

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 1 of 93

GE Energy Services

STEAM TURBINE INSPECTION REPORT

ADSP Installation

for

AMERICAN ELECTRIC POWER COMPANY INC MITCHELL, Unit 2

Equipment Serial #: 170X394

Job Start Date: 9/12/2005

Report Issued: 02/08/06

FSR#: 96CE0024

Report Printed: January 30, 2006

Prepared By: Tom Perkins Field Engineer Approved By: David Talmage Service Manager

<u>GE</u> Energy Services

TABLE OF CONTENTS

	PAGE
JOB SUMMARY	3
INSPECTION SUMMARY	5
RECOMMENDATIONS	9
PARTS USED AND RECOMMENDED	12
TIL/ECN ACTIVITY	13
NOZZLES	14
TURBINE SHELLS	20
TURBINE ROTOR	41
DIAPHRAGM	45
SHAFT & DIAPHRAGM PACKING	51
TURBINE ALIGNMENT & CLEARANCES	58
BEARINGS	76
LUBRICATION SYSTEM	83
TURNING GEAR	85
STANDARDS	86
CONTROL SYSTEM	87
ALIGNMENT & CLEARANCE OVERVIEW	88
STARTUP COMMENTS	90
APPENDIX	93

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 3 of 93

<u>GE</u> Energy Services

JOB SUMMARY

Customer: Station: Unit No.:	AMERICAN ELE MITCHELL 2	ECTRIC POWER C	OMPANY IN
Equipment Serial #: Turbine Type:	170X394 G5E	Rating: Service Year:	738 MW 1971
Eng. Responsibility:	LST	Service Tear.	1771
Generator Code:		Control System:	Non-GE
LSB Length:	33.5	Generator Cooling	g:H
Service Type:	Tech Direction		
Steam Conditions:			
Inlet Pressure:	3334 PSI	Inlet Temperature	• 1000 Deg F
milet i ressure.	5557151	met remperature.	. 1000 Deg 1
Office Location:	CENT FS-PITTS	BURGH	
FSR#:	96CE0024		
Service Manager:	David Talmage		
Service Director:	Dot Harris		
Field Engineer:	Tom Perkins		
Job Start Date:	9/12/2005	Completion Date:	1/4/2006
Job Type:	Major	completion Dute.	1, 1, 2000
Work Scope:	•	Generator [N] Val	ves [N] Auxiliary

GE Energy Services

JOB SUMMARY

Unit #2 was removed from service September 9, 2005, for a scheduled maintenance outage. GE responsibility for this outage was limited to the ADSP installation. GE provided (MPL-1LX0365) parts, project management and technical direction. Labor and supervision were provided by AEP. The turbine outage was scheduled for thirteen weeks, two ten hour shifts, six days per week during disassembly and reassembly and five days per week while inner shell and components were off site.

Additional turbine work performed this outage included internal inspection of the second reheat, and valves. This work was performed under customer direction without GE involvement.

<u>GE</u> Energy Services

Section	Location	Description	Action
Component		-	
<u>Nozzle Box</u>			
Assembly	HP	Preventive Maintenance	Replaced
Partition		Erosion Spe	Replaced
Ring	Inlet Seal		ASSOCIATED PARTS
HP Outer Shell			
Fit	Inner Shell - LH	Cracked	Weld Repaired
Fit	Mid-span Seal Ring	Damaged	Weld Repaired
Flange	Inlet	Distortion	Machined
Guide	Thermocouple	Preventive Maintenance	New Part Installed
Inlet Bore	Lower Left	Fretted	Machined
Inlet Bore	Upper Left	Fretted	Weld Repaired
Insulation		Improperly Installed	Temporary Repair
Pipe	Extraction	Cracked	Ground
Pipe	Mid-span Access	Damaged	Replaced
Pressure Tap	1st and 3rd Sta	Preventive Maintenance	Replaced
Shell	N1, N3	Improperly Installed	Modified
Snout	Reheat Inlet Pipe	Out Of Round	Machined
Stud	31	Broken	Replaced
HP Inner Shell			
Assembly		FMI	FMI Satisfied
Assembly		Preventive Maintenance	Repaired
Fit	RS 3rd Sta PT	Pounded	Weld Repaired
Flange	UH	Cracked	Weld Repaired
Gib	Circular Key	Corrosion	Stoned
Key	Joint	Modification	Modified
Orifice	Cooling Pipe	Plugged	Repaired
Ring	Reheat Extr	Preventive Maintenance	Replaced

INSPECTION SUMMARY

E

<u>GE</u> Energy Services

Section	Location	Description	Action
Component			
Ring	Reheat Inlet Seal	Preventive Maintenance	Replaced
Snout	MSI Pipe	Preventive Maintenance	New Part Installed
<u>Shell</u>			
Bolt		Bolt Stretch	Bolting Stretched To Specification
Ring	Inlet Seal	Preventive Maintenance	Modified
Ring	Midspan Access Seal	Preventive Maintenance	Replaced
HP/RHT Rotor			
Assembly		FMI	FMI Satisfied
Coupling	А	Preventive Maintenance	Machined
LP B Rotor			
Guard	C Coupling	Rubbed	Ground
HP Diaphragm			
Assembly	HP/RH	FMI	FMI Satisfied
Partition	5, 6	Damaged Foreign Matl	Modified
Spill Strip	2	Improperly Installed	Modified
Shaft Packing			
Assembly	Diaphragm,Steam Seal	Preventive Maintenance	New Part Installed
HP Diaphragm Packing			
Teeth	2nd Stage	Damaged	Modified
Packing Casing			
Assembly	N1, N3	Dimensional Checks	Ok - Measurements Are Within Tolerance
Packing Head			

INSPECTION SUMMARY

170X394

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 7 of 93

<u>GE</u> Energy Services

Section	Location	Description	Action
Component			
Assembly	N1	Preventive Maintenance	Realigned
Assembly	N1, N3	Distortion	Modified
Assembly	N2	FMI	FMI Satisfied
Assembly	N3	Preventive Maintenance	Realigned
Alignment - Coupling			
Rotor	А	Misalignment	Realigned
Alianmant Staam Dath			
Alignment - Steam Path		Misslinger	Dealismed
Assembly	HP/RH	Misalignment	Realigned
Shell Shell	HP/RH Inner HP/RH Outer	Misalignment	Realigned
Shen	HP/RH Ouler	Misalignment	Repositioned
Clearances - Turbine			
Rotor	HP/RH	Clearance Check	Clearance Check Was Satisfactory
Rotor		Clearance Check	clearance check was banshedory
Thrust Bearing			
Assembly		General Thrust Brg Inspection	Routine Inspection Completed
			I I I I I I I I I I I I I I I I I I I
Turbine Journal Bearing			
Assembly	T1, T2	Assembled Improperly	Repaired
-			
Oil Deflector			
Assembly	T1, T2	Preventive Maintenance	Retoothed
<u>Main Oil Pump</u>			
Assembly		Cleaned And Inspected	Good Condition - No Visual Defects
Valve - Check		Assembled Improperly	Modified
Turning Goor			

INSPECTION SUMMARY

Turning Gear

<u>GE</u> Energy Services

Section	Location	Description	Action
Component			
Rod	Engagement	Misadjustment	Used As Is - Warrants Repair
Front Stondord			
Front Standard			
Assembly		Rusted	Cleaned
Mid Standard			
Guard	A Coupling	Assembled Improperly	Used As Is - Warrants Repair
TSI			
Detector	Thrust Position	Misadjustment	Used As Is - Warrants Repair
Instrumentation	Key Phaser	Improperly Installed	Repaired
Probe	T2 Right	Failed	Modified

INSPECTION SUMMARY

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 9 of 93

GE Energy Services

RECOMMENDATIONS

1. Standard, Mid; Guard; A Coupling

Investigate excessive "A" coupling oil spray next inspection. Check spray line orifice.

2. Shell, HP Outer; Insulation;

Prior to reinsulation of the turbine shells, the insulating contractor should be determined qualified to properly insulate the shells. (Insulators did not seem to know what the requirements are.)

3. Rotor, LP B; Guard; C Coupling

Axial positioning of the LP rotors and "C" coupling guard should be checked next outage to verify adequate clearance for rotor expansion.

4. Packing Casing; Assembly; N1, N3

Consider removing the N3 bolt-on packing casing next outage to correct distortion and allow standard packing to be used. This would necessitate tracking the radial alignment of the shell so that the casing could be realigned to the same location as a reference for internal alignment. (Note as-left relative alignment position due to the distortion.)

5. Packing Head; Assembly; N1, N3

During future packing replacements in the N1 and N3 internal packing heads, re-roundable packing will need to be installed and adjusted, or the hook fits should be machined round and special packing should be installed with undersize hook diameters.

6. Packing Head; Assembly; N3

Note that upper packing keys were left out (with engineering approval) due to broken retainer bolts stuck in the horn. The broken bolts should be drilled out next inspection.

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 10 of 93

GE Energy Services

RECOMMENDATIONS

7. Alignment - Coupling; Rotor; A

Lateral coupling face alignment was inconsistent over time. There appears to be foundation and/or pedestal shifting due to ambient or some other plant condition changes.

8. Alignment - Steam Path; Assembly; HP/RH

Note that disassembly radial rotor position checks at N1 and N3 will reflect the packing casing distortion, plus the shell will be an additional 10 mils high to prevent upper seal rubbing when shells are unbolted. N1 will show 18 mils high, and N3 will show 30 mils high.

9. Clearances - Turbine; Rotor; HP/RH

Radial clearances at the N2 packing head and reheat diaphragms show a 15 mil offset to the left due to tops-on movement. The HP diaphragms were offset 5 mils to the right.

10. Bearing, Turbine Journal; Assembly; T1, T2

Consider obtaining new design bearing pads for the next HP/RH turbine inspection. New design pads have replaceable anti-rotation pin inserts in the upper pads.

11. Turning Gear; Rod; Engagement

The turning gear engagement mechanism should be inspected and repaired next opportunity.

12. Standard, Front; Assembly;

Lube oil condition should be frequently monitored for water content to prevent rusting of oil side components.

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 11 of 93

GE Energy Services

RECOMMENDATIONS

13. TSI [EHC]; Detector; Thrust Position

The thrust position detector should be readjusted to position the meter at zero when the rotor is centered in the thrust travel.

14. TSI [EHC]; Probe; T2 Right

The key-phaser and #2 bearing vibration probe problems should be investigated and corrected next opportunity.

<u>GE</u> Energy Services

PARTS USED AND RECOMMENDED

Item	Ins Rec	PU	RI	RO	QTY	UM	Parts Description	Cust Stk #	Catalog #	Drawing #
1	4	Х			1	Each	Nozzle Box, Assembly, HP		1600	Spare
2	39	Х			4	Set	Nozzle Box, Ring, Inlet Seal		1600	808L5247G0001
3	49	Х			1	Set	HP Outer Shell, Guide, Thermocouple		5200	808L3359G0002
4	31	Х			1	Each	HP Outer Shell, Pipe, Mid-span Access		5200	126C3425P0001
5	50	Х			4	Each	HP Outer Shell, Pressure Tap, 1st and 3rd Sta		5200	145D4691G0006
6	36	Х			1	Each	HP Outer Shell,Stud,31		5200	Customer Stock
7	42	Х			1	Accu	HP Inner Shell, Ring, Reheat Extr		5200	808L3369G0002
8	41	Х			1	Accu	HP Inner Shell, Ring, Reheat Inlet Seal		5200	808L3346G0001
9	32	Х			2	Each	HP Inner Shell, Snout, MSI Pipe		0600	Customer Supplied
10	30	Х			1	Accu	Shell,Ring,Inlet Seal		5200	102L2597G0001
11	43	Х			1	Accu	Shell, Ring, Midspan Access Seal		0600	808L3350G0002
12	2	Х			1	Set	HP Diaphragm, Assembly, HP/RH		2400	ADSP
13	11	Х			1	Accu	Shaft Packing, Assembly, Diaphragm		2400	815L1460G0001
14	11	Х			1	Accu	Shaft Packing, Assembly, Steam Seal		2400	815L1456G0001
15	3	Х			1	Assy	Packing Head, Assembly, N2		5000	ADSP N2

PU=Part Used During the Inspection

RI=Part Recommended for Immediate Restock

RO=Part Recommended for the Next Inspection

AMERICAN ELECTRIC POWER COMPANY INC

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 13 of 93

<u>GE</u> Energy Services

TIL/ECN ACTIVITY

(None this outage)

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 14 of 93

GE Energy Services

NOZZLES

<u>Nozzle Box</u>

Ring; Inlet Seal

Nozzle Box

Assembly; HP

A customer supplied spare nozzle box was reconditioned and installed with the ADSP. The axial fits were machined for location and clearance in the inner shell. Initial fitting and contact checks were done in the Pittsburgh Service Center. Final keys were machined after tops-on, tops-off alignment. New inlet seal rings were installed.

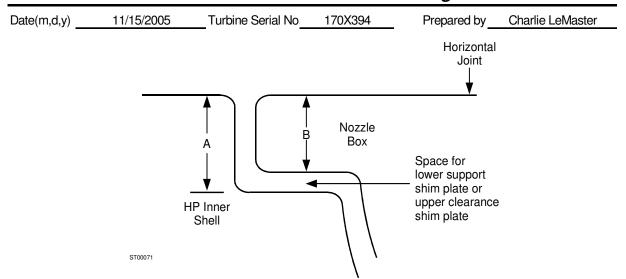
Nozzle Box

Partition;

The as-found nozzle box partitions had severe erosion. The upper right inlet had a broken seal ring. See attached photos.

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 15 of 93

180 ° Nozzle Boxes Axial Rabbet Fit Clearance Data – Form B


11/14/2005 170X394 Prepared by **Charlie LeMaster** Date(m,d,y) Turbine Serial No. Inner Shell Surface С Condition D Nozzle Box ST00068 **UPPER HALF** Axial Fit Right Left Top D 1.956 1.956 1.956 Float С 1.947 1.947 1.947 Check Clearance D-C 0.009 0.009 0.009 0.007 SURFACE CONDITION Χ Х Acceptable Х Needs Repair LOWER HALF Fit Left Right Тор Axial D 1.957 1.957 Float 1.956 С Check 1.948 1.947 1.947 0.010 0.007 Clearance D-C 0.008 0.010 SURFACE CONDITION *Axial float to agree with Acceptable Χ Х Х measured clearance Needs Repair within .002 inch.

