

A Century of Firsts

Mitchell Station Unit \#1
 American Electric Power Company Ohio Power Company
 AFP OHIO
 A unit of American Electric Power

Westinghouse T-G Set

800 MWs - Tandem Compound - 3600 rpm

VHP-HP Turbine	Serial Number	13A3160-1
IP Turbine	Serial Number	13A3161-1
LP Turbine \#1	Serial Number	13A3162-1
LP Turbine \#2	Serial Number	13A3163-1
Turbine Instruction Book		1250-C679
Generator	Serial Number	1-S-87P0755
Brush Collector	Serial Number	1-S-94P0063
Generator Instruction Book		90P0944
Brush Collector Instruction Book		1560-0093
Boiler Feed Pump Drive Turbine		15-A-2961-1
BFP/DT Instruction Manual		1150-C129
Spring Outage		0-18-2006

Table of Contents

Executive Summary Page 5
Resources
Outage AEP Key Personnel Page 6
Outage Sub-contractors Page 7
WO Numbers Page 8
Main Unit
Tab 1
IP Turbine Element
Rotor \& Blading Page 9
Stationary Blading
Centerline Alignment Page 9
Turbine Casings Page 10
Electric Generator
Rotor \& Retaining Rings Page 10
Stator \& End Turns Page 10Hydrogen GlandsGland Seal Oil SkidPage 10Page 11
Brush Collector
Alignment Page 11
Pedestals \& Couplings
Pedestal \#1
Main Oil Pump Page 12
Oil DeflectorBearing \#1Page 12
IP Pedestal \#2-\#3
Oil Deflectors Page 13
Bearing \#2 Page 13
Bearing \#3Page 13

IP Pedestal \#4

Oil Deflector Page13
Bearing \#4

Rotor Coupling "A"
Rotor Coupling "B"
Rotor Coupling "C"

Main Turbine Steam Flow Valves

Main Stop Valves (4)
Control Valves (8)
Reheat Stop Valves (1 $1^{\text {st }}$ RHT RS)

Drive Turbine

Pedestals \&Coupling

Miscellaneous Inspections (Other)
Columbus Generator Report
CMS Work Performed Report
Siemens Vibration Report
MOP Pipe Weld Traveler
Mitchell Boiler Outage
Site Turbine Tools

Recommendations

Data Attachments
A1 - Field Drawing Rotor TE 39415 Shroud Dia.
A1 - Field Drawing Upper LO Cooler Lantern Fit
A1 - IP GNN Charting Review
A1 - IP GVN Charting Review
A1 - IP Packing Clearance page 1
A1 - IP Packing Clearance page 2
A1 - IP Packing Gap Review
A1 - IP Reaction Blade Clearance
A1 - IP S2 \& S3 Blade GNN Clearance
A1 - IP S2 \& S3 Blade GVN Clearance
A1 - IP S2 \& S3 Blade Ring Alteration
A1 - Rotor L Reference Readings
A1 - IP Tite Wire Readings

Page13

Page 14
Page 14
Page 14

Page 14
Page 15
Page 15

Page 15

Tab 2 Page 17
(2 Pages)
(103 Pages)
(21 Pages)
(9 Pages)
(19 Pages)
Tab $3 \quad$ Page 18
Tab $4 \quad$ Page 19

Tab 5
Page 20
Page 21
Page 22
Page 23
Page 24
Page 25
Page 26
Page 27
Page 28
Page 29
Page 30
Page 31
Page 32
Page 33

A2 - Field Drawing \#10 Oil Deflector	Page 34
A2 - Field Drawing H2 Cooler Cover Dimensions	Page 35
A2 - Field Drawing SOS Lantern Ring page 1	Page 36
A2 - Field Drawing SOS Lantern Ring page 2	Page 37
A2 - H2 Gland Casing	Page 38
A2 - H2 Seal Ring	Page 39
A3 - Vibration Data page 1	Page 40
A3 - Vibration Data page 2	Page 41
A4 - Field Drawing MOP Shim Plate - Split	Page 42
A4 - MOP Housing Bore Readings	Page 43
A4 - MOP Seal Ring Dimensions	Page 44
A4 - MOP Shaft Diameters	Page 45
A6 - Oil Bore Radial Readings	Page 46
A6 - Oil Deflector Clearances	Page 47
A6 - Tilting Pad Bearing Flood Ring Clearance	Page 48
A7 - Coupling A Alignment	Page 49
A7 - Coupling A Bolt Clearance	Page 50
A7 - Coupling A Runout	Page 51
A7 - Coupling B Bolt Clearance	Page 52
A7 - Coupling B Runout	Page 53
A7 - Coupling C Alignment	Page 54
A7 - Coupling C Bolt Clearance	Page 55
A7 - Coupling C Runout	Page 56
A7 - Coupling Spacer Spigot Inspection	Page 57
A8 - Governor Valve \#1 Data	Page 58
A8 - Governor Valve \#2 Data	Page 59
A8 - Governor Valve \#3 Data	Page 60
A8 - Governor Valve \#4 Data	Page 61
A8 - Governor Valve \#5 Data	Page 62
A8 - Governor Valve \#6 Data	Page 63
A8 - Governor Valve \#7 Data	Page 64
A8 - Governor Valve \#8 Data	Page 65
A8 - Throttle Valve \#1 Data	Page 66
A8 - Throttle Valve \#2 Data	Page 67
A8 - Throttle Valve \#3 Data	Page 68
A8 - Throttle Valve \#4 Data	Page 69
A8 - Throttle Valve \#1 Settings	Page 70
A8 - Throttle Valve \#2 Settings	Page 71
A8 - Throttle Valve \#3 Settings	Page 72
A8 - Throttle Valve \#4 Settings	Page 73
A9 - BFPT Coupling Alignment	Page 74

Executive Summary

Mitchell Station Unit 1 was removed from service on Friday, 4/1/06 for a scheduled tenweek outage. The primary scope of the work included an inspection of the IP double flow turbine element ($2^{\text {nd }}$ Reheat) and the HP main steam flow valves.

RSO crews teamed with CMS personnel performed the inspection work during the outage. See below for the key personnel for the outage. All work was completed by $6 / 10 / 06$, and the unit was released to the system on 6/18/06 after a successful start-up.

A brief summary of the work completed by the RSO and CMS crews during the outage is as follows:

- Disassembled/reassembled the double flow intermediate pressure turbine element
- Disassembled/reassembled the collector end electric generator casing end bell and hydrogen seal gland
- In-Situ inspection electric generator field rotor and stator
- Overhaul four main turbine stop valves
- Overhaul eight main turbine control valves
- Gasket replacement of the right side $1^{\text {st }}$ reheat stop valve bonnet
- Cleaning of the main turbine lubrication oil coolers
- Cleaning of electric generator hydrogen seal oil skid coolers
- Cleaning of the electric generator stator water cooling skid coolers
- Cleaning of the EHC skid coolers and skid
- NDE inspection of the main unit low pressure turbine element(s) L-0 blading
- NDE inspection of the boiler feed pump drive turbine element L-0 blading.
- Replacement of BFPT drive coupling

Start-up of the main turbine occurred on 6/18/06. Less the vibration dampening at \#11 bearing, all vibrations levels were acceptable to the plant personnel without field balancing for grid generation.

Resources

Internal

Steve Dolan	Mitchell Station
Jack Huggins	Mitchell Station
Ralph Pederson	GET TSV TC
John Powell	GET TSV TC
John Lackner	GET TSV Planning
Ron Kline	GET TSV RSO
Jeff Brothers	GET TSV RSO
Doug Foster	GET TSV RSO
Doug Graley	GET TSV CMS
Jim Cable	GET

Process Owner - Electric
Rotating Equipment Lead Turbine Coordinator $2^{\text {nd }}$ Shift Turbine Coordinator Maintenance Planner Supervisor - Turbine Crew Supervisor - Turbine Crew Supervisor - Turbine Crew Non Destructive Examination
Eng'g Turbine Engineer

External

Federal Industrial
Mannings
Cincinnati Babbitt
Schmidt Industries
Shutler Machining
Steam Turbine Alternative Resources

Sandblasting Services
Bolt Induction Heating Consultation
Bearing Repairs
Replacement Hi - Temp Fasteners
Shop Machining Services
Steam Path Packing

WO Numbers

See Attached Following Three Pages

Main Unit

Tab 1

IP Turbine Element

Rotor \& Blading

This equipment inspection involved the removal of the existing operating rotor, TD 44176, and its replacement with an OEM refurbished rotor, TD 39415. New style blading in rows 2 and 3 of refurbished CI rotor required the placement of new J hook seal strips in the \#1 blade rings (GVN \& GNN). The existing seal strips were machined level with the blade ring bore ID. New grooves were machined into blade path bores approximately $3 / 4$ " from the existing labyrinth grooves. The grooves were located by instructions on OEM provided drawings, included later. The placement of new seal strip grooves was due to a change of the shroud width. The new style blades were an integral shroud design with no need for riveted cover shroud.

Stationary Blading
The blade rings (1 \& 2; GVN \& GNN) were shipped to CMS.
The \#1 blade rings (GVN \& GNN) were grit cleaned and NDE inspected. New row 1 blade diaphragms were installed. The installed diaphragms were machined to OEM provided drawings. The new diaphragm shroud width due to machining resulting in a new "K" dimension for charting and setting the rotor axial location. The rotor was moved 0.040 " toward the GVN. The movement matched up within 0.007 " of using the plant stored "A" and "C" coupling spacers installed originally with this rotor train. The new rotor blading of rows 2 and 3 resulted in new axial readings for proper charting.

The \#2 blade rings (GVN \& GNN) were grit cleaned and NDE inspected. Several rows of required repair welding of hard particle erosion (see CMS Shop Report).

Centerline Alignment

The centerline alignment of the internal IP components was performed with the tops off. The lower blade ring transverse alignment pockets required weld patches to be applied to one side or the other and field dressing to restore pin to pocket clearances of 0.005 ". The blade ring elevations were corrected at the horizontal joint as necessary. These vertical alignments were minor of about 0.010 ". The clearances of the internal split line key features in their respected cylinder pockets were opened up as necessary per Siemens Bulletin Operations and Maintenance Memo 148 (Support Key Vertical Clearances).

Turbine Casings

The inner cylinder was grit blasted and NDE inspected in the field. The component halves ware found in good condition and required no repairs. The inner to outer cylinder floating seal rings were manually cleaned and verified for freedom of movement before installation.

The outer cylinder was grit blasted and NDE inspected. The component halves were found in good condition. The lower cylinder exhaust bowl struts and their seal welds were found cracked. These were repair welded using 7018-A1 electrodes after removing the fractured inconel seal.

The inlet flow guide was found distorted. Past reports showed this to be a pre-existing condition. There appears to have no change to this component.

Electric Generator

Rotor \& Retaining Ring (see attached Columbus report)
Stator \& End Turns (see attached Columbus report)
This was a rotor In-Situ inspection. See attachment for Columbus inspection report. All requested action items of this report were completed.

Hydrogen Glands

The collector end generator end bell and hydrogen gland casing were disassembled to investigate the cause of hydrogen side seal oil entering the stator coil cavity during generation operation. This disassembly aided the Columbus Engineering interior inspections. The disassembly aided the mechanical inspection of the hydrogen gland casing and seal ring for condition and possible cause of oil leakage to the coil cavity. Inspections of the seal ring and gland casing found nothing of real note other than visual scuffmarks on the seal ring axial faces as it aligned to the upper half gland. The large diameter taper alignment pin to the right side of the gland casing had physical mechanical distress marks on it. Shutler Machine produced a new pin to replace the damaged item. Precision measurements of the gland casing and seal ring found clearances in expected acceptable conditions. The reassembly of the hydrogen gland casing and the end bell halves resulted in no greater than a 0.001 " step at the horizontal joints.

The investigation of the oil egress into the coil cavity continued with the removal of inspection covers on the end bell defoaming tanks at each end of the generator. These tanks were found relatively clean with no foreign debris. The oil drain lines were inspected with a borescope camera back to the loop seal tank and nothing was found. The loop seal tank was drained and hand valves removed to visually inspect interior for debris; none found.

Gland Seal Oil Skid

The air side and hydrogen side seal oil positive displacement pumps were shipped out for refurbishment at RPM. The air side pump after system testing required its bearing flanges shipped to Shutler Machine to establish "O" ring grooves to seal the heavy leakage from these mechanical joints.

The air side seal oil cooler(s) cooling water return loops were shipped to Shutler Machine to repair erosion damage at the lantern ring and "O" ring fit areas. These repairs (field drawings attached later) were necessary to return to the original seal techniques without use of RTV compound and other fixatives, which interfere with the movement of the cooler floating head.

Brush Collector Rotor

Alignment

The collector rotor was elevated at the \#11 bearing to put a 0.003 " gap at the bottom of the coupling. This gap is a deviation from the Siemens technical manual for this aftermarket equipment. The gap was established to put additional loading on the \#11 bearing thus reduce the high vibrations being experienced during operation. The rotor was then put through a swing check to assure the outboard end of the rotor ran a crank of no more than 0.005 " TIR with the coupling bolts at expected torque values. The TIR was 0.003 " with torque values no more than 2400 foot-pounds and no less than 2000 footpounds.

This alignment activity above reduced the vibration energy when the rotor rolled through its critical speed, but the at speed vibration levels are above 6 mils. Operations continues to dampen this energy by controlling the hydrogen side seal oil and air side seal oil supply temperatures at a differential spread of approximately 30 degrees Fahrenheit. Operations has found this technique dampens the collector shaft vibration, at issue with this technique is the mechanical twisting of the brass/babbitt seal ring thus inhibiting the OEM intended floating in its gland casing groove. Operations have been using this technique since the brush collector installation. This twisted ring condition is a source of concern for seal oil entering the generator coil cavity. The amount of oil entering the collector end of the generator varied from shift to shift during the start up from barrels down to gallons per shift. The seal oil skid operation was reviewed and adjusted without much success. A thermograph review to the hydrogen side seal oil regulating tank showed it and the receiver tank full with hot return drain oil backed up the line toward the generator end bell defoaming tanks. The regulating tank appeared to not be operating properly. A boiler outage a short while later provided an opportunity to investigate the regulating tank float valves (see attached report). The adjustment of the float valve(s) dead band brought the seal oil entering the generator during operation down to four ounces per shift.

Pedestals \& Couplings

Pedestal \#1

Main Oil Pump

The front standard was disassembled to allow correction of experienced high main oil pump seal ring wear. The brass seal rings were fretting to destruction. The fretting activity had damaged the seal ring grooves of the pump housing. This work order removed the stub shaft and its mounted oil pump impellor from the HP rotor elementcoupling flange. The stub shaft was shipped to CMS for inspection and repair. The stub shaft was disassembled to its smallest components and inspected (see CMS Shop Report). The stub shaft was reassembled and the impellor nut torqued to 1000 foot-pounds. The rotor was then checked for runout and the operational seal lands precision ground. The stub shaft was remounted to the HP turbine element pulling the coupling flange bolts to 600 foot-pounds. The swing test of the stub shaft revealed a TIR of 0.002 ".

The pump housing seal grooves required weld repair and dimensional restoration. This required the parting of the suction and discharge pump lines below the concrete pier after cutting openings into the guard pipe. The removed pump housing base and cover were shipped to CMS for weld repair and machining (see CMS Shop Report). The sealing shim rings between the pump housing feet and the oil pedestal floor were replaced with split ring components to allow future elevation changes as needed without cutting supply and discharge piping. The thickness of the shim rings was cut to set the housing bore central to the pump impellor. This required lowering the pump housing 0.105 " from as found. Field drawing of Shim Ring Detail attached later.

Oil Deflector

The oil deflector was removed to allow installation of the rotor jack during the rotor and shell movements needed to correct the "A" coupling alignment. The labyrinths were found in good condition but large diameter. The seal at reassembly was gapped 0.006 " at the bottom and even at the sides.

Bearing \#1

The tilting pad bearing sleeve was found in good condition. It was disassembled to support correction of HP element to the $2^{\text {nd }}$ reheat IP element coupling alignment. Alignment is accomplished by changing dimension changes of the pucks between the bearing shell and babbitt pad. Upper pad clearances were restored after alignment completion.

IP Pedestal \#2-\#3

Oil Deflectors

The oil deflectors were removed to allow installation of the rotor jack during the rotor and shell movements needed to correct the "A" coupling alignment. The \#2 labyrinths were is good condition. The \#3 labyrinths were found with excessive clearance and thus repaired at CBI. The deflectors at reassembly were gapped 0.005 " to 0.006 " at the bottom and even at the sides.

Bearing \#2

The tilting pad bearing sleeve was found in good condition. It was disassembled to support correction of HP element to the $2^{\text {nd }}$ reheat IP element coupling alignment. Coupling alignment is accomplished by changing dimensions of the pucks between the bearing shell and babbitt pad. Upper pad clearances were restored after alignment completion.

Bearing \#3

The tilting pad bearing sleeve was shipped to Cincinnati Babbitt Inc to apply new babbitt to the pads for the replacement rotor journal. The rework of the pads also eliminated spalled babbitt edges. The pads were blued checked to a mandrel before setting the top pad(s) clearance to the rotor. The upper bearing pad(s) to journal clearances to corrected to design. Coupling alignment is accomplished by changing shims of the bearing shell outer spherical pads to the pedestal saddle.

IP Pedestal \#4

Oil Deflector

The \#4 oil deflector was removed to allow removal of the rotor for the outage inspection. The labyrinths were found with excessive clearance as compared to the replacement rotor and thus repaired at CBI. The deflector at reassembly was gapped 0.005 " to 0.006 " at the bottom and even at the sides.

Bearing \#4

The tilting pad bearing sleeve was shipped to Cincinnati Babbitt Inc to apply new babbitt to the pads for the replacement rotor journal. The rework of the pads also eliminated spalled babbitt edges. The pads were blued checked to a mandrel before setting the top $\operatorname{pad}(\mathrm{s})$ clearance to the rotor. The upper bearing pad(s) to journal clearances to corrected
to design. Coupling alignment is accomplished by changing shims of the bearing shell outer spherical pads to the pedestal saddle.

Rotor Coupling "A"

The alignment of the HP element to the $2^{\text {nd }}$ reheat IP element required the dropping the \#1 bearing sleeve and the GVN of the HP shell to bring it into circular letter expectations. Difficulty was encountered developing repeatable sixteen point face readings. The most reliable repeatable readings were found taken at the rotor(s) spigot faces rather than the highly polished coupling head(s) friction surfaces.

Rotor Coupling "B"

The coupling heads were inspected and found in good condition. This coupling assembles without axial spacer.

Rotor Coupling "C"

The assembled $2^{\text {nd }}$ reheat IP rotor element and jackshaft required very little movement of the \#3 and \#4 bearing sleeves to bring the " C " coupling to within circular letter expectations.

Main Turbine Steam Flow Valves

Main Stop Valves (4)
The valve bonnets were jacked out of their steam chests with difficulty due to oxide scale build up. This resulted in a number of jack bolt threads being damaged to complete the activity. The bonnets after valve plug removal were shipped to CMS to repair these threads. CMS installed double threaded sleeves as a repair. CMS at this time installed the fine mesh screens to the bonnet strainers. The fine mesh screens were stitch welded to the strainers. See CMS Shop Report.

Valve bonnets 2 and 4 required replacement of the backseat bushings due to damage in the backseat face. CMS completed the removal and installation of these items.

The valve plugs were disassembled down to their finest components. Two valve main plugs were replaced. A number of new parts were put into the four valve plug assemblies to complete the inspection and overhaul. The rebuild of the plug assemblies reestablished the required component travels of the valves from the interior pilots to the stem themselves. The actuator dashpots were checked and found adequate at the time these components were ganged to the installed valve assemblies, not linkage adjustment
was necessary. The Belleville washer compression was reviewed and adjusted as needed after the unit start up.

Control Valves (8)

The valve stands \#4 and \#6 were shipped to CMS to have the snout bushings reset, as these were pulled loose or cocked with respect to the stand itself at disassembly. Disassembly was hindered by oxide scale build up in the clearance between the steam chest bore and valve stand snout alignment interface. The stand \#6 had a new snout bushing installed, as one was allowable. The \#4 snout was pulled and reset. New bushings for the bushings should be in stock for the next valve inspection (quantity 8).

Many new parts were put in the valve plug and stem assembles to restore sliding clearances or the correct plug damage. The dashpot of the actuators were checked and corrected when the linkages were assembled. The Belleville washer compression was reviewed and adjusted as needed. Several washer trays needed washer correction.

Reheat Stop Valves (1 $1^{\text {st }}$ RHT RS)

The valve cover was removed to replace the failed flexitallic gasket. The component(s) sealing faces were found in good condition and did not require any repairs other than clean up. The gasket and cover were installed with the fasteners pulled to a 45KPSI preload using a torque wrench.

Drive Turbine

Pedestals \& Couplings

The coupling between the drive turbine and the boiler feed pump was disassembled to the point of removing the coupling heads from both pump and turbine shaft. It was intended to install a new style coupling but was found not ready for this outage. The source of issue was an incorrect spool piece between the coupling heads.

The shaft fit areas and the old coupling head components were inspected for correct geometry and NDE'd for evidence of crack propagation, none found. The pump coupling head ID was blued to the shaft with good contact evident. The coupling heads were heated and put on with proper advance.

The GVN pedestal fasteners were removed one at a time and RTV sealant applied to the heads to eliminate an oil seepage path.

The EHC piping gas filled accumulators were recharged with nitrogen gas to resolve system behavior issues. No data was found as to when the Viton bladders were last changed out. Nothing more was heard about these during start up.

Tab 2

Miscellaneous Inspections

CMS Work Performed Report
MOP Pipe Weld Traveler

Columbus AEP Generator Report
Columbus AEP Generator ReportCMS Work Performed ReportMOP Pipe Weld Traveler(2 Pages)(103 Pages)

Siemens Vibration Report
Mitchell Boiler Outage
Mitchell Boiler Outage

Mitchell 1 Generator Inspection

April 6, 2006
Unit 1 generator was inspected with the rotor in place. The turbine end was entered via the riverside access cover, on the side of the generator. The collector end upper half enedbell was removed. The single bushing well access cover was removed to allow for its inspection.

Generally the generator was in good condition. Heavy oil contamination was observed on the collector end. The turbine end had a light coating of oil.

Items Recommended For Completion During The 2006 Outage

Collector End Of The Stator

1. Wipe the end turns with solvent dampened rags to remove the oil.
2. Wipe the collector end water hoses with dry rags to remove the oil drippings.
3. Investigate the water header supports at the 1:00 and 11:00 o'clock positions. Check the tightness of the locked tabbed bolts and tighten as required. Clean off the greasing on the surface of the water header supports.
4. Vacuum up the paint chips at the top of the stator. They are mostly concentrated between the bars next to the core.

Equalizing Line

The stator water equalizing line, which runs from the collector end to the turbine end is scheduled for replacement during this outage.

A new line will be run parallel to the existing line. The existing line will be retired in place.

Present plans are to fabricate a new line outside of the generator stator and complete the final two welds in the stator.

Support of the new line is planned to be by using epoxy saturated glass roving around the new line, existing retired line and the larger diameter gas distribution pipe in the top of the stator. Note: The larger diameter gas distribution pipe has holes drilled on the side. These are at approximately the 5:00 o'clock position when facing the collector end of the generator. Dacron epoxy saturated felt should be used to pad the new line, old line and gas distribution line.

To provide greater airflow during the welding and epoxy loaded material installation, remove the second cover on the turbine end, opposite the cover already removed.

A small person will be required to install the epoxy materials in the top of the generator stator.

Consideration should be given to installing the new line between the old equalizing line and the gas distribution pipe.

Bushing Well

The angled bushings have deep puddles of oil at their bases. Generally the bushing well is very oily. The oil needs wiped up and the interior of the bushing well needs wiped with clean rags.

Collector Rings and Brush Rigging

Clean the flyash and carbon deposits from the brush supports. Clean the base area of the collector rings and brush rigging.

Generator Rotor

At the collector end, clean the accessible dust and oil out from under the retaining ring.
Megger the generator field with 50 vdc for ten minutes, when all repairs are completed.

Generator CT’s

The generator CT area is coated with flyash and dirt. Wipe the CT's and supports off with solvent dampened rags.

While in the area, change the Isophase bus air intake filter. It is very dirty.

Collector Ring Dog House

1. Wipe down the interior of the doghouse to remove the oil, carbon dust and flyash.
2. Clean off the oil and flyash on the exterior of the doghouse, at the shaft entrance area.
3. Replace the filters on the top of the exciter doghouse.

Steve Ridenbaugh
AEP-Columbus
200-1465

Dan Shriver
AEP-Columbus
200-2138

AMERICAN ELECTRIC POWER

DATE: July 20, 2006
SUBJECT: MITCHELL PLANT UNIT 1 PLANNED SPRING 2006 OUTAGE

FROM: B. K. Mabe - Central Machine Shop
TO: W. L. Irons / C. W. George - Mitchell Plant

Attached is a report concerning the work CMS performed during this planned spring Unit 1 outage. If you have questions concerning the report or require additional information, please contact me.

> C: D. J. Sculley - GET Engineering File - CMS

NDE INSPECTIONS PERFORMED AT MITCHELL PLANT

LOW PRESSURE "A"AND "B" TURBINE ROTORS

Magnetic particle (wet fluorescent) inspection of the last stage blades (L-0
Stage) on the "A" and " B " low pressure turbine rotors revealed no defect indications (cracks) are present on the rotors

BEARINGS

Ultrasonic inspection of the T-3, T-4 and T-11 bearings housing to babbett bond revealed a satisfactory bond on all three bearings.

STUD BOLTS

Ultrasonic inspection of the 2 rh. turbine outer shell stud bolts revealed no defect indications (cracks) are present.

Ultrasonic inspection of the 2 rh turbine inner shell studs revealed no defect indications (cracks) are present.

Ultrasonic inspection of the 2 rh turbine packing gland studs revealed no defect indications (cracks) are present.

Ultrasonic inspection of the four throttle valve studs revealed no defect indications (cracks) are present.

