REQUEST:

[Rate of Return] - Please provide a copy of the testimony of Dr. Vander Weide in Microsoft Word format.

RESPONSE:

Please see Attachment 1.

ATTACHMENT:

ATTACHMENT 1 - Atmos Energy Corporation, Kentucky Direct Testimony of Dr. James Vander Weide, 97 Pages.

Respondent: Dr. James Vander Weide

ATMOS ENERGY CORPORATION

DOCKET NO.

PREPARED DIRECT TESTIMONY OF
 JAMES H. VANDER WEIDE, PH.D.

RATE OF RETURN

BEFORE THE PUBLIC SERVICE COMMISSION COMMONWEALTH OF KENTUCKY

IN THE MATTER OF)
)
RATE APPLICATION BY) Case No. 2009-00354
)
ATMOS ENERGY CORPORATION)
TESTIMONY OF JAMES H. VANDER WEIDE, PH.D
ATMOS ENERGY CORPORATION RATE OF RETURN
TABLE OF CONTENTS
A. Introduction and Summary 1
B. Economic and Legal Principles. 4
C. Business and Financial Risks in Natural Gas Distribution Business 8
D. Cost of Equity Estimation Methods 9
E. Discounted Cash Flow (DCF) Method 9
F. Risk Premium Method 18

1. Ex Ante Risk Premium Method 19
2. Ex Post Risk Premium Method. 21
G. Capital Asset Pricing Model (CAPM) 25
H. Fair Rate of Return on Equity 30
I. Allowed Rate of Return on Total Capital 31

ATMOS ENERGY CORPORATION

A. Introduction and Summary

Q. 1 Please state your name, title, and business address for the record.
A. 1 My name is James H. Vander Weide. I am Research Professor of Finance and Economics at Duke University, The Fuqua School of Business. I am also President of Financial Strategy Associates, a firm that provides strategic and financial consulting services to business clients. My business address is 3606 Stoneybrook Drive, Durham, North Carolina 27705.

Q. 2 Please summarize your qualifications.

A. 2 I received a Bachelor's Degree in Economics from Cornell University and a Ph.D. in Finance from Northwestern University. After joining the faculty of the School of Business at Duke University, I was named Assistant Professor, Associate Professor, and then Professor. I have published research in the areas of finance and economics, taught courses in these fields at Duke over the last 35 years, and taught in numerous executive programs at Duke. I am now retired from my teaching duties at Duke.

Q. 3 Have you previously testified on financial or economic issues?

A. 3 Yes. As an expert on financial and economic theory and practice, I have participated in more than 400 regulatory and legal proceedings before the U.S. Congress, the Canadian Radio-Television and Telecommunications Commission, the Federal Communications Commission, the National Telecommunications and Information Administration, the Federal Energy Regulatory Commission, the National Energy Board (Canada), the Alberta Utilities Board (Canada), the public service commissions of 43 states, the insurance commissions of five states, the Iowa State Board of Tax Review, the National Association of Securities Dealers, and the North Carolina Property Tax Commission. In addition, I have prepared expert testimony in proceedings before the U.S. District Court for the District of Nebraska; the U.S. District Court for the District of New Hampshire; U.S. District Court for the District of Northern Illinois; the U.S. District Court for the Eastern District of North

Carolina; Montana Second Judicial District Court, Silver Bow County; the U.S. District Court for the Northern District of California; the Superior Court, North Carolina; the U.S. Bankruptcy Court for the Southern District of West Virginia; and the U. S. District Court for the Eastern District of Michigan. My resume is shown in Appendix 1.
Q. 4 What is the purpose of your testimony?
A. 4 I have been asked by Atmos Energy Corporation ("Atmos Energy" or "Company") to prepare an independent appraisal of Atmos Energy's cost of equity and to recommend a rate of return on equity that is fair, that allows the Company to attract capital on reasonable terms, and that allows the Company to maintain its financial integrity.

Q. 5 How do you estimate Atmos Energy's cost of equity?

A. 5 I estimate Atmos Energy's cost of equity by applying several standard cost of equity methods, including the discounted cash flow ("DCF"), risk premium, and capital asset pricing model ("CAPM") to a group of comparable companies.
Q. 6 Why do you apply your cost of equity methods to a group of comparable risk companies rather than solely to Atmos Energy?
A. 6 I apply my cost of equity methods to a group of comparable risk companies because standard cost of equity methodologies such as the DCF, risk premium, and CAPM require inputs of quantities that are not easily measured. Since these inputs can only be estimated, there is naturally some degree of uncertainty surrounding the estimate of the cost of equity for each company. However, the uncertainty in the estimate of the cost of equity for an individual company can be greatly reduced by applying cost of equity methodologies to a sample of comparable companies. Intuitively, unusually high estimates for some individual companies are offset by unusually low estimates for other individual companies. Thus, financial economists invariably apply cost of equity methodologies to a group of comparable companies. In utility regulation, the practice of using a group of comparable companies, called the comparable company approach, is further supported by the United States Supreme Court standard that the utility should be allowed to earn a return on its investment that
is commensurate with returns being earned on other investments of the same risk. ${ }^{1}$
Q. 7 What cost of equity do you find for your comparable companies in this proceeding?
A. 7 On the basis of my studies, I find that the cost of equity for my comparable companies is in the range 10.2 percent to 11.9 percent (see Table 1), with an average result of 11.0 percent.

TABLE 1
COST OF EQUITY MODEL RESULTS

Method	Model Result
Discounted Cash Flow	11.9%
Ex Ante Risk Premium	10.9%
Ex Post Risk Premium	10.6%
Historical CAPM	10.2%
DCF CAPM	11.5%
Average	11.0%

Q. 8 What is your recommendation regarding Atmos Energy's allowed rate of return on equity?
A. 8 I conservatively recommend that Atmos Energy be allowed a rate of return on equity equal to 11.0 percent.
Q. 9 Why is your recommended return on equity conservative?
A. 9 My recommended return on equity is conservative because the financial risk of my comparable companies, which is based on the equity ratio resulting from the market values of their equity and debt, is less than the financial risk implied by the lower equity ratio in Atmos Energy's ratemaking capital structure, which is based on its book values of equity and debt. In addition, my recommendation does not reflect: (1) the observation that forecasted yields on both A-rated utility bonds and Treasury bonds are significantly higher than the current yields on these securities; (2) the small size premium for small market capitalization companies such as those in my proxy group of natural gas companies; and
(3) the evidence that the CAPM underestimates the cost of equity for companies with betas less than 1.0.
Q. 10 Do you have exhibits accompanying your testimony?
A. 10 Yes. I have exhibits consisting of eight schedules and five appendices that were prepared by me or under my direction and supervision.
B. Economic and Legal Principles
Q. 11 What is the economic definition of the required rate of return, or cost of capital, associated with particular investment decisions, such as the decision to invest in natural gas distribution facilities?
A. 11 The cost of capital is the return investors expect to receive on alternative investments of comparable risk.

Q. 12 How does the cost of capital affect a firm's investment decisions?

> A. 12 A central goal of a firm is to maximize the value of the firm. This goal can be accomplished by accepting all investments in plant and equipment with an expected rate of return greater than the cost of capital. Thus, from an economic perspective, a firm should continue to invest in plant and equipment only so long as the return on its investment is greater than or equal to its cost of capital.

Q. 13 How does the cost of capital affect investors' willingness to invest in a company?

A. 13 The cost of capital measures the return investors can expect on investments of comparable risk. The cost of capital also measures the investor's required rate of return on investment because rational investors will not invest in a particular investment opportunity if the expected return on that opportunity is less than the cost of capital. Thus, the cost of capital is a hurdle rate for both investors and the firm.
Q. 14 Do all investors have the same position in the firm?
A. 14 No. Bond investors have a fixed claim on a firm's assets and income that must be paid prior to any payment to the firm's equity investors. Since the firm's equity investors have a residual claim on the firm's assets and income, equity investments are riskier than bond investments. Thus, the cost of equity exceeds the cost of debt.

Q. 15 What is the overall or average cost of capital?

A. 15 The overall or average cost of capital is a weighted average of the cost of debt and cost of equity, where the weights are the percentages of debt and equity in a firm's capital structure.

Q. 16 Can you illustrate the calculation of the overall or weighted average cost of capital?

A. 16 Yes. Assume that the cost of debt is 7 percent, the cost of equity is 13 percent, and the percentages of debt and equity in the firm's capital structure are 50 percent and 50 percent, respectively. Then the weighted average cost of capital is expressed by .50 times 7 percent plus .50 times 13 percent, or 10.0 percent.

Q. 17 What is the economic definition of the cost of equity?

A. 17 The cost of equity is the return investors expect to receive on alternative equity investments of comparable risk. Since the return on an equity investment of comparable risk is not a contractual return, the cost of equity is more difficult to measure than the cost of debt. However, as I have already noted, the cost of equity is greater than the cost of debt. The cost of equity, like the cost of debt, is both forward looking and market based.
Q. 18 What is the correct economic measure of the percentages of debt and equity in a firm's capital structure?
A. 18 The percentages of debt and equity in a firm's capital structure are measured by first calculating the market value of the firm's debt and the market value of its equity. The percentage of debt is then calculated by the ratio of the market value of debt to the combined market value of debt and equity, and the percentage of equity by the ratio of the market value of equity to the combined market values of debt and equity. For example, if a firm's debt has a market value of $\$ 25$ million and its equity has a market value of $\$ 75$ million, then its total market capitalization is $\$ 100$ million, and its capital structure contains 25% debt and 75% equity.
Q. 19 Why is a firm's capital structure correctly measured in terms of the market values of its debt and equity?
A. 19 A firm's capital structure is correctly measured in terms of the market values of its debt and equity because: (1) the weighted average cost of capital is defined as the return investors expect to earn on a portfolio of the company's debt and equity securities; (2) investors measure the expected return and risk on their portfolios using market value weights, not book value weights; and (3) market values are the best measures of the amounts of debt and equity investors have invested in the company on a going forward basis.
Q. 20 Why do investors measure the return on their investment portfolios using market value weights rather than book value weights?
A. 20 Investors measure the return on their investment portfolios using market value weights because market value weights are the best measure of the amounts the investors currently have invested in each security in the portfolio. From the point of view of investors, the historical cost or book value of their investment is entirely irrelevant to the current risk and return on their portfolios because if they were to sell their investments, they would receive market value, not historical cost. Thus, the return can only be measured in terms of market values.
Q. 21 Is the economic definition of the weighted average cost of capital consistent with regulators' traditional definition of the weighted average cost of capital?
A. 21 No. The economic definition of the weighted average cost of capital is based on the market costs of debt and equity, the market value percentages of debt and equity in a company's capital structure, and the future expected risk of investing in the company. In contrast, regulators have traditionally defined the weighted average cost of capital using the embedded cost of debt and the book values of debt and equity in a company's capital structure.
Q. 22 Does the required rate of return on an investment vary with the risk of that investment?
A. 22 Yes. Since investors are averse to risk, they require a higher rate of return on investments with greater risk.
Q. 23 Do investors consider future industry changes when they estimate the risk of a particular investment?
A. 23 Yes. Investors consider all the risks that a firm might incur over the future life
of the company.

Q. 24 Are these economic principles regarding the fair return for capital recognized in any United States Supreme Court cases?

A. 24 Yes. These economic principles, relating to the supply of and demand for capital, are recognized in two United States Supreme Court cases: (1) Bluefield Water Works and Improvement Co. v. Public Service Commission; and
(2) Federal Power Commission v. Hope Natural Gas Co. In the Bluefield Water

Works case, the Court states:
A public utility is entitled to such rates as will permit it to earn a return upon the value of the property which it employs for the convenience of the public equal to that generally being made at the same time and in the same general part of the country on investments in other business undertakings which are attended by corresponding risks and uncertainties; but it has no constitutional right to profits such as are realized or anticipated in highly profitable enterprises or speculative ventures. The return should be reasonably sufficient to assure confidence in the financial soundness of the utility, and should be adequate, under efficient and economical management, to maintain and support its credit, and enable it to raise the money necessary for the proper discharge of its public duties. [Bluefield Water Works and Improvement Co. v. Public Service Comm'n. 262 U.S. 679, 692 (1923)].

The Court clearly recognizes here that: (1) a regulated firm cannot remain financially sound unless the return it is allowed to earn on the value of its property is at least equal to the cost of capital (the principle relating to the demand for capital); and (2) a regulated firm will not be able to attract capital if it does not offer investors an opportunity to earn a return on their investment equal to the return they expect to earn on other investments of the same risk (the principle relating to the supply of capital).

In the Hope Natural Gas case, the Court reiterates the financial soundness and capital attraction principles of the Bluefield case:

From the investor or company point of view it is important that there be enough revenue not only for operating expenses but also for the capital costs of the business. These include service on the debt and dividends on the stock... By that standard the return to the equity owner should be
commensurate with returns on investments in other enterprises having corresponding risks. That return, moreover, should be sufficient to assure confidence in the financial integrity of the enterprise, so as to maintain its credit and to attract capital. [Federal Power Comm'nv. Hope Natural Gas Co., 320 U.S. 591, 603 (1944)].

C. Business and Financial Risks in Natural Gas Distribution Business

Q. 25 What are the major factors that affect business risk in the natural gas distribution business?

A. 25 Business risk in the natural gas distribution business is generally affected by the following economic factors:

1. High Operating Leverage. The natural gas distribution business is a business that requires a large commitment to fixed costs in relation to variable costs, a situation called high operating leverage. The relatively high degree of fixed costs in the natural gas distribution industry arises because of the average natural gas company's large investment in fixed distribution and peaking facilities. High operating leverage causes the average natural gas company's net income to be highly sensitive to sales fluctuations.
2. Demand Uncertainty. The business risk of the natural gas distribution business is increased by the high degree of demand uncertainty in the industry. Demand uncertainty is caused by: (a) the strong dependence of natural gas demand on the state of the economy and the weather; (b) the ability of customers to switch to alternative sources of energy in response to relative price differentials in these sources of energy; (c) the ability of some retail customers to purchase natural gas from competitive suppliers; and (d) rapidly changing prices for natural gas and alternate sources of energy.
3. Investment Uncertainty. The natural gas distribution business requires large investments in long-lived gas distribution and peaking facilities that are largely sunk once the investment is made. Future amounts of required investment in these facilities are highly uncertain as a result of the inherent uncertainty in forecasting energy requirements for many years into the
future, high volatility in fuel prices, and uncertainty in environmental regulations.
4. Peak Demand. The need to invest substantial sums in expensive fixed plant is further exacerbated by the peak nature of natural gas demand. The peak demand for natural gas is unusually high relative to average sales in nonpeak periods.

D. Cost of Equity Estimation Methods

Q. 26 What methods do you use to estimate the cost of common equity capital for Atmos Energy?

A. 26 I use three generally accepted methods for estimating Atmos Energy's cost of common equity. These are the DCF model, the risk premium approach, and the CAPM. The DCF model assumes that the current market price of a firm's stock is equal to the discounted value of all expected future cash flows. The risk premium approach assumes that investors' required return on an equity investment is equal to the interest rate on a long-term bond plus an additional equity risk premium to compensate the investor for the risks of investing in common equities compared to bonds. The CAPM assumes that the investors' required rate of return is equal to a risk-free rate of interest plus the product of a company-specific risk factor, beta, and the expected risk premium on the market portfolio.

E. Discounted Cash Flow (DCF) Method

Q. 27 Please describe the DCF model.
A. 27 The DCF model is based on the assumption that investors value an asset on the basis of the future cash flows they expect to receive from owning the asset. Thus, investors value an investment in a bond because they expect to receive a sequence of semi-annual coupon payments over the life of the bond and a terminal payment equal to the bond's face value at the time the bond matures. Likewise, investors value an investment in a firm's stock because they expect to receive a sequence of dividend payments and, perhaps, expect to sell the stock at a higher price sometime in the future.

A second fundamental principle of the DCF method is that investors value a dollar received in the future less than a dollar received today. A future dollar is valued less than a current dollar because investors could invest a current dollar in an interest earning account and increase their wealth. This principle is called the time value of money.

Applying the two fundamental DCF principles noted above to an investment in a bond leads to the conclusion that investors value their investment in the bond on the basis of the present value of the bond's future cash flows. Thus, the price of the bond should be equal to:

EQUATION 1

$$
P_{B}=\frac{C}{(1+i)}+\frac{C}{(1+i)^{2}}+\ldots+\frac{C+F}{(1+i)^{n}}
$$

where:

$$
P_{B} \quad=\text { Bond price; }
$$

$\mathrm{C} \quad=$ Cash value of the coupon payment (assumed for notational convenience to occur annually rather than semi-annually);
F $\quad=$ Face value of the bond;
i $\quad=$ The rate of interest the investor could earn by investing his money in an altemative bond of equal risk; and
n $\quad=$ The number of periods before the bond matures.
Applying these same principles to an investment in a firm's stock suggests that the price of the stock should be equal to:

EQUATION 2

$$
P_{s}=\frac{D_{1}}{(1+k)}+\frac{D_{2}}{(1+K)^{2}}+\cdots+\frac{D_{n}+P_{n}}{(1+K)^{n}}
$$

where:
Ps $\quad=$ Current price of the firm's stock;
$D_{1}, D_{2} \ldots D_{\mathrm{n}}=$ Expected annual dividend per share on the firm's stock;
$\mathrm{P}_{\mathrm{n}} \quad=$ Price per share of stock at the time the investor expects to sell the stock; and
$\mathrm{k} \quad=$ Return the investor expects to earn on alternative investments of the same risk, i.e., the investor's required rate of return.

Equation (2) is frequently called the annual discounted cash flow model of stock valuation. Assuming that dividends grow at a constant annual rate, g, this equation can be solved for k, the cost of equity. The resulting cost of equity equation is $k=D_{I} / P_{s}+g$, where k is the cost of equity, D_{1} is the expected next period annual dividend, P_{s} is the current price of the stock, and g is the constant annual growth rate in earnings, dividends, and book value per share. The term D_{I} / P_{s} is called the dividend yield component of the annual DCF model, and the term g is called the growth component of the annual DCF model.
Q. 28 Are you recommending that the annual DCF model be used to estimate Atmos Energy's cost of equity?
A. 28 No. The DCF model assumes that a company's stock price is equal to the present discounted value of all expected future dividends. The annual DCF model is only a correct expression for the present discounted value of future dividends if dividends are paid annually at the end of each year. Since the companies in my proxy group all pay dividends quarterly, the current market price that investors are willing to pay reflects the expected quarterly receipt of dividends. Therefore, a quarterly DCF model must be used to estimate the cost of equity for these firms. The quarterly DCF model differs from the annual DCF model in that it expresses a company's price as the present discounted value of a quarterly stream of dividend payments. A complete analysis of the implications of the quarterly payment of dividends on the DCF model is provided in Appendix 1. For the reasons cited there, I employed the quarterly DCF model throughout my calculations.
Q. 29 Please describe the quarterly DCF model you use.

Abstract

A. 29 The quarterly DCF model I use is described on Schedule 1 and in Appendix 2. The quarterly DCF equation shows that the cost of equity is: the sum of the future expected dividend yield and the growth rate, where the dividend in the dividend yield is the equivalent future value of the four quarterly dividends at the end of the year, and the growth rate is the expected growth in dividends or earnings per share. Q. 30 How do you estimate the quarterly dividend payments in your quarterly DCF model? A. 30 The quarterly DCF model requires an estimate of the dividends, d_{1}, d_{2}, d_{3}, and d_{4}, investors expect to receive over the next four quarters. I estimate the next four quarterly dividends by multiplying the previous four quarterly dividends by the factor, $(1+$ the growth rate, $g)$. Q. 31 Can you illustrate how you estimated the next four quarterly dividends with data for a specific company? A. 31 Yes. In the case of AGL Resources, for example, the last four quarterly dividends are equal to $.42, .42, .43$, and .43 . Thus dividends, $\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}$, and d_{4} are equal to $.438, .438, .448$ and $.448[.42 \times(1+.0425)]=.438$ and $[.43 \times(1+$.0425) $=.448$.]. (As noted previously, the logic underlying this procedure is described in Appendix 2.) Q. 32 In Appendix 2, you demonstrate that the quarterly DCF model provides the theoretically correct valuation of stocks when dividends are paid quarterly. Do investors, in practice, recognize the actual timing and magnitude of cash flows when they value stocks and other securities? A. 32 Yes. In valuing long-term government or corporate bonds, investors recognize that interest is paid semi-annually. Thus, the price of a long-term government or corporate bond is simply the present value of the semi-annual interest and principal payments on these bonds. Likewise, in valuing mortgages, investors recognize that interest is paid monthly. Thus, the value of a mortgage loan is simply the present value of the monthly interest and principal payments on the loan. In valuing stock investments, stock investors correctly recognize that

dividends are paid quarterly. Thus, a firm's stock price is the present value of the stream of quarterly dividends expected from owning the stock.
Q. 33 When valuing bonds, mortgages, or stocks, would investors assume that cash flows are received only at the end of the year, when, in fact, the cash flows are received semi-annually, quarterly, or monthly?
A. 33 No. Assuming that cash flows are received at the end of the year when they are received semi-annually, quarterly, or monthly would lead investors to make serious mistakes in valuing investment opportunities. No rational investor would make the mistake of assuming that dividends or other cash flows are paid annually when, in fact, they are paid more frequently.
Q. 34 How do you estimate the growth component of the quarterly DCF model?
A. 34 I use the analysts' estimates of future earnings per share (EPS) growth reported by I/B/E/S Thomson Reuters.
Q. 35 What are the analysts' estimates of future EPS growth?
A. 35 As part of their research, financial analysts working at Wall Street firms periodically estimate EPS growth for each firm they follow. The EPS forecasts for each firm are then published. Investors who are contemplating purchasing or selling shares in individual companies review the forecasts. These estimates represent five-year forecasts of EPS growth.
Q. 36 What is I/B/E/S?
A. $36 \mathrm{~J} / \mathrm{B} / \mathrm{E} / \mathrm{S}$ is a firm (now owned by Thomson Reuters) that reports analysts' EPS growth forecasts for a broad group of companies. The forecasts are expressed in terms of a mean forecast and a standard deviation of forecast for each firm. Investors use the mean forecast as a consensus estimate of future firm performance.
Q. 37 Why do you use the $1 / B / E / S$ growth estimates?
A. 37 The $\mathrm{I} / \mathrm{B} / \mathrm{E} / \mathrm{S}$ growth rates: (1) are widely circulated in the financial community, (2) include the projections of multiple reputable financial analysts who develop estimates of future EPS growth, (3) are reported on a timely basis to investors, and (4) are widely used by institutional and other investors.
Q. 38 Why do you rely on analysts' projections of future EPS growth in estimating the investors' expected growth rate rather than looking at past historical growth rates?
A. 38 I rely on analysts' projections of future EPS growth because I believe that investors use analysts' forecasts to estimate future earnings growth. As discussed below, my research supports my belief.
Q. 39 Have you performed any studies concerning the use of analysts' forecasts as an estimate of investors' expected growth rate, g?
A. 39 Yes, I prepared a study in conjunction with Willard T. Carleton, Professor of Finance Emeritus at the University of Arizona, on why analysts' forecasts are the best estimate of investors' expectation of future long-term growth. This study is described in a paper entitled "Investor Growth Expectations and Stock Prices: Analysts vs. History," published in the Spring 1988 edition of The Journal of Portfolio Management.
Q. 40 Please summarize the results of your study.
A. 40 First, we performed a correlation analysis to identify the historically oriented growth rates which best described a firm's stock price. Then we did a regression study comparing the historical growth rates with the consensus analysts' forecasts. In every case, the regression equations containing the average of analysts' forecasts statistically outperformed the regression equations containing the historical growth estimates. These results are consistent with those found by Cragg and Malkiel, the early major research in this area (John G. Cragg and Burton G. Malkiel, Expectations and the Structure of Share Prices, University of Chicago Press, 1982). These results are also consistent with the hypothesis that investors use analysts' forecasts, rather than historically oriented growth calculations, in making stock buy and sell decisions. They provide overwhelming evidence that the analysts' forecasts of future growth are superior to historically oriented growth measures in predicting a firm's stock price.

Q 41 Has your study been updated?

A 41 Yes. Researchers at State Street Financial Advisors updated my study using data through year-end 2003. Their results continue to confirm that analysts' growth
forecasts are superior to historically-oriented growth measures in predicting a firm's stock price.
Q. 42 What price do you use in your DCF model?
A. 42 I use a simple average of the monthly high and low stock prices for each firm for the three-month period ending July 2009. These high and low stock prices were obtained from Thomson Reuters.

Q. 43 Why do you use the three-month average stock price in applying the DCF method?

A. 43 I use a three-month average stock price in applying the DCF method because stock prices fluctuate daily, while financial analysts' forecasts for a given company are generally changed less frequently, often on a quarterly basis. Thus, to match the stock price with an earnings forecast, it is appropriate to average stock prices over a three-month period.
Q. 44 Do you include an allowance for flotation costs in your DCF analysis?
A. 44 Yes. I include a five percent allowance for flotation costs in my DCF calculations.

Q. 45 Please explain your inclusion of flotation costs.

A. 45 All firms that have sold securities in the capital markets have incurred some level of flotation costs, including underwriters' commissions, legal fees, printing expense, etc. These costs are withheld from the proceeds of the stock sale or are paid separately, and must be recovered over the life of the equity issue. Costs vary depending upon the size of the issue, the type of registration method used and other factors, but in general these costs range between three and five percent of the proceeds from the issue. ${ }^{2}$ In addition to these costs, for large equity issues (in relation to outstanding equity shares), there is likely to be a decline in price associated with the sale of shares to the public. On average, the decline due to market pressure has been estimated at two to three percent. ${ }^{3}$ Thus, the

See Lee, Inmoo, Scott Lochhead, Jay Ritter, and Quanshui Zhao, "The Costs of Raising Capital," The Journal of Financial Research, Vol. XIX No 1 (Spring 1996), 59-74, and Clifford W. Smith, "Alternative Methods for Raising Capital," Journal of Financial Economics 5 (1977) 273-307.

See Richard H. Pettway, "The Effects of New Equity Sales Upon Utility Share Prices," Public Utilities Fortnightly, May 10, 1984, 35-39.
total flotation cost, including both issuance expense and market pressure, could range anywhere from five to eight percent of the proceeds of an equity issue. I believe a combined five percent allowance for flotation costs is a conservative estimate that should be used in applying the DCF model in this proceeding.
Q. 46 Is there any evidence that Atmos Energy, in fact, incurs flotation costs equal to approximately five percent of its stock price when it issues new equity securities
A. 46 Yes. In the Company's most recent equity offering, December 7, 2006, Atmos Energy's stock price just prior to the offering was $\$ 32.07$ per share, and the net proceeds to the Company were $\$ 30.3975$ per share. The difference between the pre-offering stock price and the proceeds to the Company represent a
5.21 percent discount to the recent market price. The difference between the recent market price and the net proceeds per share reflects both the issuance expenses and market pressure, as explained in Appendix 3 of my direct testimony. Additional information on Atmos Energy's three most recent stock issuances are contained in the prospectuses for these issuances. (For ease of reference, the cover page of each of Atmos Energy's three most recent public offerings are shown in Schedule 2.)
Q. 47 Is a flotation cost adjustment only appropriate if a company issues stock during the last year?
A. 47 As described in Appendix 3, a flotation cost adjustment is required whether or not a company issued new stock during the last year. Previously incurred flotation costs have not been recovered in previous rate cases; rather, they are a permanent cost associated with past issues of common stock. Just as an adjustment is made to the embedded cost of debt to reflect previously incurred debt issuance costs (regardless of whether additional bond issuances were made in the test year), so should an adjustment be made to the cost of equity regardless of whether additional stock was issued during the last year.
Q. 48 Does an allowance for recovery of flotation costs associated with stock sales in prior years constitute retroactive rate-making?
A. 48 No. An adjustment for flotation costs on equity is not meant to recover any cost that is properly assigned to prior years. In fact, the adjustment allows Atmos Energy to recover only the current carrying costs associated with flotation expenses incurred at the time stock sales were made. The original flotation costs themselves will never be recovered, because the stock is assumed to have an infinite life.
Q. 49 How do you apply the DCF approach to obtain the cost of equity capital for Atmos Energy?
A. 49 I apply the DCF approach to the Value Line natural gas companies shown in Schedule 1.
Q. 50 How do you select your proxy group of natural gas companies?
A. 50 I select all the companies in Value Line's groups of natural gas companies that provide local distribution service and: (1) paid dividends during every quarter of the last two years; (2) did not decrease dividends during any quarter of the past two years; (3) have at least two analysts included in the I/B/E/S mean growth forecast; (4) have an investment grade bond rating and a Value Line Safety Rank of 1,2 , or 3 ; and (5) have not announced a merger.
Q. 51 Why do you eliminate companies that have either decreased or eliminated their dividend in the past two years?
A. 51 The DCF model requires the assumption that dividends will grow at a constant rate into the indefinite future. If a company has either decreased or eliminated its dividend in recent years, an assumption that the company's dividend will grow at the same rate into the indefinite future is questionable.
Q. 52 Why do you eliminate companies that have fewer than two analysts included in the $I / B / E / S$ mean forecasts?
A. 52 The DCF model also requires a reliable estimate of a company's expected future growth. For most companies, the $1 / B / E / S$ mean growth forecast is the best available estimate of the growth term in the DCF model. However, the I/B/E/S estimate may be less reliable if the mean estimate is based on the inputs of very few analysts. On the basis of my professional judgment, I normally specify that the I/B/E/S long-term earnings growth forecast must include the forecasts of at
least three analysts. However, in August 2009 there are only five natural gas companies with growth forecasts from at least three analysts. In this study, therefore, I also include results for companies that had growth forecasts based on two analysts' growth forecasts.
Q. 53 Why do you eliminate companies that have announced mergers that are not yet completed?
A. 53 A merger announcement can sometimes have a significant impact on a company's stock price because of anticipated merger-related cost savings and new market opportunities. Analysts' growth forecasts, on the other hand, are necessarily related to companies as they currently exist, and do not reflect investors' views of the potential cost savings and new market opportunities associated with mergers. The use of a stock price that includes the value of potential mergers in conjunction with growth forecasts that do not include the growth enhancing prospects of potential mergers produces DCF results that tend to distort a company's cost of equity.

Q. 54 Is your natural gas company group a reasonable risk proxy for Atmos Energy?

A. 54 Yes. Many investors use the Value Line Safety Rank as a measure of equity risk. The average Value Line Safety Rank for my proxy group of natural gas companies is approximately 2 on a simple average basis and 2.5 on a marketweighted basis, on a scale where 1 is the most safe and 5 is the least safe, compared to a Value Line Safety Rank of 2 for Atmos Energy. The average S\&P bond rating of the natural gas companies in my proxy group is approximately $\mathrm{A}-$ to $\mathrm{BBB}+$. The $\mathrm{S} \& \mathrm{P}$ bond rating for Atmos Energy is $\mathrm{BBB}+$. (See Schedule 1.)

Q. 55 Please summarize the results of your application of the DCF model to your natural gas company proxy group.

A. 55 I obtain a DCF result of 11.9 percent (see Schedule 1).

F. Risk Premium Method

Q. 56 Please describe the risk premium method of estimating Atmos Energy's cost of equity.
A. 56 The risk premium method is based on the principle that investors expect to earn a return on an equity investment in Atmos Energy that reflects a "premium" over and above the return they expect to earn on an investment in a portfolio of bonds. This equity risk premium compensates equity investors for the additional risk they bear in making equity investments versus bond investments.
Q. 57 Does the risk premium approach specify what debt instrument should be used to estimate the interest rate component in the methodology?
A. 57 No. The risk premium approach can be implemented using virtually any debt instrument. However, the risk premium approach does require that the debt instrument used to estimate the risk premium be the same as the debt instrument used to calculate the interest rate component of the risk premium approach. For example, if the risk premium on equity is calculated by comparing the returns on stocks and the returns on A-rated utility bonds, then the interest rate on A-rated utility bonds must be used to estimate the interest rate component of the risk premium approach.
Q. 58 Does the risk premium approach require that the same companies be used to estimate the stock return as are used to estimate the bond return?
A. 58 No. For example, many analysts apply the risk premium approach by comparing the return on a portfolio of stocks to the return on Treasury securities such as long-term Treasury bonds. Clearly, in this widely-accepted application of the risk premium approach, the same companies are not used to estimate the stock return as are used to estimate the bond return, since the U.S. government is not a company.
Q. 59 How do you measure the required risk premium on an equity investment in Atmos Energy?
A. 59 I use two methods to estimate the required risk premium on an equity investment in Atmos Energy. The first is called the ex ante risk premium method and the second is called the ex post risk premium method.

1. Ex Ante Risk Premium Method

Q. 60 Please describe your ex ante risk premium method of measuring the required risk premium on an equity investment in Atmos Energy.
A. 60 My ex ante risk premium method is based on studies of the DCF expected return on my comparable group of natural gas companies compared to the interest rate on Moody's A-rated utility bonds. Specifically, for each month in my study period, I calculate the risk premium using the equation,

$$
\mathrm{RP}_{\mathrm{PROXY}}=\mathrm{DCF}_{\mathrm{PROXY}}-\mathrm{I}_{\mathrm{A}}
$$

where:
$R P_{P R O X Y}=$ the required risk premium on an equity investment in the proxy group of companies,
$\mathrm{DCF}_{\text {PROXY }}=$ average DCF estimated cost of equity on a portfolio of proxy companies; and
$\mathrm{I}_{\mathrm{A}} \quad=\quad$ the yield to maturity on an investment in A-rated utility bonds.

I then perform a regression analysis to determine if there is a relationship between the calculated risk premium and interest rates. I use the results of the regression analysis to estimate the investors' required risk premium. To estimate the cost of equity, I then add the required risk premium to the current yield on A-rated utility bonds. A detailed description of my ex ante risk premium studies is contained in Appendix 4, and the underlying DCF results and interest rates are displayed in Schedule 3.
Q. 61 Why do you add the required risk premium to the current yield to maturity on A-rated utility bonds rather than the forecasted yield to maturity?
A. 61 Although it is appropriate in theory to add the required risk premium to the forecasted yield to maturity on A-rated utility bonds, I did not have information on the forecasted yield to maturity on A-rated utility bonds at the time Atmos Energy needed my cost of equity input for their cost of service studies. I have recently obtained interest rate forecasts from Blue Chip Financial Forecasts that indicates that the forecasted yield to maturity on A-rated utility bonds exceeds
the current interest rate used in my studies by approximately 100 basis points. 4 Given the positive spread between forecasted interest rates and current interest rates, my cost of equity estimates based on the current interest rates are conservative.
Q. 62 What cost of equity do you obtain from your ex ante risk premium method? A. 62 As described above, to estimate the cost of equity using the ex ante risk premium method, one may add the estimated risk premium over the yield on A-rated utility bonds to the yield to maturity on A-rated utility bonds. 5 The average yield to maturity on Moody's A-rated utility bonds at July 2009 is 5.97 percent. My analyses produce an estimated risk premium over the yield on A-rated utility bonds equal to 4.94 percent. Adding an estimated risk premium of 4.94 percent to the 5.97 percent average yield to maturity on A-rated utility bonds produces a cost of equity estimate of 10.9 percent using the ex ante risk premium method.

2. Ex Post Risk Premium Method

Q. 63 Please describe your ex post risk premium method for measuring the

 required risk premium on an equity investment in Atmos Energy.A. 63 I first perform a study of the comparable returns received by bond and stock investors over the last 72 years. I estimate the returns on stock and bond portfolios, using stock price and dividend yield data on the S\&P 500 and bond yield data on Moody's A-rated Utility Bonds. My study consists of making an investment of one dollar in the S\&P 500 and Moody's A-rated Utility Bonds at the beginning of 1937, and reinvesting the principal plus return each year to 2009. The return associated with each stock portfolio is the sum of the annual dividend yield and capital gain (or loss) which accrued to this portfolio during

Blue Chip does not provide a forecast for A-rated utility bond yields. I estimate the forecasted yield on A-rated utility bonds using Blue Chip forecasts for Baa-rated corporate bonds plus the current difference between A-rated utility and Baa-rated corporate bonds.

5
As noted above, one could use the yield to maturity on other debt investments to measure the interest rate component of the risk premium approach as long as one uses the yield on the same debt investment to measure the expected risk premium component of the risk premium approach. I chose to use the yield on A-rated utility bonds because it is a frequently used benchmark for utility bond yields.
the year(s) in which it was held. The return associated with the bond portfolio, on the other hand, is the sum of the annual coupon yield and capital gain (or loss) which accrued to the bond portfolio during the year(s) in which it was held. The resulting annual returns on the stock and bond portfolios purchased in each year between 1937 and 2009 are shown on Schedule 4. The average annual return on an investment in the S\&P 500 stock portfolio is 10.8 percent, while the average annual return on an investment in the Moody's A-rated utility bond portfolio is 6.3 percent. Thus, the risk premium on the $S \& P 500$ stock portfolio is 4.5 percent.

I also conduct a second study using stock data on the S\&P Utilities rather than the S\&P 500. As shown on Schedule 5, the S\&P utilities stock portfolio showed an average annual return of 10.5 percent per year. Thus, the return on the S\&P utilities stock portfolio exceeds the return on the Moody's A-rated utility bond portfolio by 4.2 percent.
Q. 64 Why is it appropriate to perform your ex post risk premium analysis using both the S\&P 500 and the S\&P Utilities stock indices?
A. 64 I perform my ex post risk premium analysis on both the $S \& P 500$ and the $S \& P$ Utilities because I believe utilities today face risks that are somewhere in between the average risk of the S\&P Utilities and the S\&P 500 over the years 1937 to 2009. Thus, I use the average of the two historically-based risk premiums as my estimate of the required risk premium in my ex post risk premium method. I note that the spread between the average risk premium on the S\&P 500 and the average risk premium on the S\&P Utilities is just 30 basis points.
Q. 65 Why do you analyze investors' experiences over such a long time frame?
A. 65 Because day-to-day stock price movements can be somewhat random, it is inappropriate to rely on short-run movements in stock prices in order to derive a reliable risk premium. Rather than buying and selling frequently in anticipation of highly volatile price movements, most investors employ a strategy of buying and holding a diversified portfolio of stocks. This buy-and-hold strategy will allow an investor to achieve a much more predictable long-run return on stock
investments and at the same time will minimize transaction costs. The situation is very similar to the problem of predicting the results of coin tosses. I cannot predict with any reasonable degree of accuracy the result of a single, or even a few, flips of a balanced coin; but I can predict with a good deal of confidence that approximately 50 heads will appear in 100 tosses of this coin. Under these circumstances, it is most appropriate to estimate future experience from long-run evidence of investment performance.

Q. 66 Would your study provide a different risk premium if you started with a different time period?

A. 66 Yes. The risk premium results do vary somewhat depending on the historical time period chosen. My policy was to go back as far in history as I could get reliable data. I thought it would be most meaningful to begin after the passage and implementation of the Public Utility Holding Company Act of 1935. This Act significantly changed the structure of the public utility industry. Since the Public Utility Holding Company Act of 1935 was not implemented until the beginning of 1937, I felt that numbers taken from before this date would not be comparable to those taken after. (The repeal of the 1935 Act has not materially impacted the structure of the public utility industry; thus, the Act's repeal does not have any impact on my choice of time period.)
Q. 67 Why is it necessary to examine the yield from debt investments in order to determine the investors' required rate of return on equity capital?
A. 67 As previously explained, investors expect to earn a return on their equity investment that exceeds currently available bond yields. This is because the return on equity, being a residual return, is less certain than the yield on bonds and investors must be compensated for this uncertainty. Second, the investors' current expectations concerning the amount by which the return on equity will exceed the bond yield will be influenced by historical differences in returns to bond and stock investors. For these reasons, we can estimate investors' current expected returns from an equity investment from knowledge of current bond yields and past differences between returns on stocks and bonds.

Q. 68 Has there been any significant trend in the equity risk premium over the 1937 to 2009 time period of your risk premium study?

Abstract

A. 68 No. Statisticians test for trends in data series by regressing the data observations against time. I have performed such a time series regression on my two data sets of historical risk premiums. As shown below, there is no statistically significant trend in my risk premium data. Indeed, the coefficient on the time variable is insignificantly different from zero (if there were a trend, the coefficient on the time variable should be significantly different from zero).

TABLE 2

REGRESSION OUTPUT FOR RISK PREMIUM ON S\&P 500

LINE NO.		INTERCEPT	TIME	ADJUSTED R SQUARE	F
1	Coefficient	3.096	(0.002)	0.023	2.66
2	T Statistic	1.654	(1.630)		

TABLE 3
REGRESSION OUTPUT FOR RISK PREMIUM ON S\&P UTILITIES

LINE NO.		INTERCEPT	TIME	ADJUSTED R SQUARE	F
1	Coefficient	1.383	-0.001	-0.006	0.56
2	T Statistic	0.776	-0.751		

Q. 69 Is your conclusion that there is no significant trend in the equity risk premium supported in the financial literature?

A. 69 Yes. The Stocks, Bonds, Bills, and Inflation $\mathbb{R}^{\circledR} 2009$ Valuation Edition Yearbook ("Ibbotson ${ }^{(\otimes 1} \mathrm{SBBI}^{\oplus \text { ") }}$) published by Morningstar, Inc., contains an analysis of "trends" in historical risk premium data. Ibbotson ${ }^{\circledR} \mathrm{SBBI}^{(}$uses correlation analysis to determine if there is any pattern or "trend" in risk premiums over time. This analysis also demonstrates that there are no trends in risk premiums over time.
Q. 70 Why is it significant that historical risk premiums have no trend or other statistical pattern over time?
A. 70 The significance of this evidence is that the average historical risk premium is a reasonable estimate of the future expected risk premium. As noted in Ibbotson ${ }^{(1)}$ $\mathrm{SBBI}^{\circledR}$:

The significance of this evidence is that the realized equity risk
premium next year will not be dependent on the realized equity risk premium from this year. That is, there is no discernable pattern in the realized equity risk premium-it is virtually impossible to forecast next year's realized risk premium based on the premium of the previous year. For example, if this year's difference between the riskless rate and the return on the stock market is higher than last year's, that does not imply that next year's will be higher than this year's. It is as likely to be higher as it is lower. The best estimate of the expected value of a variable that has behaved randomly in the past is the average (or arithmetic mean) of its past values. [Ibbotson ${ }^{(1)} \mathrm{SBBI}^{\oplus}$, page 61.]