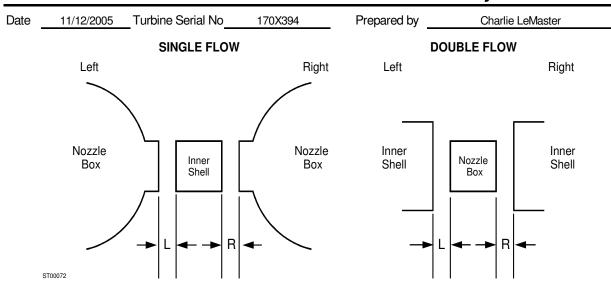
Comments FINALS

Nozzle Axial Fit Clr(a)

180° Nozzle Boxes Vertical Positioning Shim Data – Form E

NOTES: On upper half box, the B dimension is to be taken with the upper clearance shim plate (or crush pins) removed. Data in inches.

		UPPER BOX (CLE	ARANCE SHIM)	
DIMENSION	TURBI	NE END	GENERAT	or end
	Left	Right	Left	Right
Α	5.049	5.055	5.055	5.054
В	4.325	4.327	4.325	4.326
Temporary Shim (AB)	0.724	0.728	0.730	0.728
Permanent Shim	0.701	0.703	0.703	0.700


	LOWER BOX (SUPPORT SHIM)					
DIMENSION	TURBII	NE END	GENERATOR END			
	Left	Right	Left	Right		
A	5.636	5.645	5.625	5.630		
В	4.751	4.749	4.750	4.751		
Temporary Shim (A-B)	0.885	0.896	0.875	0.879		
Permanent Shim	0.884	0.901	0.887	0.888		

Comments					

Nozzle Vert Pos Shim Data(a)

FE

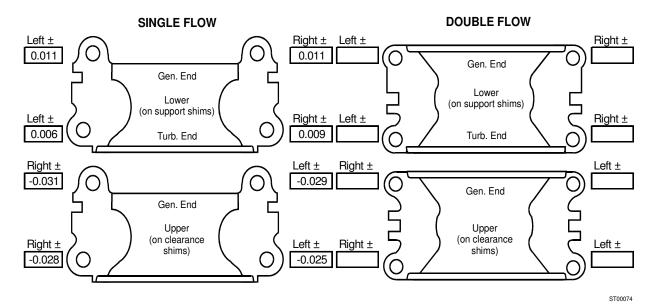
180 ° Nozzle Boxes Vertical Centerline Gib Key Data – Form F

NOTE: Permanent sizes are to give proper alignment and provide specified drawing clearance.

	KEY	UPPER HALF		
L	Temporary			
	Permanent	0.896	0.869	
R	Temporary			
	Permanent	1.041	1.067	

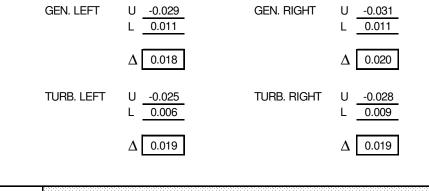
UPPER HALF						
	KEY	TURBINE END	GENERATOR END			
L	Temporary					
	Permanent					
R	Temporary					
	Permanent					

	FIN	IAL SIDE FLOAT		LOWER HALF
	ACTUAL FLOAT	KEY CLEARANCE	DIFF	L Temporary
Upper	0.018	0.020	-0.002	Permanent
Lower	0.018	0.018	0.000	R Temporary
			*Maximum .002"	Permanent


Comments	

Nozzle Vert CL Gib Key(a)

180° Nozzle Boxes Horizontal Joint Checks – Form H


11/15/2005 Turbine Serial No. 170X394 Prepared by

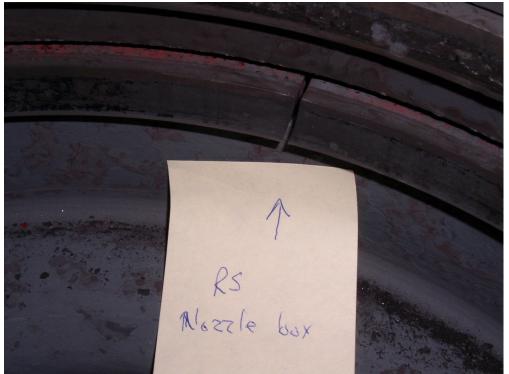
Charlie LeMaster

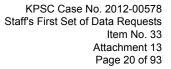
NOTES:

- +Means Box Joint is Higher than Inner Shell Joint.
- Means Box Joint is Lower than Inner Shell Joint.
- Box Joint Must be Transversely Parallel with Inner Shell Joint Within .004" (maximum of .004" difference between left and right joint check readings)
- The Algebraic Sum (Δ) of the Upper and Lower Left to Left and Right to Right Joint Check Readings Must Show the Specified Clearance Shim Clearance Within .002".

Comments	

Nozzle Hor Jt Cks(a)


170X394


Date(m,d,y)

Nozzle Partition Erosion

Broken Nozzle Seal Ring

GE Energy Services

HP Outer Shell

Fit; Inner Shell - LH

The outer shell inner surfaces were NDT'd by AEP personnel. A crack was found in the inner shell locating male fit in the lower half. This crack was in the ligament from the original mid-span eccentricity hole that was previously plugged. The crack was ground out and repair welded by AEP personnel.

HP Outer Shell

Fit; Mid-span Seal Ring

The upper surface of the seal ring bore for the mid-span balance access in the UH outer shell was found badly damaged from apparent arc-cutting. The surface was weld repaired and machined by I&RS. I&RS installed new seal rings.

HP Outer Shell

Flange; Inlet

The main steam inlet flanges on the outer shell were machined by CMS to remove dishing and indents from the mating flange surface. The pipe side flanges were not machined this outage.

HP Outer Shell

Guide; Thermocouple

All new shell thermocouple guide pipes were supplied with the ADSP and were installed.

HP Outer Shell

Inlet Bore; Lower Left

The lower left inlet in the outer shell was found damaged from the first ring fretting down into the face. The face was remachined by I&RS about 1/2" deeper than drawing and a special thicker first inner ring was installed.

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 21 of 93

GE Energy Services

TURBINE SHELLS

HP Outer Shell

Inlet Bore; Upper Left

The upper left inlet bore in the outer shell was found badly fretted from the first upper ring. These rings had been installed incorrectly, with the outer fit ring first. This ring was apparently too loose, and fretted into the bore and up into the face. The bore was weld repaired using GE's "Torch Temper" process and machined by I&RS.

HP Outer Shell

Insulation;

The HP/RH and 2nd Reheat shells were not reinsulated correctly after the outage. Several attempts by the insulating contractor were required to make the shell insulation appear adequate.

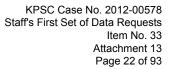
Prior to reinsulation of the turbine shells, the insulating contractor should be determined qualified to properly insulate the shells. (Insulators did not seem to know what the requirements are.)

HP Outer Shell

Pipe; Extraction

The reheat extraction pipe in the lower outer shell was found cracked in the stellite at the taper on the end. The crack was ground out and blended.

HP Outer Shell


Pipe; Mid-span Access

The removed midspan balance pipe had damaged stellite fits and was bent. A new pipe was obtained from GE and installed.

HP Outer Shell

Pressure Tap; 1st and 3rd Sta

Both 1st stage and both 3rd stage pressure taps were supplied with the ADSP and were installed. AEP personnel performed the welding.

GE Energy Services

TURBINE SHELLS

HP Outer Shell

<u>Shell; N1, N3</u>

Flow steps in the shell casting were found at the interface to the N1 and N3 packing heads. These were ground and blended to allow uninterrupted steam flow for performance improvement.

HP Outer Shell

Snout; Reheat Inlet Pipe

The reheat inlet snout pipes were found out-of-round and were trued up by CMS.

HP Outer Shell

Stud; 31

One of the large thru-studs (31) was found broken at disassembly. The stud was replaced from customer stock.

HP Inner Shell

Assembly;

The HP/RH inner shell upper and lower halves were sent to an I&RS machining vendor after CMS repairs for machining internal component axial fits. All seal ring bores were also trued up. When this work was complete, the shells were sent to the Pittsburgh Service Center for initial fitting of the diaphragms, N2 and nozzle.

HP Inner Shell

Assembly;

The following repairs were performed to the HP inner shell while at the Pittsburgh Service Center: Weld and machine the B inlet bore; remove studs 88 and 90 (partially unscrewed and stuck) and tap holes; minor crack grinding and blending in lower fit radii; remove broken nozzle elevation key bolts.

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 23 of 93

GE Energy Services

HP Inner Shell

Fit; RS 3rd Sta PT

The right side 3rd stage pressure tap hole in the lower inner shell was found badly pounded out. The pressure tap was missing. The hole was repair welded by I&RS and a new hole was machined.

HP Inner Shell

Flange; UH

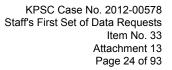
The upper and lower inner shells were removed and sent to CMS for seal ring removal, blast cleaning and NDT. A previously repaired large crack along the bolting flange in the upper shell was repair welded at CMS. I&RS completed laser mapping on the horizontal joints of both halves to determine flatness. The lower half was in plane and had minimal distortion from outer to inner. The upper half also had minimal outer to inner distortion, but one corner was out of plane by 28 mils. Since the joint closed when bolted, no horizontal joint machining was done. However, this joint distortion affects lateral tops-on, tops-off alignment changes.

HP Inner Shell

Gib; Circular Key

The upper inner shell center gib posts were found badly pitted from apparent corrosion. These surfaces were remachined at CMS. The lower shell posts were pitted to a lesser degree, and were hand dressed by I&RS.

HP Inner Shell


Key; Joint

Horizontal joint seal keys were added to the N2 area of the upper inner shell as part of the ADSP modification.

HP Inner Shell

Orifice; Cooling Pipe

The cooling line under the HP inner shell was found plugged and the orifice was eroded. New orifice and pipe components were installed at the Pittsburgh Service Center.

GE Energy Services

TURBINE SHELLS

HP Inner Shell

Ring; Reheat Extr

New bi-metallic reheat extraction rings were machined and installed by I&RS. (The extraction pipe snout was not removed.)

HP Inner Shell

<u>Ring; Reheat Inlet Seal</u> All new bi-metallic reheat inlet seal rings were machined and installed by I&RS.

HP Inner Shell

Snout; MSI Pipe

The customer supplied two new inlet snout pipes to replace two that were found cracked. These were installed in the lower half. The two pipes re-used were trued up and installed in the upper half.

<u>Shell</u>

Ring; Inlet Seal

All new HP inlet seal rings were machined and installed by I&RS. The shell bores were honed true. The rings were the bi-metallic design, which allows more clearance to the pipe for ease of installation.

Shell

Ring; Midspan Access Seal

I&RS replaced the midspan balance pipe seal rings in the inner and outer shell with bimetallic design rings.

Shell

<u>Bolt;</u>

The inner shell, outer shell and steam lead bolts were stretched using Mannings Induction Heaters and measured with extensiometers.

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 25 of 93

<u>GE</u> Energy Services

TURBINE SHELLS

Mid-span Ecc Hole Crack

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 26 of 93

<u>GE</u> Energy Services

TURBINE SHELLS

Mid-span Balance Seal Ring Bore

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 27 of 93

<u>GE</u> Energy Services

TURBINE SHELLS

Lower Inlet Face Fretting

ġe

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 28 of 93

<u>GE</u> Energy Services

TURBINE SHELLS

Upper Inlet Bore Damage

æ

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 29 of 93

<u>GE</u> Energy Services

TURBINE SHELLS

Stellite Crack Before Grinding

Æ

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 30 of 93

<u>GE</u> Energy Services

TURBINE SHELLS

N1 Before Grinding

.ge

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 31 of 93

<u>GE</u> Energy Services

TURBINE SHELLS

N3 Before Grinding

Æ

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 32 of 93

<u>GE</u> Energy Services

TURBINE SHELLS

N1 After Grinding

*G*E

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 33 of 93

<u>GE</u> Energy Services

TURBINE SHELLS

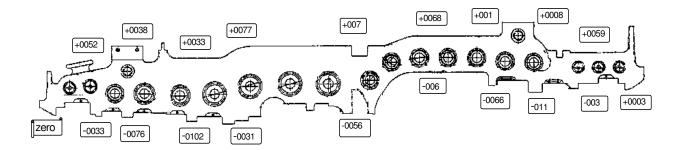
N3 After Grinding

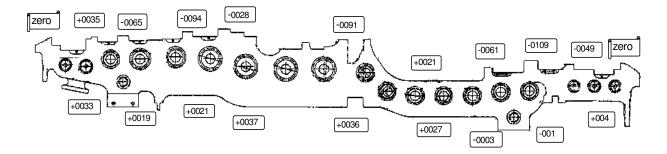
*G*E

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 34 of 93

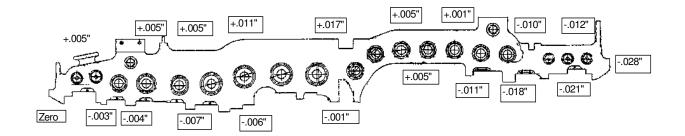
<u>GE</u> Energy Services

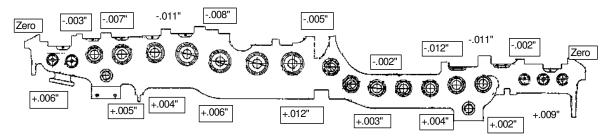
TURBINE SHELLS




Damaged PT hole

ġe


H P Inner Shell Mitchell Unit # 2 Laser Horizontal Joint Flatness Check


LOWER HALF

Readings taken at AEP CMS Charleston W.Va. 09-27-05 by Vince Kollin & Craig Schmotzer Inner Shell Horizontal Joint LHSheet1 AEP Mitchell Unit # 2 HP Inner Shell Upper Half Horizontal Joint Flatness Check W/ Hamar Laser

Inner Shell Horizontal Joint UHSheet1

Shell Gib Surface Pitting

E

Date (m/d/y)

Component *

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 37 of 93

Bolt Extension Report For Use With Extensiometer

_					
	11/22/2005	Turbine S/N	170X394	Prepared by	T. Kudas

		DIAL R	EADING		
Location	Extension Required (In Mils)	Before Tightening	After Tightening	Extension Obtained (In Mils)	Rod No.
59	19-24	415	392	23	T1
61	20-26	665	645		T2
63	20-26 19-24	602	581	20 21 12	T2 T3 T2
65	12-16	824	812		T2
67	23-29	989	961	28	L1
69	24-31	737	710	27	RED
71	24-31	747	723	24	RED
73	24-31	773	749	24 24	RED
75	24-31	851	824	27	RED
77	16-22	441	424	17	L3
79	16-22	224	204	20	L3 L3 L3
81	16-22	393	373	20	L3
83	16-22	424	403	21	L3
85	16-22	420	398	22	L3
87	16-22	417	397	20	L3 L3
89	16-22	436	419	17	
91	19-24	406	385	21 22	T1
93	19-24	409	387		T1
95	19-24	433	410	23	T1

