.05 A		0.02 A	0.00 A
30.0	125.23 A	2.27 0	0.02 A	0.00 A
20.0	125.4/ A	2.35 0	0.00 A	0.00 A
10.0	127.66 A	2.43 U	0.02 A	0.00 A
0.0	129.82 A	2.47 U	0.00 A	0.00 A

MAXIMUM COMPRESSION IN MAST MEMBERS (kip)

ELEV ft	LEGS	DIAG	HORIZ	BRACE
290.0			-0.23 т	0.00 A
285.0	-0.30 A	-0.16 A	-0.01 A	0.00 A
280 0	-2.47 S	-1.27 S	-0 21 T	0 00 4
200.0	-5.62 S	-1.26 W	0.21	0.00 4
275.0			-0.02 T	0.00 A

	a aa -	1 26 -	20-420	0-IJH-KI
270.0	-8.98 5	-1.26 E	-0.02 g	0.00 A
265.0	-12.18 S	-1.37 D	-0.03 т	0.00 A
260.0	-16.93 S	-2.10 V	-0.67 s	0.00 A
255.0	-21.94 S	-2.44 S	-0.07 s	0.00 A
250.0	-29.86 S	-2.84 D	-0.02 в	0.00 A
245.0	-36.86 S	-3.04 V	-0.07 s	0.00 A
240.0	-45.98 s	-3.71 D	-0.64 s	0.00 A
235.0	-55.03 s	-3.98 S	-0.14 s	0.00 A
230.0	-65.89 S	-3.84 D	-0.06 A	0.00 A
225.0	-75.13 s	-4.07 V	-0.14 5	0.00 A
220.0	-85.95 S	-4.08 D	-1 22 4	0.00 A
215 0	-91.61 s	-1.31 U	-0.11 s	0.00 A
213.0	-94.33 s	-1.03 C	-0.11 3	0.00 A
210.0	-95.65 S	-1.14 U	-0.01 3	0.00 A
205.0	-97.85 S	-0.97 C	-0.07 5	0.00 A
200.0	-99.35 s	-1.09 U	-0.01 S	0.00 A
195.0	-101.34 s	-0.97 C	-0.05 S	0.00 A
190.0	-102.91 s	-1.09 U	-0.03 s	0.00 A
185.0	-104.79 s	-0.99 c	-0.04 s	0.00 A
180.0	-106.65 s	-1.23 U	-0.03 s	0.00 A
173.3	-109.13 s	-1.14 U	-0.05 s	0.00 A
166.7	-111.34 S	-1.26 U	-0.03 s	0.00 A
160.0	-113.77 S	-1.23 U	-0.04 s	0.00 A
153.3	-116 06 5	-1 34 U	-0.03 s	0.00 A
146.7	_118 50 s	_1 33 11	-0.03 s	0.00 A
140.0	_120 87 s	-1 44 11	-0.02 s	0.00 A
133.3	-120.07 5	-1.44 0	-0.03 s	0.00 A
126.7	125.37 5	-1.43 0	-0.02 s	0.00 A
120.0	-125.05 5	-1.34 0	-0.03 s	0.00 A
110.0	-129.01 5	-1.75 0	-0.02 s	0.00 A
100.0	-132.89 5	-1.82 0	-0.02 s	0.00 A
90.0	-136.85 S	-1.89 0	-0.02 s	0.00 A
80.0	-140.87 S	-1.97 0	-0.02 s	0.00 A
70.0	-144.94 S	-2.05 U	-0.02 s	0.00 A
60.0	-149.03 s	-2.13 U	-0.02 s	0.00 A
50.0	-153.17 s	-2.22 U	-0.02 s	0.00 A
40.0	-157.37 S	-2.29 U	-0.01 s	0.00 A
30.0	-161.59 S	-2.38 U	-0.01 s	0.00 A
20.0	-165.84 S	-2.45 U	0.00 s	0.00 A
10.0	-170.10 S	-2.52 U	-0.01 5	0.00 A
0.0	-174.34 s	-2.58 U	0.00 A	0.00 A
0.0			0.00 A	0.00 A

MAXIMUM INDIVIDUAL FOUNDATION LOADS: (kip)

	TOTAL			
NORTH	EAST	DOWN	UPLIFT	SHEAR
14.00 s	10.88 e	176.21 S	-130.68 A	14.00 s

MAXIMUM TOTAL LOADS ON FOUNDATION : (kip & kip-ft)

H	ORIZONTA	L	DOWN		-OVERTURNING	т	ORSION
NORTH	EAST @	TOTAL		NORTH	EAST	TOTAL @ 0.0	
21.1 S	16.7 b	21.1 S	59.4 d	3657.7 S	3022.5 b	3657.7 S	12.4 h

DRILLED STRAIGHT PIER DESIGN BY SABRE INDUSTRIES

290' S3TL Series HD1 HORVATH COMMUNICATIONS INC Barlow, KY (20-4208-TJH-R1) 03/16/20 REB

Factored Uplift (kips)	422		
Factored Download (kips)	482		
Factored Shear (kips)	39		
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Ultimate Bearing Pressure	13.825		
Bearing Φ s	0.75		
Bearing Design Strength (ksf)	10.36875		
Water Table Below Grade (ft)	24		
Bolt Circle Diameter (in)	13.25		
Top of Concrete to Top			
of Bottom Threads (in)	65.125		
Pier Diameter (ft)	6	Minimum Pier Diameter (ft)	2.44
Ht. Above Ground (ft)	0.5		
Pier Length Below Ground (ft)	39.5		
Rebar Quantity	18		
Rebar Diameter (in)	1.27		
Rebar Area (in ²)	22.80	Minimum Area of Steel (in ²)	20.36
Rebar Spacing (in)	11.07		
Tie Diameter (in)	0.5		
Tie Spacing (in)	12		
f'c (ksi)	4.5		
fy (ksi)	60		
Unit Wt. of Concrete (kcf)	0.15		
Volume of Concrete (yd ³)	41.89		
Depth at Bottom of Layer (ft)	Ult. Skin Friction (ksf)	Ult. Skin Friction (Uplift)	γ (kcf)
and a second state of the second state second	0.10	0.10	0.11

Depth at Bottom of Layer (ft)	Ult. Skin Friction (ksf)	Ult. Skin Friction (Uplift)	γ (kcf)
3	0.10	0.10	0.11
20	0.30	0.30	0.11
28	0.75	0.75	0.11
33	0.75	0.75	0.11
37	1.00	1.00	0.11
40	0.75	0.75	0.11
	a sense and a second second		
of the second			
Length to Ignore Download (ft)	0		

Length to Ignore Download (ft)

DRILLED STRAIGHT PIER DESIGN BY SABRE INDUSTRIES (CONTINUED)

Download:			
Φ _s , Download Friction	0.75		
Q _f , Skin Friction (kips)	396.3	W _s (kips)	122.9
Q _b , End Bearing Strength (kips)	390.9	W _c (kips)	169.6
Download Design Strength (kips)	590.4	Factored Net Download (kips)	538.2
Uplift (skin friction):		I	
	0.75		
Q _f , Skin Friction (kips)	396.3		
W _c (kips)	169.6		
W _w (kips)	27.3		_
Uplift Design Strength (kips)	425.3	Factored Uplift (kips)	422.0
Uplift (cone):			
W _{s.cone} (kips)	3300.3		
W _{w.cone} (kips)	162.7		
W _c (kips)	169.6		
Www (kips)	27.3		
Uplift Design Strength (kips)	2951.9	Factored Uplift (kips)	422.0
-			
Iension:	1001.0		400.0
Design Tensile Strength (kips)	1231.3	Tu (kips)	422.0
Shear:			
φV _n (kips)	374.9	V _u (kips)	39.0
$\phi V_c = \phi 2(1 + N_u / (500 A_g)) f'_c^{1/2} b_w d (kips)$	374.9		
V _s (kips)	0.0	*** $V_s max = 4 f'_c^{1/2} b_w d$ (kips)	1112.8
Maximum Spacing (in)	6.50	(Only if Shear Ties are Required)	
		*** Ref. ACI 11.5.5 & 11.5.6.3	
Anchor Bolt Pull-Out:			
$\phi P_c = \phi \lambda(2/3) f'_c''^2 (2.8 A_{SLOPE} + 4 A_{FLAT})$	613.1	P _u (kips)	422.0
Rebar Development Length (in)	36.89	Required Development Length (in)	N/A
Condition	1 is OK, 0 Fails	1	
Download	1		
Uplift	1		
Area of Steel	1		
Shear	1 1		

1

Anchor Bolt Pull-Out Interaction Diagram

MAT FOUNDATION DESIGN BY SABRE INDUSTRIES

290' S3TL Series HD1 HORVATH COMMUNICATIONS INC Barlow, KY (20-4208-TJH-R1) 03/16/20 REB

Overall Loads:			
Factored Moment (ft-kips)	10718.33		
Factored Axial (kips)	164.29		
Factored Shear (kips)	61.63		
Individual Leg Loads:		Tower eccentric from mat (ft):	= 2.25
Factored Uplift (kips)	422.00		
Factored Download (kips)	482.00		
Factored Shear (kips)	39.00		
Width of Towar (ft)	27	Allowable Rearing Prossure (ksf)	2 00
Liltimate Rearing Processo	4.00	Safety Easter	2.00
Dilinate Bearing Pressure	4.00	Salety Factor	2.00
Bearing ws	0.75		
Bearing Design Strength (ksf)	3	Max. Factored Net Bearing Pressure (ksf)	2.92
Water Table Below Grade (ft)	24		
Width of Mat (ft)	35	Minimum Mat Width (ft)	33.17
Thickness of Mat (ft)	1.5		
Depth to Bottom of Slab (ft)	6		
Bolt Circle Diameter (in)	13.25		
Top of Concrete to Top			
of Bottom Threads (in)	65.125		
Diameter of Pier (ft)	3.5	Minimum Pier Diameter (ft)	2.44
Ht. of Pier Above Ground (ft)	0.5	Equivalent Square b (ft)	3.10
Ht. of Pier Below Ground (ft)	4.5		
Quantity of Bars in Mat	61		
Bar Diameter in Mat (in)	1.128		
Area of Bars in Mat (in ²)	60.96		
Spacing of Bars in Mat (in)	6.88	Recommended Spacing (in)	6 to 12
Quantity of Bars Pier	18		
Bar Diameter in Pier (in)	Sec. 31 (1997)		
Tie Bar Diameter in Pier (in)	0.5		
Spacing of Ties (in)	11		
Area of Bars in Pier (in ²)	14.14	Minimum Pier A _s (in ²)	6.93
Spacing of Bars in Pier (in)	5.90	Recommended Spacing (in)	5 to 12
f'c (ksi)	4.5		
fy (ksi)	60		
Unit Wt. of Soil (kcf)	0.11		
Unit Wt. of Concrete (kcf)	0.15		
Volume of Concrete (yd ³)	73.40		
MAT FOUNDATION DESIGN BY SABRE INDUSTRIES (CONTINUED)

Average d (in)13.872 ϕv_c (ksi)0.228 $\phi v_c = \phi (2 + 4/\beta_c) f'_c^{1/2}$ 0.342	
$\begin{array}{c c} \phi v_{c} \ (ksi) & 0.228 & v_{u} \ (ksi) \\ \phi v_{c} = \phi (2 + 4/\beta_{c}) f'_{c}^{1/2} & 0.342 \end{array} $	
$\phi v_c = \phi (2 + 4/\beta_c) f'_c^{1/2}$ 0.342	6
$\phi v_{c} = \phi(\alpha_{s} d/b_{o} + 2) f'_{c}^{1/2}$ 0.294	
$\phi v_c = \phi 4 f'_c^{1/2}$ 0.228	
Shear perimeter, b_{0} (in) 175.53	
B _c 1	
Stability:	
Overturning Design Strength (ft-k) 14706.0 Factored Overturning Moment (ft-k) 11118 One-Way Shear:	3.9
φV _c (kips) 664.4 V _u (kips) 479.	1
Pier Design:	
Design Tensile Strength (kips) 763.4 Tu (kips) 422.	0
ϕV_n (kips) 124.1 V_u (kips) 39.0)
$\phi V_c = \phi 2(1 + N_u / (500A_g)) f'_c^{1/2} b_w d$ 62.9	
V_s (kips) 72.0 *** V_s max = 4 f'_c ^{1/2} b_w d (kips) 378.	7
Maximum Spacing (in) 11.15 (Only if Shear Ties are Required)	
Actual Hook Development (in) 12.74 Req'd Hook Development I _{dh} (in) 12.5	2
*** Ref. ACI 11.5.5 & 11.5.6.3	
Anchor Bolt Pull-Out:	
$\phi P_c = \phi \lambda (2/3) f'_c^{1/2} (2.8 A_{SLOPE} + 4 A_{FLAT})$ 208.8 P_u (kips) 422.	0
Pier Rebar Development Length (in) 51.75 Required Length of Development (in) 24.7	2
Flexure in Slab:	
φM _n (ft-kips) 3493.0 M _u (ft-kips) 3479	.0
a (in) 2.28	
Steel Ratio 0.01046	
β ₁ 0.825	
Maximum Steel Ratio (ρ _t) 0.0197	
Minimum Steel Ratio 0.0018	
Condition 1 is OK, 0 Fails	
Minimum Mat Width 1	
Maximum Soil Bearing Pressure 1	
Pier Area of Steel 1	
Pier Shear 1	
Two-Way Shear 1	
Overturning 1	
Anchor Bolt Pull-Out	
Sieer Hallo	
One-Way Shear 1	
Hook Development 1	
Minimum Mat Depth 1	

EXHIBIT D COMPETING UTILITIES, CORPORATIONS, OR PERSONS LIST

KY Public Service Commission

Master Utility Search

 Search for the utility of interest by using any single or combination of criteria.
 Utility ID

Utility

Name

 Enter Partial names to return the closest match for Utility Name and Address/City/Contact entries.