Q. 71 What conclusions do you draw from your ex post risk premium analyses

 about the required return on an equity investment in Atmos Energy?A. 71 My studies provide strong evidence that investors today require an equity return of approximately 4.2 to 4.5 percentage points above the expected yield on Arated utility bonds. The average yield on A-rated utility bonds at July 2009 is 5.97 percent. Adding a 4.2 to 4.5 percentage point risk premium to a yield of 5.97 percent on A-rated utility bonds, I obtain an expected return on equity from the ex post risk premium method in the range 10.2 percent to 10.4 percent, with a midpoint of 10.3 percent. Because the ex post methodology does not reflect flotation costs, I add a 27 basis-point allowance for flotation costs, which I determine by calculating the difference in my DCF results with and without a flotation cost allowance. Adding a 27 basis-point allowance for flotation costs, I obtain an estimate of 10.6 percent as the cost of equity for Atmos Energy using the ex post risk premium method. 6

G. Capital Asset Pricing Model (CAPM)

Q. 72 What is the CAPM?

A. 72 The CAPM is an equilibrium model of the security markets in which the expected or required return on a given security is equal to the risk-free rate of interest, plus the company equity "beta," times the market risk premium:

Cost of equity $=$ Risk-free rate + Equity beta x Market risk premium

This estimate, which is based on current interest rates rather than forecasted rates, is conservative. If I were to use the forecasted interest rate on A-rated utility bonds, my ex post risk premium estimate of the cost of equity would be approximately 100 basis points higher. (See Question and Answer 61 above.)

The risk-free rate in this equation is the expected rate of return on a risk-free government security, the equity beta is a measure of the company's risk relative to the market as a whole, and the market risk premium is the premium investors require to invest in the market basket of all securities compared to the risk-free security.

Q. 73 How do you use the CAPM to estimate the cost of equity for your proxy companies?

A. 73 The CAPM requires an estimate of the risk-free rate, the company-specific risk factor or beta, and the expected return on the market portfolio. For my estimate of the risk-free rate, I use the average yield to maturity on 20-year Treasury bonds at July 2009, 4.38 percent. For my estimate of the company-specific risk, or beta, I use the average Value Line beta of 0.85 for my proxy companies. For my estimate of the expected risk premium on the market porfolio, I use two approaches. First, I use the Ibbotson ${ }^{(1)} \mathrm{SBBI}^{(1)} 6.5$ percent risk premium on the market portfolio, which is measured from the difference between the arithmetic mean return on the S\&P 500 (11.7 percent) and the income return on 20-year Treasury bonds (5.2 percent), as reported by Ibbotson ${ }^{\circledR} \mathrm{SBBI}^{\circledR}(11.7-5.2=6.5$). Second, I estimate the risk premium on the market portfolio from the difference between the DCF cost of equity for the S\&P 500 (12.7 percent) and the yield to maturity on 20 -year Treasury bonds, (4.38 percent). My second approach produces a risk premium equal to 8.3 percent $(12.7-4.38=8.3)$.

Q. 74 Why do you recommend that the risk premium on the market portfolio be

 estimated using the difference between the arithmetic mean return on the S\&P 500?A. 74 As explained in Ibbotson ${ }^{(8} \mathrm{SBBI}^{\otimes}$, the arithmetic mean return is the best approach for calculating the return investors expect to receive in the future:

The equity risk premium data presented in this book are arithmetic average risk premia as opposed to geometric average risk premia. The arithmetic average equity risk premium can be demonstrated to be most appropriate when discounting future cash flows. For use as the expected equity risk premium in either the CAPM or the building block approach, the arithmetic mean or the simple difference of the arithmetic means of stock market returns and riskless rates is the relevant number. This is because both the CAPM and the building block approach are additive models, in
which the cost of capital is the sum of its parts. The geometric average is more appropriate for reporting past performance, since it represents the compound average return. [SBBI, p. 59.]

A discussion of the importance of using arithmetic mean returns in the context of CAPM or risk premium studies is contained in Schedule 6.
Q. 75 Why do you recommend that the risk premium on the market portfolio be estimated using the income return on 20-year Treasury bonds rather than the total return on these bonds?
A. 75 As discussed above, the CAPM requires an estimate of the risk-free rate of interest. When Treasury bonds are issued, the income return on the bond is risk free, but the total return, which includes both an income and capital gains or losses, is not. Thus, the income return should be used in the CAPM because it is only the income return that is risk free.
Q. 76 What CAPM result do you obtain when you estimate the expected return on the market portfolio from the arithmetic mean difference between the return on the market and the yield on 20-year Treasury bonds?
A. 76 I obtain a CAPM estimate of 10.2 percent [see Schedule 7].
Q. 77 What CAPM result do you obtain when you estimate the risk premium on the market portfolio by applying the DCF model to the S\&P 500?
A. 77 I obtain a CAPM result of 11.5 percent [see Schedule 8].
Q. 78 Can a reasonable application of the CAPM produce higher cost of equity results than you have just reported?
A. 78 Yes. The CAPM tends to underestimate the cost of equity for small market capitalization companies such as my natural gas proxy companies. ${ }^{7}$
Q. 79 Does the finance literature support an adjustment to the CAPM equation to account for a company's size as measured by market capitalization supported in the finance literature?

In addition, as discussed above, these estimates based on current interest rates rather than forecasted rates is conservative. If I were to use the forecasted interest rate on Treasury bonds, my historical CAPM estimate of the cost of equity would be approximately 60 basis points higher and my DCF-based CAPM estimate would be approximately 10 basis points higher.

where $E R_{i}$ is the expected return on security or portfolio i, R_{f} is the risk-free rate, $E R_{m}-R_{f}$ is the expected risk premium on the market portfolio, and β_{i} is a measure of the risk of investing in security or portfolio i. If the CAPM correctly predicts the relationship between risk and return in the marketplace, then the realized returns on portfolios of securities and the corresponding portfolio betas should lie on the solid straight line with intercept R_{f} and slope $\left[R_{m}-R_{f}\right]$ shown below.

Figure 1
Average Returns Compared to Beta for Portfolios Formed on Prior Beta
Ave. Portfolio Return

Financial scholars have found that the relationship between realized returns and betas is inconsistent with the relationship posited by the CAPM. As described in Fama and French (1992) and Fama and French (2004), the actual relationship between portfolio betas and returns is shown by the dotted line in the figure above. Although financial scholars disagree on the reasons why the return/beta relationship looks more like the dotted line in the figure than the solid line, they generally agree that the dotted line lies above the solid line for portfolios with betas less than 1.0 and below the solid line for portfolios with betas greater than 1.0. Thus, in practice, scholars generally agree that the CAPM underestimates portfolio returns for companies with betas less than 1.0 , and overestimates portfolio returns for portfolios with betas greater than 1.0.
Q. 82 What conclusions do you reach from your review of the literature on the CAPM to predict the relationship between risk and return in the marketplace?
A. 82 I conclude that the financial literature strongly supports the proposition that the CAPM underestimates the cost of equity for companies such as public utilities with betas less than 1.0.

H. Fair Rate of Return on Equity

Q. 83 Based on your analyses, what is your conclusion regarding your proxy companies' cost of equity?

A. 83 Based on my analyses, which included the application of several cost of equity methods to my proxy companies, I conclude that my proxy companies' cost of equity is in the range 10.2 percent to 11.9 percent, with an average cost of equity equal to 11.0 percent.

Q. 84 Does the cost of equity for Atmos Energy depend on its ratemaking capital structure?

Abstract

A. 84 Yes. My analyses are based on the average market value capital structure of my proxy companies, which has more than 58 percent equity on a composite basis or more than 63 percent equity on a simple average basis. If Atmos Energy's ratemaking, or book value capital structure, is used to set rates, the cost of equity for Atmos Energy will necessarily be higher than the cost of equity for the proxy group because the financial risk associated with Atmos Energy's book value capital structure is significantly higher than the financial risk reflected in the cost of equity estimate for my proxy companies.

Q. 85 What ROE do you recommend for Atmos Energy?

A. 85 I recommend an ROE of 11.0 percent for Atmos Energy. My recommendation takes into consideration Atmos Energy's policy decision to moderate the impact of its rate request on ratepayers. My recommended return on equity is conservative in that it does not reflect: (1) the higher financial risk implicit in the book value capital structure of Atmos Energy, which will be used to set rates in this proceeding; (2) the observation that forecasted yields on both A-rated utility bonds and Treasury bonds are significantly higher than the current yields
on these securities; (3) the small size premium for small market capitalization companies such as those in my proxy group of natural gas companies; and (4) the evidence that the CAPM underestimates the cost of equity for companies with betas less than 1.0.

I. Allowed Rate of Return on Total Capital

Q. 86 What is Atmos Energy's recommended capital structure and debt cost rate?

A. 86 As discussed in the testimony of Company Witness Laurie M. Sherwood, Atmos Energy is recommending a capital structure containing 48.6 percent long-term debt and 51.4 percent equity. The cost rate for long-term debt 6.87 percent.

Q. 87 What allowed rate of return on total capital is derived using this capital

 structure, the long-term debt cost rate of 6.87 percent, and the 11.0 percent cost of equity you find for your proxy group?A. 87 Using a capital structure containing 48.6 percent long-term debt and 51.4 percent equity and cost rates of 6.87 percent and 11.0 percent, respectively, produces an overall rate of return equal to 9.00 percent for the purpose of setting Atmos Energy's rates in this case, as shown below in Table 5.

TABLE 5
WEIGHTED AVERAGE COST OF CAPITAL

SOURCE OF CAPITAL	\% OF TOTAL	COST RATE	WEIGHTED COST
Long-term Debt	48.6%	6.87%	3.34%
Common Equity	51.4%	11.00%	5.66%
Total	100.0%		9.00%

Q. 88 Does this conclude your testimony?

A. 88 Yes, it does.

LIST OF SCHEDULES AND APPENDICES

Schedule 1	Summary of Discounted Cash Flow Analysis for Natural Gas Companies
Schedule 2	Flotation Costs in Atmos Energy's Recent Equity Offerings
Schedule 3	Comparison of the DCF Expected Return on an Investment in Natural Gas Companies to the Interest Rate on Moody's A-Rated Utility Bonds
Schedule 4	Comparative Returns on S\&P 500 Stock Index and Moody's A-Rated Bonds 1937-2009
Schedule 5	Comparative Returns on S\&P Utility Stock Index and Moody's A-Rated Bonds 1937-2009
Schedule 6	Using the Arithmetic Mean to Estimate the Cost of Equity Capital
Schedule 7	Calculation of Capital Asset Pricing Model Cost of Equity Using the Ibbotson ${ }^{(12}$ SBBI $^{\circledR}$ 6.5 Percent Risk Premium
Schedule 8	Calculation of Capital Asset Pricing Model Cost of Equity Using DCF Estimate of the Expected Rate of Return on the Market Portfolio
Appendix 1	Qualifications of James H. Vander Weide
Appendix 2	Derivation of the Quarterly DCF Model
Appendix 3	Adjusting for Flotation Costs in Determining a Public Utility's Allowed Rate of Return on Equity
Appendix 4	Ex Ante Risk Premium Method
Appendix 5	Ex Post Risk Premium Method

ATMOS ENERGY SCHEDULE 1
 SUMMARY OF DISCOUNTED CASH FLOW ANALYSIS FOR NATURAL GAS COMPANIES

LINE NO.	COMPANY	D_{0}	D_{0}	P_{0}	GROWTH	COST OF EQUTTY
1	AGL Resources	0.430	1.72	31.017	4.25%	10.5%
2	Atmos Energy	0.330	1.32	25.230	5.00%	11.0%
3	EQT Corp.	0.220	0.88	35.962	9.00%	11.9%
4	National Fuel Gas	0.325	1.34	35.078	8.50%	12.9%
5	Nicor Inc.	0.465	1.86	33.610	4.33%	10.6%
6	NiSource Inc.	0.230	0.92	11.570	3.00%	12.0%
7	Northwest Nat. Gas	0.395	1.58	43.398	4.75%	8.9%
8	ONEOK Inc.	0.400	1.68	29.035	7.25%	13.8%
9	Piedmont Natural Gas	0.270	1.08	23.733	6.93%	12.2%
10	South Jersey Inds.	0.298	1.19	34.848	9.67%	13.7%
11	Southwest Gas	0.238	0.95	21.663	6.00%	10.9%
12	Market-Weighted Average					11.9%

Notes:

d_{0} $\mathrm{~d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}, \mathrm{~d}_{4}$	$=$
	Most recent quarterly dividend.
P_{0}	Next four quarterly dividends, calculated by multiplying the last four quarterly dividends
	per Value Line, by the factor $(1+\mathrm{g})$.

$$
k=\frac{d_{1}(1+k)^{75}+d_{2}(1+k)^{.50}+d_{3}(1+k)^{.25}+d_{4}}{P_{0}(1-F C)}+g
$$

ATMOS ENERGY SCHEDULE 1 (continued)
 VALUE LINE SAFETY RANKS AND STANDARD \& POOR'S BOND RATINGS FOR PROXY GAS COMPANIES

LINE NO.	COMPANY	SAFETY RANK	S\&P BOND RATING	S\&P BOND RATING (NUMERICAL)
1	AGL Resources	2	A-	5
2	Atmos Energy	2	$\mathrm{BBB}+$	6
3	EQT Corp.	3	BBB	7
4	National Fuel Gas	2	BBB	7
5	Nicor Inc.	3	AA	1
6	NiSource Inc.	1	$\mathrm{BBB}-$	8
7	Northwest Nat. Gas	3	$\mathrm{AA}-$	2
8	ONEOK Inc.	2	A	7
9	Piedmont Natural Gas	2	$\mathrm{BBB}+$	4
10	South Jersey Inds.	3	BBB	6
11	Southwest Gas	2.5	$\mathrm{BBB}+$	7
12	Market-Weighted Average	2.4	$\mathrm{~A}-$ to BBB +	6.0
13	Simple Average		5.5	

Source of data: Standard \& Poor's, August 2009; The Value Line Investment Analyzer August 2009.

FLOTATION COSTS IN ATMOS ENERGY'S RECENT EQUITY OFFERINGS

PROSPECTUS SUPPLEMENT

(To Prospectus dated January 30,2002)

$8,650,000$ Shares

Atmos Energy Corporation

Common Stock

Atmos Energy Corporation is selling all of the shares.
The shares trade on the New York Stock Exchange under the symbol "ATO." On July 13, 2004, the last sale price of the shares as reported on the New York Stock Exchange was $\$ 24.91$ per share.

Investing in our common stock involves risks that are described in the "Risk Factors" section beginning on page $\mathrm{S}-7$ of this prospectus supplement.

	Per Sbare	Total
Public offering price	\$24.75	\$214,087,500
Underwriting discount	\$.99	\$8,563,500
Proceeds, before expen	\$23,76	\$205,524,000

The underwriters may also purchase up to an additional $1,289,393$ shares at the public offering price, less the underwriting discount, within 30 days from the date of this prospectus supplement to cover overallotments.

Neither the Securities and Exchange Commission nor any state securities commission has approved or disapproved of these securities or determined if this prospectus supplement or the accompanying prospectus is truthful or complete. Any representation to the contrary is a criminal offense.

The shares will be ready for delivery on or about July 19, 2004.

Merrill Lynch \& Co. JPMorgan

Lehman Brothers
UBS Investment Bank
A.G. Edwards
Edward Jones

The date of this prospectus supplement is July 13, 2004.

FLOTATION COSTS IN ATMOS ENERGY'S RECENT EQUITY OFFERINGS

PROSPECTUS SUPPLEMENT

(To prospectus dated September 15, 2004)

$14,000,000$ Shares

 Atmos Energy Corporation

Common Stock

Atmos Energy Corporation is selling all of the shares.
The shares trade on the New York Stock Exchange under the symbol "ATO." On October 21, 2004, the last sale price of the shares as reported on the New York Stock Exchange was $\$ 25.20$ per share.

Investing in our common stock involyes risks. See the "Risk Factors" section beginning on page $S-11$ of this prospectus supplement.

	Per Share	Total
Public offering price.	\$24.75	\$346,500,000
Underwriting discount	\$.99	\$13,860,000
Proceeds, before expenses, to Atmos	\$23.76	\$332,640,000

The underwriters may also purchase up to an additional $2,100,000$ shares at the public offering price, less the underwriting discount, within 30 days from the date of this prospectus supplement to cover overallotments.

Neither the Securities and Exchange Commission nor any state securities commission has approved or disapproved of these securities or determined if this prospectus supplement or the accompanying prospectus is truthful or complete. Any representation to the contrary is a criminal offense.

The shares will be ready for delivery on or about October 27, 2004.

Merrill Lynch \& Co.
 Banc of America Securities LLC JPMorgan

SunTrust Robinson Humphrey Wachovia Securities

The date of this prospectus supplement is October 21, 2004.

Table of Contents

PROSPECTUS SUPPLEMENT
(To Prospectus dated December 4, 2006)
5,500,000 Shares

Common Stock

This is an offering of $5,500,000$ shares of the common stock of Amos Energy Corporation.
Our common stock is listed on the New York Stock Exchange under the symbol "ATO." The last reported sales price of our common stock on December 7, 2006 was $\$ 32.07$.

Investing in our common stock involves risks. See "Risk Factors" beginning on page 1 of
the accompanying prospectus.

Price to the public
Underwriting discounts and commissions Proceeds to Atmos Energy Corporation (before expenses)

Per Share Total
$\$ 31.5000 \$ 173,250,000$
\$ $1.1025 \$ 6,063,750$
$\$ 30.3975 \$ 167,186,250$

We have granted to the underwriters the option to purchase up to 825,000 additional shares of common stock on the same tems and conditions set forth above if the mderwriters sell more than $5,500,000$ shares of common stock in this offering.

Neither the Securities and Exchange Commission nor any state securities commission has approved or disapproved of these securities or passed on the adequacy or accuracy of this prospectus supplement. Any representation to the contrary is a criminal offense.
Lehman Brothers and Goldman, Sachs \& Co., on behaif of the underwriters, expect to deliver the shares on or about December 13, 2006.

Joint Book-Running Managers

Lehman Brothers
 Goldman, SACHS \& Co.

Banc of America securities llC JPMORGAN
 MERRILL LYNCH \& CO. SunTrust Robinson Humphrey WACHOVIA SECURITIES

December 7, 2006

ATMOS ENERGY

SCHEDULE 3
COMPARISON OF DCF EXPECTED RETURN ON AN INVESTMENT IN NATURAL GAS COMPANIES TO THE INTEREST RATE ON MOODY'S A-RATED UTILITY BONDS

$\begin{aligned} & \hline \text { LINE } \\ & \text { NO. } \\ & \hline \end{aligned}$	DATE	DCF	$\begin{aligned} & \hline \text { BOND } \\ & \text { YIELD } \end{aligned}$	RISK PREMIUM
1	Jun-98	0.1154	0.0703	0.0451
2	Jul-98	0.1186	0.0703	0.0483
3	Aug-98	0.1234	0.0700	0.0534
4	Sep-98	0.1273	0.0693	0.0580
5	Oct-98	0.1260	0.0696	0.0564
6	Nov-98	0.1211	0.0703	0.0508
7	Dec-98	0.1185	0.0691	0.0494
8	Jan-99	0.1195	0.0697	0.0498
9	Feb-99	0.1243	0.0709	0.0534
10	Mar-99	0.1257	0.0726	0.0531
11	Apr-99	0.1260	0.0722	0.0538
12	May-99	0.1221	0.0747	0.0474
13	Jun-99	0.1208	0.0774	0.0434
14	Jul-99	0.1222	0.0771	0.0451
15	Aug-99	0.1220	0.0791	0.0429
16	Sep-99	0.1226	0.0793	0.0433
17	Oct-99	0.1233	0.0806	0.0427
18	Nov-99	0.1240	0.0794	0.0446
19	Dec-99	0.1280	0.0814	0.0466
20	Jan-00	0.1301	0.0835	0.0466
21	Feb-00	0.1344	0.082 .5	0.0519
22	Mar-00	0.1344	0.0828	0.0516
23	Apr-00	0.1316	0.0829	0.0487
24	May-00	0.1292	0.0870	0.0422
25	Jun-00	0.1295	0.0836	0.0459
26	Jul-00	0.1317	0.0825	0.0492
27	Aug-00	0.1290	0.0813	0.0477
28	Sep-00	0.1257	0.0823	0.0434
29	Oct-00	0.1260	0.0814	0.0446
30	Nov-00	0.1251	0.0811	0.0440
31	Dec-00	0.1239	0.0784	0.0455
32	Jan-01	0.1261	0.0780	0.0481
33	Feb-01	0.1261	0.0774	0.0487
34	Mar-01	0.1275	0.0768	0.0507
35	Apr-01	0.1227	0.0794	0.0433
36	May-01	0.1302	0.0799	0.0503
37	Jun-01	0.1304	0.0785	0.0519
38	Jul-01	0.1338	0.0778	0.0560
39	Aug-01	0.1327	0.0759	0.0568

Direct Testimony of James H. Vander Weide, Ph.D.
On behalf of Atmos Energy Corporation
Page 38

$\begin{aligned} & \text { LINE } \\ & \text { NO. } \end{aligned}$	DATE	DCF	BOND YIELD	RISK PREMIUM
40	Sep-01	0.1268	0.0775	0.0493
41	Oct-01	0.1268	0.0763	0.0505
42	Nov-01	0.1268	0.0757	0.0511
43	Dec-01	0.1254	0.0783	0.0471
44	Jan-02	0.1236	0.0766	0.0470
45	Feb-02	0.1241	0.0754	0.0487
46	Mar-02	0.1189	0.0776	0.0413
47	Apr-02	0.1159	0.0757	0.0402
48	May-02	0.1162	0.0752	0.0410
49	Jun-02	0.1170	0.0741	0.0429
50	Jul-02	0.1242	0.0731	0.0511
51	Aug-02	0.1234	0.0717	0.0517
52	Sep-02	0.1260	0.0708	0.0552
53	Oct-02	0.1250	0.0723	0.0527
54	Nov-02	0.1221	0.0714	0.0507
55	Dec-02	0.1216	0.0707	0.0509
56	Jan-03	0.1219	0.0706	0.0513
57	Feb-03	0.1232	0.0693	0.0539
58	Mar-03	0.1195	0.0679	0.0516
59	Apr-03	0.1162	0.0664	0.0498
60	May-03	0.1126	0.0636	0.0490
61	Jun-03	0.1114	0.0621	0.0493
62	Jul-03	0.1127	0.0657	0.0470
63	Aug-03	0.1139	0.0678	0.0461
64	Sep-03	0.1127	0.0656	0.0471
65	Oct-03	0.1123	0.0643	0.0480
66	Nov-03	0.1089	0.0637	0.0452
67	Dec-03	0.1071	0.0627	0.0444
68	Jan-04	0.1059	0.0615	0.0444
69	Feb-04	0.1039	0.0615	0.0424
70	Mar-04	0.1037	0.0597	0.0440
71	Apr-04	0.1041	0.0635	0.0406
72	May-04	0.1045	0.0662	0.0383
73	Jun-04	0.1036	0.0646	0.0390
74	Jul-04	0.1011	0.0627	0.0384
75	Aug-04	0.1008	0.0614	0.0394
76	Sep-04	0.0976	0.0598	0.0378
77	Oct-04	0.0974	0.0594	0.0380
78	Nov-04	0.0962	0.0597	0.0365
79	Dec-04	0.0970	0.0592	0.0378
80	Jan-05	0.0990	0.0578	0.0412
81	Feb-05	0.0979	0.0561	0.0418
82	Mar-05	0.0979	0.0583	0.0396
83	Apr-05	0.0988	0.0564	0.0424
84	May-05	0.0981	0.0553	0.0427
85	Jun-05	0.0976	0.0540	0.0436

Direct Testimony of James H. Vander Weide, Ph.D. On behalf of Atmos Energy Corporation

Page 39

$\begin{aligned} & \hline \text { LINE } \\ & \text { NO. } \\ & \hline \end{aligned}$	DATE	DCF	$\begin{aligned} & \hline \text { BOND } \\ & \text { YIELD } \end{aligned}$	$\begin{array}{r} \text { RISK } \\ \text { PREMIUM } \\ \hline \end{array}$
86	Jul-05	0.0966	0.0551	0.0415
87	Aug-05	0.0969	0.0550	0.0419
88	Sep-05	0.0980	0.0552	0.0428
89	Oct-05	0.0990	0.0579	0.0411
90	Nov-05	0.1049	0.0588	0.0461
91	Dec-05	0.1045	0.0580	0.0465
92	Jan-06	0.0982	0.0575	0.0407
93	Feb-06	0.1124	0.0582	0.0542
94	Mar-06	0.1127	0.0598	0.0529
95	Apr-06	0.1100	0.0629	0.0471
96	May-06	0.1056	0.0642	0.0414
97	Jun-06	0.1049	0.0640	0.0409
98	Jul-06	0.1087	0.0637	0.0450
99	Aug-06	0.1041	0.0620	0.0421
100	Sep-06	0.1053	0.0600	0.0453
101	Oct-06	0.1030	0.0598	0.0432
102	Nov-06	0.1033	0.0580	0.0453
103	Dec-06	0.1035	0.0581	0.0454
104	Jan-07	0.1013	0.0596	0.0417
105	Feb-07	0.1018	0.0590	0.0428
106	Mar-07	0.1018	0.0585	0.0433
107	Apr-07	0.1007	0.0597	0.0410
108	May-07	0.0967	0.0599	0.0368
109	Jun-07	0.0970	0.0630	0.0340
110	Jul-07	0.1006	0.0625	0.0381
111	Aug-07	0.1021	0.0624	0.0397
112	Sep-07	0.1014	0.0618	0.0396
113	Oct-07	0.1080	0.0611	0.0469
114	Nov-07	0.1083	0.0597	0.0486
115	Dec-07	0.1084	0.0616	0.0468
116	Jan-08	0.1113	0.0602	0.0511
117	Feb-08	0.1139	0.0621	0.0518
118	Mar-08	0.1147	0.0621	0.0526
119	Apr-08	0.1167	0.0629	0.0538
120	May-08	0.1069	0.0627	0.0442
121	Jun-08	0.1062	0.0638	0.0424
122	Jul-08	0.1086	0.0640	0.0446
123	Aug-08	0.1123	0.0637	0.0486
124	Sep-08	0.1130	0.0649	0.0481
125	Oct-08	0.1213	0.0756	0.0457
126	Nov-08	0.1221	0.0760	0.0461
127	Dec-08	0.1162	0.0654	0.0508
128	Jan-09	0.1131	0.0639	0.0492
129	Feb-09	0.1155	0.0630	0.0524
130	Mar-09	0.1198	0.0642	0.0556
131	Apr-09	0.1146	0.0648	0.0498

Direct Testimony of James H. Vander Weide, Ph.D. On behalf of Atmos Energy Corporation

LINE NO.	DATE	DCF	BOND YIELD	RISK PREMIUM
132	May-09	0.1225	0.0649	0.0576
133	Jun-09	0.1208	0.0620	0.0588
134	Jul-09	0.1166	0.0597	0.0569
135	Average	0.1145	0.0679	0.0466

Notes: Utility bond yield information from Mergent Bond Record (formerly Moody's). See Appendix 4 for a description of the ex ante risk premium methodology. DCF results are calculated using a quarterly DCF model as follows:

D_{0}	$=$ Latest quarterly dividend per Value Line
P_{0}	$=$ Average of the monthly high and low stock prices for each month per Thomson Reuters.
FC	$=$ Flotation costs expressed as a percent of gross proceeds.
g	$=\mathrm{I} / \mathrm{B} / \mathrm{E} / \mathrm{S}$ forecast of future earnings growth for each month.
k	$=$ Cost of equity using the quarterly version of the DCF model.

$$
k=\left[\frac{d_{0}(1+g)^{\frac{1}{4}}}{P_{0}(1-F C)}+(1+g)^{\frac{1}{4}}\right]^{4}-1
$$

ATMOS ENERGY
 SCHEDULE 4
 COMPARATIVE RETURNS ON S\&P 500 STOCK INDEX AND MOODY'S A-RATED BONDS 1937-2009

Line No.	Year	S\&P 500 Stock Price	Stock Dividend Yield	Stock Return	A-rated Bond Price	Bond Return
1	2009	865.58	0.0310		\$68.43	
2	2008	1,380.33	0.0211	-35.19\%	\$72.25	0.24\%
3	2007	1,424.16	0.0181	-1.27\%	\$72.91	4.59\%
4	2006	1,278.72	0.0183	13.20\%	\$75.25	2.20\%
5	2005	1,181.41	0.0177	10.01\%	\$74.91	5.80\%
6	2004	1,132.52	0.0162	5.94\%	\$70.87	11.34\%
7	2003	895.84	0.0180	28.22\%	\$62.26	20.27\%
8	2002	1,140.21	0.0138	-20.05\%	\$57.44	15.35\%
9	2001	1,335.63	0.0116	-13.47\%	\$56.40	8.93\%
10	2000	1,425.59	0.0118	-5.13\%	\$52.60	14.82\%
11	1999	1,248.77	0.0130	15.46\%	\$63.03	-10.20\%
12	1998	963.35	0.0162	31.25\%	\$62.43	7.38\%
13	1997	766.22	0.0195	27.68\%	\$56.62	17.32\%
14	1996	614.42	0.0231	27.02\%	\$60.91	-0.48\%
15	1995	465.25	0.0287	34.93\%	\$50.22	29.26\%
16	1994	472.99	0.0269	1.05\%	\$60.01	-9.65\%
17	1993	435.23	0.0288	11.56\%	\$53.13	20.48\%
18	1992	416.08	0.0290	7.50\%	\$49.56	15.27\%
19	1991	325.49	0.0382	31.65\%	\$44.84	19.44\%
20	1990	339.97	0.0341	-0.85\%	\$45.60	7.11\%
21	1989	285.41	0.0364	22.76\%	\$43.06	15.18\%
22	1988	250.48	0.0366	17.61\%	\$40.10	17.36\%
23	1987	264.51	0.0317	-2.13\%	\$48.92	-9.84\%
24	1986	208.19	0.0390	30.95\%	\$39.98	32.36\%
25	1985	171.61	0.0451	25.83\%	\$32.57	35.05\%
26	1984	166.39	0.0427	7.41\%	\$31.49	16.12\%
27	1983	144.27	0.0479	20.12\%	\$29.41	20.65\%
28	1982	117.28	0.0595	28.96\%	\$24.48	36.48\%
29	1981	132.97	0.0480	-7.00\%	\$29.37	-3.01\%
30	1980	110.87	0.0541	25.34\%	\$34.69	-3.81\%
31	1979	99.71	0.0533	16.52\%	\$43.91	-11.89\%
32	1978	90.25	0.0532	15.80\%	\$49.09	-2.40\%
33	1977	103.80	0.0399	-9.06\%	\$50.95	4.20\%
34	1976	96.86	0.0380	10.96\%	\$43.91	25.13\%
35	1975	72.56	0.0507	38.56\%	\$41.76	14.75\%
36	1974	96.11	0.0364	-20.86\%	\$52.54	-12.91\%
37	1973	118.40	0.0269	-16.14\%	\$58.51	-3.37\%
38	1972	103.30	0.0296	17.58\%	\$56.47	10.69\%
39	1971	93.49	0.0332	13.81\%	$\$ 53.93$	12.13\%
40	1970	90.31	0.0356	7.08\%	\$50.46	14.81\%

Direct Testimony of James H. Vander Weide, Ph.D. On behalf of Atmos Energy Corporation

Line No.	Year	S\&P 500 Stock Price	Stock Dividend Yield	Stock Return	A-rated Bond Price	Bond Return
41	1969	102.00	0.0306	-8.40\%	\$62.43	-12.76\%
42	1968	95.04	0.0313	10.45\%	\$66.97	-0.81\%
43	1967	84.45	0.0351	16.05\%	\$78.69	-9.81\%
44	1966	93.32	0.0302	-6.48\%	\$86.57	-4.48\%
45	1965	86.12	0.0299	11.35\%	\$91.40	-0.91\%
46	1964	76.45	0.0305	15.70\%	\$92.01	3.68\%
47	1963	65.06	0.0331	20.82\%	$\$ 93.56$	2.61\%
48	1962	69.07	0.0297	-2.84\%	\$89.60	8.89\%
49	1961	59.72	0.0328	18.94\%	\$89.74	4.29\%
50	1960	58.03	0.0327	6.18\%	\$84.36	11.13\%
51	1959	55.62	0.0324	7.57\%	\$91.55	-3.49\%
52	1958	41.12	0.0448	39.74\%	\$101.22	-5.60\%
53	1957	45.43	0.0431	-5.18\%	\$100.70	4.49\%
54	1956	44.15	0.0424	7.14\%	\$113.00	-7.35\%
55	1955	35.60	0.0438	28.40\%	\$116.77	0.20\%
56	1954	25.46	0.0569	45.52\%	\$112.79	7.07\%
57	1953	26.18	0.0545	2.70\%	\$114.24	2.24\%
58	1952	24.19	0.0582	14.05\%	\$113.41	4.26\%
59	1951	21.21	0.0634	20.39\%	\$123.44	-4.89\%
60	1950	16.88	0.0665	32.30\%	\$125.08	1.89\%
61	1949	15.36	0.0620	16.10\%	\$119.82	7.72\%
62	1948	14.83	0.0571	9.28\%	\$118.50	4.49\%
63	1947	15.21	0.0449	1.99\%	\$126.02	-2.79\%
64	1946	18.02	0.0356	-12.03\%	\$126.74	2.59\%
65	1945	13.49	0.0460	38.18\%	\$119.82	9.11\%
66	1944	11.85	0.0495	18.79\%	\$119.82	3.34\%
67	1943	10.09	0.0554	22.98\%	\$118.50	4.49\%
68	1942	8.93	0.0788	20.87\%	\$117.63	4.14\%
69	1941	10.55	0.0638	-8.98\%	\$116.34	4.55\%
70	1940	12.30	0.0458	-9.65\%	\$112.39	7.08\%
71	1939	12.50	0.0349	1.89\%	\$105.75	10.05\%
72	1938	11.31	0.0784	18.36\%	$\$ 99.83$	9.94\%
73	1937	17.59	0.0434	-31.36\%	\$103.18	0.63\%
74	S\&P 500 Return 1937-2009		10.8\%			
75	A-rated Utility Bond Return		6.3\%			
76	Risk Premium		4.5\%			

Note: See Appendix 5 for an explanation of how stock and bond returns are derived and the source of the data presented.

Direct Testimony of James H. Vander Weide, Ph.D.
On behalf of Atmos Energy Corporation

ATMOS ENERGY

SCHEDULE 5
COMPARATIVE RETURNS ON S\&P UTILITY STOCK INDEX AND MOODY'S A-RATED BONDS 1937-2009

Line No.	Year	S\&P Utility Stock Price	Stock Dividend Yield	Stock Return	A-rated Bond Yield	Bond Return
1	2009				\$68.43	
2	2008			-25.90\%	\$72.25	0.24\%
3	2007			16.56\%	\$72.91	4.59\%
4	2006			20.76\%	\$75.25	2.20\%
5	2005			16.05\%	\$74.91	5.80\%
6	2004			22.84\%	\$70.87	11.34\%
7	2003			23.48\%	\$62.26	20.27\%
8	2002			-14.73\%	\$57.44	15.35\%
9						
10	2002	243.79	0.0362		\$57.44	
11	2001	307.70	0.0287	-17.90\%	\$56.40	8.93\%
12	2000	239.17	0.0413	32.78\%	\$52.60	14.82\%
13	1999	253.52	0.0394	-1.72\%	\$63.03	-10.20\%
14	1998	228.61	0.0457	15.47\%	\$62.43	7.38\%
15	1997	201.14	0.0492	18.58\%	\$56.62	17.32\%
16	1996	202.57	0.0454	3.83\%	\$60.91	-0.48\%
17	1995	153.87	0.0584	37.49\%	\$50.22	29.26\%
18	1994	168.70	0.0496	-3.83\%	\$60.01	-9.65\%
19	1993	159.79	0.0537	10.95\%	\$53.13	20.48\%
20	1992	149.70	0.0572	12.46\%	\$49.56	15.27\%
21	1991	138.38	0.0607	14.25\%	\$44.84	19.44\%
22	1990	146.04	0.0558	0.33\%	\$45.60	7.11\%
23	1989	114.37	0.0699	34.68\%	\$43.06	15.18\%
24	1988	106.13	0.0704	14.80\%	\$40.10	17.36\%
25	1987	120.09	0.0588	-5.74\%	\$48.92	-9.84\%
26	1986	92.06	0.0742	37.87\%	\$39.98	32.36\%
27	1985	75.83	0.0860	30.00\%	\$32.57	35.05\%
28	1984	68.50	0.0925	19.95\%	\$31.49	16.12\%
29	1983	61.89	0.0948	20.16\%	\$29.41	20.65\%
30	1982	51.81	0.1074	30.20\%	\$24.48	36.48\%
31	1981	52.01	0.0978	9.40\%	\$29.37	-3.01\%
32	1980	50.26	0.0953	13.01\%	\$34.69	-3.81\%
33	1979	50.33	0.0893	8.79\%	\$43.91	-11.89\%
34	1978	52.40	0.0791	3.96\%	\$49.09	-2.40\%
35	1977	54.01	0.0714	4.16\%	\$50.95	4.20\%
36	1976	46.99	0.0776	22.70\%	\$43.91	25.13\%
37	1975	38.19	0.0920	32.24\%	\$41.76	14.75\%
38	1974	48.60	0.0713	-14.29\%	\$52.54	-12.91\%
39	1973	60.01	0.0556	-13.45\%	\$58.51	-3.37\%
40	1972	60.19	0.0542	5.12\%	\$56.47	10.69\%
41	1971	63.43	0.0504	-0.07\%	\$53.93	12.13\%

Direct Testimony of James H. Vander Weide, Ph.D. On behalf of Atmos Energy Corporation

Line No.	Year	S\&P Utility Stock Price	Stock Dividend Yield	Stock Return	A-rated Bond Yield	Bond Return
42	1970	55.72	0.0561	19.45\%	\$50.46	14.81\%
43	1969	68.65	0.0445	-14.38\%	\$62.43	-12.76\%
44	1968	68.02	0.0435	5.28\%	\$66.97	-0.81\%
45	1967	70.63	0.0392	0.22\%	\$78.69	-9.81\%
46	1966	74.50	0.0347	-1.72\%	\$86.57	-4.48\%
47	1965	75.87	0.0315	1.34\%	\$91.40	-0.91\%
48	1964	67.26	0.0331	16.11\%	\$92.01	3.68\%
49	1963	63.35	0.0330	9.47\%	\$93.56	2.61\%
50	1962	62.69	0.0320	4.25\%	\$89.60	8.89\%
51	1961	52.73	0.0358	22.47\%	$\$ 89.74$	4.29\%
52	1960	44.50	0.0403	22.52\%	\$84.36	11.13\%
53	1959	43.96	0.0377	5.00\%	\$91.55	-3.49\%
54	1958	33.30	0.0487	36.88\%	\$101.22	-5.60\%
55	1957	32.32	0.0487	7.90\%	\$100.70	4.49\%
56	1956	31.55	0.0472	7.16\%	\$113.00	-7.35\%
57	1955	29.89	0.0461	10.16\%	\$116.77	0.20\%
58	1954	25.51	0.0520	22.37\%	\$112.79	7.07\%
59	1953	24.41	0.0511	9.62\%	\$114.24	2.24\%
60	1952	22.22	0.0550	15.36\%	\$113.41	4.26\%
61	1951	20.01	0.0606	17.10\%	\$123.44	-4.89\%
62	1950	20.20	0.0554	4.60\%	\$125.08	1.89\%
63	1949	16.54	0.0570	27.83\%	\$119.82	7.72\%
64	1948	16.53	0.0535	5.41\%	\$118.50	4.49\%
65	1947	19.21	0.0354	-10.41\%	\$126.02	-2.79\%
66	1946	21.34	0.0298	-7.00\%	\$126.74	2.59\%
67	1945	13.91	0.0448	57.89\%	\$119.82	9.11\%
68	1944	12.10	0.0569	20.65\%	\$119.82	3.34\%
69	1943	9.22	0.0621	37.45\%	\$118.50	4.49\%
70	1942	8.54	0.0940	17.36\%	\$117.63	4.14\%
71	1941	13.25	0.0717	-28.38\%	\$116.34	4.55\%
72	1940	16.97	0.0540	-16.52\%	\$112.39	7.08\%
73	1939	16.05	0.0553	11.26\%	\$105.75	10.05\%
74	1938	14.30	0.0730	19.54\%	$\$ 99.83$	9.94\%
75	1937	24.34	0.0432	-36.93\%	\$103.18	0.63\%
76	$\begin{aligned} & \text { Return } 1937 \text { - } \\ & 2009 \end{aligned}$	Stocks	10.5\%			
77		Bonds	6.3\%			
78	Risk Premium		4.2\%			

See Appendix 5 for an explanation of how stock and bond returns are derived and the source of the data presented. Standard \& Poor's discontinued its S\&P Utilities Index in December 2001 and replaced its utilities stock index with separate indices for electric and natural gas utilities. In this study, the stock returns beginning in 2002 are based on the total returns for the EEI Index of U.S. shareholder-owned electric utilities, as reported by EEI on its website.
http://www.eei.org/industry issues/finance and accounting/finance/research and analysis/EEI Stock Index

Direct Testimony of James H. Vander Weide, Ph.D.
On behalf of Atmos Energy Corporation
Page 45

ATMOS ENERGY

SCHEDULE 6

USING THE ARITHMETIC MEAN

 TO ESTIMATE THE COST OF EQUITY CAPITALConsider an investment that in a given year generates a return of 30 percent with probability equal to .5 and a return of -10 percent with a probability equal to .5 . For each one dollar invested, the possible outcomes of this investment at the end of year one are:

Ending Wealth	Probability
$\$ 1.30$	0.50
$\$ 0.90$	0.50

At the end of year two, the possible outcomes are:

Ending Wealth		Probability	Value \times Probability	
		$\$ 1.6$		
$(1.30)(1.30)$	$=$	9	0.25	0.4225
$(1.30)(.9)$	$\$ 1.1$	7	0.50	0.5850
$(.9)(.9)$	$=$	1	0.8	
Expected Wealth	$=$			$\$.2025$

The expected value of this investment at the end of year two is $\$ 1.21$. In a competitive capital market, the cost of equity is equal to the expected rate of return on an investment. In the above example, the cost of equity is that rate of return which will make the initial investment of one dollar grow to the expected value of $\$ 1.21$ at the end of two years. Thus, the cost of equity is the solution to the equation:

$$
\begin{gathered}
1(1+\mathrm{k})^{2}=1.21 \text { or } \\
\mathrm{k}=(1.21 / 1)^{-5}-1=10 \% .
\end{gathered}
$$

The arithmetic mean of this investment is:

$$
(30 \%)(.5)+(-10 \%)(.5)=10 \% .
$$

Thus, the arithmetic mean is equal to the cost of equity capital.
The geometric mean of this investment is:

$$
[(1.3)(.9)]^{5}-1=.082=8.2 \%
$$

Thus, the geometric mean is not equal to the cost of equity capital.
The lesson is obvious: for an investment with an uncertain outcome, the arithmetic mean is the best measure of the cost of equity capital.