			EADING		
Location	Extension Required (In Mils)	Before Tightening	After Tightening	Extension Obtained (In Mils)	Rod No.
60	19-24	428	404	24	T1
62	20-26	673	649	24	T2
64	19-24	692	670	22	T3
66	12-16	490	476	14	T2
68	23-29	963	935	28	L1
70	24-31	735	711	24	RED
72	24-31	856	825	31	RED
74	24-31	789	763	26	RED
76	24-31	729	700	29	RED
78	16-22	463	441	22	L3 L3
80	16-22	436	411	25	L3
82	16-22	405	385	20	L3
84	16-22	418	397	21	L3 L3
86	16-22	413	394	19	L3
88	16-22	290	270	20	L3
90	16-22	704	686	18	L3
92	19-24	396	375	21 22	T1
94	19-24	428	406	22	T1
96	19-24	619	597	22	T1

* Indicate Valve, Shell, or Flange Identification. HP Inner Shell Bolt Stretch(a)

									:	KPSC Staff's First	l Atta	
æ	Bolt Extension Report For Use With Extensiometer											
Date (r	m/d/y)	11/27	/2005	Turbi	ne S/N	170>	K 394	Prepa	red by	٦	r. Kudas	
Compo	onent *		HP Oute	r Shell			Comp	onent *		HP Oute	r Shell	
		DIAL R	EADING						DIAL RI	EADING		
Location	Extension Required (In Mils)	Before Tightening	Atter Tightening	Extension Obtained (In Mils)	Rod No.		Location	Extension Required (in Mils)	Before Tightening	Atter Tightening	Extension Obtained (In Mils)	Rod No.
1	41-52	260	210	50	BL/W		2	41-52	181	140	41	BL/W
3	41-52	232	182	50	BL/W		4	41-52	223	175	48	BL/W
5 7	41-52	260	212	48 47	BL/W BL/W		6 8	41-52	214	169	45 45	BL/W BL/W
9	41-52 41-52	235 235	188 184	51	BL/W		10	41-52 41-52	226 208	181 158	43 50	BL/W
11	41-52	243	193	50	BL/W		12	41-52	215	163	52	BL/W
13	41-52	229	181	48	BL/W		14	41-52	209	157	52	BL/W
15	41-52	239	192	47	BL/W		16	41-52	209	158	51	BL/W
17	48-62	381	325	56	B/W/B		18	48-62	364	313	51	B/W/B
19	48-62	348	295	53	B/W/B		20	48-62	381	333	48	B/W/B
21	48-62	381	326	55	B/W/B		22	48-62	317	264	53	B/W/B
23	32-41	444	410	34	W		24	32-41	438	404	34	W
25 27	32-41	422	390 275	32 35	W W		26 28	32-41	428	396	32 34	W W
27	32-41 29-37	410 333	375 301	33	RED		30	32-41 29-37	414 418	380 389	34 29	RED
31	41-52	723	682	41	X		32	41-52	139	95	44	X
33	41-52	166	115	51	BL/W		34	41-52	170	127	43	BL/W
35	53-68	265	206	59	WRW		36	53-68	303	247	56	WRW
37	53-68	271	212	59	WRW		38	53-68	290	233	57	WRW
39	53-68	298	238	60	WRW		40	53-68	289	232	57	WRW
41	54-69	260	197	63	plain		42	54-69	288	229	59	plain
43	20-26	615	589	26	BL BL		44	20-26	673	650	23	BL BL
45 47	20-26 20-26	639 745	613 720	26 25	BL		46 48	20-26 20-26	603 277	579 253	24 24	BL
47	20-26 31-40	745 448	409	39	L1		40 50	20-26 31-40	477	253 438	39	L1
51	31-40	490	451	39	L2		52	31-40	560		39	L2
53	31-40	118	87	31	L2		54	31-40	476	437	39	L2
55	31-40	460	421	39	L2		56	31-40	465	428	37	L2
57	31-40	456	416	40	L2		58	31-40	443	404	39	L2

* Indicate Valve, Shell, or Flange Identification.

Outer Shell Bolt Stretch(a)

Attachment 13 Page 39 of 93 **Bolt Extension Report** For Use With Extensiometer Date (m/d/y) 11/28/2005 Turbine S/N 170X394 Prepared by T. Kudas Component * Main Steam Inlet L/S Component * Main Steam Inlet R/S **DIAL READING DIAL READING** Before Tightening Before Tightening After Tightening After Tightening Extension Required (in Mils) Extension Obtained (In Mils) Extension Required (in Mils) Extension Obtained (In Mils) Location Location Rod No. Rod No. 14-18

* Indicate Valve, Shell, or Flange Identification.

MSI bolt stretch(a)

KPSC Case No. 2012-00578 Staff's First Set of Data Requests

Item No. 33

									:		Atta	
Bolt Extension Report For Use With Extension								-				
Date (m/d/y)	11/30	/2005	Turbi	ne S/N	170X39	94	Prepa	red by		F. Kudas	
Comp	onent *	Reheat Stear		n Inlet Lei	ft	С	Compo	onent *	Reh	eat Steam	n Inlet Rig	ht
Location	Extension Required (in Mils)	Before Tightening	Additenting Tightening	Extension Obtained (in Mils)	Rod No.		Location	Extension Required (In Mils)	Before Tightening	After Tightening	Extension Obtained (In Mils)	Rod No.
1 2 3 4 5	17-21 17-21 17-21 17-21 17-21	673 664 666 663 721	653 645 649 646 702	20 19 17 17 19			1 2 3 4 5	17-21 17-21 17-21 17-21 17-21	568 570 633 653 676	549 550 615 635 658	19 20 18 18 18	
6 7 8 9	17-21 17-21 17-21 17-21 17-21	641 618 638 691	623 601 620 670	13 18 17 18 21			6 7 8 9	17-21 17-21 17-21 17-21 17-21	623 595 649 655	605 576 632 636	18 19 17 19	
10 11 12 13	17-21 17-21 17-21 17-21	644 655 654 571	624 634 635 554	20 21 19 17			10 11 12 13	17-21 17-21 17-21 17-21	653 614 561 589	635 594 544 571	18 20 17 18	
14 15 16	17-21 17-21 17-21	530 591 592	510 572 573	20 19 19			14 15 16	17-21 17-21 17-21	651 661 591	634 643 570	17 18 21	
						F						

* Indicate Valve, Shell, or Flange Identification.

Reheat Inlet bolt stretch(a)

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 41 of 93

<u>GE</u> Energy Services

TURBINE ROTOR

HP/RHT Rotor

Assembly;

The AEP spare HP/RH rotor was modified for the ADSP installation prior to the outage at the Pittsburgh Service Center. New buckets were installed, and necessary machining was performed. The rotor was low speed balanced. The control rotor was removed from the existing rotor and assembled to the replacement rotor. The T1 journal final size was 15.993. The T2 journal final size was 16.966.

HP/RHT Rotor

Coupling; A

The A coupling was line-bored by CMS and assembled using AEP procedure. Four bolt holes were lined bored 90 degrees apart and fitted studs were installed. The new coupling on the 2nd reheat had undersize bolt holes, resulting in high clearance on the HP half bolts that were not fitted. The differential runout was adjusted prior to line boring. Conventional bolting was used.

LP B Rotor

Guard; C Coupling

During initial roll, a rubbing noise was heard at the "C" coupling. The covers were removed and a protruding guard joint bolt was found rubbing on the generator end windage covers. The bolt was cut shorter to remove the protrusion.

Axial positioning of the LP rotors and "C" coupling guard should be checked next outage to verify adequate clearance for rotor expansion.

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 42 of 93

Coupling Bolt Assembly Data

Date(m,d,y)	12/1/2005	Turbir	e Serial No.	170X394		Prepared by	T. Pei	rkins
COUPLING	Α	-	Bolt Type	Conventiona (Conventiona	- AEP Spec al / Hydraulic)	-		
STUD	COUP	LING HOLE DIAN	IETER	STUD/SLEEV	E DIAMETER		CLEARANCE	
HOLE	TB. SIDE	GEAR/SPACER	GEN. SIDE	TB. SIDE	GEN. SIDE	TB. SIDE	GEAR/SPACER	GEN. SIDE
1 (M)	2.896 "	2.896 "	2.896 "	2.730 "	2.730 "	0.166 "	0.166 "	0.166 "
2	2.813 "	2.753 "	2.752 "	2.730 "	2.730 "	0.083 "	0.023 "	0.022 "
3	2.874 "	2.874 "	2.874 "	2.873 "	2.873 "	0.001 "	0.001 "	0.001 "
4	2.813 "	2.753 "	2.753 "	2.730 "	2.730 "	0.083 "	0.023 "	0.023 "
5	2.813 "	2.753 "	2.751 "	2.730 "	2.730 "	0.083 "	0.023 "	0.021 "
6	2.880 "	2.880 "	2.880 "	2.879 "	2.879 "	0.001 "	0.001 "	0.001 "
7	2.813 "	2.753 "	2.750 "	2.730 "	2.730 "	0.083 "	0.023 "	0.020 "
8	2.813 "	2.753 "	2.750 "	2.730 "	2.730 "	0.083 "	0.023 "	0.020 "
9	2.813 "	2.753 "	2.750 "	2.730 "	2.730 "	0.083 "	0.023 "	0.020 "
10	2.813 "	2.753 "	2.751 "	2.730 "	2.730 "	0.083 "	0.023 "	0.021 "
11	2.896 "	2.896 "	2.896 "	2.895 "	2.895 "	0.001 "	0.001 "	0.001 "
12	2.813 "	2.753 "	2.751 "	2.730 "	2.730 "	0.083 "	0.023 "	0.021 "
13	2.813 "	2.753 "	2.750 "	2.730 "	2.730 "	0.083 "	0.023 "	0.020 "
14	2.874 "	2.874 "	2.874 "	2.873 "	2.873 "	0.001 "	0.001 "	0.001 "
15								
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								
26								
27							<u> </u>	
28							<u> </u>	
29							┟───┤	
30							╂────┤	
31 32							}	
JZ		I I			l		I I	
Comments:								

Coupling Bolts(a)

Item No. 33 Attachment 13 Page 43 of 93 **Bolt Extension Report** For Use With Extensiometer Date (m/d/y) 12/1/2005 Turbine S/N 170X394 Prepared by T. Perkins Component * A Coupling Component * **DIAL READING** DIAL READING Before Tightening Before Tightening After Tightening After Tightening Extension Required (in Mils) Extension Obtained (In Mils) Extension Required (in Mils) Extension Obtained (In Mils) Location Location Rod No. Rod No. 1 20 - 24 303 280 23 2 20 - 24 296 272 24 3 22 20 - 24 542 520 4 24 281 20 - 24 305 5 24 20 - 24 310 286 6 21 20 - 24 413 392 21 7 303 20 - 24 282 24 8 20 - 24 318 294 24 9 20 - 24 334 310 10 20 - 24 311 291 20 11 545 24 20 - 24 569 12 24 20 - 24 257 233 23 13 20 - 24 315 292 23 14 20 - 24 415 392

* Indicate Valve, Shell, or Flange Identification.

Bolt Stretch - A Cplg(a)

KPSC Case No. 2012-00578 Staff's First Set of Data Requests

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 44 of 93

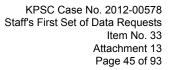
Coupling Assembly Checks Without Integral Rabbets

Date(m,d,y) 12/1/2005	Turbine Serial No.	170X394	Prepared by	T. Perkins
Coupling A Data Final (as found/final)		"0" (2) Mar star	radial runout set indicato at the number 1 position. k positions 1-8 to agree v nped degree marks on re wn on Fig. 1.	with factory
0° 1 270° 7 + 3 8 Rotation 270° 7 + 3 90° Fig. 1	A Turb. End Brg.		t Side	en. End Brg. _{ST00094}

Coupling Runouts	(Readings are in Mils)								
				Po	sition Nun	ıber			
	1	2	3	4	5	6	7	8	1
Area Indicated	0°	45°	90°	135°	180°	225°	270°	315°	0°
TE Journal A									
TE Cplg. Periphery B B	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Spacer C	0.0	0.0	0.0	-1.0	-1.0	-1.0	-1.0	0.0	0.0
GE Cplg. Periphery D D	0.0	-1.0	0.0	0.0	0.0	-1.0	-1.0	-1.0	0.0
GE Journal E									

Differential Runouts

Journals A-E									
Cplg. Periphery B-D	0.0	1.0	0.0	0.0	0.0	1.0	1.0	1.0	0.0
Spacer to Cplg C-B	0.0	0.0	0.0	-1.0	-1.0	-1.0	-1.0	0.0	0.0
Spacer to Cplg C-D	0.0	1.0	0.0	-1.0	-1.0	0.0	0.0	1.0	0.0


Maximum Runouts

		TIR
Check	Runout	Check
OK	0.0	OK
OK	1.0	OK
OK	1.0	OK
	Data Cheek	Data TIR Chook Bunout

Maximum Differential Runouts

	Max. Diff.	Diff. Check
Journals A-E		
Cplg. Periphery B-D	1.0	OK
Spacer to Cplg C-B	1.0	OK
Spacer to Cplg C-D	2.0	OK

Coupling Runout(a)

GE Energy Services

DIAPHRAGM

HP Diaphragm

Assembly; HP/RH

New HP and reheat diaphragms were supplied with the ADSP modification. The diaphragms were initially fitted at the Pittsburgh Service Center. New centering pins were machined and installed in the shell. The diaphragm fits and crush pins were machined to locate the diaphragms axially. Final sideslips and drop checks were recorded after final alignment on site. Clearance spacers were adjusted after final alignment.

HP Diaphragm

Partition; 5, 6

The 5th and 6th stage diaphragm partitions had severe impact damage. See attached photos.

HP Diaphragm

Spill Strip; 2

A badly deteriorated spill strip segment was found in the second stage diaphragm, probably incorrect material. See attached photo.