Search

Status

Active

PSC Home

	Utility ID	Utility Name	Utility Type	Class	City	State
View	4111300	2600Hz, Inc. dba ZSWITCH	Cellular	D	San Francisco	CA
View	4108300	Air Voice Wireless, LLC	Cellular	В	Bloomfield Hill	MI
View	4110650	Alliant Technologies of KY, L.L.C.	Cellular	D	Morristown	Ŋ
View	44451184	Alltel Corporation d/b/a Verizon Wireless	Cellular	A	Lisle	IL
View	4110850	AltaWorx, LLC	Cellular	D	Fairhope	AL
View	4107800	American Broadband and Telecommunications Company	Cellular	D	Toledo	он
View	4108650	AmeriMex Communications Corp.	Cellular	D	Dunedin	FL
View	4105100	AmeriVision Communications, Inc. d/b/a Affinity 4	Cellular	D	Virginia Beach	VA
View	4110700	Andrew David Balholm dba Norcell	Cellular	D	Clayton	WA
View	4105700	Assurance Wireless USA, L.P.	Cellular	Α	Atlanta	GA
View	4108600	BCN Telecom, Inc.	Cellular	D	Morristown	NJ
View	4110550	Blue Casa Mobile, LLC	Cellular	D	Santa Barbara	CA
View	4111050	BlueBird Communications, LLC	Cellular	D	New York	NY
View	4202300	Bluegrass Wireless, LLC	Cellular	Α	Elizabethtown	КY
View	4107600	Boomerang Wireless, LLC	Cellular	В	Hiawatha	IA
View	4105500	BullsEye Telecom, Inc.	Cellular	D	Southfield	MI
View	4100700	Cellco Partnership dba Verizon	Cellular	A	Basking	ΓN

Address/City/Contact Utility Type

Utility Master Information -- Search

		Wireless			Ridge	
View	4106600	Cintex Wireless, LLC	Cellular	D	Rockville	MD
View	4111150	Comcast OTR1, LLC	Cellular	С	Philadelphia	PA
View	4101900	Consumer Cellular, Incorporated	Cellular	A	Portland	OR
View	4106400	Credo Mobile, Inc.	Cellular	Α	San Francisco	CA
View	4108850	Cricket Wireless, LLC	Cellular	Α	San Antonio	ΤХ
√iew	4111500	CSC Wireless, LLC d/b/a Altice Wireless	Cellular	с	Long Island City	NY
∕iew	10640	Cumberland Cellular Partnership	Cellular	Α	Elizabethtown	KY
view	4111650	DataBytes, Inc.	Cellular	С	Rogers	AR
√iew	4111200	Dynalink Communications, Inc.	Cellular	С	Brooklyn	NY
√iew	4111800	Earthlink, LLC	Cellular	С	Atlanta	GA
√iew	4101000	East Kentucky Network, LLC dba Appalachian Wireless	Cellular	A	Ivel	KY
/iew	4002300	Easy Telephone Service Company dba Easy Wireless	Cellular	D	Ocala	FL
√iew	4109500	Enhanced Communications Group, LLC	Cellular	D	Bartlesville	ок
View	4110450	Excellus Communications, LLC	Cellular	D	Chattanooga	ΤN
liew	4105900	Flash Wireless, LLC	Cellular	С	Concord	NC
√iew	4104800	France Telecom Corporate Solutions L.L.C.	Cellular	D	Oak Hill	VA
√iew	4111750	Gabb Wireless, Inc.	Cellular	С	Palo Alto	CA
√iew	4109350	Global Connection Inc. of America	Cellular	D	Norcross	GA
√iew	4102200	Globalstar USA, LLC	Cellular	В	Covington	LA
/iew	4109600	Google North America Inc.	Cellular	A	Mountain View	CA
√iew	33350363	Granite Telecommunications, LLC	Cellular	D	Quincy	MA
View	4106000	GreatCall, Inc. d/b/a Jitterbug	Cellular	Α	San Diego	CA
View	10630	GTE Wireless of the Midwest dba Verizon Wireless	Cellular	A	Basking Ridge	LΝ
√iew	4111350	HELLO MOBILE TELECOM LLC	Cellular	D	Dania Beach	FL
/iew	4103100	i-Wireless, LLC	Cellular	В	Newport	KΥ
∕iew	4109800	IM Telecom, LLC d/b/a Infiniti Mobile	Cellular	D	Dallas	тх
View	22215360	KDDI America, Inc.	Cellular	D	Staten Island	NY
View	10872	Kentucky RSA #1 Partnership	Cellular	A	Basking Ridge	LΝ
View	10680	Kentucky RSA #3 Cellular General	Cellular	A	Elizabethtown	КY
√iew	10681	Kentucky RSA #4 Cellular General	Cellular	A	Elizabethtown	KΥ
View	4111250	Liberty Mobile Wireless, LLC	Cellular	D	Sunny Isles Beach	FL
View	4111550	Lingo Telecom of the South, LLC	Cellular	D	Atlanta	GA

Utility Master Information -- Search

View	4111400	Locus Telecommunications, LLC	Cellular	Α	Fort Lee	NJ
View	4110900	Lunar Labs, Inc.	Cellular	D	Detroit	MI
View	4107300	Lycamobile USA, Inc.	Cellular	D	Newark	NJ
View	4108800	MetroPCS Michigan, LLC	Cellular	Α	Bellevue	WA
View	4111700	Mint Mobile, LLC	Cellular	С	Costa Mesa	CA
View	4109650	Mitel Cloud Services, Inc.	Cellular	D	Mesa	AZ
View	4202400	New Cingular Wireless PCS, LLC dba AT&T Mobility, PCS	Cellular	A	San Antonio	тх
View	10900	New Par dba Verizon Wireless	Cellular	A	Basking Ridge	L
View	4000800	Nextel West Corporation	Cellular	D	Overland Park	KS
View	4001300	NPCR, Inc. dba Nextel Partners	Cellular	D	Overland Park	KS
View	4001800	OnStar, LLC	Cellular	Α	Detroit	MI
View	4110750	Onvoy Spectrum, LLC	Cellular	D	Chicago	IL
View	4109050	Patriot Mobile LLC	Cellular	D	Irving	ТΧ
View	4110250	Plintron Technologies USA LLC	Cellular	D	Bellevue	WA
View	33351182	PNG Telecommunications, Inc. dba PowerNet Global Communications	Cellular	D	Cincinnati	он
View	4107700	Puretalk Holdings, LLC	Cellular	Α	Covington	GA
View	4106700	Q Link Wireless, LLC	Cellular	Α	Dania	FL
View	4108700	Ready Wireless, LLC	Cellular	В	Hiawatha	IA
View	4110500	Republic Wireless, Inc.	Cellular	Α	Raleigh	NC
View	4106200	Rural Cellular Corporation	Cellular	A	Basking Ridge	L
View	4108550	Sage Telecom Communications, LLC dba TruConnect	Cellular	D	Los Angeles	CA
View	4109150	SelecTel, Inc. d/b/a SelecTel Wireless	Cellular	D	Fremont	NE
View	4110150	Spectrotel, Inc. d/b/a Touch Base Communications	Cellular	D	Neptune	CΝ
View	4111450	Spectrum Mobile, LLC	Cellular	С	St. Louis	MO
View	4200100	Sprint Spectrum, L.P.	Cellular	Α	Atlanta	GA
View	4200500	SprintCom, Inc.	Cellular	A	Atlanta	GA
View	4109550	Stream Communications, LLC	Cellular	D	Dallas	ТХ
View	4111600	STX Group LLC dba Twigby	Cellular	С	Murfreesboro	TN
View	4110200	T C Telephone LLC d/b/a Horizon Cellular	Cellular	D	Red Bluff	CA
View	4202200	T-Mobile Central, LLC dba T- Mobile	Cellular	A	Bellevue	WA
View	4002500	TAG Mobile, LLC	Cellular	D	Carrollton	ТΧ
View	4109700	Telecom Management, Inc. dba Pioneer Telephone	Cellular	D	Portland	ME
View	4107200	Telefonica USA, Inc.	Cellular	D	Miami	FL
View	4108900	Telrite Corporation	Cellular	D	Covington	GA
View	4108450	Tempo Telecom, LLC	Cellular	В	Atlanta	GA

Utility Master Information - Search

View	4109000	Ting, Inc.	Cellular	Α	Toronto	ON
View	4110400	Torch Wireless Corp.	Cellular	D	Jacksonville	FL
View	4103300	Touchtone Communications, Inc.	Cellular	D	Whippany	IJ
View	4104200	TracFone Wireless, Inc.	Cellular	D	Miami	FL
View	4002000	Truphone, Inc.	Cellular	D	Durham	NC
View	4110300	UVNV, Inc. d/b/a Mint Mobile	Cellular	D	Costa Mesa	CA
View	4110800	Visible Service LLC	Cellular	D	Basking Ridge	IJ
View	4106500	WiMacTel, Inc.	Cellular	D	Palo Alto	CA
View	4110950	Wing Tel Inc.	Cellular	D	New York	NY

EXHIBIT E FAA

.

Mail Processing Center Federal Aviation Administration Southwest Regional Office Obstruction Evaluation Group 10101 Hillwood Parkway Fort Worth, TX 76177 Aeronautical Study No. 2019-ASO-26576-OE

Issued Date: 10/07/2019

Network Regulatory Kentucky RSA No. 1 Partnership 5055 North Point Pkwy Alpharetta, GA 30005

**** DETERMINATION OF NO HAZARD TO AIR NAVIGATION ****

The Federal Aviation Administration has conducted an aeronautical study under the provisions of 49 U.S.C., Section 44718 and if applicable Title 14 of the Code of Federal Regulations, part 77, concerning:

Structure:	Antenna Tower EV Barlow SE - C - 2505006
Location:	Wickliffe, KY
Latitude:	37-01-45.61N NAD 83
Longitude:	89-00-07.63W
Heights:	443 feet site elevation (SE)
	299 feet above ground level (AGL)
	742 feet above mean sea level (AMSL)

This aeronautical study revealed that the structure does not exceed obstruction standards and would not be a hazard to air navigation provided the following condition(s), if any, is(are) met:

As a condition to this Determination, the structure is to be marked/lighted in accordance with FAA Advisory circular 70/7460-1 L Change 2, Obstruction Marking and Lighting, a med-dual system - Chapters 4,8(M-Dual),&12.

Any failure or malfunction that lasts more than thirty (30) minutes and affects a top light or flashing obstruction light, regardless of its position, should be reported immediately to (877) 487-6867 so a Notice to Airmen (NOTAM) can be issued. As soon as the normal operation is restored, notify the same number.

It is required that FAA Form 7460-2, Notice of Actual Construction or Alteration, be e-filed any time the project is abandoned or:

At least 10 days prior to start of construction (7460-2, Part 1) X Within 5 days after the construction reaches its greatest height (7460-2, Part 2)

This determination expires on 04/07/2021 unless:

- (a) the construction is started (not necessarily completed) and FAA Form 7460-2, Notice of Actual Construction or Alteration, is received by this office.
- (b) extended, revised, or terminated by the issuing office.

(c) the construction is subject to the licensing authority of the Federal Communications Commission (FCC) and an application for a construction permit has been filed, as required by the FCC, within 6 months of the date of this determination. In such case, the determination expires on the date prescribed by the FCC for completion of construction, or the date the FCC denies the application.

NOTE: REQUEST FOR EXTENSION OF THE EFFECTIVE PERIOD OF THIS DETERMINATION MUST BE E-FILED AT LEAST 15 DAYS PRIOR TO THE EXPIRATION DATE. AFTER RE-EVALUATION OF CURRENT OPERATIONS IN THE AREA OF THE STRUCTURE TO DETERMINE THAT NO SIGNIFICANT AERONAUTICAL CHANGES HAVE OCCURRED, YOUR DETERMINATION MAY BE ELIGIBLE FOR ONE EXTENSION OF THE EFFECTIVE PERIOD.

This determination is based, in part, on the foregoing description which includes specific coordinates, heights, frequency(ies) and power. Any changes in coordinates, heights, and frequencies or use of greater power, except those frequencies specified in the Colo Void Clause Coalition; Antenna System Co-Location; Voluntary Best Practices, effective 21 Nov 2007, will void this determination. Any future construction or alteration, including increase to heights, power, or the addition of other transmitters, requires separate notice to the FAA. This determination includes all previously filed frequencies and power for this structure.

If construction or alteration is dismantled or destroyed, you must submit notice to the FAA within 5 days after the construction or alteration is dismantled or destroyed.

This determination does include temporary construction equipment such as cranes, derricks, etc., which may be used during actual construction of the structure. However, this equipment shall not exceed the overall heights as indicated above. Equipment which has a height greater than the studied structure requires separate notice to the FAA.

This determination concerns the effect of this structure on the safe and efficient use of navigable airspace by aircraft and does not relieve the sponsor of compliance responsibilities relating to any law, ordinance, or regulation of any Federal, State, or local government body.

A copy of this determination will be forwarded to the Federal Communications Commission (FCC) because the structure is subject to their licensing authority.

If we can be of further assistance, please contact our office at (718) 553-2611, or angelique.eersteling@faa.gov. On any future correspondence concerning this matter, please refer to Aeronautical Study Number 2019-ASO-26576-OE.

(DNE)

Signature Control No: 415690004-419042715 Angelique Eersteling Technician

Attachment(s) Frequency Data Map(s)