ATMOS ENERGY

SCHEDULE 7

CALCULATION OF CAPITAL ASSET PRICING MODEL COST OF EQUITY USING IBBOTSON ${ }^{(1)}$ SBBI $^{\circledR 1}$ 6.5 PERCENT RISK PREMIUM

Line			
1	Risk-free Rate	4.38%	Long-term (20-year) Treasury bond yield ${ }^{10}$
2	Beta	0.85	Average Beta Proxy Companies
3	Risk Premium	6.50%	Long-horizon Ibbotson risk premium
4	Beta \times Risk Premium	5.53%	
5	Flotation Cost	0.27%	
6	CAPM cost of equity	10.2%	

ATMOS ENERGY

SCHEDULE 7 (continued)
PROXY COMPANY VALUE LINE BETAS

LINE NO.	COMPANY	BETA	MARKET CAP \$ (MIL)
1	AGL Resources	0.75	2,598
2	Atmos Energy	0.65	2,499
3	EQT Corp.	1.15	5,024
4	National Fuel Gas	0.90	3,227
5	Nicor Inc.	0.75	1,648
6	NiSource Inc.	0.85	3,539
7	Northwest Nat. Gas	0.60	1,183
8	ONEOK Inc.	0.95	3,485
9	Piedmont Natural Gas	0.65	1,796
10	South Jersey Inds.	0.65	1,099
11	Southwest Gas	0.75	1,083
12	Market-Weighted Average	0.85	

Betas from The Value Line Investment Analyzer August 2009

ATMOS ENERGY

SCHEDULE 8

CALCULATION OF CAPITAL ASSET PRICING MODEL COST OF EQUITY USING DCF ESTIMATE OF THE EXPECTED RATE OF RETURN ON THE MARKET PORTFOLIO

Line			
1	Risk-free rate	4.38%	Long-term (20-year) Treasury bond yield ${ }^{11}$
2	Beta	0.85	Average Beta Proxy Companies
3	DCF S\&P 500	12.7%	DCF Cost of Equity S\&P 500 (see following)
4	Risk Premium	8.4%	
5	Beta x Risk Premium	7.1%	
6	CAPM cost of equity	11.5%	

ATMOS ENERGY

SCHEDULE 8 (continued)
CALCULATION OF CAPITAL ASSET PRICING MODEL COST OF EQUITY USING DCF ESTIMATE OF THE EXPECTED RATE OF RETURN ON THE MARKET PORTFOLIO
SUMMARY OF DISCOUNTED CASH FLOW ANALYSIS FOR S\&P 500 COMPANIES

COMPANY	P_{0}	D_{0}	GROWTH	COST OF EQUITY
AMERISOURCEBERGEN	18.38	0.20	11.57\%	12.9\%
AETNA	25.61	0.04	12.60\%	12.8\%
ALLERGAN	47.14	0.20	13.28\%	13.8\%
ASSURANT	24.26	0.60	8.75\%	11.6\%
ALLSTATE	25.15	0.80	9.20\%	12.9\%
APPLIED MATS.	11.75	0.24	8.71\%	11.1\%
ABERCROMBIE \& FITCH	27.61	0.70	10.98\%	14.0\%
AON	37.40	0.60	12.35\%	14.3\%
AMERICAN EXPRESS	25.55	0.72	10.00\%	13.3\%
BOEING	43.97	1.68	8.29\%	12.7\%
BECTON DICKINSON	67.82	1.32	11.72\%	14.0\%
FRANKLIN RESOURCES	70.83	0.84	10.00\%	11.4\%
BROWN-FORMAN 'B'	44.95	1.15	8.10\%	11.0\%
BANK OF NEW YORK MELLON	28.69	0.36	11.43\%	12.9\%
BEMIS	25.01	0.90	8.00\%	12.1\%
BRISTOL MYERS SQUIBB	20.23	1.24	7.04\%	14.1\%
CA	18.01	0.16	9.60\%	10.6\%
CATERPILLAR	36.63	1.68	9.00\%	14.4\%
CHUBB	40.82	1.40	8.50\%	12.5\%
COCA COLA ENTS.	17.31	0.32	9.20\%	11.3\%
COLGATE-PALM.	68.42	1.76	9.75\%	12.8\%
CLOROX	55.64	2.00	9.67\%	13.9\%
COMCAST 'A'	14.45	0.27	11.25\%	13.5\%
CME GROUP	291.33	4.60	10.92\%	12.8\%
CUMMINS	34.44	0.70	10.33\%	12.7\%
CMS ENERGY	11.92	0.50	6.75\%	11.5\%
CONSOL EN.	35.90	0.40	12.03\%	13.3\%
COSTCO WHOLESALE	47.29	0.72	11.54\%	13.3\%
CAMPBELL SOUP	28.57	1.00	8.43\%	12.5\%
CSX	33.21	0.88	9.88\%	13.0\%
CINTAS	23.53	0.47	11.75\%	14.1\%
CVS CAREMARK	31.75	0.30	13.05\%	14.2\%
DOMINION RES.	32.50	1.75	6.36\%	12.5\%
DEERE	42.30	1.12	7.60\%	10.6\%
QUEST DIAGNOSTICS	53.12	0.40	12.39\%	13.3\%
DUKE ENERGY	14.38	0.96	3.50\%	11.0\%
ESTEE LAUDER COS.'A'	33.17	0.55	12.00\%	14.0\%
EATON	45.95	2.00	7.25\%	12.2\%
ENTERGY	74.35	3.00	9.02\%	13.7\%
FAMILY DOLLAR STORES	30.50	0.54	12.15\%	14.3\%
FIRSTENERGY	39.49	2.20	6.67\%	13.1\%
FEDERATED INVRS. ${ }^{\text {B' }}$	24.16	0.96	9.00\%	13.6\%
FLUOR	47.91	0.50	12.40\%	13.6\%
FORTUNE BRANDS	36.46	0.76	8.23\%	10.6\%

Direct Testimony of James H. Vander Weide, Ph.D.
On behalf of Atmos Energy Corporation
Page 50

COMPANY	P_{0}	D_{0}	GROWTH	COST OF EQUITY
FPL GROUP	56.43	1.89	9.59\%	13.5\%
GENERAL DYNAMICS	55.12	1.52	8.86\%	12.1\%
GENERAL ELECTRIC	12.66	0.40	9.07\%	12.7\%
GENUINE PARTS	33.66	1.60	6.00\%	11.4\%
GAP	16.37	0.34	10.00\%	12.4\%
GOLDMAN SACHS GP.	143.65	1.40	12.40\%	13.6\%
WW GRAINGER	81.86	1.84	11.26\%	13.9\%
HASBRO	25.19	0.80	9.00\%	12.7\%
HOME DEPOT	24.20	0.90	9.88\%	14.2\%
HARTFORD FINL.SVS.GP.	13.78	0.20	9.33\%	11.0\%
HARLEY-DAVIDSON	18.41	0.40	9.50\%	12.0\%
HONEYWELL INTL.	32.88	121	9.38\%	13.7\%
HEWLETT-PACKARD	37.47	0.32	10.07\%	11.1\%
HARRIS	29.42	0.76	11.00\%	14.0\%
INTERNATTONAL BUS.MCHS.	106.61	2.20	9.92\%	12.3\%
INTL.GAME TECH.	16.02	0.24	12.50\%	14.3\%
INTEL	16.61	0.56	10.00\%	14.0\%
TTT	43.96	0.85	8.50\%	10.7\%
PENNEY JC	28.39	0.80	10.27\%	13.6\%
JOHNSON \& JOHNSON	56.35	1.96	8.13\%	12.1\%
JANUS CAPITAL GP.	11.11	0.04	10.67\%	11.1\%
JP MORGAN CHASE \& CO.	35.33	0.20	12.00\%	12.7\%
NORDSTROM	21.78	0.64	10.00\%	13.4\%
KELLOGG	45.48	1.50	9.84\%	13.7\%
KB HOME	15.03	0.25	10.50\%	12.4\%
KRAFT FOODS	26.03	1.16	8.47\%	13.6\%
LENNAR ${ }^{\text {' }}{ }^{\prime}$	9.43	0.16	8.67\%	10.6\%
L3 COMMUNICATIONS	72.36	1.40	10.66\%	12.9\%
LOCKHEED MARTIN	80.81	2.28	10.56\%	13.9\%
LINCOLN NAT.	16.66	0.04	11.45\%	11.7\%
LOWES COMPANIES	20.03	0.36	11.75\%	13.9\%
SOUTHWEST AIRLINES	6.99	0.02	12.67\%	13.0\%
MCDONALDS	57.06	2.00	8.99\%	13.1\%
MCKESSON	43.02	0.48	11.27\%	12.6\%
MOODY'S	27.52	0.40	9.00\%	10.7\%
MEDTRONIC	33.68	0.82	10.54\%	13.4\%
3M	60.46	204	10.13\%	14.1\%
MORGAN STANLEY	27.72	0.20	11.60\%	12.4\%
MICROSOFT	22.15	0.52	10.17\%	12.9\%
M\&T BK.	51.92	280	4.72\%	10.8\%
NISOURCE	11.57	0.92	3.00\%	11.9\%
NIKE 'B'	54.06	1.00	12.11\%	14.3\%
NORTHEAST UTILITIES	21.59	0.95	8.33\%	13.4\%
NEWELL RUBBERMAID	11.08	0.20	9.80\%	11.9\%
OMNICOM GP.	31.94	0.60	11.63\%	13.9\%
PEOPLES UNITED FINANCIAI.	15.78	0.61	9.33\%	13.8\%
PACCAR	32.16	0.36	10.25\%	11.6\%
PG\&E	37.52	1.68	7.07\%	12.2\%
PROCTER \& GAMBLE	52.00	1.76	9.50\%	13.5\%
PROGRESS ENERGY	36.58	2.48	5.36\%	13.1\%
PARKER-HANNIFIN	44.24	1.00	10.00\%	12.6\%
PERKINELMER	17.12	0.28	11.75\%	13.7\%

Direct Testimony of James H. Vander Weide, Ph.D. On behalf of Atmos Energy Corporation

COMPANY	P_{0}	D_{0}	GROWTH	COST OF EQUTYY
PINNACLE WEST CAP.	28.90	2.10	5.67\%	14.0\%
PEPCO HOLDINGS	13.10	1.08	3.67\%	13.0\%
PRAXAIR	73.12	1.60	9.62\%	12.2\%
POLO RALPH LAUREN 'A'	54.40	0.20	13.75\%	14.2\%
ROCKWELL AUTOMATION	33.22	1.16	8.00\%	12.0\%
RADIOSHACK	13.91	0.25	9.48\%	11.6\%
RAYTHEON 'B'	45.34	1.24	11.14\%	14.4\%
SCANA.	31.74	1.88	5.34\%	12.1\%
SCHERING-PLOUGH	24.40	0.26	11.10\%	12.4\%
SHERWIN-WILLIAMS	54.89	1.42	8.83\%	11.8\%
SARALEE	9.49	0.44	8.43\%	13.8\%
SOUTHERN	30.07	1.75	4.97\%	11.6\%
STANLEY WORKS	35.98	1.32	8.00\%	12.2\%
STRYKER	39.44	0.40	12.53\%	13.7\%
AT\&T	24.84	1.64	4.11\%	11.5\%
MOLSON COORS BREWING 'B'	43.13	0.96	10.82\%	13.4\%
TIFFANY \& CO	27.46	0.68	10.75\%	13.7\%
TJX COS.	30.80	0.48	12.17\%	14.0\%
TROWE PRICE GP.	41.15	1.00	10.75\%	13.6\%
TOTAL SYSTEM SERVICES	13.49	0.28	9.38\%	11.8\%
TTME WARNER	24.90	0.75	8.06\%	11.5\%
TEXTRON	11.10	0.08	11.40\%	12.2\%
UNITED PARCEL SER.	51.34	1.80	7.65\%	11.7\%
UNTTED TECHNOLOGIES	52.29	1.54	9.00\%	12.4\%
VERLZON COMMUNICATIONS	30.23	1.84	4.58\%	11.4\%
WALGREEN	30.32	0.55	12.00\%	14.2\%
WISCONSIN ENERGY	40.33	1.35	9.03\%	12.9\%
WELLS FARGO \& CO	23.91	0.20	10.75\%	11.7\%
WINDSTREAM	8.45	1.00	0.82\%	14.0\%
WESTERN UNION	17.00	0.04	11.64\%	11.9\%
XCEL ENERGY	18.19	0.98	6.58\%	12.8\%
DENTSPLY INTL.	30.02	0.20	12.67\%	13.5\%
XTO EN.	39.15	0.50	11.40\%	12.9\%
Market-weighted Average				12.7\%

Notes: In applying the DCF model to the S\&P 500, I include in the DCF analysis only those companies in the S\&P 500 group which pay a dividend, have a positive growth rate, and have at least three analysts' long-term growth estimates. I also eliminate those 25% of companies with the highest and lowest DCF results.

D_{0}	$=$ Current dividend per Thomson Reuters.
P_{0}	$=$ Average of the monthly high and low stock prices during the three montbs ending July
	2009 per Thomson Reuters.
FC	$=$ Flotation costs expressed as a percent of gross proceeds (5 percent)
g	$=$ I/B/E/S forecast of future earnings growth July 2009.
k	$=$ Cost of equity using the quarterly version of the DCF model shown below:

$$
k=\left[\frac{d_{0}(1+g)^{\frac{1}{4}}}{P_{0}(1-F C)}+(1+g)^{\frac{1}{4}}\right]^{4}-1
$$

Direct Testimony of James H. Vander Weide, Ph.D. On behalf of Atmos Energy Corporation

APPENDIX 1
 QUALIFICATIONS OF JAMES H. VANDER WEIDE,

JAMES H. VANDER WEDDE, Ph.D.
3606 Stoneybrook Drive
Durham, NC 27705
Tel. 919.383.6659 or 919.383.1057
jim.vanderweide@duke.edu

James H. Vander Weide is Research Professor of Finance and Economics at Duke University, the Fuqua School of Business. Dr. Vander Weide is also founder and President of Financial Strategy Associates, a consulting firm that provides strategic, financial, and economic consulting services to corporate clients, including cost of capital and valuation studies.

Educational Background and Prior Academic Experience
Dr. Vander Weide holds a Ph.D. in Finance from Northwestern University and a Bachelor of Arts in Economics from Cornell University. He joined the faculty at Duke University and was named Assistant Professor, Associate Professor, Professor, and then Research Professor of Finance and Economics.

Since joining the faculty at Duke, Dr. Vander Weide has taught courses in corporate finance, investment management, and management of financial institutions. He has also taught courses in statistics, economics, and operations research, and a Ph.D. seminar on the theory of public utility pricing. In addition, Dr. Vander Weide has been active in executive education at Duke and Duke Corporate Education, leading executive development seminars on topics including financial analysis, cost of capital, creating shareholder value, mergers and acquisitions, real options, capital budgeting, cash management, measuring corporate performance, valuation, short-run financial planning, depreciation policies, financial strategy, and competitive strategy. Dr. Vander Weide has designed and served as Program Director for several executive education programs, including the Advanced Management Program, Competitive Strategies in Telecommunications, and the Duke Program for Manager Development for managers from the former Soviet Union.

Publications
Dr. Vander Weide has written a book entitled Managing Corporate Liquidity: An Introduction to Working Capital Management published by John Wiley and Sons, Inc. He has also written a chapter titled, "Financial Management in the Short Run" for The Handbook of Modern Finance;" a chapter for The Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques, "Principles for Lifetime Portfolio Selection: Lessons from Portfolio Theory," and written research papers on such topics as porffolio management, capital budgeting, investments, the effect of regulation on the performance of public utilities, and cash management. His articles have been published in American Economic Review, Financial Management, International Journal of Industrial Organization, Journal of Finance, Journal of

Financial and Quantitative Analysis, Journal of Bank Research, Journal of Portfolio Management, Journal of Accounting Research, Journal of Cash Management, Management Science, Atlantic Economic Journal, Journal of Economics and Business, and Computers and Operations Research.

Professional Consulting Experience

Dr. Vander Weide has provided financial and economic consulting services to firms in the electric, gas, insurance, telecommunications, and water industries for more than 25 years. He has testified on the cost of capital, competition, risk, incentive regulation, forward-looking economic cost, economic pricing guidelines, depreciation, accounting, valuation, and other financial and economic issues in more than 400 cases before the United States Congress, the Canadian Radio-Television and Telecommunications Commission, the Federal Communications Commission, the National Energy Board (Canada), the National Telecommunications and Information Administration, the Federal Energy Regulatory Commission, the Alberta Utilities Board (Canada), the public service commissions of 42 states and the District of Columbia, the insurance commissions of five states, the Iowa State Board of Tax Review, the National Association of Securities Dealers, and the North Carolina Property Tax Commission. In addition, he has testified as an expert witness in proceedings before the United States District Court for the District of New Hampshire; United States District Court for the Northern District of California; United States District Court for the Northern District of Illinois, United States District Court for the District of Nebraska; United States District Court for the Eastern District of North Carolina; Superior Court of North Carolina, the United States Bankruptcy Court for the Southern District of West Virginia; and United States District Court for the Eastern District of Michigan. With respect to implementation of the Telecommunications Act of 1996, Dr. Vander Weide has testified in 30 states on issues relating to the pricing of unbundled network elements and universal service cost studies and has consulted with Bell Canada, Deutsche Telekom, and Telefónica on similar issues. He has also provided expert testimony on issues related to electric and natural gas restructuring. He has worked for Bell Canada/Nortel on a special task force to study the effects of vertical integration in the Canadian telephone industry and has worked for Bell Canada as an expert witness on the cost of capital. Dr. Vander Weide has provided consulting and expert witness testimony to the following companies:

Telecommunications Companies
ALLTEL and its subsidiaries AT\&T (old)
Bell Canada/Nortel
Centel and its subsidiaries
Cisco Systems
Concord Telephone Company
Deutsche Telekom
Heins Telephone Company
JDS Uniphase
Minnesota Independent Equal Access Corp.
Pacific Telesis and its subsidiaries
Pine Drive Cooperative Telephone Co.

Ameritech (now AT\&T new)
Verizon (Bell Atlantic) and subsidiaries
BellSouth and its subsidiaries
Cincinnati Bell (Broadwing)
Citizens Telephone Company
Contel and its subsidiaries
GTE and subsidiaries (now Verizon)
Lucent Technologies
Tellabs, Inc.
NYNEX and its subsidiaries (Verizon)
Phillips County Cooperative Tel. Co.
Roseville Telephone Company (SureWest)

Direct Testimony of James H. Vander Weide, Ph.D.

Siemens
Sherburne Telephone Company
The Stentor Companies
Telefónica
Woodbury Telephone Company
U S West (Qwest)
Electric, Gas, and Water Companies
Alcoa Power Generating, Inc.
Alliant Energy
AltaLink, L.P.
Ameren
American Water Works
Atmos Energy
Central Illinois Public Service
Citizens Utilities
Consolidated Natural Gas and its subsidiaries
Dominion Resources
Duke Energy
Empire District Electric Company
EPCOR Distribution \& Transmission Inc.
EPCOR Energy Alberta Inc.
FortisAlberta Inc.
Interstate Power Company
Iowa-American Water Company
Iowa-Ilinois Gas and Electric
Iowa Southern
Kentucky-American Water Company
Kentucky Power Company
MidAmerican Energy and its subsidiaries
Nevada Power Company
NICOR
North Carolina Natural Gas
Northern Natural Gas Company

SBC Communications (now AT\&T new)
Southern New England Telephone
Sprint/United and its subsidiaries Union Telephone Company United States Telephone Association
Valor Telecommunications (Windstream)
NOVA Gas Transmission Ltd.
North Shore Gas
Pacificorp
PG\&E
Peoples Energy and its subsidiaries
The Peoples Gas, Light and Coke Co.
Progress Energy
Public Service Company of North Carolina
PSE\&G
Sempra Energy
South Carolina Electric and Gas
Southern Company and subsidiaries
Tennessee-American Water Company
Trans Québec \& Maritimes Pipeline Inc.
United Cities Gas Company
Union Gas

Insurance Companies

Allstate
North Carolina Rate Bureau
United Services Automobile Association (USAA)
The Travelers Indemnity Company
Gulf Insurance Company

Other Professional Experience

Dr. Vander Weide conducts in-house seminars and training sessions on topics such as creating shareholder value, financial analysis, competitive strategy, cost of capital, real options, financial strategy, managing growth, mergers and acquisitions, valuation, measuring corporate performance, capital budgeting, cash management, and financial planning. Among the firms for whom he has designed and taught tailored programs and training sessions are ABB Asea Brown Boveri, Accenture, Allstate, Ameritech, AT\&T, Bell Atlantic/Verizon, BellSouth, Progress Energy/Carolina Power \& Light, Contel, Fisons, GlaxoSmithKline, GTE, Lafarge, MidAmerican Energy, New Century Energies, Norfolk Southern, Pacific Bell Telephone, The Rank Group, Siemens, Southern New England Telephone, TRW, and Wolseley Plc. Dr. Vander Weide has also hosted a nationally prominent conference/workshop on estimating the cost of capital. In 1989, at the request of Mr. Fuqua, Dr. Vander Weide designed the Duke Program for Manager Development for

[^0]managers from the former Soviet Union, the first in the United States designed exclusively for managers from Russia and the former Soviet republics.

In the 1970's, Dr. Vander Weide helped found University Analytics, Inc., which at that time was one of the fastest growing small firms in the country. As an officer at University Analytics, he designed cash management models, databases, and software packages that are still used by most major U.S. banks in consulting with their corporate clients. Having sold his interest in University Analytics, Dr. Vander Weide now concentrates on strategic and financial consulting, academic research, and executive education.

Publications - Dr. James H. Vander Weide

The Lock-Box Location Problem: a Practical Reformulation, Journal of Bank Research, Summer, 1974, pp. 92-96 (with S. Maier). Reprinted in Management Science in Banking, edited by K. J. Cohen and S. E. Gibson, Warren, Gorham and Lamont, 1978.

A Finite Horizon Dynamic Programming Approach to the Telephone Cable Layout Problem, Conference Record, 1976 International Conference on Communications (with S. Maier and C. Lam).

A Note on the Optimal Investment Policy of the Regulated Firm, Atlantic Economic Journal, Fall, 1976 (with D. Peterson).

A Unified Location Model for Cash Disbursements and Lock-Box Collections, Journal of Bank Research, Summer, 1976 (with S. Maier). Reprinted in Management Science in Banking, edited by K. J. Cohen and S. E. Gibson, Warren Gorham and Lamont, 1978. Also reprinted in Readings on the Management of Working Capital, edited by K. V. Smith, West Publishing Company, 1979.

Capital Budgeting in the Decentralized Firm,' Management Science, Vol. 23, No. 4, December 1976, pp. 433-443 (with S. Maier).

A Monte Carlo Investigation of Characteristics of Optimal Geometric Mean Portfolios, Journal of Financial and Quantitative Analysis, June, 1977, pp. 215-233 (with S. Maier and D. Peterson).

A Strategy which Maximizes the Geometric Mean Return on Portfolio Investments, Management Science, June, 1977, Vol. 23, No. 10, pp. 1117-1123 (with S. Maier and D. Peterson).

A Decision Analysis Approach to the Computer Lease-Purchase Decision, Computers and Operations Research, Vol. 4, No. 3, September, 1977, pp. 167-172 (with S. Maier).

A Practical Approach to Short-run Financial Planning, Financial Management, Winter, 1978 (with S. Maier). Reprinted in Readings on the Management of Working Capital, edited by K. V. Smith, West Publishing Company, 1979.

Effectiveness of Regulation in the Electric Utility Industry, Journal of Economics and Business, May, 1979 (with F. Tapon).

On the Decentralized Capital Budgeting Problem Under Uncertainty, Management Science, September 1979 (with B. Obel).

Expectations Data and the Predictive Value of Interim Reporting: A Comment, Journal of Accounting Research, Spring 1980 (with L. D. Brown, J. S. Hughes, and M. S. Rozeff).

Deregulation and Oligopolistic Price-Quality Rivalry, American Economic Review, March 1981 (with J. Zalkind).

Incentive Considerations in the Reporting of Leveraged Leases, Journal of Bank Research, April 1982 (with J. S. Hughes).

Forecasting Disbursement Float, Financial Management, Spring 1981 (with S. Maier and D. Robinson).

Recent Developments in Management Science in Banking, Management Science, October 1981 (with K. Cohen and S. Maier).

General Telephone's Experience with a Short-run Financial Planning Model, Cash Management Forum, June 1980, Vol. 6, No. 1 (with J. Austin and S. Maier).

An Empirical Bayes Estimate of Market Risk, Management Science, July 1982 (with S. Maier and D. Peterson).

The Bond Scheduling Problem of the Multi-subsidiary Holding Company, Management Science, July 1982 (with K. Baker).

A Decision-Support System for Managing a Short-term Financial Instrument Portfolio, Journal of Cash Management, March 1982 (with S. Maier).

Deregulation and Locational Rents in Banking: a Comment, Journal of Bank Research, Summer 1983.

What Lockbox and Disbursement Models Really Do, Journal of Finance, May 1983 (with S. Maier).

Financial Management in the Short Run, Handbook of Modern Finance, edited by Dennis Logue, published by Warren, Gorham, \& Lamont, Inc., New York, 1984.

Measuring Investors' Growth Expectations: the Analysts vs. History, The Journal of Portfolio Management, Spring 1988 (with W. Carleton).

Entry Auctions and Strategic Behavior under Cross-Market Price Constraints, International Journal of Industrial Organization, 20 (2002) 611-629 (with J. Anton and N. Vettas).

Principles for Lifetime Portfolio Selection: Lessons from Portfolio Theory, Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques, John B. Guerard, (Ed.), Springer, forthcoming 2009.

Managing Corporate Liquidity: an Introduction to Working Capital Management, John Wiley and Sons, 1984 (with S. Maier).

The simple DCF model assumes that a firm pays dividends only at the end of each year. Since firms in fact pay dividends quarterly and investors appreciate the time value of money, the annual version of the DCF model generally underestimates the value investors are willing to place on the firm's expected future dividend stream. In these workpapers, we review two alternative formulations of the DCF model that allow for the quarterly payment of dividends.

When dividends are assumed to be paid annually, the DCF model suggests that the current price of the firm's stock is given by the expression:

$$
\begin{equation*}
P_{0}=\frac{D_{1}}{(1+k)}+\frac{D_{2}}{(1+k)^{2}}+\ldots+\frac{D_{n}+P_{\pi}}{(1+k)^{2}} \tag{1}
\end{equation*}
$$

where

P_{0}	$=$ current price per share of the firm's stock,
$\mathrm{D}_{1}, \mathrm{D}_{2}, \ldots, \mathrm{D}_{\mathrm{n}}$	$=\quad$expected annual dividends per share on the firm's stock,
P_{n}	$=\quad$price per share of stock at the time investors expect to sell the stock, and
k	$=$return investors expect to earn on alternative investments of the same risk, i.e., the investors' required rate of return.

Unfortunately, expression (1) is rather difficult to analyze, especially for the purpose of estimating k. Thus, most analysts make a number of simplifying assumptions. First, they assume that dividends are expected to grow at the constant rate g into the indefinite future.

Second, they assume that the stock price at time n is simply the present value of all dividends expected in periods subsequent to n. Third, they assume that the investors' required rate of
return, k , exceeds the expected dividend growth rate g . Under the above simplifying assumptions, a firm's stock price may be written as the following sum:

$$
\begin{equation*}
P_{0}=\frac{D_{0}(1+g)}{(1+k)}+\frac{D_{0}(1+g)^{2}}{(1+k)^{2}}+\frac{D_{0}(1+g)^{3}}{(1+k)^{3}}+\ldots, \tag{2}
\end{equation*}
$$

where the three dots indicate that the sum continues indefinitely.
As we shall demonstrate shortly, this sum may be simplified to:

$$
P_{o}=\frac{D_{0}(1+g)}{(k-g)}
$$

First, however, we need to review the very useful concept of a geometric progression.

Geometric Progression

Consider the sequence of numbers $3,6,12,24, \ldots$, where each number after the first is obtained by multiplying the preceding number by the factor 2 . Obviously, this sequence of numbers may also be expressed as the sequence $3,3 \times 2,3 \times 2^{2}, 3 \times 2^{3}$, etc. This sequence is an example of a geometric progression.

Definition: A geometric progression is a sequence in which each term after the first is obtained by multiplying some fixed number, called the common ratio, by the preceding term.

A general notation for geometric progressions is: a, the first term, r, the common ratio, and n, the number of terms. Using this notation, any geometric progression may be represented by the sequence:

$$
a, a r, a r^{2}, a r^{3}, \ldots, a r^{n-1}
$$

In studying the DCF model, we will find it useful to have an expression for the sum of n terms of a geometric progression. Call this sum S_{n}. Then

$$
\begin{equation*}
S_{n}=a+a r+\ldots+a r^{r-1} \tag{3}
\end{equation*}
$$

However, this expression can be simplified by multiplying both sides of equation (3) by r and then subtracting the new equation from the old. Thus,

$$
\mathrm{rS}_{n}=a r+a r^{2}+a r^{3}+\ldots+a r^{n}
$$

and

$$
\mathrm{S}_{\mathrm{n}}-\mathrm{rS} \mathrm{~S}_{\mathrm{n}}=\mathrm{a}-\mathrm{ar}^{\mathrm{n}},
$$

or

$$
(1-r) S_{n}=a\left(1-r^{n}\right) .
$$

Solving for S_{n}, we obtain:

$$
\begin{equation*}
S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)} \tag{4}
\end{equation*}
$$

as a simple expression for the sum of n terms of a geometric progression. Furthermore, if $|\mathrm{r}|<1$, then S_{n} is finite, and as n approaches infinity, S_{n} approaches $\mathrm{a} \div(1-\mathrm{r})$. Thus, for a geometric progression with an infinite number of terms and $|x|<1$, equation (4) becomes:

$$
\begin{equation*}
S=\frac{a}{1-r} \tag{5}
\end{equation*}
$$

Application to DCF Model

Comparing equation (2) with equation (3), we see that the firm's stock price (under the DCF assumption) is the sum of an infinite geometric progression with the first term

$$
a=\frac{D_{0}(1+g)}{(1+k)}
$$

and common factor

$$
r=\frac{(1+g)}{(1+k)}
$$

Applying equation (5) for the sum of such a geometric progression, we obtain

$$
S=a \cdot \frac{1}{(1-r)}=\frac{D_{0}(1+g)}{(1+k)} \cdot \frac{1}{1-\frac{1+g}{1+k}}=\frac{D_{0}(1+g)}{(1+k)} \cdot \frac{1+k}{k-g}=\frac{D_{0}(1+g)}{k-g}
$$

as we suggested earlier.

Quarterly DCE Model

The annual DCF model assumes that dividends grow at an annual rate of $\mathrm{g} \%$ per year (see

Figure 1).

Figure 1

Annual DCF Model

Year

$$
\mathrm{D}_{0}=4 \mathrm{~d}_{0}
$$

$$
D_{1}=D_{0}(1+g)
$$

Figure 2
Quarterly DCF Model (Constant Growth Version)
d_{0}
d_{1}
d_{2}
d_{3}
D_{1}

0

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{I}}=\mathrm{d}_{0}(1+\mathrm{g})^{25} \\
& \mathrm{~d}_{3}=\mathrm{d}_{0}(1+\mathrm{g})^{75}
\end{aligned}
$$

$$
\mathrm{d}_{2}=\mathrm{d}_{0}(1+\mathrm{g})^{50}
$$

$$
\mathrm{d}_{4}=\mathrm{d}_{0}(1+\mathrm{g})
$$

In the quarterly DCF model, it is natural to assume that quarterly dividend payments differ from the preceding quarterly dividend by the factor $(1+g)^{25}$, where g is expressed in terms of percent per year and the decimal .25 indicates that the growth has only occurred for one quarter of the year. (See Figure 2.) Using this assumption, along with the assumption of constant growth and $\boldsymbol{k}>\boldsymbol{g}$, we obtain a new expression for the firm's stock price, which takes account of the quarterly payment of dividends. This expression is:

$$
\begin{equation*}
P_{0}=\frac{d_{0}(1+g)^{\frac{1}{4}}}{(1+k)^{\frac{1}{4}}}+\frac{d_{0}(1+g)^{\frac{2}{4}}}{(1+k)^{\frac{2}{4}}}+\frac{d_{0}(1+g)^{\frac{3}{4}}}{(1+k)^{\frac{3}{4}}}+\ldots \tag{6}
\end{equation*}
$$

where d_{0} is the last quarterly dividend payment, rather than the last annual dividend payment. (We use a lower case d to remind the reader that this is not the annual dividend.)

Although equation (6) looks formidable at first glance, it too can be greatly simplified using the formula [equation (4)] for the sum of an infinite geometric progression. As the reader can easily verify, equation (6) can be simplified to:

$$
P_{0}=\frac{d_{0}(1+g)^{\frac{1}{4}}}{(1+k)^{\frac{1}{4}}-(1+g)^{\frac{1}{4}}}(7)
$$

Solving equation (7) for k, we obtain a DCF formula for estimating the cost of equity under the quarterly dividend assumption:

$$
\begin{equation*}
k=\left[\frac{d_{0}(1+g)^{\frac{1}{4}}}{P_{0}}+(1+g)^{\frac{1}{4}}\right]^{4}-1 \tag{8}
\end{equation*}
$$

An Alternative Quarterly DCF Model

Although the constant growth quarterly DCF model [equation (8)] allows for the quarterly timing of dividend payments, it does require the assumption that the firm increases its dividend payments each quarter. Since this assumption is difficult for some analysts to accept, we now discuss a second quarterly DCF model that allows for constant quarterly dividend payments within each dividend year.

Assume then that the firm pays dividends quarterly and that each dividend payment is constant for four consecutive quarters. There are four cases to consider, with each case distinguished by varying assumptions about where we are evaluating the firm in relation to the time of its next dividend increase. (See Figure 3.)

Figure 3

Quarterly DCF Model (Constant Dividend Version)

Case 1

0
1

$$
\begin{gathered}
\text { Year } \\
d_{1}=d_{2}=d_{3}=d_{4}=d_{0}(1+g)
\end{gathered}
$$

Case 2

d_{0}
d_{1}
d_{2}
d_{3}
d_{4}

0

$$
\begin{gathered}
\text { Year } \\
\mathrm{d}_{1}=\mathrm{d}_{0} \\
\mathrm{~d}_{2}=\mathrm{d}_{3}=\mathrm{d}_{4}=\mathrm{d}_{0}(1+\mathrm{g})
\end{gathered}
$$

Figure 3 (continued)

Case 3

0
1

Year

$$
\begin{gathered}
\mathrm{d}_{1}=\mathrm{d} 2=\mathrm{d}_{0} \\
\mathrm{~d}_{3}=\mathrm{d}_{4}=\mathrm{d}_{0}(1+\mathrm{g})
\end{gathered}
$$

Case 4

0 1

Year

$$
\mathrm{d}_{1}=\mathrm{d}_{2}=\mathrm{d}_{3}=\mathrm{d}_{0}
$$

$$
\mathrm{d}_{4}=\mathrm{d}_{0}(1+\mathrm{g})
$$

If we assume that the investor invests the quarterly dividend in an alternative investment of the same risk, then the amount accumulated by the end of the year will in all cases be given by

$$
\mathrm{D}_{1}^{*}=\mathrm{d}_{1}(1+\mathrm{k})^{3 / 4}+\mathrm{d}_{2}(1+\mathrm{k})^{1 / 2}+\mathrm{d}_{3}(1+\mathrm{k})^{1 / 4}+\mathrm{d}_{4}
$$

where d_{1}, d_{2}, d_{3} and d_{4} are the four quarterly dividends. Under these new assumptions, the firm's stock price may be expressed by an annual DCF model of the form (2), with the exception that

$$
\begin{equation*}
D_{1}^{*}=d_{1}(1+k)^{3 / 4}+d_{2}(1+k)^{1 / 2}+d_{3}(1+k)^{1 / 4}+d_{4} \tag{9}
\end{equation*}
$$

is used in place of $D_{0}(1+\mathrm{g})$. But, we already know that the annual DCF model may be reduced to

$$
P_{0}=\frac{D_{0}(1+g)}{k-g}
$$

Thus, under the assumptions of the second quarterly DCF model, the firm's cost of equity is given by

$$
k=\frac{D_{1}^{*}}{P_{0}}+g(\mathbf{1 0})
$$

with $D_{1}{ }^{*}$ given by (9).
Although equation (10) looks like the annual DCF model, there are at least two very important practical differences. First, since $D_{1} *$ is always greater than $D_{0}(1+g)$, the estimates of the cost of equity are always larger (and more accurate) in the Quarterly Model (10) than in the Annual Model. Second, since $\mathrm{D}_{1}{ }^{*}$ depends on k through equation (9), the unknown " k " appears on both sides of (10), and an iterative procedure is required to solve for k .

ATMOS ENERGY

APPENDIX 3
ADJUSTING FOR FLOTATION COSTS IN DETERMINING A PUBLIC UTILITY'S ALLOWED RATE OF RETURN ON EQUITY

Introduction

Regulation of public utilities is guided by the principle that utility revenues should be sufficient to allow recovery of all prudently incurred expenses, including the cost of capital. As set forth in the 1944 Hope Natural Gas Case [Federal Power Comm'n v. Hope Natural Gas Co. 320 U. S. 591 (1944) at 603], the U. S. Supreme Court states:

From the investor or company point of view it is important that there be enough revenue not only for operating expenses but also for the capital costs of the business. These include service on the debt and dividends on the stock....By that standard the return to the equity owner should be commensurate with returns on investments in other enterprises having corresponding risks.

Since the flotation costs arising from the issuance of debt and equity securities are an integral component of capital costs, this standard requires that the company's revenues be sufficient to fully recover flotation costs.

Despite the widespread agreement that flotation costs should be recovered in the regulatory process, several issues still need to be resolved. These include:

1. How is the term "flotation costs" defined? Does it include only the out-of-pocket costs associated with issuing securities (e. g., legal fees, printing costs, selling and underwriting expenses), or does it also include the reduction in a security's price that frequently accompanies flotation (i. e., market pressure)?
2. What should be the time pattern of cost recovery? Should a company be allowed to recover flotation costs immediately, or should flotation costs be recovered over the life of the issue?
3. For the purposes of regulatory accounting, should flotation costs be included as an expense? As an addition to rate base? Or as an additional element of a firm's allowed rate of return?
4. Do existing regulatory methods for flotation cost recovery allow a firm full recovery of flotation costs?

In this paper, I review the literature pertaining to the above issues and discuss my own views regarding how this literature applies to the cost of equity for a regulated firm.

Definition of Flotation Cost

The value of a firm is related to the future stream of net cash flows (revenues minus expenses measured on a cash basis) that can be derived from its assets. In the process of acquiring assets, a firm incurs certain expenses which reduce its value. Some of these expenses or costs are directly associated with revenue production in one period (e. g., wages, cost of goods sold), others are more properly associated with revenue production in many periods (e. g., the acquisition cost of plant and equipment). In either case, the word "cost" refers to any item that reduces the value of a firm.

If this concept is applied to the act of issuing new securities to finance asset purchases, many items are properly included in issuance or flotation costs. These include: (1) compensation received by investment bankers for underwriting services, (2) legal fees, (3) accounting fees, (4) engineering fees, (5) trustee's fees, (6) listing fees, (7) printing and engraving expenses, (8) SEC registration fees, (9) Federal Revenue Stamps, (10) state taxes, (11) warrants granted to underwriters as extra compensation, (12) postage expenses, (13) employees' time, (14) market pressure, and (15) the offer discount. The finance literature generally divides these flotation cost items into three categories, namely, underwriting expenses, issuer expenses, and price effects.

Magnitude of Flotation Costs

The finance literature contains several studies of the magnitude of the flotation costs associated with new debt and equity issues. These studies differ primarily with regard to the time period studied, the sample of companies included, and the source of data. The flotation cost studies generally agree, however, that for large issues, underwriting expenses represent approximately one and one-half percent of the proceeds of debt issues and three to five percent of the proceeds of seasoned equity
issues. They also agree that issuer expenses represent approximately 0.5 percent of both debt and equity issues, and that the announcement of an equity issue reduces the company's stock price by at least two to three percent of the proceeds from the stock issue. Thus, total flotation costs represent approximately two percent ${ }^{12}$ of the proceeds from debt issues, and five and one-half to eight and one-half percent of the proceeds of equity issues.

Lee $e t$. al. [14] is an excellent example of the type of flotation cost studies found in the finance literature. The Lee study is a comprehensive recent study of the underwriting and issuer costs associated with debt and equity issues for both utilities and non-utilities. The results of the Lee et. al. study are reproduced in Tables 1 and 2. Table 1 demonstrates that the total underwriting and issuer expenses for the 1,092 debt issues in their study averaged 2.24 percent of the proceeds of the issues, while the total underwriting and issuer costs for the 1,593 seasoned equity issues in their study averaged 7.11 percent of the proceeds of the new issue. Table 1 also demonstrates that the total underwriting and issuer costs of seasoned equity offerings, as a percent of proceeds, decline with the size of the issue. For issues above $\$ 60$ million, total underwriting and issuer costs amount to from three to five percent of the amount of the proceeds.

Table 2 reports the total underwriting and issuer expenses for 135 utility debt issues and 136 seasoned utility equity issues. Total underwriting and issuer expenses for utility bond offerings averaged 1.47 percent of the amount of the proceeds and for seasoned utility equity offerings averaged 4.92 percent of the amount of the proceeds. Again, there are some economies of scale associated with larger equity offerings. Total underwriting and issuer expenses for equity offerings in excess of 40 million dollars generally range from three to four percent of the proceeds.