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 46 of 93

GE)

Diaphragm Joint Check

Bolted Diaphragms

Date(m,d,y)	11/16/2005	Turbine Serial No. <u>170X394</u> Prepared by	Charlie	LeMaster
Data	Final	Levelness Maximum		Mils/Inch
	(As Found/Final)	Centering Pin Clearance Max.	3	Mils
Section	HP	Centering Pin Clearance Min.	1	Mils
	(HP/LP)			

NOTE: 1. Diaphragm above casing record as PLUS (+).

2. Diaphragm below casing record as MINUS (-).

			LOWEI	R HALF			
		L DROP		LEVELNESS		SIDE	SLIP
Stage	Left Mils	Right Mils	Diameter Inch	Level Mil/Inch	Tol	Actual	Tol
N3	23.0	1.0	38.3	0.6	ОК	2.0	ОК
10th	-24	11	67.0	0.5	ОК	3.0	ОК
9th	-14.0	-4.0	64.5	0.2	ОК	1.0	ОК
8th	-8.0	-1.0	66.3	0.1	ОК	1.0	ОК
7th	-8.0	-1.0	66.3	0.1	ОК	1.0	ОК
N2	-7	-6	39	0.0	ОК	1.0	ОК
2nd	-19.0	6.0	48.5	0.5	ОК	2.0	ОК
3rd	-9.0	3.0	49.5	0.2	ОК	1.0	ОК
4th	-31.0	-51.0	50.5	0.4	ОК	2.0	ОК
5th	-16.0	-1.0	51.0	0.3	ОК	1.0	OK
6th	-3.0	-21.0	55.8	0.3	ОК	2.0	ОК
N1	-31.0	-37.0	39.1	0.2	ОК	3.0	ОК

HP Diaphragm Joint Check(a)

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 47 of 93

Diaphragm Axial Float Checks Lower Half

Date(m/d/y)	11/1/2005	Turbine Serial No.	170X394	Prepared by	T. Perkins
_					

Stage	Left	Right
6	0.006	0.008
5	0.010	0.014
4	0.017	0.015
3	0.011	0.007
2	0.010	0.012
7/8	0.008	0.008
9	0.006	0.009
10	0.012	0.013

Comments	
Note: New diaphra	s do not have crushpins in upper halves
	en e

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 48 of 93

GE)

Diaphragm Clearance Spacers Bolted Diaphragms

Date	11/15/05	Turbine Serial No.	170X394	Prepared	Charlie LeMaster
		_			

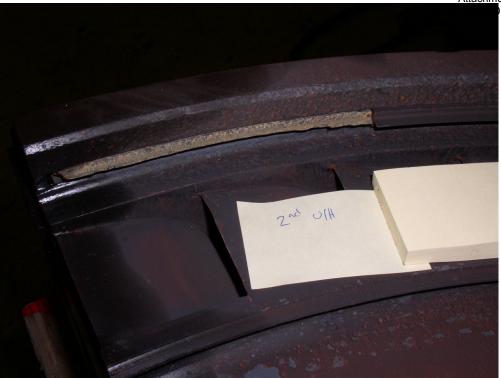
Data	Final
	(As Found/Final)
Section	HP/RH
	(HP/LP)

NOTE: 1. Shim above Shell record as PLUS (+).

1. Shim above Diaphragm record as PLUS (+).

		to Shim		gm to Shim		II to Shim		m to shim
Stage	Left Mils	Right Mils	Left Mils	Right Mils	Left Mils	Right Mils	Left Mils	Right Mils
N3	-7	-8	-59	-32				
10th	-4	-5	-33	-44				
9th	-8	-5	-42	-47				
8th	-4	-5	-36	-38				
7th								
N2	-5	-8	-36	-43				
2nd	-6	-6	-38	-40				
3rd	-7	-5	-38	-41				
4th	-5	-6	-38	-38				
5th	-4	-6	-32	-50				
6th	-4	-5	-40	-45				
N1	-7	-5	-35	-33				

Spacers(a)



Impact Damage

Impact Damage

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 of 93

Deteriorated 2nd Stage Spill Strip

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 51 of 93

<u>GE</u> Energy Services

SHAFT & DIAPHRAGM PACKING

Shaft Packing

Assembly; Diaphragm, Steam Seal

All high pressure and reheat packing was replaced with the ADSP modification. Standard packing was installed in the diaphragms and N2 packing head. Re-roundable packing was installed in the N1 and N3 packing glands. Grooves 1 and 2 in N1 did not require adjustments due to minimal distortion and acceptable clearances. All packing butt clearances were checked and adjusted as necessary by I&RS.

HP Diaphragm Packing

Teeth; 2nd Stage

HP packing as found was in poor condition, with chipped teeth in the 2nd and 3rd stages. See attached photo.

Packing Casing

Assembly; N1, N3

Dimensional checks and titewire alignment checks at disassembly showed the bolt-on packing casings aligned well to the outer shell. Since re-roundable packing was supplied for the N1 and N3 packing, the lower packing casings were not removed this outage. This also simplified the alignment process. The N1 casing had minimal distortion and did not require adjustments to the packing. (Supplied with standard hook diameter pins.) The N3 packing casing was squeezed vertically about 40 mils smaller than the horizontal dimension and required adjustment to the packing pins. I&RS did this on site.

Consider removing the N3 bolt-on packing casing next outage to correct distortion and allow standard packing to be used. This would necessitate tracking the radial alignment of the shell so that the casing could be realigned to the same location as a reference for internal alignment. (Note as-left relative alignment position due to the distortion.)

Packing Head

Assembly; N1

The N1 packing head was realigned. (See diaphragm data.) I&RS machined a new upper circular gib key.

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 52 of 93

<u>GE</u> Energy Services

SHAFT & DIAPHRAGM PACKING

Packing Head

Assembly; N1, N3

The N1 and N3 internal packing heads were sent to the Pittsburgh Service Center for fitting re-roundable packing. The N1 head had minimal distortion and required light skimming of the teeth to restore drawing clearances. The N3 casing had moderate distortion. Adjustments were made for excess clearance , and the teeth were machined where necessary to restore drawing clearance. Truth rings were machined in each end of the bores for alignment.

During future packing replacements in the N1 and N3 internal packing heads, reroundable packing will need to be installed and adjusted, or the hook fits should be machined round and special packing should be installed with undersize hook diameters.

Packing Head

Assembly; N2

A new N2 packing casing (head) was provided with the ADSP modification. The axial locating fits were machined at the Pittsburgh Service Center for location and clearance in the inner shell. New keys were machined for alignment.

Packing Head

Assembly; N3

The N3 packing head was realigned. (See diaphragm data.) Broken upper key retainer bolts were found during assembly. (The bolts install from under the gib and were overlooked.) Since new packing heads do not have upper key provisions and access prevented drilling the broken bolts, the upper keys were left out. Factory engineering was consulted and concurred that upper packing head keys were unnecessary. The broken bolts were staked in place.

Note that upper packing keys were left out (with engineering approval) due to broken retainer bolts stuck in the horn. The broken bolts should be drilled out next inspection.

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 53 of 93

<u>GE</u> Energy Services

SHAFT & DIAPHRAGM PACKING

As Found Packing Damage - 2nd Stage

ge

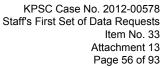
KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 54 of 93

As Found Packing Casing Alignment Relative & True Position

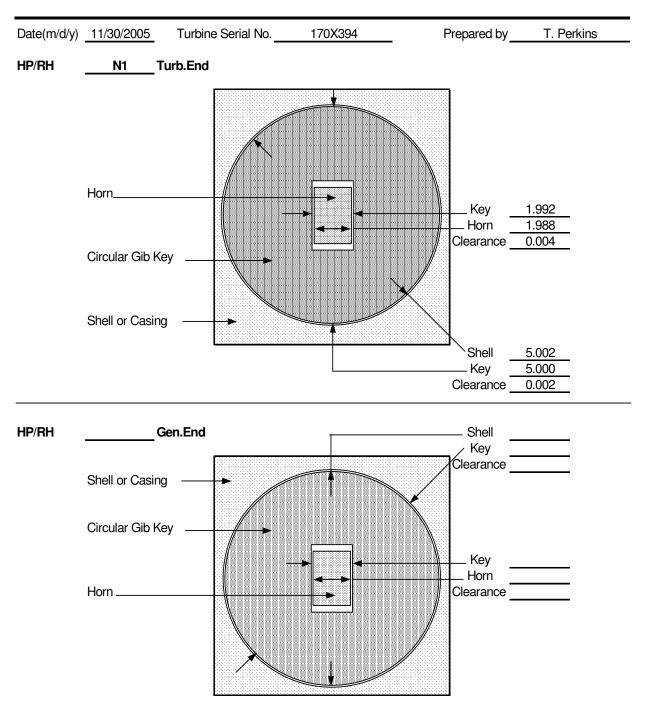
Date: (m/d/y) 9/28/2005 Turbine Serial No. 170X394 Prepared by Dan/Jon Comment Total distance from support to support is 234.5" or 19' 6" Set 1st **Relative (Sag Corrected)** True Position Raw Data Sag LOCATION Mils **Readings in inches Position in Mils** Elev Horz N1G1 13" from supt. 3 10.774 10.774 0 0 -1 0 $\mathbf{1}$ ____ √ 10.770 -1 Ϋ́ Set Point N1 Shell Bore 20" from supt. 4 0.511 0.509 2 0 1 1 ſ ł 4 0.507 2 N3 Shell Bore 30" from supt. 6 0.017 0.008 9 0 13 5 $\mathbf{1}$ $\overline{\mathbf{\Lambda}}$ 0.019 17 ← N3 Shell Bore 26" from supt. 5 0.019 0.009 10 0 10 5 $\overline{\mathbf{\Lambda}}$ $\mathbf{\Lambda}$ 0.019 15 4 N3G5 4 19" from supt. 11.124 11.124 0 0 -1 0 Ψ Set Point 11.119 ____ ✓ -1 Υ

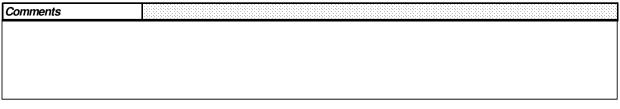

Packing Casing to Outer Shell Alignment(a)

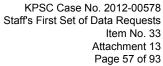
Packing Casing Roundness


Date(m,d,y) 11/11/8/05	Turbine Serial No.	170X394	Prepared by	T. Perkins

Packing	Upper (Duter Shell	Off	Upper (Duter Shell	Bolted	Comments
Casing	A-Dia	B-Dia	C-Dia	A-Dia	B-Dia	C-Dia	
N1 G1 OB	21.522	21.502	21.497	21.511	21.506	21.490	
N1 G1 IB	21.521	21.501	21.495				
N1 G2 IB	21.520	21.500	21,492	21.513	21.508	21.489	
N1 G2 OB	21.523	21.502	21.493	21.010	21.000	21.100	
N3 G4 OB	22.542	22.541	22.486	22.540	22.537	22.487	
N3 G4 IB	22.537	33.537	22.488				
N3 G5 IB	22.525	22.526	22.484				
N3 G5 OB	22.518	22.523	22.482	22.523	22.520	22.479	


 Comments


 Note: For the N1 "Outer Shell Off readings", the left side dowel was not in. There was a step at the joint from the UH being warped outward. Use "B" readings for horizontal comparison. A new dowel was made for the "Shell Bolted" readings.



. Ge

UH N1 Circular Gib Key

N2 Packing Head Keys

Date(m/d/y)	11/20/2005 Turbine S	erial No. <u>170X394</u>	Prepared by	T. Perkins
inal	<u>Upper Half</u>	Lower Half		
eft Key	0.856	0.878		
Right Key	0.902	0.885		
Post	2.501	2.495		
eyway	4.268	4.263		
Clearance	0.009	0.005		

During Tops-On

Left	0.895	0.915
Right	0.871	

N2 Packing Head Keys(a)

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 58 of 93

GE Energy Services

TURBINE ALIGNMENT & CLEARANCES

Alignment - Coupling

Rotor; A

During assembly of the 2nd reheat turbine, a large left move was made on the #3 bearing to align the face at B coupling. (This face opening was not seen at disassembly.) Prior to final installation of the HP inner shell and components, the HP rotor was temporarily installed to check "A" coupling and make initial bearing shim changes. Large left and upward moves were required on #1, and a large left move was required at #2. At assembly with tops on, the #1 bearing had to be moved back to the right part of the initial move, and the #2 bearing was raised further. Coupling lateral face alignment appears to change with time and possibly ambient conditions. The final T1 position was 12 mils left from as-found.

Lateral coupling face alignment was inconsistent over time. There appears to be foundation and/or pedestal shifting due to ambient or some other plant condition changes.

Alignment - Steam Path

Assembly; HP/RH

A complete tops-on, tops-off laser alignment was performed on the HP/RH section. New inner shell keys and nozzle keys were machined to align the axial fits parallel for maximum axial float, and maintain concentricity to the rotor. Diaphragms and packing heads were realigned with new keys. All hold-down spacers and shell crushpins were adjusted. The upper nozzle was aligned in the upper half horizontally by laser, and vertically by joint checks. The upper half N2 alignment was set by measuring key gaps during tops-on, and was confirmed in the upper half with temporary supports. The LH bolt-on packing casings were not removed since disassembly alignment and distortion checks showed good alignment to the outer shell. The final line was set with the N1 casing 8 mils high to the rotor and N3 20 mils high to the rotor to compensate for diametrical distortion. The tops-off keys were machined to raise the shell an additional 10 mils since the large vertical tops-on movement would cause upper spill strips to land on the rotor when upper halves were installed (prior to the inner shell being bolted).

Note that disassembly radial rotor position checks at N1 and N3 will reflect the packing casing distortion, plus the shell will be an additional 10 mils high to prevent upper seal rubbing when shells are unbolted. N1 will show 18 mils high, and N3 will show 30 mils high.

<u>GE</u> Energy Services

TURBINE ALIGNMENT & CLEARANCES

Alignment - Steam Path

Shell; HP/RH Inner

The inner shell was positioned on temporary elevation keys initially with the joint approximately flush with the outer shell. It was necessary to raise the generator end about 25 mils to achieve the expected axial float in the locating fit. (Fits parallel.) This is the same condition the shell was found in. Radial alignment of shell bores was also good in this position. New elevation keys were machined and circular gib keys were machined to center the shell left to right.