cc: FCC

Frequency Data for ASN 2019-ASO-26576-OE

FREQUENCY FREQUENCY UNIT ERP UNIT 6 7 GHz 55 dBW 6 7 GHz 42 dBW 10 11.7 GHz 55 dBW 10 11.7 GHz 42 dBW 10 11.7 GHz 42 dBW 17.7 19.7 GHz 42 dBW 21.2 23.6 GHz 42 dBW 21.2 23.6 GHz 42 dBW 614 698 MHz 1000 W 66 824 MHz 1000 W 806 901 MHz 500 W 896 901 MHz 500 W 901 902 MHz </th <th>LOW</th> <th>HIGH</th> <th>FREQUENCY</th> <th></th> <th>ERP</th>	LOW	HIGH	FREQUENCY		ERP
6 7 GHz 55 dBW 6 7 GHz 42 dBW 10 11.7 GHz 55 dBW 10 11.7 GHz 42 dBW 10 11.7 GHz 42 dBW 17.7 19.7 GHz 55 dBW 21.2 23.6 GHz 55 dBW 21.2 23.6 GHz 42 dBW 614 698 MHz 2000 W 614 698 MHz 1000 W 698 806 MHz 1000 W 806 824 MHz 500 W 806 901 MHz 500 W 851 866 MHz 500 W 851 866 MHz 500 W 859 894 MHz 500 W 901 902 MHz 3500 W 931 932 MHz 3500	FREQUENCY	FREQUENCY	UNIT	ERP	
6 7 $CH2$ 35 dBW 6 7 GHz 42 dBW 10 11.7 GHz 55 dBW 10 11.7 GHz 42 dBW 17.7 19.7 GHz 55 dBW 21.2 23.6 GHz 55 dBW 21.2 23.6 GHz 42 dBW 644 698 MHz 2000 W 644 698 MHz 1000 W 66 824 MHz 1000 W 806 806 MHz 500 W 806 901 MHz 500 W 806 901 MHz 500 W 869 894 MHz 500 W 869 894 MHz 3500 W 929 932 MHz 3500 W 931 932 MHz 3500 W 931 932 932.5	<i>(</i>	7	<u>ou</u>		IDIV
67 CHZ 42 dBW 1011.7 GHz 55 dBW 1011.7 GHz 42 dBW 17.719.7 GHz 55 dBW 21.223.6 GHz 55 dBW 21.223.6 GHz 42 dBW 614698 MHz 2000 W 614698 MHz 1000 W 66824 MHz 1000 W 806824 MHz 500 W 806901 MHz 500 W 806901 MHz 500 W 806901 MHz 500 W 811866 MHz 500 W 824849 MHz 500 W 8351866 MHz 500 W 896901 MHz 500 W 930931 MHz 3500 W 931932 MHz 177 dBW 935940 MHz 1000 W 940941 MHz 500 W 940941 MHz 500 W	6	7	GHZ	55 42	dBW
10 11.7 GHz 55 dBW 10 11.7 GHz 42 dBW 17.7 19.7 GHz 55 dBW 17.7 19.7 GHz 42 dBW 21.2 23.6 GHz 55 dBW 21.2 23.6 GHz 42 dBW 614 698 MHz 2000 W 614 698 MHz 1000 W 668 806 MHz 1000 W 698 806 MHz 1000 W 806 824 MHz 500 W 806 901 MHz 500 W 886 901 MHz 500 W 896 901 MHz 500 W 91 902 MHz 7 W 929 932 MHz 3500 W 930 931 MHz	6	7	GHz	42	dBW
10 11.7 GHz 42 dBW 17.7 19.7 GHz 55 dBW 17.7 19.7 GHz 42 dBW 21.2 23.6 GHz 42 dBW 21.2 23.6 GHz 42 dBW 614 698 MHz 2000 W 614 698 MHz 1000 W 698 806 MHz 1000 W 806 824 MHz 500 W 806 901 MHz 500 W 806 901 MHz 500 W 896 901 MHz 500 W 869 894 MHz 500 W 901 902 MHz 7 W 929 932 MHz 3500 W 931 932 MHz 3500 W 931 932 MHz 17 dBW 935 940 MHz 1000 W 940 941 MHz 500 W 940 941 MHz 500 W	10	11.7	GHz	55	dBW
17.7 19.7 GHz 55 dBW 17.7 19.7 GHz 42 dBW 21.2 23.6 GHz 55 dBW 21.2 23.6 GHz 42 dBW 614 698 MHz 2000 W 614 698 MHz 1000 W 698 806 MHz 1000 W 606 824 MHz 500 W 806 901 MHz 500 W 806 901 MHz 500 W 869 894 MHz 500 W 869 894 MHz 500 W 869 901 MHz 500 W 901 902 MHz 7 W 929 932 MHz 3500 W 930 931 MHz 3500 W 931 932 MHz 17 dBW 935 940 MHz 1000 W	10	11.7	GHz	42	dBW
17.7 19.7 GHz 42 dBW 21.2 23.6 GHz 55 dBW 21.2 23.6 GHz 42 dBW 614 698 MHz 2000 W 614 698 MHz 1000 W 614 698 MHz 1000 W 698 806 MHz 1000 W 806 824 MHz 500 W 806 901 MHz 500 W 824 849 MHz 500 W 851 866 MHz 500 W 859 894 MHz 500 W 896 901 MHz 500 W 901 902 MHz 7 W 929 932 MHz 3500 W 930 931 MHz 3500 W 931 932 MHz 17 dBW 935 940 MHz 1000 W	17.7	19.7	GHz	55	dBW
21.2 23.6 GHz 55 dBW 21.2 23.6 GHz 42 dBW 614 698 MHz 2000 W 614 698 MHz 1000 W 698 806 MHz 1000 W 806 824 MHz 500 W 806 901 MHz 500 W 806 901 MHz 500 W 824 849 MHz 500 W 851 866 MHz 500 W 869 894 MHz 500 W 901 902 MHz 7 W 929 932 MHz 3500 W 930 931 MHz 3500 W 931 932 MHz 17 dBW 935 940 MHz 1000 W 940 941 MHz 3500 W 940 941 MHz 500 W	17.7	19.7	GHz	42	dBW
21.2 23.6 GHz 42 dBW 614 698 MHz 2000 W 614 698 MHz 1000 W 698 806 MHz 1000 W 698 806 MHz 1000 W 806 824 MHz 500 W 806 901 MHz 500 W 824 849 MHz 500 W 851 866 MHz 500 W 869 894 MHz 500 W 896 901 MHz 500 W 901 902 MHz 7 W 929 932 MHz 3500 W 930 931 MHz 3500 W 931 932 MHz 17 dBW 935 940 MHz 1000 W 935 940 MHz 3500 W 935 940 MHz 3500 W <tr< td=""><td>21.2</td><td>23.6</td><td>GHz</td><td>55</td><td>dBW</td></tr<>	21.2	23.6	GHz	55	dBW
614 698 MHz 2000 W 614 698 MHz 1000 W 698 806 MHz 1000 W 806 824 MHz 500 W 806 901 MHz 500 W 824 849 MHz 500 W 851 866 MHz 500 W 851 866 MHz 500 W 869 894 MHz 500 W 901 902 MHz 500 W 929 932 MHz 3500 W 930 931 MHz 3500 W 931 932 MHz 17 dBW 935 940 MHz 1000 W 940 941 MHz 3500 W 1670 1675 MHz 500 W	21.2	23.6	GHz	42	dBW
614 698 MHz 1000 W 698 806 MHz 1000 W 806 824 MHz 500 W 806 901 MHz 500 W 824 849 MHz 500 W 851 866 MHz 500 W 869 894 MHz 500 W 869 894 MHz 500 W 901 902 MHz 500 W 930 931 MHz 3500 W 931 932 MHz 3500 W 935 940 MHz 1000 W 940 941 MHz 3500 W 940 941 MHz 500 W 940 941 MHz 500 W <td>614</td> <td>698</td> <td>MHz</td> <td>2000</td> <td>W</td>	614	698	MHz	2000	W
698 806 MHz 1000 W 806 824 MHz 500 W 806 901 MHz 500 W 824 849 MHz 500 W 851 866 MHz 500 W 869 894 MHz 500 W 896 901 MHz 500 W 901 902 MHz 7 W 929 932 MHz 3500 W 930 931 MHz 3500 W 931 932 MHz 17 dBW 935 940 MHz 1000 W 940 941 MHz 3500 W 1670 1675 MHz 500 W	614	698	MHz	1000	W
806 824 MHz 500 W 806 901 MHz 500 W 824 849 MHz 500 W 851 866 MHz 500 W 869 894 MHz 500 W 866 901 MHz 500 W 869 894 MHz 500 W 901 902 MHz 7 W 929 932 MHz 3500 W 930 931 MHz 3500 W 931 932 MHz 17 dBW 935 940 MHz 1000 W 940 941 MHz 3500 W 1670 1675 MHz 500 W	698	806	MHz	1000	W
806 901 MHz 500 W 824 849 MHz 500 W 851 866 MHz 500 W 869 894 MHz 500 W 896 901 MHz 500 W 901 902 MHz 7 W 929 932 MHz 3500 W 930 931 MHz 3500 W 931 932 MHz 3500 W 935 940 MHz 1000 W 940 941 MHz 3500 W 1670 1675 MHz 500 W	806	824	MHz	500	W
824 849 MHz 500 W 851 866 MHz 500 W 869 894 MHz 500 W 896 901 MHz 500 W 901 902 MHz 7 W 929 932 MHz 3500 W 930 931 MHz 3500 W 932 932 MHz 17 dBW 935 940 MHz 1000 W 940 941 MHz 3500 W 1670 1675 MHz 500 W	806	901	MHz	500	W
851 866 MHz 500 W 869 894 MHz 500 W 896 901 MHz 500 W 901 902 MHz 7 W 929 932 MHz 3500 W 930 931 MHz 3500 W 931 932 MHz 17 dBW 935 940 MHz 1000 W 940 941 MHz 3500 W 1670 1675 MHz 500 W	824	849	MHz	500	W
869 894 MHz 500 W 896 901 MHz 500 W 901 902 MHz 7 W 929 932 MHz 3500 W 930 931 MHz 3500 W 931 932 MHz 3500 W 935 940 MHz 1000 W 940 941 MHz 3500 W 1670 1675 MHz 500 W	851	866	MHz	500	W
896 901 MHz 500 W 901 902 MHz 7 W 929 932 MHz 3500 W 930 931 MHz 3500 W 931 932 MHz 3500 W 931 932 MHz 3500 W 932 932.5 MHz 17 dBW 935 940 MHz 1000 W 940 941 MHz 3500 W 1670 1675 MHz 500 W	869	894	MHz	500	W
901 902 MHz 7 W 929 932 MHz 3500 W 930 931 MHz 3500 W 931 932 MHz 3500 W 931 932 MHz 3500 W 932 932.5 MHz 17 dBW 935 940 MHz 1000 W 940 941 MHz 3500 W 1670 1675 MHz 500 W	896	901	MHz	500	W
929 932 MHz 3500 W 930 931 MHz 3500 W 931 932 MHz 3500 W 931 932 MHz 3500 W 932 932.5 MHz 17 dBW 935 940 MHz 1000 W 940 941 MHz 3500 W 1670 1675 MHz 500 W	901	902	MHz	7	W
930 931 MHz 3500 W 931 932 MHz 3500 W 932 932.5 MHz 17 dBW 935 940 MHz 1000 W 940 941 MHz 3500 W 1670 1675 MHz 500 W	929	932	MHz	3500	W
931 932 MHz 3500 W 932 932.5 MHz 17 dBW 935 940 MHz 1000 W 940 941 MHz 3500 W 1670 1675 MHz 500 W	930	931	MHz	3500	W
932 932.5 MHz 17 dBW 935 940 MHz 1000 W 940 941 MHz 3500 W 1670 1675 MHz 500 W	931	932	MHz	3500	W
935 940 MHz 1000 W 940 941 MHz 3500 W 1670 1675 MHz 500 W	932	932.5	MHz	17	dBW
940 941 MHz 3500 W 1670 1675 MHz 500 W 1710 1755 MHz 500 W	935	940	MHz	1000	W
1670 1675 MHz 500 W	940	941	MHz	3500	W
	1670	1675	MHz	500	W
1/10 1/55 MHz 500 W	1710	1755	MHz	500	W
1850 1990 MHz 1640 W	1850	1990	MHz	1640	W
1850 1910 MHz 1640 W	1850	1910	MHz	1640	W
1930 1990 MHz 1640 W	1930	1990	MHz	1640	W
1990 2025 MHz 500 W	1990	2025	MHz	500	W
2110 2200 MHz 500 W	2110	2200	MHz	500	W
2305 2360 MHz 2000 W	2305	2360	MHz	2000	W
2305 2310 MHz 2000 W	2305	2310	MHz	2000	W
2345 2360 MHz 2000 W	2345	2360	MHz	2000	W
2496 2690 MHz 500 W	2496	2690	MHz	500	W
27500 28350 MHz 75 dBm	27500	28350	MHz	75	dBm
29100 29250 MHz 75 dBm	29100	29250	MHz	75	dBm
31000 31225 MHz 75 dBm	31000	31225	MH7	75	dBm
31225 MHz 75 dBm	31225	31300	MH7	75	dBm
38600 40000 MHz 75 dBm	38600	40000	MH7	75	dBm

TOPO Map for ASN 2019-ASO-26576-OE

EXHIBIT F KENTUCKY AIRPORT ZONING COMMISSION

KENTUCKY AIRPORT ZONING COMMISSION

MATTHEW BEVIN Governor 421 Buttermilk Pike Covington, KY 41017 www.transportation.ky.gov 859-341-2700

October 24, 2019

APPROVAL OF APPLICATION

APPLICANT: Verizon Wireless (2) Verizon Wireless Tennessee 5055 North Point Pkwy, NP2NE Alpharetta, GA 30022

SUBJECT: AS-004-PAH-2019-107

STRUCTURE:Antenna TowerLOCATION:Wickliffe, KYCOORDINATES:37° 1' 45.61" N / 89° 00' 7.63" WHEIGHT:299' AGL/742' AMSL

The Kentucky Airport Zoning Commission has approved your application for a permit to construct 299'AGL/ 742'AMSL Antenna Tower near Wickliffe, KY 37° 1' 45.61" N / 89° 00' 7.63" W.

This permit is valid for a period of 18 Month(s) from its date of issuance. If construction is not completed within said 18-Month period, this permit shall lapse and be void, and no work shall be performed without the issuance of a new permit.

Medium Dual Obstruction Lighting is required in accordance with 602 KAR 50:100.

John Houlihan

John Houlihan Administrator

An Equal Opportunity Employer M/F/D

EXHIBIT G GEOTECHNICAL REPORT

Date: February 28, 2020

GEOTECHNICAL REPORT

EV BARLOW SE 37° 01' 45.61" N 89° 00' 07.63" W

Wayside Inn Rd, Wickliffe, KY 42087

Prepared For:

Prepared By:

11490 Bluegrass Parkway | Louisville, Kentucky 40299 | 502.437.5252 POWER OF DESIGN GROUP, LLC

February 28, 2020

Mr. Mike Rerecich Verizon Wireless 2421 Holloway Road Louisville, KY 40299

Re: Geotechnical Report – **PROPOSED 290' SELF-SUPPORT TOWER w/ 5' LIGHTNING ARRESTOR** Site Name: **EV BARLOW SE SE** Site Address: Wayside Inn Rd, Wickliffe, Ballard County, Kentucky Coordinates: N37^{*} 01' 45.61", W89^{*} 00' 07.63" POD Project No. 19-42119

Dear Mr. Rerecich:

Attached is our geotechnical engineering report for the referenced project. This report contains our findings, an engineering interpretation of these findings with respect to the available project characteristics, and recommendations to aid design and construction of the tower and equipment support foundations.

We appreciate the opportunity to be of service to you on this project. If you have any questions regarding this report, please contact our office.

Cordially,

Max Patters

Mark Patterson, P.E. Project Engineer License No.: KY 16300

Copies submitted:

(3) Mr. Mike Rerecich

Page

-

LETTER OF TRANSMITTAL

TABLE OF CONTENTS

1.	PUR	RPOSE AND SCOPE1
2.	PRC	DJECT CHARACTERISTICS
3.	SUB	SURFACE CONDITIONS1
4.	FOU	JNDATION DESIGN RECOMMENDATIONS2
	4.1.	PROPOSED TOWER
	4.1.	1. Drilled Piers2
	4.1.	2. Mat Foundation
	4.2.	EQUIPMENT PLATFORM
	4.3.	EQUIPMENT SLAB
	4.4.	EQUIPMENT BUILDING
	4.5.	DRAINAGE AND GROUNDWATER CONSIDERATIONS
5.	GEN	IERAL CONSTRUCTION PROCEDURES AND RECOMMENDATIONS
	5.1	Drilled Piers
	5.2	FILL COMPACTION
	5.3	CONSTRUCTION DEWATERING
6	FIEL	D INVESTIGATION
7	WA	RRANTY AND LIMITATIONS OF STUDY

APPENDIX

BORING LOCATION PLAN BORING LOGS SOIL SAMPLE CLASSIFICATION

EV BARLOW SE February 28, 2020

Geotechnical Report **PROPOSED 290' SELF-SUPPORT TOWER w/ 5' LIGHTNING ARRESTOR** Site Name: **EV BARLOW SE** Wayside Inn Rd, Wickliffe, Ballard County, Kentucky N37° 01' 45.61", W89° 00' 07.63"

1. PURPOSE AND SCOPE

The purpose of this study was to determine the general subsurface conditions at the site of the proposed tower by drilling three borings and to evaluate this data with respect to foundation concept and design for the proposed tower. Also included is an evaluation of the site with respect to potential construction problems and recommendations dealing with quality control during construction.

2. PROJECT CHARACTERISTICS

Verizon is proposing to construct a self-support tower and either an equipment shelter, slab or platform at N37[°] 01' 45.61", W89[°] 00' 07.63", Wayside Inn Rd, Wickliffe, Ballard County, Kentucky. The site is located in a grass covered farm field in a rural area southeast of Barlow. The proposed lease area will be 10,000 square feet and will be accessed by a short access road running north off Wayside Inn Road. The proposed elevation at the tower location is about EL 443 and there is about 5-feet of change in elevation across the proposed lease area. The proposed tower location is shown on the Boring Location Plan in the Appendix.

3. SUBSURFACE CONDITIONS

The subsurface conditions were explored by drilling three test borings near the base of the proposed tower. The Geotechnical Soil Test Boring Logs, which are included in the Appendix, describes the materials and conditions encountered. A sheet defining the terms and symbols used on the boring logs is also included in the Appendix. The general subsurface conditions disclosed by the test borings are discussed in the following paragraphs.

According to the Kentucky Geological Survey, Kentucky Geologic Map Information Services, the site is underlain by the Quaternary age Loess silt.

The borings encountered about 6 inches of topsoil at the existing ground surface. Below the topsoil, the borings encountered clayey silt (ML) to the scheduled termination depths of 20 feet in B-2 and B-3 and to about 18.5 feet in B-1. The SPT N-values in the silt were between 3 and 8 blows per foot (bpf) generally indicating a soft to medium stiff consistency. At about 18.5 feet in B-1, silty clay (CL) of low plasticity was encountered with SPT N-values between 15 and 100 bpf generally indicating a stiff to hard consistency that was inflated by a significant about of rock fragments in many of the samples. A layer of dense, silty fine sand (SP) was encountered between about 33.5 feet and 37 feet

before returning to the silty clay at about 37 feet to the scheduled termination depth of 40 feet.

Groundwater was noted on the drilling equipment in B-1 at about 28 feet and at 24 feet at completion. Groundwater was not encountered in Borings B-2 and B-3. It must be noted, however, that short-term water readings in test borings are not necessarily a reliable indication of the actual groundwater level. Furthermore, it must be emphasized that the groundwater level is not stationary but will fluctuate seasonally.

Based on the limited subsurface conditions encountered at the site and using Table 1615.1.1 of the 2018 Kentucky Building Code, the site class is considered "C". Seismic design requirements for telecommunication towers are given in section 1622 of the code. A detailed seismic study was beyond the scope of this report.

4. FOUNDATION DESIGN RECOMMENDATIONS

The following design recommendations are based on the previously described project information, the subsurface conditions encountered in our borings, the results of our laboratory testing, empirical correlations for the soil types encountered, our analyses, and our experience. If there is any change in the project criteria or structure location, you should retain us to review our recommendations so that we can determine if any modifications are required. The findings of such a review can then be presented in a supplemental report or addendum.

We recommend that the geotechnical engineer be retained to review the near-final project plans and specifications, pertaining to the geotechnical aspects of the project, prior to bidding and construction. We recommend this review to check that our assumptions and evaluations are appropriate based on the current project information provided to us, and to check that our foundation and earthwork recommendations were properly interpreted and implemented.

4.1. Proposed Tower

Our findings indicate that the proposed self-support tower can be supported on drilled piers or on a common mat foundation.