Ultrasonic inspection of the eight governor valve studs revealed no defect indications (cracks) are present.

MITCHELL PLANT UNIT 1
PLANNED 2006 SPRING OUTAGE
PAGE 2
JULY 20, 2006

NDE INSPECTIONS PERFORMED AT MITCHELL

PLANT(continued)

FLOW GUIDE BOLTS

Ultrasonic inspection of the low pressure "A" turbine and low pressure "B" turbine steam flow guide bolts revealed no defect indications (cracks) are present.

VALVES

THROTTLE VALVES

Visible dye inspection of the four throttle valve stellite seats revealed no defect indications (cracks) are present in valves \# 1,2 and 3. Valve \#4 has one small crack and, in another location, has three pits (porosity) that are linked together.

MITCHELL PLANT UNIT 1
SPRING 2006 OUTAGE

NDE INSPECTIONS PERFORMED AT MITCHELL PLANT(continued) THROTTLE VALVES (CONTINUED)

Magnetic particle inspection of the inside and outside of the four (4) throttle valve bodies revealed no defect indications (cracks) are present.

GOVERNOR VALVES

Magnetic particle (wet fluorescent) inspection of the governor valve chests (2) revealed no defect indications (cracks) are present. The non-stellite governor valve seats have visual areas of erosion in the seat area. There is a $1 / 4$ " crack on the bypass pipe weld to the flange and $\mathrm{a}^{3} / 4$ " long crack on the flange face outlet hole.

Magnetic particle (wet fluorescent) inspection of the governor valve stands revealed one with an $1 \backslash 8^{\prime \prime}$ to $1 / 4 "$ long crack beside the rabbit fit on the inside section of the stand.

HAND SHUT OFF VALVES

Magnetic particle (wet fluorescent) inspection of the hand shut off valve welds revealed the following:

- $12^{\text {th }}$ Floor - Penthouse 5R vent valve - 2 welds - No defect indications (cracks)
- $12^{\text {th }}$ Floor - Penthouse 6 L vent valve -2 welds - No defect indications (cracks)
- $11^{\text {th }}$ Floor - Drain Valve 11R - 3 welds - No defect indications (cracks)
- $11^{\text {th }}$ Floor - Drain valve $12 \mathrm{R}-3$ welds - No defect indications (cracks)
- $11^{\text {th }}$ Floor - Drain valve $13 \mathrm{R}-2$ welds - No defect indications (cracks)
- $11^{\text {th }}$ Floor - Drain valve $14 \mathrm{R}-2$ welds - No defect indications (cracks)
- $11^{\text {th }}$ Floor - Drain valve $13 \mathrm{~L}-2$ welds - No defect indications (cracks)
- $11^{\text {th }}$ Floor - Drain valve $14 \mathrm{~L}-2$ welds - No defect indications (cracks)
- $11^{\text {th }}$ Floor - Drain valve 7L - Inside Penthouse - 1 weld - No defect indications (cracks)
- $7^{\text {th }}$ Floor - Drain valve 19R - 4 welds - No defect indications (cracks)
- $5^{\text {th }}$ Floor - Drain valve $25 \mathrm{R}-3$ welds - No defect indications (cracks)

HAND SHUT OFF VALVES (CONTINUED)

- $5^{\text {th }}$ Floor - Drain valve $25 \mathrm{R}-3$ welds - No defect indications (cracks)
- $5^{\text {th }}$ Floor - Drain valve $25 \mathrm{~L}-2$ welds - No defect indications (cracks)
- $5^{\text {th }}$ Floor - Drain valve 29L - Inside boiler - 1 weld - No defect indications (cracks)
- $5^{\text {th }}$ Floor - Drain valve $29 \mathrm{R}-2$ welds - No defect indications (cracks)
- $5^{\text {th }}$ Floor - Drain valve 30R - 2 welds - No defect indications (cracks)
- $5^{\text {th }}$ Floor - Drain valve $30 \mathrm{~L}-2$ welds - No defect indications (cracks)

Magnetic particle (wet fluorescent) inspection of hand shut off valve 32R welds (2) revealed no defect indications (cracks) are present.

DRAIN LINE WELD REPAIRS

Magnetic particle inspection of the following drain line weld repairs revealed the following:

- Pass 5 to 6 bottle drain - Coupling weld repairs just outside of boiler - No defect indications (cracks) are present.
- \#3 Main Stop Valve - Below seat drain line - Weld repair to the west side of $1^{\text {st }}$ hand shut off valve - No defect indications (cracks) are present.
- \#31L Boiler Drain - Inspection of welds on one (1) hand shut off valve and 1 butt weld on the outside of the boiler at the "T" above small expansion joint and two
(2) 1 " line welds on the inside of the boiler revealed no defect indications (cracks) are present.

$\mathbf{2}^{\text {ND }}$ REHEAT STEAM LINE

Magnetic particle inspection of the cover pass weld on the gamma plug revealed no defect indications (cracks) are present.

MITCHELL PLANT UNIT 1
 PLANNED 2006 SPRING OUTAGE

PAGE 5
JULY 20, 2006
NDE INSPECTIONS PERFORMED AT MITCHELL PLANT (continued)

DEAERATOR

Magnetic particle (wet fluorescent) inspection of the deaerator circumferential (all) welds on the outside of the deaerator, the inlet lines welds, the outlet lines welds, the small lines welds, the stiffner leg support welds, the pressure relief valve welds and manway welds revealed no defect indications (cracks) are present.

Magnetic particle (wet fluorescent) inspection of the deaerator pad weld at the outside northeast corner revealed no defect indications (cracks) are present.

Magnetic particle inspection of the deaerator next to last circumferential weld and the seam weld between the next to last and last hemi head circular weld in the back end of the deaerator revealed the weld has eroded away on a 18 " long area of the circular weld on the south wall. This was a previously weld repaired area.

Magnetic particle (wet fluorescent) inspection of the welds inside of the deaerator in an area toward the backside of the deaerator revealed the following:

- \#5 -- Donut weld at back pipe - No defect indications (cracks) are present.
- \#3 -- Circumferential weld at back hemi head - No defect indications (cracks) are present.
- \#6 -- Big line weld at center buck - No defect indications (cracks) are present.
- \#2 \& \#8 -- Hemi Head pad welds - No defect indications (cracks) are present.
- \#10 -- Arc strike - No defect indications (cracks) are present.
- \#11 -- Arc strike - No defect indications (cracks) are present.
- \#12 -- Arc strike - No defect indications (cracks) are present.
- \#13 -- Arc strike - No defect indications (cracks) are present.
- \#15 - Two (2) small 90° welds at the south wall - No defect indications (cracks) are present. Two (2) top 4" pipe welds - No defect indications (cracks) are present. Two(2) 14 " pipe welds at south wall - No defect indications (cracks) are present.

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 6
JULY 20, 2006
NDE INSPECTIONS PERFORMED AT MITCHELL PLANT(continued)

DEAERATOR(continued)

- \#1 Pad weld at northeast lower wall has a area with cracks.
- Magnetic particle inspection of the circumferential weld repair on the inside and outside of the deaerator on the south wall revealed no defect indications (cracks) in the weld repairs.
- Magnetic particle inspection of the outside cover pass on two 14 " heater drains where they go through the shell wall revealed both welds are free from defect indications (cracks).
- A section of plate was removed from the south east corner of the deaeerator was reinstalled and a magnetic particle inspection of the welds cover pass on the inside and outside revealed no defect indications (cracks) are present. A entry door was installed into the section of plate and a magnetic particle inspection revealed no defect indications (cracks) are present in the inside and outside root, and cover pass welds.

HEATERS

Magnetic particle (wet fluorescent) inspection of the \#1 low pressure heater shell revealed no defect indications (cracks) in the inside circumferential welds, the inside seam welds, the inside inlet nozzle welds and the inside spray nozzle welds.

Ultrasonic inspection was performed to the inlet nozzles to determine wall thickness. The inspection was started at the back nozzle and moving to the front. Approximately Ten (10) thickness readings at each location revealed the following:

- Back nozzle - Pipe thickness -- $.493 "$ to .565 ".
- Back nozzle - - Shell part of nozzle -- . 625 " to $.795^{\prime \prime}$.
- $2^{\text {nd }}$ nozzle - Pipe thickness -- $475^{\prime \prime}$ to $.580^{\prime \prime}$

MITCHELL PLANT UNIT 1
 PLANNED 2006 SPRING OUTAGE
 PAGE 7

JULY 20, 2006

NDE INSPECTIONS PERFORMED AT MITCHELL PLANT(continued) HEATER INLET NOZZLE THICKNESS READINGS(continued)

- $2^{\text {nd }}$ nozzle - Shell part of nozzle -- 619 " to $.782^{\prime \prime}$
- $3^{\text {rd }}$ nozzle - Pipe thickness --. $419^{\prime \prime}$ to $.567^{\prime \prime}$
- $3^{\text {rd }}$ nozzle - Shell part of nozzle $--.642^{\prime \prime}$ to $.793^{\prime \prime}$
- 4th nozzle - Pipe thickness -- . 427 " to .558 "
- 4th nozzle - Shell part of nozzle -- .637" to $.802^{\prime \prime}$
- $5^{\text {th }}$ nozzle - Pipe thickness --.429 " to $.508^{\prime \prime}$
- $5^{\text {th }}$ nozzle - Shell part of nozzle -- $.682^{\prime \prime}$ to $.793^{\prime \prime}$
- Front nozzle - Pipe thickness -- .489 " to $.528^{\prime \prime}$
- Front nozzle - Shell part of nozzle -- .693" to .728"

Magnetic particle inspection of the \#1 low pressure heater front heater shell circumferential weld where a small "C" shaped section was cut from the shell for alignment purposes revealed no defect indications (cracks) are present after weld repair was completed. The root pass, halfway out and the cover pass welds were inspected when the shell segment was weld back into place.

BOILER FEED PUMP TURBINE

Ultrasonic inspection of the boiler feed pump turbine rotor shaft from the pump end to the governor end revealed no defect indications (cracks) are present
Magnetic particle (wet fluorescent) inspection of the boiler feed pump turbine rotor pump end and governor end L-0 blades revealed no defect indications (cracks) are present.
Magnetic particle(wet fluorescent) inspection of the boiler feed pump couplings and coupling covers revealed no defect indications (cracks) are present.

PRIMARY AIR FAN

Magnetic particle inspection was performed to the outboard bearing journal on the fan shaft and no defect indications (cracks) are present.

MAIN OIL PUMP LINES

Magnetic particle (wet fluorescent) inspection of the main oil pump suction and discharge leg welds revealed no defect indications (cracks) are present.

MITCHELL PLANT UNIT 1
 PLANNED 2006 SPRING OUTAGE

PAGE 8
JULY 20, 2006

NDE INSPECTIONS PERFORMED AT MITCHELL PLANT(continued)

SECOND REHEAT TURBINE OUTER LOWER HALF SHELL

Visible dye inspection of sixteen (16) stiffener brace welds revealed twelve (12) of the brace welds have cracks. The $1-1 / 4$ " to $1-1 / 2^{\prime \prime}$ long cracks were ground and weld repairs to the 12 cracked welds was completed. A follow up visible dye inspection revealed no defect indications (cracks) remain after weld repair.

MITCHELL PLANT UNIT 1
PLANNED 2006 SPRING OUTAGE
PAGE 9
JULY 20, 2006

NDE INSPECTIONS PERFORMED AT MITCHELL PLANT(continued) SECOND REHEAT TURBINE OUTER LOWER HALF SHELL(continued)

The following is a sketch showing the location of the twelve (12) cracked welds on the eight (8) stiffener braces:

MITCHELL PLANT UNIT 1
SPRING 2006 PLANNED OUTAGE

2ND REHEAT TURBINE SHELL LOWER HALF SUPPORT BRACES (STRUTS)

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 10
JULY 20, 2006

NDE INSPECTIONS PERFORMED AT MITCHELL PLANT(continued) SECOND REHEAT TURBINE OUTER UPPER HALF SHELL(continued)

The following is a sketch showing the location of three (3) cracked welds of 16 welds on the eight (8) stiffener braces:

MITCHELL PLANT UNIT 1
SPRING 2006 PLANNED OUTAGE

2ND REHEAT TURBINE OUTER SHELL UPPER HALF SUPPORT BRACES (STRUTS)

OUTAGE WORK PERFORMED@ MITCHELL PLANT BY CMS

SECOND REHEAT TURBINE OUTER SHELL SUPPORT STRUTS (BRACES) (CONTINUED)

CMS personnel traveled to Mitchell Plant and ground to remove cracks from the second reheat turbine outer shell support struts. The ground areas were weld repaired. After welding was completed a visible dye inspection of the welded areas revealed no defect indications (cracks) are present.

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 12
JULY 20, 2006

OUTAGE WORK PERFORMED@ CMS

\#1 BLADE RING

The \#1 and \#2 governor and generator end blade rings were transported to CMS where the following tasks were performed:

- The row 1 blades governor and generator end were removed and new row 1 blades were installed and machined to the correct configuration and dimensions.

MITCHELL PLANT UNIT 1 NEW 2RH TB 1ST ROW BLADES GEN END \#1 BR APRIL 2006

WESTINGHOUSE REPORTS THERE IS .125" OF EXTRA STOCK ON BOTH SIDES OF THE BLADE ROOT
WESTINGHOUSE ALSO REPORTS THE DESIGN GROOVE WIDTH IS $2.921^{\prime \prime}$ AND THE . $125^{\prime \prime}$ OF EXTRA STOCK ON EACH SIDE WAS BASED ON THIS WIDTH.

APRIL 29, 2006
14

FINISH MACHINING DRAWING FOR GOV. \& GEN ENDS OF MITCHELL PLANT UNIT 1 2ND REHEAT TURBINE STATIONARY 1ST ROW BLADES APRIL 29, 2006

OUTAGE WORK PERFORMED @ CMS (CONTINUED)

\#1 BLADE RING (CONTINUED)

- The governor and generator end $1^{\text {st }}$ stage blades were removed, new blades were installed and machined.
- Impact damage and eroded areas in the $2^{\text {nd }}$ and $3^{\text {rd }}$ stage blade vane sections were repaired by straightening and welding. The welded areas were finish ground and all blades were NDE inspected after repairs. These inspections revealed no defect indications (cracks) remain.
- The \#1 blade ring upper half was set on the lower half and dimensions were taken and recorded. The upper and lower halves were then bolted together and dimensions were taken and recorded to determine how the blade rings moved diametrically after being bolted as opposed to being free standing. See attachments below for dimensions.
- All seals were removed, new seals were installed and were machined to the correct diameters with the upper and lower half bolted together.
- The row 2 and row 3 stationary seal grooves were moved to make the blade ring(carrier) compatible with 2RH rotor TD 39415 which was installed during this outage. This rotor had modified blades installed at Siemens Westinghouse and requires a different seal configuration. The blade ring new seal grooves were machined per Siemens Westinghouse drawings 9D13676, 9D13686 and 9D13683 to change the location of the seals and establish the correct diameter for the seals.

OUTAGE WORK PERFORMED @ CMS (CONTINUED)

\#1 BLADE RING (CONTINUED)

MITCHELL \#1 GOV. END BLADE CARRIER

	ROW 1		ROW 2	ROW 3		
A	34.449	34.444	36.324	36.337	38.225	38.241
B	34.441	34.445	36.351	36.368	38.258	38.291
C	34.441	34.432	36.328	36.356	38.257	38.286
DIS ADM						
DIS ADM	DIS	ADM				

DATE: May 3, 2006
TAKEN BY: Josh Duncan

OUTAGE WORK PERFORMED @ CMS (CONTINUED)

\#1 BLADE RING (CONTINUED)

MITCHELL \#1 GOV. END BLADE CARRIER

	ROW 1		ROW 2	ROW 3		
A	34.420	34.425	36.304	36.318	38.202	38.226
B	34.423	34.428	36.345	36.362	38.251	38.283
C	34.433	34.433	36.347	36.347	38.245	38.275
DIS ADM						DIS
ADM	DIS	ADM				

DATE: May 3, 2006
TAKEN BY: Josh Duncan

OUTAGE WORK PERFORMED @ CMS (CONTINUED)

\#1 BLADE RING (CONTINUED)
MITCHELL U-1 \#1 GOV. END BLADE CARRIER JULY 2006

OUTAGE WORK PERFORMED @ CMS (CONTINUED)

\#1 BLADE RING (CONTINUED)

MITCHELL \#1 GEN. END BLADE CARRIER

	ROW 1		ROW 2		ROW 3			
A	34.405	34.406	36.299	36.280	38.211	38.196		
B	34.405	34.406	36.327	36.305	38.254	38.219		
C	34.405	34.406	36.342	36.318	38.251	38.224		
DIS ADM						DIS	ADM	DIS
:---:								
ADM								

DATE: May 3, 2006
TAKEN BY: Sam Halstead

OUTAGE WORK PERFORMED @ CMS (CONTINUED)

\#1 BLADE RING (CONTINUED)

MITCHELL \#1 GEN. END BLADE CARRIER

	ROW 1		ROW 2		ROW 3	
A	34.404	34.406	36.293	36.279	38.202	38.191
B	34.404	34.406	36.325	36.307	38.252	38.222
C	34.405	34.406	36.338	36.319	38.246	38.223
DIS ADM						DIS ADM
DIS	ADM					

DATE: May 3, 2006
TAKEN BY: Sam Halstead

OUTAGE WORK PERFORMED @ CMS (CONTINUED)

\#1 BLADE RING (CONTINUED)
MITCHELL U-1 \#1 GEN. END BLADE CARRIER JULY 2006

PLANNED 2006 SPRING OUTAGE

PAGE 20
JULY 20, 2006

OUTAGEWORK PERFORMED@CMS (CONTINUED) \#2 BLADE RING

- Impact damage and eroded areas in the vane sections of all stages were repaired by straightening and welding. The welded areas were finish ground and all blades were NDE inspected after repairs. These inspections revealed no defect indications (cracks) remain.
- The \#2 blade ring upper half was set on the lower half and dimensions were taken and recorded. The upper and lower halves were then bolted together and dimensions were taken and recorded to determine how the blade rings moved diametrically after being bolted as opposed to free standing dimensions. See attachments below for dimensions.
- All seals were removed, new seals were installed and the new seals were machined to the correct diameters with the upper and lower half bolted together.

MITCHELL PLANT UNIT 1 \#2 GOV. END BLADE CARRIER JULY 2006 MITCHELL \#2 GOV. END BLADE CARRIER

	ROW 4		ROW5.		ROW6	
A	40,043	40.026	41.927	41.916	43.928	43.940
B	40.055	40.035	41.919	41.900	43.909	43.921
C	40.040	40.029	41.908	41.890	43.903	43.921
	DIS	ADM	DIS	ADM	DIS	ADM

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 21
JULY 20, 2006

OUTAGE WORK PERFORMED@ CMS (CONTINUED) \#2 BLADE RING (CONTINUED)

MITCHELL U-1 \#2 GOV. END BLADE CARRIER JULY 2006

BOLTED	\mathbf{x}
UNBOLTED	

	ROW 4		ROW 5		ROW6	
A	40.039	40.024	41.924	41.909	43.932	43.920
B	40.051	40.035	41.924	41.906	43.927	43.914
C	40.041	40.029	41.929	41.896	43.927	43.906
	DIS	ADM	DIS	ADM	DIS	ADM

DATE:MAY 1, 2006
TAKEN BY:SMOOT \& PENCE

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE

PAGE 22
JULY 20, 2006

OUTAGE WORK PERFORMED @ CMS (Continued) \#2 BLADE RING (CONTINUED)

MITCHELL U-1 \#2 BLADE RING JULY 2006

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 23
JULY 20, 2006

OUTAGE WORK PERFORMED @ CMS (CONTINUED)

\#2 BLADE RING (CONTINUED)

MITCHELL \#2 GEN. END BLADE CARRIER

	ROW 4		ROW 5		ROW 6	
A	40.082	40.047	41.939	41.921	43.938	43.925
B	40.023	39.993	41.890	41.878	43.893	43.877
C	40.034	40.007	41.887	41.875	43.895	43.889
	DIS	ADM	DIS	ADM	DIS	ADM

DATE: May 1,2006
TAKEN BY: Smoot and Pence

MITCHELL PLANT UNIT 1
PLANNED 2006 SPRING OUTAGE
PAGE 24
JULY 20, 2006

OUTAGE WORK PERFORMED @ CMS (CONTINUED) \#2 BLADE RING (CONTINUED)

MITCHELL U-1 \#2 GEN. END BLADE CARRIER

BOLTED	\mathbf{x}
UNBOLTED	

	ROW 4		ROW 5		ROW6	
A	40.059	40.030	41.925	41.909	43.931	43.921
B	40.038	40.022	41.900	41.882	43.912	43.897
C	40.029	40.014	41.897	41.879	43.900	43.983
	DIS	ADM	DIS	ADM	DIS	ADM

DATE: May 1, 2006
TAKEN BY: Smoot and Pence

MITCHELL PLANT UNIT 1
PLANNED 2006 SPRING OUTAGE
PAGE 25
JULY 20, 2006

OUTAGE WORK PERFORMED @ CMS (Continued)
 \#2 BLADE RING (CONTINUED)

MITCHELL U-1 \#2 BLADE RING JULY 2006

MITCHELL PLANT UNIT 1
PLANNED 2006 SPRING OUTAGE
PAGE 26
JULY 20, 2006

OUTAGEWORK PERFORMED@CMS (CONTINUED)

CIRCULATING WATER PUMP IMPELLER "11 A \& 11 B"

The 11 A circulating water pump impeller assembly was transported to CMS for inspection and repair. The following is a description of the repairs performed:

- Magnetic particle(wet fluorescent) inspection of the exposed areas on the circulating water pump shafts revealed no defect indications (cracks) are present.
- The impeller assembly was disassembled for cleaning and inspection.
- The type 304 stainless steel impeller has areas of cavitation on the vane sections. These areas of cavitation were ground to produce a smooth surface. The ground areas were weld repaired using ER308L stainless steel filler metal. The area to be welded was preheated only enough to remove moisture prior to welding.
- Areas of erosion on the outside of the flow guide were filled using Defcon Ceramic Repair 11700 then the outside of the flow guide was coated with Chesterton 855 to prevent erosion damage.
- The impeller assembly was reassembled using new packing sleeves and new bearings. All other assembly components were reused.
- See sketches below for dimensional information:

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 27
JULY 20, 2006

OUTAGE WORK PERFORMED@CMS (CONTINUED)

MITCHELL U-1 CWP JULY 2006
 IMPELLER AXIAL POSITION \& ROTATION
 PUMP 11 A
 SKETCH \#1

囚

\square CLOCKWISE

OUTAGE WORK PERFORMED @ CMS (CONTINUED) CIRCULATING WATER PUMP IMPELLERS (CONTINUED)

MITCHELL U-1 CWP IMPELLER ASSEMBLY JULY 2006 PUMP 11 A

SKETCH \#2

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 29
JULY 20, 2006

OUTAGE WORK PERFORMED @ CMS (CONTINUED)

CIRCULATING WATER PUMP IMPELLERS (CONTINUED)

MITCHELL U-1 CWP 11A SHAFT JULY 2006

PUMP 11 A

SKETCH \#3
EXISTING SHAFTWAS REUSED (AS RECEIVED)
COUNTERCLOCKWISE ROTATION

DATE: 4-18.06
RECORDED BY: M/ke Smoot
MITCHELLU-1 CWP SLEEVES (NEW) JULY 2006
New sleeves
SKETCH\#4
PUMP11A

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 30
JULY 20, 2006

OUTAGE WORK PERFORMED @ CMS (Continued)

CIRCULATING WATER PUMP IMPELLERS (CONTINUED)

MITCHELL UNIT 1 CWP 11 A JULY 2006

SKETCH \#5

PUMP 11 A
BEARING
HOUSINGS
OUTBOARD HOUSING

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 31
JULY 20, 2006

OUTAGE WORK PERFORMED@CMS (CONTINUED)

CIRCULATING WATER PUMP IMPELLERS (CONTINUED)

MITCHELL U-1 CWP 11 A JULY 2006
FINAL RUNOUT CHECKS WITHOUT PACKING SLEEVES CWP PUMP 11 A

MITCHELL PLANT UNIT 1
PLANNED 2006 SPRING OUTAGE
PAGE 32
JULY 20, 2006

OUTAGE WORK PERFORMED @ CMS (CONTINUED)

CIRCULATING WATER PUMP IMPELLERS (CONTINUED)

MITCHELL U-1 CWP 11A JULY 2006
RUNOUT CHECKS WITH PACKING SLEEVES
CWP 11 A
SKETCH \#7

FINAL
RUNOUT CHECK

OUTAGE WORK PERFORMED @ CMS (CONTINUED)

CIRCULATING WATER PUMP IMPELLERS (CONTINUED)

MITCHELL U-1 ĊWP 11 A
 PARTS DESCRIPTION SKETCH \#8

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 34
JULY 20, 2006
OUTAGE WORK PERFORMED @ CMS (CONTINUED)

CIRCULATING WATER PUMP IMPELLERS (CONTINUED)

MITCHELL U-1 CWP 11A BRONZE PACKING RINGS ID AND OD DIAMETERS

SKETCH \#9

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 35
JULY 20, 2006

OUTAGE WORK PERFORMED@CMS (CONTINUED)

CIRCULATING WATER PUMP IMPELLERS (CONTINUED)

The 11 B circulating water pump impeller assembly was transported to CMS for inspection and repair. The following is a description of the repairs performed:

- The impeller assembly was disassembled for cleaning and inspection.
- The type 304 stainless steel impeller has areas of cavitation on the vane sections. These areas of cavitation were ground to produce a smooth surface. The ground areas were weld repaired using ER308L stainless steel filler metal. The area to be welded was preheated only enough to remove moisture prior to welding.
- Areas of erosion on the outside of the flow guide were filled using Defcon Ceramic Repair 11700 then the outside of the flow guide was coated with Chesterton 855 to prevent erosion damage.
- The impeller assembly was reassembled using new packing sleeves and new bearings. All other assembly components were reused.