Alignment - Steam Path

Shell; HP/RH Outer

After final coupling alignment, the outer shell running (elevation) keys and centerline gib keys were machined to position the shell to the desired location at the N1 and N3 setpoints. Final shell positions and rotor positions are attached. The tops-off (building) keys were machined to raise the shell 10 mils due to the large upward movement in the tops-on bolted condition. (With the inner shell unbolted, the diaphragms drop far enough that the upper spill strips could land on the bucket covers.) New safety keys were also machined to provide 60 mils clearance.

Clearances - Turbine

Rotor; HP/RH

All rotor/diaphragm/packing clearances were recorded at assembly and approved by GE Engineering. Axial clearances were very close to design at the buckets and HP packing. The reheat and N3 packing axial clearances were off in the rotor long direction from the thrust, indicating the rotor is shorter than drawing since the bucket machining was based on the first stage wheel. Axial dimensional checks on the outer shell were within a few mils of drawing. Also, the N3 G5 axial clearances were an additional 1/16" off due to a deviation in the location of the rotor lands at that row of packing. (The G5 lands are 1/16" closer to G4 than drawing.)

All radial clearances were within acceptable tolerance.

Radial clearances at the N2 packing head and reheat diaphragms show a 15 mil offset to the left due to tops-on movement. The HP diaphragms were offset 5 mils to the right.

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 60 of 93 Alignment Couplings Prepared by Date 11/23/2005 Turbine Serial No. 170X394 T. Perkins Coupling "A" HP/2nd Reheat

Alignment	Readings	(Insert read	dings in (m	ils)			
Position	Тор	Left	Bottom	Right			
Rim	0	0	2	2			0
Face 0º	609	610	610	610			\rightarrow
Face 90º	608	609	611	611			0
Face 180º	608	608	610	611			
Face 270º	608	607	607	608	0	0.2]
Average	608.3	608.5	609.5	610.0			
Relative	0	0.2	1.2	1.7			1.2
Check		Face	Rim				$ \rightarrow $
Top + Botto	m=	1.2	2.0				2
Right + Left	. =	1.9	2.0	Swe	ep Diameter (Ir	nches)	
Difference=		-0.7	0.0		42.25"		

Comments	

Final A Coupling Check(a)

170X394

Mitchell Unit 2 Laser Alignment

Date(m/d/y)	11/11/2005 Turbine Serial No. 170X394 Prepared by C. LeMaster							
Tops On v	<mark>s. Tops (</mark>	Off	POSITION (+)					
HP	/ RH			(+)		▶(-)		
Final 11/11/05 Tops Of	f / 11/8/05 To	ops On 11/11/2005		11/8/2005	(-)			
				TOP	SON	DIEEE	RENCE	
COMPONENT NAME	DISTANCE	HORZ	VERT	HORZ	VERT	HORZ	VERT	
T2 Oil Deflector	309.875"	-3.6	-25.3	-0.8	-11.0	2.8	14.3	
N0.05	000.005"	0.0	0.0	0.0			0.0	
N3 G5	303.625"	0.0	0.0	0.0	0.0	0.0	0.0	
Outer Shell Bore GE	297.750"	8.3	-27.5	4.7	-14.5	-3.6	13.0	
N2 G2	288 500"	0.6	06.0	Q /	20.0	0.2	2.7	
N3 G2	288.500"	8.6	-26.3	8.4	-29.0	-0.2	-2.7	
10th Stage	274.875"	8.9	-3.6	-7.7	15.8	-16.6	19.4	
GE Inn Shell Bore	268.875"	5.6	-64.3	-8.7	-16.9	-14.3	47.4	
9th Stage								
8th Stage	253.500"	24.0	-12.7	6.9	14.0	-17.1	26.7	
7th Stage	240.500"	17.4	-16.3	4.6	3.7	-12.8	20.0	
N2 G7	236.125"	-9.1	-26.8	-25.8	-1.3	-16.7	25.5	
N2 G1	209.250"	-13.6	-9.1	-25.2	10.9	-11.6	20.0	
Nozzle Left	155.625"	93.6	-62.4	97.7	-54.1	4.1	8.3	
Nozzle Right	155.875"	70.4	-62.4	74.9	-54.2	4.5	8.2	
Hozzio Hight	100.070	70.4	02.4	14.0	04.2	4.0	0.2	
2rd Stage	145.000"	-10.3	-1.0	-7.2	12.3	3.1	13.3	
3th Stage	135.875"	-4.7	0.8	1.0	15.2	5.7	14.4	
4th Stage	127.750"	8.4	41.3	13.2	49.9	4.8	8.6	
5th Stage								
TE Inn Shell Bore	116.250"	-3.6	-46.1	10.5	-20.0	14.1	26.1	
6th Stage	111.750"	3.4	17.6	11.0	24.1	7.6	6.5	
N1 G7	101.250"	0.1	1.6	1.2	1 /	1 1	2.0	
N1 G7	92.500"	0.1	1.6	-	-1.4	1.1	-3.0	
N1 G5	92.500 ^{**} 79.125"	-2.4 -2.0	-3.9 -10.0	1.7 -2.0	-6.8 -10.9	<u>4.1</u> 0.0	-2.9 -0.9	
Outer Shell Bore TE	79.125	-2.0	-10.0	-2.0	9.9	1.6	-0.9	
N1 G1	69.000"	-1.8 0.0	0.0 0.0	-0.2 0.0	9.9 0.0	0.0	0.0	
	03.000	0.0	0.0	0.0	0.0	0.0	0.0	
T1 Oil Deflector	62"	4.1	30.6	-3.3	26.1	-7.4	-4.5	

Comments:

Tops On / Tops Off With Building Keys Installed Fixed points in N1 G1 & N3 G5

ES-STM-D3.05.333 (6/96) Tops On_Tops Off Final LASER 170X394 AMER Power Generation Services

Mitchell Unit 2 Laser Alignment

Date(m/d/y)	11/16/05	Turbine	e Serial No. <u>170X394</u> Pr			epared by	C. LeMaster	
Fin	al Line		POSI	POSITION (+)				
HF	P / RH			+ =	<u>zontal</u> = Left ▼ = Right (-)	►(-) <u>Vertical</u> + = High - = Low		
COMPONENT NAME	AXIAL DISTANCE						Checks	
N3 G5	303.625"	HORZ 0.0	VERT 18.0	HORZ 0.0	VERT 18.0	Left	Right	
N3 G2	288.500"	0.6	-2.8	0.0	0.0			
GE Inner Shell Bore	268.875"	-6.4	-62.7					

COMPONENT NAME	AXIAL FINAL LINE			IDEAL		Joint Checks	
	DISTANCE	HORZ	VERT	HORZ	VERT	Left	Right
N3 G5	303.625"	0.0	18.0	0.0	18.0		
N3 G2	288.500"	0.6	-2.8	0.0	0.0		
GE Inner Shell Bore	268.875"	-6.4	-62.7				
10th Stage	274.875"	-0.4	-02.7	15.0	-23.0		
9th Stage	274.075	13.7	-24.2	15.0	-23.0		
8th Stage	253.500"	15.7	-30.5	15.0	-30.0		
7th Stage	240.500"	13.9	-33.3	15.0	-34.0		
<u> </u>							
N2 G7	236.125"	14.7	-35.6	15.0	-34.0		
N2 G1	209.250"	13.7	-35.7	15.0	-34.0		
Nozzle Left	155.625"	1.6	-20.2	4.0	-16.0		
Nozzle Right	155.875"	-14.7	-18.5	-12.0	-16.0		
2rd Stage	145.000"	-3.3	-23.1	-5.0	-20.0		
3th Stage	135.875"	-4.9	-21.7	-5.0	-21.0		
4th Stage	127.750"	-2.5	-16.9	-5.0	-16.0		
5th Stage		-3.8	-13.6	-5.0	-14.0		
6th Stage	111.750"	-5.1	-12.4	-5.0	-12.0		
TE Inner Shell Bore	116.250"	-6.2	-49.9				
N1 G7	101.250"	-2.6	-2.6	-4.0	-1.0		
N1 G5	92.500"	-0.5	-2.8	-4.0	-1.0		
N1 G3	79.125"	-2.0	-6.4	-4.0	-1.0		
N1 G1	69.000"	0.0	6.0	0.0	6.0		

Comments:

Final Line with Presets at N1 H= 0.0 V= 6.0 N3 H=0.0 V= 18.0

Fixed Points N1 and N3

ES-STM-D3.05.333 (6/96)

Power Generation Services

Page

Mitchell Unit 2 Laser Alignment

Date(m/d/y)	11/18/05	Turbine	Serial No.	170X394	Pre	epared by	C. LeMaster
	Alignment P / RH		POSI	<u>Horiz</u> + =	•	<u>Vertical</u> + = High	
				-	= Right (-)	- = Low	
COMPONENT NAME	AXIAL DISTANCE	FINAL HORZ	LINE VERT	IDEAI HORZ	LINE VERT	DIFFE HORZ	RENCE VERT
N3 G5	303.625"	0.0	18.0	0.0	18.0		
GE Inn Shell Bore		-6.4	-62.7				
Nozzle Left	155.625"	1.6	-20.2	4.0	-16.0		
Nozzle Right	155.875"	-14.7	-18.5	-12	-16		
TE Inn Shell Bore		-6.2	-49.9				
N1 G1	69.000"	0.0	6.0	0.0	6.0		
Upper Nozzle Align							
GE Inner Shell Bore		0.0	0.0				
Nozzle Left		-8.5		-7.9			
Nozzle Right		8.0		8.5			
N2 G7		-20.7		-20			
N2 G1		-21.1		-21			
TE Inner Shell Bore		0.0	0.0				

Comments:

ES-STM-D3.05.333 (6/96)

Power Generation Services

Page

Mitchell Unit 2 Laser Alignment (Adjusted for setting shell high in tops off condition)

Date(m/d/y)	11/18/2005	Turbi	ne Serial No.	170X394		Prepared by	C. LeMaster
Final Line - She	ell Set .0 [.]	10 High	POSI	TION	(+)	
HP	/ RH			(+))	►(-)	
	AXIAL	FINAL	LINE	IDEAL	LINE	DIFFE	RENCE
COMPONENT NAME	DISTANCE	HORZ	VERT	HORZ	VERT	HORZ	VERT
N3 G5	303.625"	0.0	28.0	0.0	28.0	0.0	0.0
	000.020	0.0		0.0	20.0	0.0	
N3 G2	288.500"	0.6	7.2	0.0	10.0	-0.6	2.8
GE Inn Shell Bore	268.875"	-6.4	-52.7				
10th Stage	274.875"	17.0	-14.2	15.0	-13.0	-2.0	1.2
9th Stage	264.375"	13.7	-17.7	15.0	-17.0	1.3	0.7
8th Stage	253.500"	15.7	-20.5	15.0	-20.0	-0.7	0.5
7th Stage	240.500"	13.9	-23.3	15.0	-24.0	1.1	-0.7
N2 G7	236.125"	14.7	-25.6	15.0	-24.0	0.3	1.6
N2 G1	209.250"	13.7	-25.7	15.0	-24.0	1.3	1.7
Nozzle Left	155.625"	1.6	-10.2	4.0	-6.0	2.4	4.2
Nozzle Right	155.875"	-14.7	-8.5	-12.0	-6.0	2.7	2.5
Ord Stopp	145.000"	2.2	10.1	5.0	10.0	17	
2rd Stage 3th Stage	145.000" 135.875"	<u>-3.3</u> -4.9	-13.1 -11.7	-5.0 -5.0	-10.0 -11.0	-1.7 -0.1	<u>3.1</u> 0.7
4th Stage	127.750"	-4.9	-11.7	-5.0	-11.0	-0.1	0.7
5th Stage	119.875"	-3.8	-0.9	-5.0	-4.0	-1.2	-0.4
6th Stage	111.750"	-5.1	-2.4	-5.0	-2.0	0.1	0.4
TE Inn Shell Bore	116.250"	-6.2	-39.9			0.1	
N1 G7	101.250"	-1.6	12.6	-4.0	9.0	-2.4	-3.6
N1 G5	92.500"	-0.5	7.2	-4.0	9.0	-3.5	1.8
N1 G3	79.125"	-2.0	1.6	-4.0	9.0	-2.0	7.4
N1 G1	69.000"	0.0	16.0	0.0	16.0	0.0	0.0

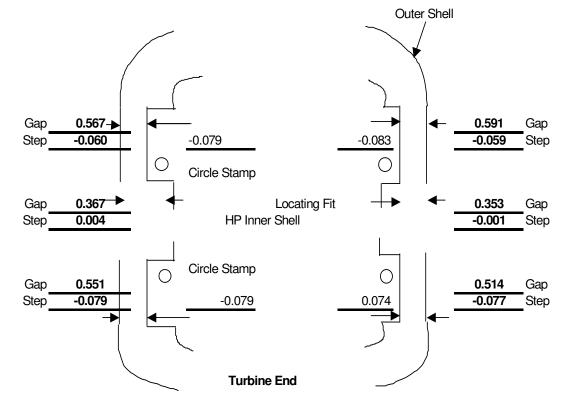
Comments:

Final Line with Presets at N1: H = 0.0, V = 16.0 N3: H = 0.0, V = 28.0Fixed points in N1 G1 & N3 G5

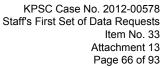
ES-STM-D3.05.333 (6/96)