4.1.1. Drilled Piers

The following table summarizes the recommended values for use in analyzing lateral and frictional resistance for the various strata encountered at the test boring. It is important to note that these values are estimated based on the

Geotechnical Report

standard penetration test results and soil types and were not directly measured. The all values provided are ultimate values and appropriate factors of safety should be used in conjunction with these values. If the piers will bear deeper than about 40 feet, a deeper boring should be drilled to determine the nature of the deeper material.

Depth Below Ground Surface, feet	0-3	3 - 20	20 - 28	28-33	33-37	37-40
Ultimate Bearing Pressure (psf)		5,500	13,825	13,825	24,180	13,825
C Undrained Shear Strength, psf	500	1000	2,500	2,500	0	2,500
Ø Angle of Internal Friction degrees	0	0	0	0	32°	0
Total Unit Weight, pcf	110	120	120	130	120	130
Soil Modulus Parameter k, pci	30	500	750	750	90	750
Passive Soil Pressure,		675 +	1,675 +	1,675 +	52024	1,675 +
psf/one foot of depth		40(D-3)	40(D-20)	43(D-28)	(D²)	43(D-37)
Side Friction, psf	100	300	750	750	1000	750

Note:	D = Depth below	ground surface	(in feet) to	point at which the	passive	pressure is calculated
-------	-----------------	----------------	--------------	--------------------	---------	------------------------

It is important that the drilled piers be installed by an experienced, competent drilled pier contractor who will be responsible for properly installing the piers in accordance with industry standards and generally accepted methods, without causing deterioration of the subgrade. The recommendations contained herein relate only to the soil-pier interaction and do not account for the structural design of the piers.

4.1.2. Mat Foundation

The tower could be supported on a common mat foundation bearing on the silty soils at least 3 feet in depth can be designed using a net allowable bearing pressure of 2,000 pounds per square foot may be used. This value may be increased by 30 percent for the maximum edge pressure under transient loads. The friction value can be increased to 0.30 between the concrete and silty soils. The passive pressures given for the drilled pier foundation may be used to resist lateral forces.

It is important that the mat be designed with an adequate factor of safety with regard to overturning under the maximum design wind load.

4.2. Equipment Platform

An equipment platform may be supported on shallow piers bearing in the natural clay and designed for a net allowable soil pressure of 1,500 pounds per square foot. The piers should bear at a depth of at least 24 inches to minimize the effects of frost action. All existing topsoil or soft natural soil should be removed beneath footings.

4.3. Equipment Slab

A concrete slab supporting the equipment must be supported on at least 6-inch layer of relatively clean granular material such as gravel or crushed stone containing not more than 10 percent material that passes through a No. 4 sieve. This is to help distribute concentrated loads and equalize moisture conditions beneath the slab. Provided that a minimum of 6 in. of granular material is placed below the slab, a modulus of subgrade reaction (k) of 85 lbs/cu.in. can be used for design of the slab. All existing topsoil or soft natural soil should be removed beneath crushed stone layer.

4.4. Equipment Building

If an equipment building support on a slab is chosen in place of the equipment platform, it may be supported on shallow spread footings bearing in the silty soil and designed for a net allowable soil pressure of 1,500 pounds per square foot.

The footings should be at least ten inches wide. If the footings bear on soil, they should bear at a depth of at least 24 inches to minimize the effects of frost action. All existing topsoil or soft natural soil should be removed beneath footings.

Floor slabs must be supported on at least 4-inch layer of relatively clean granular material such as gravel or crushed stone containing not more than 10 percent material that passes through a No. 4 sieve. This is to help distribute concentrated loads and equalize moisture conditions beneath the slab. Provided that a minimum of 4 in. of granular material is placed below the slab, a modulus of subgrade reaction (k) of 85 lbs/cu.in. can be used for design of the floor slabs.

4

EV BARLOW SE February 28, 2020

4.5. Drainage and Groundwater Considerations

Good site drainage must be provided. Surface run-off water should be drained away from the tower and platform and not allowed to pond.

At the time of this investigation, groundwater was encountered has high as 24 feet. Any seepage should be able to be pumped with sumps. It is important that all foundation concrete be placed the same day the excavation is made.

5. GENERAL CONSTRUCTION PROCEDURES AND RECOMMENDATIONS

It is possible that variations in subsurface conditions will be encountered during construction. Although only minor variations that can be readily evaluated and adjusted for during construction are anticipated, it is recommended the geotechnical engineer, or a qualified representative be retained to perform continuous inspection and review during construction of the soils-related phases of the work. This will permit correlation between the test boring data and the actual soil conditions encountered during construction.

5.1 Drilled Piers

The following recommendations are recommended for drilled pier construction:

- Clean the foundation bearing area so it is nearly level or suitably benched and is free of ponded water or loose material.
- Make provisions for ground water removal from the drilled shaft excavation. Groundwater was encountered has high has 24 feet during the soil drilling and some significant seepage may be encountered. The drilled pier contractor should have pumps on hand to remove water from the drilled pier.
- Specify concrete slumps ranging from 4 to 7 inches for the drilled shaft construction. These slumps are recommended to fill irregularities along the sides and bottom of the drilled hole, displace water as it is placed, and permit placement of reinforcing cages into the fluid concrete.
- Retain the geotechnical engineer to observe foundation excavations after the bottom of the hole is leveled, cleaned of any mud or extraneous material, and dewatered.
- Install a temporary protective steel casing to prevent side wall collapse, prevent excessive mud and water intrusion in the drilled shaft.
- The protective steel casing may be extracted as the concrete is placed provided a sufficient head of concrete is maintained inside the steel casing to prevent soil or water intrusion into the newly

EV BARLOW SE February 28, 2020

placed concrete.

Direct the concrete placement into the drilled hole through a centering chute to reduce side flow or segregation.

5.2 Fill Compaction

All engineered fill placed adjacent to and above the tower foundation should be compacted to a dry density of at least 95 percent of the standard Proctor maximum dry density (ASTM D-698). This minimum compaction requirement should be increased to 98 percent for any fill placed below the tower foundation bearing elevation. Any fill placed beneath the tower foundation should be limited to well-graded sand and gravel or crushed stone. The compaction should be accomplished by placing the fill in about 8 inch (or less) loose lifts and mechanically compacting each lift to at least the specified minimum dry density. Field density tests should be performed on each lift as necessary to ensure that adequate moisture conditioning and compaction is being achieved.

Compaction by flooding is not considered acceptable. This method will generally not achieve the desired compaction and the large quantities of water will tend to soften the foundation soils.

5.3 Construction Dewatering

At the time of this investigation, groundwater was encountered at about 24 feet. Any seepage should be able to be pumped with sumps.

If groundwater is encountered in the drilled pier excavations, it may be difficult to dewater since pumping directly from the excavations could cause a deterioration of the bottom of the excavation. If the pier excavations are not dewatered, concrete should be placed by the termie method.

6 FIELD INVESTIGATION

Three soil test borings were drilled near the base of the proposed tower. Split-spoon samples were obtained by the Standard Penetration Test (SPT) procedure (ASTM D1586) in all test borings. The borings were terminated at the scheduled depths of 20 and 40 feet. The split-spoon samples were inspected and visually classified by a geotechnical engineer. Representative portions of the soil samples were sealed in glass jars and returned to our laboratory. Pocket Penetrometer tests, moisture contents and Atterberg limits were performed and noted on the boring logs.

6

EV BARLOW SE February 28, 2020

The boring logs are included in the Appendix along with a sheet defining the terms and symbols used on the logs and an explanation of the Standard Penetration Test (SPT) procedure. The logs present visual descriptions of the soil strata encountered, Unified System soil classifications, groundwater observations, sampling information, laboratory test results, and other pertinent field data and observations.

7 WARRANTY AND LIMITATIONS OF STUDY

Our professional services have been performed, our findings obtained, and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties, either express or implied. POD Group is not responsible for the independent conclusions, opinions or recommendations made by others based on the field exploration and laboratory test data presented in this report.

A geotechnical study is inherently limited since the engineering recommendations are developed from information obtained from test borings, which depict subsurface conditions only at the specific locations, times and depths shown on the logs. Soil conditions at other locations may differ from those encountered in the test borings, and the passage of time may cause the soil conditions to change from those described in this report.

The nature and extent of variation and change in the subsurface conditions at the site may not become evident until the course of construction. Construction monitoring by the geotechnical engineer or a representative is therefore considered necessary to verify the subsurface conditions and to check that the soils connected construction phases are properly completed. If significant variations or changes are in evidence, it may then be necessary to reevaluate the recommendations of this report. Furthermore, if the project characteristics are altered significantly from those discussed in this report, if the project information contained in this report is incorrect, or if additional information becomes available, a review must be made by this office to determine if any modification in the recommendations will be required.

APPENDIX

BORING LOCATION PLAN BORING LOGS SOIL SAMPLE CLASSIFICATION

		F	POD					B	Sor	ing I	Log	l.	Page 1 of 1				
Pro	ject:	EV Ba	Irlow SE		-					City,	Stat	e		Wickli	ffe, KY		
Method:	<u> </u>	H.S.A.	Boring Date:		18-Feb-20 Location: Propose								Towe				
nside Diam	eter: 2	1/4"	Drill Rig Type:			66	5 DT			Hamn	ner T	ype: Au	uto				
Groundwa	ter: Gr	oundwater not	ted at 28' on rods and 24	4' at o	completio	n				Weat	ner:		1f				
Driller: Co	mmon	wealth Drilli	ng Co		bout 6 inches of topsoil was encountered at the ground surfa											1	
From (ft)	To (ft)	Mat	erial Description		Sample Dept (ft)	Sample Type		6-inch	increment	Recovery (in	SPT-N value	Rock Quality (RQD,%)	Atterberg Limits	Moisture Content (%)	% Fines (clay & silt)	Unconfined Compressive	
(ft) (ft) Mate 0.5 18.5 CLAYEY SILT (3.5 - medium stiff		(ML) - soft, moist, brown		1-2.5	ss	1,	1,	2	18	3,			28%		0.0		
				3.5 -5	SS	3,	3,	4	6	7,			28%		3.3		
					6-7.5	SS	З,	3,	3	16	6,			27%		1.3	
	8.5	- very moist			8.5-10	SS	2,	З,	3	16	6,			27%		0.5	
					13.5-15	SS	3,	3,	5	12	8,			23%		0.5	
18.5 33.5		SILTY CLAY (CL with rock, ch		18.5-20	SS	5,	7,	10	10	17,			18%		4.5		
	23.5	- hard, moist w	ith gravel, sand and chert		23.5-25	SS	28,	50,	50	12	100,			12%			
					28.5-30	SS	26,	49,	50	13	99,			13%			
33.5	37.0	SILTY fine SAN	D (SP) - dense, light orange		33.5-35	SS	18,	24,	31	13	55,			19%			
37.0	40.0	SILTY CLAY (CI	.) - stiff, very light gray and brange brown		38.5-40	SS	4,	7,	8	9	15,			24%			
		Boring T	erminated at 40 feet														
37.0	40.0	SILTY CLAY (Ci	.) - stiff, very light gray and brange brown erminated at 40 feet		38.5-40	SS	4,	7,	8	9	15,			24%			

	- Docu)			Boring Log						Boring: B-2 Page 1 of 1				
	Pro	ject:	EV B	arlow SE				City, State Wickli								iffe, KY		
Meti	hod:		H.S.A.	Boring Date:		18-Feb	-20				Locatio	on: P	roposed	d Towe	r			
Insid	e Diam	eter: 2	1/4"	Drill Rig Type:		66 DT Hammer Type: Au							uto					
Grou	Indwa	ter: DR	/								Weat	ner:	h			- ·		
Drill	er: Co	mmon	wealth Drill		e: Abo					senc			ne grou					
	From To (ft) (ft) Material		terial Description		Sample Dept (ft)	Sample Type	ā	6-inch	increment	Recovery (in	SPT-N value	Rock Quality (RQD,%)	Atterberg Limits	Moisture Content (%)	% Fines (clay & silt)	Unconfined Compressive Compressive		
	0.5	20.0	CLAYEY SILT	CLAYEY SILT (ML) - soft, moist, brown edium stiff, brown-gray		1-2.5	SS	0,	1,	3	13	4,			27%		1.0	
		3.5	- medium stiff,			3.5 -5	ss	2,	3,	3	14	6,			24%		2.0	
		6.0	- light brown			6-7.5	ss	з,	3,	4	18	7,			25%		1.0	
		8.5	- soft, very mo	ist		8.5-10	SS	2,	2,	2	15	4,			26%		0.5	
		13.5	- medium stiff	medium stiff red with rock and chert fragments		13.5-15	SS	2,	3,	5	16	8,			23%		1.0	
		17.0	- red with rock			18.5-20	SS	,	12	17	12	20			149/		20	
			Boring	Terminated at 20 feet				1,	12,	17	12	25,			14%		2.0	
																	1. 	
													•					

		POD Boring Log					Boring: B-3 Page 1 of 1										
POWER OF DESIGN Project: EV Barlow SE				N					City, State			Wickliffe, KY					
Method: H.S.A. Boring Date: Inside Diameter: 2 1/4" Drill Rig Type: Groundwater: DRY			нсл	1.S.A. Boring Date: 4" Drill Rig Type:		18-Feb-20 66 DT				Location: Proposed Tower Hammer Type: Auto							
			L/4"														
									Weather:								
Driller: (Com	mon	wealth Dri	ling Co	ote: Abou	it 6 inche	s of t	opso	oil wa	is end	ountere	d at t	he grou	nd surfa	ce		=
Fro	om	To (ft)	Ma	sterial Description		ample Depth ft)	ample Type		s-inch	increment	(in)	PT-N value	kock Quality RQD,%)	\tterberg .imits	Aoisture Content (%)	6 Fines clay & silt)	
0.5	.5	20.0	CLAYEY SIL	T (ML) - soft, slightly moi brown	ist,	1-2.5	ss	1,	2,	2	12	4,			27%	<u></u>	
		3.5	- medium stif	f, brown-gray		3.5 -5	ss	3,	3,	5	18	8,			25%		
		6.0	- moist			6-7.5	ss	2,	3,	5	14	8,			26%		
						8.5-10	SS	2,	3,	4	13	7,		5	25%		
		13.5	- reddish brov	vn		13.5-15	SS	з,	3,	4	15	7,			22%		-
		17.0	- very stiff wit	h rock and chert fragme	nts	18.5-20	ss	6	0	12	16	20			13%		
			Boring	Terminated at 20 feet				0,	ο,	12		20,			1370		