The results of the Lee study for large equity issues are consistent with results of earlier studies by Bhagat and Frost [4], Mikkelson and Partch [17], and Smith [24]. Bhagat and Frost found that total underwriting and issuer expenses average approximately four and one-half percent of the amount of proceeds from negotiated utility offerings during the period 1973 to 1980, and approximately three and one-half percent of the amount of the proceeds from competitive utility offerings over the same period. Mikkelson and Partch found that total underwriting and issuer expenses average five and one-half percent of the proceeds from seasoned equity offerings over the 1972 to 1982 period. Smith found that total underwriting and issuer expenses for larger equity issues generally amount to four to five percent of the proceeds of the new issue.

The finance literature also contains numerous studies of the decline in price associated with sales of large blocks of stock to the public. These articles relate to the price impact of: (1) initial public offerings; (2) the sale of large blocks of stock from one investor to another; and (3) the issuance of seasoned equity issues to the general public. All of these studies generally support the notion that the announcement of the sale of large blocks of stock produces a decline in a company's share price. The decline in share price for initial public offerings is significantly larger than the decline in share price for seasoned equity offerings; and the decline in share price for public utilities is less than the decline in share price for non-public utilities. A comprehensive study of the magnitude of the decline in share price associated specifically with the sale of new equity by public utilities is reported in Pettway [19], who found the market pressure effect for a sample of 368 public utility equity sales to be in the range of two to three percent. This decline in price is a real cost to the utility, because the proceeds to the utility depend on the stock price on the day of issue.

In addition to the price decline associated with the announcement of a new equity issue, the finance literature recognizes that there is also a price decline associated with the actual issuance of equity securities. In particular, underwriters typically sell seasoned new equity securities to investors at a price lower than the closing market price on the day preceding the issue. The Rules of Fair Practice of the National

[^1]Association of Securities Dealers require that underwriters not sell shares at a price above the offer price. Since the offer price represents a binding constraint to the underwriter, the underwriter tends to set the offer price slightly below the market price on the day of issue to compensate for the risk that the price received by the underwriter may go down, but can not increase. Smith provides evidence that the offer discount tends to be between 0.5 and 0.8 percent of the proceeds of an equity issue. I am not aware of any similar studies for debt issues.

In summary, the finance literature provides strong support for the conclusion that total underwriting and issuer expenses for public utility debt offerings represent approximately two percent of the amount of the proceeds, while total underwriting and issuer expenses for public utility equity offerings represent at least four to five percent of the amount of the proceeds. In addition, the finance literature supports the conclusion that the cost associated with the decline in stock price at the announcement date represents approximately two to three percent as a result of a large public utility equity issue.

Time Pattern Of Flotation Cost Recovery

Although flotation costs are incurred only at the time a firm issues new securities, there is no reason why an issuing firm ought to recognize the expense only in the current period. In fact, if assets purchased with the proceeds of a security issue produce revenues over many years, a sound argument can be made in favor of recognizing flotation expenses over a reasonably lengthy period of time. Such recognition is certainly consistent with the generally accepted accounting principle that the time pattern of expenses match the time pattern of revenues, and it is also consistent with the normal treatment of debt flotation expenses in both regulated and unregulated industries.

In the context of a regulated firm, it should be noted that there are many possible time patterns for the recovery of flotation expenses. However, if it is felt that flotation expenses are most appropriately recovered over a period of years, then it should be recognized that investors must also be compensated for the passage of time. That is to say, the value of an investor's capital will be reduced if the expenses are merely distributed over time, without any allowance for the time value of money.

Accounting For Flotation Cost In A Regulatory Setting

In a regulatory setting, a firm's revenue requirements are determined by the equation:

Revenue Requirement $=$ Total Expenses + Allowed Rate of Return x Rate Base
Thus, there are three ways in which an issuing firm can account for and recover its flotation expenses: (1) treat flotation expenses as a current expense and recover them immediately; (2) include flotation expenses in rate base and recover them over time; and (3) adjust the allowed rate of return upward and again recover flotation expenses over time. Before considering methods currently being used to recover flotation expenses in a regulatory setting, I shall briefly consider the advantages and disadvantages of these three basic recovery methods.

Expenses. Treating flotation costs as a current expense has several advantages. Because it allows for recovery at the time the expense occurs, it is not necessary to compute amortized balances over time and to debate which interest rate should be applied to these balances. A firm's stockholders are treated fairly, and so are the firm's customers, because they pay neither more nor less than the actual flotation expense. Since flotation costs are relatively small compared to the total revenue requirement, treatment as a current expense does not cause unusual rate hikes in the year of flotation, as would the introduction of a large generating plant in a state that does not allow Construction Work in Progress in rate base.

On the other hand, there are two major disadvantages of treating flotation costs as a current expense. First, since the asset purchased with the acquired funds will likely generate revenues for many years into the future, it seems unfair that current ratepayers should bear the full cost of issuing new securities, when future ratepayers share in the benefits. Second, this method requires an estimate of the underpricing effect on each security issue. Given the difficulties involved in measuring the extent of underpricing, it may be more accurate to estimate the average underpricing allowance for many securities than to estimate the exact figure for one security.

Rate Base. In an article in Public Utilities Fortnightly, Bierman and Hass [5] recommend that flotation costs be treated as an intangible asset that is included in a
firm's rate base along with the assets acquired with the stock proceeds. This approach has many advantages. For ratepayers, it provides a better match between benefits and expenses: the future ratepayers who benefit from the financing costs contribute the revenues to recover these costs. For investors, if the allowed rate of return is equal to the investors' required rate of return, it is also theoretically fair since they are compensated for the opportunity cost of their investment (including both the time value of money and the investment risk).

Despite the compelling advantages of this method of cost recovery, there are several disadvantages that probably explain why it has not been used in practice. First, a firm will only recover the proper amount for flotation expenses if the rate base is multiplied by the appropriate cost of capital. To the extent that a commission under or over estimates the cost of capital, a firm will under or over recover its flotation expenses. Second, it is may be both legally and psychologically difficult for commissioners to include an intangible asset in a firm's rate base. According to established legal doctrine, assets are to be included in rate base only if they are "used and useful" in the public service. It is unclear whether intangible assets such as flotation expenses meet this criterion.

Rate of Return. The prevailing practice among state regulators is to treat flotation expenses as an additional element of a firm's cost of capital or allowed rate of return. This method is similar to the second method above (treatment in rate base) in that some part of the initial flotation cost is amortized over time. However, it has a disadvantage not shared by the rate base method. If flotation cost is included in rate base, it is fairly easy to keep track of the flotation cost on each new equity issue and see how it is recovered over time. Using the rate of return method, it is not possible to track the flotation cost for specific issues because the flotation cost for a specific issue is never recorded. Thus, it is not clear to participants whether a current allowance is meant to recover (1) flotation costs actually incurred in a test period, (2) expected future flotation costs, or (3) past flotation costs. This confusion never arises in the treatment of debt flotation costs. Because the exact costs are recorded and explicitly amortized over time, participants recognize that current allowances for debt
flotation costs are meant to recover some fraction of the flotation costs on all past debt issues.

Existing Regulatory Methods

Although most state commissions prefer to let a regulated firm recover flotation expenses through an adjustment to the allowed rate of return, there is considerable controversy about the magnitude of the required adjustment. The following are some of the most frequently asked questions: (1) Should an adjustment to the allowed return be made every year, or should the adjustment be made only in those years in which new equity is raised? (2) Should an adjusted rate of return be applied to the entire rate base, or should it be applied only to that portion of the rate base financed with paid-in capital (as opposed to retained earnings)? (3) What is the appropriate formula for adjusting the rate of return?

This section reviews several methods of allowing for flotation cost recovery. Since the regulatory methods of allowing for recovery of debt flotation costs is well known and widely accepted, I will begin my discussion of flotation cost recovery procedures by describing the widely accepted procedure of allowing for debt flotation cost recovery.

Debt Flotation Costs

Regulators uniformly recognize that companies incur flotation costs when they issue debt securities. They typically allow recovery of debt flotation costs by making an adjustment to both the cost of debt and the rate base (see Brigham [6]). Assume that: (1) a regulated company issues $\$ 100$ million in bonds that mature in 10 years; (2) the interest rate on these bonds is seven percent; and (3) flotation costs represent four percent of the amount of the proceeds. Then the cost of debt for regulatory purposes will generally be calculated as follows:

$$
\begin{aligned}
\text { Cost of Debt } & =\frac{\text { Interest expense }+ \text { Amortization of flotation costs }}{\text { Principal value }- \text { Unamortized flotation costs }} \\
& =\frac{\$ 7,000,000+\$ 400,000}{\$ 100,000,000-\$ 4,000,000} \\
& =7.71 \%
\end{aligned}
$$

Thus, current regulatory practice requires that the cost of debt be adjusted upward by approximately 71 basis points, in this example, to allow for the recovery of debt flotation costs. This example does not include losses on reacquisition of debt. The flotation cost allowance would increase if losses on reacquisition of debt were included.

The logic behind the traditional method of allowing for recovery of debt flotation costs is simple. Although the company has issued $\$ 100$ million in bonds, it can only invest $\$ 96$ million in rate base because flotation costs have reduced the amount of funds received by $\$ 4$ million. If the company is not allowed to earn a 71 basis point higher rate of return on the $\$ 96$ million invested in rate base, it will not generate sufficient cash flow to pay the seven percent interest on the $\$ 100$ million in bonds it has issued. Thus, proper regulatory treatment is to increase the required rate of return on debt by 71 basis points.

Equity Flotation Costs

The finance literature discusses several methods of recovering equity flotation costs. Since each method stems from a specific model, (i. e., set of assumptions) of a firm and its cash flows, I will highlight the assumptions that distinguish one method from another.

Arzac and Marcus. Arzac and Marcus [2] study the proper flotation cost adjustment formula for a firm that makes continuous use of retained earnings and external equity financing and maintains a constant capital structure (debt/equity ratio). They assume at the outset that underwriting expenses and underpricing apply only to new equity obtained from external sources. They also assume that a firm has previously recovered all underwriting expenses, issuer expenses, and underpricing associated with previous issues of new equity.

To discuss and compare various equity flotation cost adjustment formulas, Arzac and Marcus make use of the following notation:
$\mathrm{k} \quad=\quad$ an investors' required return on equity
$\mathrm{r} \quad=\quad$ a utility's allowed return on equity base
$S \quad=\quad$ value of equity in the absence of flotation costs
$S_{f} \quad=\quad$ value of equity net of flotation costs
$\mathrm{K}_{\mathrm{t}}=$ equity base at time t
$\mathrm{E}_{\mathrm{t}}=$ total earnings in year t
$\mathrm{D}_{\mathrm{t}}=$ total cash dividends at time t
$b=\left(E_{t}-D_{t}\right) \div \mathrm{E}_{t}=$ retention rate, expressed as a fraction of earnings
$h \quad=\quad$ new equity issues, expressed as a fraction of earnings
$m \quad=\quad$ equity investment rate, expressed as a fraction of earnings,
$\mathrm{m}=\mathrm{b}+\mathrm{h}<1$
$\mathrm{f}=$ flotation costs, expressed as a fraction of the value of an issue.

Because of flotation costs, Arzac and Marcus assume that a firm must issue a greater amount of external equity each year than it actually needs. In terms of the above notation, a firm issues $\mathrm{hE}_{t} \div(1-\mathrm{f})$ to obtain hE_{t} in external equity funding. Thus, each year a firm loses:

Equation 3

$$
L=\frac{h E_{t}}{1-f}-h E_{t}=\frac{f}{1-f} \times h E_{t}
$$

due to flotation expenses. The present value, V , of all future flotation expenses is:

Equation 4

$$
V=\sum_{t=1}^{\infty} \frac{f h E_{t}}{(1-f)(1+k)^{t}}=\frac{f h}{1-f} \times \frac{r K_{0}}{k-m r}
$$

To avoid diluting the value of the initial stockholder's equity, a regulatory authority needs to find the value of r, a firm's allowed return on equity base, that
equates the value of equity net of flotation costs to the initial equity base ($\mathrm{S}_{\mathrm{f}}=\mathrm{K}_{0}$). Since the value of equity net of flotation costs equals the value of equity in the absence of flotation costs minus the present value of flotation costs, a regulatory authority needs to find that value of r that solves the following equation:

$$
S_{f}=S-L .
$$

This value is:

Equation 5

$$
r=\frac{k}{1-\frac{f h}{1-f}}
$$

To illustrate the Arzac-Marcus approach to adjusting the allowed return on equity for the effect of flotation costs, suppose that the cost of equity in the absence of flotation costs is 12 percent. Furthermore, assume that a firm obtains external equity financing each year equal to 10 percent of its earnings and that flotation expenses equal 5 percent of the value of each issue. Then, according to Arzac and Marcus, the allowed return on equity should be:

$$
r=\frac{.12}{1-\frac{(.05) \cdot(.1)}{.95}}=.1206=12.06 \%
$$

Summary. With respect to the three questions raised at the beginning of this section, it is evident that Arzac and Marcus believe the flotation cost adjustment should be applied each year, since continuous external equity financing is a fundamental assumption of their model. They also believe that the adjusted rate of return should be applied to the entire equity-financed portion of the rate base because their model is based on the assumption that the flotation cost adjustment mechanism will be applied to the entire equity financed portion of the rate base. Finally, Arzac and Marcus recommend a flotation cost adjustment formula, Equation (3), that implicitly excludes recovery of financing costs associated with financing in previous periods and includes only an allowance for the fraction of equity financing obtained from external sources.

Patterson. The Arzac-Marcus flotation cost adjustment formula is significantly different from the conventional approach (found in many introductory textbooks) which recommends the adjustment equation:

Equation 6

$$
r=\frac{D_{t}}{P_{t-1}(1-f)}+g
$$

where P_{t-J} is the stock price in the previous period and g is the expected dividend growth rate. Patterson [18] compares the Arzac-Marcus adjustment formula to the conventional approach and reaches the conclusion that the Arzac-Marcus formula effectively expenses issuance costs as they are incurred, while the conventional approach effectively amortizes them over an assumed infinite life of the equity issue. Thus, the conventional formula is similar to the formula for the recovery of debt flotation costs: it is not meant to compensate investors for the flotation costs of future issues, but instead is meant to compensate investors for the flotation costs of previous issues. Patterson argues that the conventional approach is more appropriate for rate making purposes because the plant purchased with external equity funds will yield benefits over many future periods.

Illustration. To illustrate the Patterson approach to flotation cost recovery, assume that a newly organized utility sells an initial issue of stock for $\$ 100$ per share, and that the utility plans to finance all new investments with retained earnings. Assume also that: (1) the initial dividend per share is six dollars; (2) the expected long-run dividend growth rate is six percent; (3) the flotation cost is five percent of the amount of the proceeds; and (4) the payout ratio is 51.28 percent. Then, the investor's required rate of return on equity is $[\mathrm{k}=(\mathrm{D} / \mathrm{P})+\mathrm{g}=6$ percent +6 percent $=$ 12 percent]; and the flotation-cost-adjusted cost of equity is [6 percent $(1 / .95)+6$ percent $=12.316$ percent $]$.

The effects of the Patterson adjustment formula on the utility's rate base, dividends, earnings, and stock price are shown in Table 3. We see that the Patterson formula allows earnings and dividends to grow at the expected six percent rate. We also see that the present value of expected future dividends, $\$ 100$, is just sufficient to
induce investors to part with their money. If the present value of expected future dividends were less than $\$ 100$, investors would not have been willing to invest $\$ 100$ in the firm. Furthermore, the present value of future dividends will only equal $\$ 100$ if the firm is allowed to earn the 12.316 percent flotation-cost-adjusted cost of equity on its entire rate base.

Summary. Patterson's opinions on the three issues raised in this section are in stark contrast to those of Arzac and Marcus. He believes that: (1) a flotation cost adjustment should be applied in every year, regardless of whether a firm issues any new equity in each year; (2) a flotation cost adjustment should be applied to the entire equity-financed portion of the rate base, including that portion financed by retained earnings; and (3) the rate of return adjustment formula should allow a firm to recover an appropriate fraction of all previous flotation expenses.

Conclusion

Having reviewed the literature and analyzed flotation cost issues, I conclude that:

Definition of Flotation Cost: A regulated firm should be allowed to recover both the total underwriting and issuance expenses associated with issuing securities and the cost of market pressure.

Time Pattern of Flotation Cost Recovery. Shareholders are indifferent between the alternatives of immediate recovery of flotation costs and recovery over time, as long as they are fairly compensated for the opportunity cost of their money. This opportunity cost must include both the time value of money and a risk premium for equity investments of this nature.

Regulatory Recovery of Flotation Costs. The Patterson approach to recovering flotation costs is the only rate-of-return-adjustment approach that meets the Hope case criterion that a regulated company's revenues must be sufficient to allow the company an opportunity to recover all prudently incurred expenses, including the cost of capital. The Patterson approach is also the only rate-of-return-adjustment approach that provides an incentive for investors to invest in the regulated company.

Implementation of a Flotation Cost Adjustment. As noted earlier, prevailing regulatory practice seems to be to allow the recovery of flotation costs through an adjustment to the required rate of return. My review of the literature on this subject indicates that there are at least two recommended methods of making this adjustment: the Patterson approach and the Arzac-Marcus approach. The Patterson approach assumes that a firm's flotation expenses on new equity issues are treated in the same manner as flotation expenses on new bond issues, i. e., they are amortized over future time periods. If this assumption is true (and I believe it is), then the flotation cost adjustment should be applied to a firm's entire equity base, including retained earnings. In practical terms, the Patterson approach produces an increase in a firm's cost of equity of approximately thirty basis points. The Arzac-Marcus approach assumes that flotation costs on new equity issues are recovered entirely in the year in which the securities are sold. Under the Arzac-Marcus assumption, a firm should not be allowed any adjustments for flotation costs associated with previous flotations. Instead, a firm should be allowed only an adjustment on future security sales as they occur. Under reasonable assumptions about the rate of new equity sales, this method produces an increase in the cost of equity of approximately six basis points. Since the Arzac-Marcus approach does not allow the company to recover the entire amount of its flotation cost, I recommend that this approach be rejected and the Patterson approach be accepted.

BIBLIOGRAPHY

1. Armknecht, Raymond, Fred Grygiel and Patrick Hess, "Market Pressure: The Sales of New Common Equity and Rate of Return Regulation, "Proceedings of the Business and Economic Statistics Section of the American Statistical Association, 1974, pp. 80-91.
2. Arzac, E. R., and M. Marcus, "Flotation Cost Allowance in Rate of Return Regulation: A Note," Journal of Finance, December 1981, pp. 1199-1202.
3. Barclay, M. J. and R. H. Litzenberger, 1988, "Announcement Effects of New Equity Issues and the Use of Intraday Price Data," Journal of Financial Economics 21, 71-99.
4. Bhagat, S. and P. A. Frost, 1986, "Issuing Costs to Existing Shareholders in Competitive and Negotiated Underwritten Public Utility Equity Offerings," Journal of Financial Economics 15, 233-59.
5. Bierman, H., and J. E. Hass, "Equity Flotation Cost Adjustments in Utilities' Cost of Service," Public Utilities Fortnightly, March 1, 1983, pp.46-49 .
6. Bowyer, Jr., John W., and Jess B. Yawitz, "The Effect of New Equity Issues on Utility Stock Prices," Pubic Utilities Fortnightly, May 22, 1980.
7. Brigham, Eugene F., Dana Aberwald, and Louis C. Gapenski, "Common Equity Flotation Costs and Rate Making," Public Utilities Fortnightly, May 2, 1985, pp. 28-26.
8. Calomiris, C. W. and D. M. G Raff, 1995, "The Evolution of Market Structure, Information, and Spreads in American Investment Banking," in M. B. Bordo and R. Sylla, eds., Anglo-American Finance: Financial Markets and Institutions in $20^{\text {th }}$ Century North America and the U. K. (Business One-Irwin Homewood, IL), 103-60.
9. Dunbar, C. G., 1995, "The Use of Warrants as Underwriter Compensation in Initial Public Offerings," Journal of Financial Economics 38, 59--78.
10. Evans, Robert E., "On the Existence, Measurement, and Economic Significance of Market Pressure in the Pricing of New Equity Shares," unpublished dissertation, University of Wisconsin, 1978.
11. Howe, K. M., "Flotation Cost Allowance in Rate of Return Regulation: Comment," Journal of Finance, March 1984, pp. 289-290.
12. Howe, K. M., "Flotation Cost Allowance for the Regulated Firm: A Comparison of Alternatives," unpublished working paper, School of Business, Iowa State University.
13. Ibbotson, R. C., "Price Performance of Common Stock New Issues," Journal of Financial Economics, 1975, pp. 235-272.
14. Lee, Inmoo, Scott Lochhead, Jay Ritter, and Quanshui Zhao, "The Costs of Raising Capital," The Journal of Financial Research, Vol XIX No 1 (Spring 1996), 59-74
15. Logue, D. E., "On the Pricing of Unseasoned Equity Offerings: 1965-1969," Journal of Financial and Quantitative Analysis, January 1973, pp. 91-103.
16. McDonald, J. G. and A. K. Fisher, "New Issue Stock Price Behavior," Journal of Finance, March 1972, pp. 97-102.
17. Mikkelson, Wayne H. and M. Megan Partch, "Valuation Effects of Security Offerings and the Issuance Process," Journal of Financial Economics 15 (1986), pp. 31-60.
18. Patterson, C. S., "Flotation Cost Allowance in Rate of Return Regulation: Comment," Journal of Finance, September 1983, pp. 1335-1338.
19. Pettway, R. H., "The Effects of New Equity Sales Upon Utility Share Prices," Public Utilities Fortnightly, May 10, 1984, pp. 35-39.
20. Reilly, F. K. and K. Hatfield, "Investor Experience with New Stock Issues," Financial Analysts'Journal, September--October 1969, pp. 73-80.
21. Richter, P. H., "The Ever Present Need for an Underpricing Allowance," Public Utilities Fortnightly, February 18, 1982, pp. 58-61.
22. Scholes, M., "The Market for New Securities: Substitution versus Price Pressure and the Effects of Information on Share Prices," Journal of Business, April 1972, pp. 179-211.
23. Securities and Exchange Commission, Report of Special Study on Securities Markets, U. S. Government Printing Office, Washington, D. C. 1963.
24. Smith, Clifford W. Jr., "Alternative Methods for Raising Capital," Journal of Financial Economics 5 (1977) 273-307.

Table 1
Direct Costs as a Percentage of Gross Proceeds for Equity (IPOs and SEOs) and Straight and Convertible Bonds Offered by Domestic Operating Companies 1990-199413

Equities

		IPOs				SEOs			
Line No.	Proceeds (\$ in millions)	No. of Issues	Gross Spreads	Other Direct Expenses	Total Direct Costs	No. of Issues	Gross Spreads	Other Direct Expenses	Total Direct Costs
1	2-9.99	337	9.05\%	7.91\%	16.96\%	167	7.72\%	5.56\%	13.28\%
2	10-19.99	389	7.24\%	4.39\%	11.63\%	310	6.23\%	2.49\%	8.72\%
3	20-39.99	533	7.01\%	2.69\%	9.70\%	425	5.60\%	1.33\%	6.93\%
4	40-59.99	215	6.96\%	1.76\%	8.72\%	261	5.05\%	0.82\%	5.87\%
5	60-79.99	79	6.74\%	1.46\%	8.20\%	143	4.57\%	0.61\%	5.18\%
6	80-99.99	51	6.47\%	1.44\%	7.91\%	71	4.25\%	0.48\%	4.73\%
7	100-199.99	106	6.03\%	1.03\%	7.06\%	152	3.85\%	0.37\%	4.22\%
8	200-499.99	47	5.67\%	0.86\%	6.53\%	55	3.26\%	0.21\%	3.47\%
9	500 and up	10	5.21\%	0.51\%	5.72\%	9	3.03\%	0.12\%	3.15\%
10	Total/Average	1,767	7.31\%	3.69\%	11.00\%	1,593	5.44\%	1.67\%	7.11\%

Bonds

		Convertible Bonds				Straight Bonds			
Line No.	Proceeds (\$ in millions)	No. of Issues	Gross Spreads	Other Direct Expenses	Total Direct Costs	No. of Issues	Gross Spreads	Other Direct Expenses	Total Direct Costs
1	$2-9.99$	4	6.07%	2.68%	8.75%	32	2.07%	2.32%	4.39%
2	$10-19.99$	14	5.48%	3.18%	8.66%	78	1.36%	1.40%	2.76%
3	$20-39.99$	18	4.16%	1.95%	6.11%	89	1.54%	0.88%	2.42%
4	$40-59.99$	28	3.26%	1.04%	4.30%	90	0.72%	0.60%	1.32%
5	$60-79.99$	47	2.64%	0.59%	3.23%	92	1.76%	0.58%	2.34%
6	$80-99.99$	13	2.43%	0.61%	3.04%	112	1.55%	0.61%	2.16%
7	$100-199.99$	57	2.34%	0.42%	2.76%	409	1.77%	0.54%	2.31%
8	$200-499.99$	27	1.99%	0.19%	2.18%	170	1.79%	0.40%	2.19%
9	500 and up	3	2.00%	0.09%	2.09%	20	1.39%	0.25%	1.64%
10	Total/Average	211	$\mathbf{2 . 9 2 \%}$	$\mathbf{0 . 8 7 \%}$	3.79%	$\mathbf{1 , 0 9 2}$	$\mathbf{1 . 6 2 \%}$	$\mathbf{0 . 6 2 \%}$	2.24%

Notes:
Closed-end funds and unit offerings are excluded from the sample. Rights offerings for SEOs are also excluded. Bond offerings do not include securities backed by mortgages and issues by Federal agencies. Only firm commitment offerings and non-shelf-registered offerings are included.
Gross Spreads as a percentage of total proceeds, including management fee, underwriting fee, and selling concession.
Other Direct Expenses as a percentage of total proceeds, including management fee, underwriting fee, and selling concession.
Total Direct Costs as a percentage of total proceeds (total direct costs are the sum of gross spreads and other direct expenses).

Table 2
Direct Costs of Raising Capital 1990-1994
Utility versus Non-Utility Companies 14
Equities

	Non-Utilities	IPOS			SEOs		
Line No.	Proceeds (\$ in millions)	No. of Issues	Gross Spreads	Total Direct Costs	No. Of Issues	Gross Spreads	Total Direct Costs
1	2-9.99	332	9.04\%	16.97\%	154	7.91\%	13.76\%
2	10-19.99	388	7.24\%	11.64\%	278	6.42\%	9.01\%
3	20-39.99	528	7.01\%	9.70\%	399	5.70\%	7.07\%
4	40-59.99	214	6.96\%	8.71\%	240	5.17\%	6.02\%
5	60-79.99	78	6.74\%	8.21\%	131	4.68\%	5.31\%
6	80-99.99	47	6.46\%	7.88\%	60	4.35\%	4.84\%
7	100-199.99	101	6.01\%	7.01\%	137	3.97\%	4.36\%
8	200-499.99	44	5.65\%	6.49\%	50	3.27\%	3.48\%
9	500 and up	10	5.21\%	5.72\%	8	3.12\%	3.25\%
10	Total/Average	1,742	7.31\%	11.01\%	1,457	5.57\%	7.32\%
11	Utilities Only						
12	2-9.99	5	9.40\%	16.54\%	13	5.41\%	7.68\%
13	10-19.99	1	7.00\%	8.77\%	32	4.59\%	6.21\%
14	20-39.99	5	7.00\%	9.86\%	26	4.17\%	4.96\%
15	40-59.99	1	6.98\%	11.55\%	21	3.69\%	4.12\%
16	60-79.99	1	6.50\%	7.55\%	12	3.39\%	3.72\%
17	80-99.99	4	6.57\%	8.24\%	11	3.68\%	4.11\%
18	100-199.99	5	6.45\%	7.96\%	15	2.83\%	2.98\%
19	200-499.99	3	5.88\%	7.00\%	5	3.19\%	3.48\%
20	500 and up	0			1	2.25\%	2.31\%
21	Total/Average	25	7.15\%	10.14\%	136	4.01\%	4.92\%

Table 2 (continued)
Direct Costs of Raising Capital 1990-1994
Utility versus Non-Utility Companies ${ }^{15}$

Bonds

	Non- Utilities	Convertible Bonds			Straight Bonds		
Line No.	Proceeds (\$ in millions)	No. of Issues	Gross Spreads	Total Direct Costs	No. of Issues	Gross Spreads	Total Direct Costs
1	2-9.99	4	6.07\%	8.75\%	29	2.07\%	4.53\%
2	10-19.99	12	5.54\%	8.65\%	47	1.70\%	3.28\%
3	20-39.99	16	4.20\%	6.23\%	63	1.59\%	2.52\%
4	40-59.99	28	3.26\%	4.30\%	76	0.73\%	1.37\%
5	60-79.99	47	2.64\%	3.23\%	84	1.84\%	2.44\%
6	80-99.99	12	2.54\%	3.19\%	104	1.61\%	2.25\%
7	100-199.99	55	2.34\%	2.77\%	381	1.83\%	2.38\%
8	200-499.99	26	1.97\%	2.16\%	154	1.87\%	2.27\%
9	500 and up	3	2.00\%	2.09\%	19	1.28\%	1.53\%
10	Total/Average	203	2.90\%	3.75\%	957	1.70\%	2.34\%
11	Utilities Only						
12	2-9.99	0			3	2.00\%	3.28\%
13	10-19.99	2	5.13\%	8.72\%	31	0.86\%	1.35\%
14	20-39.99	2	3.88\%	5.18\%	26	1.40\%	2.06\%
15	40-59.99	0			14	0.63\%	1.10\%
16	60-79.99	0			8	0.87\%	1.13\%
17	80-99.99	1	1.13\%	1.34\%	8	0.71\%	0.98\%
18	100-199.99	2	2.50\%	2.74\%	28	1.06\%	1.42\%
19	200-499.99	1	2.50\%	2.65\%	16	1.00\%	1.40\%
20	500 and up	0			1	3.50\%	na^{16}
21	Total/Average	8	3.33\%	4.66\%	135	1.04\%	1.47\%

Notes:
Total proceeds raised in the United States, excluding proceeds from the exercise of over allotment options.
Gross spreads as a percentage of total proceeds (including management fee, underwriting fee, and selling concession).
Other direct expenses as a percentage of total proceeds (including registration fee and printing, legal, and auditing costs).
[16] Not available because of missing data on other direct expenses.
Direct Testimony of James H. Vander Weide, Ph.D.
On behalf of Atmos Energy Corporation
Page 90

Table 3
Illustration of Patterson Approach to Flotation Cost Recovery

Line No.	Time Period	Rate Base	$\begin{gathered} \text { Earnings } \\ \text { @ } \\ 12.32 \% \\ \hline \end{gathered}$	Earnings (a) 12.00%	Dividends	Amortization Initial FC
1	0	95.00				
2	1	100.70	11.70	11.40	6.00	0.3000
3	2	106.74	12.40	12.08	6.36	0.3180
4	3	113.15	13.15	12.81	6.74	0.3371
5	4	119.94	13.93	13.58	7.15	0.3573
6	5	127.13	14.77	14.39	7.57	0.3787
7	6	134.76	15.66	15.26	8.03	0.4015
8	7	142.84	16.60	16.17	8.51	0.4256
9	8	151.42	17.59	17.14	9.02	0.4511
10	9	160.50	18.65	18.17	9.56	0.4782
11	10	170.13	19.77	19.26	10.14	0.5068
12	11	180.34	20.95	20.42	10.75	0.5373
13	12	191.16	22.21	21.64	11.39	0.5695
14	13	202.63	23.54	22.94	12.07	0.6037
15	14	214.79	24.96	24.32	12.80	0.6399
16	15	227.67	26.45	25.77	13.57	0.6783
17	16	241.33	28.04	27.32	14.38	0.7190
18	17	255.81	29.72	28.96	15.24	0.7621
19	18	271.16	31.51	30.70	16.16	0.8078
20	19	287.43	33.40	32.54	17.13	0.8563
21	20	304.68	35.40	34.49	18.15	0.9077
22	21	322.96	37.52	36.56	19.24	0.9621
23	22	342.34	39.77	38.76	20.40	1.0199
24	23	362.88	42.16	41.08	21.62	1.0811
25	24	384.65	44.69	43.55	22.92	1.1459
26	25	407.73	47.37	46.16	24.29	1.2147
27	26	432.19	50.21	48.93	25.75	1.2876
28	27	458.12	53.23	51.86	27.30	1.3648
29	28	485.61	56.42	54.97	28.93	1.4467
30	29	514.75	59.81	58.27	30.67	1.5335
31	30	545.63	63.40	61.77	32.51	1.6255
32	Present Value@12\%		195.00	190.00	100.00	5.00

Direct Testimony of James H. Vander Weide, Ph.D.
On behalf of Atmos Energy Corporation
Page 91

APPENDIX 4

EX ANTE RISK PREMIUM APPROACH

My ex ante risk premium method is based on studies of the DCF expected return on proxy companies compared to the interest rate on Moody's A-rated utility bonds. Specifically, for each month in my study period, I calculate the risk premium using the equation,

$$
\mathrm{RP}_{\mathrm{PROXY}}=\mathrm{DCF}_{\mathrm{PROXY}}-\mathrm{I}_{\mathrm{A}}
$$

where:

R $\mathrm{P}_{\text {PROXY }}$	=	the required risk premium on an equity investment in the proxy group of companies,
$\mathrm{DCF}_{\text {PROXY }}$	$=$	average DCF estimated cost of equity on a portfolio of proxy companies; and
$\mathrm{I}_{\text {A }}$	$=$	the yield to maturity on an investment in A-rated utility bonds.

For my ex ante risk premium analysis, I begin with my comparable group of natural gas companies shown in Schedule 1. Previous studies have shown that the ex ante risk premium tends to vary inversely with the level of interest rates, that is, the risk premium tends to increase when interest rates decline, and decrease when interest rates go up. To test whether my studies also indicate that the ex ante risk premium varies inversely with the level of interest rates, I perform a regression analysis of the relationship between the ex ante risk premium and the yield to maturity on A-rated utility bonds, using the equation,

$$
\mathrm{RP}_{\mathrm{PROXY}}=a+\left(\mathrm{bxI} \mathrm{I}_{\mathrm{A}}\right)+\mathrm{e}
$$

where:
$\mathrm{RP}_{\mathrm{PROXY}}=$ risk premium on proxy company group;
$\mathrm{I}_{\mathrm{A}} \quad=$ yield to maturity on A-rated utility bonds;
$\mathrm{e} \quad=$ a random residual; and
$\mathrm{a}, \mathrm{b} \quad=$ coefficients estimated by the regression procedure.
Regression analysis assumes that the statistical residuals from the regression equation are random. My examination of the residuals reveals that there is a significant probability that the residuals are serially correlated (non-zero serial correlation indicates that the residual in one time period tends to be correlated with the residual in the previous time period). Therefore, I make adjustments to my data to correct for the possibility of serial correlation in the residuals.

The common procedure for dealing with serial correlation in the residuals is to estimate the regression coefficients in two steps. First, a multiple regression analysis is used to estimate the serial correlation coefficient, r. Second, the estimated serial correlation coefficient is used to transform the original variables into new variables whose serial correlation is approximately zero. The regression coefficients are then re-estimated using the transformed variables as inputs in the regression equation. Based on my knowledge of the statistical relationship between the yield to maturity on A-rated utility bonds and the required risk premium, my estimate of the ex ante risk premium on an investment in my proxy natural gas company group as compared to an investment in A-rated utility bonds is given by the equation:

$$
\begin{equation*}
R P_{P R O X Y}=0.0677-.3068 \times \mathrm{I}_{\mathrm{A}} \text {. } \tag{8.69}
\end{equation*}
$$

Using the 5.97 percent average yield to maturity on A-rated utility bonds at July 2009, the regression equation produces an ex ante risk premium based on the natural gas proxy group equal to 4.94 percent $(0.0677-.3068 \times 5.97=4.94)$.

To estimate the cost of equity using the ex ante risk premium method, one may add the estimated risk premium over the yield on A-rated utility bonds to the yield to maturity on
[17] The t-statistics are shown in parentheses.

A-rated utility bonds. As described above, my analyses produce an estimated risk premium over the yield on A-rated utility bonds equal to 4.94 percent. Adding an estimated risk premium of 4.94 percent to the 5.97 percent average yield to maturity on A-rated utility bonds produces a cost of equity estimate of 10.9 percent for the natural gas company proxy group using the ex ante risk premium method.

ATMOS ENERGY

APPENDIX 5

EX POST RISK PREMIUM APPROACH

SOURCE OF DATA

Stock price and yield information is obtained from Standard \& Poor's Security Price publication. Standard \& Poor's derives the stock dividend yield by dividing the aggregate cash dividends (based on the latest known annual rate) by the aggregate market value of the stocks in the group. The bond price information is obtained by calculating the present value of a bond due in 30 years with a $\$ 4.00$ coupon and a yield to maturity of a particular year's indicated Moody's A-rated Utility bond yield. The values shown on the ex post risk premium schedules are the January values of the respective indices.

CALCULATION OF STOCK AND BOND RETURNS

Sample calculation of "Stock Return" column:
Stock Return (2008) $=\left[\frac{\text { Stock Price (2009) - Stock Price (2008) }+ \text { Dividend (2008) }}{\text { Stock Price (2008) }}\right]$
where Dividend (2008) $=$ Stock Price (2008) x Stock Div. Yield (2008)
Sample calculation of "Bond Return" column:
Bond Return (2008) $=\left[\frac{\text { Bond Price (2009) - Bond Price (2008) }+ \text { Interest (2008) }}{\text { Bond Price (2008) }}\right]$
where Interest $=\$ 4.00$.

Case No. 2009-00354
Atmos Energy Corporation, Kentucky/Mid-States Division
AG DR Set No. 1
Question No. 1-073
Page 1 of 2

REQUEST:

[Rate of Return] - Please provide copies of all articles, publications, and or other documents cited in the testimony of Dr. Vander Weide.

RESPONSE:

Please see the attached for the articles, publications and documents cited in the testimony.

- Attachment 1 - Lee, Inmoo, Scott Lochhead, Jay Ritter, and Quanshui Zhao, "The Costs of Raising Capital," The Journal of Financial Research, Vol. XIX No 1 (Spring 1996), 5974.
- Attachment 2 - Clifford W. Smith, "Alternative Methods for Raising Capital," Journal of Financial Economics 5 (1977) 273-307.
- Attachment 3 - Richard H. Pettway, "The Effects of New Equity Sales Upon Utility Share Prices," Public Utilities Fortnightly, May 10, 1984, 35-39.
- Attachment 4 - Blue Chip Financial Forecasts, August 1, 2009.
- Attachment 5 - Fischer Black, Michael C. Jensen, and Myron Scholes, "The Capital Asset Pricing Model: Some Empirical Tests," in Studies in the Theory of Capital Markets, M. Jensen, ed. New York: Praeger, 1972.
- Attachment 6 - Eugene Fama and James MacBeth, "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy 81 (1973), pp. 607 36.
- Attachment 7 - Robert Litzenberger and Krishna Ramaswamy, "The Effect of Personal Taxes and Dividends on Capital Asset Prices: Theory and Empirical Evidence," Journal of Financial Economics 7 (1979), pp. 16395.
- Attachment 8 - Rolf Banz, "The Relationship between Return and Market Value of Common Stocks," Journal of Financial Economics (March 1981), pp. 318.
- Attachment 9 - Eugene Fama and Kenneth French, "The Cross Section of Expected Returns," Journal of Finance (June 1992), pp. 427465.

ATTACHMENTS:

ATTACHMENT 1 - Atmos Energy Corporation, Lee Lochhead Ritter Flotation 1996, 16 Pages.

ATTACHMENT 2 - Atmos Energy Corporation, Smith 1977 Alternative Methods Raising Capital, 35 Pages.

ATTACHMENT 3 - Atmos Energy Corporation, Pettway 1984, 5 Pages.
ATTACHMENT 4 - Atmos Energy Corporation, Blue Chip Aug 1 2009, 2 Pages.
ATTACHMENT 5 - Atmos Energy Corporation, Black Jensen 1972, 24 Pages.
ATTACHMENT 6 - Atmos Energy Corporation, Fama MacBeth 1973 Risk Return, 30 Pages.

ATTACHMENT 7 - Atmos Energy Corporation, Litzenberger 1979, 17 Pages.
ATTACHMENT 8 - Atmos Energy Corporation, Banz 1981, 16 Pages.
ATTACHMENT 9 - Atmos Energy Corporation, Fama French 1992 Expct Rtrns, 40 Pages.

Respondent: Dr. James Vander Weide

THE COSTS OF RAISING CAPITAL

Inmoo Lee, Scott Lochhead, Jay Ritter
University of Illinois at Urbana-Champaign
Quanshui Zhao
City University of Hong Kong

Abstract

We report the average costs of raising external debt and equity capital for U.S. corporations from 1990 to 1994. For initial public offerings (IPOs) of equity, the direct costs average 11.0 percent of the proceeds. For seasoned equity offerings (SEOs), the direct costs average 7.1 percent. For convertible bonds, the direct costs average 3.8 percent. For straight debt issues, the direct costs average 2.2 percent, although they are strongly related to the credit rating of the issue. All classes of securities exhibit economies of scale, although they are less pronounced for straight debt issues. IPOs also incur a substantial indirect cost due to short-run underpricing. Most large equity offers include an international tranche, although debt issues do not.

I. Introduction

In this article we present the average costs of raising external capital for U.S. corporations from 1990 to 1994. Specifically, we report the average spreads on public equity offerings and debt offerings, along with the other direct costs of raising capital, as a percentage of the proceeds. We find substantial economies of scale for initial public offerings (IPOs) of equity and seasoned equity offerings (SEOs). We also find substantial economies of scale for both straight bond offerings and convertible bond offerings. Spreads on bond offerings are highly sensitive to the credit rating of the offering. This article is descriptive in nature; no theories are tested. Its purpose is to provide benchmark numbers for use by issuers of securities. We do not address why firms issue the securities they do. This much broader corporate finance question would have to address taxes, corporate control, debt capacity, long-run performance patterns, investmentfinancing interactions, etc.

We would like to thank Charles Calomiris and Tim Loughran for useful comments on an earlier draft.

