# LG&E/KU – E.W. Brown Station

# **Phase II Air Quality Control Study**

# **Materials of Construction**

March 28, 2011 Revision B – Issued for Client Review

B&V File Number 41.0814.1





## **Table of Contents**

| 1.0 | Introc | oduction |                                                            |     |
|-----|--------|----------|------------------------------------------------------------|-----|
| 2.0 | Mater  |          |                                                            |     |
|     | 2.1    | Pulse J  |                                                            |     |
|     |        | 2.1.1    | PJFF Bag Cages                                             |     |
|     |        | 2.1.2    | PJFF Bag Casings                                           |     |
|     |        | 2.1.3    | PJFF Bags                                                  |     |
|     |        | 2.1.4    | PJFF Air Dryers                                            |     |
|     |        | 2.1.5    | PJFF Air Compressors                                       |     |
|     | 2.2    | Selectiv | ve Catalytic Reduction (SCR)                               |     |
|     |        | 2.2.1    | SCR Reactor                                                |     |
|     |        | 2.2.2    | SCR Catalyst                                               |     |
|     |        | 2.2.3    | SCR Ammonia System                                         |     |
|     | 2.3    | PAC at   | nd Sorbent Injection                                       | 2-7 |
|     |        | 2.3.1    | Storage Silo (PAC and Hydrated Lime/ Trona)                | 2-7 |
|     |        | 2.3.2    | Storage Silo accessories (PAC and Hydrated Lime/<br>Trona) |     |
|     |        | 2.3.3    | Pneumatic Conveying System (PAC and Hydrated Lime/ Trona)  |     |
|     |        |          |                                                            |     |

K A

# 1.0 Introduction

The E.W. Brown Station is located on Herrington Lake in Mercer County, Kentucky, between Shakertown and Burgin, off of Hwy 33. The station was constructed on the west side of Herrington Lake, the impoundment behind Dix Dam. The plant began commercial operation in 1957. The station includes three pulverized coal fired electric generating units with a total nameplate capacity of 747 MW gross. The electrical power from the E.W. Brown Station units is used to provide both load and voltage support for the 138 kV transmission systems.

The plant site also includes seven simple cycle combustion turbines located on the northwest side of the site.

All three steam generators (boilers) fire high sulfur bituminous coal. Unit 1 has a gross capacity of 110 MW and is equipped with old generation Low NO<sub>x</sub> Burners (LNBs) and Cold-side Dry Electrostatic Precipitator (CS-DESP) for nitrogen oxide (NO<sub>x</sub>) and particulate matter (PM) control, respectively. Unit 2 has a gross capacity of 180 MW and is equipped with LNBs, Overfire Air (OFA), and CS-DESP for NO<sub>x</sub> and PM control. Unit 3 has a gross capacity of 457 MW and is equipped with LNBs, OFA, and CS-DESP for NO<sub>x</sub> and PM control. LG&E/KU is in the process of installing a Selective Catalytic Reduction (SCR) module (in-service date, 2012) on Unit 3 to control NO<sub>x</sub>. LG&E/KU recently installed a common Wet Flue Gas Desulfurization (WFGD) for sulfur dioxide (SO<sub>2</sub>) control for Units 1, 2, and 3. Unit 2 is also equipped with a WFGD bypass system which directs flue gas to the Unit 3 chimney. Lower sulfur coal will be fired in Unit 2 during bypass operation. LG&E/KU is also in the process of installing sorbent injection on Unit 3.

The following Air Quality Control (AQC) technologies were evaluated to ensure that there is compliance with the emissions reductions that are required to meet future regulations:

- Pulse Jet Fabric Filter (PJFF) on Units 1-3.
  - Selective Catalytic Reduction (SCR) on Units 1 and 2.
- Sorbent (Trona/Lime) injection on Units 1 and 2.
- Powdered activated carbon (PAC) injection on Units 1-3.

This document states the materials of construction for different AQC equipment.

# 2.0 Materials of Construction

This section describes details of materials of construction for each of the air quality control equipment described in Section 1.0. The equipment stated in this section includes PJFF, SCR, sorbent injection and PAC injection.

# 2.1 Pulse Jet Fabric Filter (PJFF)

The casing of the PJFF shall be made up of carbon steel. PJFF uses fabric bags as filters to collect particulate.

## 2.1.1 PJFF Bag Cages

PJFF bag cage material is very important to overall performance and durability of the filter bags. The cages feature evenly spaced rings and wires, with a rounded bottom pan to help ensure proper filter bag fit.

Low carbon steel (bright basic wire), Galvanized low carbon steel, Type 304 stainless steel, Type 316 stainless steel can be used for the construction of fabric filter cages. The cages can also be enamel coated.