FINE AND COARSE GRAINED SOIL INFORMATION											
COARSE (SANDS	GRAINED SOILS & GRAVELS)	FINE GRAINED SOILS (SILTS & CLAYS)				PARTICLE SIZE					
N	Relative Density	N	Consistency	Qu, KSF Estimated	Boulders		Greater than 300 mm (12 in)				
0-4	Very Loose	0-1	Very Soft	0-0.5	Cobbles		75 mm to 300 mm (3 to 12 in)				
5-10	Loose	2-4	Soft	0.5-1	Gravel		4.74 mm to 75 mm (3/16 to 3 in)				
11-20	Firm	5-8	Firm	1-2	Coarse Sand		2 mm to 4.75 mm				
21-30	Very Firm 9-15		Stiff	2-4	Medium	Sand	0.425 mm to 2 mm				
31-50 Over 50	31-50 Dense		Very Stiff	4-8	Fine San	d	0.075 mm to 0.425 mm				
The STANDARD PENETRATION TEST as defined by ASTM D 1586 is a method to obtain a disturbed soil sample for examination and testing and to obtain relative density and consistency information. A standard 1.4-inch I.D./2-inch O.D. split-barrel sampler is driven three 6-inch increments with a 140 lb. hammer falling 30 inches. The hammer can either be of a trip, free-fall design, or actuated by a rope and cathead. The blow counts required to drive the sampler the final two increments are added together and designate the N-value defined in the above tables.											
ROCK PROPERTIES											
ROCK	QUALITY DESIGNATION (RQ	D)			ROCK	ARDN	ESS				
Percent RQD	Quality		Very Hard:	Rock can be	broken by I	neavy ha	ammer blows.				
0-25	Very Poor		Hard: Rock cann moderate			be broken by thumb pressure, but can be broken by mmer blows.					
25-50	Poor		Moderately	Small pieces	can be bro	be broken off along sharp edges by considerable					
50-75	Fair		Hard:	hard thumb p	ressure; can be broken with light hammer blows.						
75-90	Good		Soft:	Rock is cohe sharp edges	and crumbl	but breaks very easily with thumb pressure at crumbles with firm hand pressure.					
90-100	Excellent		Very Soft:	Rock disintegrates or easily compresses when touched; can be hard to very hard soil.							
Recovery = Length of Rock Core Recovered X100 63 REC Length of Core Run NQ						<u>re Diameter</u> <u>Inches</u> BQ 1-7/16 NQ 1-7/8 HQ 2-1/2					
RQD = <u>Sum</u>	of 4 in. and longer Rock Piec Length of Core Run	es Recovered	X100								
			SYMBOLS	;							
· · · · · · · · · · · · · · · · · · ·	KEY TO MATE	RIAL TYPES				SOIL PROPERTY SYMBOLS					
				N:	N: Standard Penetration, BPF						
	SOILS		ROCKS			M: Moisture Content, %					
Group Symbols	Typical Names	s	symbols Typica	I Names	LL:	Liqui	id Limit, %				
GW	Well graded gravel - sand mixture, little	orno	Limeston	e or Dolomite	PI	Plas	ticity Index, %				
GP	Poorly graded gravels or gravel - sand		Shale		Qp: Qu:	Unco	onfined Compressive Strength				
GM	Silty gravels, gravel - sand silt mixtures		Sandston	e		Estin	nated Qu, TSF				
GC	Clayey gravels, gravel - sand - clay mix	ures	and a second		γ :	Ury I					
sw	Well graded sands, gravelly sands, littl no fines	e or			F:	Fine					
SP	Poorly graded sands or gravelly sands or no fines	little				с 22	Split Spoon Sample				
SM	Silty sands, sand - silt mixtures					55	spin spoon sample				
SC	Clayey sands, sand - clay mixtures					0	Relatively Undisturbed				
ML	Inorganic silts and very fine sands, roc flour, silty or clayey fine sands, or claye	y silts				5	Sample				
OL	Organic silts and organic silty clays of plasticity	ow									
CL	Inorganic clays of low range plasticity, grav clays, sandy clays, sitty clays, lean clays	elly				-					
мн	Inorganic silts, micaceous or diatomac fine sandy or silty soils, elastic silts	eous				Con	Rock Core Sample				
СН	norganic clays of high range plasticity, clays	rat									

EXHIBIT H DIRECTIONS TO WCF SITE

Driving Directions to Proposed Tower Site

- 1. Beginning at the Ballard County Clerk's Office, located at 132 4th Street, Wickliffe, KY 42087 head south on 4th Street toward Court Street and travel 197 feet.
- 2. Turn left at the 1st cross street onto Court Street and travel approximately 0.4 miles.
- 3. Turn left onto KY-286 / Phillips Drive and travel approximately 1.2 miles.
- 4. Turn left onto Buck Road and travel approximately 0.4 miles.
- 5. Turn right onto KY-1290 and travel approximately 4.0 miles.
- 6. Turn left onto South Wayside Inn Road and travel approximately 1.6 miles.
- 7. The site will be on the right at Wayside Inn Road, Wickliffe, KY 42087.
- 8. The site coordinates are
 - a. North 37º 01' 45.61"
 - b. West 89º 00' 07.63"

Prepared by: Chris Shouse Pike Legal Group PLLC 1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-3069 Telephone: 502-955-4400 or 800-516-4293

EXHIBIT I COPY OF REAL ESTATE AGREEMENT

SITE NAME: EV Barlow SE SITE NUMBER: 495687 ATTY/DATE

LAND LEASE AGREEMENT

This Land Lease Agreement (the "Agreement") made this <u>13</u> day of <u>Januar</u> 2019, ²⁰ between Kenny Turner and Lorea Turner, Husband and Wife, and both residents of the State of Kentucky with a mailing address of 3819 Tabor Rd., Barlow, Kentucky 42024, hereinafter collectively designated LESSOR and Cellco Partnership d/b/a Verizon Wireless with its principal offices at One Verizon Way, Mail Stop 4AW100, Basking Ridge, New Jersey 07920 (telephone number 866-862-4404), hereinafter designated LESSEE. LESSOR and LESSEE are at times collectively referred to hereinafter as the "Parties" or individually as the "Party."

WITNESSETH

In consideration of the mutual covenants contained herein and intending to be legally bound hereby, the Parties hereto agree as follows:

1. GRANT. In accordance with this Agreement, LESSOR hereby grants to LESSEE the right to install, maintain and operate a telecommunications tower, facility, and equipment ("Use") upon the Premises (as hereinafter defined), which are a part of that real property owned, leased or controlled by LESSOR at 0 Wayside Inn Rd., Wickliffe, Kentucky 42087 (the "Property"). The Property is legally described on Exhibit "A" attached hereto and made a part hereof. The Premises are a portion of the Property including a portion of the parcel of land space (the "Land Space") consisting of approximately 100' x 100', or 10,000 square feet of land, as shown in detail on Exhibit "B" attached hereto and made a part hereof. LESSOR hereby grants permission to LESSEE to install, maintain and operate the telecommunications tower, facility, and equipment, antennas and appurtenances described in Exhibit "B" attached hereto. LESSEE reserves the right to replace the aforementioned equipment with similar and comparable equipment. In addition, LESSOR hereby grants to LESSEE a non-exclusive right (the "Easements") over the Property for access, ingress and egress, seven (7) days a week twenty-four (24) hours a day, on foot or motor vehicle, including trucks over or along a thirty foot (30') wide right-of-way extending from the nearest public right-of-way, Wayside Inn Rd., to the Land Space, and for the installation and maintenance of utility wires, poles, cables, conduits, fiber, and pipes over, under, or along one or more rights of way from the Land Space, said Land Space and Rights of Way (hereinafter collectively referred to as the "Premises") being substantially as described herein in Exhibit "B" attached hereto and made a part hereof. The Property is also shown on the Tax Map of the City of Wickliffe as Tax Map ID Number 37-17-03 and is further described in a certain Warranty Deed dated November 9, 2005, and recorded on November 10, 2005, and recorded in the Office of the Ballard County Recorder in Deed Book 77, Page 464.

In the event any public utility is unable to use the Easements, the LESSOR hereby agrees to grant an additional right-of-way either to the LESSEE or to the public utility at no cost to the LESSEE.

LESSEE may survey the Premises and said survey shall then become Exhibit "C" which shall be attached hereto and made a part hereof, and shall control in the event of boundary and access discrepancies between it and Exhibit "B". Cost for such work shall be borne by the LESSEE.

2. <u>INITIAL TERM</u>. This Agreement shall be effective as of the date of execution by both Parties ("Effective Date"). The initial term of the Agreement shall be for five (5) years beginning on the first (1st) day of the month following the Commencement Date (as hereinafter defined). The

"Commencement Date" shall be the first (1st) day of the month after LESSEE begins installation of LESSEE's communications equipment once the construction of the new tower has been completed. LESSOR and LESSEE agree that they shall acknowledge, in writing, the Commencement Date once construction of the telecommunications facility has commenced.

3. <u>EXTENSIONS</u>. This Agreement shall automatically be extended for 4 additional five (5) year terms unless LESSEE terminates it at the end of the then current term by giving LESSOR written notice of the intent to terminate at least three (3) months prior to the end of the then current term. The initial term and all extensions shall be collectively referred to herein as the "Term".

4. <u>RENTAL</u>.

(a). Rental payments shall begin on the Commencement Date and be due at a total annual rental of to be paid in equal to be paid in equal monthly installments of to be paid in equal on the first (1st) day of the month, in advance, to LESSOR at 3819 Tabor Rd., Barlow, Kentucky 42024 or to such other person, firm, or place as LESSOR may, from time to time, designate in writing at least 30 days in advance of any rental payment date by notice given in accordance with Paragraph 20 below. LESSOR and LESSEE acknowledge and agree that the initial rental payment shall not be delivered by LESSEE until 60 days after the Commencement Date. Upon agreement of the Parties, LESSEE may pay rent by electronic funds transfer and in such event, LESSOR agrees to provide to LESSEE bank routing information for such purpose upon request of LESSEE.

(b). For any party to whom rental payments are to be made, LESSOR or any successor in interest of LESSOR hereby agrees to provide to LESSEE (i) a completed, current version of Internal Revenue Service Form W-9, or equivalent; (ii) complete and fully executed state and local withholding forms if required; and (iii) other documentation to verify LESSOR's or such other party's right to receive rental as is reasonably requested by LESSEE. Rental shall accrue in accordance with this Agreement, but LESSEE shall have no obligation to deliver rental payments until the requested documentation has been received by LESSEE. Upon receipt of the requested documentation, LESSEE shall deliver the accrued rental payments as directed by LESSOR.

(c). The annual rental for the first (1st) five (5) year ϵ	extension term shall be increased to
	the annual rental for the second
(2nd) five (5) year extension term shall be increased to	
; the annual rental for the third (3rd) five (5) year extension term shall be
increased to	and the
annual rental for the fourth (4th) five (5) year extension tern	n shall be increased to

(d). ADDITIONAL EXTENSIONS. If at the end of the fourth (4th) five (5) year extension term this Agreement has not been terminated by either Party by giving to the other written notice of an intention to terminate it at least three (3) months prior to the end of such term, this Agreement shall continue in force upon the same covenants, terms and conditions for a further term of five (5) years and for five (5) year terms thereafter until terminated by either Party by giving to the other written notice of its intention to so terminate at least three (3) months prior to the end of such term. Annual rental for each such additional five (5) year term shall be equal to the annual rental payable
with respect to the immediately preceding five (5) year term. The initial term and all extensions shall be collectively referred to herein as the "Term".

5. <u>ACCESS</u>. LESSEE shall have the non-exclusive right of ingress and egress from a public right-of-way, 7 days a week, 24 hours a day, over the Property to and from the Premises for the purpose of installation, operation and maintenance of LESSEE's communications equipment over or along a thirty foot (30') right-of-way ("Easement"), which shall be depicted on Exhibit "B". LESSEE may use the Easement for the installation, operation and maintenance of wires, cables, conduits and pipes for all necessary electrical, telephone, fiber and other similar support services. In the event it is necessary, LESSOR agrees to grant LESSEE or the provider the right to install such services on, through, over and/or under the Property, provided the location of such services shall be reasonably approved by LESSOR. Notwithstanding anything to the contrary, the Premises shall include such additional space sufficient for LESSEE's radio frequency signage and/or barricades as are necessary to ensure LESSEE's compliance with Laws (as defined in Paragraph 27).

6. <u>CONDITION OF PROPERTY</u>. LESSOR shall deliver the Premises to LESSEE in a condition ready for LESSEE's Use and clean and free of debris. LESSOR represents and warrants to LESSEE that as of the Effective Date, the Premises (a) in compliance with all Laws; and (b) in compliance with all EH&S Laws (as defined in Paragraph 24).

7. <u>IMPROVEMENTS</u>. The communications equipment including, without limitation, the tower, equipment shelters/platforms, antenna mounts, antennas, conduits, and other improvements shall be at LESSEE's expense and installation shall be at the discretion and option of LESSEE. LESSEE shall have the right to replace, repair, add or otherwise modify its communications equipment, antennas, conduits, fencing and other screening, or other improvements or any portion thereof and the frequencies over which the communications equipment operates, whether or not any of the communications equipment, antennas, conduits or other improvements are listed on any exhibit.

8. <u>GOVERNMENT APPROVALS</u>. LESSEE's Use is contingent upon LESSEE obtaining all of the certificates, permits and other approvals (collectively the "Government Approvals") that may be required by any Federal, State or Local authorities (collectively, the "Government Entities") as well as a satisfactory soil boring test, environmental studies, or any other due diligence LESSEE chooses that will permit LESSEE's Use. LESSOR shall cooperate with LESSEE in its effort to obtain such approvals and shall take no action which would adversely affect the status of the Property with respect to LESSEE's Use.

9. <u>TERMINATION</u>. LESSEE may, unless otherwise stated, immediately terminate this Agreement upon written notice to LESSOR in the event that (i) any applications for such Government Approvals should be finally rejected; (ii) any Government Approval issued to LESSEE is canceled, expires, lapses or is otherwise withdrawn or terminated by any Government Entity; (iii) LESSEE determines that such Government Approvals may not be obtained in a timely manner; (iv) LESSEE determines any structural analysis is unsatisfactory; (v) LESSEE, in its sole discretion, determines the Use of the Premises is obsolete or unnecessary; (vi) with 3 months prior notice to LESSOR, upon the annual anniversary of the Commencement Date; or (vii) at any time before the Commencement Date for any reason or no reason in LESSEE's sole discretion.

10. INDEMNIFICATION. Subject to Paragraph 12, each Party shall indemnify and hold the other harmless against any claim of liability or loss from personal injury or property damage resulting from or arising out of the negligence or willful misconduct of the indemnified Party, its employees, contractors or agents, except to the extent such claims or damages may be due to or caused by the negligence or willful misconduct of the other Party, or its employees, contractors or agents. The indemnified Party will provide the indemnifying Party with prompt, written notice of any claim covered by this indemnification; provided that any failure of the indemnified Party to provide any such notice, or to provide it promptly, shall not relieve the indemnifying Party from its indemnification obligation in respect of such claim, except to the extent the indemnifying Party can establish actual prejudice and direct damages as a result thereof. The indemnified Party will cooperate appropriately with the indemnifying Party in connection with the indemnifying Party's defense of such claim. The indemnifying Party shall defend any indemnified Party, at the indemnified Party's request, against any claim with counsel reasonably satisfactory to the indemnified Party. The indemnifying Party shall not settle or compromise any such claim or consent to the entry of any judgment without the prior written consent of each indemnified Party and without an unconditional release of all claims by each claimant or plaintiff in favor of each **Indemnified Party.**

11. INSURANCE. The Parties agree that at their own cost and expense, each will maintain commercial general liability insurance with limits not less than for injury to or death of one or more persons in any one occurrence and for damage or destruction in any one occurrence. The Parties agree to include the other Party as an additional insured. The Parties hereby waive and release any and all rights of action for negligence against the other which may hereafter arise on account of damage to the Premises or the Property, resulting from any fire, or other casualty which is insurable under "Causes of Loss - Special Form" property damage insurance or for the kind covered by standard fire insurance policies with extended coverage, regardless of whether or not, or in what amounts, such insurance is now or hereafter carried by the Parties, even if any such fire or other casualty shall have been caused by the fault or negligence of the other Party. These waivers and releases shall apply between the Parties and they shall also apply to any claims under or through either Party as a result of any asserted right of subrogation. All such policies of insurance obtained by either Party concerning the Premises or the Property shall waive the insurer's right of subrogation against the other Party.

12. <u>LIMITATION OF LIABILITY</u>. Except for indemnification pursuant to Paragraphs 10 and 24, a violation of Paragraph 30, or a violation of law, neither Party shall be liable to the other, or any of their respective agents, representatives, or employees for any lost revenue, lost profits, loss of technology, rights or services, incidental, punitive, indirect, special or consequential damages, loss of data, or interruption or loss of use of service, even if advised of the possibility of such damages, whether under theory of contract, tort (including negligence), strict liability or otherwise.

13. INTERFERENCE.

(a). LESSOR agrees that LESSOR and other occupants of the Property will not cause interference to LESSEE's equipment (that is measurable in accordance with industry standards to the then existing equipment of LESSEE).

(b). Without limiting any other rights or remedies, if interference occurs and continues for a period in excess of 48 hours following notice to the interfering party via telephone to

LESSEE'S Network Operations Center (at (800) 224-6620/(800) 621-2622) or to LESSOR at (270) 836-7061, the interfering party shall or shall require any other user to reduce power or cease operations of the interfering equipment until the interference is cured.