See sketches below for dimensional information:

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 36
JULY 20, 2006

OUTAGE WORK PERFORMED @ CMS (CONTINUED)

CIRCULATING WATER PUMP IMPELLERS (CONTINUED)

MITCHELL U-1 CWP 11 B JULY 2006
IMPELLER AXIAL POSITION \& ROTATION PUMP 11 B
COUNTERCLOCKWISE
X CLockwise

MITCHELL PLANT UNIT 1
PLANNED 2006 SPRING OUTAGE
PAGE 37
JULY 20, 2006
OUTAGE WORK PERFORMED @ CMS (Continued)

CIRCULATING WATER PUMP IMPELLERS (CONTINUED)

MITCHELL U-1 CWP 11B JULY 2006 PUMP 11 B

SKETCH \#2

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 38
JULY 20, 2006

OUTAGE WORK PERFORMED@ CMS (CONTINUED)

CIRCULATING WATER PUMP IMPELLERS (CONTINUED)

MITCHELL U-1 CWP SHAFT 11B JULY 2006

EXISTING
SHAFT DIAMETERS

CWP SHAFT 11B

SKETCH \#3

DATE: 4-18-06
RECORDED BY: Rick Stickley

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 39
JULY 20, 2006

OUTAGEWORK PERFORMED@ CMS (CONTINUED)

CIRCULATING WATER PUMP IMPELLERS (CONTINUED)

MITCHELL U-1 CWP 11B FINAL RUNOUT CHECKS JULY 2006 RUNOUT CHECKS WITHOUT PACKING SLEEVES PUMP 11 B

SKETCH \#4

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 40
JULY 20, 2006
OUTAGE WORK PERFORMED @ CMS (Continued)

CIRCULATING WATER PUMP IMPELLERS (CONTINUED)

MITCHELL U-1 CWP 11 B JULY 2006
 RUNOUT CHECKS WITH PACKING SLEEVES

PUMP 11 B
FINAL
RUNOUT CHECK
SKETCH \#5

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 41
JULY 20, 2006
OUTAGE WORK PERFORMED @ CMS (CONTINUED)

CIRCULATING WATER PUMP IMPELLERS (CONTINUED)

MITCHELL U-2 CWP 11 B JULY 2006

 PUMP 11 BINBOARD
BEARING HOUSING

OUTBOARD BEARING HOUSING

SKETCH \#6

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 42
JULY 20, 2006

OUTAGE WORK PERFORMED @ CMS (CONTINUED)

CIRCULATING WATER PUMP IMPELLERS (CONTINUED)

MITCHELL U-1 CWP 11B JULY 2006 PARTS DESCRIPTION SKETCH \#7

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 43

OUTAGE WORK PERFORMED @ CMS (CONTINUED)

MAIN OIL PUMP HOUSING

The main oil pump housing was transported to CMS where it was weld repaired and machined. See attached sketch for area that was welded and machined.

MITCHELL UNIT 1 MAIN OIL PUMP HOUSING
 THERE ARE TWO GROOVES TO MACHINE IN THE LOWER HALF AND ONE GROOVE IN THE UPPER HALF

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 44
JULY 20, 2006

OUTAGE WORK PERFORMED@ CMS (Continued) THROTTLE VALVE BONNETTS (4)

The throttle valve bonnets were transported to CMS and the following work was performed:

- The existing screens were removed from the strainer part of the bonnet and new screens were installed. The existing screens were bolted to the strainer. The new screens were stitch welded to the strainer body per the procedure below:

Band the new screen to insure it is tight against the body of the strainer.
Preheat the strainer to 250 degrees F.
Use ER410 stainless filler metal and tack weld the screen to the strainer body. After a tack is deposited hit it with a hammer to make sure it is against the strainer body. Start at the center of the strainer body and tack both sides starting from the center and working both sides toward the ends.

After the strainer has been tacked around the circumference and across both ends insure the strainer body weld area is preheated to a minimum of 250 degrees and maintain this during welding.

Secure the screen to the strainer body using 1-112" long stitch welds on 9 " centers with ER410 stainless steel. Do not leave craters at the ends of the welds. That will give us a 7 $1 / 2^{\prime \prime}$ space between the end of one tack weld and the beginning of another tack weld. insure finished weld is SLIGHTLY CONVEX WITH NO

The intercept valve bonnet jack bolt holes were drilled to a larger diameter and tapped to repair the damaged holes.

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 45
JULY 20, 2006

OUTAGE WORK PERFORMED@CMS (CONTINUED)

COUPLING SPACERS

The $2^{\text {nd }}$ reheat (IP) turbine and generator end coupling spacers were transported to CMS where they were ground to the following thicknesses:
TB End $=1.424 "$ final thickness.
GEN End $=1.3995^{\prime \prime}$ final thickness.

\#4 GOVERNOR VALVE

A new bushing was installed in the \#4 governor valve and was machined to the following dimensions:

MITCHELL UNIT 1 \#4 GOVERNAOR VALVE

INSTALLED NEW BUSHING MACHINED RABBET FITS TO 5.572

OUTAGE WORK PERFORMED @ CMS (CONTINuEd LUBE OIL COOLER SPOOL PIECE

The lube oil cooler spool piece was transported to CMS where it was modified by machining to reduce the overall length and to reestablish the fits in one end.

MITCHELL U-1 OIL COOLER SPOOL PIECE LANTERN RING FIT JULY

MITCHELL PLANT UNIT 1
 PLANNED 2006 SPRING OUTAGE

PAGE 47
JULY 20, 2006

OUTAGE WORK PERFORMED @ CMS (CONTINUED

LUBE OIL COOLER SPOOL PIECE (CONTINUED)

The lube oil cooler spool piece was transported to CMS where it was modified by machining to reduce the overall length from 17-7/8" to $16-3 / 8^{\prime \prime}$ and to reestablish the lantern ring fits its in one end.

MITCHELL PLANT UNIT 1
LUBE OIL OIL COOLER SPOOL PIECE MAY 2006

MITCHELL PLANT UNIT 1
PLANNED 2006 SPRING OUTAGE
PAGE 48
JULY 20, 2006

OUTAGE WORK PERFORMED @ CMS (CONTINUED

LUBE OIL COOLER SPOOL PIECE (CONTINUED)

MITCHELL PLANT UNIT 1
PLANNED 2006 SPRING OUTAGE
PAGE 49
JULY 20, 2006

OUTAGE WORK PERFORMED@ CMS (CONTINUED

SECOND REHEAT TURBINE ROTOR CONTROL ROTOR

The control rotor for the second reheat turbine rotor was transported to CMS for repair of rough areas on the fits. The following tasks were performed on the control rotor:

- The rotor was set up in a lathe and incoming runout readings were taken.
- Several fits on the control rotor were ground and the final sizes were recorded.
- Final runout readings were taken and recorded.

See the following sketches for detailed information:
MITCHELL UNIT 1 SECOND REHEAT TURRBINE ROTOR CONTROL ROTOR JULY 2006
INITIAL RUNOUTS

MITCHELL PLANT UNIT 1
PLANNED 2006 SPRING OUTAGE
PAGE 50
JULY 20, 2006

OUTAGE WORK PERFORMED @ CMS (Continued

SECOND REHEAT TURBINE ROTOR CONTROL ROTOR(CONTINUED)

MITCHELL UNIT 1 SECOND REHEAT TURBINE ROTOR CONTROL ROTOR JULY 2006
FINAL DIAMETERS
AFTER FITS WERE GROUND

MITCHELL PLANT UNIT 1
PLANNED 2006 SPRING OUTAGE
PAGE 51
JULY 20, 2006

OUTAGE WORK PERFORMED @ CMS (Continued

SECOND REHEAT TURBINE ROTOR CONTROL ROTOR(CONTINUED)

MITCHELL UNIT 1 2ND REHEAT TURBINE ROTOR CONTROL ROTOR JULY 2006
FINAL RUNOUTS
WITHOUT STUB
SHAFT BOLTED ON

MITCHELL PLANT UNIT 1
PLANNED 2006 SPRING OUTAGE
PAGE 52
JULY 20, 2006

OUTAGE WORK PERFORMED @ CMS (Continued

SECOND REHEAT TURBINE ROTOR CONTROL ROTOR(CONTINUED)

MITCHELL UNIT 1 SECOND REHEAT TURBINE ROTOR CONTROL ROTOR JULY 2006
 FINAL RUNOUTS AFTER STUB SHAFT WAS REATTACHED AND FITS WERE GROUND

MITCHELL PLANT UNIT 1

PLANNED 2006 SPRING OUTAGE
PAGE 53
JULY 20, 2006

OUTAGE WORK PERFORMED @ CMS (CONTINUED

SECOND REHEAT TURBINE ROTOR CONTROL ROTOR(CONTINUED)

MITCHELL PLANT UNIT 1
2RH TB ROTOR
CONTROL ROTOR
APRIL 2006

MITCHELL PLANT UNIT 1
PLANNED 2006 SPRING OUTAGE
PAGE 54
JULY 20, 2006

OUTAGE WORK PERFORMED @ CMS (CONTINUED

SECOND REHEAT TURBINE ROTOR CONTROL ROTOR(CONTINUED)

MITCHELL PLANT UNIT 1
2RH TB ROTOR CONTROL ROTOR
APRIL 2006
ML U-1 2RH TB ROTOR CONTROL ROTOR

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33
Attachment 15
\qquad
\qquad

1. IDENTIFICATION

Item A st L, P. Turbine.Spinulles
2. TECHNIQUE:Dry Powder
区
Wet Fluorescent
Non Fluorescent
4. CURRENT TYPE: \square
\square DC
5. AMP TURNS - A,000
6. INSPECTION PROCEDURE: \qquad MI -1-5-2-. 3
\qquad
7. INSPECTION SPECIFICATIONS: \qquad
8. TYPE OF INDICATION FOUND:1. Crack \square 2. Linear Surface \square 3. Linear Subsurface4. Undercut \square
9. SKETCH/DESCRIPTION:

A magnetic particle inspection was performed to the governor 4 generatorends of the L-o stage blades of both rotors, Results showed no cracks.
10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

Signature \qquad Graley+Stricklangl \qquad $3-31-06$
11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad

ULTRASONIC TEST REPORT AMERICAN ELECTRIC POWER CENTRAL MACHINE SHOP 3100 MacCorkle Avenue, Building 309

South Charleston, WV 25303

1. IDENTIFICATION:

Facility Mitchell \qquad
PC/SN Unit 1
Item \qquad Turbine Bearings
2. TECHNIQUE:

Straight BeamAngle Beam
Dual Transducer
Type of Couplant \qquad Ultra Gel II Single Transducer
Test Unit Kraut kramer USK 71
3. CALIBRATION - REFLECTOR TYPE:Drilled HoleV. NotchIIW BlockOther \qquad
4. INSPECTION PROCEDURE: \qquad $M I-1-5-2-4$
5. INSPECTION SPECIFICATIONS: \qquad
6. TYPE OF INDICATION:1. Crack2. Lamination3. Corrosion/Erosion4. Internal Voids5. Linear
7. SKETCH/DESCRIPTION:

A ultrasonic inspection was performed to the following turbine bearings to detect if babbit bond was at acceptable levels.
I3 Bearing- 4/H-4/ H-Bond ok
I\& Bearing - $4 / \mathrm{H}$ - $4 / \mathrm{H}$ - B and ok
Ill Bearing-
4/H. L/H -Bond ok
8. INSPECTION PERFORMED BY: (AEP Level II UT Inspector)

Signature

9. APPROVED BY: (ADE Supervisor)

$$
\frac{\Delta-18-06}{\text { DATE }}
$$

Signature \qquad
\qquad

ULTRASONIC TEST REPORT AMERICAN ELECTRIC POWER CENTRAL MACHINE SHOP 3100 MacCorkle Avenue, Building 309 South Charleston, WV 25303

1. IDENTIFICATION:

Facility Mitchell Item \qquad PCISN - unit
2. TECHNIQUE:

区 Straight BeamAngle BeamFrequency - \square 1 MH 2.25 MH5 MH
Search Angle - 区 $90^{\circ}$$45^{\circ}$ 60°Single TransducerDual Transducer
Type of Couplant \qquad Ultra Gel II Test Unit Kraut Kramer USK 7D
3. CALIBRATION - REFLECTOR TYPE:
\qquad
4. INSPECTION PROCEDURE: \qquad $M I-1-5-2-4$
\qquad
5. INSPECTION SPECIFICATIONS: \qquad
6. TYPE OF INDICATION:1. Crack2. Lamination3. Corrosion/Erosion4. Internal Voids5. Linear
7. SKETCH/DESCRIPTION:

A ultrasonic inspection was performed to the following studs.
Reheat Shell
Outer shell studs- ok
Inner Shell Studs -oK
Packing Gland Studs - ok
Throttle Valves (4)-Studs ok
Governor Valves (8) - Studs ok
8. INSPECTION PERFORMED BY: (AEP Level II UT Inspector)

Signature \qquad
9. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad
\qquad 40595243－06

DATE $-4-19-06$
1．IDENTIFICATION：
\qquad Mitchell \qquad
2．TECHNIQUE：
【 Straight BeamAngle Beam5 MH
Search Angle－区 $90^{\circ}$$45^{\circ}$ 60°囚 Single TransducerDual Transducer
Type of Couplant \qquad M1tragel II Test Unit \qquad
3．CALIBRATION－REFLECTOR TYPE：IIW BlockOther \qquad
4．INSPECTION PROCEDURE： \qquad $M I-1-5-2-4$

5．INSPECTION SPECIFICATIONS： \qquad

6．TYPE OF INDICATION：1．Crack2．Lamination3．Corrosion／Erosion4．Internal Voids5．Linear
7．SKETCH／DESCRIPTION：
A ultrasonic inspection was performed to the generator 4 governor end flow guide bolts of A and B L．P．rotors．Results showed no cracks．

8．INSPECTION PERFORMED BY：（AEP Level II UT Inspector）

Signature \qquad
\qquad

9. SKETCH/DESCRIPTION:

A visible dye inspection was performed to the stellite seats of the 4 throttle values.

Valve\#1-Seat ok
Valve \#3 seat ok.
Value 12 - Seat ok
Top

Volve\#4
10. INSPECTION PERFORMED BY:

\qquad
11. APPROVED BY: \qquad

AMERICAN ELECTRIC POWER
Central Machine Shop
3100 MacCorkle Avenue, Bldg. 309
South Charleston, West Virginia 25303
\qquad

ACCOUNT NUMBER

40595680-03

1. IDENTIFICATION

Facility Mitchell
pCisn Mail

Item Combined Throtille-Governort Value Bodies
2. TECHNIQUE:

Dry Powder X. Wet Fluorescent

Non Fluorescent

3. EQUIPMENT:

\square Coil \square Prods \square Yoke \square Clamps
central Conductor
4. CURRENT TYPE:
$x \cdot A C \quad D C$
5. AMP TURNS - 51000

Parker Prolse
6. INSPECTION PROCEDURE: \qquad $M I-1-5-2-3$

7. INSPECTION SPECIFICATIONS:

8. TYPE OF INDICATION FOUND:

\square 1. Crack \square 2. Linear Surface \square 3. Linear Subsurface \square 4. Undercut \square 5. Non Relevant
9. SKETCHIDESCRIPTION:

A magnetic particle inspection was performed to the inside and out side of the throttle (4) valves and the governor value chest (2). No cracks were found, but most governor value seat areas have erosion. These seats are not stellite.
10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

DATE $4-18-06$
\qquad
\qquad

AMERICAN ELECTRIC POWER Central Machine Shop 3100 MacCorkle Avenue, Bldg. 309
\qquad 4059680.08

ACCOUNT NUMBER \qquad

1. IDENTIFICATION
\qquad
\qquad GOV. VALUE
PC/SN \qquad
2. TECHNIQUE:Dry Powder
4
Wet Fluorescent
Non Fluorescent
3. EQUIPMENT:
4. CURRENT TYPE: $\square A C \square D C$
5. AMP TURNS - 3000
6. INSPECTION PROCEDURE: \qquad MI $1-5 \cdot 2 \cdot 3$
\qquad
7. INSPECTION SPECIFICATIONS: \qquad
\qquad
8. TYPE OF INDICATION FOUND:
\square 1. Crack \square 2. Linear Surface \square 3. Linear Subsurface4. Undercut \square 5. Non Relevant
9. SKETCHIDESCRIPTION: A MT INSPECTION WAS PERPRMEO ON THE FOLLOWING.

VALUE STAND - THERE WAS $1 / 8$ TO $1 / 4$ CRACKS BESIDE THE RADIO FIT ON ID. SECTION OF THE STAND
VALUE BODY - THERE WAS A $/ 9$ "CRACK ON THE BYPASS PIPE WELD TO FLANGE. THERE WAS CRACKS NOTED IN THE RADIUS OF THE VALUE BODY BUSH ING, ALSO MARKED WAS A $3 / 4$ CRACK ON THE FLANGE FACE OUTLET HOLE.
10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

Signature \qquad STRICKLAND \qquad
11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad
\qquad DATE

PC/SN \qquad Unit 1 Item fland Stu off Valve Welds
2. TECHNIQUE:

\square
Dry Powder

区 Wet Fluorescent

Non Fluorescent
4. CURRENT TYPE:
5. amp turns - Parker Probe
6. INSPECTION PROCEDURE:

7. INSPECTION SPECIFICATIONS:

8. TYPE OF INDICATION FOUND:

1. Crack \square 2. Linear Surface

】 3. Linear Subsurface
4. Undercut
5. Non Relevant

9. SKETCH/DESCRIPTION:

$12^{\text {th }}$ Floor-Penthouse

SR Vent Value- 2 welds - OK V
6 L Vent Valve- 2 welds-okv
$11^{\text {th }}$ Floor. Drain Values
11R-3welds-ok/
13R-2 welds -OK!
$14 R .2$ welds ok
12R. 3 welds -ok
$13 L .2$ welds ok J
14L-2 welds ok V
7L-Inside Penthouse-Iweld-OK
th Floor. Drain Valves
19R- 4 welds-ok
Eth Floors Drain Values
25R.3 welds -ok
$25 \mathrm{~L}-2$ welds -ok
291-Inside Boiler-lweld-OK
$29 R-2$ welds - ok
$30 R-2$ welds - ok
$30 \mathrm{~L}-2$ welds. OK-
10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

DATE \qquad

Signature \qquad DATE \qquad

AMERICAN ELECTRIC POWER
Attachment 15
Page 84 of 253
Central Machine Shop
3100 MacCorkle Avenue, Bldg. 309
South Charleston, West Virginia 25303
CHS NUMBER \qquad
\qquad
ACCOUNT NUMBER \qquad

1. IDENTIFICATION

2. TECHNIQUE:Dry PowderNon Fluorescent

3. EQUIPMENT:Coil \square Prods \square
\square
4. CURRENT TYPE: \square
AC DC
5. amp turns - Parker Probe
6. INSPECTION PROCEDURE: \qquad $M I-1-5 \cdot 2 \cdot 3$
\qquad
7. INSPECTION SPECIFICATIONS: \qquad
8. TYPE OF INDICATION FOUND:
\square
9. Crack
10. Linear Surface \square 3. Linear Subsurface \square 4. Undercut \square 5. Non Relevant
11. SKETCHIDESCRIPTION: A magnetic particle ins pection was Performed to the two welds of the valve. Results showed no defects,
12. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

Signature

DATE 5-19-06
11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad
\qquad

ACCOUNT NUMBER \qquad

1. IDENTIFICATION

2. TECHNIQUE:Dry Powder
Non Fluorescent
3. EQUIPMENT:
\square Coil \square Prods
4. CURRENT TYPE: \square DC
5. amp turns - Parker Probe
6. INSPECTION PROCEDURE: \qquad $M I-1-5 \cdot 2-3$
7. INSPECTION SPECIFICATIONS: \qquad
8. TYPE OF INDICATION FOUND:
\square 1. Crack \square 2. Linear Surface \square 3. Linear Subsurface \square 4. Undercut \square 5. Non Relevant
9. SKETCHDESCRIPTION: A magnetic particle inspection was performed to 1 hand shut off valve weld and 1 butt weld on the outside of the boiler and 2 welds at the "t" above small expansion joint and 2 .1" lines welds on the inside of the boiler. All welds were O.K.
10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

Signature

DATE S-19-06
11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad
\qquad

account number 40594989-06

1. IDENTIFICATION

Item Drain Line weld Repairs
2. TECHNIQUE:Dry Powder
区
Wet Fluorescent
Non Fluorescent
3. EQUIPMENT:Coil \square
\square
\square
4. CURRENT TYPE:

】
AC \square DC
5. amp turns - Parker Probe
6. INSPECTION PROCEDURE: \qquad MI -1-5-2-3
\qquad
7. INSPECTION SPECIFICATIONS: \qquad
8. TYPE OF INDICATION FOUND:
\square 1. Crack2. Linear Surface3. Linear Subsurface \square 4. Undercut \square 5. Non Relevant
9. SKETCH/DESCRIPTION:

A magnetic particle inspection was performed to the following welt repairs,
Pass 5 to 6 Bot le Drain - Coupling weld repairs just outside
of boiler ok
\#3Mainstop Valve- Below Sect Drain Line-Lold repair to the west side of list hand shut off valve e $0 \frac{K}{k}$
10. INSPECTION PERFORMED BY; (AEP Level II MT Inspector)

Signature

11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad
\qquad

1. IDENTIFICATION

2. TECHNIQUE:Dry Powder \squareNon Fluorescent
\square Coil \square Prods \square
3. CURRENT TYPE: $\triangle A C \square D C$
4. Amp turns - Parker Probe
5. INSPECTION PROCEDURE: \qquad
6. INSPECTION SPECIFICATIONS: \qquad
7. TYPE OF INDICATION FOUND:
\square 1. Crack \square 2. Linear Surface \square 3. Linear Subsurface \square 4. Undercut \square 5. Non Relevant
8. SKETCHIDESCRIPTION: A magnetic particle inspection was performed to the cover pass weld of the gamma plug. Results showed no cracks.
9. INSPECTION PERFORMED BY: (AEP Level II MT inspector)

Signature
 DATE S. 19.06
11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad

KPSC Case No. 212-00578
MAGNETIC PARTICLE INSPECTION REPORT
AMERICAN ELECTRIC POWER
Central Machine Shop
3100 MacCorkle Avenue, Bldg. 309
South Charleston, West Virginia 25303

CHS NUMBER \qquad
\qquad
ACCOUNT NUMBER

1. IDENTIFICATION

Facility \qquad Mitchell Item \qquad Decuerator
PC/SN \qquad
2. TECHNIQUE:Dry Powder
Non Fluorescent
3. EQUIPMENT:
\square Coil \square
\square Yoke \square
4. CURRENT TYPE: \square DC
5. Amp turns - Parkerfrobe
6. INSPECTION PROCEDURE: \qquad $M I-1-5-2-3$
\qquad
7. INSPECTION SPECIFICATIONS: \qquad
8. TYPE OF INDICATION FOUND:
\square 1. Crack \square 2. Linear Surface \square 3. Linear Subsurface \square 4. Undercut \square 5. Non Relevant 9. SKETCHIDESCRIPTION: A magnetic particle inspection was performed to the welds on the outside of decierator. The welds included all circumferntial, seam, inlet lines, outlet lines, small lines, stiffer, leg support pressure relief valves and manway. Results showed' no cracks.
10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

\qquad
11. APPROVED BY: (NDE Supervisor)

\qquad
\qquad

MAGNETIC PARTICLE INSPECTION REPORT
\qquad

$$
\begin{aligned}
& \text { ACCOUNT NUMBER } 40594634-10 \\
& \text { 1. IDENTIFICATION } \\
& \text { Facility Mitchell } \\
& \text { PCISN Unit }
\end{aligned}
$$

Item \qquad
2. TECHNIQUE:Dry Powder
$\boxed{\square}$
Wet Fluorescent
3. EQUIPMENT:Non Fluorescent
4. CURRENT TYPE: \square AC $D C$
5. amp turns - Parker Probe
6. INSPECTION PROCEDURE: \qquad
\qquad
7. INSPECTION SPECIFICATIONS: \qquad
8. TYPE OF INDICATION FOUND:
\square 1. Crack \square 2. Linear Surface3. Linear Subsurface4. Undercut \square 5. Non Relevant
9. SKETCHIDESCRIPTION: A magnetic particle inspection was performed to the weld pad area at the outside northeast corner. Results showed no cracks.
10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

\qquad $5-4-06$
11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad
\qquad

ACCOUNT NUMBER

1. IDENTIFICATION

\qquad Deacrator
2. TECHNIQUE:Dry Powder
Wet Fluorescent
Non Fluorescent
3. EQUIPMENT:
4. CURRENT TYPE: \square
\square DC
5. amp turns - Parker Probe
6. INSPECTION PROCEDURE: \qquad

$$
M I-1-5-2-3
$$

7. INSPECTION SPECIFICATIONS: \qquad
8. TYPE OF INDICATION FOUND:1. Crack \square 2. Linear Surface3. Linear Subsurface4. Undercut5. Non Relevant
9. SKETCH/DESCRIPTION: The new 14" drain lines were installed through the deaerator wall on the south side. A seal well was made to both drain lines on the inside of deaerator. The wells were back ground from the outside to good metal. A magnetic particle inspection was performed to the inside \& outside welds of both lines. All welds were or. The cover pass on the outside welds will be inspected after completion.
10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

Signature

Date S-25-0.6
11. APPROVED BY: (NDESupervisor)

Signature \qquad
\qquad
\qquad

1. IDENTIFICATION
\qquad Unit 1
PC/SN

$$
-3
$$

\qquad
2. TECHNIQUE:Dry Powder
$\boxed{\square}$
Wet Fluorescent
Non Fluorescent
3. EQUIPMENT:
\square Coil \square
\square Yoke \square
4. CURRENT TYPE: $\triangle A C \square D C$
5. amp turns - Parker Probe
6. INSPECTION PROCEDURE: \qquad

$$
M I-1-5-2-3
$$

\qquad
7. INSPECTION SPECIFICATIONS: \qquad
8. TYPE OF INDICATION FOUND:
\square 1. Crack \square 2. Linear Surface \square 3. Linear Subsurface \square 4. Undercut5. Non Relevant
9. SKETCHIDESCRIPTION: A magnetic particle inspection was performed to the next to last circumferntial weld and the seam, weld between next to last and fast (hemp head) cire, weld in the back end of deaerator. Results showed heavy erosion (wel dmissing) on a 18" long area of the cire. weld on the south wall of a previously repaired area.
10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

Signature
 DATE 5.11.06
11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad
\qquad
\qquad 5-15-06

1. IDENTIFICATION

2. TECHNIQUE:Dry Powder
区
Wet Fluorescent
Non Fluorescent
3. CURRENT TYPE: Х AC $\square D C$
4. AMP TURNS - Parker Probe
5. INSPECTION PROCEDURE: \qquad
6. INSPECTION SPECIFICATIONS: \qquad
7. TYPE OF INDICATION FOUND:
\square 1. Crack \square 2. Linear Surface \square 3. Linear Subsurface \square 4. Undercut \square
8. SKETCHIDESCRIPTION: The following areas were ins pected toward the backside -inside of deaerator,

Location
\$5-Donut weld at Back Pipe-oK

* 3-Circ. Weld-HemiHead-Back-ok
\# 6-Bigline weld -Center Buck-OK
* 2-Padweld-Hemi Head-OK
* 8-Pad Weld. Hem Head -OK
\#10-Arc Strike-OK
\# 11-Are Strike-ok
H12-Arc Strike-ok
\#1 3-Arc Strike-ok
H H. Angle Bracket weld. OK
\#15. 2-Small 90° welds.Southwall-ok
2- Top 4"Prpewelds - ok

10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

Signature
 2. $14^{\prime \prime}$ Pipewelds. South wall ok \#1-Pad weld-Northeast Lower wall Cracked Area
11. APPROVED BY: (NDE Supervisor)

$$
\text { Date } 5-15-06
$$

Signature \qquad
\qquad

3100 MacCorkle Avenue, Bldg. 309
South Charleston, West Virginia 25303
CHS NUMBER \qquad

ACCOUNT NUMBER

1. IDENTIFICATION

Item \qquad Deacrator
2. TECHNIQUE:Dry Powder
Wet Fluorescent
Non Fluorescent
3. EQUIPMENT:
\square Coil \square
\square Yoke \square
4. CURRENT TYPE: $\square A C \square D C$
5. amp turns - Parker Probe
6. INSPECTION PROCEDURE: \qquad $M I-1-5-2-3$
\qquad
7. INSPECTION SPECIFICATIONS: \qquad
8. TYPE OF INDICATION FOUND:
\square 1. Crack \square 2. Linear Surface3. Linear Subsurface \square 4. Undercut \square 5. Non Relevant
9. sKETCHIDESCRIPTION: A magnetic particle inspection was performed to the out side cover pass on the two 14" heater drains where they go through the shell wall. Both welds were oik.