Power Generation Services

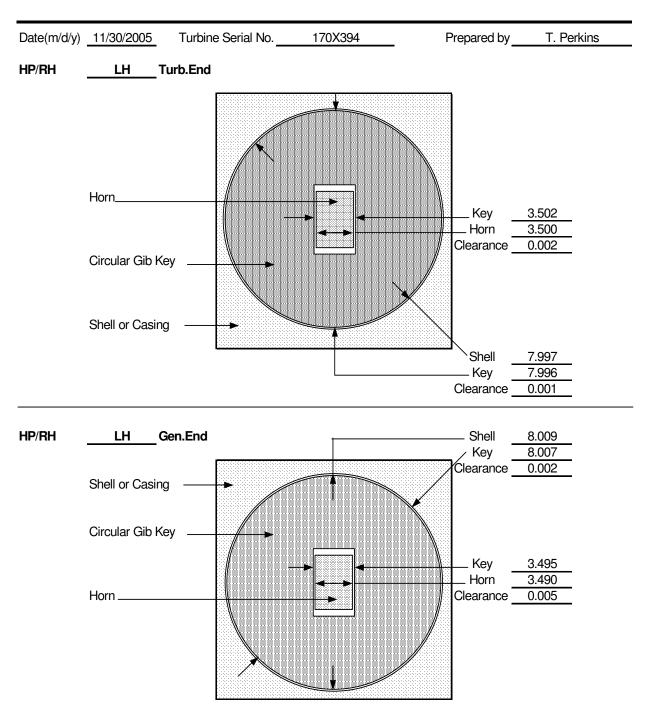
Page

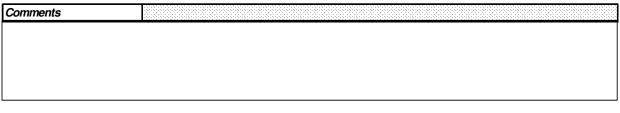


HP Inner Shell Location Measurements


Final

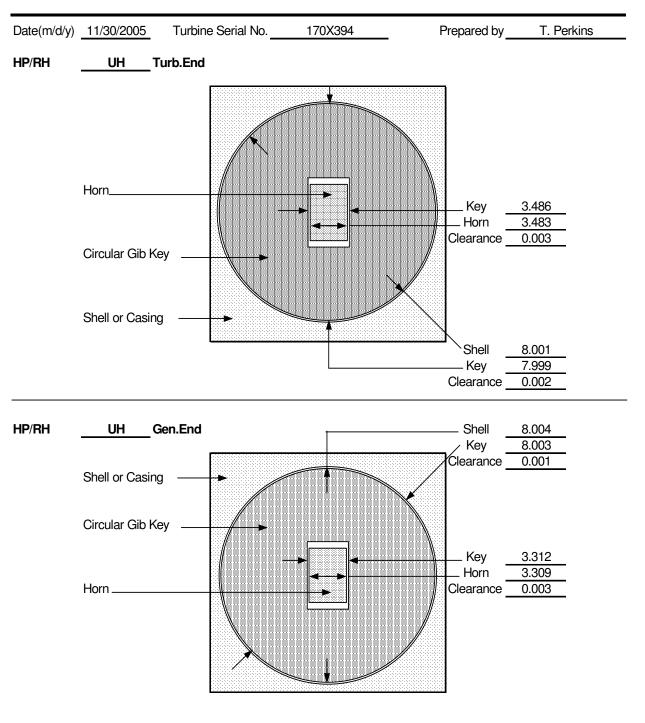
Date(m/d/y) 11/17/2005	Turbine Serial No.	170X394	Prepared b	yT. Kudas
INSPE	ECTIONS & CHECKS			CODE
TE Left Elevation Shim TE Right Elevation Shim GE Left Elevation Shim GE Right Elevation Shim	0.504 0.511 0.520 0.535		X N NA C V MP UT PT	Work Carried Out Not Done Not Applicable See Comments Visual Inspection Mag. Particle Ultrasonic Penetrant

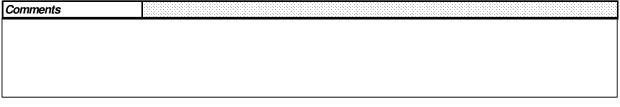



Comments		
Float =	Left Side .008	Right Side .011

. FE

LH HP Circular Gib Keys

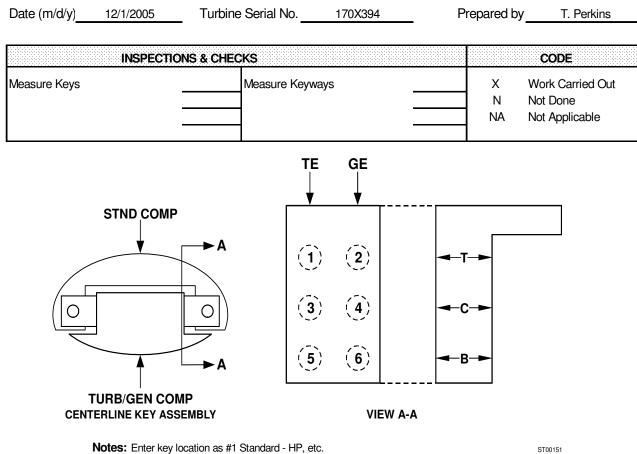




KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 67 of 93

æ

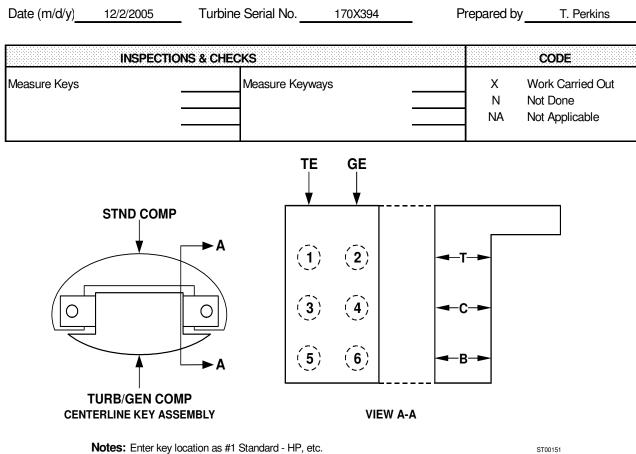
UH HP Circular Gib Keys


KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 68 of 93

Shell Arm Keys

Date(m/d/y)	12/1/2005	Turbine Serial No.	170X394 Prepared by	T. Perkins
		As Found	As Left	
A1	TE Tops-On L	1.028	1.058	
A2	TE Tops-On R	1.012	1.047	
A3	TE Tops-Off L	1.051	1.077	
44	TE Tops-Off R	1.036	1.071	
45	TE Thrust T-L	0.749	0.749	
46	TE Thrust T-R	0.726	0.726	
47	TE Thrust G-L	1.003	1.003	
48	TE Thrust G-R	1.024	1.024	
49	TE Safety L	0.355	0.408	
410	TE Safety R	0.350	0.405	
C1	GE Tops-On L	1.017	1.033	
22	GE Tops-On R	1.002	1.021	
C3	GE Tops-Off L	1.049	1.061	
C4	GE Tops-Off R	1.034	1.056	
C5	GE Thrust T-L	1.041	1.041	
C6	GE Thrust T-R	1.022	1.022	
27	GE Thrust G-L	0.720	0.720	
C8	GE Thrust G-R	0.737	0.737	
C9	GE Safety L	0.384	0.408	
C10	GE Safety R	0.361	0.384	
Comments				

Lower Centerline Key Data


Notes: Enter key location as #1 Standard - HP, etc. Data in inches.

KEY LOCATION: TE HP Key-Way Data Key Data Clearance Location L/S R/S L/S R/S L/S R/S Comments 1 (T) 0.771 0.736 0.769 0.733 0.002 0.003 Right side key tapered to match slot 0.769 0.733 2 (T) 3 (C) 0.769 0.732 0.769 0.732 4 (C) 0.769 0.730 5 (B) 6 (B) 0.769 0.730

	Key-W	ay Data	Key	Data	Clear	ance	
Location	L/S	R/S	L/S	R/S	L/S	R/S	Comments
1 (T)	0.787	0.726	0.783	0.726	0.004	0.000	
2 (T)			0.783	0.726			
3 (C)			0.783	0.726			
4 (C)			0.783	0.726			
5 (B)			0.783	0.726			
6 (B)			0.783	0.726			

Upper Centerline Key Data

Data in inches.

	Key-W	ay Data	Key	Data	Clear	ance	
Location	L/S	R/S	L/S	R/S	L/S	R/S	Comments
1 (T)	0.758	0.742	0.756	0.740	0.002	0.002	
2 (T)	0.758	0.742	0.756	0.740	0.002	0.002	
3 (C)	0.758	0.742	0.756	0.740	0.002	0.002	
4 (C)	0.758	0.742	0.756	0.740	0.002	0.002	
5 (B)	0.758	0.742	0.756	0.740	0.002	0.002	
6 (B)	0.758	0.742	0.756	0.740	0.002	0.002	

Location	Key-Wa	ay Data	Key Data		Clear	ance	
	L/S	R/S	L/S	R/S	L/S	R/S	Comments
1 (T)							
2 (T)							
3 (C)						1	
4 (C)							
5 (B)							
6 (B)							

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 71 of 93

86

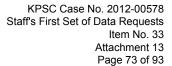
Radial Rotor Position

Date:(m/d/y) 12/1	/2005_Turbine \$	Serial No.	170)	X394	Prep	pared by	T. Perkins			
LOCATION		As Found Tops-Off			As Charte At Assemb		Final Tops-On			
T1 Oil Bore	10.002		10.002	1		10.025	9.993		10.016	
		9.985			10.006			10.000		
N1 G1	0.000		0.004	0.766		0.760	0.002		0.000	
		0.003			0.743			-0.009		
N3 G5	0.000		0.003	0.774		0.779	0.004		0.000	
		-0.023			0.750			-0.016		
T2 Oil Bore	10.006		10.010	9.978	1	10.033	9.986		10.028	
		10.003			10.012			10.022		

Comments:					 		

Upper(a)

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 72 of 93


Diaphragm Clearance Record

(New Method)

Date:(m,d,y)	11/28	3/2005	Turk	oine Ser	ial No.	170)	X394		Prepar	ed by		T. Pe	erkins		
STA W	neel Discl	harge Si	de Clea	rances		Wheel Admission Side Clearances									
NO. P	A	B	C	D	Е	G	н	NL	NR	L _{TIP}	L Root	L'L	L'R	V	
6T A 0.813	3			0.820			0.688	0.336	0.342		0.470	0.322	0.325	0.455	
E 0.774	ł			0.800			0.694	0.343	0.343	0.437	0.470	0.330	0.330	0.460	
D 0.039)			0.020			-0.006	-0.007	-0.001	-0.007	0.000	-0.008	-0.005	-0.005	
5T A 0.692	2			0.767			0.540	0.332	0.344	0.430	0.457	0.315	0.319	0.451	
E 0.699				0.768			0.577	0.335	0.335	0.429	0.460	0.320	0.320	0.455	
D -0.00				-0.001			-0.037	-0.003	0.009	0.001	-0.003	-0.005	-0.001	-0.004	
4T A 0.731				0.796			0.856		0.330	0.427	0.455	0.314	0.313	0.465	
E 0.740				0.798			0.852	0.329	0.329	0.423	0.453	0.313	0.313	0.450	
D -0.009	9			-0.002			0.004	-0.002	0.001	0.004	0.002	0.001	0.000	0.015	
3T A 0.690				0.699			0.735	0.327	0.321	0.415	0.487	0.340	0.347	0.480	
E 0.702				0.711			0.748	0.316	0.316	0.409	0.468	0.328	0.328	0.465	
D -0.012				-0.012			-0.013	0.011	0.005	0.006	0.019	0.012	0.019	0.015	
2T A 0.676				0.699			0.703			0.415	0.476	0.326	0.331	0.470	
E 0.673				0.690			0.706	0.314	0.314	0.408	0.462	0.322	0.322	0.460	
D 0.003	3			0.009			-0.003	-0.002	0.001	0.007	0.014	0.004	0.009	0.010	
1T A 0.804				3.172				0.236	0.234	0.493				0.640	
E 0.794	_			3.233				0.226	0.226	0.486				0.640	
D 0.010)			-0.061				0.010	0.008	0.007				0.000	
A															
E															
D															
7G A 0.469				0.730			1.043	0.400		0.485	0.385	0.269	0.260	0.425	
E 0.401				0.680			1.046	0.410	0.410	0.547	0.406	0.265	0.265	0.405	
D 0.068				0.050			-0.003	-0.010			-0.021	0.004	-0.005	0.020	
8G A 0.520				0.987			0.985	0.194	0.184		0.356	0.235	0.227	0.380	
E 0.518				0.984			1.000	0.196	0.196	0.372	0.374	0.234	0.234	0.370	
D 0.002				0.003			-0.015	-0.002	-0.012	-0.074	-0.018	0.001	-0.007	0.010	
9G A 0.539				1.715			1.860	0.167	0.164		0.345	0.219	0.214	0.339	
E 0.508	_			1.710			1.890	0.153	0.153	0.323	0.350	0.210	0.210	0.345	
D 0.031				0.005			-0.030	0.014	0.011	-0.063	-0.005	0.009	0.004	-0.006	
10G A 0.516				0.792			1.592	0.169	0.155	0.260	0.320	0.189	0.177	0.320	
E 0.500				0.749			1.634	0.155	0.155	0.285	0.331	0.191	0.191	0.320	
D 0.016	5			0.043			-0.042	0.014	0.000	-0.025	-0.011	-0.002	-0.014	0.000	
A	1														
E															
D															
A															
E															
D															

Comments

N3 axial position = .540

Packing Clearances & Wear Measurements

Date:(r	n,d,y)	1	1/28/20	005	Turbi	ne Ser	ial No.	1	70X39	94	Prepared by			T. Perkins					
Data		Final									Turt	oine S	ection		HP	/RH			
	(As	Found/Fi										11.1.1.	4. 71. 643	/8.411	x				
Ring/ Stage	Fia	A (M	xial	Rac (Mi	ils)	l oft	Packing Ring Segments Height (Ht) Left Top Right						(Mils Bot	s) tom		Left			
No.	No.		ι <i>э)</i> Υ		Right	1		3	, 4	5	6	1. 7	8		10	11	12		
													 	İ	1				
N1G1		295	562	38	32										İ				
N1G2		291	567	34	28		 								l				
N1G3		291	565	16	18														
N1G4		298	566	18	20		İ			l	İ		İ	İ	İ				
N1G5		291	567	20	15										İ				
N1G6		297	577	24	22										l				
N1 G7		290	570	24	19														
N2G1		249	329	60	40		Note:	Tops-or	n chang	je mov	es N2 1	5 mils	to the ri	ight					
N2G2		243	305	64	37										İ				
N2G3		250	299	60	34		8												
N2G4		240	310	68	38														
N2G5		251	301	68	37										ļ				
N2G6		240	307	67	35									ļ	i				
N2G7		236	315	68	35														
															<u>i</u>				
N3G1		198	209	13	13										ļ				
N3G2		197		13	14														
N3G3		191	227	17	40									ļ					
N3G4		181	235	32	29			ļ			İ		į	į	į				
N3G5		247	165	25	36			ļ					ļ	<u> </u>	<u> </u>				
															ļ				
<u> </u>							<u> </u>	ļ			ļ		ļ	<u> </u>	1		<u> </u>		
<u> </u>							İ	ļ		İ	İ		ļ	İ	<u> </u>				
<u> </u>							!							<u> </u>	<u> </u>				
<u> </u>								<u> </u>					<u> </u>	<u> </u>	1				
 							i	<u> </u>					<u>i</u>	<u> </u>	<u>i</u>				
┣───				i											<u> </u>				
┣───																			
┣───							i						<u> </u>	<u> </u>	<u> </u> 		<u> </u>		
┣───							i 	<u> </u>					<u> </u>	<u> </u>	<u>i</u>		<u> </u>		
┣───							 				1				<u> </u>				
┣───													<u> </u>		 !				
														<u> </u>	1				
L			i .		i		i	i		i	i		i	i	<u>i</u>	i	i		

al N Packing Clearances(a)