(c). The Parties acknowledge that there will not be an adequate remedy at law for noncompliance with the provisions of this Paragraph and therefore the Parties shall have the right to equitable remedies such as, without limitation, injunctive relief and specific performance.

14. <u>REMOVAL AT END OF TERM</u>. Upon expiration or within ninety (90) days of earlier termination, LESSEE shall remove LESSEE's Communications Equipment (except footings) and restore the Premises to its original condition, reasonable wear and tear and casualty damage excepted. LESSOR agrees and acknowledges that the communications equipment shall remain the personal property of LESSEE and LESSEE shall have the right to remove the same at any time during the Term, whether or not said items are considered fixtures and attachments to real property under applicable laws. If such time for removal causes LESSEE to remain on the Premises after termination of the Agreement, LESSEE shall pay rent at the then existing monthly rate or on the existing monthly pro-rata basis if based upon a longer payment term, until the removal of the communications equipment is completed.

15. <u>HOLDOVER</u>. If upon expiration of the Term the Parties are negotiating a new lease or a lease extension, then this Agreement shall continue during such negotiations on a month to month basis at the rental in effect as of the date of the expiration of the Term. In the event that the Parties are not in the process of negotiating a new lease or lease extension and LESSEE holds over after the expiration or earlier termination of the Term, then LESSEE shall pay rent at the then existing monthly rate or on the existing monthly pro-rata basis if based upon a longer payment term, until the removal of the communications equipment is completed.

16. RIGHT OF FIRST REFUSAL. If at any time after the Effective Date, LESSOR receives an offer or letter of intent from any person or entity that is in the business of owning, managing or operating communications facilities or is in the business of acquiring landlord interests in agreements relating to communications facilities, to purchase fee title, an easement, a lease, a license, or any other interest in the Premises or any portion thereof or to acquire any interest in this Agreement, or an option for any of the foregoing, LESSOR shall provide written notice to LESSEE of said offer ("LESSOR's Notice"). LESSOR's Notice shall include the prospective buyer's name, the purchase price being offered, any other consideration being offered, the other terms and conditions of the offer, a description of the portion of and interest in the Premises and/or this Agreement which will be conveyed in the proposed transaction, and a copy of any letters of intent or form agreements presented to LESSOR by the third party offeror. LESSEE shall have the right of first refusal to meet any bona fide offer of sale or transfer on the terms and conditions of such offer or by effectuating a transaction with substantially equivalent financial terms. If LESSEE fails to provide written notice to LESSOR that LESSEE intends to meet such bona fide offer within thirty (30) days after receipt of LESSOR's Notice, LESSOR may proceed with the proposed transaction in accordance with the terms and conditions of such third party offer, in which event this Agreement shall continue in full force and effect and the right of first refusal described in this Paragraph shall survive any such conveyance to a third party. If LESSEE provides LESSOR with notice of LESSEE's intention to meet the third party offer within thirty (30) days after receipt of LESSOR's Notice, then if LESSOR's Notice describes a transaction involving greater space than the Premises, LESSEE

may elect to proceed with a transaction covering only the Premises and the purchase price shall be pro-rated on a square footage basis. Further, LESSOR acknowledges and agrees that if LESSEE exercises this right of first refusal, LESSEE may require a reasonable period of time to conduct due diligence and effectuate the closing of a transaction on substantially equivalent financial terms of the third party offer. For purposes of this Paragraph, any transfer, bequest or devise of LESSOR's interest in the Property as a result of the death of LESSOR, whether by will or intestate succession, or any conveyance to LESSOR's family members by direct conveyance or by conveyance to a trust for the benefit of family members shall not be considered a sale for which LESSEE has any right of first refusal.

17. <u>RIGHTS UPON SALE</u>. Should LESSOR, at any time during the Term, decide (i) to sell or otherwise transfer all or any part of the Property, or (ii) to grant to a third party by easement or other legal instrument an interest in and to any portion of the Premises, such sale, transfer, or grant of an easement or interest therein shall be under and subject to this Agreement and any such purchaser or transferee shall recognize LESSEE's rights hereunder. In the event that LESSOR completes any such sale, transfer, or grant described in this Paragraph without executing an assignment of the Agreement whereby the third party agrees in writing to assume all obligations of LESSOR under this Agreement, then LESSOR shall not be released from its obligations to LESSEE under this Agreement, and LESSEE shall have the right to look to LESSOR and the third party for the full performance of the Agreement.

18. <u>LESSOR'S TITLE.</u> LESSOR covenants that LESSEE, on paying the rent and performing the covenants herein, shall peaceably and quietly have, hold and enjoy the Premises. LESSOR represents and warrants to LESSEE as of the Effective Date and covenants during the Term that LESSOR has full authority to enter into and execute this Agreement and that there are no liens, judgments, covenants, easements, restrictions or other impediments of title that will adversely affect LESSEE's Use.

19. <u>ASSIGNMENT</u>. Without any approval or consent of the other Party, this Agreement may be sold, assigned or transferred by either Party to (i) any entity in which the Party directly or indirectly holds an equity or similar interest; (ii) any entity which directly or indirectly holds an equity or similar interest; (ii) any entity directly or indirectly under common control with the Party. LESSEE may assign this Agreement to any entity which acquires all or substantially all of LESSEE's assets in the market defined by the FCC in which the Property is located by reason of a merger, acquisition or other business reorganization without approval or consent of LESSOR. As to other parties, this Agreement may not be sold, assigned or transferred without the written consent of the other Party, which such consent will not be unreasonably withheld, delayed or conditioned. No change of stock ownership, partnership interest or control of LESSEE or transfer upon partnership or corporate dissolution of either Party shall constitute an assignment hereunder. LESSEE may sublet the Premises in LESSEE's sole discretion.

20. <u>NOTICES</u>. Except for notices permitted via telephone in accordance with Paragraph 13, all notices hereunder must be in writing and shall be deemed validly given if sent by certified mail, return receipt requested or by commercial courier, provided the courier's regular business is delivery service and provided further that it guarantees delivery to the addressee by the end of the next business day following the courier's receipt from the sender, addressed as follows (or any other address that the Party to be notified may have designated to the sender by like notice):

LESSOR: Kenny Turner and Lorea Turner 3819 Tabor Rd. Barlow, Kentucky 42024

LESSEE: Cellco Partnership d/b/a Verizon Wireless 180 Washington Valley Road Bedminster, New Jersey 07921 Attention: Network Real Estate

Notice shall be effective upon actual receipt or refusal as shown on the receipt obtained pursuant to the foregoing.

21. SUBORDINATION AND NON-DISTURBANCE. If applicable and within fifteen (15) days of the Effective Date, LESSOR shall obtain a Non-Disturbance Agreement, as defined below, from its existing mortgagee(s), ground lessors and master lessors, if any, of the Property. At LESSOR's option, this Agreement shall be subordinate to any future master lease, ground lease, mortgage, deed of trust or other security interest (a "Mortgage") by LESSOR which from time to time may encumber all or part of the Property; provided, however, as a condition precedent to LESSEE being required to subordinate its interest in this Agreement to any future Mortgage covering the Property, LESSOR shall obtain for LESSEE's benefit a non-disturbance and attornment agreement for LESSEE's benefit in the form reasonably satisfactory to LESSEE, and containing the terms described below (the "Non-Disturbance Agreement"), and shall recognize LESSEE's rights under this Agreement. The Non-Disturbance Agreement shall include the encumbering party's ("Lender's") agreement that, if Lender or its successor-in-interest or any purchaser of Lender's or its successor's interest (a "Purchaser") acquires an ownership interest in the Property, Lender or such successor-in-interest or Purchaser will honor all of the terms of the Agreement. Such Non-Disturbance Agreement must be binding on all of Lender's participants in the subject loan (if any) and on all successors and assigns of Lender and/or its participants and on all Purchasers. In return for such Non-Disturbance Agreement, LESSEE will execute an agreement for Lender's benefit in which LESSEE (1) confirms that the Agreement is subordinate to the Mortgage or other real property interest in favor of Lender, (2) agrees to attorn to Lender if Lender becomes the owner of the Property and (3) agrees to accept a cure by Lender of any of LESSOR's defaults, provided such cure is completed within the deadline applicable to LESSOR. In the event LESSOR defaults in the payment and/or other performance of any mortgage or other real property interest encumbering the Property, LESSEE, may, at its sole option and without obligation, cure or correct LESSOR's default and upon doing so, LESSEE shall be subrogated to any and all rights, titles, liens and equities of the holders of such mortgage or other real property interest and LESSEE shall be entitled to deduct and setoff against all rents that may otherwise become due under this Agreement the sums paid by LESSEE to cure or correct such defaults.

22. <u>DEFAULT</u>. It is a "Default" if (i) either Party fails to comply with this Agreement and does not remedy the failure within thirty (30) days after written notice by the other Party or, if the failure cannot reasonably be remedied in such time, if the failing Party does not commence a remedy within the allotted thirty (30) days and diligently pursue the cure to completion within ninety (90) days after the initial written notice, or (ii) LESSOR fails to comply with this Agreement and the failure substantially interferes with LESSEE's Use, in LESSEE's reasonable discretion, and

LESSOR does not remedy the failure within five (5) days after written notice from LESSEE or, if the failure cannot reasonably be remedied in such time, if LESSOR does not commence a remedy within the allotted five (5) days and diligently pursue the cure to completion within fifteen (15) days after the initial written notice. The cure periods set forth in this Paragraph 22 do not extend the period of time in which either Party has to cure interference pursuant to Paragraph 13 of this Agreement.

23. <u>REMEDIES</u>. In the event of a Default, without limiting the non-defaulting Party in the exercise of any right or remedy which the non-defaulting Party may have by reason of such default, the non-defaulting Party may terminate this Agreement and/or pursue any remedy now or hereafter available to the non-defaulting Party under the Laws or judicial decisions of the state in which the Property is located. Further, upon a Default, the non-defaulting Party may at its option (but without obligation to do so), perform the defaulting Party's duty or obligation. The costs and expenses of any such performance by the non-defaulting Party shall be due and payable by the defaulting Party upon invoice therefor. If LESSEE undertakes any such performance on LESSOR's behalf and LESSOR does not pay LESSEE the full undisputed amount within thirty (30) days of its receipt of an invoice setting forth the amount due, LESSEE may offset the full undisputed amount due against all fees due and owing to LESSOR under this Agreement until the full undisputed amount is fully reimbursed to LESSEE.

24. ENVIRONMENTAL. LESSEE shall conduct its business in compliance with all applicable laws governing the protection of the environment or employee health and safety ("EH&S Laws"). LESSEE shall indemnify and hold harmless the LESSOR from claims to the extent resulting from LESSEE's violation of any applicable EH&S Laws or to the extent that LESSEE causes a release of any regulated substance to the environment. LESSOR shall indemnify and hold harmless LESSEE from all claims resulting from the violation of any applicable EH&S Laws by LESSOR or its employees, contractors or agents, or a release of any regulated substance to the environment caused by LESSOR, its employees, contractors or agents, except to the extent resulting from the activities of LESSEE. The Parties recognize that LESSEE is only leasing a small portion of LESSOR's property and that LESSEE shall not be responsible for any environmental condition or issue except to the extent resulting from LESSEE's specific activities and responsibilities. In the event that LESSEE encounters any hazardous substances that do not result from its activities, LESSEE may relocate its facilities to avoid such hazardous substances to a mutually agreeable location or, if LESSEE desires to remove at its own cost all or some the hazardous substances or materials (such as soil) containing those hazardous substances, LESSOR agrees to sign any necessary waste manifest associated with the removal, transportation and/or disposal of such substances.

25. <u>CASUALTY</u>. If a fire or other casualty damages the Property or the Premises and substantially impairs LESSEE's Use, in LESSEE's reasonable discretion, rent shall abate until LESSEE'S Use is restored. If LESSEE's Use is not restored within forty-five (45) days, LESSEE may terminate this Agreement.

26. <u>CONDEMNATION</u>. If a condemnation of any portion of the Property or Premises substantially impairs LESSEE's Use, in LESSEE's reasonable discretion, LESSEE may terminate this Agreement. LESSEE may on its own behalf make a claim in any condemnation proceeding involving the Premises for losses related to LESSEE's communications equipment, relocation costs and, specifically excluding loss of LESSEE's leasehold interest, any other damages LESSEE may incur as a result of any such condemnation.

27. <u>APPLICABLE LAWS</u>. During the Term, LESSOR shall maintain the Property in compliance with all applicable laws, EH&S Laws, rules, regulations, ordinances, directives, covenants, easements, consent decrees, zoning and land use regulations, and restrictions of record, permits, building codes, and the requirements of any applicable fire insurance underwriter or rating bureau, now in effect or which may hereafter come into effect (including, without limitation, the Americans with Disabilities Act and laws regulating hazardous substances) (collectively "Laws"). LESSEE shall, in respect to the condition of the Premises and at LESSEE's sole cost and expense, comply with (i) all Laws relating solely to LESSEE's specific and unique nature of use of the Premises; and (ii) all building codes requiring modifications to the Premises due to the improvements being made by LESSEE in the Premises. It shall be LESSOR's obligation to comply with all Laws relating to the Property, without regard to specific use (including, without limitation, modifications required to enable LESSEE to obtain all necessary building permits).

28. <u>TAXES</u>.

(a). LESSOR shall invoice and LESSEE shall pay any applicable transaction tax (including sales, use, gross receipts, or excise tax) imposed on the LESSEE and required to be collected by the LESSOR based on any service, rental space, or equipment provided by the LESSOR to the LESSEE. LESSEE shall pay all personal property taxes, fees, assessments, or other taxes and charges imposed by any Government Entity that are imposed on the LESSEE and required to be paid by the LESSEE that are directly attributable to the LESSEE's equipment or LESSEE's use and occupancy of the Premises. Payment shall be made by LESSEE within sixty (60) days after presentation of a receipted bill and/or assessment notice which is the basis for such taxes or charges. LESSOR shall pay all ad valorem, personal property, real estate, sales and use taxes, fees, assessments or other taxes or charges that are attributable to LESSOR's Property or any portion thereof imposed by any Government Entity.

(b). LESSEE shall have the right, at its sole option and at its sole cost and expense, to appeal, challenge or seek modification of any tax assessment or billing for which LESSEE is wholly or partly responsible for payment. LESSOR shall reasonably cooperate with LESSEE at LESSEE's expense in filing, prosecuting and perfecting any appeal or challenge to taxes as set forth in the preceding sentence, including but not limited to, executing any consent, appeal or other similar document. In the event that as a result of any appeal or challenge by LESSEE, there is a reduction, credit or repayment received by the LESSOR for any taxes previously paid by LESSEE, LESSOR agrees to promptly reimburse to LESSEE the amount of said reduction, credit or repayment. In the event that LESSEE does not have the standing rights to pursue a good faith and reasonable dispute of any taxes under this paragraph, LESSOR will pursue such dispute at LESSEE's sole cost and expense upon written request of LESSEE.

29. <u>ACCESS TO TOWER</u>. LESSOR agrees the LESSEE shall have free access to the Tower at all times for the purpose of installing and maintaining the said equipment. LESSOR shall furnish LESSEE with necessary means of access for the purpose of ingress and egress to this site and Tower location. It is agreed, however, that only authorized engineers, employees or properly authorized contractors of LESSEE or persons under their direct supervision will be permitted to enter said premises.

30. <u>NON-DISCLOSURE</u>. The Parties agree this Agreement and any information exchanged between the Parties regarding the Agreement are confidential. The Parties agree not to provide

copies of this Agreement or any other confidential information to any third party without the prior written consent of the other or as required by law. If a disclosure is required by law, prior to disclosure, the Party shall notify the other Party and cooperate to take lawful steps to resist, narrow, or eliminate the need for that disclosure.