11. APPROVED BY: (NDE Supervisor)

Signature \qquad DATE \qquad
\qquad

1. IDENTIFICATION

Item \qquad
2. TECHNIQUE:Dry PowderNon Fluorescent
4. CURRENT TYPE: \square
\square DC
5. amp turns - Parker Probe
6. INSPECTION PROCEDURE: \qquad $12 I-1-5-2-3$
\qquad
7. INSPECTION SPECIFICATIONS: \qquad
\qquad
8. TYPE OF INDICATION FOUND:1. Crack \square 2. Linear Surface \square 3. Linear Subsurface \square 4. Undercut \square 5. Non Relevant
9. SKETCHIDESCRIPTION: A magnetic particle inspection was performed to the circumferntial weld repair on the inside \& outside of the deaerator on the south wall, Results showed the repairs were $0 . k$.

Signature

$$
\text { DATE } \quad 5-19-06
$$

11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad
\qquad
\qquad
ACCOUNT NUMBER

1. IDENTIFICATION

Facility Mitchell
Hem \#1 L.P. Heater Shell
PC/SN \qquad unit
2. TECHNIQUE:Dry PowderNon Fluorescent
4. CURRENT TYPE: \square

$$
A C
$$ $D C$

5. Amp turns - Parker Probe
6. INSPECTION PROCEDURE: \qquad $M I-1-5-2 \cdot 3$
\qquad
7. INSPECTION SPECIFICATIONS: \qquad
8. TYPE OF INDICATION FOUND:
\square 1. Crack \square
9. Linear Surface3. Linear Subsurface4. Undercut \square 5. Non Relevant
10. SKETCHIDESCRIPTION: A magnetic particle inspection was performed to the circumferntial, seam, inlet nozzles and spray nozzle weld on the inside of the heater shell. Results showed no cracks.
11. INSPECTION PERFORMED BY: (AEP Level II MT inspector)

Signature

11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad

ULTRASONIC TEST REPORT AMERICAN ELECTRIC POWER CENTRAL MACHINE SHOP
3100 MacCorkle Avenue, Building 309 South Charleston, WV 25303

WORK ORDER NO. $40701930-21 \quad$ DATE $5-9-06$

1. IDENTIFICATION:

2. TECHNIQUE:

S Straight Beam
\square Search Angle - X $90^{\circ} \square 45^{\circ} \square 60^{\circ}$
\square Frequency - $\square 1 \mathrm{MH}$
\square Single Transducer
2.25 MH 区 5 MH
Dual Transducer

Type of Couplant Lilfra Gel II
3. CALIBRATION - REFLECTOR TYPE:

Drilled Hole
Test Unit Kraut Kramer USK 7D
V. Notch \square IIW Block \square Other \qquad
4. INSPECTION PROCEDURE: $M I=1-5-2-4$

5. INSPECTION SPECIFICATIONS:

6. TYPE OF INDICATION:
\square 1. Crack
7. Lamination
8. Corrosion/Erosion
\square 4. Internal Voids
9. Linear
10. SKETCHIDESCRIPTION: A ultrasonic inspection was performed to the inlet nozzles to determine wall thickness. starting at thickness readings each place. Approx. ten thickness readings each place. Back Nozzle
Pipe-. 493 to .565

$$
\frac{\text { AthNoz2le }}{\text { Pipe } 127 \text { to. } 558}
$$

Shell Part of Nozzle - 625 to. 795
and Nozzle
Pipe- 475 to .580
Shell Part of Nozzle -.619 to .782
3rd Nozzle
Pipe A19 to :567
Shell Part of Nozzle .642 to.793

Eth Nozzle
Pipe $429+0.508$
Shell Part of Nozzle. 682 to.793
Front Nozzle Pipe 489 to. 528
Shell Part of Nozzle, 693 to .728
8. INSPECTION PERFORMED BY: (AEP Level II UT Inspector)

\qquad
\qquad

1. IDENTIFICATION

rem Desecrator
2. TECHNIQUE:Dry Powder
Wet Fluorescent
Non Fluorescent
3. EQUIPMENT:
4. CURRENT TYPE: \square DC
5. amp turns - Parker Probe
6. INSPECTION PROCEDURE: \qquad MI -1-5-2-3
\qquad
7. INSPECTION SPECIFICATIONS: \qquad
\qquad
8. TYPE OF INDICATION FOUND:1. Crack \square 2. Linear Surface \square 3. Linear Subsurface \square 4. Undercut \square 5. Non Relevant
9. SKETCHDESCRIPTION: The section of plate that was cut out of the south east corner of the deacrator was re-installed. A magnetic particle inspection was performed to the cover pass on the inside. The outside weld was ground back to clean weld and a inspection was performed. A final inspection was performed to the outside cover pass. A entry door was installed into the section of plate, a inspection was performed to the root and cover pass on the inside and to the 2 cover passes on the outside. All inspections showed no defects.
10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

$$
\text { Dате } \underline{6 \cdot 8-06}
$$

11. APPROVED BY: (WDE Supervisor)

Signature \qquad
\qquad

ULTRASONIC TEST REPORT AMERICAN ELECTRIC POWER CENTRAL MACHINE SHOP 3100 MacCorkle Avenue, Building 309

1. IDENTIFICATION:

Facility \qquad Mitchell Hem BFP Turbine Rotor Shaft PC/SN \qquad
2. TECHNIQUE:
[Angle Beam
Search Angle $90^{\circ}$$45^{\circ}$ 60°Dual Transducer
Type of Couplant \qquad Mitra Gel II Test Unit Kraut Kramer 4SK70
3. CALIBRATION - REFLECTOR TYPE:IIW BlockOther \qquad
4. INSPECTION PROCEDURE: \qquad $M I-1-5<2-4$ \qquad
5. INSPECTION SPECIFICATIONS: \qquad
6. TYPE OF INDICATION:1. Crack2. Lamination3. Corrosion/Erosion4. Internal Voids5. Linear
7. SKETCH/DESCRIPTION:

A ultrasonic inspection was performed to the shaft from the pump end. Results showed no cracks.
8. INSPECTION PERFORMED BY: (AEP Level II UT Inspector)

Signature
 ours \mathcal{A} ley
9. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad

MAGNETIC PARTICLE INSPECTION REPORT
AMERICAN ELECTRIC POWER Central Machine Shop 3100 MacCorkle Avenue, Bldg. 309
\qquad $3.31-06$
CBS NUMBER \qquad

1. IDENTIFICATION

\qquad BFP Turbine Rotor Blades
2. TECHNIQUE:Dry Powder
Non Fluorescent
3. EQUIPMENT:
4. CURRENT TYPE: X AC $\square \mathrm{DC}$
5. AMP TURNS - Parker probe
6. INSPECTION PROCEDURE: \qquad MI $-1-5-2-3$
\qquad
7. INSPECTION SPECIFICATIONS: \qquad
8. TYPE OF INDICATION FOUND:
\square 1. Crack \square 2. Linear Surface3. Linear Subsurface4. Undercut 5. Non Relevant
9. SKETCH/DESCRIPTION:

A magnetic particle inspection was performed to the pump \& turbine end L-O stage blades. Results showed no cracks.
10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

Signature \qquad Gsaley it Strickland \qquad $3-3 H-06$
11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad
\qquad

1. IDENTIFICATION

2. TECHNIQUE:Dry PowderNon Fluorescent
3. CURRENT TYPE: $\triangle A C \square D C$
4. amp turns - Parker Probe
5. INSPECTION PROCEDURE: \qquad MI -1-5-2-3
\qquad
6. INSPECTION SPECIFICATIONS: \qquad
\qquad
7. TYPE OF INDICATION FOUND:
\square 1. Crack \square 2. Linear Surface \square 3. Linear Subsurface4. Undercut \square 5. Non Relevant
8. SKETCHIDESCRIPTION: A magnetic particle inspection was performed to the 12 weld repairs on the shell stiffnerbraces (struts). Results showed all repairs were ok.
9. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

Signature \qquad
\qquad 4-28-06
11. APPROVED BY: (NDE Supervisor)

Signature \qquad

MAGNETIC PARTICLE INSPECTION REPORT
AMERICAN ELECTRIC POWER Central Machine Shop
3100 MacCorkle Avenue, Bldg. 309
South Charleston, West Virginia 25303

CHS NUMBER \qquad
\qquad
ACCOUNT NUMBER \qquad

1. IDENTIFICATION

2. TECHNIQUE:Dry PowderNon Fluorescent
3. CURRENT TYPE: \square AC \square DC
4. AMP TURNS - Parker Probe
5. INSPECTION PROCEDURE: \qquad $M I-1-5-2,3$
\qquad
6. INSPECTION SPECIFICATIONS: \qquad
\qquad
7. TYPE OF INDICATION FOUND:
\square 1. Crack \square 2. Linear Surface3. Linear Subsurface4. Undercut \square 5. Non Relevant
8. SKETCH/DESCRIPTION:

A magnetic particle inspection was performed to the areas that were blast cleaned. Results showed no cracks.
10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

Signature

\qquad $4-18-06$
11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad
\qquad Y0594989-06 \qquad

1. IDENTIFICATION:

Facility Mitchell
${ }_{\text {PIISN }} \frac{\text { Unit } 1}{\text { LIt Outer Shell Support Brace Welds - Reheat }}$
2. MATERIAL:
3. TECHNIQUE: \square Visible Dye
\square Ferrous \square Water Washable
4. MFG/TYPE: Cleaner \qquad Penetrant \qquad Developer \qquad
5. INSPECTION PROCEDURE: \qquad
6. INSPECTION SPECIFICATIONS: \qquad
7. TEMPERATURE: Ambient \qquad Surface \qquad
8. TYPE OF INDICATION:

Crack \square Linear \square Inline Porosity \square Rounded \square Other \qquad
9. SKETCH/DESCRIPTION:

A visible dye inspection was performed to the 16 welds of the 8 braces. See attached sheet for results.
10. INSPECTION PERFORMED BY:

\qquad
11. APPROVED BY: \qquad
\qquad

AMERICAN ELECTRIC POWER Central Machine Shop
\qquad
\qquad

1. IDENTIFICATION

Item 2/H outer Shell-Reheat
2. TECHNIQUE:Dry Powder
】
Wet Fluorescent
Non Fluorescent
3. EQUIPMENT:
4. CURRENT TYPE: \square $A C$ \square DC
5. AMP TURNS - Parker Probes
6. INSPECTION PROCEDURE: \qquad $M I-1-5-2-3$
\qquad
7. INSPECTION SPECIFICATIONS: \qquad
8. TYPE OF INDICATION FOUND:
\square 1. Crack \square 2. Linear Surface3. Linear Subsurface \square
\square 5. Non Relevant
9. SKETCH/DESCRIPTION:

A magnetic particle inspection was performed to the areas that were blast cleaned. Results showed no cracks.
10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

Signature

\qquad 4. 18-06
11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad

LIQUID PENETRANT INSPECTION REPORT
AMERICAN ELECTRIC POWER CENTRAL MACHINE SHOP
3100 MacCorkle Avenue, Building 309
South Charleston, WV 25303

No. 33
\qquad

1. IDENTIFICATION:

Facility \qquad Mitchell
PCISN Unit
Hem U/H outer Shell Support Strut Welds - Reheat
2. MATERIAL:
3. TECHNIQUE:

Visible Dye
4. MFG/TYPE: Cleaner \qquad
\qquad Developer \qquad
5. INSPECTION PROCEDURE: \qquad $M I-1-5-2-2$
6. INSPECTION SPECIFICATIONS: \qquad
7. TEMPERATURE: Ambient \qquad Surface
8. TYPE OF INDICATION:
\square Crack \square Linear \square Inline Porosity \square Rounded \square Other \qquad
9. SKETCH/DESCRIPTION:

A visible dye inspection was per formed to the 16 welds of the 8 bars.
Govenol-No Crackedwelds
Gen. End- The left side bar has a $11_{4}^{\prime \prime}$ to $11_{2}^{\prime \prime}$ long crack on each weld. The right side bar has a I 1/4" long crack on the top weld.
10. INSPECTION PERFORMED BY:

\qquad
11. APPROVED BY: \qquad

pamous stinsay smogla starap ou pansoyvad spm vortoad oob \＆to splam \forall of pansoyrad snm woitpadsu：apited sitarhom \forall ：NOLLdIXJSヨO／HOLヨYS 6

 ：ONOO』 NOILVOIONI 」O ヨd人1＇8
：SNOIL甘OIJIכヨdS NOILכヨdSNI \llcorner

NOIIVOIIIINヨOI ： 1

LIQUID PENETRANT INSPECTION REPORT
AMERICAN ELECTRIC POWER
CENTRAL MACHINE SHOP
South Charleston, WV 25303

1. IDENTIFICATION:

Facility \qquad
PC/SN Unit 1
Hem 4/H Outer Shell Support Strut Welds - Reheat
2. MATERIAL:
3. TECHNIQUE:

Visible Dye
4. MFG/TYPE: Cleaner \qquad Penetrant \qquad Developer \qquad
5. INSPECTION PROCEDURE: \qquad $M I-1-5-2-2$
6. INSPECTION SPECIFICATIONS: \qquad
7. TEMPERATURE: Ambient \qquad Surface \qquad
8. TYPE OF INDICATION:
\square Crack \square Linear \square
\square Rounded \square Other \qquad
9. SKETCH/DESCRIPTION:

A visible dye inspection was per formed to the 16 welds of the 8 bars.
Gov.Enol-No Cracked welds
Gen, End. The left side bar has a $1 \frac{1}{4}$ to $11_{2}^{\prime \prime}$ long crack on each weld. The right side bar has a $11 / 4$ "long crack on the top weld.
10. INSPECTION PERFORMED BY:

\qquad $\frac{4-21-06}{\text { DATE }}$
11. APPROVED BY: \qquad
\qquad
\qquad
\qquad

1. IDENTIFICATION

rem \#1 1. P. Heater
2. TECHNIQUE:Dry Powder
Wet Fluorescent
Non Fluorescent
3. EQUIPMENT:Coil \square ProdsYoke
4. CURRENT TYPE: \square AC \square DC
5. amp turns - Parker Probe
6. INSPECTION PROCEDURE: \qquad $M I-1-5-2-3$
\qquad
7. INSPECTION SPECIFICATIONS: \qquad
8. TYPE OF INDICATION FOUND:
\square 1. Crack \square 2. Linear Surface \square 3. Linear Subsurface4. Undercut \square
9. SKETCHIDESCRIPTION: A magnetic particle inspection was performed to the root pass and cover pass of
the front heater shell circumferntial weld. A small "c" shaped section was cut from the shell for alignment purposes. The root pass, halfwayout and the cover pass welds were inspected when the shell segment was welded back into place All weld inspections
showed no defect indications!
10. INSPECTION PERFORMED BY: (AEP Level II MT inspector)

Signature

11. APPROVED BY: (NDESupervisor)
\qquad DATE 5-22-06

Signature \qquad
\qquad

AMERICAN ELECTRIC POWER

Central Machine Shop

3100 MacCorkle Avenue, Bldg. 309
South Charleston, West Virginia 25303

CMS NUMBER

\qquad DATE \qquad

ACCOUNT NUMBER

1. IDENTIFICATION

Facility Mitchell
PCISN Unit 1
2. TECHNIQUE:

Dry Powder Non Fluorescent
4. CURRENT TYPE:
5. AMP TURNS - 4,500
6. INSPECTION PROCEDURE: \qquad
7. INSPECTION SPECIFICATIONS: \qquad

8. TYPE OF INDICATION FOUND:

\square 1. Crack \square 2. Linear Surface
3. Linear Subsurface4. Undercut
9. SKETCH/DESCRIPTION:

A magnetic particle inspection was performed to the couplings and coupling covers. Results showed no cracks.
10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

DATE \& - 2l-06
11. APPROVED BY: (NDE Supervisor)
\qquad
\qquad
\qquad

1. IDENTIFICATION:

Facility \qquad Mitchell Item \qquad PC/SN \qquad
2. TECHNIQUE:

Straight BeamAngle Beam
Search Angle $90^{\circ}$$45^{\circ}$ \square 60°5 MH

Type of Couplant \qquad Sutra Gel II Single TransducerDual Transducer
3. CALIBRATION - REFLECTOR TYPE:V. Notch
\qquad
4. INSPECTION PROCEDURE: \qquad $M I-1-5-2-4$
\qquad
5. INSPECTION SPECIFICATIONS: \qquad
6. TYPE OF INDICATION:1. Crack2. Lamination3. Corrosion/Erosion4. Internal Voids5. Linear
7. SKETCH/DESCRIPTION:

A ultrasonic inspection was performed to the shaft from the pump end. Results showed no cracks.
8. INSPECTION PERFORMED BY: (AEP Level II UT Inspector)

Signature

9. APPROVED BY: (NDE Supervisor)
\qquad
\qquad

Central Machine Shop
3100 MacCorkle Avenue, Bldg. 309
South Charleston, West Virginia 25303

CHS NUMBER \qquad

ACCOUNT NUMBER \qquad

1. IDENTIFICATION

Item \qquad South PA FAN
2. TECHNIQUE:Dry Powder Wet Fluorescent
Non Fluorescent
3. EQUIPMENT:
\square
4. CURRENT TYPE: \square DC
5. amp turns - Parker Probe
6. INSPECTION PROCEDURE: \qquad $M I-1-5-2-3$
\qquad
7. INSPECTION SPECIFICATIONS: \qquad
8. TYPE OF INDICATION FOUND:
\square 1. Crack \square 2. Linear Surface3. Linear Subsurface \square 4. Undercut
5. Non Relevant
9. SKETCH/DESCRIPTION:

A magnetic particle inspection was performed to the outboard bearing is ournal of the fan shaft. Results showed no cracks.
10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

Signature

11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad

CHS NUMBER \qquad

1. IDENTIFICATION

2. TECHNIQUE:
\square Dry PowderNon Fluorescent
3. CURRENT TYPE: $\triangle A C \square D C$
4. amp turns - Parker Probe
5. INSPECTION PROCEDURE: \qquad $M I-1-5-2-3$
6. INSPECTION SPECIFICATIONS: \qquad
7. TYPE OF INDICATION FOUND:
\square 1. Crack \square 2. Linear Surface \square 3. Linear Subsurface \square 4. Undercut \square 5. Non Relevant
8. SKETCH/DESCRIPTION:

A magnetic particle inspection was performed to the weld on each line. Results showed no defects.
10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

Signature

11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad

ALLOY ANALYZER INSPECTION REPORT

 ALP - CM3100 MacCorkle Ave. Building 309 South Charleston, WV 25303

[^0]\qquad

ALLOY ANALYZER INSPECTION REPORT

Analysis Performed By: STRICKLAND
Date: \qquad

NDE Supp:
Date:

Analysis Performed By: (2) coccus Haley
Date:
4.21 .06

NDE Supp:
Date:

3100 MacCorkle Ave. Building 309 South Charleston, WV 25303

Analysis Performed $B y+2$ ana Inalef
Date:
$5-8 \cdot 06$

NDE Supp:
Date:

ALLOY ANALYZER INSPECTION REPORT

South Charleston, WV 25303

NDE Supt:
Date:

ALLOY ANALYZER INSPECTION REPORT
 AEP - CMS

3100 MacCorkle Ave. Building 309
South Charleston, WV 25303

CMS NO:	AI - Aluminum C - Carbon Co-Cobalt Cr - Chromium Cu-Copper Fe - Iron		
ACT NO:			
FACILITY: Mitche ll		Nb - Niobium	W-Tungsten
ITEM: Expansion Joints		Ni - Nickel	
PC/SN Unit 1		Pb - Lead	
		Sn - Tin	

DESCRIPTION	C	Co	Cr	Cu	Fe	Mn	Mo	Nb	Ni	Ti	W			
1, P. "B"Snout					97.78	. 39	0.03							
Mild Stee!							(0,0)							
Upper mo, Joint														
Mild Steel					98.03	, 43	0.0 .5							
LowerEya, Joint					98,42	. 36	0.0 .5							
Mild Steel														

$$
\left\{\begin{array}{r}
\text { AMERICAN ELECTRIC POWER } \\
\text { Central Machine Shop } \\
3100 \text { MacCorkle Avenue, Bldg. } 309 \\
\text { South Charleston, West Virginia } 25303
\end{array}\right.
$$

CHS NUMBER \qquad

2. TECHNIQUE:Dry PowderNon Fluorescent
4. CURRENT TYPE:
\qquad ATION
5. AMP TURNS - 5,OOO
6. INSPECTION PROCEDURE: \qquad

$$
M I-1-5-2=3
$$

\qquad
7. INSPECTION SPECIFICATIONS: \qquad
\qquad
8. TYPE OF INDICATION FOUND:1. Crack2. Linear Surface3. Linear Subsurface4. Undercut5. Non Relevant.
9. SKETCH/DESCRIPTION:
\# \& Blade Ring 4/H-GoviEnd - Both stages have minos foreign object damage on discharge side.
\#2 Blade Ring 4/H-Gou. End- All 3 stages have minor foreign object damage on discharge side.
\# 2 Blate Ring 4/H. Gen End. All 3 st ayes have minor foreign object damage on discharge side.
\#2 Bladering $/ \mathrm{H}$ - Gov Ead-All 3 stages -No defect
\# 2 Bladering. M_{H}-Gen End. All 3 stages - vo defect
\#1 Blade Ring $U / 1 t$-Gout, End - Both stages have minos foreign object damage on discharge side.
10. INSPECTION PERFORMED BY: (AEP. Level II MT Inspector)

Signature

\qquad 4-27-06
11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad

AMERICAN ELECTRIC POWER

CIS NUMBER \qquad
\qquad

ACCOUNT NUMBER

1. IDENTIFICATION

\qquad
2. TECHNIQUE:Dry Powder
】
Wet Fluorescent
Non Fluorescent
3. CURRENT TYPE: \square AC \square DC
4. AMP TURNS - S,O00
5. INSPECTION PROCEDURE: \qquad MI -1-S-2-3
\qquad
6. INSPECTION SPECIFICATIONS: \qquad
\qquad
7. TYPE OF INDICATION FOUND:1. Crack \square 2. Linear Surface3. Linear Subsurface4. Undercut5. Non Relevant
8. SKETTCH/DESCRIPTION:

BladeRiny 1 M $1 / 1$-Gen End- Both stages have minor foreign object damage ondischarge side, Blade Ring\#1-2/1+Gen. End - Both stages have minor. foreign object damage on discharge side.
10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

Signature
 DATE \qquad
11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad

ULTRASONIC TEST REPORT
\qquad

1. IDENTIFICATION:

Facility \qquad Mitchell Item \qquad Blade Ring Studs
2. TECHNIQUE:

㸚 Straight BeamAngle Beam
Search Angle - $90^{\circ}$$45^{\circ}$$60^{\circ}$Frequency -1 MH
2.25 MHDual Transducer
Type of Couplant \qquad $E x 0 \operatorname{sen} 20$ Test Unit Krautkramer USK ID
3. CALIBRATION - REFLECTOR TYPE:

Drilled Hole V. NotchIIW BlockOther \qquad
4. INSPECTION PROCEDURE: \qquad $M I-1-5-2-4$
5. INSPECTION SPECIFICATIONS: \qquad
6. TYPE OF INDICATION:1. Crack2. Lamination3. Corrosion/Erosion4. Internal Voids5. Linear
7. SKETCH/DESCRIPTION:
\#1 Blade Ring-Gov End-No cracked studs
H1 Blade Ring-Gen End- Ho cracked studs. Small stud has bad thread \# 2 Blade Ring. GouEnd-No crackeal studs
\#2 Blade Ring. Gen End. I small stud has broken to p threads
8. INSPECTION PERFORMED BY: (AEP Level II UT Inspector)

\qquad
\qquad

MAGNETIC PARTICLE INSPECTION REPORT
AMERICAN ELECTRIC POWER
Central Machine Shop
3100 MacCorkle Avenue, Bldg. 309
South Charleston, West Virginia 25303

CHS NUMBER \qquad DATE \qquad $4-18-06$
account number 4063 4908-06

1. IDENTIFICATION

Facility \qquad
PC/SN \qquad
2. TECHNIQUE:Dry Powder
Non Fluorescent
4. CURRENT TYPE: \square
\square DC
5. AMP TURNS - 4000
6. INSPECTION PROCEDURE: \qquad
\qquad
7. INSPECTION SPECIFICATIONS: \qquad $m T-1-5-2-3$
3. EQUIPMENT:
\square Coil \square
\square Yoke
\qquad
8. TYPE OF INDICATION FOUND:
\square 1. Crack \square 2. Linear Surface3. Linear Subsurface \square 4. Undercut5. Non Relevant
9. SKETCH/DESCRIPTION:

$$
\begin{aligned}
& \text { Tine Exposes kAnsas or lite } \\
& \text { Sham Wen Mia Irsspectes } \\
& \text { No Cnwks None Fosno }
\end{aligned}
$$

10. INSPECTION PERFORMED BY: (AEP Level II MT Inspector)

Signature \qquad $5 \operatorname{Co3B}$ DATE $4-18.06$
11. APPROVED BY: (NDE Supervisor)

Signature \qquad
\qquad

Ohio Power Co Mitchell \{WV\} Unit Number: 1

Outage From: 2006/06/15 to 2006/06/21
Serial Number: 13A3160-1
Frame Type/Building Blocks: 4316VT4
Job Number: OZCT06027077

Vibration Analysis

Report Written By: KC Jones

District Service Manager: Carol Andrews

CUSTOMER FINAL REPORT

TABLE OF CONTENTS

1.1 Scope / Introduction

1.2 Unit Information / Name Plate

1.3 Equipment Status / Unit Configuration
2. Outage Personnel

2.1 Outage Personnel / Customer

2.2 Outage Personnel / Siemens
3. Work Description
4. Conclusions and Recommendations
5. Miscellaneous Attachments

N/A
6. Datasheet Attachments
7. Photo Attachments

1. Summary

1.1 Scope / Introduction

The customer requested a Siemens Balance Engineer to provide vibration analysis and field balancing support during startup of Ohio Power / AEP Mitchell Unit 1 following a scheduled maintenance outage. Siemens Power Generation was not involved with the outage and Siemens personnel were not onsite during the outage. The customer reported the following work was performed during the outage:

* Replaced IP rotor with spare rotor
* Throttle and Governor valve inspection
* Minor Collector work

The Siemens Balance Engineer arrived at site on June 16, 2006.