II. Data and Terminology

Securities Data Company's (SDC) New Issues database is the primary source of information. After downloading SDC's data, we identified outliers and checked suspicious numbers in other publicly available sources. The New Issues database includes publicly placed firm commitment offerings only. In all of our tables, we exclude ADRs and unit offerings. ' We restrict our sample to securities offered by domestic operating companies, and so exclude closed-end fund and real estate investment trust (REIT) offerings. We also exclude rights offerings and shelf registrations. ${ }^{2}$

We use security offerings from January 1990 to December 1994, a fiveyear period of relatively low inflation. Consequently, we do not make any inflation adjustments; all proceeds are the nominal proceeds. Proceeds reflect the gross proceeds raised in the U.S. and do not include money raised from the exercise of overallotment options or an international tranche, if any. In the case of equity offerings, the proceeds include the amount raised from both primary and secondary components. Primary shares are those being sold by the company, thereby increasing the number of shares outstanding. Secondary shares are those being sold by existing shareholders (managers, venture capitalists, etc.), which neither increase the number of shares outstanding nor provide capital for the company. Many IPOs include both primary and secondary components, with the fraction that is primary generally higher for younger companies. A few IPOs, sometimes involving spin-offs from parent companies, are pure secondaries. All of our SEOs involve primary shares; we exclude "registered secondaries," in which the entire issue is composed of shares being sold by existing shareholders, from our SEO sample.

For our sample of bond offerings, we exclude issues with a maturity date of one year or less. Our sample includes both zero-coupon, original-issue discount bonds, and coupon bonds. We include serial, floating-rate, and reset bonds, as

[^2]well as traditional coupon bonds. ${ }^{3}$ We exclude mortgage-backed bonds. For zerocoupon and original-issue discount bonds that are sold for less than their par value, our percentage spreads and costs are based upon the offer price, and not the face value. Our convertible bond sample includes only issues that are convertible into shares of the issuing company. Exchangeable bonds, where the bond is convertible into shares of a different company, are not in our sample. None of our convertible bonds has a maturity date of less than five years.

We refer to new equity issues by publicly traded companies as seasoned equity offerings, reserving the use of "secondary" to identify the source of shares. Among practitioners, the term "secondary offering" is frequently used to refer to an SEO. Seasoning refers to whether the security being offered is already publicly traded; IPOs are unseasoned new issues. For that matter, the term "new issues" is sometimes used to refer to any security offering, and sometimes used to refer to equity IPOs alone. Although a new bond issue is an unseasoned new issue, and therefore a debt initial public offering, we use the term IPO to refer to unseasoned equity offerings exclusively.

Gross spreads are the commissions paid to investment bankers when securities are issued. Since buyers do not pay commissions on new security issues, these spreads implicitly reflect both the buyer and seller commissions. Other direct costs include the legal, auditing, and printing costs associated with putting together a prospectus.

III. Evidence

Average Spreads and Total Direct Costs

In Table 1 we report the average investment banker commissions (gross spreads) and other direct expenses for four classes of securities: IPOs, SEOs, convertible bonds, and straight bonds. In addition to reporting the average direct costs for each class, we also classify issues by proceeds categories. By going across a row, a reader can see how the expenses vary by security type, holding proceeds constant. By going down a column, a reader can see the magnitude of the economies of scale for a given type of security. Also reported is the number of observations in each category.

In Table 1 the median IPO is $\$ 24.4$ million, the median SEO is $\$ 33.8$ million, the median convertible bond is $\$ 75$ million, and the median straight

[^3]TABLE 1. Direct Costs as a Percentage of Gross Proceeds for Equity (IPOs and SEOs) and Straight and Convertible Bonds Offered by Domestic Operating Companies, 1990-94.

Proceeds: (\$ millions)	Equity								Bonds							
	IPOs				SEOs				Convertible Bonds				Straight Bonds			
	$\mathrm{N}^{\text {b }}$	GS ${ }^{\text {c }}$	$\mathrm{E}^{\text {d }}$	TDC ${ }^{\text {e }}$	N	GS	E	TDC	N	GS	E	TDC	N	GS	E	TDC
2-9.99	337	9.05	7.91	16.96	167	7.72	5.56	13.28	4	6.07	2.68	8.75	32	2.07	2.32	4.39
10-19.99	389	7.24	4.39	11.63	310	6.23	2.49	8.72	14	5.48	3.18	8.66	78	1.36	1.40	2.76
20-39.99	533	7.01	2.69	9.70	425	5.60	1.33	6.93	18	4.16	1.95	6.11	89	1.54	0.88	2.42
40-59.99	215	6.96	1.76	8.72	261	5.05	0.82	5.87	28	3.26	1.04	4.30	90	0.72	0.60	1.32
60-79.99	79	6.74	1.46	8.20	143	4.57	0.61	5.18	47	2.64	0.59	3.23	92	1.76	0.58	2.34
80-99.99	51	6.47	1.44	7.91	71	4.25	0.48	4.73	13	2.43	0.61	3.04	112	1.55	0.61	2.16
100-199.99	106	6.03	1.03	7.06	152	3.85	0.37	4.22	57	2.34	0.42	2.76	409	1.77	0.54	2.31
200-499.99	47	5.67	0.86	6.53	55	3.26	0.21	3.47	27	1.99	0.19	2.18	170	1.79	0.40	2.19
500-up	10	5.21	0.51	5.72	9	3.03	0.12	3.15	3	2.00	0.09	2.09	20	1.39	0.25	1.64
Total	1767	7.31	3.69	11.00	1593	5.44	1.67	7.11	211	2.92	0.87	3.79	1092	1.62	0.62	2.24

Notes: Closed-end funds (SIC 6726), REITs (SIC 6798), ADRs, and unit offerings are excluded from the sample. Rights offerings for SEOs are also excluded. Bond offerings do not include securities backed by mortgages and issues by Federal agencies (SIC $6011,6019,6111$, and 999B). Only firm commitment offerings and nonshelf-registered offerings are included Standard Industrial Classification (SIC) codes are from Securities Data Co. (SDC).
${ }^{\text {'Total proceeds }}$ raised in the United States, excluding proceeds from the exercise of overallotment options (SDC variable: PROCDS).
Number of issues.
Gross spreads as a percentage of total proceeds (including management fee, underwriting fee, and selling concession) (SDC variable: GPCTP).
${ }^{4}$ Other direct expenses as a percentage of total proceeds (including registration fee and printing, legal, and auditing costs) (SDC variables: EXPTH/(PROCDS)*10).
${ }^{\text {T }}$ Total direct costs as a percentage of total proceeds (total direct costs are the sum of gross spreads and other direct expenses).

Total direct costs

Figure I. Total Direct Costs as a Percentage of Gross Proceeds. The total direct costs for initial public offerings (IPOs), seasoned equity offerings (SEOs), convertible bonds, and straight bonds are composed of underwriter spreads and other direct expenses. Closed-end funds (SIC 6726), REITs (SIC 6798), ADRs, and unit offerings are excluded. Rights offerings for SEOs are also excluded. Bond offerings do not include securities backed by mortgages and issues by federal agencies (SIC 6011,6019,6111, and 9998). Only firm commitment offerings and nonshelf-registered offerings are included. The numbers plotted are reported in Table 1 for issues from 1990 to 1994.
bond is $\$ 100$ million. For both IPOs and SEOs, substantial economies of scale exist in both the gross spreads and the other expenses.

For SEOs, the lack of any diseconomies, even for offerings over $\$ 500$ million, is inconsistent with the findings of Hansen and Torregrosa (1992), who report diseconomies of scale for offers over $\$ 100$ million. Hansen and Torregrosa use a sample of SEOs from 1978-86, in contrast to our 1990-94 sample period. Our conjecture is that while diseconomies of scale may have existed for very large issues before the mid 1980 s , a structural change has probably occurred since then, possibly because of the market's greater experience with absorbing large numbers of big offerings. While they are not in our sample, the large number of multibillion dollar privatizations that have occurred around the world in the last decade have made megaofferings routine events.

In all of our tables, we report the averages based upon the number of observations for which we have data. For the gross spreads, SDC reports numbers for our entire sample. For the other direct expenses, however, many observations are missing. Consequently, the averages for the expenses are based upon a

TABLE 2. Direct Costs of Raising Capital, 1990-94: Utility versus Nonutility Companies.

Proceeds* (\$ millions)	Equity						Bonds					
	IPOs			SEOs			Convertible			Straight		
	$\mathrm{N}^{\text {b }}$	GS ${ }^{\text {c }}$	TDC ${ }^{\text {d }}$	N	GS	TDC	N	GS	TDC	N	GS	TDC
Panel A. Nonutility Offerings Only												
2-9.99	332	9.04	16.97	154	7.91	13.76	4	6.07	8.75	29	2.07	4.53
10-19.99	388	7.24	11.64	278	6.42	9.01	12	5.54	8.65	47	1.70	3.28
20-39.99	528	7.01	9.70	399	5.70	7.07	16	4.20	6.23	63	1.59	2.52
40-59.99	214	6.96	8.71	240	5.17	6.02	28	3.26	4.30	76	0.73	1.37
60-79.99	78	6.74	8.21	131	4.68	5.31	47	2.64	3.23	84	1.84	2.44
80-99.99	47	6.46	7.88	60	4.35	4.84	12	2.54	3.19	104	1.61	2.25
100-199.99	101	6.01	7.01	137	3.97	4.36	55	2.34	2.77	381	1.83	2.38
200-499.99	44	5.65	6.49	50	3.27	3.48	26	1.97	2.16	154	1.87	2.27
500-up	10	5.21	5.72	8	3.12	3.25	3	2.00	2.09	19	1.28	1.53
Total	1742	7.31	11.01	1457	5.57	7.32	203	2.90	3.75	957	1.70	2.34
Panel B. Utility Offerings Only												
2-9.99	5	9.40	16.54	13	5.41	7.68	0	-	-	3	2.00	3.28
10-19.99	1	7.00	8.77	32	4.59	6.21	2	5.13	8.72	31	0.86	1.35
20-39.99	5	7.00	9.86	26	4.17	4.96	2	3.88	5.18	26	1.40	2.06
40-59.99	1	6.98	11.55	21	3.69	4.12	0	-	-	14	0.63	1.10
60-79.99	1	6.50	7.55	12	3.39	3.72	0	-	-	8	0.87	1.13
80-99.99	4	6.57	8.24	11	3.68	4.11	1	1.13	1.34	8	0.71	0.98
100-199.99	5	6.45	7.96	15	2.83	2.98	2	2.50	2.74	28	1.06	1.42
200-499.99	3	5.88	7.00	5	3.19	3.48	1	2.50	2.65	16	1.00	1.40
500-up	0	-	-	1	2.25	2.31	0	-	-	1	3.50	na ${ }^{\text {e }}$
Total	25	7.15	10.14	136	4.01 .	4.92	8	3.33	4.66	135	1.04	1.47

Notes: Closed-end funds (SIC 6726), REITs (SIC 6798), ADRs, and unit offerings are excluded from the sample. Rights offerings for SEOs are also excluded. Bond offerings do not include securities backed by mortgages and issues by Federal agencies (SIC 6011, 6019, 6111, and 999B). Only firm commitment offerings and nonshelfregistered offerings are included. Standard Industrial Classification (SIC) codes are from Securities Data Co. (SDC).
*Total proceeds raised in the United States, excluding proceeds from the exercise of overallotment options (SDC variabie: PROCDS).
"Number of issues.
${ }^{\text {c Gross spreads as a percentage of total proceeds (including management fee, underwriting fee, and selling }}$ concession) (SDC variable: GPCTP).
"Other direct expenses as a percentage of total proceeds (including registration fee and printing, legal, and auditing costs) (SDC variables: EXPTH/(PROCDS)*10).
${ }^{\text {a }}$ Not available because of missing data on other direct expenses.
more limited number of observations. ${ }^{4}$ For computing the average total direct costs in Table 1 (and other tables), we add the average gross spread and the average other expenses. In Figure I we show the average total direct costs for the four classes of securities, categorized by their gross proceeds.

The Appendix table reports the interquartile ranges for both the gross spreads and the total direct costs. (We report the interquartile range of the offerings for which we have complete data.) The largest variability of spreads occurs for bonds. As we document below, this can largely be explained based on differences in the credit quality of the issues.

Utility versus Nonutility Offerings

In Table 2 we report the direct costs of raising capital after categorizing offerings into utility and nonutility offerings. During the early 1990 s , utilities were relatively minor issuers, representing roughly 10 percent of SEOs and straight bond offerings, and less than 5 percent of IPOs and convertibles. Spreads and direct costs are lower for utilities than for nonutilities. This pattern, previously documented by Bhagat and Frost (1986), may be partly due to the use of competitive bidding, rather than negotiated deals, for choosing an investment banker. Alternatively, it may be partly due to the relative noncomplexity of typical utility offerings.

Debt Offerings and Credit Quality

In Table 3 we report the costs of raising debt capital after categorizing issues by whether they are investment grade or noninvestment grade. ${ }^{5}$ Following industry practice, we classify offerings as investment grade issues if they have a Standard \& Poor's credit rating of BBB - or higher. ${ }^{6}$

Inspection of Table 3 discloses that for both convertibles and straight bonds, spreads are lower for investment-grade issues. For straight bonds, this difference is especially pronounced. Note that for issues raising less than $\$ 60$

[^4]TABLE 3. Average Gross Spreads and Total Direct Costs for Domestic Debt Issues, 1990-94.

Proceeds ${ }^{\circ}$ ($\$$ millions)	Convertible Bonds						Straight Bonds					
	Investment Grade"			Noninvestment Grade ${ }^{\text {b }}$			Investment Grade			Noninvestment Grade		
	N^{J}	$\mathrm{GS}^{\text {e }}$	TDC ${ }^{\text {f }}$	N	GS	TDC	N	GS	TDC	N	GS	TDC
2-9.99	0	-	-	0	-	-	14	0.58	2.19	0	-	-
10-19.99	0	-	-	1	4.00	5.67	56	0.50	1.19	2	5.13	7.41
20-39.99	1	1.75	2.75	9	3.29	4.92	64	0.86	1.48	9	3.11	4.42
40-59.99	3	1.92	2.43	19	3.37	4.58	78	0.47	0.94	9	2.48	3.35
60-79.99	4	1.31	1.76	41	2.76	3.37	49	0.61	0.98	43	3.07	3.84
80-99.99	2	1.07	1.34	10	2.83	3.48	65	0.66	0.94	47	2.78	3.75
100-199.99	20	2.03	2.33	37	2.51	3.00	181	0.57	0.81	222	2.75	3.44
200-499.99	17	1.71	1.87	10	2.46	2.70	60	0.50	0.93	105	2.56	2.96
500-up	3	2.00	2.09	0	-	-	11	0.39	0.57	9	2.60	2.90
Total	50	1.81	2.09	127	2.81	3.53	578	0.58	0.94	446	2.75	3.42

Notes: Closed-end funds (SIC 6726), REITs (SIC 6798), ADRs, and unit offerings are excluded from the sample. Bond offerings do not include securities backed by mortgages and issues by Federal agencies (SIC 6011, 6019, 6111, and 999B). Only nonshelf-registered offerings are included. Standard Industrial Classification (SIC) codes are from Securities Data Co. (SDC).
${ }^{\text {a }}$ Firms with a BBB - or higher Standard \& Poor's credit rating,
'Firms with a BB+ or lower Standard \& Poor's credit rating.
${ }^{\circ} T o t a l$ proceeds raised in the United States, excluding proceeds from the exercise of overaliotment options (SDC variable: PROCDS).
"Number of issues.
${ }^{\text {ct Gross spreads as a percentage of total proceeds (including management fee, underwriting fee, and selling }}$ concession) (SDC yariable: GPCTP).
Other direct expenses as a percentage of total proceeds (including registration fee and printing, legal, and auditing costs) (SDC variables: EXPTH/(PROCDS)*10).
million, very few noninvestment-grade issues exist. This reflects that smaller issues with lower credit quality are commonly placed privately, and thus do not appear in our sample.

This correlation of credit quality and issue size also explains why in Tables 1 and 2 straight bond issues do not appear to display large economies of scale: as the issue size increases, the credit quality of public issuers decreases, masking some of the economies of scale. Still, in Table 3, where we hold credit quality constant, the economies of scale for debt issues are more modest than those for equity issues in Tables 1 and 2. The correlation between issue size and credit quality also explains why the average spread is so low for bonds with $\$ 40-\$ 59.9$ million in proceeds. The average spread of only seventy-two basis points in Table 1 reflects that for this issue size, economies of scale are largely realized, while, at the same time, very few noninvestment-grade issuers exist. For smaller offerings, the lack of economies of scale keeps the average spread high. For larger offerings, the high proportion of noninvestrnent-grade issues pushes

TABLE 4. Direct and Indirect Costs, in Percent, of Equity IPOs, 1990-94.

Proceeds ${ }^{-}$ (\$ millions)	Gross Spreads ${ }^{\text {b }}$	Other Expenses ${ }^{\text {® }}$	Total Direct Costs ${ }^{\text {d }}$	Average Initial Return ${ }^{\text {e }}$	Average Direct and Indirect Costs ${ }^{\text {r }}$
2-9.99	9.05	7.91	16.96	16.36	25.16
10-19.99	7.24	4.39	11.63	9.65	18.15
20-39.99	7.01	2.69	9.70	12.48	18.18
40-59.99	6.96	1.76	8.72	13.65	17.95
60-79.99	6.74	1.46	8.20	11.31	16.35
80-99.99	6.47	1.44	7.91	8.91	14,14
100-199.99	6.03	1.03	7.06	7.16	12.78
200-499.99	5.67	0.86	6.53	5.70	11.10
500-up	5.21	0.51	5.72	7.53	10.36
Total	7.31	3.69	11.00	12.05	18.69

Notes: There are 1,767 domestic operating company IPOs in the sample. The first four columns express costs as a percentage of the offer price, and the last column expresses costs as a percentage of the market price.

Total proceeds raised in the United States, excluding proceeds from the exercise of overallotment options (SDC variable: PROCDS).
${ }^{\text {b }}$ Gross spreads as a percentage of total proceeds (including management fee, underwriting fee, and selling concession) (SDC variable: GPCTP).
${ }^{\circ}$ Other direct expenses as a percentage of total proceeds (including registration fee and printing, legal, and auditing costs) (SDC variables: EXPTH/(PROCDS)*10).
${ }^{4}$ Total direct costs as a percentage of total proceeds (the average total direct costs are the sum of average gross spreads and average other direct expenses).
${ }^{\text {th }}$ Initial retum $=100^{*}$ ([closing price one day after the offering date (SDC variable: PRIDAY)/offering price (SDC variable: P)] - 1 \}. If PR1DAY is missing, PR2DAY is used.
${ }^{\text {r }}$ Total direct and indirect costs $=(d+e) /(1+e / 100)$, computed for each issue individually (excluding fims with other expenses or initial returns missing), and then averaged, where a is the percentage of total direct costs, and e is the percentage initial retum.
the average spread up. In other words, the average spread of only seventy-two basis points for this category is not a typographical error.

Although not reported in any table, the average maturity of bond offerings is about ten years for all of the proceeds categories and investment grades.

Initial Public Offerings

In Table 4 we report not only the direct costs for IPOs, but also the indirect costs of short-run underpricing. ${ }^{7}$ Inspection of the table reveals that, consistent with previous findings, IPOs are underpriced on average. With average direct costs of 11.0 percent and average initial returns of 12.0 percent, a typical
${ }^{7}$ We compute the average initial return only for those offerings for which SDC reports the market price at the end of the first day of trading or, if this is missing, at the end of the second day of trading. In computing the average direct and indirect cost, we compute this number for each individual firm for which we have the gross spread, other expenses, and the initial return, and then compute the average.
issuer with an offer price of $\$ 10.00$ receives net proceeds of $\$ 8.90$ on a share that trades at $\$ 11.20$. Taking the difference between the market price and the amount realized of $\$ 8.90$, the total direct and indirect costs amount to $\$ 2.30$, which is 20.5 percent of the market value of $\$ 11.20$. In Table 4 the average direct and indirect cost as a percentage of market value is 18.7 percent, since the average that is reported is the average of this percentage for each firm. (The average ratio of costs to market value is different from the ratio of the averages.) This number is less than the 21.2 percent that Ritter (1987) reports for firm commitment offerings from 1977 to 1982 for several reasons. First, our 1990-94 sample period reveals less underpricing than in 1977-1982. Second, we exclude offerings of less than $\$ 2$ million, whereas he includes them. Third, spreads have experienced some downward movement the past fifteen years. ${ }^{8}$ Still, the direct and indirect costs of going public are substantial. ${ }^{9}$

Note that we may be understating the extent of the economies of scale. This is because we are not including the value of any warrants granted to underwriters as part of their compensation. These warrants are common among small, speculative offerings underwritten by less-prestigious underwriters. Their inclusion would boost the average costs of the smallest offerings, but not the larger offerings. For evidence on the quantitative effect of this omission, see Barry, Muscarella, and Vetsuypens (1991) and Dunbar (1995).

While the average gross spread on IPOs is 7.31 percent, we find a large "bunching" at exactly 7.00 percent. Most issues with proceeds of $\$ 20-\$ 60$ million have a spread of exactly 7 percent, as shown in the Appendix table.

For IPOs, we include the indirect cost of underpricing in Table 4, but we do not include this as a cost for other security offerings. This is because of the lack of economically important underpricing effects for other offerings. Smith (1977) documents underpricing of 0.5 percent for SEOs. We suspect that much of this represents the practice of pricing the offering at the bid price, rather than the mean of the bid and the ask price, and the tendency to round down to the nearest eighth or integer. For example, if a stock traded at $\$ 30.125$ bid and $\$ 30.375$ ask, it would be common to set a $\$ 30.00$ offer price. Depending upon which price had been the most recent transaction price, this would be measured as underpricing of either 0.4 percent or 1.2 percent. Barclay and Litzenberger (1988) report excess returns of 1.5 percent for SEOs during the month after issuing. Since companies typically issue after a large stock price run-up, it is not clear how much of this 1.5 percent is due to momentum effects, and how

[^5]TABLE 5. Number of Issues Containing an International Tranche for Domestic Operating Companies That Are Issuing, 1990-94.

Proceeds (\$ millions)	Equity				Bonds			
	IPOS Int'l Tranche?'		SEOs Int'I Tranche?		Convertible Int'l Tranche?		Straight Int'] Tranche?	
	Yes	No	Yes	No	Yes	No	Yes	No
2-9.99	2	335	4	163	0	4	1	31
10-19.99	12	377	12	298	1	13	0	78
20-39.99	45	488	36	389	3	15	0	89
40-59.99	40	175	42	219	0	28	4	86
60-79.99	33	46	45	98	1	46	8	84
80-99.99	25	26	30	41	9	,	2	110
100-199.99	81	25	72	80	22	35	14	395
200-499.99	39	8	48	7	14	13	13	157
500-up	10	0	8	1	2	1	2	18
Total	287	1480	297	1296	52	159	44	1048

Notes: Closed-end funds (SIC 6726), REITs (SIC 6798), ADRs, and unit offerings are excluded from the sample. Rights offerings for SEOs are also excluded. Bond offerings do not include securities backed by mortgages and issues by Federal agencies (SIC 6011, 6019, 6111, and 999B). Only firm commitment offerings and nonshelfregistered offerings are included. Standard Industrial Classification (SIC) codes are from Securities Data Co. (SDC).
"If (TOTDOL.AMT/PROCDS) >1.05, the issue is treated as having an intemational tranche. TOTDOLAMT is the total proceeds raised globally, and PROCDS is the total proceeds raised in the United States.
much is due to issue effects. Kang and Lee (1996) document that convertible bonds are underpriced by about 1 percent on average. Straight bonds, especially those with high credit ratings, seem to be underpriced very little.

International Tranches

In Table 5 we report the frequency with which domestic operating companies include an international tranche in their offerings. Recall that we are excluding Eurobonds from our debt offerings and ADRs from our equity offerings. Inspection of the table reveals that equity offerings and convertibles that raise less than $\$ 60$ million in domestic trading rarely include an international tranche. Straight debt offerings, no matter what their size, rarely include an international tranche. Now, foreign investors can always participate in a domestic offering regardless of whether it is explicitly marketed overseas. Thus, the existence/nonexistence of an international tranche largely reflects the degree to which
 allows the underwriter to support, or stabitize, the price by buying back the increment in open market purchases. underwriter's taking a naked short position equal to the amount exceeding 115 percent of the offering. This
allows the underwriter to support, or stabilize, the price by buying back the increment in open market purchases. if the underwriter expects aftermarket demand to be weak, 135 percent of the issue may be presold, with the Overallotment options are sometimes called Green Shoe options. The Green Shoe Company was apparently
the first company to use one.
"See Schultz and Zaman (1994) for evidence on the exercise of overallotment options on IPOs. With IPOs,
option, but straight bond issues rarely do. option. The vast majority of SEOs and convertibles include an overallotment reveals that in recent years, essentially all IPOs have included an overallotment

do not include in our total cost calculations.
 other hand, since overallotment options are generally exercised only if the issue be lower if overallotment options were included in the gross proceeds. On the
 However, since the direct expenses do not change, these fixed costs are spread investment bankers collect the same gross spread as on the rest of the issue. On securities sold through the exercise of overallotment options, option that the issuing firm has written, where investors hold this call. included in the gross spread. The overallotment option can be viewed as a call the underwriter writes a put option to the issuing firm, with the value of this put at the offer price, but occasionally, if demand is weak, the investment banker
winds up selling some of the securities below the offer price. In this arrangement securities at or below the stated offer price. Normally, all of the securities are sold
 of the buyers immediately sell their securities (a practice known as "flipping"). ${ }^{12}$
 investment bankers typically presell at least 115 percent of the offering, and then Investment bankers typically have thirty days to exercise this option. In practice, where more securities can be sold if demand is strong. ${ }^{.1}$ Since August 1983, the
size of this overallotment option has been limited to 15 percent of the issue size. (NASD) permit firm commitment offerings to include an overallotment option,

> sиойо ииәияоррぇамо
 The Journal of Financial Research

TABLE 6. Number of Issues Containing an Overallotment Option, for Domestic Operating Companies That Are Lssuing, 1990-94.

Notes: Closed-end funds (SIC 6726), REITs (SIC 6798), ADRs, and unit offerings are excluded from the sample. Rights offerings for SEOs are also excluded. Bond offerings do not include securities backed by mortgages and issues by Federal agencies (SIC 6011, 6019, 611, and (SB).
nonshelf-registered offerings are included. Standard Industrial Classification (SIC) codes are from
"If OVERAMT >0 and OVERC $=$ Yes, where OVERAMT is the amount that can be raised through the overallotment option and OVERC is "Yes" if any overallotmen option is exercised.
bIf OVERAMT >0 and OVERC $=$ No.
${ }^{\text {If }}$ OVERAMT >0 and OVERC $=$ Missing.
${ }^{4}$ If OVERAMT $=$ " - "; this may include offerings with missing data on OVERAMT.

APPENDIX. Interquartile Range of Direct Costs as a Percentage of Gross Proceeds for Equity (IPOs and SEOs) and Straight and Convertible Bonds Offered by Domestic Operating Companies, 1990-94.

Proceeds" (\$ millions)	Equity				Bonds			
	IPOs		SEOs		Convertible Bonds		Straight Bonds	
	GS ${ }^{\text {b }}$	TDC ${ }^{\text {c }}$	GS	TDC	GS	TDC	GS	TDC
2-9.99	8.00-10.00	14.34-19.23	6.50-10.00	10.03-16.16	5.45-6.69	7.38-10.04	0.64-3.38	3.47-6.21
10-19.99	7.00-7.14	9.94-12.44	5.74-6.94	7.42-9.63	4.25-6.00	6.65-9.70	0.35-2.90	1.55-5.68
20-39.99	7.00-7.00	8.82-10.09	5.22-6.00	6.19-7.57	3.00-5.00	4.56-6.50	0.57-3.00	$1.10-4.55$
40-59.99	7.00-7.00	8.23-9.00	4.73-5.48	5.26-6.31	2.88-3.50	3.63-4.65	0.15-0.71	0.91-2.88
60-79.99	6.55-7.00	7.69-8.51	4.24-5.00	4.51-5.70	2.50-3.00	2.83-3.54	0.65-3.00	0.94-3.64
80-99.99	6.21-6.85	7.26-8.44	3.87-4.75	4.22-5.38	2.25-3.00	2.56-3.66	0.63-2.76	0.94-3.70
100-199.99	5.72-6.47	6.43-7.49	3.15-4.47	3.38-4.89	2.15-2.75	2.36-3.19	0.65-2.75	1.01-3.55
200-499.99	5.29-5.86	5.92-6.78	2.79-3.58	2.92-3.79	1.25-2.50	1.40-2.69	0.65-2.63	1.43-3.16
500-up	5.00-5.37	5.33-5.95	2.75-3.00	2.82-3.17	1.00-2.50	1.11-2.60	0.29-2.75	1.05-3.18
Total	7.00-7.05	8.57-12.04	4.51-6.08	5.12-8.20	2.25-3.00	2.66-3.96	0.60-2.75	1.02-3.60

Notes: Closed-end funds (SIC 6726), REITs (SIC 6798), ADRs, and unit offerings are excluded from the sample. Rights offerings for SEOs are also excluded. Bond offerings do not include securities backed by mortgages and issues by Federal agencies (SIC $6011,6019,6111$, and 999B). Only firm commitment offerings and nonshelf-registered offerings are included. Standard Industrial Classification (SIC) codes are from Securities Data Co. (SDC).
"Total proceeds raised in the United States, excluding proceeds from the exercise of overallotment options (SDC variable: PROCDS).
${ }^{6}$ Gross spreads as a percentage of total proceeds (including management fee, underwiting fee, and selling concession) (SDC variable: GPCTP).
"Total direct costs as a percentage of total proceeds (total direct costs are the sum of gross spreads and other direct expenses).

The frequency with which overallotment options are exercised varies across security type. In Table 6 we use the SDC classification where an overallotment option is considered to be exercised as long as at least part of it is exercised. In practice, most overallotment options are for 15 percent of the issue size. Most commonly, either all or none of the additional shares are sold, but sometimes only part of the overallotment option is exercised. On securities sold as part of an overallotment option, the spread is the same as on the rest of the issue.

IV. Conclusions

Firms have many choices for financing their activities: internal versus external, private versus public, and debt versus equity. This article focuses on public external financing and documents the cost of this financing from 1990 to 1994. We report the direct costs of raising capital for IPOs, SEOs, convertible bonds, and straight bonds. These are, respectively, 11.0 percent, 7.1 percent, 3.8 percent, and 2.2 percent of the proceeds. We find substantial economies of scale for all types of securities, although for straight bond offerings, these are largely exhausted for proceeds over $\$ 40$ million. Spreads on bonds are sensitive to credit quality, with gross spreads more than 200 basis points higher on noninvestmentgrade issues. Except for bonds, most large issues include an international tranche.

References

Barclay, M. J. and R. H. Litzenberger, 1988, Announcement effects of new equity issues and the use of intraday price data, Journal of Financial Economics 21, 71-99.
Barry, C., C. J. Muscarella, and M. R. Vetsuypens, 1991, Underwriter warrants, underwriter compensation, and the costs of going public, Journal of Financial Economics 29, 113-35.
Beatty, R P. and I. Welch, 1996, Issuer expenses and legal liability in initial public offerings, Journal of Law and Economics, Forthcoming.
Bhagat, S. and P. A. Frost, 1986, Issuing costs to existing shareholders in competitive and negotiated underwritten public utility equity offerings, Journal of Financial Economics 15, 233-59.
Calomiris, C. W. and D. M. G. Raff, 1995, The evolution of market structure, information, and spreads in American investment banking, in M. B. Bordo and R. Sylla, eds., Anglo-American Finance: Financial Markets and Institutions in 20th Century North America and the U.K. (Business One-Irwin, Homewood, IL), 103-60.
Dunbar, C. G., 1995, The use of warrants as underwriter compensation in initial public offerings, Journal of Financial Economics 38, 59-78.
Hansen, R. S., 1988, The demise of the rights issue, Review of Financial Studies 1, 289-309.
Hansen, R. S. and J. Pinkerton, 1982, Direct equity financing: A resolution of a paradox, Journal of Finance 37, 651-65.
Hansen, R. S. and P. Torregrosa, 1992, Underwriter compensation and corporate monitoring, Journal of Finance 47, 1537-55.
Kang, J. and Y. Lee, 1996, The pricing of convertible debt offrings, Journal of Financial Economics, Forthcoming.

Kim, Y. C. and R. M, Stulz, 1988, The Eurobond market and corporate financial policy: A test of the clientele hypothesis, Journal of Financial Economics 22, 189-205.
Ritter, J. R., 1987, The costs of going public, Journal of Financial Economics 19, 269-81.
Schultz, P. H. and M. A. Zaman, 1994, Aftermarket support and the pricing of initial public offerings, Journal of Financial Economics 35, 199-219.
Smith, C. W., 1977, Altemative methods for raising capital: Rights versus underwritten offerings, Journal of Financial Economics 5, 273-307.

Alternative methods for raising capital

Rights Versus Underwritten Offerings

Clifford W SMITH, Jr *
Graduate School of Management. Unicersitv of Rochester, Rochester, NY 14627 USA

Recersed Februari 1977, rewsed version recened January 1978
This paper provides an analysis of the choice of method for raising additional equity capital by listed firms Exammation of expenses reported to the SEC indicates that rights offerings intole significantly lower costs, yet underurters are employed in over 90 percent of the offerings The underwiting industry, finance texibooks, and corporate proxy statements offer several justuficatrons for the use of underu riters Houever estumates of the magnitudes of these argumenis indicate that they are insufficient to jusufy the addimonal costs of the use of underurters The ase of underwiters thus appears to be inconsistent with rational, wealthmaximizing behavior by the owners of the firm The paper concludes with an examination of alternate explanations of the obsersed choice of financing method

1. Introduction and summary

In this paper I examme an apparent paradox Based on a comparison of costs, simple finance theory suggests that listed firms should use nghts offerings to rase additional equity capital, rather than employing underwitters Yet the majorty of firms choose underwritten offerings, rather than rights offerings

In an underwniten offering, underwriters contract to purchase sbares from the issuing firm at a price usually set wthin 24 hours of the offering, and then resell the shares to the public In a rights offering the shareholder recerves a right from the firm giving him the option to purchase new shares for each share owned In section 2. I show that with the proper specification of the subscription price, the proceeds of a rights offering are identical to the proceeds of an underuritten offering

Not identical, however, are costs In section 3, I examine the out-of-pocket costs of underwritten and rights offerings reported to the Securties and Exchange

[^6]Commission for issues registered under the Securities Act of 1933 between January 1971 and December 1975. Rights offerings are significantly less expensive. I also examine additional out-of-pocket expenses associated with both types of offerings. These include extras (options sold to underwriters), unreported expenses such as employee compensation, and the costs of rights offerings imposed directly on the owners of the firm. With these costs considered, I find rights offerings still are less expensive than underwritten offerings.
It has been suggested that selling efforts by underwriters raise stock prices while rights offerings lower them. In section 4 I study price behavior around the date of the offering. I find no empirical support for the hypothesis that abnormal positive returns are associated with underwritten offerings. Moreover, underwriters appear to set the offer price below the market value of the stock by at least 0.5 percent. While stock prices fall when rights are issued, the fall equals the market value of the rights received by the shareholder. Examination of the total rate of return to shareholders around the offer date indicates no abnormal returns; thus the wealth of the firm's owners is not reduced by a rights offering.
Section 5 provides an examination of other benefits presumed to accrue from the use of underwriters. Finance texts, corporate proxy statements, and the underwriting industryitself claim the existence of advantages in timing, insurance, distribution of ownership and from future consulting advice. My estimates of the magnitudes of the costs and benefits associated with these arguments are not sufficient to outweigh the lower costs of rights offerings as a means of raising capital. I can find no differential legal liability associated with the use of rights offerings which might explain the observed use of underwriters. Furthermore, there is no apparent difference in the sets of firms employing the alternative methods which could attribute the reported cost differences to selection bias.
In section 6, I offer a two-part hypothesis which is consistent with the observed frequency of employment of underwriters, with their higher costs, by the majority of listed firms. First, since managers' and directors' interests are different from those of shareholders in general, their financing decisions are not always in the best interests of the owners; benefits flow to management from the use of underwriters although not to shareholders. Second, I hypothesize that the cost to shareholders of monitoring their directors and managers is greater than the cost imposed by the choice of the more expensive financing method.

In section 7 I briefly present my conclusions.
A detailed description of the institutional arrangements for rights offerings and underwritten offerings is not easily available; I have provided one in Appendix 1. The reader unfamiliar with this institutional material will find it valuable to read this appendix before the body of the paper.

Appendix 2 presents a Black-Scholes (1973) option pricing analysis of rights issues and underwriting contracts, given here since general equilibrium analyses of these contracts have not been published.

2. Comparison of proceeds from rights and underwritten offerings

In a firm commutment underwritten offering, the underwriting syndicate purchases the new shares from the firm at an agreed upon price, and offers the sbares for sale to the public at the offer price if the shares cannot be sold at the offer price, the underwriting syndicate breaks and the shares are sold for whatever price they will bring The underwriters bear the risk associated with adverse price movements, the proceeds to the firm are guaranteed Of course the difference between the offer price and the proceeds to the firm are expected to compensate the underwriter for bearing this risk
In a rights offering, each shareholder recenves one right for each share owned This right is an option issued by the firm to purchase new shares The right states the relevant terms of the option, specifying the number of nghts required to purchase each new share, the subscription price for each new share, and the expiration date of the option Since issuing rights is costly, it is in the firm's interest to insure the success of the offering A lower subscription price for the rights provides this insurance, a lower subscription price raises the market value of the right and reduces the probabilty that at the expration date of the rughts offering the stock price will be below the subscription price There is a corresponding fall in the market value of the stock, but this fall is like a stock split It does not affect the wealth of the owners of the firm ${ }^{1}$

If the shareholder does not evercise his rights, or does not sell his rights to someone who will evercise the rights, his wealth is reduced by the market value of the rights Thus the firm can make the probability of fallure of the rights offering arbitrarily small by setting the subscription price low enough
Thus, since rights offerings and undersritter offerings can be specified so that the amount of capital rased by each is essentially equivalent, the decision as to which method to employ depends on the costs, the firm should employ that method which has lower net costs

3. Out-of-pocket expenses of rights and underwritten issues

"Expenses involved in a preemptive common stock rights offering are significantly greater than expenses involved in a direct offering of common stock
'The adjustment for the 'split effect' of a rights offering can be calculated as follows The ex-rights price of the shares, P_{x}, equals the with-rights price, $P_{y,}$ manus the value of the right, R

$$
P_{x}=P_{w}-R
$$

Ignoring the 'option value' of the right, the marhet value of a right is the dufference between the ex-rights price and the subscription pnice, P_{s}, divided by the number of rights required to purchase one share, n

$$
R=\left(P_{x}-P_{s}\right) / n
$$

Substituting the second expression into the first and simplifying yields

$$
P_{x}=\left(n P_{w}+P_{s}\right) /(n+1)
$$

to the public due to additional printing and mailing costs, expenses associated with the handling of rights and the processing of subscriptions, higher underwriters' commissions and the longer time required for the consummation of financing." ${ }^{2}$

3.1. Reported out-of-pocket expenses

To examine the out-of-pocket expenses referred to in the quotation above (from Commonwealth Edison's 1976 proxy statement) I obtained a tape from the Securities and Exchange Commission covering the reported costs of all issues registered under the Securities Act of 1933 between January, 1971 and December, 1975. The tape contains data covering the following costs: (1) compensation received by investment bankers for underwriting services, (2) legal fees, (3) accounting fees, (4) engineering fees, (5) trustee's fees, (6) listing fees, (7) printing and engraving expenses, (8) Securities and Exchange Commission registration fees, (9) Federal Revenue Stamps, and (10) state taxes.

To restrict my analysis to equity issues by listed firms, I established the following criteria for inclusion: (1) the offering is of common stock and contains no other classes of securities; (2) the company's stock is listed on the New York Stock Exchange, American Stock Exchange, or a regional stock exchange prior to the offering; and (3) any associated secondary distribution is less than 10 percent of the gross proceeds of the issue. Table 1 is based on the issues meeting these criteria.

The data summarized in table 1 contradict Commonwealth Edison's Proxy Statement. My information, consistent with findings of previous SEC studies, ${ }^{3}$ indicates that costs are highest for underwritten public offerings, and lowest for pure rights offerings. Furthermore, the difference in costs is striking. For a $\$ 15$ million issue, the reported cost difference between an underwritten public offering and a pure rights offering is 4.83 percent, or $\$ 720,000$; and for a $\$ 100$ million issue the cost difference is 3.82 percent, or $\$ 3,820,000 .^{4}$ Yet underwriters were employed in over 93 percent of the issues examined.