#### 2.1.2 PJFF Bag Casings

PJFF bag casings are typically made up of carbon steel. Table 2-1 shows a summary of the materials of construction for different parts of PJFF.

| Table 2-1   PJFF Material of Construction |                              |  |  |  |
|-------------------------------------------|------------------------------|--|--|--|
| Component                                 | Material                     |  |  |  |
| Casing plate, stiffeners, and baffles     | ASTM A36                     |  |  |  |
| Ductwork plates and shapes                | ASTM A36                     |  |  |  |
| Hoppers                                   | ASTM A36                     |  |  |  |
| Structural steel                          | ASTM A36                     |  |  |  |
| Miscellaneous steel                       | ASTM A36                     |  |  |  |
| Steel pipe for interior stiffeners        | ASTM A53 Schedule 80 minimum |  |  |  |
| High strength shop and field bolts,       |                              |  |  |  |
| including nuts and washers                | ASTM A325                    |  |  |  |
| Hot-dip galvanizing                       | ASTM A123, A153, and A385    |  |  |  |
| Mechanical galvanizing (load indicating   |                              |  |  |  |
| washers only)                             | ASTM B695                    |  |  |  |

| Table 2-1                            |  |  |
|--------------------------------------|--|--|
| PJFF Material of Construction        |  |  |
| Component Material                   |  |  |
| Instrument valve manifold bodies and |  |  |
| trim 316 stainless steel             |  |  |

## 2.1.3 PJFF Bags

Table 2-2 specifies the most popular styles of fabric for PJFF bags and the conditions they are most suited to handle.

| Table 2-2   PJFF Bags Material                        |               |           |           |           |           |           |            |           |
|-------------------------------------------------------|---------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|
| Fabrics                                               | Polypropylene | Acrylic   | Polyester | PPS       | Aramid    | P84       | Fiberglass | Teflon    |
| Maximum<br>Continuous<br>Operating<br>Temperature, °F | 170           | 265       | 275       | 375       | 400       | 356-500   | 500        | 500       |
| Abrasion                                              | Excellent     | Good      | Excellent | Good      | Excellent | Fair      | Fair       | Good      |
| Energy<br>Absorption                                  | Good          | Good      | Excellent | Good      | Good      | Good      | Fair       | Good      |
| Filtration<br>Properties                              | Good          | Good      | Excellent | Excellent | Excellent | Excellent | Fair       | Fair      |
| Moist Heat                                            | Excellent     | Excellent | Poor      | Good      | Good      | Good      | Excellent  | Excellent |
| Alkalines                                             | Excellent     | Fair      | Fair      | Excellent | Good      | Fair      | Fair       | Excellent |
| Mineral Acids                                         | Excellent     | Good      | Fair      | Excellent | Fair      | Good      | Poor       | Excellent |
| Oxygen (15%+)                                         | Excellent     | Excellent | Excellent | Poor      | Excellent | Excellent | Excellent  | Excellent |

#### 2.1.4 PJFF Air Dryers

Table 2-3 shows the materials of construction for air dryers.

| Table 2-3                              |                           |  |  |  |
|----------------------------------------|---------------------------|--|--|--|
| PJFF Air Dryer Materials               |                           |  |  |  |
| Component                              | Material                  |  |  |  |
| Mineral fiber thermal insulating       | ASTM C195                 |  |  |  |
| cement                                 |                           |  |  |  |
| Heat reactivated dryer heating         |                           |  |  |  |
| elements, alloy cladding               | UNS N08810                |  |  |  |
| Heat reactivated dryer insulation for  |                           |  |  |  |
| external reactivation heater and purge |                           |  |  |  |
| piping                                 | ASTM C533                 |  |  |  |
| Insulation jacketing                   | ASTM B209 Alclad 3004, or |  |  |  |
|                                        | acceptable equal          |  |  |  |
| Inlet and outlet flanges               | ASTM A105 or A181         |  |  |  |

### 2.1.5 PJFF Air Compressors

Table 2-4 shows the materials of construction for air compressors.

|  | Table 2-4                   |                    |  |  |  |
|--|-----------------------------|--------------------|--|--|--|
|  | PJFF Air Com                | pressor Materials  |  |  |  |
|  | Component                   | Material           |  |  |  |
|  | Intercooler and aftercooler |                    |  |  |  |
|  | Tubes                       | Copper, ASTM B111  |  |  |  |
|  | Tubesheets                  | Brass, ASTM B36    |  |  |  |
|  | Oil cooler                  |                    |  |  |  |
|  | Tubes                       | Copper, ASTM B111  |  |  |  |
|  | Tubesheets                  | Brass, ASTM B36    |  |  |  |
|  | Shell and heads             | ASME SA285 Grade C |  |  |  |
|  | Nozzles                     | ASME SA106 Grade B |  |  |  |
|  | Flanges                     | ASME SA105         |  |  |  |

## 2.2 Selective Catalytic Reduction (SCR)

Selective Catalytic Reduction (SCR) systems are the most widely used postcombustion  $NO_x$  control technology for achieving significant reductions in  $NO_x$ emissions. In SCR systems, vaporized ammonia (NH<sub>3</sub>) injected into the flue gas stream acts as a reducing agent, achieving  $NO_x$  emission reductions when passed over an appropriate amount of catalyst. Additionally, there are desired reaction temperature ranges for the entering flue gas and at times methods to maintain these temperatures above a minimum.