1.2 Unit Information / Name Plate

Turbine S.O. No: 13A3160-1
Turbine Frame: 4316VT4
Generator S.O. No: 73P0475-1
Exciter S.O. No: 418541

1.3 Equipment Status / Unit Configuration

-Stream Turbine (fossil) - Westinghouse - BB46A-58-73-73 - S.O. 13A3160-1
-Generator - Westinghouse Hydrogen Cooled - Frame-2-112X245
-In Service Date: April 1970
-Rated-816 MVA
-Speed/Grid-3600RPM/60Hz

Customer's Supervisory:
-Bently Nevada 3300 Series
-B/N 200mv Proximity Probes
The turbine generator is equipped with a Bently Nevada (B / N) 3300 vibration monitoring system reading orthogonal (A/B) relative probes on ST bearings \#1 through \#11. The vibration probes on bearings \#1, \#2, \#3, \#9, \#10, and \#11 are mounted directly on the bearing casing for true relative vibration. The vibration probes on bearings \#4, \#5, \#6, \#7, and \#8 are mounted directly on the foundation sole plate for shaft vibration relative to foundation. An ST keyphasor () is located between bearings \#2 and \#3 at a Top Dead Center (TDC) orientation and is designated as 0°.

Please refer to the Bearing Schematic and Probe Location Schematic in Attachment 6.1.

Control Room Equipment:

Ovation

Vibration monitoring - Absolute (unfiltered) Both X and Y Probes all bearing.

```
Alarm Levels Control Room:
Alarm.
``` \(\qquad\)
``` 7 mils all bearings
Trip.
``` \(\qquad\)
``` 10 mils all bearings
```

Siemens Equipment Used:
-TurboTest connected to Bently X Y Outputs
-Channel $A=X$ Probe Left 135° Brg 1-10
-Channel $B=Y$ Probe Right 135° Brg 1-10
-Channel A = X Probe Left 45° Brg 11
-Channel $B=Y$ Probe Right 45° Brg 11
-Data collected is Not True High Spot
Note: The above listing is correct. The Siemens TurboTest data collector was setup according to customer supplied information for pickup location. The information supplied was incorrect, and resulted in the TurboTest data being swapped for the X and Y locations. Left Side data is actually taken at the right side pickup and vice-versa for all Siemens TurboTest data collected. This correction needs to be taken into account when analyzing the Siemens TurboTest data.

2. Outage Personnel

2.1 Outage Personnel / Customer

Name	Job Description
Jack Huggins	Electrical Process Coordinator

2.2 Outage Personnel / Siemens

Name	$\frac{\text { Job Description }}{\text { Field Service Engineer }}$

3. Work Description

Vibration analysis entailed the following activities:
Setup TurboBalancer for data collection during startup and load ascension. Reviewed data and made appropriate balance recommendations

4. Conclusions and Recommendations

The customer's acceptance criteria for rotor vibration is higher than the Siemens recommended levels; therefore, no balance moves were made while the Siemens Vibration Engineer was on site.

The following weight moves are suggested to reach the Siemens vibration acceptance criteria of 3.0 mils 1X filtered. The customer has indexed the shaft at the turning gear area in line with the Bently interruption notch. Angles increase with rotation as viewed from governor end.

HP - Currently the unit has approximately 2.2 mils of static unbalance and 3.0 mils of dynamic unbalance. The following

4. Conclusions and Recommendations \{Continued\}

weight move is recommended to reduce the dynamic forces.
HP Move: Add 5.0 oz Plane 1 at 70°

IP - The rotor currently has a large amount of static unbalance (4.3) mils and a very small amount of dynamic unbalance. To reach Siemens recommended vibration levels, several weight moves may be required. The initial move would be a center plane balance move with a high likelihood of additional move required in the end planes. If AEP wishes to pursue balancing of the IP rotor, it is recommended that several days be set aside to complete this task. Due to the high probability that several moves will be required, no single move is recommended at this time.

LPA - The rotor has a considerable amount of static unbalance (2.5 to 3.5 mils) and a large amount of dynamic (6.5 mils). The following weight move is recommended to reduce the dynamic forces.

LP A Move: Add 1 Standard 16.0 oz weight Plane 5 at 80°
LPB - This rotor also has a significant amount of static unbalance (2.0-2.5 mils) and a small amount of dynamic unbalance. Vibration levels on this rotor are only slightly above the Siemens 3.0 mils 1 X criteria. At this time, Siemens feels the benefit of reducing vibration amplitudes on LPB is minimal; therefore, no balance move is recommended. If levels increase, AEP should contact Siemens for assistance in calculating a balance move.

Generator - All vibration amplitudes at the generator bearings are currently below the Siemens recommended amplitudes of 3.0 Mils 1X filtered and require no balancing. Note: The Bently probes are wired incorrectly at both the \#9 and \#10 bearings - the X and Y are reversed.

Collector - Vibration amplitudes at this bearing have been elevated for some time. Currently vibration level is 5.5 mils. The customer has been controlling this vibration by maintaining a mismatched temperature setting on the hydrogen and air side seal oil. Currently these temperatures are running $116^{\circ} \mathrm{F}$ hydrogen side and $144^{\circ} \mathrm{F}$ air side. Siemens recommends operating with the hydrogen side and air side matched at $110^{\circ} \mathrm{F}$. The Siemens Balance Engineer requested that these temperatures be matched and the customer elected to match them at $130^{\circ} \mathrm{F}$. Vibration at the collector bearing increased to 7.8 mils, so the customer elected to return the temperatures to the mismatched condition in order to reduce the vibration. Note that operating in this condition may thermally distort the generator hydrogen seals. The Siemens Balance Engineer recommended that a balance move be attempted to reduce the vibration amplitude at the collector bearing, however, he did not feel comfortable calculating a move at this time based only on the limited data obtained while at the site. Therefore, Siemens recommends that additional vibration data be captured while the unit is operating with the proper seal oil temperatures. Once this data has been reviewed, Siemens can calculate a balance move for the collector bearing. The customer should be aware that during the balancing effort the seal oil temperatures will have to be maintained at the Siemens recommended setting.

5. Miscellaneous Attachments

N/A

6. Datasheet Attachments

6.1 Mitchell1-2006
6.2 Mitchell Spectral

Bearing Schematic

Probe Location Schematic

ST Probe Orientation from

 Governor End
"As Found" | "As Left" TurboTest data 800MW

SOURCE			OK		FILTER 1×		FILTER $2 \times$		FILTER 0.125 ${ }^{\text {P }}$	
CH	TAG				AMP	ANG	AMP	ANG	AMP	UNITS
1	H1FRL	-10.598	IIIII	1.71	1.63	197	0.14	195	0.15	Mils P-P
2	H1FRR	-11.904	IIIII	1.24	1.20	281	0.12	163	0.03	Mils P-P
3	H1RRL	-10.532	IIIII	2.77	2.71	268	0.10	128	0.16	Mils P-P
4	H1RRR	-10.518	IIIII	3.17	3.15	346	0.12	81	0.11	Mils P-P
5	11FRL	-12.165	IIIII	2.87	2.78	211	0.13	308	0.05	Mils P-P
6	11FRR	-12.133	IIIII	3.16	3.08	312	0.36	108	0.11	Mils P-P
7	I1RRL	-11.269	IIIII	4.13	4.09	200	0.25	319	0.07	Mils P-P
8	I1RRR	-10.670	IIIII	4.28	4.26	286	0.23	75	0.05	Mils P-P
9	L1FRL	-10.989	IIIII	4.28	4.24	149	0.31	251	0.01	Mils P-P
10	L1RRL	-7.001	IIIII	4.39	4.34	66	0.46	344	0.05	Mils P-P
11	L2FRL	-9.290	IIIII	3.27	3.24	60	0.22	62	0.01	Mils P-P
12	L2RRL	-7.899	IIIII	2.97	2.91	137	0.56	150	0.01	Mils P-P
13	G1TRL	-11.260	IIIIII	0.88	0.28	141	0.32	293	0.02	Mils P-P
14	G1XRL	-12.601	IIIIII	1.07	0.17	348	0.98	356	0.01	Mils P-P
15	X1RRL	-8.030	11111	5.06	5.05	318	0.33	216	0.03	Mils P-P
16	X1RRR	-8.240	\|1111]	4.75	4.74	265	0.08	273	0.04	Mils P-P

Location TurboTes	$\operatorname{Brg} 1$	$\operatorname{Brg} 2$	$\operatorname{Brg} 3$	$\operatorname{Brg} 4$	$\operatorname{Brg} 5$	$\operatorname{Brg} 6$	$\operatorname{Brg} 7$	$\operatorname{Brg} 8$	$\operatorname{Brg} 9$	$\operatorname{Brg} 10$	$\operatorname{Brg} 11$
t											

Note: NA = No data available or runout minimal

"As Left" Bearing Metal and Oil Temperatures 800MW:

location	Metal F.
Brg 1	$177.9^{\circ} \mathrm{F}$
Brg 2	$187.1^{\circ} \mathrm{F}$
Brg 3	$150.6^{\circ} \mathrm{F}$
Brg 4	$149.5^{\circ} \mathrm{F}$
Brg 5	$191.5^{\circ} \mathrm{F}$
Brg 6	$196.5^{\circ} \mathrm{F}$
Brg 7	$198.3^{\circ} \mathrm{F}$
Brg 8	$189.1^{\circ} \mathrm{F}$
Brg 9	$163.7^{\circ} \mathrm{F}$
Brg 10	$165.2^{\circ} \mathrm{F}$
Brg 11	$146.3^{\circ} \mathrm{F}$
Cooler out	$124.4^{\circ} \mathrm{F}$
Cooler In	$162^{\circ} \mathrm{F}$
Air Side SO	$144^{\circ} \mathrm{F}$
Hydro Side	
SO	$116{ }^{\circ} \mathrm{F}$

TurboTest log:

6:Jun:2006-09:01 Create new job.
16:Jun:2006-09:02 Create data volume 1 - BIG MITCHELL UNIT 1 AEP KC JONES 6/16/2006 IP SPARE ROTOR INSTALLED

16:Jun:2006-23:59 Vol1.vec rdg 34---> first steam roll
17:Jun:2006-09:04 Vol1.vec rdg 536---> unit trip generator problems
17:Jun:2006-15:45 Vol1.vec rdg 1210---> on line
17:Jun:2006-15:51 Vol1.vec rdg 1211---> 40MW
17:Jun:2006-16:15 Vol1.vec rdg 1217---> 19MW
17:Jun:2006-16:56 Vol1.vec rdg 1225---> 38MW
18:Jun:2006-06:57 Vol1.vec rdg 1393---> 330MW
18:Jun:2006-09:09 Vol1.vec rdg 1419---> 434MW

18:Jun:2006-13:43 Vol1.vec rdg 1475---> 360MW
19:Jun:2006-07:05 Vol1.vec rdg 1684---> 688MW
19:Jun:2006-07:10 Vol1.vec rdg 1685---> 711MW
19:Jun:2006-07:15 Vol1.vec rdg 1686---> 740MW
19:Jun:2006-09:40 Vol1.vec rdg 1799---> 790MW
19:Jun:2006-10:56 Vol1.vec rdg 1873---> 800MW

Attachment 15
Page 132 of 253

Job Number: FTS-0ZCT06027077

Attachment 15
Page 135 of 253

Attachment 15
Page 136 of 253

Attachment 15
Page 137 of 253

Attachment 15
Page 138 of 253

Attachment 15
Page 141 of 253

N/A

PLANT \& UNIT
JOB NO.
DATE:
$\frac{\text { Mitchell Plant Unit -1 }}{40634913-06}$

Operating TEMP \& PRESSURE (B31.1):

APPLICABLE CODE B31.1
Oil Pipe: $140^{\circ} \mathrm{F}$. @ 380 psi, Guard Pipe: ambient and 6" vacuum

REPAIR DESCRIPTION \& LOCATION:

Turbine Main Oil Pump Suction and Discharge Piping - reweld joint approximately 14 feet below turbine front standard pedestal floor.

- PLANT MAINTENANCE SUPERVISION: NOTIFY QCC AND STOP FABRICATION AT ALL HOLD POINTS.
'DICATE THE REQUIRED HOLD POINTS BY INITIALS. INDICATE RELEASE OF HOLD POINTS BY INITIALS. ITE: INDIVIDUALS WILL INITIAL AND DATE TO SIGNIFY COMPLETION.

PLANT QC ACCEPTANCE:
INSPECTOR ACCEPTANCE:
(When reviewed)

MATERIAL
PROCESS
FILLER METAL

Carbon Steel, P-1 \& S-1
SMAW

E7018	E7018-A1
E7015	E7015-A1
E7016	E7016-A1

SHIELD	N/A
PURGE	N/A

JD-2, JD-3, JD-4, JD-5 (girth only for Sec. I) \& JD-10 (welding neck w/backing)
All
$50^{\circ} \mathrm{Fmin}$.
$175^{\circ} \mathrm{F}$ min. for mat'l with both C over 0.30% and T over $1^{\prime \prime}$ (VIII) $200^{\circ} \mathrm{F}$ min. for mat'l with T over $1-1 / 4^{\prime \prime}$ (VIII)

INTERPASS TEMP. $500^{\circ} \mathrm{F}$ max. recommended

POST HEAT

WELD DATA

Pass
1 \& over
1 \& over
3 \& over

TECHNIQUE

QUALIFICATION (PQR)

MISCELLANEOUS

Stringer bead*
Vertical upward progression
(107) \& (358) Base metal: $1 / 16$ to $3 / 4^{\prime \prime}$ (I \& B31.1), $1 / 16$ to $1-1 / 2^{\prime \prime}$ (VIII)

Weld max: 3/4" (I \& B31.1), 1-1/2" (VIII)

B31.1, I \& VIII also approved for Ohio Piping.

* Refer to General Welding Instruction No. 1 and also for general information.

HOSTEL	WELDING PROCEDURE	
	SPECIFICATION	SHAW B31.1, I \& VIII Carbon Steel, P-1

2PREPAREDBY on Bn Aratrear
QC APPROVAL \qquad
DATE

DATE \qquad

MATERIAL
PROCESS
FILLER METAL

Carbon Steel, P-1 \& S-1
SMAW

E7018	E7018-A1
E7015	E7015-A1
E7016	E7016-A1

SHIELD	N/A
PURGE	N/A

JD-2, JD-3, JD-4, JD-5 (girth only for Sec. I) \& JD-10 (welding neck w/backing)
All
$50^{\circ} \mathrm{Fmin}$.
$175^{\circ} \mathrm{F}$ min. for mat'l with both C over 0.30% and T over $1^{\prime \prime}$ (VIII) $200^{\circ} \mathrm{F}$ min. for mat'l with T over $1-1 / 4^{\prime \prime}$ (VIII)

INTERPASS TEMP. $500^{\circ} \mathrm{F}$ max. recommended

POST HEAT

WELD DATA

Pass
1 \& over
1 \& over
3 \& over

TECHNIQUE

QUALIFICATION (PQR)

MISCELLANEOUS

Stringer bead*
Vertical upward progression
(107) \& (358) Base metal: $1 / 16$ to $3 / 4^{\prime \prime}$ (I \& B31.1), $1 / 16$ to $1-1 / 2^{\prime \prime}$ (VIII)

Weld max: 3/4" (I \& B31.1), 1-1/2" (VIII)

B31.1, I \& VIII also approved for Ohio Piping.

* Refer to General Welding Instruction No. 1 and also for general information.

HOSTA	WELDING PROCEDURE	
	SPECIFICATION	SHAW B31.1, I \& VIII Carbon Steel, P-1

2PREPAREDBY on Bn Aratrear
QC APPROVAL

DATE

DATE \qquad

ALLOY ANALYZER INSPECTION REPORT AEP - CMS

3100 MacCorkle Ave. Building 309 South Charleston, WV 25303

Traveler No, MLU106-017
CMS NO:
ACT NO:
FACILITY: Mitchell - Ul
ITEM: Main Oil Pump. Inlet-gutlet
PC/SN Suction et Discharge
Below Frout Standard

Al - Aluminum	$\mathrm{Mn}-$ Manganese	$\mathrm{Ti}-$ Titanium
$\mathrm{C}-$ Carbon	$\mathrm{Mo}-$ Molybdenum	$\mathrm{V}-$ Vanadium
Co- Cobalt	$\mathrm{Nb}-$ Niobium	$\mathrm{W}-$ Tungsten
$\mathrm{Cr}-$ Chromium	$\mathrm{Ni}-$ Nickel	$\mathrm{Zn}-$ Zinc
$\mathrm{Cu}-$ Copper	$\mathrm{Pb}-$ Lead	
$\mathrm{Fe}-$ Iron	$\mathrm{Sn}-$ Tin	

sis Performed By: $\frac{\text { <ony }-5 \text { lenley }}{5-8-06}$
NDE Supv:
Date:

Central Machine Shop
3100 MacCorkle Avenue, Bldg. 309
South Charleston, West Virginia 25303
CHS NUMBER \qquad
\qquad 5-11-06

ACCOUNT NUMBER \qquad

1. IDENTIFICATION
\qquad
2. TECHNIQUE:Dry Powder \square Coil \square Prods \square
\square
Non Fluorescent
3. CURRENT TYPE: \qquad AC \square DC
;. amp turns - Parker Probe
4. EQUIPMENT:
\square
; INSPECTION PROCEDURE: \qquad $M I-1-5-2-3$
\qquad
INSPECTION SPECIFICATIONS: \qquad
\qquad
TYPE OF INDICATION FOUND:
\square 1. Crack \square 2. Linear Surface3. Linear Subsurface4. Undercut5. Non Relevant
. SKETCH/DESCRIPTION:
A magnetic particle inspection was performed to the weld on each line. Results showed no defects.
nature

nature \qquad APPROVED BY: (NDE Supervisor)

> DATE
\qquad $5-11-06$

DATE \qquad

A Century of Firsts

Mitchell Station Unit \#1
 American Electric Power Company
 Ohio Power Company
 AE: OHIO
 A unit of American Electric Power

Steam Cycle Shutdown

Westinghouse T-G Set

800 MWs - Tandem Compound - 3600 rpm

VHP-HP Turbine	Serial Number	13A3160-1
IP Turbine	Serial Number	13A3161-1
LP Turbine \#1	Serial Number	13A3162-1
LP Turbine \#2	Serial Number	13A3163-1
Turbine Instruction Book		1250-C679
HP Generator	Serial Number	1-S-87P0755
HP Exciter	Serial Number	1-S-73P0476
Generator Instruction Book		90P0944
Boiler Feed Pump Drive Turbine		15-A-2961-1
BFP/DT Instructio	Manual	1150-C129
July Shutdown		to 7-24-2006

Table of Contents

Executive Summary

Page 3
Resources \quad Page 4
Outage AEP Key Personnel
Outage Sub-contractors
WO Numbers

Work Performed
Hydrogen Seal Oil Skid
Page 5
Reheat Stop Valve
Page 6
Stop Valve Strainer Differential Page 6
Stator Water Cooler Leak
Page 6
Attachments

Attachment 1	SOS Floats As Found	Page7
Attachment 2	SOS Floats As Left	Page 8
Attachment 3	SOS Regulating Tank Level Indicator	Page 9
Attachment 4	Seal Oil Diagram Original	Page 10
Attachment 5	Seal Oil Diagram Red Lined	Page 11
Attachment 6	Seal Oil Diagram As Built	Page 12
Attachment 7	Removed Exciter Valve 326	Page 13
Attachment 8	Installed Bland for Valve 326	Page 14
Attachment 9	Stator Water I/O Tube Plug	Page 15
Attachment 10	Stator Water Reverse Tube Plug	Page 16
Attachment 11	SW Reversing Cover Crack	Page 17
Attachment 12	SW Reversing Cover Crack	Page 18
Attachment 13	SW Reversing Cover Dimensions	Page 19

Executive Summary

This scope is work performed during a four-day system cycle shutdown to repair boiler tube leakage. The work performed by this RSO Crew was; 1.) The open, inspect and repair of the electric generator hydrogen seal oil skid regulator tank level control, 2.) The repair of a steam leak at the first reheat stop valve bonnet, 3.) Review and possible correction of poor performance of a steam chest strainer differential gage point, and 4.) Correcting water leakage across a Stator Water Coolant Skid heat exchanger tube.

Recommendations

1. Install new circulating water isolation valves for the stator water coolant skid.
2. Replace the upper cooler reversing head of the stator water coolant skid.
3. Replace root valves for main turbine steam chest sensing lines.
4. Had Auto - Cad correct OEM Tech Manual Seal Oil Diagram to reflect the abandonment of the hydrogen cooled exciter. All in-use Tech Manuals should be updated accordingly.

Resources

Internal

Steve Dolan	KAMMER STATION
Jack Huggins	KAMMER STATION
Ralph Pederson	GET TSV TC
Doug Fox	GET TSV RSO
Jeff Brothers	GET TSV RSO
Robin Margolis	GET TSV CMS
Robert Lake	GET TSV RSO

Electric Process Owner
Electrical Process Supervisor
Lead Turbine Coordinator
Supervisor - Turbine Crew
Supervisor - Turbine Crew
Non Destructive Examination
Gavin Tool Facility

External

NONE

WO Numbers

4079455001
4079455601
4079456201
4079456701

Hydrogen SOS Repairs
LS Reheat Stop Valve Gasket - $1^{\text {st }}$
Strainer Tap Diff Loop \& Valve
Stator Water Cooler Leak

Work Performed

Hydrogen Seal Oil Skid

The hydrogen seal oil skid regulating tank was opened to determine the cause for back flooding the electric generator collector end defoaming tank into the stator cavity. Operations had been manually draining lubricating seal oil from collector end liquid detector. Personnel have been removing this material on an hourly and sometimes more frequent schedule. The leakage is worse on power cycle start up and shut down.

The east end regulator tank cover was removed to inspect the tank interior and the inlet and drain float valve mechanisms. The interior of the tank was found gritty and with evidence of water in the past. The condition of the float valve mechanisms was good with no dropped linkage pins. The mechanisms were manually manipulated to determine smooth function of the mechanisms. The mechanisms were found to swing easily and with no sign of drag. The valves and their mechanisms were removed from the tank for closer inspection. The internals of the valves and mechanisms were in excellent condition. The valves and their mechanisms were restored to the regulating tank. The stem lengths of the valves were changed to correct their function interact. The drain valve stem length was shortened 0.180 " while the inlet valve stem length was expanded by 0.100 ". The change of stem length gives a dead band of approximately one inch from the time the inlet valve stops porting oil until the time when the drain valve begins dropping tank level. The dead band was set up to be at approximately tank horizontal centerline. The As Found float stem lengths had the drain valve open before the inlet valve was closed.

The mechanical magnetic level indicator was inspected to determine cause to failure to properly show level. The action of level indicator during inspection was good. The cause of poor indication service appeared to be the swing arc of the inlet valve float arm could strike the indicator. This was reviewed and the concern for impeded operation of the two devices was corrected by establishing a $3 / 16$ " clearance between the devices. Westinghouse Tech Manual diagram intents this removed regulating tank cover to be at the west end.