3.2. Extras

Systematic understatement of the costs of underwriting presented in table 1 occurs because extras are omitted. Extras refer to the warrants which are associated with some underwritten issues and are used as partial payment to the underwriter. The warrants are options which are usually convertible into the

[^7]Table I
Costs of flotation as a persentage of proceeds for 578 common stock iswee registered under the Securme, Act of 1933 during 1971-1975 The iscues are subdinded by size of issue and method of financing underuriting, rights with standhy underuriting, and pure rights offering :

Suce of mue (\$ millions)	Underwriting				Rights with standhy underwriung				Rights	
	Number	Compensalion as a percent of proceeds	Other expenses an a percent of proceeds	Total cos: 353 percent of proceeds	Nuniber	Compensator as a percent of proceeds	Other expenses as a percent of proceeds	Tolal con ava percent ol preceeds	Number	Total cost as a percent of proceeds
Under 050	0	-	-	-	0	-	\cdots	-	3	899
05010099	6	695	678	1374	2	3.43	480	824	$\frac{2}{5}$	459
100 tir 199	13	1040	489	1529	5	636	415	1051	5	490
21010499	61	659	287	947	4	520	285	806	7	285 139
500 to 999	66	550	153	703	1	392	218	610	6	139
1000 to 1997	91	484	071	555	10	414	121	535	3	072
2000104999	156	430	037	4517	12	38.4	090 074	474 470		052
5000109999	70	347	021	418	9	396 390	074 050	470 400	$\frac{2}{9}$	013
100001050000	16	381	014	395	5	340	050	400	9	
Total/ $/$ verage	48.4	502	115	617	56	432	173	605	38	245

Iswues are included only if the company's stock wis limed on the NYSE, AME or regional exchanges prior to the offering, any associated secondary distribulton represents less than ten percent ol the total proceeds of the istue, and the offering contans no other types of securities The cost raported are (1) compensation received by investment hankers for underw riting services rendered, (2) legal fees, (3) accounting fees. (4) engineering fies, (5) trustec' fees, (6) listing feer (7) priming and engraving cxpenses (8) Securitie) and Exchange Commision registration lee (9) Federal Revenue Stanps, and (10) state taxes
stock of the firm at prices ranging fiom well below to considerably above the offering price When the undervriters acquire these uarrants at a price below their market value, this represents a form of compensation to the underwriter, and it is not included in table 1

Although extras have historically been most often associated with new issues, their use in the compensation of underuriters of seasoned firms is not unusual For the years 1971-1972, the SEC (1974) reported that of the 1,599 issues which were underwritten, 530 , or 331 percent, included extras However, since extras were included primarily with the smaller offerings, the total dollar volume of issues with extra compensation was only 7 percent of the gross proceeds from all underwritten offerings

The average exercise price of the warrants granted as a percentage of the offering price was 1172 percent A lower bound on the value of the option is the difference between the subscription price of the offering and the exercise price of the extras, here that is 8828 percent of the subscription price ${ }^{5}$ Since these warrants are typically purchased by the managing investment banker at a minimal price, usually one to ten cents, the options appear to be significantly underpriced The SEC also found that the aterage ratoo of shares granted the underwriters through extras to the number of shares offered in the underwriting was 799 percent To assess the impact on the figures reported in table 1 , assume that the value of the warrant is 80 percent of the offering price, that the underwriter pays 5 percent of the offermg price for the extras, and that the ratio of warrants received as extras to shares offered through the underwriting is 007 , then the compensation represented by the extras would be 495 percent of the total proceeds These numbers suggest that for the issues employing extras, the figures in table 1 understate the underwrters' compensation on the order of 50 to 100 percent

33 Unreponted out-of-pocket expenses

Such items as the opportunity cost of the time of the firm's employees and postage expenses ${ }^{6}$ are not included in the summary of costs reported in table 1 However, unreported employee expenses are unlikely to explain the deviations reported in table 1 For a $\$ 15$ milion issue, the $\$ 720,000$ difference would not be explaned if 20 employees with an average salary of $\$ 30$ thousand worked

[^8]full tume on a rights offering for a year For a $\$ 300$ million issue the difference in reported costs of underwruing versus a rights issue exceeds $\$ 11$ milion, it would require over 350 man-years to explain this difference

It should be noted that expenses allocated to raising capital do not reduce the tax liability of the firm ${ }^{7}$ These expenses are deducted from the capital account without affecting the income statement Thus, the use of internal resources can lower the tax hability of the firm if it is more expensive for the Internal Revenue Service to monitor the allocation of internal resources between capital rasing activines and other acturites In the above examples, if the firm's marginal tax rate is 50 percent, and if they were able to deduct all their wages for tax purposes, the required number of man-years to explain the reported cost differential would be doubled
There are strong reasons to beheve that table 1 also omits signuficant unreported costs of the issuing firm's employecs' tume for underwritten offerings There are important parameters (e g. the offering price and the fee structure) which must be negotated between the underwriter and the representatives of the firm, these parameters have wealh implications for the owners of the firm as well as the underwriter Such negotration can be lengthy and usually directly involves top management These unreported costs of underwriting must be significantly greater than the costs of setung a subscription price for a nughts issue, since the subscription price has no wealth implications for the owners of the firm as long as it is low enough to ensure that the rights will be exercised

Moreover, whit an underuritten issue the firm has the same tax mentives to subsutute internal for external resources if it is more expensive for the IRS to montor the allocation of costs of internally acquired resources to capital raising activities than of those which are externally acquired Thus, it is not clear that rights offerings employ fewer unreported internal resources than do underwritten offerings

34 Costs imposed directly on shareholders

If a shareholder chooses to sell his rights, he incurs transactions costs and tax habilttes These costs, although not borne by the firm, are relevant because they affect the wealth of the owners ${ }^{8}$

[^9]To determme the impact of the selling costs, let us assume generally extreme values for the relevant parameters For small dollar transactions (less than $\$ 1,000$), the brokerage fee can be as much as 10 percent And for rights, the bid-ask spread can be as high as 10 percent, this represents another selling cost If half the bid-ask spread is taken as an implicit selling coct the total cost can be as much as 15 percent of the value of the rights To make the figures comparable to those in table 1, calculate transactions costs as a fraction of the proceeds of the offering to the firm The 15 percent must be multiplied by the ratio of the value of the rights to the total proceeds For the offerngs in the sample. this tatio was approximately 10 percent If all monduals sold their rights, transactions costs would be 150 percent of the proceeds, a figure less than the difference in transactions costs for any repoted issue size ${ }^{9}$ But rights offermgs are generally 50 percent subscribed by e ustung hareholders who do not beat these transactions costs ${ }^{10}$ Therefore this cont appears to be less than one peicent
Selling rights also has tav consequences for the shareholdel For tax purposes. the cost basis of the stock must be allocated between the stock and the rights "hen the rights are recerved based on the marher values of the rights and stock at that tume "The acquintion date of the rights for tas purposes is the date on which the stock issuing the rights is acquired if the stock has risen in talue smice it was acqured, a relesant cost of employing a rights offering is the difference between the shareholder tax liability incurred now and the present value of the taves "hich would have been paid had the rights issue not occurred ${ }^{12}$

To determine the impact of this cost agan postulate generally extreme values for the relevant parameters Assume (1) that the marginal tas rate for the average shareholder is 50 percent (note this would be an unattanably high rate If the capital gan were long term1, (2) that in the absence of the rights offering the taxes could have been postponed foreter (3) that the allocated cash basis for the rights is 50 percent of the current rights price (4) that the ratio of the value of the rights to the proceeds of the issue is 10 percent, and (5) that only 20 percent of the current stockholders subscribe to the rights offering In this

[^10]case, the cost would be 2 percent of the capital rased by the firm This is less than any reported cost differential in table i ${ }^{\text {is }}$

One other argument involving shareholder-borne costs has been offered by Weston and Brigham (1975) They argue that in a rights offering some stockholders may nether exercise nor sell, and by allowing their rights to expire unexercised they mour a loss ${ }^{16}$ However, if an oversubscription privilege is employed with the offering, current owners in the aggregate receive full market value for the shares sold Admittedly, the oversubscription privilege affects the distribution of wealth among the owners, but it does not impose costs on owners as a whole

4. Security price behavior associated with rights and underwritten offering

41 Rights offermgs lower the stoch price

"A rughts offering, under market conditions then existing, could well have a long-term depressing effect on the market price of the stock ${ }^{17}$
Gwen the investment polics of the firm, a rights offering will lower the price of the stock in both the short run and in the long run as AT\&T s Proxy Statement suggests But this is irrelevant to the choice of financing methods because the drop in price is not a reduction in the wealth of the owners and thus cannot be considered a cost of a rights issue

The fall in the stock price when rights are issued can be illustrated by the following argument Rughts give the shareholders the option to purchase new shares at less than market prices Other things equal, the total marker value of the fium after a rights offering, V, will then be the previous value, V^{\prime} plus the subscription payments, S

$$
\begin{equation*}
V=V^{\prime}+S \tag{1}
\end{equation*}
$$

The per share price before the offering is V^{\prime} / n, where n is the number of old shares If m new shares are sold, the per share price after the offering, $\left(V^{\prime}+S\right) /(n+m)$ must be less than the price per share before the offering ${ }^{18}$

[^11]The fall in the stock price on the ex rights day is similar to the expected fall in the stock price at the ex dividend date. The two cases differ only in what is distributed - in the latter instance cash, in the former rights. Thus, the fall in the stock price simply reflects the fact that the shareholders have been given a valuable asset, the right.

The argument that the fall in the stock price is a relevant cost of a rights offering also appears in two related forms: (1) if an underwriter is used, the firm can raise a greater amount of capital with the same number of shares; (2) a rights offering lowers the earnings per share of the firm. ${ }^{19}$ Both statements are true but if the fall in the stock price equals the market value of the rights, then the impact of the additional shares issued through the rights offering is the same as that of a stock split and the wealth of the owners of the firm is unaffected.
To examine whether, after correcting for the expected normal fall in the stock price, there were also abnormal price changes, ${ }^{20}$ I studied the 853 rights offerings on the CRSP master file between 1926 and 1975. Following Fama, Fisher, Jensen and Roll (1967), I estimated the regression,

$$
\begin{equation*}
R_{j t}=\alpha_{j}+\beta_{j} R_{m t}+\varepsilon_{j t}, \tag{2}
\end{equation*}
$$

where $R_{j \mathrm{t}}$ is the return to security j in month t, adjusted for capital structure changes (including rights offerings) and $R_{m t}$ is the return to the market portfolio in month t. I estimated (2) for each of the 853 offerings, using data from the CRSP monthly return file, excluding the 25 months around the date of the offering. Setting $t=0$ for the month of the rights offering, I used the estimated α_{j} and β_{j} to calculate the $\varepsilon_{j t}$ for each security for the 25 months around the offering. I then calculated the average residual over all firms for each month in the interval -12 to +12 . The average residuals were then cumulated from month -12 to the event month. The results are presented in table 2 and figure 1.

In the months subsequent to 'event month minus two' the average residuals

[^12]are all insignificantly different from zero ${ }^{21}$ and there is no significant sign pattern in the time series of average residuals. The cumulative average residuals in table 2 are also at approximately the same level three months before the

Table 2
Summary of average residual and cumulative average residual analysis of 853 rights offerings between 1926 and 1975 for the 25 event months
$[-12$ to +12$]$ surrounding the offer date.

Event month	Average residual	Cumulative average
-12	0.00721	0.00721
-11	0.01004	0.01725
-10	0.00255	0.01980
-9	0.00629	0.02609
-8	0.00388	0.02997
-7	0.01062^{n}	0.04059
-6	0.00750	0.04809
-5	0.00622	0.05431
-4	0.01334^{n}	0.06765
-3	0.00662	0.07427
-2	0.01624^{n}	0.09051
-1	-0.00649	0.08401
0	-0.00739	0.07663
+1	0.00779	0.08441
+2	0.00412	0.08853
+3	0.00405	0.09258
+4	-0.00110	0.09149
+5	-0.00047	0.09102
+6	0.00053	0.09155
+7	-0.00338	0.08817
+8	-0.00387	0.08430
+9	0.00256	0.08686
+10	-0.00264	0.08422
+11	-0.00013	0.08408
+12	-0.00476	0.07933

*Greater than 2σ. (Computation of the standard deviation is described in footnote 21.)
offering, on the date of the offering and 12 months after the offering. The significant positive residuals prior to the offer date are to be expected because of selection bias; firms which raise capital tend to have been doing well.
${ }^{21}$ As an estimate of the dispersion of an average residual, the approximation

$$
\sigma^{2}=\left(\sigma^{2} \mu / r^{2}\right)\left(1-r^{2}\right) / N
$$

was employed where σ^{2} is the variance of the market return, r^{2} is the squared correlation coefficient between the return to an asset and the market return, and N is the number of securities in the sample. If σ_{H} is $\mathbf{0 . 0 8 9}$ [from Black Jensen Scholes (1972)], $r^{2}=\mathbf{0 . 2 5}$, and $N=853$ then $\sigma^{2}=0.000028$ and $\sigma=0.00528$.

The results presented in table 2 are consistent with previous studies of this question Nelson (1965) examined all the rights offerings by firms listed on the New York Stock Exchange between January 1, 1946 and December 31, 1957. He found after the price series is adjusted for the 'spit effect' in the aghts offerings and general market movements are removed, prices stx months after a rights offering are not significantly different from prices six months before the offiering ${ }^{22}$ Scholes (1972) found that the price of shares generally rose in value before the issue, fell 03 percent during the month of the issue, but experienced no abnormal gains or losses after the issue

Fig i Plot of average residuals for 853 rights offenngs between 1926 and 197S for the 25 event months $[-12$ to +12$]$ surrounding the offer date

42 Underwriters increase the stock price

Some argue that underwriters cause an increase in the stock price (1) by increasing 'public confidence' through external certufication of the legal, accounting, and engineering analyses and (2) by the selling efforts of the underwriting syndicate. ${ }^{23}$
To examine the behavior of stock prices around the offer date of underwritten offerings and rights offerings, I obtamed the returns for those securities which were included both in the sample of 578 firms covered in table 1 and on the CRSP dauly return file There were 344 underwritten offerings and 52 rights offerings in this sample I set the offer date equal to day zero for all offermgs and formed a portfolo of underwritten offerings and a portfolio of rights offerings I weighted securites in the portfolio of underwritten offerings so that

[^13]the two portfolios had equal betas. Then I calculated the difference in the portfolio returns for the 130 days before and 130 days after the offerings. The difference in average returns between two portfolios with equal risk will measure abnormal returns from either underwritten offerings or rights offerings. Table 3 presents the results for the period 20 days before the offering to 20 days after the offering; and figure 2 graphically presents the results for the period 40 days before to 40 days after the offering.

The average difference in returns to the two portfolios over the 260 days around the offer date is +0.00006 , with a sample standard deviation of 0.00265 . Therefore rights offerings have marginally higher returns during the 40 days around the offer date, but there is no obvious abnormal price behavior around the offer date for either underwritten offerings or rights offerings.

Fig. 2. Differences in daily returns between a portfolio of 52 rights offerings and a portfolio of 344 underwritten offerings for the 81 event days $[-40$ to +40$]$ surrounding the offer date. (Portfolio weights are adjusted so that the two portfolios have the same beta.)

That underwriters are unable to generate abnormal positive price behavior should not be surprising. The firm always has the option of disclosing more information than is required by the Securities and Exchange Commission. The firm will expend resources on certification by external legal, accounting, and engineering firms until the net increase in the value of the firm is zero. Since the firm can contract for external certification of any disclosure, the benefit of whatever 'expert' valuation by the investment banker associated with an underwriting is limited to the difference in costs between certification through the underwriting process and independent certification.

But if underwriters are employed they influence the firm's decision about the

Table 3
Differences in daily returns between a portfolio of 52 nights offermgs and a portfolio of 344 underwriten offerings between January 1971 and December 1975 for the 41 event days $[-20$ to $+* 0$] surrounding the offer date (Portfolio weights are adjusted so that the two portfolios have the same beta)

Event day	Rughts average return	Underwruten average return	Difference (rights-und)	Cumulative difference
-20	-0000361	-0003007	0002646	0002646
-19	-0001642	-0001523	-0000120	0002526
-18	0000072	-0001361	0001433	0003959
-17	-0001325	0000175	-0001500	0002458
-16	-0001134	-0000231	-0000902	0001556
-15	-0002865	-0001229	-0001636	-0000080
-14	-0002245	0000732	-0002977	-0003057
-13	-0004471	0000949	-0005420	-0008477
-12	0001722	0001110	0000611	-0007866
-11	-0002834	-0000264	-0002570	-0010436
-10	-0001226	-0000125	-0001102	-0011538
-9	0001961	0000960	0001000	-0010537
-8	-0004966	0001151	-0006117	-0016654
- 7	0001031	0001327	-0000296	-0016950
- 6	0062433	-0001257	0003690	-0013260
-	-0002373	0002069	-0004442	-0017702
1	0002180	0001384	0000797	-0016905
- 3	0001978	-0001284	0003262	-0013642
- 2	-0000570	-0000557	-0000013	-0013656
-1	0004425	-0000803	0005228	-0008428
0	0001413	0000583	0000829	-0007598
1	-0000000	0000054	-0000054	-0007653
2	0003127	-0000605	0003732	-0003921
3	-0001182	-0000700	-0000482	-0004403
4	0003059	-0001195	0004254	-0000149
5	0005288	0000710	0004577	0004428
6	0000311	0000477	-0000166	0004262
7	-00025s1	0000206	-0002757	0001505
8	0004396	0001072	0003324	0004829
9	0000851	0000221	0000630	0005458
10	0001601	0000720	0000881	0006339
11	0004703	0000768	0003934	0010273
12	0002369	0000099	0002771	0012544
13	0004764	-0000502	0005267	0017811
14	-0000734	-0000495	-0000239	0017572
15	0002944	-0000527	0003471	0021043
16	-0001089	-0000790	-0000299	0020744
17	-0001809	0003065	-0004874	0015870
18	0001228	-0002196	0003424	0019294
19	0000169	0000458	-0000289.	0019004
20	-0000823	0000711	-0001534	0017471

level of disclosure The underwrrters will request that level of disclosure for which the marginal private costs and benefits to the underwriter are equal Given the legal liability of underwnters under the 1933 Act, the incentives of the fitm and underwriter can differ Any divergence from the level of disclosure which maximizes the market value of the firm imposes a cost on the shareholders, and underwrters do ask for 'comfort letters' from accountants, frequently requiring expensive audting procedures not produced without underwriters Thus, 1 conclude that the disclosure incentives of the underwriters lead to an over-investment in information production However, the costs of this overmestment should be reflected in the figures in table I

43 Do underwntiters underprice the securttes?

In Ibbotson's (1975) study of unseasoned new issues he found that the offer price on average is set 114 percent below the market value of the shares If seasoned new issues are also underpriced, the difference between market value and offer price would represent another cost of employing underwriters
There are reasons to believe that underwriters underprice the seasoned new issues For a firm commitment underwriting agreement the Rules of Fair Practice of the National Association of Securities Dealers ${ }^{24}$ require that once the offer price is set, the underwriter cannot sell the shares at a higher price. If the offer price is set above the market value of the shares excess supply results If the offer price presents a binding constraint to the underwriter, the limit order placed with the specialist by the managing underwiter results in the purchase of additional shares at the offer price If continued this purchasing would cause the underwriting syndicate to break Since very few underwriting syndicates breaks ${ }^{25}$ the implication must be ether that the offer price is generally set below the market value of the shares, or that the offer price constraint can be crcumvented

There are two ways in which the offer price could be circumvented First, for hot issues (i e, underpriced issues for which there is significant excess demand) the underwriters allocate the shares to preferred customers One way to achieve preferred customer status is to purchase issues for which there is an excess supply Second, underwriters employ 'swaps' In a swap, the underwriter buys another security from a customer while selling the underuritten security at the offer price Through this tie-in sale, the underwriter can shift the profit or loss These two tying arrangements allow the underwriter to minimize the impact of the regulation

[^14]To see if seasoned new issues are underpriced I calculated the return fiom the closing price the day prior to the offer date to the offer price, and the return from the offer price to the close on the offer date For the 328 firms with the riquisite data, the average return from the close to the offer price is -00054 and the average return from the offer price to the close on the offer date is +00082 For the 260 days around the offer date the average dally return is 00005 with a sample standard deviation in the time senes of average returns of 00013 Therefore, both figures, although much smaller than the II 4 percent found by Ibbotson, are sigmficantly different from the average darly return ${ }^{26}$ Thus the underpricing imposes an additional cost on the owners of the firm of between 05 and 08 percent of the proceeds of the issue, a cost which is not reflected in table 1

5. Miscellaneous arguments favoriag underwritten offerings

51 Insuance

It is frequently argued that employing an underwritel proudes an insurance policy. reducing uncertamty of the offering's success ${ }^{27}$ In effect, the firm

[^15]purchases an option to sell the shares to the underwriter at the offer price (See Appendix 2) Note four things about this option First, in an underuritten issue, the offer price is not set generally until within 24 hours of the offering when the final agreement is signed, and hence the net proceeds ase not determined until that tume Second, as shown in section 43 , the offer price on average is set below the market value of the stock Thus, the firm purchases a one-day option to sell shares at a discount of $\frac{1}{2}$ percent below their market value Third, subject to certain conditions specified in the letter of intent, the underwriter has the option of backing out of the tentative agreement until the date the final agreement is signed Thus, the "insurance policy" is of limited value because its effective duration is short Fourth, as argued above, the subscription price for a rights offering can be set low enough so that the probabilty of fallure of the rights offering becomes arbitrarily close to zero So an alternate source of 'self-insurance' is avalable through the rights offering For these reasons, the possible value of the "insurance policy" associated with underwritten issues must be small

52 Timing

Commonuealth Edison claims that the proceeds of an underuritten issue are avalable to the firm sooner than in a rights issue ${ }^{28}$ But uming benefits provided by underwriters must be small First, the settlement date for an underwritten issue is generally seven days after the offer date, while the settlement date for a rights offering is generally seven days after the expiration of the offering Since the offering generally lasts about 18 days, any reasonable estimate of the cost in terms of the lost interest which would be imposed on the firm by waiting that short period of tume would have to be small Second, since it is not expected that the rights will be evercised prior to their expiration, ${ }^{29}$ the ouners of the firm have the use of the funds during the period of the offering Thus, the tume period which entals an opportunity cost of the funds is reduced to a sevento ten-day period both for rights and underuritten offerings Third, if the services provided by the undervriter and transfer agents are competitively supplied, the fees charged will reflect the opportunity cost of the funds at their disposal This would imply that the timing cost is impounded in the figures in table 1 And fourth, unless there is an unforeseen urgency associated with obtaining the funds, the firm can simply initiate the rights procedure at an earler date

Moreover, undei certain circumstances, the registration procedure with the SEC is simpler when a rights issue is employed It is my belief that whth a rights offering, the SEC is more likely to presume a regular dialogue between the firm and its owners and thus impose less restrictive disclosure requirements There-
${ }^{28}$ Comunonwealth Edison Proxy Statement, 1976
${ }^{29}$ See Merton (1973) or Smith (1976)
fore, the time until the registration becomes effective can be expected to be shorter with a rights offering than with an underwritten offering. This shorter registration time reduces the total time from the point where the decision is made to raise additional capital to the receipt of the proceeds.

53 Distributton of ownershtp

Weston and Brigham (1975) argue that underwriters provide a wider distribution of the securities sold, 'lessening any possible control problem' Since change in control may result in a change in management, this is likely to be a relevant issue for the current management. Yet it is not clear that possible control problems should be a concern of the owners I know of no reason to believe that one group of owners is any better (ie , will price the firm any higher) than another group

Furthermore, it is not obvious that underwriters will achieve a wider distribution of ownership than will a rights offering For most rights offerings of listed firms, the consensus among investment bankers is that the subscription rate of the current owners of the firm ranges from 20 to 50 percent It is difficult to estimate what peicentage of an underwritten issue is purchased by the current owners of the firm, but there is no reason to believe it is zero Further, underwritten issues seem to attract more institutional interest, resulting in large block purchases and therefore more concentration of ownership

These factors preclude any general conclusions about the effect of financing method on ownership distribution With this uncertainty it is not clear that management, even if concerned with control issues, should prefer the use of an underwriter

54 Consulting advice

Van Horne (1974) suggests that 'advice from investment bankers may be of a continuing nature, with the company consulting a certain investment banker or group of bankers regularly' It is more expensive for the firm to compensate the investment banker for future consulting services by including in the underwriting fee a payment for the present value of the expected advice Costs incurred in rasing capital are not tax deductible, they directly reduce the capital account and do not enter the income statement Thus, compared to separate billing for services rendered, paying for future consulting through a higher underwriting fee doubles its cost for a firm with a marginal tax rate of 50 percent

55 Expected legal costs

If there were a law, regulation, or merely an unresolved judicial principle which mught impose additional hability on a firm using rights offerings, then the
expected legal costs of using rights could explam the observed use of underwriters But I can find no differentral legal liabilty associated with the use of rights offerings

56 Selection bias

If the firms which employ ughts offerngs were systematically dfferent from the firms which employ underwritten offerings, then the observed cost differences could beattributable to seiection bias It could be that if the firms which employed underwnters had used nights, their expenses would have been greater

There is a sigmficant difference in the betas of the firms in the two groups I calculated the betas for those firms in the sample which were listed on the New York Stock Exchange and included on the dally CRSP tape The average beta for the 344 underwritten offermgs is 0731 wth a standard deviation of 0560 , and the average beta for the 52 rights offerings is 0493 wth a standard deviation of 0330 But I can find no other systematic difference between the two populations

Examination of the data shows sumilar distributions of firms across industries, 808 percent of the firms employing rights and 732 percent of the firms employing underwritten offerngs were utblites (electric, gas, or telephone companies) I attempted to predict the choice of underwriten versus rights offering based on the following varrables (1) the percentage of the firm which is sold through the offering, (2) the market value of the firm, and (3) the varance of the returns on the stock The r^{2} for the regression is 0016 None of the r statistics for the varables appears to be signuficant

Although differences exist between the two sets of firms, the nature and magnitude of the differences seem msufficient to account for the observed cost differences

6. A monitoring cost hypothesis

61 Why not montor the choice of financmg method ${ }^{\text {D }}$

My examination of alternative financing methods suggests that rights offerings are significantly less expensive than underwitten offermgs Yet underwriters are employed in over 90 percent of the offermgs studied One hypothesis consistent with the evidence is (1) managers and members of the board of directors recerve benefits from the use of underwriters which do not accrue to the other owners of the firm, and (2) the expenses which would be imposed on the owners of the firm by monitoring the managers and directors in the choice of financing method are greater than the costs without montoring

Managers or members of the board of directors may recommend that offerings be underwnitten because their welfare increases as a by-product of the use of
underwriters in several ways ${ }^{30}$ First, firms frequently include an investment banker as a member of the board of directors It is in his interest to lobby for the use of underwriters, particularly the use of his investment banking firm as managing underwriter Second, there is the possibility of "bribery" This may be simply consumption for the managers and directors through 'wining and dining by the underwriters But there is a more important possibility In an underwritten issue, if the offer price is set below the market value of the shares, the issue will be oversubscribed To handle this excess demand, underwriters ration the shares In the rationing process the underwriters presumably favor their preferred customers, and prefeired customer status could be given to key management people or members of the board of directors of firms employing the underiviter This form of payment nould be virtually impossible to detect, since the shares the officer of Company A would favorably acquire are those of Company B and would therefore call for no disclosure ${ }^{31}$

Further possible benefits to managers include the reduction of possible control problems, if underwritten offerings produce a wider distribution of ownership than rights offerings Finally, managers whose compensation is a function of reported profits will prefer an underwriter's fee which includes a payment for futuie consulting advice, the manager's compensation will be higher because payment through underwriting does not affect reported profits while separate billing for consulting does

Jensen and Meckling (1976) show that the costs which the managers and directors can impose on the other owners of the firm are limited by the costs of monitoring their activities Thus the cost to shareholders of monitoring the method of raising capital must be greater than the costs imposed by the financing method chosen Given the dispersion of ownership in modein corporations, the benefit to any single shareholder from voting his shares is small Thus the costs that he would rationally incur in voting are small, ${ }^{32}$ and the tesources the shareholder would rationally devote to deciding whether a 'yes' or 'no' vote is more in his interest are few Moreover, soting procedures in most corporations ensure that management has a disproportionate voice in the outcome Management is often assigned votes by proxy, and in many firms management has the

[^16]power to sote unreturned provies They are also permitted to sote proxies on specific questions when the stockholder does not specify a choice These factors raise the cost of monitoring management

62 The precmptue right as a montorng tool

There appears to be a lou cost method of nonitoring the use of underwriters the preemptive night The preemptive nght is a piovision which can be included in a from s charter requiring the firm to offer any new common stock first to its existing shareholders But the inclusion of the preemptive right does not solve the problem firms can still employ underwriters through a standby under-

Fig 3 Plot of aserage residuals from 89 firms which removed the preemptuse right from thers corporate charter for the 81 eient monibs $[-40$ to +40$]$ surrounding the month of removal

Writing agreement Since the figures in table I suggest a negligble difference in costs between a firm commiment underwritten offermg and a rughts offering with a standby underwriting agreement what becomes important is not a requirement to use rights, but a prohibition against using undern riters

To test the hypothesis that the impact of removing the preempuse right from the corporate charter is negligible, I collected a sample of 89 firms listed on the New York Stock Exchange which have removed the preemptive right The results of this study are presented in table 4 and figure 3 The average residual In the month of removal is 0277 percent, and the mean average residual for the six prior months is 0309 percent There is no apparent impact

I believe the results in table 4 provide a plausible explanation for why the intellectual level of the argument mvolving the preemptive night is so low on both sides of the question For example, the above quotes from Commonwealth

Table 4
Summary of residual analysis of 89 firms which removed the preemptuve right from their corporate charter for the 81 event months $[-40$ to +40$]$ surrounding the month of removal

Event month	Average residual	Cumulative average restdual	Event month	Average residual	Cumulative average residual
-40	-000995	-000995	1	000363	011718
-39	-000382	-001376	2	000028	011745
-38	001999	000623	3	000293	012038
-37	-000258	000365	4	000276	012315
-36	-000160	000205	5	000101	012415
-35	-000414	-000209	6	000336	012751
-34	000842	000633	7	-000017	012734
-33	-000238	000395	8	-000537	012196
-32	000483	000878	9	000963	013159
-31	000375	001254	10	000002	013162
-30	-000419	000834	11	000406	013568
-29	-000632	000202	12	-000446	013122
-28	000082	00028 -	13	-000855	012766
-27	001337	001621	14	000210	012476
-26	001839	003460	15	-000696	011780
-25	001440	$00 \$ 900$	16	000903	012683
-24	-000397	004503	17	000752	013435
-23	000800	005303	18	-000096	013339
-22	-000102	005201	19	-000942	012397
-21	-000007	005195	20	000701	013097
-20	-000072	005123	21	-000021	013077
-19	000602	005725	22	001591	014668
-18	-000067	005658	23	000090	014758
-17	-001032	004626	24	-001043	013715
-16	001575	006201	25	-000281	013434
-15	001608	007809	26	-001389	012046
-14	000828	008637	27	001069	013115
-13	-000943	007694	28	-000566	012548
-12	001496	009190	29	000901	013449
-11	-000183	009007	30	-000592	012857
-10	-000833	008174	31	-000624	012233
-9	001103	009277	32	-000240	011993
-8	000138	009415	33	-000071	011922
-7	-000185	009230	34	002059	013981
- 6	-000170	009050	35	000183	014165
- 5	000508	009568	36	-000263	013901
-4	000998	010566	37	-001103	012799
- 3	000816	011382	38	000971	013770
-2	000477	011859	39	-001524	012246
-1	-000782	011078	40	000300	012546
0	000277	011355			

Edison's Proxy Statement are demonstrably false, and the quote from AT\&T's Proxy Statement is irrelevant The promary lobbying effort in favor of the preemptive right is from Lewis D Gilbert, John J Gilbert and Wilma Soss who regularly introduce proposals to rencorporate the preemptive right into the corporate charter of corporations which have removed it However, their reason for the use of rights is so that shareholders can maintain their proportonate interest in the firm For large firms this "benefit' has neghgible value ${ }^{33}$

63 Other considerations

It should be emphasized that the montoring cost hypothesis is consistent wth both observed institutional arrangements and rational, wealth-mavimizing behavor by the stochholders Rational behavor imples that actions will be tahen if the benefits evceed the costs I have ponted out certan costs associated with the voting mechanism wath corporations inclusion of an investment banker on the board of directors, and certam management compensation plans These practices, while costly, would still be in the stockholders" best interests if there are offsetung benefits

Furthermore, the monitoring cost hypothesis does not imply that there are rents which accruc to the underwiting industry There are two avaliable 'technologles' with which additional equity capital can be raised If the underwriting industry is competinse, the underwiting fees repoited in table I would reflect a normai return to the resources required in employing that technology

Howeter, the montoring cost hypothesis does present some probiems I do not observe the costs of monitoning management Hence the hypothesis is not directly tested Furthermore, while the incentwes set up through the voting mechanism suggest that it is plausible that montoring costs are large enough to evplan the obserted use of underwinters, competition in the market for management should reduce the requrred montoring expenditures If the use of rights offerings 25 in the best interests of stoch holders, then it will pay potenual managers to incur bonding costs to guarantee not to use underwriters

7. Conclusions

In my examination of the chore of method for ratising additional equity captal by histed firms I demonstrate that properly constructed rights offerings provide proceeds which are equnalent to those of an underwritten offering Furthermore, estimates of expenses from reports filed wht the Securities and

[^17]Exchange Commission indicate that rights offerings involve lower out-of-pocket costs than underwritten offerings Yet underwititers are employed in over 90 percent of the issues Examination of the arguments to justify the use of underwriters advanced by the underwriting industry, finance textbooks, corporate officers, and securities lawyers suggest that none of the arguments are capable of explaining the observed choice of financing method in terms of rational, Wealth-maximizing behavior by the stockholders of the firm
The one hypothesis I find which is consistent with the avalable evidence relates to the costs of montoring management Although direct expenses imposed on shareholders are higher per dollar rased through the use of underwriters, I hypothesize that management dernes benefits from their use From the shareholders' standpoint, the firm's use of underwriters is optimal because the cost of monitoring management exceeds the savings in out-of-pocket expenses from using rights If this hu pothesis is correct, then the present value of the stream of differences in costs reported in this paper provides a lower bound on the costs of getting shareholders together to monitor and control management on the method of raising capital Thus, the present value of the differences in costs establishes a lower bound on the expected costs of control mechantsms such as proxy fights, tender offers, and takeover bids

The monitoring cost hypothesis does present some problems I do not observe directly the costs of montoring management While it is possible that the montoring costs are large enough to explain the observed chore of underwriters, consideration of competition in the market for management reduces the plausibility of this hypothesis But if the montoring cost hypothesis is rejected, then the observed choice of financing method cannot be explained in terms of rational, wealth-mavimizing behavior by the owners of the firm, unless it can be shown that I have etther agnored or misestımated a relevant cost of using rights or benefit from using underwriters

Appendix 1: A description of the institutional arrangements for rights and underwritten offerings

A description of the procedures followed in the various types of offerings specified in sufficient detall to answer the questions addressed in the study is not avalable This appendix provides that information Some of this material comes from written sources ${ }^{34}$ However, much of the material comes from conversations with underwriters, corporate financial officers, and SEC officials.

Underwritten offerings

The firm typically selects an underwriter in one of two ways - either by competutive bidding or by negotiated underwriting In competitive bidding, the firm

[^18]files approproate papers wth the SEC. then specifies the terms of the issue and has potential underwriters submit sealed bids Government regulation requires the use of this procedure by electric utility holding companies the primary users of compentive bidding In a negotiated underwnting brd, the important variables in the underwriting contract are determined by direct negotiation between firm and underwerter

Negotiated underwriting begins with a series of pre-underw riting conferences. when decisions as to the amount of capital, type of security, and other terms of the offering are discussed Several general forms of the underwriting agreement can be employed ${ }^{35}$ The first is a 'firm commitment' underwriting agreement. under which the underuriter agrees to purchase the whole issue from the firm at a particular price for resale to the public Almost all large underwriters employ this form In the second form. a 'best efforts' underkriting. the underwriter acts only as a marheting agent for the firm The underwriter does not agree to purchase the issue at a predetermined price, but sells the security for whatever price it will bring The underwriters take a predetermined spread and the firm takes the residual A variant of this agreement employs a fixed price but no guarantee on the quantity to be sold The third possibility is an 'all-ornothing commutment which requires the underurter to sell the entire issue at a given price, usually withon thirty days, otherwise the underwiting agreement is voided

If the corporation and underwriter agree to proceect, ${ }^{36}$ the underurter will begin his underwriting investugation, in which he assesses the piospects for the offering This investigation meludes an audit of the firm sfinancial records by a public accounting firm, which ads in preparing the registration statements required by the Securites and Exchange Commission A legal opimion of the offering will be obtaned from lawyers who typically participate in uriting the registration statement Reports may also be obtamed from the underwriter s engineering staff when applicable

Before a company can rase capital through a public offering of new stock it must comply with the Federal Law that governs such a sale - the Securties Act of 1933, and the Securities Exchange Act of 1934 The Securities and Exchange Commission, established to administer both laws, requires full disclosure of all pertment facts about the company before it makes a public offering of new stock The firm must file a lengthy registration statement with the SEC setting forth data about its financial condition For underwritten issues,

[^19]the firm usually files the form S-1 or S-7 registration statement Form S-7 is less expensive, but requires certan conditions to qualify ${ }^{37}$
The SEC has 20 days to examine the registration statement for material omissions or misrepresentations If any error is found, a deficiency letter is sent to the corporation and the offering is delayed until the deficiency is corrected If no deficiency letter is sent, a registration statement automatically becomes effective 20 days after filing, except when the SEC notifies the firm that the commission's workload is such that it requires more time to review the registration statement ${ }^{38}$ The firm will typically amend the registration statement to include the offer price and the offer date after the SEC has examined the rest of the statement This procedure allows the firm and underwiter to postpone the effective date of the registration statement until they agree the offering should proceed

In addition to the registration requirements under the Securities Act of 1933, firms must qualfy therr secunties under the state securites lans, the so-called 'Blue Sky Laws', in those states where the securties are to be sold Some states are satisfied with SEC approval, others requre a registration statement be filed with state securites commissioners

The underwriter usually does not handle the purchase and distribution of the issue alone, except for the smallest of security issues The investment banker usually forms a syndicate of other investment bankers and security dealers to asust the underwriting ${ }^{39}$ During the wating period between the filing and the offer date. no written sales literature other than the so-called 'red herring'
${ }^{34}$ For example, the majontr of the board of directors have been members for the last three years, there have been no defaults on preferred stoch or bond payments for the past 10 sears, net income after taves was at least $\$ 500,000$ for the past five years, and earnings exceeded any diudend payments made over the past five years
${ }^{38}$ In 1960 and 1961, delays of four to six months occurred for this reason
${ }^{39}$ Pror to the passage of the Securmes Act in 1933 most new issues were purchased by an orignating house The ongunatug house would resell the issue at a small increase in price to a so-called banking group, generally a few large houses The banking group would then sell the issue to an underw riting group, which in tuin sold it to a selling sy ndicate - each sale occurred at a fractonal increase in price The seling syndicate members, however, were lable for their proportional merest of anv securities remaming unsold Late in the 1920s it became frequent practice to make the final group a so-called selling group, the members of which had no liability except for securities which thes had purchased from the underuritung syndicate

The Securities Act, as amended shortly after its passage, contaned a provision limiting an underuriters hability for misstatements and omissions in the registration statement to an amount not 'in excess of the total price at which securites underwriten by him and distributed to the public were offered to the public' This Act changed the method of wholesaling securites, the use of the joint sy ndicate in handing registered securtites disappeared Because of the provisions of the Act, il was to the adrantage of the manager of the offering to have his fellow participants purchase direct from the company, smee then the manager's labilty under the Act became limited to the amount which the firm itseif underwrote Liability for transfer taxes that would have been payable on the sale by the manager to the underwrters was thus avoided At the present tume, underwriters of securities registered under the Act contract to buy directly from the issuer even though the manager of the offering signs the agreement with the ssuer on behalf of each of the undersring firms
prospectus ${ }^{40}$ and 'tombstone' advertisements ${ }^{41}$ are permitted by the SEC However, oral selling efforts are permutted, and underwatters can and do note interest from their chents to buy at various prices These do not represent legal commitments, but are used to help the underwriter decide on the offer price for the issue Underwniters typically attempt to obtain indications of interest for approximately 10 percent more shares than will be avalable through the offering ${ }^{42}$

Before the effective date of the registration, the corporation's officers meet with the members of the underwriting group Given the personal hability provisions of the 1933 Act, this meeting is often identified as a due diligence meeting An investment banker who is dissatisfied with any of the terms or conditions discussed at this session can still withdraw from the group with no legal or financial hability Discussed at this meeting are (1) the information in the firm's registration statement. (2) the material in the prospectus, (3) the specific provisions of the formal underwriting agreement As a rule, all the provisions of the formal underwriting agreement are set except the final sales price

The 'Rules of Far Practice' of the National Association of Security Dealers require that new issues must be offered at a fixed price and that a maximum offering price be announced two neeks in advance of the offering However, the actual offering price need not be established unnl immediately before the offering date In fact. the binding underwriting agreement which specifies the offer price is not normally signed until within 24 hours of the effective date of the registration

Once the underwnter files the final offerng price with the SEC, the underwriters are precluded from selling the shares above this price The SEC permits the managing underwriter to place a standing order with the speciahst to buy the stock at the public offer price If the underuriter buy's more than 10 percent of the shares to be issued through this order, the syndicate usually breaks, permitting the stock to be sold below the offer price The syndicate can also be broken if the managing underwriter feels that the issue cannot be sold at the offer price ${ }^{43}$ On the other hand, if all the indications of interest become orders
${ }^{40}$ The red herring prospectus derises tis name from the required disclamer on the front printed in red
A registration statement relating to these securities has been filed wh the Securties and
Exchange Commission but has not yet become effective Information contaned herem is
subject to completion or amendment These securtites may not be sold nor may ofiers to
buy be accepted prior to the time the registration statement becomes effectise This prospectus
shall not constitute an offer to sell or the sollention of an offer to buy nor shall there be
any sale of these securites in any state in which such ofer, solictation or sale would be
unlau ful prior to registration or qualification under the securties laws of any such state
${ }^{41}$ The very limited notice of the offering permulied is ofien presented in a form resembing the inscription on a tombstone - hence the name
${ }^{42}$ This procedure is the 'orer-boohing' on arplane fights
${ }^{4}$ Sy ${ }^{3}$ dicates break infrequently, my impression is that this occurs less than five percent of the time See History of Corporate Finance For the Decade (1972)
for shares, the issue is oversold In that case the managing underwniter typically sells additional shares short and covers these short sales in the aftermarket
The final settlement with the underwriter usually takes place seven to ten days after the registration statement becomes effective At that time, the firm receives the proceeds of the sale, net of the underwriting compensation

Rights offering

Offering of stock to existing shareholdeis on a pro rata basis is called a rights offering Each stockholder owning shares of common stock at the issue date receives an instrument (formally called a warrant) giving the owner the option to buy new shares ${ }^{44}$ One warrant or right is issued for each share of stock held ${ }^{45}$ This instrument states the relevant terms of the option (1) the number of rights required to purchase one new share, (2) the exercise price (or subscription price) for the rights offering, (3) the expiration date of the rights offering

Before the offering, the firm must file a registration statement for these securities For rights offerings, the firm typically files either a form S-1 or S-16 registration S-16 is simpler, but has usage requirements similar to those of form S-7

After the SEC approves the registration statement, the firm estabishes a holder of record date The stock exchange establishes the date five business days earlier as the ex rights date ${ }^{+6}$ All individuals who hold the stock on the ex rights date will appear in the company's records on the holder of record date and will receive the rights However, the rights can be traded on a when issued' basis Usually trading begins after the formal announcement of the rights offering To ensure that there is adequate time for the stockholders to exercise or sell their rights, the New York Stock Exchange requires that the mimimum period during which rights may be exercised is 14 days Rights trade on the exchange where the stock is listed

Issuing rights is costly in terms of managements time, postage and other expenses, so it is in the best interest of the firm to ensure the success of the offering Therefore, the firm has an incentive to set the subscription price of the rights low enough to ensure that the rights will be exercised But some of

[^20]the warrants of most offerings do expire unexercised These unexercised nghts can be offered through an over-subscription privilege to subscubing shareholders on a pro rata basss Shares not distributed through the rights offering or through the over-subscription privilege can be sold by the firm either to investment bankers or drectly to the public

Rtghts offerings with a standbv undern'uting agreement

A formal commitment with an underwniter to take the shares not distributed through a nghts offering is called a standby underwiting agreement Several types of fee schedules are generally employed in standby underwriting agreements A single fee may be negotrated. the firm paying the underwriter to exercise any unevercised rights at the subscription price A tho fee agreement employs both a standby fee", based on the total number of shares to be distributed through the offerng and a tahe-up fee, based on the number of warrants handled The take-up" fee may be a flat fee or a proportioned fee ${ }^{4 "}$ These agreements generally melude a profir sharing arrangement on unsubscribed shares (eg, if the underwitier sells the shares for more than the subscription price. this difference in prices is split between the underwriter and the firm according to an agreed formula)

Unders riters are prohibited from trading in the rights until 24 hours after the rights offering is made ${ }^{* 8}$ After that tume, they can sell shares of the stock short and purchase and exercise rights to cover their short position in the stoch. thus hedging the rish that they bear

Appendix 2: A contngent clams analysis of rights and underwriting contracts

The derivation of general equilibrium preing implications of rights and underwriting contracts has not been presented Black and Scholes (1973) suggest the approach I employ to value reghts, but they do not carry out the analysis or present the solution Ederington (1975) provides a model of under-

[^21]writer behavior, but his model assumes underwriters maximize expected profits, and thus does not represent a general equibbrium solution in a market where the agents are risk averse The option pricing framework employed here will yreld a solution which is consistent with general equilibrium, no matter what the risk preferences of the agents in the market.
I employ the contangent clams pricing techniques to derive a specification of the equilibrium value of these contracts For valuing both contracts I assume
(I) There are homogeneous expectations about the dynamics of firm asset values and of security prices The distribution of firm values at the end of any finte time interval is \log normal The variance rate, σ^{2}, is constant
(2) Capital markets are perfect There are no transactions costs or taves and all traders have free and costless access to all avalable information Borrowing and perfect short sales of assets are allowed Traders are price takers in the capital markets
(3) There is a known constant instantaneously riskless rate of interest. 1 , which is the same for borrowers and lenders
(4) Trading takes place continuously, price changes are continuous and assets are infinitely divisible
(5) The firm pays no dividends

Rights offermgs

To derne the equibrium value of the rights offering I make the following assumptions about the specification of the rights offering

The total proceeds to the firm if the rights are evercised is X (the exercise price per share times the total number of shares sold through the rights issue) The rights expire after T time periods If the rights are evercised, the shares sold through the offering will be a fraction, γ, of the total number of shares outstanding ($\gamma \equiv Q_{R} /\left(Q_{S}+Q_{R}\right)$, where Q_{R} is the number of shares sold through the rights offering and Q_{S} is the existing number of shares) Any assets acquired with the proceeds of the rights offering are acqured at competitive prices ${ }^{49}$

Given the above assumption, Merton (1974) has demonstrated that anv contingent clam, whose value can be written solely as a function of asset value and tume must satisfy the partual differentral equation

$$
\begin{equation*}
\frac{a f}{c t}=\frac{1}{2} \frac{\tilde{c}^{2} f}{\sigma V^{2}} \sigma^{2} V^{2}+r V \frac{\partial f}{c V}-r f, \tag{Al}
\end{equation*}
$$

[^22] behavior of the stock price on the probability of the rights being everctsed
where $f(V, t)$ is the function representing the value of the contingent claim [e.g., $R=R(V, r)$]. To solve this equation, normally two boundary conditions are required, one in the time dimension and one in the firm value dimension.