#### 2.2.1 SCR Reactor

The SCR reactor is the housing for the catalyst. The reactor is basically a widened section of ductwork modified by the addition of gas flow distribution devices, catalyst, catalyst support structures, access doors, and soot blowers.

Typically, carbon steel shall be used to build SCR reactor. Material which comes in contact with vaporized ammonia which is used as a reagent shall be 304 stainless steel. At temperatures above 825 <sup>0</sup>F alloy steel shall be used.

## 2.2.2 SCR Catalyst

The conventional SCR catalysts are either homogeneous ceramic or metal substrate coated. The catalyst composition is vanadium-based, with titanium included to disperse the vanadium catalyst and tungsten added to minimize adverse  $SO_2$  and  $SO_3$  oxidation reactions.

#### 2.2.3 SCR Ammonia System

The ammonia reagent for the SCR systems will be supplied by anhydrous ammonia.

Table 2-5 shows summary of the materials used for different sections in SCR.

| Table 2-5   SCR Material of Construction |                              |  |  |  |
|------------------------------------------|------------------------------|--|--|--|
| Component Material                       |                              |  |  |  |
| SCR Reactor                              | Carbon Steel or Alloy Steel  |  |  |  |
| SCR Catalyst                             | Vanadium, Titanium, Tungsten |  |  |  |
| Material in contact with vaporized       |                              |  |  |  |
| ammonia                                  | 304 stainless steel          |  |  |  |
| Piping in contact with vaporized ammonia | 304 stainless steel          |  |  |  |
| Economizer Gas-Side Bypass               | Alloy Steel                  |  |  |  |

# 2.3 PAC and Sorbent Injection

#### 2.3.1 Storage Silo (PAC and Hydrated Lime/ Trona)

Table 2-6 shows the materials of construction for storage silos.

| Table 2-6                                                                     |                                        |  |  |
|-------------------------------------------------------------------------------|----------------------------------------|--|--|
| Sorbent Injection Storage Silo Materials                                      |                                        |  |  |
| Component Material                                                            |                                        |  |  |
| Silos or Bins, Support Steel, and                                             |                                        |  |  |
| Accessories                                                                   |                                        |  |  |
| Plates                                                                        | ASTM A36/A36M*                         |  |  |
| Shapes                                                                        | ASTM A36/A36M* or A992/A992M*          |  |  |
| Plates                                                                        | ASTM A572/A572M Grade 50*              |  |  |
| Shapes                                                                        | ASTM A572/A572M Grade 50* or           |  |  |
|                                                                               | A529/A529M Grade 50* or                |  |  |
|                                                                               | A992/A992M*                            |  |  |
| Temporary Erection Bolts                                                      | ASTM A307 bolts with compatible        |  |  |
|                                                                               | washers and nuts                       |  |  |
| Structural Bolts                                                              | ASTM A325 Type 1 bolts with            |  |  |
|                                                                               | compatible F436 hardened washers, A563 |  |  |
|                                                                               | heavy hex nuts and F959 direct tension |  |  |
|                                                                               | indicators                             |  |  |
| Note: Surfaces which by service will be subject to corrosive attack by stored |                                        |  |  |
| or processed material shall be protected by a suitable permanent lining or be |                                        |  |  |
| constructed of material suitably resistant to attack.                         |                                        |  |  |

### 2.3.2 Storage Silo accessories (PAC and Hydrated Lime/ Trona)

Table 2-7 shows the materials of construction for storage silos accessories.

| Table 2-7                                            |                                     |  |  |
|------------------------------------------------------|-------------------------------------|--|--|
| Sorbent Injection Storage Silo Accessories Materials |                                     |  |  |
| Component                                            | Material                            |  |  |
| Silo housing                                         | ASTM A36 steel                      |  |  |
| Vent filter bag cages                                | Options include galvanized, epoxy   |  |  |
|                                                      | coated, and stainless steel         |  |  |
| Vent filter housing                                  | Mild steel                          |  |  |
| Vent filter tubesheet                                | Mild steel                          |  |  |
| Vent filter pulse air venturi                        | Aluminum                            |  |  |
| Vent filter bag material                             | Polyester, Nomex, Gore Tex 14 or 16 |  |  |
|                                                      | OZ                                  |  |  |

# 2.3.3 Pneumatic Conveying System (PAC and Hydrated Lime/ Trona)

Table 2-8 shows the materials of construction for pneumatic conveying system.

| Table 2-8                                              |                                         |  |  |
|--------------------------------------------------------|-----------------------------------------|--|--|
| Sorbent Injection Pneumatic Conveying System Materials |                                         |  |  |
| Component                                              | Material                                |  |  |
| Pneumatic transporting piping                          | ASTM A106 Grade B, carbon steel,        |  |  |
|                                                        | schedule 40 for large bore, schedule 80 |  |  |
|                                                        | for small bore                          |  |  |
| In-duct injection lances and supports                  | 304L stainless steel (UNS S30403)       |  |  |
| Elbows (in the piping)                                 | Ceramic-lined abrasion and wear         |  |  |
| $\sim$                                                 | resistant material                      |  |  |