The oil connection line between the regulating tank and the receiver tank was blown with air to determine no obstruction existed. The same process was applied to the gas connection line at the top of these tanks. No obstruction was found in either line. The line from the float drain valve to the airside pump was inspected for obstruction and none found. An attempt was made to push a probe camera up the drain line from the defoaming tanks to the receiver tank. The probe could be pushed approximately 28 feet before the drag of the numerous elbows stopped progress advancement. Nothing unusually was noted in the pipe scoped.

Reheat Stop Valve

The Main Turbine left side first reheat stop valve bonnet cover was removed to install a new flexitallic gasket. The sealing faces were cleaned and stoned. No damage was found on these surfaces. A new gasket was seated and the bonnet fasteners torqued to a preload of 45,000 PSI.

Stop Valve Strainer Differential Sensing Line

The plant was having difficulty obtaining main stop valve strainer differential pressures from the right side steam chest. RSO applied 80-PSI air pressure to this sensing line and impact shock to the steam chest root valve. The sensing line has an approximate line run of 50 feet. The line finally would past air from the wall-mounted indicator to the steam chest root valve after a number of applications.

Stator Water Cooler Leak

The plant reported the Stator Water Coolant Skid to be using approximately 30 to 40 gallons of demineralized water a shift for makeup. It was felt that there was a tube leak to the circulating water side. The skid coolers were isolated from the stator and pressure tested using circulating water. The through wall tube leak was found to be in the top cooler. The circulating water isolation valves at the cooler were found to leak through and thus the isolation was moved to the cooling tower line. The inlet-outlet and reversing heads were removed and the tube sheets soaped to determine damaged tube while the cooler shell side was pressurized with 5-PSI air. A single tube was found to be the source of leakage and brass tube plugs seated. The cooler heads were reassembled using new gaskets. An existing linear indication was found on the reversing head. The indication is water tight and has been coated with an epoxy sometime in the past. The cooler head assembly interfaces were pressurized with circulating water to review for leakage to human environment. None were observed. The reversing head was installed as is as the indication had been epoxy coated in the past and was water tight. See Photos.

Attachment 2 - SOS Regulating Tank Floats as Restored

Page 8 of 19

Attachment 3 - SOS Regulating Tank Level Indication Float

Attachment 4 - Old Tech Manual Seal Oil Diagram

Attachment 5 - Seal Oil Diagram Red Line

Attachment 6 - Seal Oil Diagram Cleaned Up As Built

Attachment 8 - Blank Installment for Valve 326

Attachment 9 - Stator Water Inlet-Outlet End Tube Plug

Attachment 10 - Stator Water Reversing End Tube Plug

Attachment 11 - Stator Water Reversing Cover Crack

Attachment 12 - Stator Water Reversing Cover Crack

Page 18 of 19

Attachment 13 - Stator Water Reversing Cover Dimensions

Mitchell Unit \#1 Stator Cooling Water Upper Cooler Reversing Cover Dimensions

Site Turbine Tools

Tab 3
(Pages 25)
Manager of Specialty Tools Documentation of Tool Form

Specialty Tool Identification Form

General Information		
Tool Name: Throttle Plug iock	Tool Originator:	Tool ID \#: $M L-U 1-T V-00 \mid$
Date of ID Issue:	Manager Name:	Tool Location: Mitchell Station linit ${ }^{\text {t }}$
Tool Function and Description: sterm pilut valye		

Re-certification	Y	
Is re-certification required?		
If yes, please give a specific amount of time or usage.		
Other stipulations?		

Verification of ID Usage	Date:	
Location on Tool:	Manager Initials:	
Specific Label:		

Specialty Tool Critical Requirements Checklist

Tool ID \#: ML-U1-TV ~001	Completed By: Ralph Ped essok	Date Completed: $4 / 6 / 06$
Tool Name: Threttle plugg Lock	Manager Name:	Date Reviewed:
Brief Description of Tool: Secure Unittl throttl \& plug for disassembly of internal steam pilot valve.		

Unfit For Use Criteria	Yes	No	
1	For an existing tool, are there any visual material deformations such as: cracks, crazing, nicks, excessive rust, significant wear, mushrooming, etc.		X
Is this tool unfit for use? (Any checkmarks under the Yes column establish this tool as Unfit for Use and this tool shall no longer be used. Atool determined unfit for use shall be properiy labeled and a new tool shall fabricated in accordance with this document.)	Unfit for Use	Fit for Use	

Testing Criteria		Yes	No
1	Is this tool used for lifting, as a lifting accessory, or for specialized rigging?		K
Must this tool complete required testing?	Testing Required	No Testing Required	
(Any checkmarks under the Yes column require this tool complete required testing before further use. A tool required to complete testing must be properly labeled until approved for use by specialty Tool Manager. A list of reference regulations for required testing may be found in the attachment titled Specialty Equipment Industry and Safety Requirements. Toos in this category are now regulated by the requirements of the applicable document.)		X	

[^1]
Specialty Tool Critical Requirements Checklist

Critical Criteria		Yes	No
1	Does this tool operate under machine power?		X
2	Does this tool contain significant stored energy (springs, trigger mechanism, etc)?		X
3	If the tool were to fail, would its failure result in operator injury?		X
4	Does this tool operate in extreme environments (temperature, pressure, potentially corrosive, etc.)?		X
5	Does this tool operate in a repetitive manner at high levels of force (conditions indicative of fatigue)?	X	
6	Regardless of checklist results, does good judgment necessitate an engineering review of this tool?		X
Does this tool require Engineering Review? (Any checkmarks under the Yes column require the tool to go through an engineering review. A tool required to complete an engineering review must be properly labeled until approved for use by Specialty Tool Manager.)	Critical	Non-critical	

Signature of Tool Originator	Rogoh Pedersa	Date	$4 / 6 / 06$
Signature of Specialty Tool Manager	Date		

ML-U1-TV-001 - Throttle Plug Lock

Specialty Tool Identification Form

General Information		
Tool Name:	Tool Originator:	Tool ID \#:
throdtle Plug Spanne		ML-41-TV-002
Date of ID Issue!	Manager Name:	Tool Location: mitchell Station Unit*)
Tool Function and Description To then throttle plug internal $_{\text {Spanner wren ch }}=$ then pilot valve bashing nut		

Re-certification	Is re-certification required?	Y
If yes, please give a specific amount of time or usage.		
Other stipulations?		

Verification of ID Usage		
Location on Tool:	Manager Initials:	Date:
Specific Label:		

Specialty Tool Critical Requirements Checklist

Tool ID \#: ML-U1-TV-002	Completed By: RalphPederson	Date Completed: $1 / 6 / 06$
Tool Name: +hvottle plug Spanner	Manager Name:	Date Reviewed:
Brief Description of Tool: Spanner wrekch tsturn throttle plug internal pilot valve bushingnut		

Unfit For Use Criteria	Yes	No	
1	For an existing tool, are there any visual material deformations such as: cracks, crazing, nicks, excessive rust, significant wear, mushrooming, etc.		X
Is this tool unfit for use? (Any checkmarks under the Yes column establish this tool as Unfit for Use and this tool shall no longer be used. A tool determined unfit for use shall be properly labeled and a new tool shall fabricated in accordance with this document.)	Unfit for Use	Fit for Use	

Testing Criteria		Yes	No
1	Is this tool used for lifting, as a lifting accessory, or for specialized rigging?		K
Must this tool complete required testing? (Any checkmarks under the Yes column require this tool complete required testing before further use. A tool required to complete testing must be properly labeled until approved for use by Specialty	Testing Required	No Testing Required	
Tool Manager. A list of reference regulations for required testing may be found in the attachment titled Specialty Equipment Industry and SSefety Requirements. TTools in this category are now regulated by the requirements of the applicable document.)		K	

** Checklist Continued on Next Page**
This document contains information confidential and proprietary to AEPSC. It shall not be reproduced in whole or in part or released to any third party without the expressed written consent of AEPSC.

Speciality Tool Critical Requirements Checklist

Critical Criteria		Yes	No
1	Does this tool operate under machine power?		X
2	Does this tool contain significant stored energy (springs, trigger mechanism, etc)?		X
3	If the tool were to fail, would its failure result in operator injury?		X
4	Does this tool operate in extreme environments (temperature, pressure, potentially corrosive, etc.)?		X
5	Does this tool operate in a repetitive manner at high levels of force (conditions indicative of fatigue)?		X
6	Regardless of checklist results, does good judgment necessitate an engineering review of this tool?		Critical
Does this tool require Engineering Review? (Any checkmarks under the Yes column require the tool to go through an engineering review. A tool required to complete an engineering review must be properly labeled until approved for use by Specialty Yool Manager.)	Non-critical		

Signature of Tool Originator	Ragoh Pederse	Date	$4 / 6 / 06$
Signature of Specialty Tool Manager	Date		

[^2]
ML-U1-TV-002 - Throttle Plug Spanner

Specialty Tool Identification Form

General Information		
Tool Name: Throtlle P: lot Sp	Tool Originator:	Tool ID \#: $M L-U 1-T V-003$
Date of ID Issue:	Manager Name:	Tool Location: Mitchellstertion Uni, $* 1$
Tool Function and Description: Throttle value pilot nut spanner wrench		

Re-certification		
Is re-certification required?	Y	
If yes, please give a specific amount of time or usage.		
Other stipulations?		

Verification of ID Usage		
Location on Tool:	Manager Initials:	Date:
Specific Label:		

Specialty Tool Critical Requirements Checklist

$\begin{aligned} & \text { Tool ID \#: } \\ & \text { ML-K1-TV-003 } \end{aligned}$	Completed By : Ralph Pederson	Date Completed: $4 / 6 / 06$
Tool Name: Thrattle Pilot Spamner	Manager Name:	Date Reviewed:
Brief Description of Tool:		

Unfit For Use Criteria	Yes	No	
1	For an existing tool, are there any visual material deformations such as: cracks, crazing, nicks, excessive rust, significant wear, mushrooming, etc.		X
Is this tool unfit for use? (Any checkmarks under the Yes column establish this tool as Unfit for Use and this tool shall no longer be used. A tool determined unfit for use shall be properly labeled and a new tool shall fabricated in accordance with this document.)	Unfit for Use	Fit for Use	

| Testing Criteria | Yes | No |
| :--- | :--- | :---: | :---: |
| 1 | Is this tool used for lifting, as a lifting accessory,
 or for specialized rigging? | X |
| Must this tool complete required testing? | Testing
 Required | No Testing
 Required |
| (Any checkmarks under the Yes column require this tool complete
 required testing before further use. A tool required to complete
 testing must be properly labeled until approved for use by Specialty
 Tool Manager. A list of reference regulations for required testing may
 be found in the attachment titled Specialty Equipment Industry and
 Safety Requirements. Tools in this category are now regulated by
 the requirements of the applicable document.) | X | |

[^3]
Specialty Tool Critical Requirements Checklist

Critical Criteria		Yes	No
1	Does this tool operate under machine power?		X
2	Does this tool contain significant stored energy (springs, trigger mechanism, etc)?	X	
3	If the tool were to fail, would its failure result in operator injury?		X
4	Does this tool operate in extreme environments (temperature, pressure, potentially corrosive, etc.)?	X	
5	Does this tool operate in a repetitive manner at high levels of force (conditions indicative of fatigue)?	X	
6	Regardless of checklist results, does good judgment necessitate an engineering review of this tool?	Critical	Non-critical
Does this tool require Engineering Review? (Any checkmarks under the Yes column require the tool to go through an engineering review. A tool required to complete an engineering review must be properly labeled until approved for use by Specialty Tool Manager.)	X		

Signature of Tool Originator	Rogph Pedenar	Date	$4 / 6 / 06$
Signature of Specialty Tool Manager	Date		

ML-U1-TV-003 - Throttle Pilot Spanner

Specialty Tool Critical Requirements Checklist

Tool ID \#: $M L-U i-T V-\Delta 04$	Completed By: Ralphiedersou	Date Completed: $4-12-2006$
Tool Name: TU Secondary Plug hock	Manager Name:	Date Reviewed:
Brief Description of Tool: Clamp to hold throttling, valve secondary plug stationary while loosening guide bushing nut		

Unfit For Use Criteria	Yes	No	
1	For an existing tool, are there any visual material deformations such as: cracks, crazing, nicks, excessive rust, significant wear, mushrooming, etc.		X
Is this tool unfit for use? (Any checkmarks under the Yes column establish this tool as Unfit for Use and this tool shall no oloner be sed. A tool determined unfit for use shall be properly labeled and a new tool shall fabricated in accordance with this document.)	Unfit for Use	Fit for Use	

| Testing Criteria | Yes | No |
| :--- | :--- | :---: | :---: |
| 1 | Is this tool used for lifting, as a lifting accessory,
 or for specialized rigging? | X |
| Must this tool complete required testing?
 (Any checkmarks under the Yes column require this tool complete
 required testing before further use. A tool required to complete
 testing must be properly labeled until approved for use by Specialty
 Tool Manager. A list of reference regulations for required testing may
 be found in the attachment titled Specialty Equipment Industry and
 Safety Requirements. Tools in this category are now regulated by
 the requirements of the applicable document.) | Testing
 Required | No Testing
 Required |

[^4]This document contains information confidential and proprietary to AEPSC. It shall not be reproduced in whole or in part or released to any third party without the expressed written consent of AEPSC.

Specialty Tool Identification Form

Verification of ID Usage	Manager Initials:	Date:
Location on Tool:		
Specific Label:		

Specialty Tool Critical Requirements Checklist

Critical Criteria		Yes	No
1	Does this tool operate under machine power?		χ
2	Does this tool contain significant stored energy (springs, trigger mechanism, etc)?		χ
3	If the tool were to fail, would its failure result in operator injury?		χ
4	Does this tool operate in extreme environments (temperature, pressure, potentially corrosive, etc.)?		χ
5	Does this tool operate in a repetitive manner at high levels of force (conditions indicative of fatigue)?		χ
6	Regardless of checklist results, does good judgment necessitate an engineering review of this tool?		χ
Does this tool require Engineering Review? (Any checkmarks under the Yes column require the tool to go through an engineering review. A tool required to complete an engineering review must be properly labeled until approved for use by Specialty Tool Manager.)	Critical	Non-critical	

Signature of Tool Originator	Raph $P_{\text {e dever }}$	Date	$4-12-2006$
signature of Specialty Tool Manager	Date		

(in whole or in part or released to any third party without the expressed written consent of AEPSC.

Specialty Tool Identification Form

General Information		
Tool Name:		
GV Plug Lock	Tool Originator:	Tool ID \#: $M L-U /-E V-001$
Date of ID Issue: 4-17-2006	Manager Name:	Tool Location: Mitchell Statiou
Tool Function and Description: Clanp + hold givernor valve plug while loosening valve bushiny guide nut		

Re-certification			
Is re-certification required?			
If yes, please give a specific amount of time or usage.			
Other stipulations?			

Verification of ID Usage	Manager Initials:	Date:
Location on Tool:		
Specific Label:		

Specialty Tool Critical Requirements Checklist

Tool ID \#: ML-Ul-GV-001	Completed By: RalphPederson	Date Completed: $4-17-2006$
Tool Name:	Manager Name:	Date Reviewed:
Brief Description of Tool: Clamp to hald governovvalve plug whil eloosening value guideloushingnut		

Unfit For Use Criteria		Yes	No
1	For an existing tool, are there any visual material deformations such as: cracks, crazing, nicks, excessive rust, significant wear, mushrooming, etc.		X
Is this tool unfit for use? (Any checkmarks under the Yes column establish this tool as Unfit for Use and this tool shall no longer be used. A tool determined unfit for use shall be properiy labeled and a new tool shall fabricated in accordance with this document.)	Unfit for Use	Fit for Use	

Testing Criteria		Yes	No
1	Is this tool used for lifting, as a lifting accessory, or for specialized rigging?		X
Must this tool complete required testing? (Any checkmarks under the Yes column require this tool complete required testing before further use. A tool required to complete testing must be properly labeled until approved for use by Specialty Tool Manager. Alist of reference regulations for required testing may be found in the attachment titled Specialty Equipment Industry and Safety Requirements. Tools in this category are now regulated by the requirements of the applicable document.)	Testing Required	No Testing Required	

[^5]
Specialty Tool Critical Requirements Checklist

Critical Criteria		Yes	No
1	Does this tool operate under machine power?		\times
2	Does this tool contain significant stored energy (springs, trigger mechanism, etc)?		\times
3	If the tool were to fail, would its failure result in operator injury?	\times	
4	Does this tool operate in extreme environments (temperature, pressure, potentially corrosive, etc.)?		\times
5	Does this tool operate in a repetitive manner at high levels of force (conditions indicative of fatigue)?	Regardless of checklist results, does good judgment necessitate an engineering review of this tool?	Critical
Does this tool require Engineering Review? (Any checkmarks under the Yes column require the tool to go through an engineering review. A tool required to complete an engineering review must be properly labeled until approved for use by Specialty Tool Manager.)	Non-critical	\times	

Signature of Tool Originator	Roph fedeen	Date	$4-17-2006$
Signature of Specialty Tool Manager	Date		

[^6]
ML-U1-GV-001 - GV Plug Lock

Specialty Tool Critical Requirements Checklist

$\begin{aligned} & \text { Tool ID \#: } \\ & m L-U 1-G V-\Delta O Z \end{aligned}$	Completed By: Rapu Pederso.	Date Completed: $4-17-2000$
Tool Name: GU Plug Spanaer	Manager Name:	Date Reviewed:
Brief Description of Tool: Spanaer weench to work on GV bushing guidenat while mL-U1-GV-ool nolds GVphig		

Unfit For Use Criteria	Yes	No	
1	For an existing tool, are there any visual material deformations such as: cracks, crazing, nicks, excessive rust, significant wear, mushrooming, etc.		K
Is this tool unfit for use? (Any checkmarks under the Yes column establish this tool as Unfit for Use and this tool shaln Io longer be used. A tool determined unfit for use shall be properly labeled and a new tool shall fabricated in accordance with this document.)	Unfit for Use	Fit for Use	

Testing Criteria		Yes	No
1	Is this tool used for lifting, as a lifting accessory, or for specialized rigging?		Y
Must this tool complete required testing?	Testing Required	No Testing Required	
(Any checkmarks under the Yes column require this tool complete required testing before further use. A tool required to complete testing must be properly labeled until approved for use by Specialty Tool Manager. A list of reference regulations for required testitg may be found in the attachrent titled Specialty Equipment Industry and Safety Requirements. Tooos in this category are now regulated by the requirements of the applicable document.)	X		

[^7]This document contains information confidential and proprietary to AEPSC. It shall not be reproduced in whole or in part or released to any third party without the expressed written consent of AEPSC.

Specialty Tool Identification Form

General Information		
Tool Name: GVPlug Spanner	Tool Originator:	Tool ID \#: $m L-U 1-G V-002$
Date of is Issue: $4-17-2006$	Manager Name:	Tool Location: Mitchell Station
Tool Function and Description: Spanner wrench to work on GV bushing guide nut whils ML-ut-GV-001 holds GV plug		

Re-certification	Y	
Is re-certification required?		
If yes, please give a specific amount of time or usage.		
Other stipulations?		

Verification of ID Usage	Manager Initials:	Date:
Location on Tool:		
Specific Label:		

Specialty Tool Critical Requirements Checklist

Critical Criteria	Yes	No
1 Does this tool operate under machine power？		X
2 等Does this tool contain significant stored energy （springs，trigger mechanism，etc）？		K
3 If the tool were to fail，would its failure result in operator injury？		x
4 Does this tool operate in extreme environments （temperature，pressure，potentially corrosive， etc．）？ 而		x
5 Does this tool operate in a repetitive manner at high levels of force（conditions indicative of fatigue）？ 6 俍		x
6 Regardless of checklist results，does good judgment necessitate an engineering review of this tool？ D		x
Does this tool require Engineering Review？ （Any checkmarks under the Yes column require the tool to go through an engineering review．A tool required to complete an engineering review must be properly labeled until approved for use by Specialty Tool Manager．）	Critical	Non－critical

Signature of Tool Originator	Rolf M Pedecoa	Date	$4-17-2006$
Signature of Specialty Tool Manager		Date	

ML-U1-GV-002 - GV Plug Spanner

Recommendations

Tab 4

1. The collector shaft fan needs to be balanced to eliminate the plant's operating process of running a 30-degree Frahanhiet differential of the air side and hydrogen side seal oil temperatures. It appears that the temperature differential is twisting the seal ring itself into a bound condition. This condition is pushing oil along the shaft past the seal gland casing labyrinth seals and into the hydrogen gas cavity. The plant operations currently drain approximately four ounces from the collector end liquid detector.
2. The generator collector end liquid detector alarm is not working. This device should be repaired or replaced.
3. The Seal Oil Skid turbine end and exciter end equalizing valves appear sluggish and binding. These should be shipped to Ruggles-Klingmann for a full overhaul and bench test.
4. The governor valve stand snout bushings are distressing from past tack welds. The next inspection should replace all eight of these bushings.

Tab 5

Diagram of LO Cooler Lantern

 Ring Fit for Mitchell Plant \#1 MLU106

Steam Seal Clearance Record

IP Rotor Clearances
Sheet 1

Steam Seal Clearance Record

IP Rotor Clearances
Sheet 2

Packing Butt Gaps

Westinghouse GS Casing and Stationary Blade Shroud
Date $(\mathrm{m} / \mathrm{d} / \mathrm{y})$ 5/20/2006 Turbine $\mathrm{S} / \mathrm{N}: \quad$ MLU106 Prepared by Rahn

Stage	Lower Half		Upper Half		Packing Butt Gap		Amount to	
	Left Mils	Right Mils	Left Mils	Right Mils	Total	Design	Machine per segment	\# of Segments
GV OT G1	7	-41	6	16	-12	12		OK
GV OT G2	-20	-4	-6	9	-21	12		OK
GV IN G3	22	-1	-18	-15	-12	12		OK
GV IN G4	19	18	-68	19	-12	12		OK
GV IN G5	1	8	0	-46	-37	12		OK
GV R6	-41	42	-231	214	-16	12		OK
GV R5	25	0	-154	111	-18	12		OK
GV R4	41	0	33	-96	-22	12		OK
GV R3	-9	55	-37	-21	-12	12		OK
GV R2	46	-25	-27	-36	-42	12		OK
GV R1	-123	113	-7	0	-17	12		OK
GE R1	14	35	-42	-55	-48	12		OK
GE R2	68	-39	-38	-6	-15	12		OK
GE R3	93	-38	-76	-3	-24	12		OK
GE R4	-30	1	-60	71	-18	12		OK
GE R5	-64	6	5	5	-48	12		OK
GE R6	73	-11	-37	-46	-21	12		OK
GE IN G6	10	8	6	-47	-23	12		OK
GE IN G7	-11	-6	-13	-3	-33	12		OK
GE IN G8	-14	5	-9	6	-12	12		OK
GE OT G9	-8	-19	-5	20	-12	12		OK
GE OT G10	-9	-43	26	-3	-29	12		OK

Reaction Blading Clearance Record

IP Rotor Clearances

Attachment 15

MITCHELL-1 IP		date	5/22/06		TIME Days			TRUE	LEFT	TARGET	RIGHT	TRUE	ELEV	$\begin{aligned} & \text { MOVE } \\ & \text { SIDE } \end{aligned}$	SHIM SHIMCHNG CHNG	
			RAW		ReLAtive											
LOCATION	SAG	LEFT	BOT	RIGHT	LEFT	BOT	RIGHT					ELEV	CHNG	WAYS		
T-3 Oil	0.005				0		0	0.005				0	0.005	0	0.005	0.005
Bore						0.005										
R2 Outer Gland	9				0		0	9				0	9	0	9	9
						9										
Gland Bore Set Point	0	483		484	0		1	-0.5	0		0	0	-0.5	-0.5	-1	0
			483			0				0						
R3 Inner Gland	1	649		667	0		18	-13	0		10	-16	3	-4	-1	7
			644			-4				-11						
R5 Inner Gland	2	649		663	0		14	2	0		8	-2	4	-3	1	7
			656			9				2						
R6-Ss-GVN \#2 GVN	4	459		457	2		0	5	0		3	9.5	-4.5	2.5	-2	-7
			459			6				11						
R4-SS-GVN	6	88		78	10		0	3	0		9	-6.5	9.5	9.5	19	0
			80			8				-2						
R3-SS-GVN \#1 GVN R1-SS-GVN	6				0		0	6	7		0	12.5	-6.5	-3.5	-10	-3
						6				16						
	7	173		173	0		0	50	4		0	46	4	-2	2	6
			216			50				48						
FG-GVN	7	474		550	0		76	-77	0		61	-88.5	11.5	-7.5	4	19
			428			-39				-58						
FG-GNN	7	486		539	0		53	-97.5	0		81	-90.5	-7	14	7	-21
			408			-71				-50						
$\begin{aligned} & \text { R1-SS-GNN } \\ & \text { \#1 GNN } \\ & \text { R3-SS-GNN } \end{aligned}$	7	267		273	0		6	16	0		3	16.5	-0.5	-1.5	-2	1
			279			19				18						
	6				0		0	6	0		14	0	6	7	13	-1
						6				7						
$\begin{aligned} & \text { R4-SS-GNN } \\ & \text { \#2 GNN } \\ & \text { R6-SS-GNN } \end{aligned}$	6	92		110	0		18	10	0		6	-2	12	-6	6	18
			105			19				1						
	4	485		502	0		17	3.5	0		4	5	-1.5	-6.5	-8	5
			493			12				7						
R6 Inner Gland	2	664		660	4		0	-9	1		0	-10.5	1.5	1.5	3	0
			651			-7				-10						
R8 Inner Gland	1	669		658	11		0	-18.5	2		0	-16	-2.5	4.5	2	-7
			644			-13				-15						
Gland Bore Set Point	0	492		491	1		0	0.5	0		0	0	0.5	0.5	1	0
			492			1				0						
R9 Outer Gland	9				0		0	9	0		0	0	9	0	9	9
						9				0						
$\begin{aligned} & \text { T-4 Oil } \\ & \text { Bore } \end{aligned}$	6				0		0	6	1		0	16.5	-10.5	-0.5	-11	-10
						6				17						

Page 34 of 74

Mitchell \#1 Hydrogen Cooler Cooler \& Reversing Chamber Spacer

Use original parts to plot through bolt holes, eye bolt threaded holes and jack screw threaded holes.