31. <u>MOST FAVORED LESSEE</u>. LESSOR represents and warrants that the rent, benefits and terms and conditions granted to LESSEE by LESSOR hereunder are now and shall be, during the Term, no less favorable than the rent, benefits and terms and conditions for substantially the same or similar tenancies or licenses granted by LESSOR to other parties. If at any time during the Term LESSOR shall offer more favorable rent, benefits or terms and conditions for substantially the same or similar tenancies or licenses or licenses as those granted hereunder, then LESSOR shall, within thirty (30) days after the effective date of such offering, notify LESSEE of such fact and offer LESSEE the more favorable offering. If LESSEE chooses, the parties shall then enter into an amendment that shall be effective retroactively to the effective date of the more favorable offering, and shall provide the same rent, benefits or terms and conditions to LESSEE. LESSEE shall have the right to decline to accept the offering. LESSOR's compliance with this requirement shall be subject, at LESSEE's option, to independent verification.

MISCELLANEOUS. This Agreement contains all agreements, promises and understandings 32. between the LESSOR and the LESSEE regarding this transaction, and no oral agreement, promises or understandings shall be binding upon either the LESSOR or the LESSEE in any dispute, controversy or proceeding. This Agreement may not be amended or varied except in a writing signed by all Parties. This Agreement shall extend to and bind the heirs, personal representatives, successors and assigns hereto. The failure of either party to insist upon strict performance of any of the terms or conditions of this Agreement or to exercise any of its rights hereunder shall not waive such rights and such party shall have the right to enforce such rights at any time. The performance of this Agreement shall be governed, interpreted, construed and regulated by the laws of the state in which the Premises is located without reference to its choice of law rules. Except as expressly set forth in this Agreement, nothing in this Agreement shall grant, suggest or imply any authority for one Party to use the name, trademarks, service marks or trade names of the other for any purpose whatsoever. LESSOR agrees to execute a Memorandum of this Agreement, which LESSEE may record with the appropriate recording officer. The provisions of the Agreement relating to indemnification from one Party to the other Party shall survive any termination or expiration of this Agreement.

[Signature page follows. The remainder of this page is intentionally blank.]

10

IN WITNESS WHEREOF, the Parties hereto have set their hands and affixed their respective seals the day and year first above written.

Comme B. Dou

WITNESS

LESSOR: <u>Kerng Turner</u>

Kenny Turner

SMOR Turner

Lorea Turner

Date: 08-13-2019

WITNESS

LESSEE:

CELLCO BARTNARSHIP d/b/a Verizon Wireless By Ed Maher Director - Network Field Engineering Its: Date:

EXHIBIT "A"

DESCRIPTION OF PROPERTY

A tract of land lying on the South side of Tabor Road, and the East of Wayside Inn Road consisting of 35.27 acres and being designated as Tract 3 on a plat of wavier survey of the Mark Knight, et al, property as recorded in Plat Cabinet 2, Slide 35, in Ballard County Clerk's Office.

Being the same property acquired by KENNY TURNER and LOREA TURNER, her husband, by Deed dated November 9, 2005, of record in Deed Book 77, Page 464, and by Affidavit of Descent of record in Cabinet 1, Drawer 20 Slide 4276B, both in the Office of the Clerk of Ballard County, Kenlucky.

EXHIBIT "B"

SITE PLAN OF THE PREMISES AND DESCRIPTION OF TOWER EQUIPMENT

CHWv1.061918

LEGAL DESCRIPTIONS

THE FOLLOWING IS A DESCRIPTION OF THE PROPOSED LEASE AREA TO BE LEASED FROM THE PROPERTY CONVEYED TO LOREA & KENNY TURNER AS DESCRIBED IN DEED BOOK 77, PAGE 444 (TRACT 3) OF RECORD IN THE OFFICE OF THE CLERK OF BALLARD COUNTY, KENTUCKY, PARCEL DE 37-17-03, WHICH IS MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEARING DATUM USED HEREIN IS BASED UPON KENTUCKY STATE PLARE COORDINATE SYSTEM, SINGLE 20NE, NAD 83, FROM A REAL TIME KINEMARTIC GLOBAL POSITIONING SYSTEM OBSERVATION USING THE KENTUCKY TRANSPORTATION CABINET REAL TIME GPS NETWORK COMPLETED ON JANE 28, 2019.

COMMENCING AT A FOUND 1/2" REBAR WITH CAP STAMPED "3288" AT THE SOUTHWEST CORNER OF THE PARCEL CONVEYED TO LOREA & REDART TURNER AS DESCRIBED IN DEED BOOK 77, PAGE 464 (TRACT 3), AND SAID POINT ALSO BEING AT THE NORTHWEST CORNER OF THE PARCEL CONVEYED TO CARTY & GENALINE & UNIGHT AS DESCRIBED IN DEED BOOK 77, PAGE 451 (TRACT 4), FOR REPERENCE, SAID COMMENCEMENT POINT IS SOFOTSZY W 147.24° FROM THE NORTHWEST CORNER OF SAID TURNER (A FOUND 1/2" REBAR WITH CAP STAMPED TO CARTY OF THE PARCEL (A FOUND 1/2" REBAR WITH CAP STAMPED TO CARTY OF THE NORTHWEST CORNER OF SAID TURNER, AND 1000 1/2" REBAR WITH CST STATEMENT FOR THE PARCEL (A FOUND 1/2" REBAR WITH CST STATEMENT FOR THE PARCEL (A FOUND 1/2" REBAR WITH CST STATEMENT FOR THE PARCEL (A FOUND 1/2" REBAR WITH CST STATEMENT FOR THE PARCEL (A FOUND 1/2" REBAR WITH CST STATEMENT FOR THE PARCEL (A FOUND 1/2" REBAR WITH CST STATEMENT FOR THE PARCEL (A FOUND 1/2" REBAR WITH CST STATEMENT FOR THE PARCEL (A FOUND 1/2" REBAR WITH CST STATEMENT FOR THE PARCEL (A FOUND 1/2" REBAR WITH CST STATEMENT FOR THE PARCEL (A FOUND 1/2" REBAR WITH CST STATEMENT FOR THE PARCEL (A FOUND 1/2" REBAR WITH CST STATEMENT FOR THE PARCEL (A FOUND 1/2" REBAR WITH CST STATEMENT FOR THE PARCEL (A FOUND 1/2" REBAR WITH CST STATEMENT FOR THE PARCEL (A FOUND 1/2" REBAR WITH CST STATEMENT FOR THE PARCEL (A FOUND 1/2" REBAR WITH CST STATEMENT FOR THE PARCEL (A FOUND 1/2" REBAR HAR THE PARCEL (A FOUND 1/2" REBAR WITH CST STATEMENT FOR THE PARCEL (A FOUND 1/2" REBAR HAR THE PARCEL (A FOUND 1/2" REBAR THE PARCEL A SUBT 1/2" REBAR THE PARCEL (A FOUND 1/2" REGINNING CONTAINING 10,000 000 SOLARE FEET AS PER SURVEY BY MARK E. PATTERSON, PLS #3136 DATED JUNE 28, 2019.

PROPOSED 30" / VARIABLE WIDTH ACCESS & UTILITY EASEMENT

PROPOSED LEASE AREA

THE FOLLOWING IS A DESCRIPTION OF THE PROPOSED 30' / VARIABLE WIDTH ACCESS AND UTILITY EASEMENT TO BE GRANTED FROM THE PROPERTY CONVEYED TO LOREA & RENNY TURNER AS DESCRIPTION OF DEED BOOK 77, PAGE 444 (TINATI 5) OF RECORD IN THE OFFRIC OF THE CLERK OF BALLARD COUNTY, REINTUGY, PARCEL 05-737-43, WHICH IS MORE PARTICULARLY DESCRIPTION AS FOLLOWS:

BEARING DATUM USED HEREIN IS BASED UPON KENTUCKY STATE PLANE COORDINATE SYSTEM, SINGLE ZONE, NAD 83, FROM A REAL TIME KINEMARTIC GLOBAL POSITIONING SYSTEM OBSERVATION USING THE KENTUCKY TRANSPORTATION CABINET REAL TIME GPS NETWORK COMPLETED ON JUNE 28, 2019.

COMMETED ON UNE 28, 2019. COMMENCING AT A FOUND 1/2" REBAR WITH CAP STAMPED "3289" AT THE SOUTHWEST CORNER OF THE PARCEL CONVEYED TO LOREA & REINNT TUNKER AS DESCREED IN DEED BOOK 77, PAGE 464 (TRACT 3), AND SAID POINT ALSO BEING AT THE NORTHWEST CORNER OF THE PARCEL CONVEYED TO GARY & GERLINNEL KINICHT AS DESCRIED IN DEED BOOK 77, PAGE 463 (TRACT 3), AND SAID POINT ALSO BEING AT THE NORTHWEST CORNER OF THE PARCEL CONVEYED TO GARY & GERLINNEL KINICHT AS DESCRIED IN DEED BOOK 77, PAGE 463 (TRACT 3), AND SAID POINT ALSO BEING AT THE NORTHWEST CORNER OF THE PARCEL CONVEYED TO GARY & GERLINNEL KINICHT AS DESCRIED IN DEED BOOK 77, PAGE 463 (TRACT 3), AND TURKER PARCEL A NOUTH AS OUTTOWN COMMENCEMENT POINT SOUTS SOUTS'ST.W GALY PARCEL CORNER OF THE PARCEL CONNER, LADOUT DUTY, PAGE 463 (TRACT 3), RON REFERENCE, SAID COMMENCEMENT POINT SOUTS'ST.W GALY PARCEL DISSING ACCOSS THE LAND OF TIMEREL SOUTS'STE 115.00°T TO THE UIE FORMY OF BEGINNENC, THE NORTHWEST CORNER OF THE MOOD SOL DISSA BRART THEOL CALONG MONOTOSE LESSA BRART THE NORTHWEST OF A SAID STIT PC, AT THE NORTHWEST CORNER OF SISSEY, NOTA AN UN BOOST INFORMED NOTOSE 25.00°T TO THE ARD OF A CUNYET TO THE FT THEMEST AURINE CORNER OF SISSEY, NOTA AN UN BOOST INFORMED NOTOSE 25.00°T THE DEG ALONG THE ARD OF A CUNYET TO TO THE ASSIST THE RAC OF A CONTACT OF SISSEY, NOTA AN UN BOOST INFORMED NOTOSE 25.00°T THE CALONG THE ARD OF A CUNYET TO THE FT THEMEST AURINE THE ACCO FA CONTACT OF SISSEY, NOTA AN UN BOOST INFORMED NOTOSET 25.00°T THEMEST ALONG THE ARD OF A DESCRIPTIONEN ALONG THE ARD OF SISSEY NOTA TO AND THE TO THE LEFT THANKES AN AND SISSEY TO SISSEY AND A CONTROL ENGTING SISSEY AND A CONDED LENGTH OF 65.00°T THE THE THANKES AN AND SISSEY THE ARD OF A DO SISSEY SISSEY AND A CONDED LENGTH OF 65.00°T THE THE SISSEY AND A ACCURS OF SISSEY AND A CONDED LENGTH OF SISSEY AND A CONDED LENGTH OF 65.00°T THE ARD OF SISSEY AND A CONDED LENGTH OF SISSEY AND A SOURD OF

PARENT PARCEL, LEGAL DESCRIPTION, DEED BOOK 77, PAGE 464 (NOT FIELD SURVEYED)

A TRACT OF LAND LYING ON THE SOUTH SIDE OF TABOR ROAD, AND THE EAST OF WAYSIDE ININ ROAD CONSISTING OF 33.27 ACRES AND BEING DESIGNATED AS "TRACT F" ON A PLAT OF WANRE SURVEY OF THE MARK ROIGHT, ET AL, PROPERTY AS RECORDED IN PLAT CARRIER SURDES IN BALLARD COUNTY CLERIS OF RUCE, BEING A PLAT OF THE ROADERTY INIBETED BY GRANTORS MARK INNIGHT, IDERA TURINER, AND GARY WINGHT, THE CHLIDHEN OF JIMMY BOB RINGHT, SEI AFROANT OF DESCENT AND THANSFER BY INTESTATE SUCCESSION, DATED MARCH 2, 2001 AND OF JIMMY BOB RINGHT, SEI AFROANT OF DESCENT AND THANSFER BY INTESTATE SUCCESSION, DATED MARCH 2, 2001 AND OF RECORD IN CARRENT L (DRAWER 20, CARD BALTORS IN THE BALLARD COUNTY CLERIS OFFICE.

EXHIBIT "C"

SURVEY

LEGAL DESCRIPTIONS

PROPOSED LEASE AREA

THE FOLLOWING IS A DESCRIPTION OF THE PROPOSED LEASE AREA TO BE LEASED FROM THE PROPERTY CONVEYED TO LOREA & KENNY TURNER AS DESCRIBED IN DEED BOOK 77, PAGE 444 (TRACT 3) OF RECORD IN THE OFFICE OF THE CLERK OF BALLARD COUNTY, KENTUCKY, PARCEL ID: 77-1730, WHICH IS MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEARING DATUM USED HEREIN IS BASED UPON KENTUCKY STATE PLANE COORDINATE SYSTEM, SINGLE ZONE, NAD 83, FROM A REAL TIME KRIEMARTIC GLOBAL POSITIONING SYSTEM OBSERVATION USING THE KENTUCKY TRANSPORTATION CABINET REAL TIME GPS NETWORK COMPLETED ON JUNE 28, 2019.

COMMENSIONS AT A FOUND 1/2" REBAR WITH CAP STAMPED "3289" AT THE SOUTHWEST CORNER OF THE PARCEL CONVEYED TO LOREA & ISONY TURINER AS DESCRIBED IN DEED BOOK 77, PAGE 464 (TRACT 3), AND SAID POINT ALSO BEING AT THE NORTHWEST CORNER OF THE PARCEL CONVEYED TO GAN'S 40 GRALDINE (INIGHT AS DESCRIBED IN DEED BOOK 77, PAGE 463, (TRACT 4), FOR REFERENCE, SAID COMMENCEMENT/POINT IS SOPYOPSY" JA47.24" FROM THE NORTHWEST CORNER OF SAID TURINER AS DESCRIBED, IN DESCRIPTION OF AS A COMMENCEMENT/POINT IS SOPYOPSY" JA47.24" FROM THE NORTHWEST CORNER OF SAID TURINER, SOPYOPSY" (IN DUBLY 2" REBAR WITH CAP STAMPED "2289" BEING SOUTH SOPYOPSY" JA47.24" FROM THE NORTHWEST CORNER OF SAID TURINER, SOPYOPSY" (IN DUBLY 2" REBAR WITH COMMENCEMENT/POINT IS SOPYOPSY" JA47.24" FROM THE NORTHWEST CORNER OF SAID TURINER, SOPYOPSY" (IN DUBLY 2" REBAR WITH CORNENCEMENT POINT OF SOPYOPSY" JA47.24" FROM THE NORTHWEST CORNER OF SAID TURINER, SOPYOPSY" (IN DUBLY 2" REBAR WITH CORNENCEMENT POINT OF SOPYOPSY" JA47.24" FROM THE NORTHWEST CORNER OF SAID TURINER, SOPYOPSY (IN DUBLY 2" REBAR WITH CORNENCEMENT POINT OF SOPYOPSY" JA47.24" FROM THE NORTHWEST CORNER OF SAID TURINER, SOPYOPSY" (IN DUBLY 2" REBAR WITH CORNENCEMENT POINT OF SOPYOPSY" JA47.24" FROM THE NORTHWEST CORNER OF SAID TURINER, SOPYOPSY (IN DUBY TO A STI 1/2" REBAR MUTH GAD DIRE DIRESON PASSING ACCOSS THE LAND OF TURINER, SOPYOPSY (IN DUBY TO A STI 1/2" REBAR MED SOPYOPSY (IN DUBY TO A STI 1/2" REBAR MED SOPYOPSY (IN DUBY TO A STI 1/2" REBAR MED SOPYOPSY (IN DUBY TO A STI 1/2" REBAR MED SOPYOPSY (IN DUBY TO A STI 1/2" REBAR MED SOPYOPSY (IN DUBY TO A STI 1/2" REBAR MED SOPYOPSY (IN DUBY TO A STI 1/2" REBAR MED SOPYOPSY (IN DUBY TO A STI 1/2" REBAR MED SOPYOPSY (IN DUBY TO A STI 10,000 TO A STI 10,0000 TO A STI 10,00000 SOULARE FEET AS PER SURVEY BY MARK E. PATTERSON, PLS F3136 DATED JUNE 28, 2013.