To derive the appropriate boundary condition in the time dimension, note that when the time to expiration is zero, R^{*}, the value of the rights at the expiration date will be either zero (in which case the rights will not be exercised) or, if the rights are valuable and are exercised, their value is their claim on the total assets of the firm, $\gamma\left(V^{*}+X\right)$ (where V^{*} is the value of the firm's assets and X is the proceeds from the exercise of the rights) minus the payment the right-holders must make, X :

$$
\begin{equation*}
R^{*}=\operatorname{Max}\left[0, \gamma\left(V^{*}+X\right)-X\right] \tag{A2}
\end{equation*}
$$

where:
V^{*} is the value of the firm's assets at the expiration date of the issue.
X is the proceeds to the firm of the excrcise of the rights.
γ is the fraction of new shares issued through the rights offering to the total shares of the firm (both old and new).

The most natural boundary condition in the firm value dimension is that when the value of the firm is zero, the value of the rights issue, R, is zero. However, the first assumption, that the distribution of firm values is log normal, insures that V can never be zero; therefore, this boundary condition will never be binding.

This equation can be solved by noting that no assumptions about risk preferences have been made, thus the solution must be the same for any preference structure which permits equilibrium. Therefore choose that structure which is mathematically simplest. ${ }^{50}$ Assume that the market is composed of risk-neutral investors. In that case, the equilibrium rate of return on all assets will be equal. Specifically, the expected rate of return on the firm, and the rights will equal the riskless rate. Then the current rights price must be the discounted terminal price:

$$
\begin{equation*}
R=\mathrm{e}^{-\mathbf{r} T} \int_{((1-\gamma) \gamma \gamma) x}^{\infty}\left[\gamma V^{*}-(1-\gamma) X\right] L^{\prime}\left(V^{*}\right) \mathrm{d} V^{*}, \tag{A3}
\end{equation*}
$$

where $L^{\prime}\left(V^{*}\right)$ is the \log normal density function.
Eq. (A3) can be solved to yield: ${ }^{51}$
${ }^{50}$ See Cox and Ross (1976) or Smith (1976). For a mathematical derivation of this solution technique, see Friedman (1975), especially page 148.
${ }^{31}$ See Smith (1976, p. 16) for a theorem which can be employed to immediately solve (A3) to yield (A4).

$$
\begin{align*}
R= & \gamma^{\prime} N\left\{\frac{\ln (\gamma V /(1-\gamma) X)+\left(r+\sigma^{2} / 2\right) T}{\sigma, T}\right\} \\
& -\mathrm{e}^{-r r}(1-\gamma) X N\left\{\frac{\ln (\gamma V /(1-\gamma) X)+\left(r-\sigma^{2} / 2\right) T}{\sigma_{\imath} T}\right\} \\
= & R\left(V, T, X, \gamma, \sigma^{2}, r\right) \tag{A4}
\end{align*}
$$

Where $\dot{c} R / \bar{c} V, \bar{c} R / \bar{c} T, \bar{c} R / \bar{c} \eta, \dot{c} R / c \sigma^{2}, \dot{c} R / \bar{c}>0$ and $\varepsilon R / \bar{c} X<0$
The indicated partial effects have intuitive interpretations Increasing the value of the firm, decieasing the exercise price (holding the proportion of the firm's shares offered through the rights offering constant), or moreasing the proportion of the firm's shares offered through the rights offering (holding the total proceeds of the issue constant) increase the expected payoff to the rights and thus increases the current market value of the rights offering An increase in the time to expiation of the riskless rate lowers the present value of the exercise payment, and thus increases the value of the rights Finally, an merease in the variance rate gives a higher probability of a large increase in the value of the firm and increases the value of the rights

Underwring agieements

To analyze the appropriate compensation to the underwriter for the rish he bears in the distribution of the securities make the following assumptions about the underwriting contract

Underwriters submit a bid, B, today which specfies that on the offer date, T time periods from now, the underwriter will pay B dollais and receive shares of stock representing fraction γ of the total shares of the firm He can sell the securities at the offer price and receive a total payment of Ω, or (if the share price is below the offer price) at the market price, $i^{\left(V^{*}+B\right) \text { If his }}$ bid is accepted, he will be notified immediately
Again, (AI) can be employed where $f(V, t)$ is the function representing the value of the underwriting contract (ie, $U-U(V, t)$) The boundary condition for this problem is

$$
\begin{equation*}
U^{*}=\operatorname{Min}\left[\gamma\left(l^{*}+B\right)-B, \Omega-B\right] \tag{A5}
\end{equation*}
$$

This assumes that at the offer date the underwrter will pay the firm B dollars The shares which the underwrtter receives represent a claim to a fraction γ of the total assets of the firm, $V^{*}+B$ If the offer price is greater than the value of the shares, $\left.j^{*}+B\right)$, then the undennriter will be unable to sell the shares at the offer price, hence he will recene $\gamma^{\left(l^{\prime *}+B\right) \text { If, at the offer date the offer }}$ price is less than the value of the shares, the underwriter receives the offer price Therefore, the boundary condition is that at the offer date the underwriting contract is worth the mommum of the market value of the shares minus the bid, B, or the proceeds of the sale at the offer price minus the bid

Again, the above solution technique can be employed to solve (Al) subject to (A5). In a risk-neutral world, the expected value of the underwriting contract can be expressed as ${ }^{52}$

$$
\begin{align*}
U= & \left.\int_{0}^{(\Omega, y)-B}\left[r^{(} V^{*}+B\right)-B\right] L^{\prime}\left(V^{*}\right) \mathrm{d} V^{*} \\
& +\int_{(\Omega(v)-B}^{x}[\Omega-B] L^{\prime}\left(V^{*}\right) \mathrm{d} V^{*} . \tag{A6}
\end{align*}
$$

Note that this can be reuritten as

$$
\begin{align*}
U= & \int_{0}^{\infty}\left[\gamma^{\prime}\left(V^{*}+B\right)-B\right] L^{\prime}\left(V^{*}\right) \mathrm{d} V^{*} \\
& \left.-\int_{\left.\left(\Omega^{\prime} y\right)-B\right)}^{\infty}\right)^{\prime}\left[V^{*}-\left(\frac{\Omega}{\gamma}-B\right)\right] L^{\prime}\left(V^{*}\right) \mathrm{d} V^{*} \tag{A7}
\end{align*}
$$

Eq (A7) can be solved for the risk-neutral case to yield

$$
\begin{align*}
U= & \mathrm{e}^{r T} \gamma^{V} V-(1-\gamma) B-\mathrm{e}^{r} T \gamma N\left\{\frac{\ln (\gamma V /(\Omega-\gamma B))+\left(r+\sigma^{2} / 2\right) T}{\sigma v^{\prime} T}\right\} \\
& +(\Omega-B \gamma) N\left\{\frac{\ln \left(\gamma V /(\Omega-\gamma B)+\left(r-\sigma^{2} / 2\right) T\right.}{\sigma, T}\right\} \tag{A8}
\end{align*}
$$

Examination of (A8) reveals that the underwriting contract is equivalent to a portfolio consisting of a long position in the firm, a cash payment, and writing a call on γ of the firm with an exercise price equal to $(\Omega-\gamma B)$

$$
\begin{align*}
U & =\mathrm{e}^{r T} \gamma V-(1-\gamma) B-\mathrm{e}^{r T} C(\gamma V, T, \Omega-\gamma B) \\
& =\mathrm{e}^{r T} \gamma V-(1-\gamma) B-\mathrm{e}^{r T} \gamma C\left(V, T, \frac{\Omega}{\gamma}-B\right), \tag{A9}
\end{align*}
$$

where $C($) is the Black-Scholes call option function
If the process of preparing and submitting a bid is costless, then in a competitive equilibrium, the value of the underwriting contract must be zero ${ }^{53}$

[^23]Therefore the bid which would represent a normal compensation for the risk he bears is implictly defined by the equation ${ }^{54}$

$$
\begin{equation*}
B-\mathrm{e}^{r T} \frac{\gamma}{1-\gamma}\left[V-C\left(V, T, \frac{\Omega}{\gamma}-B\right)\right]=0 \tag{A10}
\end{equation*}
$$

The firm generally receives less than the market value of the stock ${ }^{5 s}$ given the specification of the underwriting contract, if the equibraum stock price at the offer date is above the offer price then the inmal purchaser of the issue receives 'rents', he obtains the shares for less than the market value of the shares Therefore, if the offer price in the underwriting agreement represents a binding constraint to the underwriter, then in a perfect market underwiting must be a more expensive method of raising additional capital than is a rights issue Therefore, under these conditions, undenwriting would not be employed
The above analysis implicily assumes that the terms of the underwriting contract represent a binding constraint to the underwriter, ie, if the securty price is above the offer price, then the offer price presents a constraint to the underwriter and a pure profit opportunty to the potental investor However, in a market without transactions costs, this could not be the case If the security price is above the offer price there will be excess demand for the issue To the extent that the underwriter can, through the ratoming process, extiact those profits, they will accrue to the underwriter rather than to the mitial puichaser In this situation competition among underwriters would ensure that the piofits were in fact garnered by the firm In that case the offer price presents no effective constraint and the competitive bid becomes simply

$$
\begin{equation*}
B=\mathrm{e}^{r T}\left(\frac{\gamma}{1-\gamma}\right) V \tag{AII}
\end{equation*}
$$

Therefore, if through tie-in sales or other means the offer price in an underwriting agreement can be circumvented, then underwriting is no more expensive a method of raising addtitonal capital than a rights offering

[^24]
References

Baley, M J, 1969, Capital gains and income taxation, in A.C Harberger and MJ Bailey, eds, The taxation of income from capital (Brookings, Washington, D C)
Black, F, M C Jensen and MS Scholes, 1972, The capital asset pricing model Some empirical tests, in MC Jensen, ed. Studies in the theory of capital markets (Praeger, New York)

Black, F and M Scholes, 1973 The preing of options and corporate liabilttes, Journal of Politecal Exonomy 81, 637-654
Brigham, E F, 1977, Financtal management (Dryden, Hinesdale, Illimois)
Cox, JC and SA Ross, 1975, The pricing of optons for jump processes, Rodney L White Center for Financial Research, Worhing Paper 2-75 (Universily of Pennsylvana, Philadelpha Rennsh(vanal
Downs, A C , 1957 An economic theory of democracy (Harper, New York)
Ederingion, Louis H 1975, Uncertainty, compention, and costs in corporate bond underwriting, Journal ol Financial Economics 2 71-94
Fama EF L. Fisher, MC Jensen, and R Roll, 1969, The adjustment of stock prices to new information International Economic Review 10 I-21
Friedman A 1975, Stochastic differental equations and apphcations Volume 1 (Academic Press, New York)
Gilbert, Lewis D and John J Gilbert, vanous dates Annual report of stockholder actmines at annual meetings, New York
Hess Alan C. 1977 The role of investment banking in an efficient capial market, unpubIished manuscript Securites and Evchange Commosion, W'ashington, DC
Historis of Corporate Finance for the Decade, 1972 (Intestment Dealers Digest. New York)
Ibbotson, Roger C , 1975, Price performance of common stock new issues, Journal of Financial Economics 2, 235-272
Jensen MC and WH Meckling 1976, Theory of the firm Managenal behavor, agency costs and owrership structure Journal of Financial Economics 3, 305-360
Manne, Henry G, 1966, Instder trading and the stock market (The Free Press, New York)
Merton, Robert C 1973 Theory of rational option pricing, Bell Journal of Economics and Management Science 4, 141-183
Mierton, Robert C 1974 On the pricing of corporate debt The risk siructure of interest rates, Journal or Finance 29
National Association of Securty Dealers, NASD manual
Nelson, JR, 1965. Price effects in rights offerings Journal of Finance 20, 647-650
Pessin, AH 1973, The nork of the securities industry (New York Institute of Finance, Nen York)
Schneider, Carl W and Joseph M Manho, 1970, Going puble-- Practice, procedure and consequences, Villanova Law Revell 15, 283-312
Scholes, Myron S, 1972, The market for securties Substutuon versus price pressure and the effects of information on share price, Joumal of Business 45, 179-211
Smith, Clifford W, Ir, 1976 Option pricing A reves, Journal of Financtal Economics 3, 3-51
U S Securnes and Exchange Commission, 1940, Cost of fotation for small issues, 1925-1929 and 1935-1938
US Securites and Evchange Commssion, 1941, Cost of fiotation for registered securities 1930-1939
US Securttes and Exchange Commission, 1944, Cost of fotation of equity secunties of small companies (Siausucal Series Release no 744)
U S Securties and Exchange Commission, 1949, Cost of flotation, 1945-1947
U S Securthes and Exchange Commission, 1951, Cost of flotatton, 1945-1949
U S Securities and Exchange Commusion, 1957, Cost of flotalion of corporate securties, 1951-1955
U S Securites and Exchange Commission, 1970, Cost of fotation of registered equity issues, 1963-1965
U S Securities and Exchange Commission, 1974, Cost of flotation of registered issues, 19711972
Van Horne, JD , 1974, Financial management and policy (Englewood Clifis, New Jersey)
Weston, J Fred and Eugene F Brıgham, 1975, Managertal finance (Hinesdate, Illimors)
Zwick, Jack and Nathaniel R Norton, III, 1970, Investment bauking and underwriting, to F G Zarb and GT Kerekes, eds, The stock market handbook, 54-71

The Effects of New Equity Sales Upon Utility Share Prices

By RICHARD H. PETTWAY*

Abstract

 precipitater a dectane in the ridrotet price of that equily and continnes to impact share prices after the sule has tekera phace. Such price changes are part of the reat cont of sething the newe issue. The rivarkt pressame cost of nety equity capitat have been the subject of meth spuctetotion of atitity rate cates, but have recteved bithe detertent studyy. The atethom of this articie has mades such a entombered by wifity stocks in the market, after first definivg marhel pressure as reell as company managements, shordd be concerned tuith the resudtant decline in thiliy stack prices.

Wama public utility decides to sell a new isme of equity capital and publidy discloses this information, share prices are thought to dectine. Often these selling terass ask for an adjusiment to their costs of equily capio fal for the effects of this market pressare upon share prices. The subsequent argument and debate aboul the magnitude of an odjustment for markel pressure at rate hearings is well known.

The elcetric utility indusery has been one of the largest issuens of new equity shares during the past twentyfive yeats. 'Therefore, it is surprsing that there has not been much more research to aletermine the magnitude of marke pressure of these numerous mew cequity \#alos in this indestry. The objective of this aricle is to teport on the results of an aratysis of 368 egunity sales by 73 different electeic utitites from fommary 1,1973 , theough December 31, 1980. The analysis will mozasure two ef-

[^25]

Blehiard H. Pottway is a prolessor of thance, in the Graduate Scthool of Business at the University of Florida. For the past ten years he has been assoclated with the fublic ulisity Fesearch Center at the Universily of Flarida. He has written baoks. monographs, and articles and has made appoarances as an expert witneess belore public utility commissions specializing in the finarucial and economic probtems and solutions. Dr. Potlway rectived his BBA. MBA. and PhD degres in finance and stalistics from the University of TexasAustin.
fects of new conmon equity sales upon shate prices: market presture and sales efiect. Specifically. this article will determine the magnitude of market pressure defined as the effed of the sale upon share prices which reduces the lunds received by the issuing company at the sule date, and will deternine the size of the sales effect defined as the total effect of the sale upon strare prices from before the anomement until afler the sole.

There haw been studies into the size of market pressure defined as a tenupuraty price decline in shars valthes then a kirge block of shares is said to be "overhangwre" the market. However, moth of this researel concentrates upm the price effeth of nebs issucs of inelustrial companies sold in the primary markels or of large blocks of existing stock sold in the secondary marke [1, 2, 4, 5, 6, 91.* This literature defines marke pressure as the amount of rucovery in market prices offer the issue bas been sold. A review of this literature indicates ether no market prossure existing in large block trades of ontstanting sharos, or only a small amount of pressure assoritated with pumary market sules of new issues.

Under uility regulation, the conecon is with a different defanition of marke pressure. Market presure in the public utility industry is generally defined as the dectine in prices white the issoe is sill overhanging, before it is sold. The main question is how mueh alat the utility's stork decline in the secondary market associated with the sales anownement to the date of sale. This decline is a real cost of selling the new issue as the firm will recelve only the reduced price at the sates date. An

[^26]anclo by Bowyer and Yapitz (BY) [3] measured the dedine in thare prices between the amoumement date and the sales date of 278 new equity issues of public utilites from 1973 through 1976. But that research had some obvious problems which are corrected by this stulty.

The First problem with BY is theit defirition of the annomecmest dite (AD). They tefined this critiol A) as the indial Securities and Exchage Commission Hing date of the issue prospectus. This may not be the true AD as offon pebbic wifities make prior announcements of their now issues to state puble service commissions, to jowators in the /raitg Truss Calendar, to underwsiters. or to fimmoial analysts much earlier thita the SEC filing diate. This study redelines the crifiol announcement dato through a detailed questiomaine survey of elcetric utility companies. Further, an analysis of price chatyes prior to the established anouncement date for ead iswe will be made to determine the actual impact of new equity sales upon share pricces dit very important to measure the complete decline in maket prieses associated with the information about the fortheoming sale of new eqwidy shares.

Another problen with the BY stady comerns its anthes' use of the Dow-jones utility index to measure difleren. that dechines in share prices and returms. The use of this index is lawed for at least four reasons. First, the number of companies meluded is small, 15 : fim , and only 11 are eledric companies; whereas four are gas transmission and distribution coupanies. Tho inclusion of the gat companies raises serious guestions conceming the similarities at risks between electrice utilites tested and the complaies which make up their comparison index. Second, their incex does not captare the dividend portion of the return and thes onty measures de elamges in prices without adjusting for dividends poid. In the dectic power industry, the dividend yields tend to be a high protion of the total return and the omersion of dividends could impart a bias to the index. Thided if there is evidence of market pressure in mesy sales of equily shames by wilitios as BY found, then it is certain that this market pressure is contained also in share prices of loondones utility indes firms when they wold mess eguity shames. The eflect of using on index which condains market pressure to monsure the size of maket pressure of a particalar firm which sotd now equity natiovally will understate the true amount of marke pressure which is present. Fourth, if utilities are impacted differ. ently from utregulated firms, there may be an addilional "industrial eflect" which will not be observed by looking only at other utilitics rather than a broudly based comparison index of share prices and returns.

Finally, there are some techical problems with the way that BX measured the decline in stock returns of manket pressure. These problems contern the ase of avarage resinlual retmons versus a more correat measure (geometric residual returns) and the way BY hatdeel underwithig costs.

Data

A questionaire survey was conducted of the 93 New

York Slock Exchange--lisitel, investorowned eleatric utilities from which 73 usable compmy repties were obthined for a response rate of over 78 per cent, Each company provided all identifinble costs and critical diales for earh new equily capital sole made by the firm from famary 1, 107), forough December 31, 1880. The survey results contain data on 3 fi8 achal equity sates over the eightyear survey period. The data represent more than five new equidy sales pur company on averape over the sudy purdod. The size of these equity sales ranged from $\$ 4.7$ million to $\$ 198$ million with a mode sale value in a range between $\$ 30$ and 540.9 million per issue. The frequency of the issucs over the eight yoars of the survey shows that 1975 was the most popular year followed by IG76 and 1980 . Yet, the individual year variation was not dramatic as the range over the eight years sat from a low of 37 issues in 1974 to a high of 6at issues in 1975. Eighly-two per cent of the sales were though negotiated underwriting, 16 per exnt though compentive bidding, and 2 per cent through rights ofterings. See [7] for a thorough review of the data and details on the flotation costs of these issues.

Data on realized share seturns including dividends for each company were oblaned on a daly basis for at period which began sixty-five trading days before the announcement date and ended thirty aroding days atwer the sate date (SD). Thus, company returns were obtamed from a [texd period prior to the AD through a fixed period atter the SD for each issue. It is best to think or these data sets as 368 separate arratys of returns. Because the interm tine period betwern the AD and the subseguent SD yaried for each jssue, the number of return observations in each abray is different. Each collected array of relurns is unipue to the particalar anmonere ment and issue dates and is not mparted by other equity salles of the same company.

Methodology

In oraler to control for risk, to adjust for movements in general prices and relurns, and to relure estimatimg bias, a two-stage regression process was used to measure the effects of new equity sales upon share returns and prices. İrst, during the estimating period, the natkel regression model (1) was applied to a fim's daily equily returns over a uniform estimatiog period which began sixtyrfive trading days prior to the AD and ended fifteen days before the AD for each issue. The market regression model assores that:

$$
\begin{equation*}
\overline{\mathrm{R}}_{\mathrm{j}, 1}=\hat{\mathrm{u}}_{\mathrm{i}}+\hat{\mathrm{B}}_{\mathrm{i}} \hat{\mathrm{R}}_{\mathrm{tn}, \mathrm{l}}+\overline{\mathrm{e}}_{\mathrm{i}, \mathrm{~s}} \tag{1}
\end{equation*}
$$

where $\bar{K}_{\mathrm{i}, 1}$ is the daily tetorn inctuding dividends of the insuing company for equity issue i - i.e., owe to 368 at lime t; where daily beturns of the issuing company concerning issuc E are defined as $\left(\mathrm{P}_{i, 1} \div \mathrm{D}_{\mathrm{i}, \mathrm{l}}-\mathrm{l}_{\mathrm{i}, \mathrm{t}-\mathrm{l}}\right\rangle /$ ($\mathrm{I}_{\mathrm{i}, \mathrm{s}-\mathrm{I}}$) P is the price and D) is the thividend per share; $\mathbb{R}_{\text {mas }}$ is the daily return at time t on a marke fortolio for comparson; \bar{a}_{i} and \bar{B}_{i} are the estimated parameters of the market model; and $e_{i, t}$ is the error term of the model.

In order to make comparisons, an electric utility portfolio index of rethms was created over the period Jamiary 1, 1973, through December 31, 1980 , containing an egutal investment in each of 73 electric companies which sotd equity duting the period. It is a daily returns inv dex inchuling dividemels and provides the average return for each day on a portfolio consisting of an egual dollar investment in each of the 73 plemric utilitios.

Thus, we first stage uses an estimaliag period of fifly trading days, approximately two and onchalf wonlhs, to determine the parametars of the market regression model. The second sage then applies these estimated parameters to the remons series during the subsequent test period after the estimating periof in each array in order to calemate the expected retums for cach compaty on each issue i using

$$
\begin{equation*}
\dot{\mathrm{R}}_{\mathrm{i}, 1}=\dot{\mathrm{a}}_{\mathrm{i}}+\overline{\mathrm{B}}_{\mathrm{i}} \dot{\mathrm{R}}_{\mathrm{m}, 1} \tag{array}
\end{equation*}
$$

where $\dot{K}_{i, 1}$ is the expected return for the issuing company associated with issue i at time a. Then residual returns duriteg the test period ate obtained by comparing the actual versus the predicted returns using:

$$
\dot{R}_{i, 1}-\dot{R}_{i, 1}=\dot{0}_{i, 1}
$$

where $\bar{u}_{\mathrm{i} \cdot}$ is the dally restidual return of the isming omprony for issue iat time t.

In order to display these residual remums properly, a decisions must be made of how to combine the individ. uat company restluats centered on a common date duning the test period. The method of combiniag restiduals used by Bowyer and Yowio is called omulative iverage residual or GAR. This mothod would find the averuge recidual return of all issues on a spesific day relative to the common AD or SD and would accumblate these aworges ower the perind in an additive way. A diferent wily of combining resichal returns, average geometric residnal return (AGRR), was chosen for this study, It is a theoreliatly beter measure of resiotual weturn over time than CAR. AGRK does not use the average resitwal returns on a specifie dite bet takees the individual issue residual $\left(\hat{u}_{i,}\right)$ from (3) and converts in into a price relative foe cah I and then forms a geometric retum series by mutiphying succusive price relatives from totu:teen days prion to $\triangle D$ to the end of the residtual dats for cath conpany using formula (4). Thus, a geometric relurn keries which precisely measures the change in investment worth for cad individual issue is created. Ah any point in time relative to the common dates, AD and SD, the AGRR was determined as the numeric average of the geonvetric returns up to that point in tinge of all issues using formula (5).

$$
\begin{equation*}
\operatorname{GRR}_{i, \mathrm{r}}=\underset{\mathrm{i}=1}{\mathrm{~T}}\left\{1+u_{\mathrm{i}, \mathrm{t}}\right\} \tag{4}
\end{equation*}
$$

$\underset{\sim}{A G R R_{T}}=\sum_{i=1}^{N} \operatorname{CiRR}_{\mathrm{i}, \mathrm{T}} / \mathrm{N}$
where is the issue number, 1 is im^{2}, 1 is the specific point in time $(T=1,2,3, \ldots$ total nomber of observations in the test period which was from foutcen days before the $A D$ wntit thirty trading days after the SD), and N is the number of issues. For hurther details conceming the sjucifics of atre methodology employed see [8].

In observing the pattern of these residuals over the test period, it is impertant to ba able to use common definitions to describe their movenents. "Market pressure" is defined as the decline of share prices and average gecmethic rexidual returns from lourteca days before the AD until the SD, "Sales effect" is defined as the change in share prices and AGRLS from loutcen days betore the AD until thiry trading days aller the SD. This sales dffect would be the net clange over the entire test period from belore the amouncoment until well after the sate.

Price-Return Movenconts

Because the number of days butween the AD and the Sif are not identical for each issue, armos of resichal returas had to be cemered on two separte common dates. The first common date is the AD and then data are contered on the common SD. To begin measuring any price offects of these new equity sales, the study first observed movements in residual returns when the data are contered on the common AD .

Figaro i illustrates the AGRRs derived from the use of the electric ubility market index of returns for comparison, The derived residuals ate accumulated for 128 days starting fourtent days before the amoumement date. All issues are centered on the AD. The trend of the ACRKs me clearly downward and below one during the entire span of 128 days. The downward trend is most noticcable immedjately before and around the AD and is then followed by a petiod of relative stabitity. During this initial dectinc, share prices had follen between one per cent and l.4 par cent. The downward trend sesumes again begriming ahom sixty-seven days alter the $A \mathrm{D}$. The kater downord rend may be associated with the SD, but since these data are centered on the AD, the SD did not occur at a common point in time in the data. Further, because SD is not a common point in the data, the anoom of market pressure canmet be measured from the data in this format.

Pemel 1 of the accompanying table contains statistical stmmaries of clanges in AGRRs over the entire perjod shown in Figure I. It is clear from the data that the change over the 128 -day period centered on the AD was a negative 3.019 per cent, indigatiog a sales effert of this

[^27]Figuri: 1
Aflkik Gentemen on Anmulncentent Date

mignitude. Thus, comparing the returns over the same time period of an electric utility which sold new equity shares with returns of a portolio of electric companies Which also sold equity dering the eightyear study period, were appens to butw been a substantial and signifiemt dectine or sates effect of -3 per cent. There appear to be two periods of rapid declines, one just before and around the AD and another which appeats to begin about sixty-seven days after the AD. Measuring the instial dectine during a period from fourtecn days before the Al) to fourten days ather the $A D_{r}$ the specific declane was -1.2 per cont. This find major decline which begins berore the AD suggests that the market was either maticipating the now equity sate or obtaining infor-

Chanees ta dif Average Gegmbifio Resteunt Remphis			
Jumary 1, 197, 1brough December 94, 1900			
Using the Utility fridex			
	Panel 1	Hand 2	Puma 3
Mensurcments	Cemered on AD \|Gales Ellost	Comered on 5b (Saken Erlmo	Comberenl and Emaing ons SD (Minher Prossure
Change oves the Perind	- 70 (69\%	-9.174\%	-1.835
Lesuth of Xeriorl (1)ayis	128	1.17	114
Change fimm-I4 AD $10 \times 14 \mathrm{AD}$	-1.170%		
Length of lerited (Days)	2!		

mation about the unw equity sate just prior to the prablic announcement.
hecanse of the decline in these residuals, it is clear that the market considered the potential new equity sale at detrimental to the future prospects of the cumem equity holders of the selling firm. Since the dectiae begins before the AD , this article measures more precistly the toat decline in share pricus than did the work of bowyer and Yiwitu.

Cummon Sistes Dedo

Figure 2 shows the ACRRS using the dectric mility returns index for comparison with all issues cemtered on the SD. This plot is clearly one whose trend is also dowsward across the entire time period, althongh it ajpoars not to begin its major decline until eighty live to ninely derys prion to the SD.

In lamel 2 of the zable are found the summary statistics deseribing the magiitudes of the AGRRs shown on Hgure 2. The changes or sates offect duriug the poriod from fourten days before the AD to after the SD over 147 thays was -2041 per cont.
Pamel 3 of the table contains the magnitugles of AGRRs shown on Figure 2 but stopping at the SD. This deteline in selative share prices and returns, called marke pressure is catered by the equity sale and is the disoman required to sell the new issue. These costs of now equity issues were 1.893 per ent on average. Thus, nurket prices of shares of electric atilities which sold new eqwity declined by ahout 1.3 per cent from before the AD uatil the SD over 104 datys. This is the dedine in prite that the firm did not receive when it sold new equity shares at the SD and is the market prossure of the new equity issuc.

Ftetre 2
AOME Centered GN Sale Date \{UTGITY \|hbex\}

PUBLIC UTILITIES FORTNIGHTLY-MAY 10. 1984

Summary and Conclusions

When electric utilites sold new eguity shares between Jantary 1, 1973, and December 31, 1980, the shate prices of these companios were depressed downward because of the sale. This downwad movement or market pressure moasured from before the annamoment date to the sales date of the new issue was -1.9 per cent when compared wish seturns of other clectric atilitiss which sold new equily reqularly. Further, as soles effect ranging from -3 per cent to -2 per cenn wals found over the pertad from before tho amouncement dite until after the sales date depenting upon whetler the data were centered on the AD or on the SD.

These averages are coisservative and the minimum estimated aworage cleclines as thoy were derived from us. ing a return index of comparisom (electric utity) which itself contains the effect. of monkel pressure. Further, the use of angther imbex of return for comparison whids was composed of regolated and untegulated firns would substontially raise these average costs. (tin tact, if the com. parisom were to be made against the retum of all equities listed on the New Yonk and Anserican stock exchanges over the same time period, the average estimate for market pressure would rise to -3 per cont and the
average estimates for sules effect would rise to -4.4 per cent contered on the AD to -3.6 per cemt centered on the SD. Sce [8] for delails.]

The sizuable sales effed over the entire period from before the amomoment date to after the sales date using the portolio of electric companies for comparison provides direct evidenec that share prices of electric utilities which sell new equity contimue to decline after the sale has taken place. This condition may be explained as the impad of other factors thon market pressure atone upon shate prices. Perhaps some of these factors are des to the investors' perceptions of increased dilation probloms cateded by regulatory lar and regulatory risk associated with these public utilities not butig allowed a rate of return on neve equity equal to the investors required rate of return over the eight-yetr survey period.

Even though the exact cuuses are not known precisely, it is definitely clear that investors wew the new sale of equity shares with disfavor and that the new equity sale resulis in a substantial dectine in equity priecs. Public withy regulators should be concerned with these inipatts of now equity sales upon share prices and returns and ultempt to make proper adjestments in the allowed rate of return to offet or eliminate these effects in the future.

References

1. "Market Dressure: The Sales of Now Common Egwity and Rate of Return Regulation," by Raymond Armu knecht, Fred Grygiel, and Farick Hess, "Promedings of the Business and Economic Statistics Section of the American Statistionl Association," 1974, pp, 80-91.
2. "The Effect of the Size of Public Offerings of Common Stocks upon Prooffering Stoch Prices," by Lee Bodenhamer, manoblished dissertation, Harvand University, Grachate School of Business, May, 1968.
3. "The deffect of New Equity lisues on Uility Stock Prices," by John W. Bowyer; Jr, and Jess B. Yuwitz, 105

4. "On the Existeact, Measurement, and Fomomic Significance of Market Pressure in the Pricing of New lauily Shares," by Robert E. Evaus, umpulitished dissertit tion, University of Wisconsin madison, 1978.
5. "Price Impacts of Block Trading on the New York

Stock Exchange," by Alan Kruus and Hans Stotl, Jounal of Finumet, Jtme, 1972, pp. 5609-588.
6. "New Issue Stock Price Behavior," by J. 6. McDonald and A. K. Fisher, Joanoat of Finance, March, 1972, pp. 67-102.
7. "A Note on the Flotation Costs of Now Equity Cupial Isaus of Electic Companios," by Richard H, Petway,

8. "Impacts of New" Equity Soles upon Electric Utility Shate Price," by Richard H. Peltway and Robert C. Kadchifle, working puper series, Itublic Utility Research Center, Guduate Schoor of Business, Unversity of Floridal, Gainesville, Ftorida, May, 1983 ,
9. "The Matket for Securitas: Substitution versus Price Pressure and the Effects of loformation on Share l'rices," by Myron S. Scholes, format of Business, Apri], 1072, pp. 179-213.

Uthities Rathe Their Capital Appropriations

The nation's investor-owned uitities appropriated $\$ 7.2$ biltion (seasonally adjusted) tor new plant and equipment in the tinal quarter of 1983, up 25 per cent over the unusually low figure recorded in the third quarter, the Conderence Board reported in April. Eoth the gas and electric utilijes shared in this fourth-quarter gain. (Gapital approprations are authorizations to apend money in the future for new plant and equipment. Appropriations are the first step in the capital investment process, preceding the ordering of equipment, the letting of construction contracts, and fithally the actual expenditures. Appropriations are considered to be a leading indicator for capital spending.

Electric utility appropriations rose to $\$ 5.8$ bilion in the lourth tuarter, their fust quarterty increase since the third guarter of 1982 . Cancellations of previously approved projects wore widespread, hovever, amounting io $\$ 27$ billion in the limal quarter of 1983.

Gas utility appropriations alimbed to $\$ 1.4$ billion in the fourth quarter, a 68 per cent jump over the third quarter. It was the highest guarterty total recorded last year, For the full year, however, the gas utilitias appropriated only $\$ 4.4$ billion, down by a third from 19g2, and canceled a record $\$ 1,3$ bilion worth of earier-approved projects.

Actual capital spending by the investor-owned utilites fell to $\$ 8.3$ bilion in the Jourth ouerter, an 6 per cent dip from the third quarter. The electric ubilities accounted for all of the fourthoquatter decline. For 1983 as a whole, the electric utihties sperl! a record s32.2 zilition on new plant ard equipment, wp 3 per cent over yge2. Gas utility expenditures amounted to $\$ 3.5$ billion in 1983 down 30 per cent hrom 1992.

Blue Chip
 Financial Forecasts ${ }^{\circledR}$

Top Analysts' Forecasts Of U.S. And Foreign Interest Rates, Currency Values And The Factors That Influence Them

Vol. 28, No. 8, August 1, 2009

Wolters Kliwer
Law \& Business

Consensus Forecasts OHU.S. Interest Rates And Key Assumptions'

InLuest kates					- Averuge for Momm.a.			$\begin{aligned} & \text { Lakest } 8 \\ & 302009 \end{aligned}$	$\begin{gathered} 3 Q \\ 2009 \\ 2009 \end{gathered}$		$\begin{gathered} 10 \quad 20 \\ 2010 \\ 2010 \end{gathered}$		$\begin{gathered} 30 \quad 40 \\ 2010 \quad 2010 \end{gathered}$	
	3aty 24	July 17	July 10	faly 3	flane	May	Ans.							
Fedemel Fonds Rate	0.15	0.14	0.17	0.19	0.1	4.118	0.15	0.15	0.2	0.2	0.3	0.4	0:8	1.1
Jrime Rate	3.25	3.25	3.25	3.25	3.25	3.25	3.25	3.25	32	3.2	3.3	3.5	3.8	4.2
LIBOR, 3 -mo.	(3.30	0.51	0.52	0.58	0.62	0.82	1.12	0.85	0.3	0.7	0.7	0.9	1,2	1.6
Commercial Proper, $1 \times \mathrm{nos}$.	0.18	0.15	0.20	0.18	0.18	0.23	022	021	0.3	0.3	0.4	0.6	0.9	1,4
Treasury bill 3 -mo.	0.19	0.18	0.19	0.18	0.18	0.18	0.16	0.19	0.2	0.3	0.4	0.5	0.9	1.2
Treasury bili, tran.	028	0.28	0.27	0.34	0.31	0.30	0.35	0.36	0.3	0.6	0.5	0.8	I.L	1.5
Treasary bill ${ }^{\text {I y }}$ y	0.17	0.45	0.45	0.53	0.51	0.50	0. 55	0.57	0.5	0.6	0.8	11	14	1.2
Tratsury note, 2 yr .	6.95	0.99	0.94	106	1.18	0.93	0.93	101	1.1	1.2	1.4	16	19	22
Treasury mote, 5 jr .	2.15	2.43	231	2.50	2.71	2.13	1.86	2.13	25	3.6	2.7	29	31	3.4
Treasury notc, 10 yr.	354	355	3.42	3.53	3.32	329	293	3.16	3,6	37	3.8	40	42	4.4
Treasury mole 303 r .	4.46	4,42	4.37	4.32	4.53	4.23	3.76	397	4	4.4	45	4.7	4.8	50
Corporate diar boud	5.44	5.44	5.34	5.40	5.61	5.54	3.39	5.30	5.5	3.6	56	8.7	5.8	6.9
Comporase Rata bond	7.15	7.19	7.10	7.18	7.51	8.106	8.34	8.10	73	7.4	8.4	7.5	75	76
State \& Lacell lronds	4.69	4.68	4.71	4.81	4.81	4.56	4.76	4,85	4.8	48	4.9	4.9	5.1	5.1
Howe morlgage till	5.80	5.14	5.20	5.32	5.42	4.86	4.81	5.08	53	53	5.4	56	58	5.9
				His					Con	cisuis	Toreca	Ts: Qu	retery	AYg.
	30	49	10	20	30	40	10	20	30	10	10	20	30	4Q
Keszessumpilions	2007	2007	3010	20108	2008	2008	2009	2009	2009	2009	2010	2010	2010	2010
Mapor Curenty Index	77.0	73.3	720	70.9	73.5	81.3	82.7	79.4	73.6	773	77.4	77.1	77.5	77.5
Reatgide	4.8	-6.2	0.9	2.8	-0.5	-6.3	-3.5	-1.3	0.9	1.9	2.3	2.7	2.7	2.9
GDP l'riec Index	1.5	2.8	2.6	1.1	3.9	0.5	2.4	0.9	1.4	1.3	1.3	15	1.7.	17
Consumet Price Imatex	2.4	5.8	4.5	4.5	62	-8.3	-2.4	1.3	2.4	1.6	1.4	1.7	2.1	$2{ }_{2} 1$

The CapitalAsset Pricing Model: Some Empirical Tests*
 ATTACHMENT 5
 TO AG DR SET NO. 1
 QUESTION NO. 1-73

Fischer Black. Jhenafic. Imenen.