Tolerances on these dimensions $=/-0.025$ ".
The cover thickness may go to 1.250 " but no thicker than $1.5^{\prime \prime}$.
The reversing chamber spacer thickness is best held at 2.0".

Dimensions of the Seal Oil Skid Cooler Components page 2/2

CUSTOMER:	AEP
LOCATIONUNIT\#:	
GENERATOR CLEARANCES: LABYRINTH SEAL	
BB/FRAME:	JOB NO.:
COMPONENT/S.O.:	GENERATOR

DIM. I END	A	B	C	Shaft OD	Clearance
DIA. NO. 1 TE					
DIA. NO. 2 TE					
DIA. NO. 3 TE					
DIA. NO. 1 EE	20.937	20.931	20.931	20.865	0.068
DIA. NO. 2 EE	22.513	22.516	22.515	22.454	0.039
DIA. NO. 3 EE	22.512	22.514	22.516	22.454	0.040

Tool \# Used \qquad Cal. Due Date \qquad

As Found \qquad Reading Taken By: \qquad Date: \qquad

As Charted \qquad Reviewed By Turb Coord.: \qquad Date: \qquad

AEPIRSO

CUSTOMER: \quad AEP	
LOCATION/UNT\#:	
GENERATOR HYDROGEN SEAL CLEARANCES	
BB/FRAME:	JOB NO.:
COMPONENT/S.O.:	GENERATOR \quad DWG.:

LOCATION	DIM A $=$ GROOVE WIDTH	DIM B = RING THICKNESS	CLEARANCE
TOP	1.911	1.903	0.008
BOTTOM	1.911	1.903	0.008
RIGHT SIDE	1.910	1.903	0.007
LEFT SIDE	1.910	1.902	0.008

RADIAL CLEARANCES			
LOCATION	DIM C = JOURNAL	DIM D $=$ RING I.D.	CLEARANCE
1	20.865	20.864	0.009
2	20.865	20.879	0.014
3	20.865	20.876	0.010

Design clearance: .009-.011
Design clearance: . $0071 / 2$ - . 009

FLATNESS CHECK	
READINGS >0.00"	LOCATION (IB/OB SIDE, DEG. FROM A.R. PIN)
0.0015	AR $=90 \mathrm{~d}$ to 170 d
0.002	$A R=120 \mathrm{~d}$ to 150 d

Tool \# Used \qquad Cal. Due Date \qquad As Found \qquad
As Assembled \qquad
1st Reading Taking By: \qquad
2nd Reading Taking By:
Reviewed By Supervisor: \qquad
Verified By Plant REP: \qquad
Reviewed By Coordinator: \qquad
Vibration Data Sheet

DATE THAE		BRG		BRG		BREG		BRG		BRG		BRG:		BRG		BRG		BRG:		BRG		BRG	
RPMM OI MWW	Position	AMP	CEO	Atme	OEG:	AMP	6⿺𠃊:	A me	OEG:	Me	EEC:	Amp:	0 EO	Atup	EB6	Amp:	0 EGO	AMP	EEG:	Amp:	0 ES	MP	0 Em
6/17/2006 3:16	LS	0.9	299	0.8	122	1.1	65	1.1	40	2.1	285	2.3	161	1.2	8	3.0	128	0.6	168	1.2	10	0.4	215
495 RPM -RunOut	RS	0.9	213	0.8	35	1.3	342	0.9	308	2.5	176	2.3	55	1.5	262	1.9	37	0.6	55	1.2	108	0.4	308
6/18/2006 1:00	LS	1.2	269	1.2	348	3.5	325	4.2	302	5.7	253	4.1	147	2.8	133	1.5	153	1.9	293	1.6	97	2.7	239
43 MW	RS	1.6	180	1.1	287	3.4	238	4.4	215	5.3	143	5.1	62	4.0	51	2.4	137	2.9	241	2.3	51	5.3	298
6/18/2006 2:00	LS	1.3	267	1.1	352	3.2	326	4.1	298	5.6	251	4.0	147	2.8	133	1.4	156	1.9	299	1.6	103	2.8	237
84 MW	RS	1.6	175	1.1	297	3.2	237	4.2	210	5.3	142	5.2	61	4.1	51	2.5	137	2.8	242	2.2	53	5.2	297
6/18/2006 3:45	LS	1.6	253	0.9	19	3.2	322	3.8	298	5.5	254	4.1	156	2.5	147	1.4	150	2.2	305	1.8	116	2.8	241
100 MW	RS	2.0	168	0.7	348	2.8	238	4.2	200	5.6	141	5.1	70	3.7	62	2.5	139	2.8	255	2.3	68	5.4	296
6/18/2006 5:30	CS	1.2	266	1.2	349	3.4	328	3.9	292	5.6	261	4.4	158	2.8	145	1.6	149	2.1	278	1.7	90	2.5	230
145 MW	RS	1.4	170	0.8	293	2.8	244	4.4	200	5.8	141	4.5	67	3.2	56	2.3	138	3.2	247	2.7	51	5.3	292
6/18/2006 6:00	LS	1.6	268	0.6	14	2.8	332	4.4	290	5.6	259	4.1	152	2.7	140	1.5	152	1.9	295	1.6	105	2.8	235
220 MW	RS	1.8	178	0.6	28	2.2	241	4.8	202	5.9	147	4.9	61	3.6	55	2.4	142	2.8	247	2.3	55	5.3	294
6/18/2006 6:25	LS	1.8	265	1.0	11	3.8	325	3.6	302	4.8	256	3.8	150	2.5	133	1.5	156	1.9	297	1.5	117	2.6	238
315 MW	RS	2.5	184	0.7	15	3.5	235	3.8	212	5.2	146	4.8	63	3.5	54	2.5	138	2.6	243	2.1	48	4.9	298
6/18/2006 9:20	LS	1.8	298	2.8	8	2.9	306	4.3	295	4.8	258	3.9	153	2.8	144	1.6	175	2.0	303	1.7	144	4.1	235
435 MW	RS	1.2	223	2.0	269	3.1	209	4.4	204	4.7	146	5.1	67	4.2	58	3.1	138	2.4	243	1.9	70	6.5	297
6/19/20060:00	LS	1.9	281	2.5	7	3.5	321	4.9	288	5.0	260	3.6	153	2.5	141	1.6	162	1.8	307	1.5	125	3.7	242
440 MW	RS	2.2	205	2.4	292	3.2	225	4.9	200	5.1	151	4.4	68	3.3	60	2.8	142	2.4	241	2.0	56	5.3	302
6/19/2006 3:05	LS	1.9	282	2.8	4	3.5	321	4.9	288	5.2	261	3.5	154	2.4	144	1.7	154	1.9	310	1.6	131	3.4	245
500 MW	ES	2.2	202	2.5	290	3.2	225	4.9	200	5.4	149	4.3	66	3.4	58	2.7	144	2.6	251	2.0	70	5.3	301
6/19/2006 6:00	SS	1.6	290	2.4	8	3.4	329	4.8	288	5.2	260	3.6	154	2.8	149	1.6	168	1.9	324	1.6	152	3.6	258
600 MW	RS	2.0	212	2.1	286	3.1	232	4.6	204	4.9	150	4.9	68	4.1	61	2.9	141	2.0	258	1.7	87	5.2	308

Comments:
Operations is operating the hydrogen seal oil skid with seal delivery temperatures of 115 F and 145 F to the hydrogen $\&$ air sides of the electric generator
shaft seal rings, respectively. This condition is the mally twisting the rings in their gland operating groove. This condition is also generating a dampening
effect on the vibration mode of the number eleven bearing. Any balance moves for the number eleven bearing would be unpredictable.
Note: The Bearing Eleven readings at 435 MW of $6 / 18 / 2006$ are with the air/hydrogen seal oil temperature balanced at 130 F , it is expected that
hydrogen seal rings have not completely restored their shape yet.

[^8]

American Electric	Attachment 15 Mitchell Station Unit \#1
Main Oil Pump Bore Readings	
Ohio Power Company	$5-29-2006$

0.138

Tool \# Used \qquad Cal. Due Date \qquad

As Found \qquad Reading Taken By: \qquad Date: \qquad

As Charted \qquad Reviewed By (W) Eng.: \qquad Date: \qquad

CUSTOMER:	American Electric Power
LOCATIONUNT\#:	Mitchell \#1 / MLU106
MAIN OIL PUMP OIL SEAL RING CLRS	
BB/FRAME:	JOB NO.:
COMPONENT/S.O.:	DWG.:

Tool \# Used \qquad Cal. Due Date \qquad

As Found \qquad Reading Taken By: \qquad Date: \qquad

As Assembled \qquad X \qquad Reviewed By (W) Eng.: \qquad Date \qquad

ROTOR
MITCHELL UNIT 1 CONTROL

American Electric Power	
Mitchell Station Unit \#1	
Oil Deflector Bore Readings	
Ohio Power Company	$5-29-2006$

I

Tool \# Used \qquad Cal. Due Date \qquad
As Found \qquad

Reading Taken By: \qquad Date: \qquad

As Charted \qquad Reviewed By (W) Eng.: \qquad Date: \qquad

CUSTOMER:	American Electric Power / Ohio Power Company
LOCATIONUNT\#\#:	Mitchell Unit \#1 MLU106
OIL SEAL RING AND SHAFT DIMENSIONS	
BB/FRAME:	JOB NO.:
COMPONENT/S.O.:	DWG.:

$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|}\hline \text { SEAL NO. } & \text { LOCATION } & \text { A } & \text { B } & \text { C } & \begin{array}{c}\text { AVG SEAL } \\ \text { I.D. }\end{array} & \begin{array}{c}\text { ROTOR } \\ \text { O.D. }\end{array} & \begin{array}{c}\text { AVE } \\ \text { Clearance }\end{array} & \text { Min / Max }\end{array} \begin{array}{c}\text { Design } \\ \text { Clearance }\end{array}\right]$

Tool \# Used \qquad Cal. Due Date \qquad

As Found \qquad Reading Taken By. \qquad Date: \qquad

As Charted \qquad Reviewed By Turb Coord.: \qquad Date: \qquad

CUSTOMER:	American Electric Power / Ohio Power Company
LOCATIONUNT\#:	Mitchell Unit \#1 MLU106
Tilting Pad Bearing Flood Ring Dimensions	
BB/FRAME:	JOB NO.:
COMPONENT/S.O.:	DWG.:

$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c}\hline \text { SEAL NO. } & \text { LOCATION } & \text { A } & \text { B } & \text { C } & \begin{array}{c}\text { AVG SEAL } \\ \text { I.D. }\end{array} & \begin{array}{c}\text { ROTOR } \\ \text { O.D. }\end{array} & \begin{array}{c}\text { AVE } \\ \text { Clearance }\end{array} & \text { Min / Max }\end{array} \begin{array}{c}\text { Design } \\ \text { Clearance }\end{array}\right]$

Tool \# Used \qquad Cal. Due Date \qquad
As Found \qquad

Reading Taken By: \qquad Date: \qquad
\qquad Reviewed By Turb Coord.: \qquad Date: \qquad

Coupling Alignment

Final "A" Coupling

Date	06/01/06	Turbine Serial No.	MLU106	Prepared by Moore/He	
Coupling	"A"	Sweep Diameter	32"	Indicator Mounted on	IP

Alignment Readings

Rim Recheck (If Necessary)

Position	Top	Right	Bottom	Left	Top
Rim (Mils)					

Comments:
Desired Alignment: Rims concentric, faces parallel.
Face readings taken on Male rabbet faces

Coupling Bolt Assembly Data

Date: $\quad 4 / 18 / 2006 \quad$ Turbine Serial No. MLU106 Prepared by Rahn

COUPLING \quad "A"

STUD	COUPLING HOLE DIAMETER			STUD DIAMETER		CLEARANCE		
HOLE	TB. SIDE	SPACER	GEN. SIDE	TB. SIDE	GEN. SIDE	TB. SIDE	SPACR	GEN. SIDE
1 (M)	2.126 "	2.128 "	2.126 "	2.123 "	2.123 "	0.003 "	0.005 "	0.003 "
2	2.126 "	2.130 "	2.126 "	2.124 "	2.124 "	0.002 "	0.006 "	0.002 "
3	2.126 "	2.128 "	2.126 "	2.122 "	2.122 "	0.004 "	0.006 "	0.004 "
4	2.127 "	2.129 "	2.126 "	2.123 "	2.123 "	0.004 "	0.006 "	0.003 "
5	2.126 "	2.130 "	$2.126{ }^{\prime \prime}$	2.123 "	2.123 "	0.003 "	0.007 "	0.003 "
6	2.125 "	$2.131{ }^{\prime \prime}$	2.126 "	2.123 "	2.123 "	0.002 "	0.008 "	0.003 "
7	2.126 "	2.130 "	2.126 "	2.123 "	2.123 "	0.003 "	0.007 "	0.003 "
8	2.126 "	2.132 "	2.131 "	2.123 "	2.123 "	0.003 "	0.009 "	0.008 "
9	2.127 "	2.129 "	2.131 "	2.123 "	2.123 "	0.004 "	0.006 "	0.008 "
10	2.126 "	$2.131{ }^{\prime \prime}$	2.127 "	2.123 "	2.123 "	0.003 "	0.008 "	0.004 "
11	2.127 "	2.130 "	2.127 "	2.123 "	2.123 "	0.004 "	0.007 "	0.004 "
12	2.127 "	2.131 "	2.127 "	2.123 "	2.123 "	0.004 "	$0.008{ }^{\prime \prime}$	0.004 "
13	2.126 "	2.130 "	$2.128{ }^{\prime \prime}$	2.122 "	2.122 "	0.004 "	$0.008{ }^{\prime \prime}$	0.006 "
14	2.127 "	2.129 "	2.126 "	2.124 "	2.124 "	0.003 "	0.005 "	0.002 "
15	2.127 "	2.129 "	2.126 "	$2.124{ }^{\prime \prime}$	2.124 "	0.003 "	0.005 "	0.002 "
16	2.126 "	2.129 "	2.126 "	2.123 "	2.123 "	0.003 "	0.006 "	0.003 "

Comments:

The "M" mark on the gov end of the IP is at the \#7 bolt hole location.

Coupling Assembly Checks

With Integral Rabbets

| Date $(\mathrm{m}, \mathrm{d}, \mathrm{y})$ | $6 / 3 / 2006$ | Turbine Serial No. \quad MLU106 | Prepared by \quad Rahn |
| :--- | :--- | :--- | :--- | :--- | :--- |

NOTES:
(1) For radial runout set indicator to read " 0 " at the number 1 position.

Coupling A
Data Final (as found/final)
(2) Mark positions 1-8 to agree with factory stamped degree marks on rotor as shown on Fig. 1.

Fig. 1

Coupling Runouts		(Readings are in Mils)								
		Position Number								
Area Indicated		$\begin{aligned} & 1 \\ & 0^{\circ} \end{aligned}$	$\begin{gathered} 2 \\ 45^{\circ} \end{gathered}$	$\begin{gathered} 3 \\ 90^{\circ} \end{gathered}$	$\begin{gathered} 4 \\ 135^{\circ} \end{gathered}$	$\begin{gathered} 5 \\ 180^{\circ} \end{gathered}$	$\begin{gathered} 6 \\ 225^{\circ} \end{gathered}$	$\begin{gathered} 7 \\ 270^{\circ} \end{gathered}$	$\begin{gathered} 8 \\ 315^{\circ} \end{gathered}$	$\begin{aligned} & 1 \\ & 0^{\circ} \end{aligned}$
TE Journal	A	0.0	0.0	-0.5	-0.5	0.0	0.0	0.0	0.5	0.0
TE Cplg. Periphery B	B	0.0	-0.5	-0.5	0.0	0.0	1.0	1.0	1.0	0.0
Spacer	C	0.0	-1.0	0.0	0.0	1.0	1.0	2.0	1.5	0.0
GE Cplg. Periphery D	D	0.0	0.0	0.0	0.0	0.0	-1.0	0.0	0.0	0.0
GE Journal	E	0.0	0.0	0.0	0.0	0.0	-1.0	0.0	0.0	0.0

Differential Runouts

Journals	A-E	0.0	0.0	0.5	0.5	0.0	1.0	0.0	0.5	0.0
Cplg. Periphery	B-D	0.0	0.5	0.5	0.0	0.0	2.0	1.0	1.0	0.0
Spacer to Cplg	C-B	0.0	0.5	0.5	0.0	1.0	0.0	1.0	0.5	0.0
Spacer to Cplg	C-D	0.0	1.0	0.0	0.0	1.0	2.0	2.0	1.5	0.0

Maximum Runouts

Area Indicated		Data Check	TIR Runout	TIR Check
TE Journal	A	OK	1.0	OK
TE Cplg. Periphery	B	B	OK	1.5
Spacer	C	OK	3.0	OK
GE Cplg. Periphery	D	D	OK	1.0
GE Journal	E	OK	1.0	OK

Maximum Differential Runouts

	A-E	1.0	OK
Journals	Biff.	Diff. Check	
Cplg. Periphery	2.0	Check	
Spacer to Cplg	C-B	1.0	OK
Spacer to Cplg	C-D	2.0	OK

Coupling Bolt Assembly Data

Date: \qquad
\qquad
COUPLING \qquad

STUD	COUPLING HOLE DIAMETER			STUD DIAMETER		CLEARANCE		
HOLE	TB. SIDE	SPACER	GEN. SIDE	TB. SIDE	GEN. SIDE	TB. SIDE	SPACR	GEN. SIDE
1 (M)	2.128 "	X	2.126 "	2.123 "	2.123 "	0.005 "	x	0.003 "
2	2.128 "	X	2.126 "	$2.121^{\prime \prime}$	$2.121{ }^{\prime \prime}$	0.007 "	x	0.005 "
3	2.127 "	X	2.126 "	2.122 "	2.122 "	0.005 "	X	0.004 "
4	2.127 "	x	2.127 "	2.120 "	2.120 "	0.007 "	X	$0.007{ }^{\prime \prime}$
5	2.127 "	x	2.125 "	2.123 "	2.123 "	0.004 "	x	0.002 "
6	2.127 "	X	2.125 "	2.123 "	2.123 "	0.004 "	x	0.002 "
7	2.130 "	X	2.126 "	2.122 "	2.122 "	0.008 "	x	0.004 "
8	2.129 "	X	2.126 "	2.123 "	2.123 "	0.006 "	X	0.003 "
9	2.127 "	X	2.126 "	2.123 "	2.123 "	0.004 "	X	0.003 "
10	2.128 "	X	2.126 "	2.122 "	2.122 "	0.006 "	x	0.004 "
11	2.129 "	x	2.126 "	2.123 "	2.123 "	0.006 "	x	0.003 "
12	2.128 "	X	2.126 "	2.123 "	2.123 "	0.005 "	x	0.003 "
13	2.130 "	X	2.126 "	2.123 "	2.123 "	0.007 "	x	0.003 "
14	2.130 "	x	2.126 "	2.123 "	2.123 "	0.007 "	x	0.003 "
15	2.127 "	x	$2.126{ }^{\prime \prime}$	2.122 "	2.122 "	0.005 "	x	$0.004{ }^{\prime \prime}$
16	2.127 "	X	2.126 "	2.123 "	2.123 "	0.004 "	X	0.003 "

Comments:

Coupling Assembly Checks

With Integral Rabbets
Date(m,d,y) 6/1/2006 Turbine Serial No. MLU106 \quad Prepared by \quad Courtright

NOTES:
(1) For radial runout set indicator to read " 0 " at the number 1 position.

Coupling \quad B
Data Final (as found/final)
(2) Mark positions 1-8 to agree with factory stamped degree marks on rotor as shown on Fig. 1.

Fig. 1

Left Side

Fig. 2

Coupling Runouts (Readings are in Mils)										
Coupling Runouts Area Indicated		Position Number								
		1	2	3	4	5	6	7	8	1
		$0{ }^{\circ}$	45°	90°	135°	180°	225°	270°	315°	0°
TE Journal	A	0.0	0.0	1.0	0.0	1.0	1.0	0.0	0.0	0.0
TE Cplg. Periphery B	B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.5	0.0
Spacer	C									
GE Cplg. Periphery D	D	0.0	0.0	0.0	-1.0	-1.0	-1.0	-1.0	-0.5	-0.5
GE Journal	E	0.0	0.0	2.0	1.0	0.0	0.0	-1.0	-0.5	0.0

Differential Runouts

Journals	A-E	0.0	0.0	1.0	1.0	1.0	1.0	1.0	0.5	0.0
Cplg. Periphery	B-D	0.0	0.0	0.0	1.0	1.0	1.0	1.0	0.0	0.5
Spacer to Cplg	C-B									
Spacer to Cplg	C-D	0.0	0.0	0.0	1.0	1.0	1.0	1.0	0.5	0.5

Maximum Runouts

Area Indicated		Data Check	TIR Runout	TIR Check
TE Journal	A	OK	1.0	OK
TE Cplg. Periphery	B	B	OK	0.5
Spacer	C			
GE Cplg. Periphery	D	D	Check	1.0
GE Journal	E	OK	3.0	OK

Maximum Differential Runouts

		Max. Diff.	Diff. Check
Journals	A-E	1.0	OK
Cplg. Periphery	B-D	1.0	OK
Spacer to Cplg	C-B		
Spacer to Cplg	C-D	1.0	OK

Coupling Alignment

> "C" Coupling

Date	05/28/06	Turbine Serial No. MLU106	Prepared by Vickers	
Coupling	"C"	Sweep Diameter	Indicator Mounted on	IP

Alignment Readings

Rim Recheck (If Necessary)

Position	Top	Right	Bottom	Left	Top
Rim (Mils)					

Comments:

Desired Alignment: IP .007" low to LP centerline, face open .004" on bottom.
Face readings taking inside coupling bolt diameter

Coupling Bolt Assembly Data

Date: \quad 4/20/2006 \quad Turbine Serial No. MLU106 Prepared by

COUPLING \qquad

STUD	COUPLING HOLE DIAMETER			STUD DIAMETER		CLEARANCE		
HOLE	TB. SIDE	SPACER	GEN. SIDE	TB. SIDE	GEN. SIDE	TB. SIDE	SPACR	GEN. SIDE
1 (M)	2.313 "	2.316 "	2.316 "	2.310 "	2.310 "	0.003 "	0.006 "	0.006 "
2	2.313 "	2.316 "	2.313 "	2.310 "	$2.310{ }^{\prime \prime}$	0.003 "	0.006 "	0.003 "
3	2.313 "	2.316 "	2.313 "	2.309 "	2.309 "	0.004 "	0.007 "	0.004 "
4	$2.313^{\prime \prime}$	2.316 "	2.313 "	2.310 "	$2.310{ }^{\prime \prime}$	0.003 "	0.006 "	0.003 "
5	2.314 "	2.315 "	2.313 "	2.310 "	$2.310{ }^{\prime \prime}$	0.004 "	0.005 "	0.003 "
6	$2.314{ }^{\prime \prime}$	2.316 "	$2.311^{\prime \prime}$	2.310 "	2.310 "	0.004 "	0.006 "	0.001 "
7	$2.314^{\prime \prime}$	2.316 "	2.312 "	2.310 "	$2.310{ }^{\prime \prime}$	0.004 "	0.006 "	0.002 "
8	2.313 "	2.316 "	2.314 "	2.310 "	2.310 "	0.003 "	0.006 "	0.004 "
9	2.313 "	2.316 "	2.314 "	2.310 "	2.310 "	0.003 "	0.006 "	0.004 "
10	$2.314^{\prime \prime}$	2.316 "	2.312 "	2.310 "	$2.310{ }^{\prime \prime}$	0.004 "	0.006 "	$0.002{ }^{\prime \prime}$
11	2.313 "	2.315 "	2.314 "	2.310 "	2.310 "	0.003 "	0.005 "	0.004 "
12	2.314 "	2.315 "	$2.311^{\prime \prime}$	2.310 "	2.310 "	0.004 "	0.005 "	$0.001{ }^{\prime \prime}$
13	2.313 "	$2.315{ }^{\prime \prime}$	2.316 "	2.310 "	2.310 "	0.003 "	0.005 "	0.006 "
14	$2.314^{\prime \prime}$	2.315 "	2.313 "	2.310 "	2.310 "	0.004 "	0.005 "	0.003 "
15	$2.314^{\prime \prime}$	2.316 "	2.314 "	2.310 "	$2.310^{\prime \prime}$	0.004 "	0.006 "	0.004 "
16	$2.314^{\prime \prime}$	2.316 "	2.312 "	2.309 "	2.309 "	0.005 "	0.007 "	0.003 "
17	$2.314{ }^{\prime \prime}$	2.316 "	2.314 "	2.310 "	$2.310{ }^{\prime \prime}$	0.004 "	0.006 "	0.004 "
18	2.314 "	2.316 "	2.313 "	2.310 "	$2.310{ }^{\prime \prime}$	0.004 "	0.006 "	0.003 "
19	2.313 "	2.316 "	2.314 "	2.310 "	$2.310{ }^{\prime \prime}$	0.003 "	0.006 "	0.004 "
20	2.313 "	2.316 "	2.313 "	2.307 "	2.307 "	0.006 "	0.009 "	0.006 "

Comments:

Coupling Assembly Checks

With Integral Rabbets
Date $(m, d, y) 6 / 1 / 2006 \quad$ Turbine Serial No. MLU106_ Prepared by Courtright

NOTES:
(1) For radial runout set indicator to read " 0 " at the number 1 position.
(2) Mark positions 1-8 to agree with factory stamped degree marks on rotor as shown on Fig. 1.