PROPOSED 30" / VARIABLE WIDTH ACCESS & UTILITY EASEMENT

THE FOLLOWING IS A DESCRIPTION OF THE PROPOSED 30' / VARIABLE WIDTH ACCESS AND UTILITY EASEMENT TO BE GRANTED FROM THE PROPERTY CONVEYED TO LOREA & KENNY TURNER AS DESCRIBED IN DEED BOOK 77, PAGE 464 (TRACT 3) OF RECORD IN THE OFFICE OF THE CLERK OF BALLARD COUNTY, KENTUCKY, PARCEL ID: 57-17-03, WHICH IS MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEARING DATUM USED HEREIN IS BASED UPON KENTUCKY STATE PLANE COORDINATE SYSTEM, SINGLE ZONE, NAD 83, FROM A REAL TIME KNERMATIC GLOBAL POSITIONING SYSTEM OBSERVATION USING THE KENTUCKY TRANSPORTATION CABINET REAL TIME GPS NETWORK COMPLETED ON JUNE 28, 2019.

COMMERCED ON JURE 28, 2013. COMMENCING AT A FOUND 1/2" REBAR WITH CAP STAMPED "3289" AT THE SOUTHWEST CORNER OF THE PARCEL CONVEYED TO LOREA & EXENT TUMBER AS DESCRIBED IN DEED BOOK 77, PAGE 464 (TRACT 3), AND SAID POINT ALSO BEING AT THE NORTHWEST CORNER OF THE PARCEL CONVEYED TO GARY & GERALDINE L KNIGHT AS DESCRIBED IN DEED BOOK 77, PAGE 451 (TRACT 4), FOR REFERENCE, SAID COMMENCEMENT POINT IS 0070752" W LAT 24 FROM THE NORTHWEST CORNER OF AND TURKER PARCEL ADVIN'S TO REFERENCE, SAID COMMENCEMENT POINT IS 0070752" W LAT 24 FROM THE NORTHWEST CORNER OF SAID TURKER PARCEL LAVING SAID LINE TRAVER THE NORTHWEST CORNER OF AND GPT 57, THENCE LLAVING SAID LINE, TANEVASING ACKOSS THE LAND OF TURKER, SAID2028 E 115.007 TO THE RUR POINT OF 352 BEGURINNE, THENCE SUD'S 200"52" W LAS' FROM SAID NORTHWEST CORNER OF SAID TURKER PARCEL LAVING SAID LINE TANE, SAID2732"E BEGURINNE, THENCE SUD'S 200"52" W LAS' LAND OF TURKER, SAID27028 E 115.007 TO THE RUR POINT OF 35 A 351 PC, AT THE NORTHWEST COMBEL OF THE PROPOSED LISAS ARAF. THENCE ALAUGE MORPOSED LISAS ARAF. THERE CA ALONG THE ARC OF A CURVE 'THIS BEGURINNE, THENCE SUD'S 200"52" W LAD OF THE MORPOSED LISAS ARAF. THENCE ALONG THE ALONG THE ARC OF A CURVE 'THIS BEGURINNE, THENCE SUD'S 200"52" W LAD OF THE MORPOSED LISAS ARAF. THENCE ALONG THE ALONG THE ARC OF A CURVE 'THIN OF 34.21" THE NORTHWEST COMBEL OF 51.52", WITH A ADDID SOLD, THENCE ALONG THE ALONG THE ARC OF A CURVE 'THIN OF 34.21" THE NORTHWERE ALONG THE ARC OF 51.52", WITH A ADDID SOLD, THENCE ALONG THE ALONG THE ARC OF A CURVE 'THIN OF 34.21" THE RORTHWERE ALONG THE ARC OF 51.52", WITH A ADDID SOLD, THENCE ALONG THE SAID 'THINK AN ALONG THE ARC OF A CURVE 'TO THE RORTHWERE ALONG THE ARC OF A SOLD'TH 'THINK AN ALONG SOLD'TO THE CURT THE ALONG THE ARC OF A CURVE 'TO THE RORTHWERE ALONG THE ARC OF A SOLD'TO THE CURVE TO THE LET HAVING AN ARC LENGTH OF 53.31", 'THINK AND ALONG SOLD'TO THE CURVE TO THE RORTHWERE ALONG THE ARC OF A NORTHWERT TO THE LET HAVING AN ARC LENGTH OF 65.31", 'THINK ALONG THE AR

PARENT PARCEL, LEGAL DESCRIPTION, DEED BOOK 77, PAGE 464 (NOT FIELD SURVEYED)

A TRACT OF LAND LYING ON THE SOUTH SIDE OF TABOR ROAD, AND THE EAST OF WAYSIDE INN ROAD CONSISTING OF 85.27 ACRES AND BEING DESIGNATED AS "TRACT 3" ON A PLAT OF WAYER SURVEY OF THE MARK KINGHT, ET AL PROPERTY AS RECORDED IN PLAT CABINET 2 SUDE 35 IN BALLARD COUNTY CLENX SOFTICE. BEING A PART OF THE MARK KINGHT, ET AL PROPERTY AS RECORDED IN PLAT CABINET 2 SUDE 35 IN BALLARD COUNTY CLENX SOFTICE. BEING A PART OF THE MARK KINGHT, ET AL PROPERTY AS RECORDED IN PLAT CABINET TURNER, AND GARK KINGHT, THE OHLDREN OF JAMMY BOB KINGHT, SEE AFFIDANT OF DESCENT AND TAMSKER BY UNTESTATE SUCCESSION, BATED MARCH 2, 2001 AND OR KEORD IN CABINET, JORAMER 20, CARD BAZYSE IN THE BALLARD COUNTY CLERX SOFTICE.

TITLE OF COMMITMENT, DEED BOOK 77, PAGE 464 (PARCEL ID: 37-17-03)

THE OF COMMENT ELECTORE OF A START AND A S

SCHEDULE B, PART II (EXCEPTIONS)

- ANY DEFECT, LIEN, ENCLUMBRANCE, ADVENSE CLAIM, OR OTHER MATTER THAT APPEARS FOR THE FIRST TIME IN THE PUBLIC RECORDS OR IS CREATED, ATTACHES, OR IS DISCLOSED BETWEEN THE COMMITMENT DATE AND THE OATE ON WHICH ALL OF THE SCHEDULE B, PART HERCURRENTS ARE MET, (NOT A LAND SURVEYING MATTER, THEREFORE POD GROUP, LLC DID NOT EXAMINE OR ADDRESS THIS ITEM.)
- 2. UEN OF CITY, COUNTY AND OTHER REAL ESTATE TAXES FOR THE PERIOD 2019 AND ALL SUBSEQUENT YEARS, NOT YET DUE AND PAYABLE. (NOT A LAND SURVEYING MATTER, THEREFORE POD GROUP, LLC DID NOT EXAMINE OR ADDRESS THIS ITEM.)
- ANY ENCROACHMENT, ENCLIMBRANCE, VIOLATION, VARIATION, OR ADVERSE CIRCUMSTANCE AFFECTING THE TITLE, OR EASEMENTS OR CLAMMS OF EASEMENTS NOT SNOWN BY THE PUBLIC RECORDS THAT MOULD BE DISCLOSED BY AN ACCURATE AND COMPLETE LAND SURVEY OF THE LAND, (POD GROUP, LLC DDI NOT PERFORM A BOUNDART SURVEY OF THE PARENT PARCEL, AND THERFORE CANNOT ADDRESS THIS TEDM.)
- RIGHTS OF TEMANTS IN POSSESSION, AS TEMANTS ONLY, UNDER UNRECORDED UNEXPIRED LEASES, (NOT A LAND SURVEYING MATTER, THEREFORE POD GROUP, LLC DID NOT EXAMINE OR ADDRESS THIS ITEM.)
- 5. ALL COAL, OIL, GAS AND OTHER MINERAL RIGHTS HERETOFORE CONVEYED, DICEPTED, RESERVED OR LEASED, TOGETHER WITH ALL INCIDENTAL RIGHTS THERETOL (POD GROUP, LLC OID NOT EXAMINE OR ADORESS THIS ITEM.)
- CONDITIONS, STIPULATIONS, RESTRICTIONS, BUILDING LINES AND EASEMENTS, TOGETHER WITH INCIDENTAL RIGHTS, AS PROVIDED FOR ON THE RECORDED PLAT OF RECORD IN PLAT CABINET 2, SUIDE 35, IN THE OFFICE AFORESAID, (PLAT AS RECORDED IN PLAT CABINET 2, SLIDE 35, DOES AFFECT THE PARENT PARCEL, THE PROPOSED LEASE AREA AND THE PROPOSED ACCESS & UTILITY EASEMENT.)

LAND SURVEYOR'S CERTIFICATE

MARE PATTERSON, PLS #3136

UNDER MY DIRECT SUPERVISION, AND THAT THE

EXHIBIT J NOTIFICATION LISTING

Barlow SE – Landowner Notice List

TURNER LOREA & KENNY 3819 TABOR ROAD BARLOW KY 42024

KNIGHT SAMANTHA JO 4871 HINKLEVILLE ROAD LA CENTER KY 42056

KNIGHT GARY & GERALDINE L 1474 WAYSIDE INN ROAD BARLOW, KY 42024

CONYERS LONNIE A OR JUDY 3193 TABOR ROAD WICKLIFFE KENTUCKY 42087

CONYERS GINA RENEE 1575 WAYSIDE INN ROAD BARLOW KY 42024

KITT PAUL G & SANDRA 3781 TABOR ROAD BARLOW KY 42024

TURNER KENNY & LOREA 3819 TABOR ROAD BARLOW KY 42024

PURCELL JUDITH ROBERT NEAL 572 CEREDO ROAD BARLOW KY 42024 EXHIBIT K COPY OF PROPERTY OWNER NOTIFICATION

1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-0369 Phone (502) 955-4400 or (800) 516-4293 Fax (502) 543-4410 or (800) 541-4410

Notice of Proposed Construction of Wireless Communications Facility Site Name: Barlow SE

Dear Landowner:

Cellco Partnership d/b/a Verizon Wireless has filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at Wayside Inn Road, Wickliffe, KY 42087 (37° 01' 45.61" North latitude, 89° 00' 07.63" West longitude). The proposed facility will include a 290-foot tall antenna tower, plus a 5-foot lightning arrestor and related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

This notice is being sent to you because the Ballard County Property Valuation Administrator's records indicate that you may own property that is within a 500' radius of the proposed tower site <u>or</u> contiguous to the property on which the tower is to be constructed. You have a right to submit testimony to the Kentucky Public Service Commission ("PSC"), either in writing or to request intervention in the PSC's proceedings on the application. You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2020-00105 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. Verizon Wireless' radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us toll free at (800) 516-4293 if you have any comments or questions about this proposal.

Sincerely, David A. Pike Attorney for Applicants

enclosure

Driving Directions to Proposed Tower Site

- 1. Beginning at the Ballard County Clerk's Office, located at 132 4th Street, Wickliffe, KY 42087 head south on 4th Street toward Court Street and travel 197 feet.
- 2. Turn left at the 1st cross street onto Court Street and travel approximately 0.4 miles.
- 3. Turn left onto KY-286 / Phillips Drive and travel approximately 1.2 miles.
- 4. Turn left onto Buck Road and travel approximately 0.4 miles.
- 5. Turn right onto KY-1290 and travel approximately 4.0 miles.
- 6. Turn left onto South Wayside Inn Road and travel approximately 1.6 miles.
- 7. The site will be on the right at Wayside Inn Road, Wickliffe, KY 42087.
- 8. The site coordinates are
 - a. North 37º 01' 45.61"
 - b. West 89° 00' 07.63"

Prepared by: Chris Shouse Pike Legal Group PLLC 1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-3069 Telephone: 502-955-4400 or 800-516-4293

DigiSigner Document ID: 2c1bf9f0-7c8c-4ee2-9519-c928210b389e

EXHIBIT L COPY OF COUNTY JUDGE/EXECUTIVE NOTICE

1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-0369 Phone (502) 955-4400 or (800) 516-4293 Fax (502) 543-4410 or (800) 541-4410

VIA CERTIFIED MAIL

Todd Cooper P. O. Box 276 Wickliffe, KY 42087

RE: Notice of Proposal to Construct Wireless Communications Facility Kentucky Public Service Commission Docket No. 2020-00105 Site Name: Barlow SE

Dear Judge Cooper:

Cellco Partnership d/b/a Verizon Wireless has filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at Wayside Inn Road, Wickliffe, KY 42087 (37° 01' 45.61" North latitude, 89° 00' 07.63" West longitude). The proposed facility will include a 290-foot tall antenna tower, plus a 5-foot lightning arrestor and related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

You have a right to submit comments to the PSC or to request intervention in the PSC's proceedings on the application. You may contact the PSC at: Executive Director, Public Service Commission, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2020-00105 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. Verizon Wireless' radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us with any comments or questions you may have.

Sincerely, David A. Pike Attorney for Applicants

enclosure

Driving Directions to Proposed Tower Site

- 1. Beginning at the Ballard County Clerk's Office, located at 132 4th Street, Wickliffe, KY 42087 head south on 4th Street toward Court Street and travel 197 feet.
- 2. Turn left at the 1st cross street onto Court Street and travel approximately 0.4 miles.
- 3. Turn left onto KY-286 / Phillips Drive and travel approximately 1.2 miles.
- 4. Turn left onto Buck Road and travel approximately 0.4 miles.
- 5. Turn right onto KY-1290 and travel approximately 4.0 miles.
- 6. Turn left onto South Wayside Inn Road and travel approximately 1.6 miles.
- 7. The site will be on the right at Wayside Inn Road, Wickliffe, KY 42087.
- 8. The site coordinates are
 - a. North 37º 01' 45.61"
 - b. West 89° 00' 07.63"

Prepared by: Chris Shouse Pike Legal Group PLLC 1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-3069 Telephone: 502-955-4400 or 800-516-4293

DigiSigner Document ID: 2c1bf9f0-7c8c-4ee2-9519-c928210b389e

EXHIBIT M COPY OF POSTED NOTICES AND NEWSPAPER NOTICE ADVERTISEMENT

SITE NAME: BARLOW SE NOTICE SIGNS

The signs are at least (2) feet by four (4) feet in size, of durable material, with the text printed in black letters at least one (1) inch in height against a white background, except for the word "**tower**," which is at least four (4) inches in height.

Cellco Partnership d/b/a Verizon Wireless proposes to construct a telecommunications **tower** on this site. If you have questions, please contact Pike Legal Group, PLLC, P.O. Box 369, Shepherdsville, KY 40165 (800) 516-4293, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2020-00105 in your correspondence.

Cellco Partnership d/b/a Verizon Wireless proposes to construct a telecommunications **tower** near this site. If you have questions, please contact Pike Legal Group, PLLC, P.O. Box 369, Shepherdsville, KY 40165 (800) 516-4293, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2020-00105 in your correspondence.

1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-0369 Phone (502) 955-4400 or (800) 516-4293 Fax (502) 543-4410 or (800) 541-4410

VIA TELEPHONE: (270) 908-2001

Advance Yeoman 114 W. Kentucky Dr. La Center, KY 42056

> RE: Legal Notice Advertisement Site Name: Barlow SE

Dear Staff:

Please publish the following legal notice advertisement in the next edition of *The Advance Yeoman*:

NOTICE

Kentucky Cellco Partnership d/b/a Verizon Wireless has filed an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located at Wayside Inn Road, Wickliffe, KY 42087 (37° 01' 45.61" North latitude, 89° 00' 07.63" West longitude). You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2020-00105 in any correspondence sent in connection with this matter.

After this advertisement have been published, please forward a tearsheet copy, affidavit of publication, and invoice to Pike Legal Group, PLLC, P. O. Box 369, Shepherdsville, KY 40165. Please call me at (800) 516-4293 if you have any questions. Thank you for your assistance.

Sincerely, Chris Shouse Pike Legal Group, PLLC
EXHIBIT N COPY OF RADIO FREQUENCY DESIGN SEARCH AREA

Verizon Issued SARF