Spill Strip & Packing Clearance

Date:(m/o	J/y)	11/28	/2005		Turb	ine Sei	rial No.	170)	< 394		Prepar	ed by	T. Perkins							
STAGE					Radial (Clearand	ces					A۷	ial Clea	rances						
NO.		М	Z-1L	Z-1R	Z-2L	Z-2R	WL	WR	RL	RR	Х	Y	Z-3	Z-4	XA	Fig.				
6T	А	0.280	0.032	0.036	0.039	0.045	0.045	0.050	0.027	0.028	0.285	0.562	0.681	0.129		1				
	Е	0.250	0.030	0.030	0.030	0.030	0.040	0.040	0.025	0.025	0.296	0.556	0.653	0.115						
	D	0.030	0.002	0.006	0.009	0.015	0.005	0.010	0.002	0.003	-0.011	0.006	0.028	0.014						
5T	А	0.275	0.039	0.044	0.040	0.047	0.050	0.050	0.024	0.029	0.275	0.563	0.288	0.117		1				
	Е	0.250	0.030	0.030	0.030	0.030	0.040	0.040	0.025	0.025	0.296	0.556	0.306	0.115						
	D	0.025	0.009	0.014	0.010	0.017	0.010	0.010	-0.001	0.004	-0.021	0.007	-0.018	0.002						
4T	Α	0.275	0.040	0.041	0.039	0.045	0.042	0.046	0.028	0.030	0.290	0.563	0.296	0.119		5				
	Е	0.250	0.030	0.030	0.030	0.030	0.040	0.040	0.025	0.025	0.296	0.556	0.311	0.115						
	D	0.025	0.010	0.011	0.009	0.015	0.002	0.006	0.003	0.005	-0.006	0.007	-0.015	0.004						
3T	А	0.275	0.035	0.031	0.035	0.033	0.040	0.041	0.030	0.024	0.295	0.549	0.292	0.210		5				
	Е	0.250	0.030	0.030	0.030	0.030	0.040	0.040	0.025	0.025	0.296	0.556	0.316	0.175						
	D	0.025	0.005	0.001	0.005	0.003	0.000	0.001	0.005	-0.001	-0.001	-0.007	-0.024	0.035						
2T	А	0.277	0.037	0.035	0.037	0.038	0.042	0.040	0.030	0.024	0.278	0.564	0.281	0.133		5				
	Е	0.250	0.030	0.030	0.030	0.030	0.040	0.040	0.025	0.025	0.296	0.557	0.321	0.137						
	D	0.027	0.007	0.005	0.007	0.008	0.002	0.000	0.005	-0.001	-0.018	0.007	-0.040	-0.004						
1T	Α	0.250	0.060	0.046			0.070	0.058					0.359							
	Е	0.229	0.050	0.050			0.060	0.060					0.365							
	D	0.021	0.010	-0.004			0.010	-0.002					-0.006							
7T	Α						0.067	0.048												
	Е						0.050	0.050												
	D						0.017	-0.002												
7G	Α	0.275	0.060	0.041	0.051	0.034	0.067	0.045	0.073	0.049	0.251	0.300	0.196	0.157		2				
	Е	0.250	0.040	0.040	0.040	0.040	0.050	0.050	0.055	0.055	0.238	0.299	0.213	0.146						
	D	0.025	0.020	0.001	0.011	-0.006	0.017	-0.005	0.018	-0.006	0.013	0.001	-0.017	0.011						
8G	Α	0.310	0.063	0.042			0.069	0.045	0.082	0.053	0.180	0.238	0.172			2				
	Е	0.250	0.040	0.040			0.050	0.050	0.060	0.060	0.156	0.256	0.197							
	D	0.060	0.023	0.002			0.019	-0.005	0.022	-0.007	0.024	-0.018	-0.025							
9G	Α	0.315	0.055	0.036	0.062	0.040	0.068	0.048	0.041	0.021	0.190	0.232	0.188	0.076	0.250	2				
	Е	0.250	0.040	0.040	0.040	0.040	0.050	0.050	0.025	0.025	0.154	0.258	0.173	0.080	0.250					
	D	0.065	0.015	-0.004	0.022	0.000	0.018	-0.002	0.016	-0.004	0.036	-0.026	0.015	-0.004	0.000					
10G	Α	0.300	0.060	0.030	0.064	0.026	0.065	0.040	0.045	0.015	0.190	0.215	0.127	0.192		2				
	Е	0.250	0.040	0.040	0.040	0.040	0.050	0.050	0.025	0.025	0.155	0.257	0.140	0.189						
	D	0.050	0.020	-0.010	0.024	-0.014	0.015	-0.010	0.020	-0.010	0.035	-0.042	-0.013	0.003						
	А																			
	Е																			
	D																			
	А																			
	E																			
	D																			

Comments:

Note: .015 tops on movement in the reheat to the right. HP diaphragm movement .005 left.

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 75 of 93

Spill Strip & Packing Clearance (Special)

Date:(m/o	d/y)	11/19/2005		Turbin	e Seri	al No.	170)	(394	Prepar	ed by		T. Per	kins		
STAGE				Radial Cle	arance	es						ial Clea	rances	-	
NO.		Z-5L	Z-5R					R'L	R'R	X	Ý				Fig.
6T	А	0.021													1
	Е	0.020	0.020												
	D														
5T	А	0.022													1
	Е	0.020	0.020												
	D														
4T	А	0.024							0.051	NA					5
	Е	0.020	0.020					0.045	0.045	0.331					
	D														
3T	А	0.021							0.051	NA					5
	Ε	0.020	0.020					0.045	0.045	0.331					\square
	D														
2T	А	0.026							0.047						5
	Е	0.020	0.020					0.045	0.045	0.331					
	D														
1T	А														
	Е														
	D														
N2 G1	А							0.091			NA				6
	Е							0.065	0.065		0.333				
	D														
N2 G3	А							0.084	0.060		NA				6
	Е							0.065	0.065		0.334				
	D														
8G	А	0.079													2
	Е	0.050	0.050												
	D														
9G	А	0.069													2
	E	0.050	0.050												\square
-	D														\square
10G	Α														2
	E														
	D														\square
	A														\square
	E				\rightarrow										\square
	D														
	A														
	E														\square
	D														

Comments:

Anti-whirl teeth are not like clearance dwg. No place to measure axial clearance.

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 76 of 93

GE Energy Services

BEARINGS

Thrust Bearing

Assembly;

The thrust bearing was disassembled and inspected. The plates and seal rings were in good condition and were re-used. Taper checks and flatness checks were performed on the plates. New shims were machined for rotor position and thrust clearance. The thrust ball was pinch checked and torque checked. The ball was scraped to achieve 85% contact. A 2 mil shim was added to the saddle to achieve 1 mils loose fit and torque of 1300 ft-lbs.

Turbine Journal Bearing

Assembly; T1, T2

The T1 and T2 bearings were sent to the Pittsburgh Service Center for inspection and reconditioning. The pads were rebabbitted to restore correct radial position and bored for clearance to the rotor. New anti-rotation pins were installed. New upper rocker plates were installed due to wear in the pin holes. (The existing pads were re-used, these are an old modified rocker plate design which is obsolete.) The T1 bearing was bored to 16.016. T2 was bored to 16.991. NOTE: These bearings are the original joint feed design, and have not been modified to the individual pad feed type.

Consider obtaining new design bearing pads for the next HP/RH turbine inspection. New design pads have replaceable anti-rotation pin inserts in the upper pads.

Oil Deflector

Assembly; T1, T2

The T1 and T2 oil deflectors were found rubbed and packed with coal dust. Both were retoothed by AEP and aligned at assembly.

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 77 of 93

Thrust Bearing Straddle

Date(m/d/y) 11/26/2005	Tur	bine Serial No. <u>170X394</u>		Prepared b	by T. Kudas
INSP	ECTIONS	& CHECKS			CODE
Ball Contact Check Ball Pinch Check Ball Torque Check Parallelism Check Thrust Plate Inspection Babbitt Inspection	X X X X X X	Runner Inspection Wear Device Inspection Screens and Orifices Thermocouples Calib. Seal Rings Inspection	X X	X NA C V MP UT PT	Work Carried Out Not Done Not Applicable See Comments Visual Inspection Mag. Particle Ultrasonic Penetrant

THRUST BEARING DATA

	-
"A" Shim	.563"
"B" Plate	1.249"
"C" Shim	.415"
"D" Plate	1.262"
"E" Casing	11.496"
"T" Total	14.985"
"F" Rotor	15.007"

THRUST CLEARANCE

Clearance (F minus T)	.022"
Clearance (By float)	.022"
Difference	.000"
Stack Check	✓

RUNOUT (mils TIL)

SEAL RING CLEARANCES

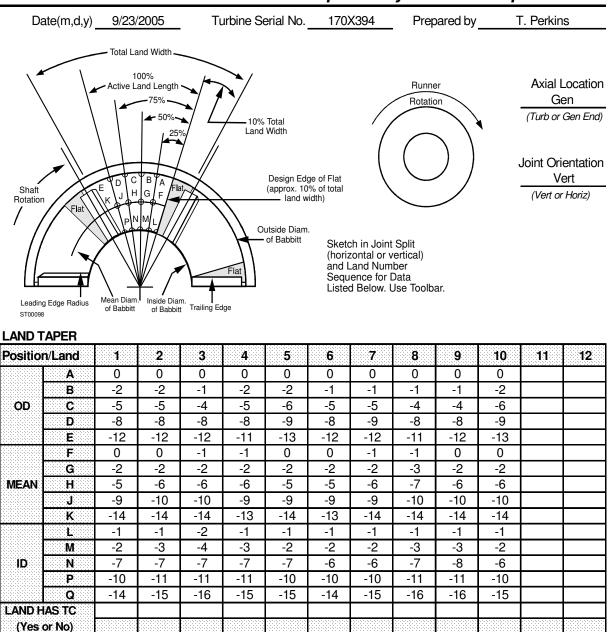
5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	-[] ²
	C
	. `н (
	GENERATOR
END	END

I

ST00081

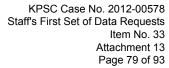
BALL TORQUE											
Ball Diam.		Inches									
Reading	1300	Ft-Lb									
Check											

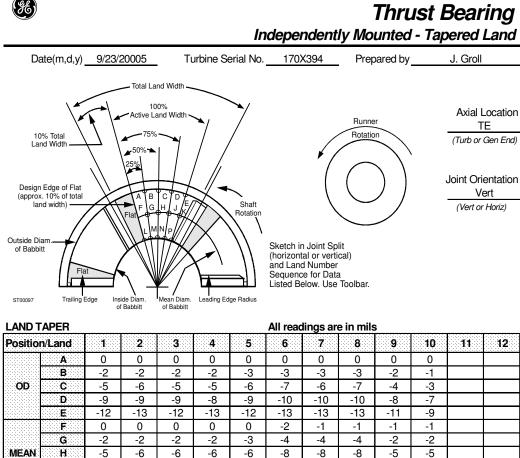
		Turbine End		C	enerator En	d
	0°	90°	Out of Round	0°	90°	Out of Round
Seal Diameter (J)	15.009"	15.010"	.001"	15.011"	15.005"	.006"
Rotor Diameter (K)	15.000"	15.000"		15.000"	15.000"	
Clearance	.009"	.010"		.011"	.005"	


Comments

2 mil shim was added at assembly for 1 mil loose pinch.

Thrust Bearing(a)


Thrust Bearing Independently Mounted - Tapered Land



*Actual width of land (flat) in percent of total land width.

Comments

PERCENT *

*Actual width of land (flat) in percent of total land width.

-10

-13

0

-2

-6

-10

-14

J

Κ

L

Μ

Ν

Ρ

Q

ID

LAND HAS TC (Yes or No) PERCENT * -10

-14

-1

-2

-6

-11

-14

-10

-13

-1

-2

-6

-12

-14

-10

-13

-1

-3

-7

-11

-15

-10

-14

0

-2

-7

-12

-15

-11

-15

-2

-4

-8

-13

-17

-12

-15

-3

-5

-9

-14

-17

-9

-13

-2

-2

-6

-10

-14

-12

-15

-2

-4

-8

-13

-16

-9

-12

-1

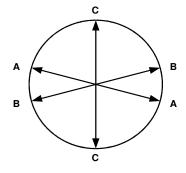
-3

-6

-11

-14

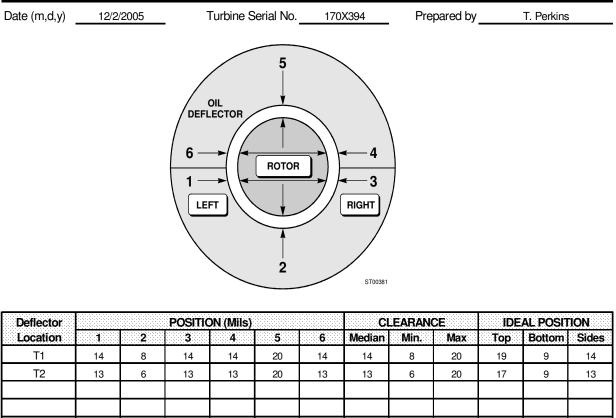
Comments		22222	2222	::::::::				2003							222	



T1 Oil Deflector Coal Dust Contamination

Oil Deflector

Date(m,d,y) 10/16/2005	Turbine Serial No. 170X394	Prepared by	/ B. Haglock
IN	SPECTIONS & CHECKS		CODE
Teeth Inspected		Х	Work Carried Out
Journals Inspected		N	Not Done
Drain Holes Inspected		NA	Not Applicable
Inspect for Rubs		С	See Comments
		v	Visual Inspection
All retoothed		MP	Mag. Particle
		UT	Ultrasonic
		PT	Penetrant



Location		Oil Deflector	•	Journal		Clearance	Condition	
Number	Number A-Dia B-Dia C-Dia		Dia	Average Min.		Max.	Comment	
T-1 OB	18.527"	18.527"	18.527"	18.497"	.030"	.030"	.030"	
T-1 IB	18.528"	18.530"	18.529"	18.497"	.032"	.031"	.033"	
T-2 OB	18.024"	18.020"	18.025"	17.991"	.032"	.029"	.034"	
T-2 IB	18.024"	18.020"	18.024"	17.991"	.032"	.029"	.033"	
		1 1 1						