Data Final (as found/final)

Left Side

180°
Fig. 1

Fig. 2

Coupling Runouts
(Readings are in Mils)

Area Indicated		Position Number								
		1	2	3	4	5	6	7	8	1
		0°	45°	90°	135°	180°	225°	270°	315°	0°
TE Journal	A	0.0	0.0	0.0	0.0	1.0	1.0	0.5	0.0	0.0
TECplg. Periphery B	B	0.0	0.0	0.0	-2.0	-4.0	-4.0	-3.5	-1.5	0.0
Spacer	C	0.0	1.0	2.0	-1.0	-2.0	-4.0	-4.0	-2.0	0.0
GE Cplg. Periphery D	D	0.0	1.0	2.5	0.0	-1.0	-2.5	-2.5	-1.5	0.0
GE Journal	E	0.0	1.0	2.0	1.5	1.0	0.0	-0.5	-0.5	0.0

Differential Runouts

Journals	A-E	0.0	1.0	2.0	1.5	0.0	1.0	1.0	0.5	0.0
Cplg. Periphery	B-D	0.0	1.0	2.5	2.0	3.0	1.5	1.0	0.0	0.0
Spacer to Cplg	C-B	0.0	1.0	2.0	1.0	2.0	0.0	0.5	0.5	0.0
Spacer to Cplg	C-D	0.0	0.0	0.5	1.0	1.0	1.5	1.5	0.5	0.0

Maximum Runouts

Area Indicated		Data Check	TIR Runout	TIR Check
TE Journal	A	OK	1.0	OK
TE Cplg. Periphery	B	B	OK	4.0
Check				
Spacer	C	OK	6.0	Check
GE Cplg. Periphery	D	D	OK	5.0
Check				
GE Journal	E	OK	2.5	Check

Maximum Differential Runouts

		Max. Diff.	Diff. Check
Journals	A-E	2.0	Check
Cplg. Periphery	B-D	3.0	Check
Spacer to Cplg	C-B	2.0	OK
Spacer to Cplg	C-D	1.5	OK

Coupling Inspection

Date(m/d/y)	Turbine Serial No.	13A3161-1 Prepa	Prepared by		Unger
Rotor Identification		Coupling \qquad			
INSPECTIONS \& CHECKS					CODE
				X	Work Carried Out
Bolt Covers \& Screws		Coupling Runouts		N	Not Done
Lockplates		Bolt Extension Measurements		NA	Not Applicable
Coupling Bolts/Studs				C	See Comments
Coupling Mating Surface				V	Visual Inspection
Rabbet				MP	Mag. Particle
Dimensional Checks				UT	Ultrasonic
Coupling Flatness				PT	Penetrant

Fig. 1

Fig. 2

ST00100a

NOTES:

	COUPLING DIMENSIONAL CHECKS			Readings in Inches		Male Fit	Clrc
	Location	Position Number					
		1	2	3	4		
		0°	45°	90°	135°		
1.403 lt	GVN "A" Spacer (B)	20.001	20.001	20.001	20.001	20.000	0.001
1.403 " tk	GNN "A" Spacer (B)	19.997	19.997	19.997	19.997	19.996	0.001
$1.211^{\prime \prime}$ tk	GNN "C" Spacer (B)	22.001	22.001	22.001	22.001	22.000	0.001
$1.211^{\prime \prime}$ tk	GNN "C" Spacer (B)	21.996	21.996	21.996	21.996	21.995	0.001

Measurements after from CMS to size Female Fits

Comments:

CUSTOMER: AEP	
LOCATIONUNIT\#:	
GOVERNOR VALVE DIMENSIONS	
BB/FRAME:	JOB NO.:
COMPONEN/S.O.:	DWG.:

Valve \# \qquad 1 \qquad

New Disc \& Nut

NO. _1__ VALVE DATA (AS FOUND)				Design Clear.	Service allowed	NO. __1_ VALVE DATA (AS LEFT)			
DIM.	O.D.	I.D.	CLR			DIM.	O.D.	I.D.	CLR
A	1.736	1.752	0.016	.010/.012	.009/.018	A	1.736	1.752	0.016
B	1.736	1.751	0.015	.010/.012	.009/.018	B	1.736	1.751	0.015
C	4.174	4.183	0.009	.010/.012	.009/.018	C	4.174	4.183	0.009
D	4.168	4.186	0.018	010/.012	.009/.018	D	4.175	4.185	0.010
E	5.580	5.583	0.003	.001/.003	001/.015	E	5.577	5.583	0.006
F	5.579	5.593	0.014	.001/.003	.001/.015	F	5.572	5.593	0.021
STEM RUNOUT =		0.001		$\begin{array}{cc} .001 / .003 & .004 \\ .115 / .135 & .115 / .135 \end{array}$		STEM RUNOUT =		0.001	
DIMENSION L =		0.176				DIMENSION L =		0.134	

Tool \# Used \qquad Cal. Due Date \qquad

As Found \qquad X \qquad Reading Taken By: _Bordenkircher/Messerschmidt \qquad Date \qquad As Assembled \qquad X \qquad Reviewed By : \qquad Powell \qquad Date: _5/16/06 \qquad

CUSTOMER: AEP	
LOCATIONUNIT\#:	
GOVERNOR VALVE DIMENSIONS	
BB/FRAME:	JOB NO.:
COMPONENT/S.O.:	DWG.:

Valve \# \qquad 2

NO. _2_ VALVE DATA (AS FOUND)				Design Clear.	Service allowed	NO. _2__ VALVE DATA (AS LEFT)			
DIM.	O.D.	I.D.	CLR			DIM.	O.D.	I.D.	CLR
A	1.738	1.755	0.017	.010/.012	.009/.018	A	1.738	1.755	0.017
B	1.739	1.749	0.01	.010/.012	.009/.018	B	1.739	1.750	0.011
C	4.177	4.185	0.008	.010/.012	.009/.018	C	4.177	4.185	0.008
D	4.177	4.186	0.009	.010/.012	.009/.018	D	4.177	4.186	0.009
E	5.790			.001/.003	.001/.015	E	5.576	5.589	0.013
F	5.578			.001/.003	.001/.015	F	5.574	5.597	0.023
STEM RUNOUT =		0.002		$\begin{array}{cc} .001 / .003 & .004 \\ .115 / .135 & .115 / .135 \end{array}$		STEM RUNOUT =		0.002	
DIMENSION L =		0.183				DIMENSION L =		0.183	

Tool \# Used \qquad Cal. Due Date \qquad

As Found \qquad X \qquad Reading Taken By: _Bordenkircher/Messerschmidt \qquad Date \qquad As Assembled \qquad X \qquad Reviewed By : \qquad Powell \qquad Date: _5/16/06 \qquad

CUSTOMER: AEP	
LOCATIONUNIT\#:	
GOVERNOR VALVE DIMENSIONS	
BB/FRAME:	JOB NO.:
COMPONEN/S.O.:	DWG.:

Valve \# \qquad 3

New Stem, Plug \& Nut

NO.	VALVE	TA (AS	OUND)				_ VALV	ATA (A	EFT)
DIM.	O.D.	I.D.	CLR	Design Clear.	Service allowed	DIM.	O.D.	I.D.	CLR
A	1.738	1.751	0.013	.010/.012	.009/.018	A	1.737	1.751	0.014
B	1.734	1.750	0.016	.010/.012	.009/.018	B	1.737	1.750	0.013
C	4.173	4.184	0.011	010/.012	.009/.018	C	4.174	4.184	0.010
D	4.169	4.187	0.018	.010/.012	.009/.018	D	4.174	4.188	0.014
E	5.583	5.586	0.003	.001/.003	.001/.015	E	5.576	5.586	0.010
F	5.583	5.586	0.003	.001/.003	.001/.015	F	5.577	5.595	0.018
STEM RUNOUT =DIMENSION L =		0.002		$\begin{array}{cc} .001 / .003 & .004 \\ .115 / .135 & .115 / .135 \end{array}$		STEM RUNOUT =		0.001	
		0.218				DIMENSION L =		0.172	

Tool \# Used \qquad Cal. Due Date \qquad

As Found \qquad X \qquad Reading Taken By: _Bordenkircher/Messerschmidt \qquad Date \qquad As Assembled \qquad X \qquad Reviewed By : \qquad Powell \qquad Date: _5/16/06 \qquad

CUSTOMER:	
LOCATIONUNT\#:	
GOVERNOR VALVE DIMENSIONS	
BB/FRAME:	JOB NO.:
COMPONENT/S.O.:	DWG.:

Valve \# \qquad 4

NO.	VALVE	A (A	UND)				VAL	ATA (A	EFT)
DIM.	O.D.	I.D.	CLR	Design Clear.	Service allowed	DIM.	O.D.	I.D.	CLR
A	1.735	1.768	0.033	.010/.012	.009/.018	A	1.735	1.768	0.033
B	1.736	1.710	-0.026	.010/.012	.009/.018	B	1.736	1.752	0.016
C	4.173	4.185	0.012	.010/.012	.009/.018	C	4.173	4.190	0.017
D	4.170	4.187	0.017	.010/.012	.009/.018	D	4.170	4.191	0.021
E	5.566			.001/.003	.001/.015	E	5.573	5.577	0.004
F	5.545			.001/.003 .	.001/.015	F	5.570	5.593	0.023
DIMENSION L =		0.000		$\begin{array}{cc} .001 / .003 & .004 \\ .115 / .135 & .115 / .135 \end{array}$		STEM RUNOUT =		0.000	
		0.180				DIMENSION L =		0.172	

Tool \# Used \qquad Cal. Due Date \qquad

As Found \qquad X \qquad Reading Taken By: _Bordenkircher/Messerschmidt \qquad Date \qquad As Assembled \qquad X \qquad Reviewed By : \qquad Powell \qquad Date: _5/16/06 \qquad

CUSTOMER:	
LOCATIONUNT\#:	
GOVERNOR VALVE DIMENSIONS	
BB/FRAME:	JOB NO.:
COMPONENT/S.O.:	DWG.:

Valve \# \qquad 5 \qquad

NO.	VALVE	A (AS	OUND)				VAL	ATA (A	EFT)
DIM.	O.D.	I.D.	CLR	Design Clear.	Service allowed	DIM.	O.D.	I.D.	CLR
A	1.737	1.752	0.015	.010/.012	.009/.018	A	1.737	1.752	0.015
B	1.737	1.751	0.014	010/.012	.009/.018	B	1.737	1.751	0.014
C	4.175	4.183	0.008	.010/.012	.009/.018	C	4.175	4.183	0.008
D	4.171	4.185	0.014	.010/.012	.009/.018	D	4.171	4.185	0.014
E	5.582	5.589	0.007	.001/.003	.001/.015	E	5.580	5.589	0.009
F	5.582	5.603	0.021	.001/.003 .	.001/.015	F	5.577	5.603	0.026
STEM RUNOUT =		0.000		$\begin{array}{cc} .001 / .003 & .004 \\ .115 / .135 & .115 / .135 \end{array}$		STEM RUNOUT =		0.000	
DIMENSION L =		0.162				DIMENSION L =		0.162	

Tool \# Used \qquad Cal. Due Date \qquad

As Found \qquad X \qquad Reading Taken By. _Bordenkircher/Messerschmidt \qquad Date: \qquad

As Assembled \qquad X \qquad Reviewed By: _Powel \qquad Date: _5/16/06 \qquad

CUSTOMER: AEP	
LOCATIONUNI\#\#	
GOVERNOR VALVE DIMENSIONS	
BB/FRAME:	JOB NO.:
COMPONEN/S.O.:	DWG.:

Valve \# \qquad 6 \qquad

NO. _6_ VALVE DATA (AS FOUND)				Design Clear.	Service allowed	NO. _6 _ VALVE DATA (AS LEFT)			
DIM.	O.D.	I.D.	CLR			DIM.	O.D.	I.D.	CLR
A				.010/.012	.009/.018	A	1.737	1.752	0.015
B				.010/.012	.009/.018	B	1.737	1.753	0.016
C				.010/.012	.009/.018	C	4.175	4.184	0.009
D				.010/.012	.009/.018	D	4.175	4.187	0.012
E				.001/.003	.001/.015	E	5.578	5.585	0.007
F				.001/.003	.001/.015	F	5.579	5.596	0.017
STEM RUNOUT =				$\begin{array}{cc} .001 / .003 & .004 \\ .115 / .135 & .115 / .135 \end{array}$		STEM RUNOUT =		0.002	
DIMENSION L =						DIMENSION L =		0.143	

Tool \# Used \qquad Cal. Due Date \qquad

As Found \qquad X \qquad Reading Taken By. _Bordenkircher/Messerschmidt \qquad Date: \qquad

As Assembled \qquad X \qquad Reviewed By _Powel \qquad Date: _5/16/06 \qquad

CUSTOMER: AEP	
LOCATIONUNT\#:	
GOVERNOR VALVE DIMENSIONS	
BB/FRAME:	JOB NO.:
COMPONENT/S.O.:	DWG.:

Valve \# \qquad
\qquad

New Stem, Plug \& Nut

NO. _7_ VALVE DATA (AS FOUND)				Design Clear.	Service allowed	NO. _7__ VALVE DATA (AS LEFT)			
DIM.	O.D.	I.D.	CLR			DIM.	O.D.	I.D.	CLR
A		1.755		.010/.012	.009/.018	A	1.738	1.755	0.017
B		1.752		.010/.012	.009/.018	B	1.738	1.752	0.014
C		4.186		.010/.012	.009/.018	C	4.172	4.186	0.014
D		4.187		.010/.012	.009/.018	D	4.172	4.187	0.015
E	5.585	5.588	0.003	.001/.003	.001/.015	E	5.580	5.588	0.008
F	5.583	5.607	0.024	.001/.003	001/.015	F	5.580	5.607	0.027
STEM RUNOUT =				.001/.003	. 004	STEM RUNOUT =		0.002	
DIMENSION L =				.115/135	.115/.135	DIMENSION L =		0.142	

Tool \# Used \qquad Cal. Due Date \qquad

As Found \qquad X \qquad Reading Taken By. _Bordenkircher/Messerschmidt \qquad Date: \qquad

As Assembled \qquad X \qquad Reviewed By _Powel \qquad Date: _5/16/06 \qquad

CUSTOMER: AEP	
LOCATIONUNT\#:	
GOVVERNOR VALVE DIMENSIONS	
BB/FRAME:	JOB NO.:
COMPONENT/S.O.:	DWG.:

Valve \# __ 8 \qquad

NO.	VALVE	(A	UND)			NO.	VALV	ATA (A	EFT)
DIM.	O.D.	I.D.	CLR	Design	Service allowed	DIM.	O.D.	I.D.	CLR
A	1.737	1.750	0.013	.010/.012	.009/.018	A	1.737	1.750	0.013
B	1.737	1.753	0.016	.010/.012	.009/.018	B	1.737	1.753	0.016
C	4.174	4.185	0.011	.010/.012	.009/.018	C	4.174	4.185	0.011
D	4.172	4.183	0.011	.010/.012	.009/.018	D	4.172	4.183	0.011
E	5.583			.001/.003	.001/.015	E	5.572	5.586	0.014
F	5.584			.001/.003	001/.015	F	5.576	5.595	0.019
STEM RUNOUT =DIMENSION L =		0.001		$\begin{array}{cc} .001 / .003 & .004 \\ .115 / .135 & .115 / .135 \end{array}$		STEM RUNOUT =		0.001	
		0.171				DIMENSION L =		0.171	

Tool \# Used \qquad Cal. Due Date \qquad

As Found \qquad X \qquad Reading Taken By: _Bordenkircher/Messerschmidt \qquad Date \qquad
\qquad X \qquad Reviewed By: \qquad Powell \qquad Date: 5/16/06 \qquad

CUSTOMER:	
LOCATIONUNTT:	AEP
	THROTTLE VALVE
BB/FRAME:	JOB NO.:
COMPONENT/S. O.:	DWG.:

LOCATION: \qquad \#1 \qquad

As Found Throttle Valve Clearances				
DAA	O.D.	I.D.	ACTUAL	DESIGN
A	2.111	2.124	0.013	$.010 / .013$
B	2.111	2.125	0.014	$.010 / .013$
C	1.381	1.393	0.012	$.005 / .007$
D	1.487	1.499	0.012	$.010 / .013$
E	1.487	1.498	0.011	$.010 / .013$
F	5.491	5.494	0.003	$.011 / .017$
G	1.930	1.935	0.005	$.010 / .013$
H	3.806	3.808	0.002	$.002 / .005$
I RUNOUT				

As Assembled Throttle Valve Clearances				
DIA	O.D.	I.D.	ACTUAL	DESIGN
A	2.110	2.125	0.015	$.010 / .013$
B	2.110	2.125	0.015	$.010 / .013$
C	1.381	1.392	0.011	$.005 / .007$
D	1.487	1.501	0.014	$.010 / .013$
E	1.487	1.497	0.010	$.010 / .013$
F	5.487	5.497	0.010	$.011 / .017$
G	1.924	1.935	0.011	$.010 / .013$
H	3.805	3.808	0.003	$.002 / .005$
I $=$ RUNOUT				0.003

Tool \# Used \qquad Cal. Due Date \qquad

As Found Reading Taken By. _Burnheimer/VanDyke \qquad Date:_4/12/06 \qquad

As Assembled Reading Taken By. _BurnheimerNanDyke \qquad Date:_4/24/06 \qquad

Reviewed By Turbine Coordinator: \qquad Powell \qquad Date: _5/13/06 \qquad

CUSTOMER:	
LOCATIONUNT\#:	AEP
	THROTTLE VALVE
BB/FRAME:	JOB NO.:
COMPONENT/S. O.:	DWG.:

LOCATION : \qquad \#2 \qquad

As Found Throttle Valve Clearances				
DIA	O.D.	I.D.	ACTUAL	DESIGN
A	2.109	2.124	0.015	$.010 / .013$
B	2.110	2.124	0.014	$.010 / .013$
C	1.382	1.391	0.009	$.005 / .007$
D	1.481	1.501	0.020	.010 .013
E	1.482	1.497	0.015	$.010 / .013$
F	5.471	5.486	0.015	$.011 / 017$
G	1.926	1.935	0.009	$.010 / .013$
H	3.803	3.808	0.005	$.002 / .005$
I RUNOUT				

As Assembled Throttle Valve Clearances				
DIA	O.D.	I.D.	ACTUAL	DESIGN
A	2.110	2.124	0.014	$.010 / .013$
B	2.110	2.124	0.014	$.010 / .013$
C	1.381	1.391	0.010	$.005 / .007$
D	1.488	1.501	0.013	$.010 / .013$
E	1.488	1.498	0.010	$.010 / .013$
F	5.482	5.494	0.012	$.011 / .017$
G	1.924	1.934	0.010	$.010 / .013$
H	3.806	3.808	0.002	$.002 / .005$
I RUNOUT				0.003

Tool \# Used \qquad Cal. Due Date \qquad

As Found Reading Taken By. _BurnheimerNanDyke \qquad Date:_4/12/06 \qquad

As Assembled Reading Taken By. _Burnheimer/VanDyke \qquad Date:_4/24/06 \qquad

Reviewed By Turbine Coordinator: __Powell \qquad Date: _5/13/06 \qquad

CUSTOMER:	
LOCATIONUNTT:	AEP
	THROTTLE VALVE
BB/FRAME:	JOB NO.:
COMPONENT/S. O.:	DWG.:

LOCATION \qquad \#3 \qquad

As Found Throttle Valve Clearances				
DA	O.D.	I.D.	ACTUAL	DESIGN
A	2.114	2.125	0.011	$.010 / .013$
B	2.115	2.124	0.009	$.010 / .013$
C	1.380	1.387	0.007	$.005 / .007$
D	1.485	1.496	0.011	.010 .013
E	1.486	1.497	0.011	$.010 / .013$
F	5.476	5.490	0.014	$.011 / .017$
G	1.926	1.936	0.010	$.010 / 013$
H	3.806	3.809	0.003	$.002 / .005$
I RUNOUT				

As Assembled Throttle Valve Clearances				
DIA	O.D.	I.D.	ACTUAL	DESIGN
A	2.113	2.125	0.012	$.010 / .013$
B	2.114	2.124	0.010	$.010 / .013$
C	1.380	1.388	0.008	$.005 / .007$
D	1.487	1.496	0.009	$.010 / .013$
E	1.487	1.497	0.010	$.010 / .013$
F	5.470	5.490	0.020	$.011 / .017$
G	1.926	1.936	0.010	$.010 / .013$
H	3.805	3.809	0.004	$.002 / .005$
I $=$ RUNOUT				

Tool \# Used \qquad Cal. Due Date \qquad

As Found Reading Taken By. _BurnheimerNanDyke \qquad Date: _4/12/06 \qquad

As Assembled Reading Taken By:_BurnheimerNanDyke \qquad Date:_4/24/06 \qquad
\qquad Date: _5/13/06 \qquad

CUSTOMER:	
LOCATIONUNT\#:	AEP
	THROTTLE VALVE
BB/FRAME:	JOB NO.:
COMPONENT/S. O.:	DWG.:

LOCATION \qquad \#4 \qquad

As Found Throttle Valve Clearances				
DA	O.D.	I.D.	ACTUAL	DESIGN
A	2.111	2.125	0.014	$.010 / .013$
B	2.111	2.124	0.013	$.010 / .013$
C	1.381	1.393	0.012	$.005 / .007$
D	1.487	1.498	0.011	.010 .013
E	1.488	1.498	0.01	$.010 / .013$
F	5.482	5.489	0.007	$.011 / .017$
G	1.929	1.935	0.006	$.010 / 013$
H	3.802	3.806	0.004	$.002 / .005$
I RUNOUT				

As Assembled Throttle Valve Clearances				
DIA	O.D.	I.D.	ACTUAL	DESIGN
A	2.110	2.125	0.015	$.010 / .013$
B	2.110	2.124	0.014	$.010 / .013$
C	1.382	1.387	0.005	$.005 / .007$
D	1.487	1.498	0.011	$.010 / .013$
E	1.488	1.498	0.010	$.010 / .013$
F	5.486	5.497	0.011	$.011 / .017$
G	1.924	1.935	0.011	$.010 / .013$
H	3.808	3.809	0.001	$.002 / .005$
I $=$ RUNOUT				

Tool \# Used \qquad Cal. Due Date \qquad

As Found Reading Taken By. _BurnheimerNanDyke \qquad Date:_4/12/06 \qquad

As Assembled Reading Taken By: _BurnheimerNanDyke \qquad Date: _4/24/06 \qquad

Reviewed By Turbine Coordinator: \qquad Powell \qquad Date: _5/13/06 \qquad

CUSTOMER:	
LOCATIONUNIT\#:	AEP
	THROTTLE VALVE
BB/FRAME:	JOBNO.:
COMPONENT/S.O.:	DWG.:

Tool \# Used \qquad

Cal. Due Date \qquad

As Found \qquad Reading Taken By: _Henning \qquad Date: _5/17/06 \qquad

As Assembled \qquad X Reviewed By Turb Coord: __Powell \qquad Date: _5/17/06 \qquad

CUSTOMER:	
LOCATIONUNIT\#:	AEP
	THROTTLE VALVE
BB/FRAME:	JOBNO.:
COMPONENT/S.O.:	DWG.:

Tool \# Used \qquad

Cal. Due Date \qquad

As Found \qquad Reading Taken By: _Burnheimer \qquad Date:_5/17/06 \qquad
\qquad X Reviewed By Turb Coord: __Powell \qquad Date: _5/17/06 \qquad

CUSTOMER:	AEP
LOCATIONUNIT\#:	
	THROTTLE VALVE
BB/FRAME:	JOB NO.:
COMPONENT/S.O.:	DWG.:

Tool \# Used \qquad Cal. Due Date \qquad

As Found \qquad Reading Taken By: _Burnheimer \qquad Date: _5/16/06 \qquad

As Assembled \qquad x \qquad Reviewed By Turb Coord: \qquad Date: \qquad

CUSTOMER:	AEP
LOCATIONUNT\#:	
	THROTTLE VALVE
BB/FRAME:	JOB NO.:
COMPONENT/S.O.:	DWG.:

Tool \# Used \qquad Cal. Due Date \qquad

As Found \qquad Reading Taken By. _Bordenkircher_ \qquad Date:_5/13/06 \qquad

As Assembled \qquad X \qquad Reviewed By Turb Coord: _Powell \qquad Date: _5/13/06 \qquad

Alignment

Couplings

Date	5/8/2006	Turbine Serial No.	MLU1	Prepared by	Bordenkircher	
Coupling	BFP	Sweep Diameter		Indicator M	ed on	Turb

Rim Recheck (If Necessary)

Position	Top	Left	Bottom	Right	Top
Rim (Mils)					

Comments:	
Design - Turbine 7 mils high to pump, 14 mils TIR	

[^0]: Analysis Performed By: STRICKLAND NDE Supv: $\quad 4 \cdot 10-06$
 Date:
 Date:

[^1]: ** Checklist Continued on Next Page**
 This document contains information confidential and proprietary to AEPSC. It shall not be reproduced
 in whole or in part or released to any third party without the expressed written consent of AEPSC.

[^2]: This document contains information confidential and proprietary to AEPSC. It shall not be reproduced in whole or in part or released to any third party without the expressed written consent of AEPSC.

[^3]: ** Checklist Continued on Next Page**

 This document contains information confidential and proprietary to AEPSC. It shall not be reproduced in whole or in part or released to any third party without the expressed written consent of AEPSC.

[^4]: ** Checklist Continued on Next Page**

[^5]: ** Checklist Continued on Next Page**
 This document contains information confidential and proprietary to AEPSC. It shall not be reproduced part or released to any third party without the expressed written consent of AEPSC.

[^6]: This document contains information confidential and proprietary to AEPSC. It shall not be reproduced This document contains information confidentiat and in part or released to any third party without the expressed written consent of AEPSC.

[^7]: ** Checklist Continued on Next Page**

[^8]: Commerts: shaft seal rings, respectively. This condition is thermally twisting the rings in their gland operating groove. This condition is also generating a dampening effect on the vibration mode of the number eleven bearing. Any balance moves for the number eleven bearing would be unpredictable.