Comments:	
Oil Deflectors Fina	(a)

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 82 of 93

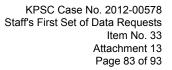


Image: Second second							
Image: Second second							

Comments	

Oil Deflector Alignment(a)

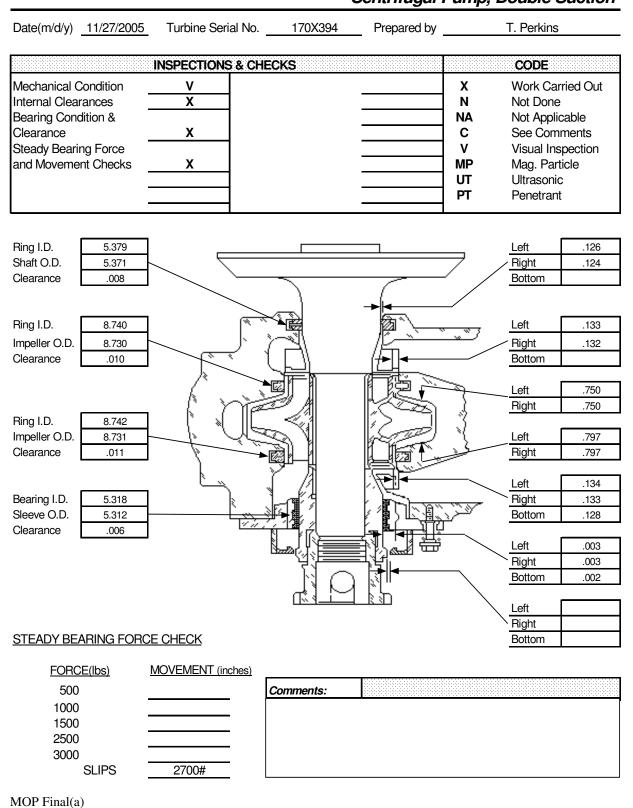
LUBRICATION SYSTEM

Main Oil Pump

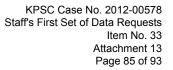
Valve - Check;

The main oil pump check valve was disassembled and inspected. The stop nut was found too low, causing the disk to hit the pipe when open. The nut was built up with weld per customer procedure.

Main Oil Pump


Assembly;

The main shaft driven oil pump was inspected. The seal rings were mic'd and were in good condition. The bearing had excess clearance and was rebabbitted by the customer. The casing was removed during the outage and a new gasket was installed to allow realignment. The casing was aligned transversely to the rotor after coupling alignment. Elevation was good after bearing shim changes. The steady bearing was movement checked and force checked and aligned at assembly.



KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 84 of 93

Main Oil Pump Centrifugal Pump, Double Suction

170X394

TURNING GEAR

Turning Gear

Rod; Engagement

The turning gear toggle mechanism is not centered in its travel. This results in lower spring force holding it engaged, and the angle is just barely adequate to hold it disengaged.

The turning gear engagement mechanism should be inspected and repaired next opportunity.

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 86 of 93

GE Energy Services

STANDARDS

Front Standard

Assembly;

Rusted surfaces were found in the front standard and mid-standard. This could indicate water in the lube oil, or condensation from extended periods with the lube oil off during sectionalized maintenance.

Lube oil condition should be frequently monitored for water content to prevent rusting of oil side components.

Mid Standard

Guard; A Coupling

While installing "A" coupling balance weights, an excessive amount of oil was spraying from the coupling guard. Possibly the orifice is missing from the spray line.

Investigate excessive "A" coupling oil spray next inspection. Check spray line orifice.

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 87 of 93

GE Energy Services

CONTROL SYSTEM

<u>TSI</u>

Detector; Thrust Position

The thrust position detector meter was set in the wrong direction at assembly, resulting in the position shifting from negative to more negative.

The thrust position detector should be readjusted to position the meter at zero when the rotor is centered in the thrust travel.

<u>TSI</u>

Instrumentation; Key Phaser

Prior to start-up, the key phaser was not functioning when the unit was placed on turning gear. Investigation showed the notch in a different axial location than the removed rotor. The probe was moved about 1" toward the generator to line up with the notch. Also, during start-up, the key phaser became erratic at times. Customer personnel made changes to the electrical connections to correct the problem.

TSI

Probe; T2 Right

During start-up, the 2X vibration probe failed. The connections were changed to the spare probe.

The key-phaser and #2 bearing vibration probe problems should be investigated and corrected next opportunity.

ALIGNMENT & CLEARANCE OVERVIEW

A GE Laser Alignment Specialist performed a tops-on, tops-off laser alignment of the steam path. The line was fixed in each bolt-on packing casing for the tops-on, tops-off, so all movement is relative to the packing casing bores. During disassembly, titewire checks and distortion checks showed the packing casings in good alignment with the outer shell, so the lower halves were not removed this outage. The final tops-off line was set to compensate for existing distortion in the packing casings, and the shell was aligned to the rotor after coupling alignment to match these setpoints. (N1 was smaller vertically by .016. N3 was smaller vertically by .040. Reroundable packing was adjusted to correct for N3 distortion. The N1 distortion was minimal enough to use standard hook diameter packing.) The bolt-on packing casing bores were measured in both the tops-off, and tops-on shell bolted condition. No significant change in distortion was measured. A large change in internal component position was seen from tops-off to tops-on. The vertical movement of the components in the inner shell was in the range of .008 to .026 in the upward direction. The HP diaphragms moved about .005 to the left. The N2 and reheat diaphragms moved about .015 to the right. The out-of-plane upper inner shell joint probably contributed to this large lateral movement.

At disassembly, the generator end of the inner shell was found about .025 higher than the turbine end with respect to the outer shell joint. This condition had to be duplicated at assembly to achieve the expected float on the axial locating fit. Radial alignment of the shell bores was also good in this condition.

Comparing tops-off shell keys to gaps at disassembly showed the left side keys larger than the gaps by an additional .012 than the right side. Optical checks of the lower outer shell joint also showed the left side higher than the right by about .035. Optical and laser checks showed the lower shell four corners in plane, with only a 2 mil twist. (4 mils low at TE left with respect to other three corners.) This was corrected with final keys. The building keys were machined to make the key vs gap difference the same on all four corners, keeping the joint in plane and making it more level left to right, and matching the levelness with existing running keys. From this point, all shell key changes were made equal left to right. Final tops-off keys were sized to position the shell 10 mils higher than tops-on so the upper spill strips would not land on top of the bucket covers when the shells were in the unbolted condition.

During assembly, the #3 bearing was moved to the left to close up a large face opening at "B" coupling. (This large face opening was not seen at the disassembly coupling check.) This was done prior to the HP assembly, so the HP rotor was installed temporarily before the inner shell was installed to check the "A" coupling alignment. This confirmed the expected HP bearing side moves to correct the face and rim. The bearings were moved to the left based on this check and the shell was moved to match prior to installing the rotor in the steam path. The bearings were also raised to correct elevation at this time. However, coupling checks with upper components on showed the "A" face open now on the right. Shim changes were made to correct the alignment,

ALIGNMENT & CLEARANCE OVERVIEW

but the full face correction was not realized. Based on inconsistent lateral face alignment at the couplings, it appears that the standards are moving laterally over time, back and forth, possibly with ambient condition changes.

Axial and radial clearances were approved by GE Engineering. All clearances were close to design except axial packing clearances in the reheat and at N3. The "X" clearances were progressively larger toward the generator from N2. No rotor packing land machining was done on the rotor. All bucket machining was based on the first stage wheel. Since wheel clearances and HP axial packing clearances were good, the existing rotor lands must be off drawing. (Rotor shorter.) Also, the N3 G5 "X" clearance is 1/16" larger than the other N3 grooves due to an original rotor machining deviation.

<u>GE</u> Energy Services

STARTUP COMMENTS

The unit was first rolled 12/17/05, and tripped at about 200 rpm due to noise at the "C" coupling. The coupling cover was removed and a long bolt was found in the coupling guard rubbing the generator end windage covers. While the unit was down for this repair, tube leaks were found in the boiler. Boiler repairs were completed and the unit was rolled again 12/21/05. The unit had to be tripped several times below running speed due to high #4 bearing vibration. With the unit at speed, varying vibration data indicated rubs in the 2nd reheat. The unit was rolled and synchronized 12/22/05, still with high #4 bearing vibration, varying from 6 to 9 mils. Load was increased to 360 MW. T4 bearing was still in the 7 to 8 mil range, T2 was at 6 mils. The unit was shut down 12/23 for balance shots in the "A" and "B" couplings. The "B" coupling had the expected effects, but the "A" coupling showed a larger effect angle than expected. The unit was loaded to 660 MW and was removed from service 12/25/05 due to boiler tube leaks. The previous "A" coupling shot was rotated and a couple shot was installed in LP A. This reduced T2 and T4 to about 3.5 mils. Future trim shots were planned in the "A" and "B" couplings. (See attached data sheet.)

Mitchell #2 Vibration Data Sheet

Date(m/d/y)		1/4/2	006			Turbine Serial No. <u>170X394</u> Prepared by T. Pe									ərkins						
		1X		2X		A	COU	PLINC	3	3X		4X		В	COU	PLINC	3	5X		6X	
DATE, TIME		BF	RG	BI	RG	TURE	3 END	ND GEN		BI	BRG		RG	TURE	B END	GEN	END	BI	RG	BI	RG
LOAD/SPEED	FILTER	AMP	DEG	AMP	DEG	AMP	DEG	AMP	DEG	AMP	DEG	AMP	DEG	AMP	DEG	AMP	DEG	AMP	DEG	AMP	DEG
12/23/05, 8:45	OUT	1.6		6.4						4.5		7.7						4.1		2.5	
356 MW	IN	1.5	284	6	39	8.9	270	7.5	260	4.5	33	7.6	136	9.5	0	9.5	5	4	108	2.2	302
12/23/05,17:00	OUT	Adde	Added 12 oz @ 245 degrees in "A" cplg																		
Balance Shot	IN	Adde	d 18	oz @	300 c	degree	es in "	В" ср	lg												
12/24/05, 8;20	OUT	1.8		5.3						3.2		4.7						2.9		3.2	
335 MW	IN	1.7	204	5.1	355	6.7	230	5.7	220	3.1	349	4.5	135	5	345	5	0	2.8	93	3	263
12/25/05, 3:33	OUT	1		5.5						2.8		5.2						2.6		3.6	
660 MW	IN	0.9	312	5.3	322	8.5	215	5.3	200	2.6	335	5	151	5.4	0	5.5	15	2.6	90	3.5	
12/27/05,12:00	OUT	Rota	ted pr	reviou	s "A"	cplg s	shot fr	om 24	45 to :	205 d	egree	S									
Balance Shot	IN	Adde	d 12.	5 oz (@ 225	5 degr	rees T	E of I	PA; a	added	12.5	oz @	45 de	gree	s GE	of LP	Ą				
1/4/06, 13:02	OUT	0.7		3.4						1.8		3.6						1.7		1.7	
681 MW	IN	0.5	4	3.3	335	5.9	230	2.5	190	1.6	342	3.4	121	4.5	325	3.8	355	1.6	84	1.3	270
	OUT																				
	IN																				
	OUT																				
	IN																				
	OUT																				
	IN																				

Rotor Critical Speeds -	
Frequency Scan -	
Equipment Used -	B/N - Brgs; IRD - Cplgs
Equipment Lag Angle -	
Zero Ref Mark Color -	
Inlet Oil Temp -	

Comments:

Note: Phase angles are raw data. Key phaser is 45L. IRD data on couplings read at right horizontal joint.

Mitchell Vibration(a)

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 92 of 93

Mitchell #2 Vibration Data Sheet

Date(m/d/y)	1/4/2006					Turbine Serial No. 170X394							-	Pr	epare	ed by	T. Perkins					
DATE, TIME		C COUPLING TURB END GEN END			7X BI					D COUPLING 9 TURB END GEN END				łG	10X BRG		12X BRG		13X BRG			
LOAD/SPEED	FILTER			AMP			DEG		DEG			AMP			DEG		DEG	AMP		AMP		
12/23/05, 8:45	OUT					0.8		1.5						1.8		3.2		0.7		2		
356 MW	IN	0.8	225	3	230	0.6	331	1.5	232	5	130	3	100	1.6	21	2.8	73	0.3	271		106	
12/23/05,17:00	Ουτ	Adde	d 12	oz @	245 c	legree	es in '	'A" cp	lg													
Balance Shot	IN	Adde	d 18	oz @	300 c	degree	es in '	'В" ср	lg													
12/24/05, 8;20	Ουτ					0.8		2						1.9		3.2		0.7		2		
335 MW	IN	1.8	155	3.3	205	0.5	303	1.8	243	5.7	130	3.5	115	1.8	352	2.6	60	0.2	270		105	
12/25/05, 3:33	OUT					1.4		1.3		l				2.9		3.7		0.7		1.7		
660 MW	IN	1.9	130	2.9	185	1.2	268	1.1	237	5.3	140	2.8	125	2.8	4	3.2	56	0.2	274	0.8	113	
12/27/05,12:00	OUT	Rotat	ted pr	eviou	s "A"	cplg s	shot fr	om 24	45 to	205 d	egree	S										
Balance Shot	IN	Adde	d 12.	5 oz (@ 225	5 degr	ees T	E of L	PA; a	added	12.5	oz @	45 de	gree	s GE	of LP.	A					
1/4/06, 13:02	OUT					0.6		1.3						2.8		3.5		0.6		1.5		
681 MW	IN	0.1	350	2.2	220	0.4	325	1.1	239	4.6	125	2.5	100	2.7	16	3.1	55	0.2	249	0.7	114	
	OUT IN																					
	OUT IN																					
	OUT IN																					
Rotor Critical S Frequency Sca Equipment Uso Equipment Lag Zero Ref Mark Inlet Oil Temp	Speeds an - ed - g Angle Color -	- B	/N - E	Brgs;	IRD	- Cpl	gs															
							•															
Comments:				<u></u>							<u></u>	<u></u>	<u></u>		<u></u>			<u></u>			<u></u>	
1																						

Mitchell Vibration(b)

KPSC Case No. 2012-00578 Staff's First Set of Data Requests Item No. 33 Attachment 13 Page 93 of 93

<u>GE</u> Energy Services

APPENDIX