AND.
Myron Scholess

1. Intreduction ond Summary

Considerable attention has recently been given to gencral equilibrium models of the pricing of capital assets. Of these, perhaps the best known is the mean-variance formulation originally developed by Sharpe [1964] and Treynor [1961], and extended and clarified by lintmer [1965a, bl, Mossin [1966], Fama [1968a, b], and Long [1972]. In addition Treynor [1965]. Sharpe [1966], and Jensen [1968, 1969] have develoned portfolio evaluation models which are either based on this asset piticing model or bear a close velation to it. In the development of the asset pricing model it is assumed that (1) all investors are single period risk-averse utility of terminal weath maximizers and can choose mong portfolios solely on the basis of mean and variance, (2) there are no taxes or

[^28]Our main purpose is to present some additional tests of this asset pricing model which avoid some of the problems of earlier studies and which, we believe, provide additional insights into the nature of the structure of security returns. All previous direct tests of the model have been conducted using eross-sectional methods; primarily regression of \bar{R}_{j}, the mean excess return over a time interval for a set of securities on estimates of the systematic risk, $\hat{\beta}_{5}$ of each of the securities. The eqgation

$$
\tilde{R}_{j}=\gamma_{0}+\gamma_{1} \bar{\beta}_{j}+\bar{u}_{j}
$$

Was estimated, and contrary to the theory, yo seemed to be significantly different from zero and γ_{1} significantly different from $\bar{R}_{3 r}$ the slope predicted by the model. We shall show in Section III that, because of the structure of the process which appears to be generating the data, these cross-sectional tests of significance cam be misleading and therefore do not provide direct tests of the validity of (1). In Section II we provide a more powerful time series test of the validity of the model, which is free of the dificulties associated with the cross-sectional tests. These results indicate that the usual form of the asset pricing model as given by (1) does not provide an accurate description of the structure of security returns. The tests indicate that the expected excess returns on high-beta assets are lower than (1) suggests and that the expected excess returns on low-beta assets are higher than (1) suggests. In other words, that high-beta stocks have negative α 's and low-beta stocks have positive α 's.
The data indicate that the expected return on a security can be represented by a two-factor model such as

$$
\begin{equation*}
E\left(\bar{r}_{\mathrm{j}}\right)=E\left(\bar{r}_{\nu}\right)\left(1-\beta_{D}\right)+E\left(\tilde{r}_{M}\right) \beta_{F} \tag{2}
\end{equation*}
$$

where the r 's indicate total returns and $E(\hat{r}, \overrightarrow{2})$ is the expected return on a second factor, which we shall call the "beta factor," since its coefficient is a function of the asset's β. After we had observed this phenomenon, Black [1970] was able to show that relaxing the assumption of the existence of riskless borrowing and lending opportunities provides an asset pricing model which implies that in equilibritm, the expected return on an asset will be given by (2). His results furnish an explicit definition of the beta factor, \bar{r}_{z}, as the return on a portfolio that has a zero covariance with the return on the market portfolio $\overline{\mathrm{F}}$ s. Although this model is entirely
consistent with our empirical results (and provides a convenient interpretation of them), there are perheps other plausible hypotheses consistent with the data (we shall briefly discuss several in Section V). We hasten to add that we have not attempted here to supply any direct tests of these alternative bypotheses.

The evidence presented in Section II indicates the expected excess return on an asset is not strictly proportional to is β, and we believe that this evidence, coupled with that given in Section IV, is sufficiently strong to warrant rejection of the traditional form of the model given by (1). We then show in Section III how the cross-sectional tests are subject to measurement error bias, provide a solution to this problem through grouping procedures, and show how cross-sectional methods are relevant to testing the expanded two-factor form of the model. Here we find that the evidence indicates the existance of a linear relation between risk and return and is therefore consistent with a form of the two-factor model which specifies the realized returns on each asset to be a linear function of the refurns on the two factors \vec{r}_{Z} and \vec{F}_{s},

$$
\begin{equation*}
\bar{r}_{j}=\check{r}_{z}\left(1-\beta_{j}\right)+\bar{r}_{n} \beta_{1}+\dot{w}_{1} \tag{2}
\end{equation*}
$$

The fact that the α^{\prime} s of high-beta securities are negative and that the α 's of low-beta securities are positive implies that the mean of the beta factor is greater than 7 . The traditional form of the capital asset pricing model as expressed by (1), could hold exactly, even if asset retums were generated by (2), if the mear of the beta factor were equal to the risk-free rate. We show in Section IV that the mean of the beta factor has had a positive trend ower the period 1931-65 and was on the order of 1.0 to 1.3 per month in the two sample intervals we examined in the period 1948-65. This seems to have been significantly different from the average risk-free rate and indeed is roughly the same size as the average market return of 1.3 and 1.25 per month over the two sample intervals in this perind. This evidence seems to be sufficiently strons enough to warrant rejection of the traditional form of the model given by (1). In addition, the standard deviation of the beta factor over these two sample intervals was 2,0 and 2.2% per month, as compared with the standard deviation of the market factor of 3.6 and 3.8% per nonth. Thus the beta factor seems to be an important determinant of security returns.

II. Time Series Tests of the Model

A. Specificafton of the Model. Although the model of (1) which we wish to test is stated in terms of expected returns, it is possible to use reallzed returns to test the theory. Let us represent the returns on any security by the "market model" originally proposed by Markowite [1959] and extended by Sharpe [1963] and Fana [1968a]

$$
\begin{equation*}
\tilde{R}_{j}=E\left(\tilde{R}_{j}\right)+\beta_{j} \tilde{R}_{w}^{\prime}+\dot{\theta}_{j} \tag{3}
\end{equation*}
$$

where $\tilde{R}_{y}^{t}=\tilde{R}_{y}-E\left(\tilde{R}_{n}\right)=$ the "unexpected" excess market retarm, and \hat{R}_{s}^{\prime} and \bar{a}_{j} are normally distributed random variables that satisfy:

$$
\begin{align*}
E\left(\tilde{R}_{n}\right) & =0 \tag{4a}\\
E\left(\bar{e}_{j}\right) & =0 \\
E\left(\bar{e}_{j} \bar{R}_{M}^{\prime}\right) & =0
\end{align*}
$$

(4c)
The specifications of the market model, extensively tested by Farta et al. [1969] and Blume [1968], are well satisfiec by the data for a large number of securities on the New York Stock Exchange. The only assumption violated to any extent is the normality assumption ${ }^{2}$ - the estimated residuals seem to conform to the infinite variance members of the stable class of distributions rather than the nommal. There are those who would explain these discrepancies from nomality by certain nonstationarities in the distributions (cl. Press [1967]), which still yield finite variances. However, wise [1963] has shown that the least-squares estimate of β, in (3) is unbiased (although not efficient) even if the variance does not exist, and simulations by Blattberg and Sargent [1968] and Fama and Babiak [1968] also indicate that the least-squares procedures are not totally inappropriate in the presence of infinite variance stable distributions. For simplicity, therefore, we shall ignore the nomormality issues and continue to assume normally distributed random variables where relevant.." However, because of these problems caution should be exercised in making literal interpretations of any significance tests. Substituting from (1) for $E\left(R_{j}\right)$ in (3) we obtain

$$
\begin{equation*}
\bar{R}_{5}=\vec{R}_{M} \beta_{3} \div \bar{e}_{5} \tag{5}
\end{equation*}
$$

where \bar{H}_{3} is the ex post excess return on the market portfolio over the holding period of interest. If assets are priced in the market such that (1) holds over each short time interval (say a
month), then we can test the traditional form of the model by adding an intercept α_{5} to (5) and subscripting each of the vaxiables by f to obtain

$$
\begin{equation*}
\tilde{R}_{s k}=\alpha_{\mathrm{j}}+\beta_{j} \bar{R}_{n t}+\bar{E}_{j n} \tag{6}
\end{equation*}
$$

which, given the assumptions of the market model, is a regression equation. If the asset pricing and the market models given by (1), (3), and (4) are valid, then the intercept α in (6) will be zero. Thus a direct test of the model can be obtained by estimating (6) for a security over some time period and testing to see if α_{j} is significantly different from zero. ${ }^{\text {a.t }}$
B. An Aggregrrion Prollem. The lestiust proposed is simple but inefficient, since it makes use of information on only a single security whereas data is available on a large mumber of securities. We would like to design a test that allows us to aggregate the data on a large number of securities in an efficient manner. If the estimates of the α_{j} s were independent with nommally distributed residuals, we could proceed along the lines outlined by Jensen [1968] and compare the frequency distributions of the " E " values for the intercepts with the theoretical distribution. However, the fact that the ef are not cross-sectionally independent, (that is, $E\left(\tilde{b}_{j} \tilde{E}_{t}\right) \neq 0$ for $i \neq j$, cf. King [1966]); makes this procedure much more dificult.

One procedure for solving this problem which makes appropriate allowance for the effects of the nonindependence of the residuals on the standard error of estimate of the average coefficient, $\bar{\alpha}$, is to run the tests on grouped data. That is, we form portfolios (or groups) of the individual securities and estimate (6) defining $\hat{R}_{\text {ir }}$ to be the average return on all securities in the Kth porffolio for time t. Given lhis definition of $R_{\text {wh }}$ $\hat{\beta}_{r}$ will be the average risk of the securities in the portfolio and α_{K} will be the average intercept. Moreover, since the residual variance from this regression will incorporate the effects of any cross-sectional interdependencies in the $e_{\text {ir }}$ among the securities in each portfolio, the standard error of the intercept \tilde{x}_{5} will appropriately incorporate the nonindependence of $\bar{E}_{1,}$.
In addition, we wish to group our securities such that we obtain the maximum possible dispersion of the risk coeffcients, β_{r}. If we were to construct our portfolios by using the ranked values of the $\hat{\beta}_{3}$, we would introduce a selection bias into the procedure. This would occur because those securities
entering the first or high-beta portfolio would tend to have positive measurement errors in their $\hat{\beta}_{j}$, and this would intro duce postive bias in \hat{p}_{5} the estimated porffolio risk coefficient. This positive bias in $\hat{\beta}_{:}$will, of course, introduce a negative bias in our estimate of the intercept, $\dot{\alpha}_{n t}$ for that port folio. On the other hand, the apposite would occur for the lowest beta portfolio; its $\hat{\beta}_{R}$ would be negatively biased, and therefore our estimate of the intercept for this low-risk portfolin would be positively biased. Thus even if the traditional model were true, this selection bias woild tend to canse the low-risk porffolios to exhibit positive intercepts and high-risk portfolios to exhibit negative intercepts. To avoid this bias, we need to use an instrumental variable that is highly correlated with $\hat{\beta}_{j}$, but that can be observed independently of $\vec{\beta}_{5}$. The irstrumental variable we have chosen is simply an independent estimate of the β of the security obtained from past data. Thus then we estimate the group risk parameter on sample data not used in the ranking procedures, the measurement errors in these estimates will be independent of the errors in the coefficients used in the ranking and we therefore obtain unbiased estimates of $\hat{\beta}_{\pi}$ and $\hat{\alpha}_{k i}$
C. The Data. The data used in the tests to be described were taken from the University of Chicago Center for Research in Security Prices Monthly Price Relative File, which contains monthly price, dividend, and adjusted price and dividend information for all semrities listed on the New York Stock Exchange in the period January, 1926-March, 1966. The monthly retums on the market portfolio $R_{\text {mr }}$ were defined as the retums that would have been earned on a portfolio consisting of an equal investment in every security listed on the NYSE at the beginning of each month. The risk-free rate was defined as the 30 -day rate on U.S. Treasury Bills for the period 1948-66. For the period 1926-47 the dealer commercial paper rate ${ }^{5}$ was used because Treasury Bill rates were notavailable.
D. The Grouping Procedure

1. The ranking procedure. Ideally we would like to assign the individual securities to the various groups on the basis of the ranked β_{s} (the true coefficients), but of course these are unobservable. In addition we cannot assign them on the basis of the $\hat{\beta}_{5}$ since this would introduce the selection bias prob-
lems discussed previously. Therefore, we must use a ranking procedure that is independent of the measurement errors in the $\dot{\beta}_{\mathrm{s}}$. One way to do tris is to use part of the data-in our case five years of previous monthly data- to obtain estimates $\hat{\beta}_{\mathrm{j} \text {, }}$ of the risk measmes for each security. The ranked values of the $\hat{\beta}_{\infty}$ are used to assign membership to the groups. We then use data from a subsequent time period to estimate the group risk coefficients β_{5}, which then contain measurement errors for the fndividual securities, which are independent of the errors in $\beta_{1 s}$ and hence independent of the original ranking end independent among the securities in each group.
2. The stationarity assmmptions. The group assignment procedure just described will be satisfactory as long as the coefficients β_{J} sire stationary through time. Evidence presented by Blume [1968] indicates this assumption is not totally inappropriate, but we have used a somewhat more complicited procedure for grouping the firms which allows for any nonstationarity in the coefficients through time.
We began by estimating the coefficient $\beta_{\text {j }}$, (call this estimate $\beta_{3 x}$ in (6) for the five-year period January, 1926-December: 1930 for all securities listed on the NYSE at the beginning of January 1931 for which at least 24 monthly returns were awailable. These securities were then ranked from ligh to low on the basis of the estimates $\hat{\beta}_{\mathrm{nn}}$ and were assigned to ten portfolios ${ }^{\text {i }}$ - the 10% with the largest $\hat{\beta}_{3 n}$ to the first portfolio, and so on. The return in each of the next 12 months for each of the ten portfolios was calculated. Then the entire process was repeated for all securities listed as of January, 1932 (for which at least 24 monthr of previous monthly returns were available) using the immediately preceding five years of data (if available) to estimate new coefficients to be used for ranking and ussignment to the ten portfolios. The monthly portfolio returns were again calculated for the next year. This process was then repeated for January, 1933, Jamuary, 1934, and so on, through fanuary, 1965.
In this way we obtained 35 years of monthly returns on ten portfolios from the 1,952 securities in the data fle. Since at each stage we used all listed securities for which at least 24 months of data were available in the immediately preceding five-year period, the total number of securities used in the analysis varied through time ranging from 582 to 1,094 , and thus the number of securities contained in each portfolio changed from year to year." The total number of securities
from which the portolior were formed at the beginning of each year is given in Table 1. Each of the portfolios may be thought of as a motual fund portolio, which has an identity of its own, even though the stocks it contains change over
time.

Tablel
Total Xumber of Seckribes Enterimg
Ant Portfolios by Year

Yewr	Finmbersff Securitim	Fonr	hrumber of Securtions
1931	588	1945	898
1932	673	1950	988
193	685	1951	94.3
1.934	6.53	1982	066
1935	676	1953	934
1936	674	193*	1000
1937	656	195	1006
1938	090	1906	974
1939	718	1957	959
1910	743	1958	1000
1941	711	1559	905
1942	737	15960	1021
1943	72	1961	1014
1944	Tis	19 O	1084
39.45	773	1963	1056
1040	791	196.	1081
1947	819	195	1094
1948	842		-

E. The Empirical Results

1. The entire period. Given the 35 years of monthly returns on earch of the ten portfolios calcuiated as explained previonsly, we then calculated the least-squares extimates of the parameters α_{k} and β_{x} in (6) for each of the ten porfolios tions). The results all 35 years of monthy data (420 observaber I contains the highest-risk securities and portfoliono num10 contains the lowest-risk securitios and portolio number toefficients the lowest-risk securities. The estimated risk foofficients range from 1.561 for portfolio I to 0.490 for portline of Table \mathbb{Z} and the Student " t " values are given diteond below them. The correlation between the are given directly and the market re corvelation between the portfolio returas
 correlation appears to be quite small ind Table 2. The autoWheen the portfolio and market seturns are as expected to buite-

[^29]high. The standard deviation of the residuals $\sigma\left(\bar{e}_{k}\right)$, the average monthly excess return \hat{R}_{k}, and the standard deviation of the monthly excess return, σ, are also given for each of the portfolios.
Note first that the intercepts a are consistently negative for the high-risk porfolios ($\beta>1$) and consistently positive for the low-risk portfolios ($\beta<1$). Thus the high-risk securities earned less on average over this 35 -year period than the amount predicted by the traditional form of the asset pricing model. At the same time, the low-risk securities earned more than the amount predicted by the model.
The significance tests givern by the " t " values in Table 2 are somewhat inconclusive, since only 3 of the 10 coefficients have " t " values greatter than 1,85 and, as we pointed out earlier, we should use some caution in interpreting these " t " values since the normality assumptions can be questioned. We shall see, however, that due to the existence of some nonstationarity in the felations and to the lack of more complete aggregation, these results vastly understate the significance of the departures from the traditional model.
2. The subperiods. In order to test the stationarity of the empirical relations, we divided the 35 -year interval into four equal subperiods each containing 105 months. Table 3 presents a summary of the regression statistics of (6) calculated using the data for each of these periods for each of the ten porifolios. Note that the data for $\bar{\beta}$ in Table 3 indicate that, except for portfolios 1 and 10, the risk coefficients $\hat{\beta}_{k}$ were fairly stationary.
Note, however, in the sections for α and $t(x)$ that the critical intercepts $\hat{\alpha}_{s}$, were most definitely nonstationary throughout this period. The positive a's for the high-risk portfolios in the first subperiod (Jannary, 1931-September, 1939) indicate that these securities earned more than the amount predicted by the model, and the reatative a's for the low-risk porttolios indicate they earned less than what the model predicted. In the three sutceeding subperiods (October, 1939-Junc, 1948; July, 1948-March, 1957, and April, 1957 -December, 1965) this pattern was reversed and the departures from the model seemed to become progressively larger; so much larger that six of the ten coefficients in the last subperiod seem significant. (Note that all six coefficients are those with β^{\prime} 's most different from unity-a point we shall return to. Thus it scems unlikely that these changes were the result of chance; they (most probably reflect changes in the $\alpha_{n}^{3} s$).

Sumary of Coefficients for the Subperiods												
$\begin{gathered} \text { Snh } \\ \text { Hem } \\ \hline \end{gathered}$		Parffotia Nomiser										
		1	2	3	4	5	6	7	13	8	10	M_{1}
β	1	1.5416	1.3993	1.9620	1.1813	1.0750	0.9197	0,456]	4.2318	9,6828	0,4643	10009
	2	1.7157	1.3100	1.1038	1.0861	0.9697	0.82 .54	0.3154	0.7675	0.66647	0.5626	LCH00
	3	1.5427	1.35385	1. 1889	1.1216	1.0 .174	0.9451	0.9180	0.7714	0.6517	0,4868	1.0000
	4	1,4423	1.2764	1.1818	1.0635	0.515157	0.9288	0.8601	0.7800	0.654 .4	066296	1.0000
a 10	1	9.7316	0.1009	0.3378	0.121314	-0.0.0550	-0,05511	$=0 \mathrm{ctse}$	-0.37881	-0.230	$-1,0710$	
	9	- 2.2197	-0.13300	-0.0.128		-0.0305	0.cen 1	0.1505	0.0760	0.2685	0.1 .178	
	3	-0.4614	-0.3994	-0.1159	0.0052	0.0002	-0.0070	0.1266	0.2428	0.3032	02035	
	d	-0.4475	${ }^{\text {re }} \mathbf{0}$. 2536	-0.2329	-0.0554	0.0840	0.1358	0.1218	0.3257	0.3338	036345	
(ti)	1	1.3881	0.6121	1.4037	0.6484	-0.3687	-0.1882	-1.0341	-1.7611	-0.7882	-0.1978	
	2	-0.4256	-0.7605	-0.8719	0.5019	-0.0248	0.8988	1.1377	0.61%	1.7853	0.8277	
	3	-2.0030	-3.676	-1.5160	0.0443	0.0029	-0.1010	1.826]	3.3768	3.3939	1,0876	
	4	-2.8761	-2.46013	-2.7886	- 0.7782	1.1016	1.7937	1.6769	3.8778	30951	3.2437	
\bar{i}	1	0.0412	0.0326	0.0317	0.6272	0.0230	0.0197	${ }^{0} 0.0169$	0.0127	0.0145	0.0093	000280
	2	0.6233	0.0143	0.015	0.016	0.0136	0.91 .47	O.OLT4	0.0129	0.63 ± 6	0.0098	0.0149
	3	0.0129	0.0112	0.0130	0.0125	1.0117	0.0100	0.0115	0.0110	0.0103	0,6075	0.0112
	4	0.010422	0.0082	0.0081	0.0087	0.0096	0.0065	0.6058	0.0101	0.0092	0.0032	0.0088
${ }^{*}$	1	0.2504	0 0,293	0.9625	0.1886	0.1715	0.1484	0.1837	0.1211	0.1024	00885	0.1587
	\%	0.1187	0.0841	0.0758	0.0680	0.0668	0.0536	0.0519	0.0408	4.0441	00192	0.0624
	3	00581	0.0505	0.0436	0.0413	0.0385	0.03664	0.0310	00385	0.0253	00830	0.0363
	4	0.0577	000503	0, 0.946	0, 0.420	00493	00365	0.03 .40	0.0312	0.1277	0.0265	0.0386

The CopitaLAssef Pricing Model

91
Note that the correlation coefficients between $\bar{R}_{\text {fr }}$ and $\bar{R}_{n,}$ given in Table 2 for each of the portfolios are all greater than 0.95 except for portfolio number 10 . The lowest of the 40 co efficients in the subperiods (not shown) was 0.87 , and all but two were greater than 0.90. A a result, the standard deviation of the residuals from each regression is quite small and hence so is the standard error of estimate of α, and this provides the main advantaye of grouping in these tests.

II. Cross-sectional Tests of the Model

A. Tests of the Two-Factor ifodel. Although the time series tests discussed in Section II provide a fest of the traditional form of the asset pricing model, they camot be used to est the two-lactor mode directly. The cross-sectional tests however, do fumish an opportunity to test the linearity of the relation between returns and visk implied by (2) or (2) without making any explicit specification of the intercept. Recall that the traditional form of the model implies $\gamma_{10}=0$ and $\gamma_{1}=$ to hold for any specific cross section and allows the intercept to be nonzero. At this level of specification we shall not specify the size or even the sign of to. We shall be able to make some statements on this point after a closer cxamination of the dheory. However, we shall first examine the empirical evidence to motivate that discussion.
B. Heasurement Errors and Bias in Cross-sectional Tests. We consider here the problems caused in cross-sectional tests of the model by measurement errors in the estimation unobservable) risk meatures.s Let $\beta_{\text {; }}$ represent the true (and measured value systematic risk of firm j and $\hat{\beta}_{3}=\beta_{3}+\bar{\epsilon}_{j}$ be the measured value of the systematic risk of firm j where we as and for all j satisfies

$$
\begin{align*}
E\left(\dot{\epsilon}_{j}\right) & =0 \tag{7a}\\
E\left(\epsilon_{j} \beta_{j}\right\} & =0 \tag{7c}\\
E\left(\bar{\epsilon}_{j} \bar{\epsilon}_{j}\right) & = \begin{cases}0 & i \neq j \\
\sigma^{2}(\epsilon) & i=j\end{cases} \tag{x}
\end{align*}
$$

The tradtional form of the asset pricing model and the as
umptons of the marte the asset pricing model and the as W.
retum on a security

$$
\begin{equation*}
\tilde{R}_{\mathrm{f}}=\frac{\sum_{i=1}^{T} \tilde{R}_{\mathrm{j} t}}{T} \tag{8}
\end{equation*}
$$

observed over T periods can be written as

$$
\begin{equation*}
\bar{R}_{j}=E\left(R_{j} \mid \bar{R}_{y}\right) \div \bar{e}_{3}=\bar{R}_{x} \beta_{s}+\bar{E}_{j} \tag{9}
\end{equation*}
$$

where $\bar{R}_{n}=\Sigma I_{1} \mathcal{R}_{1+1} T, E_{5}=\Sigma T_{=1} e_{i d} T$, Now an obwious test of the traditional form of the asset pricing model is to ft

$$
\begin{equation*}
\bar{X}_{1}=\gamma_{0}+\gamma_{1} \hat{\beta}_{3} \div \bar{E}_{j}^{0} \tag{10}
\end{equation*}
$$

to a cross section of firms (where $\hat{\beta}_{j}$ is the estimated risk coefficient for each firm and $\bar{e}_{j}^{*}=\bar{e}_{j}-\gamma_{j} \vec{e}_{j}$) and test to see if, as implied by the theory

$$
\gamma_{0}=0 \quad \text { and } \quad \gamma_{1}=\widetilde{R}_{s s}
$$

There are two major difficulties with this procedure; the first involves bias due to the measurement errors in $\hat{\beta}_{j}$, and the second involves the apparent inadequacy of (9) as a specification of the process generating the data. The two-factor asset pricing model giwen by (2) implies that γ_{0} and γ_{1} are random coeffcients-that is, in addition to the theoretical values above, they involve a variable that is random through time. If the two-factor model is the true model, the usual significance tests on γ_{i} and γ_{1} are misleading, since the data from a given cross section cannot provide any evidence on the standard deviation of F_{Z} and hence results in a serious underestimate of the sampling error of $\hat{\gamma}_{0}$ and $\hat{\gamma}_{1}$. Ignoring this second difficulty for the moment, we shall first consider the measurement error problems and the cross-sectional empirical evidence. The random ceefficients issue and appropriate significance tests in the context of the two-factor model are discussed in more detail in Section IV.

As long as the $\dot{\beta}_{3}$ contain the measurement errors \tilde{E}_{1}, the least-squares estimates $\dot{\gamma}_{0}$ and γ_{1} in (10) will be subject to the well-known errors in variables bias and will be inconsistent, (ce. Johnston [1963, Chap. VI]). That is, assuming that \bar{c}_{j} and $\xi_{;}$ are independent and are independent of the β_{i} in the crosssectional sample,

$$
\begin{equation*}
\operatorname{plim} \dot{\gamma}_{1}=\frac{\gamma_{1}}{1+\sigma^{*}(\epsilon) / S^{\alpha}(\beta)} \tag{11}
\end{equation*}
$$

where $S^{2}\left(\beta_{j}\right)$ is the cross-sectional sample variance of the true risk parameters β_{j}. Even for large samples, then, as long as the variance of the errors in the risk measure $\sigma^{2}(\bar{\epsilon})$ is positive, the estimated cocflicient $\dot{\gamma}$, will he biased toward zero and $\dot{\gamma}_{n}$ will therefore be biased away from zero. Hence tests of the signifrance of the differences $\dot{\gamma}_{\|}-0$ and $\dot{\gamma}_{1}-\tilde{A}_{m}$ will be misleading.
C. The Grouting Solution to the Measurement Error Problem. We shove in the Appendix that by appropriate grouping of the data to be used in estimating (10) one can substantially reduce the bias introduced through the existence of measurement errors in the $\hat{\beta}_{\text {j }}$. In essence the procedure amounts to systematically ardering the firms into groups (in fact by the same procedure that formed the ten portolios used in the time series tests in Section II) and then calculating the risk measures $\hat{\beta}$ for each portolio using the time series of porfolio returns. This procedure can greatly reduce the sampling error in the estimated risk measures: indeed, for large samples and independent errors, the sampling enor is virtually eliminated. We then estimate the crosssectional parameters of (10) using the portfolio mean returns over the relevant holding period and the risk coefficients obtained from estimation of (b) from the time series of portfolio returns. If appropriate grouping procedures are employed, this procedure will yield consistent estimates of the parameters γ_{p} and γ_{1} and thus will yield wirtually unbiased estimates for samples in which the number of securities entering eech group is large. Thus, by applying the cross-sectional test to our ten portfolios rather than to the underlying individual securities, we can virtually eliminate the measurement error problem. ${ }^{\text {f }}$
D. The Crots-sectional Empitical Results. Given the 35 years of monthly returns on each of the ten portfolios cal culated as explained in Section II, we then estimated $\hat{\beta}_{i}$ and $\bar{R}_{k}(K=1,2, \ldots, 10)$ for each pottfolio, using all 35 years of monthly data. These estimates (see Table 2) were then used in estimating the cross-sectional relation given by (10) for various holding periods.

Figure 1 is a plot of \vec{R}_{k} versus $\hat{\beta}_{i}$ for the 35 -year holding period January, $1931-$ December, 1965 . The symbol \times demotes the average monthly excess return and risk of each of the ten portfolios. The symbol \square denotes the average excess
return and risk of the market portfolio (which by the definition of β is equal to unity). The line represents the leastsgaares estimate of the relation between \hat{R}_{k} and $\hat{\beta}_{5}$. The "intercept" and "slope" (with their respective standard errors given in parentheses) in the upper portion of the figure are the coefficients γ_{i} and γ_{1} of (10).
The traditional form of the asset prichng model implies that the intercept γ_{0} in (10) should be equal to zero and the slope γ_{5} should be equal to R_{15}, the mean excess return on the market portfolio. Over this 35 -year period, the averuge monthly excess return on the market portfolio $R_{w, ~ w a s ~}^{0.0142}$, and the theoretical values of the intercept and slope in Figure lare

$$
\gamma_{0}=0 \quad \text { and } \quad y_{1}=0.0142
$$

The " f " values

$$
\begin{aligned}
& t\left(\hat{\gamma}_{a}\right)=\frac{\hat{\gamma}_{n}}{s\left(\hat{\gamma}_{0}\right)}=\frac{0.00359}{0.00055}=6.52 \\
& t\left(\hat{\eta}_{t}\right)=\frac{\gamma_{1}-\hat{\gamma}_{1}}{s\left(\dot{\gamma}_{t}\right)}=\frac{0.0142-0.0108}{0.00052}=6.53
\end{aligned}
$$

seem to indicate the observed relation is significantly different from the theoretical one. However, as we shall see, because (9) is a misspecification of the process generating the data, these tests vastly overstate the significance of the results.
We also divided the 35 -year interval into four equal subperiods, and Figures 2 through 5 present the plots of the \hat{k}_{k} versus the $\hat{\beta}_{R}$ for each of these intervals. In order to obtain better estimates of the risk coefficients for each of the subperiods, we used the coefficients previously estimated over the entive 35 -year period. il The graphs indicate that the relation between return and risk is linear but that the slope is related in a nonstationary way to the theoretical slope for each perioci. Note that the traditional model implies that the theoretical relationship (not drawn) ahways passes through the two points given by the origin (0,0) and the nverage market excessreturns represented by in each figure. In the first sub- 2 period (see Fig. 2) the empirical slope is steeper than the

Fiotue 1 Awerage excess monthly returlas yersus systematic risk for the 5-yens period 1931-65 for ench of ten portolios (denoted by x) and the $35-y e a r ~ p a r i o d ~ 1931-6,3$ for ench
market partolio (denoted briz)

Fucyne 2 Average excess monthly returns worne symbatic bisk For the 105 -whenth period
 Figure 1.

 yersus symematie ratk for the 105 month period
 fighate:

Fatume 4 Avorage wetoss monthly rehurms versus systematic risk for the 105 -montle perind July, (948-Mareh, 1957. Symbols ans in Figute 1.

Fhtults 5 Average excers monthify fotarms versus systematie risk for the lasumonth period April. 1057-December 1065. Synhols as in Pigure 1.

Fuame 2 Averare axcess monthly returns versus syatematic risk for the lith-mothth perion
 7iparei.

Furunt is Aweruge exces nomithly peturns versum systonnatio risk for the 105 momblh perind
 fighate 1 .

 versus systematic risk for the 105 month period july, 1948-March, 1057. Syamals in in Fighre 1.

Fubaty 5 Averuge excess montily returns versus systomatic risk for the lotwometh period April, 1957-Decomber, 1965. Symhols as in Figure L.

Thbles

		Time Period			
			Sulp	iods	
	$1 / 31-12 / 65$	131-9139	10199-648	7/48-355i	4/5-12
	0.00339	-0.00801	0.00439	0.00777	0.01030
$\stackrel{\gamma}{14}^{\gamma_{1}}$	000108	0.0305	0.0107	0.0033 0.0112	-0.0018 0.00188
$\gamma_{1}=R_{3}$	$0.01+2$	0.0230	0.0149 3.00	${ }_{7.40}^{0.0112}$	18.69
: $\frac{1}{2} \mathrm{y}$	$\begin{aligned} & 8.32 \\ & 6.53 \end{aligned}$	-4.45 -4.91	3.23	7.98	19.61

The coefficients $\dot{\gamma}_{4}, \dot{\gamma}_{1}, \gamma_{1}$ and the " f " values of $\dot{\gamma}_{0}$ and $\gamma_{1}-\hat{\gamma}^{\prime}$ e summarized in Table 4 for the entire period and for each of the four subperiods. The smallest " 1 " value given there is 3.20 , and all seem to be "sigrificantly" different from their theoretical values. However, as we have already maintained, theoretical values. how sonewhat misleading because the these f values are fuctuate far more in the subperiods estimated coemelents hactuate far ing estimated sampate. This evidence suggests that the model given by (9) is misspecified. We shall now attempt to deal with this specifcation problem and to furmish an alkernative formulation of the model.

V. A Two-Factor Mode

A. Form of the Model. As mentioned in the introduction, Black [1970] has shown under assumptions identical to that of the asset pricing model that, if riskless borrowing opporanities do not exist, the expected reburn on any asset j will be given by

$$
\begin{equation*}
E\left(r_{j}\right)=E\left(r_{z}\right)\left(1-\beta_{j}\right)+E\left(r_{m}\right) \beta_{j} \tag{12}
\end{equation*}
$$

where \vec{r}_{2} represents the return on a "zero beta" portfolio-a解 portfolio whose cov
Close examination of the empirical evidence from both the cross-sectional and the time series tests indicates that the results are concistent with a model that expresses the return results are con a linear function of the market factor r_{M}, (with a coefficient of fi) fnd a second factor r_{2} (with a coefficient of
$1-\beta$). The function is

$$
\begin{equation*}
\tilde{r}_{s}=\tilde{r}_{Z A}\left(1-\beta_{j}\right)+\bar{r}_{m} \beta_{j}+\bar{w}_{\mathrm{J}} \tag{13}
\end{equation*}
$$

Because the coefficient of the second factor is a function of the security's β, we call this factor the beta factor. For a given holding period T, the average value of $\bar{f}_{x f}$ will determine the relation between and $\hat{\beta}$ for different securities or parfolios. If the data are being generated by the process given by (13) and if we estimate the single variable time series negression given by (6), then the intercept $\dot{\alpha}$ in that regression will be

Where $\bar{T}_{Z}=I_{T=1} F_{z i} t$ is the mean return on the beta factor 2 over the period, r_{r} is the mean risk-free rate over the period, and \bar{R}_{x} is the difference between the two. Thus if \bar{R}_{2} is positive, high-beta securities will tend to have negative $\dot{\alpha}$'s, and low-beka securities will tend to have positive $\hat{\alpha} s$. If κ_{z} is negative, high-beta securities will tend to have positive $\hat{\alpha}$'s and low-beta securities will tend to have negative $\dot{\alpha}$'s.
In addition, if we estimate the cross-sectional regression given by (10), the expanded two-factor model implies that the true values of the parameters γ_{0} and γ_{1} will not be equal to zero and \bar{R}_{i} but instead will be giveu by

$$
\gamma_{0}=\bar{R}_{z} \quad \text { and } \quad \gamma_{1}=\tilde{R}_{N}-\bar{R}_{z}
$$

Hence if \bar{R}_{z} is positive, γ_{0} will be positive and γ_{1} will be less than \bar{R}_{3}. If \hat{R}_{Z} is negative, γ_{0} will be negative and γ_{1} will be greater than $R_{4 f}$.

Thus we can interpret Table 3 and Figures 2 through 5 as indicating that \bar{K}_{z} was negative in the flrst subperiod and became positive and successively larger in each of the following subperiods.

Examining (12), we see that the tracitional form of the capital asset pricing model, as expressed in (1), is consistent with the present two-factor model if

$$
\begin{equation*}
E\left(\tilde{H}_{z}\right\}=0 \tag{15}
\end{equation*}
$$

and (questions of statistical efficiency aside) any test for Whether ow for a portiolio is zero is equivalent to a test for whether $E\left(\mathbb{R}_{z}\right)$ is zero. The results in Table 3 suggest that $E\left(\vec{k}_{2}\right)$ is not stationtry through time. For example, \vec{a}_{r} for the Lowest risk portfolio (number 10) is negative in the first subperiod and positive in the last subperiod, with a " t " value of 8 Thus it is unlikely that the true values of α_{s}, were the same in

Tambe 4
Summary of Cross-sectional hegression Coeffients nnd Their
Palues

	Time Period				
	Total Period$1 / 31-12 / 65$	Subjacriods			
		1131-9139	10439-6/48	748-857	4157-1265
$\dot{\gamma}_{a}$	0.00359	-0.0080	0.00439	0.0077	0.01020
$\dot{\gamma}_{a}$	0.0109	0.0304	0.0107	0.0083	-0,0032
$\gamma_{1}=n_{y}$	0.0142	0.0200	0.0148	0.015	0.0085
$x\left(\hat{y}_{0}\right)$	6.52	-4.45	3.00	7.40	18.89
	6.53	-4.81	3.33	7.98	19.51

The coefficients $\dot{\phi}_{0} \dot{y}_{1} \gamma_{1}$ and the " t " values of $\dot{\gamma}_{5}$ and $\gamma_{1}-\dot{\gamma}_{s}$ are summarized in Table 4 for the entire period and for each of the four subperiods. The smallest " t ", value given there is 3.20 , and all seem to be "sigrificantly" different from their theoretical values. However, as we have already maintained, theoretical values. However, as we have are sonewhat misleading because the these "t values are somewhat minse in the subperiods estimated coemcients numbing errors indicate. This evidence suggests that the model given by (9) is misspecified. We shall now attempt to deal with this specification problem and to furnish an alternative formulation of the model.

IV. A Traco Factor Model

A. Form of the Model. As mentioned in the introduction, Black f19701 has shown under assumptions idertical to that of the asset pricing model that if riskless borrowing opportunities do not exist, the expected return on any asset j will be given by

$$
\begin{equation*}
E\left(\bar{r}_{j}\right)=E\left(\tilde{F}_{2}\right)\left(I-\beta_{j}\right)+E\left(\bar{r}_{n}\right) \beta_{j} \tag{12}
\end{equation*}
$$

where $\sqrt{2}$ reyresents the return on a "zero beta" portfolio-a portfolio whose covariance with the returns on the market porfolio ins is zero. ${ }^{\text {n }}$
Close examination of the empirical evidence from both the cross-sectional and the time series tests indicates that the crosults are consistent with a model that expresses the return on a security as a linear function of the market factor row ;with a coefficient of β_{j}) and a second factor r_{3} (with a coefficient of
$1-\beta_{1}$). The function is

$$
\begin{equation*}
\bar{r}_{j s}=\bar{r}_{z i}\left(1-\beta_{j}\right)+\bar{r}_{m f} \beta_{j}+\bar{w}_{j l} \tag{13}
\end{equation*}
$$

Because the coefficient of the second factor is a function of the security's β, we call this factor the beta factor. For a given holding period T, the average value of F_{z} will determine the relation between $\dot{\alpha}$ and $\dot{\beta}$ for different securities or portfolios. If the datio are being generated by the process given by (I3) and if we estimate the single variable time series regression given by (6), then the intercept $\bar{\alpha}$ in that regression will be

$$
\begin{equation*}
\dot{\alpha}=\left(r_{y}-\bar{r}_{F}\right)\left(1-\beta_{y}\right)=k_{a}\left(1-\beta_{j}\right) \tag{14}
\end{equation*}
$$

where $\bar{r}_{2}=I f_{01} \bar{F}_{z r} T$ is the mean return on the beta factor over the period, F_{F} is the mean risk-free rate over the period, and \bar{R}_{2} is the difference between the two. Thus if \bar{R}_{2} is positive, figh-beta securities will tend to have negative $\dot{\alpha}$'s and low-beta securities will tend to have positive $\dot{\alpha}^{\prime}$. If \hat{R}_{z} is negative, high-beta securities will tend to have positive $\dot{\alpha} ' s$, and low-beta securities will tend to have negative $\dot{\alpha}$'s.
In addition, if we estimate the cross-sectional regression given by (10), the expanded two-factor model implies that the trie values of the parameters γ_{0} and $\gamma_{,}$will not be equal to zero and $\vec{R}_{\text {, }}$ but instead will be given by

$$
\gamma_{0}=\bar{R}_{z} \quad \text { and } \quad \gamma_{1}=\bar{R}_{M}-\bar{R}_{z}
$$

Hence if $\bar{म}_{z}$ is positive, γ_{0} will be positive and γ_{1} will be less than \bar{R}_{x} If \bar{R}_{Z} is negative, γ_{0} will be negative and γ_{1} will be greater than \bar{R}_{3}.
Thus we can interpret Table 3 and Figures 2 through 5 as indicating that \bar{R}_{z} was negative in the first subperiod and became positive and successively larger in each of the following subperiods.
Examining (12), we see that the traditional form of the capital asset pricing model, as expressed in (1 , is comsistent with the present two-factor model if

$$
\begin{equation*}
E\left\{\left(\tilde{R}_{z}\right)=0\right. \tag{15}
\end{equation*}
$$

and (questions of statistical efficiency aside) any test for whether α_{y} for a portfolio is zero is equivalent to a test for whether $E\left(\mathcal{R}_{z}\right)$ is zero. The results in Table 3 suggest that $E\left(\hat{N}_{2}\right)$ is not stationary through time. For example, $\dot{\bar{\alpha}}_{5}$ for the lowest risk porfolio (number 10) is negative in the first sulbperiod and positive in the last subperiod, with a " E " value of B. Thus it is unlikely that the true values of ofs were the same in
he two subperiods \{each of which contains 105 observations and thus unjikely that the true values of $E\left(R_{z}\right)$ were the same in the two subperiods, und we shall derive formal tests of this proposition below.
The existence of a factor \bar{R}_{z} with a weight proportional to $1-\beta_{1}$ in most sccurities is also suggested by the unreasonably high " f " values ${ }^{\text {² }}$ obtained in the cross-sectional regressions, as given in Table 4. Since γ_{a} and γ_{1} involve \bar{R}_{3+} which is a random variable from cross section to cross section, and since no single cross-sectional run can provide any information whatsoever on the variability of \tilde{H}_{z}, this element is totally gnored in the usual calculation of the standard errors of γ_{4} and γ_{1}. It is not surprising, therefore, that each individual cross-sectional result seems so highly significant but so totally different from any other cross-sectional relationship. Of course the presence of infinite-variance stable distributions will also contribute to this type of phenomenon.
In addition, in an attempt to determine whether the linearity observed in Figures 1 drrough 5 was in some way due to the averaging involved in the long periods presented there, we replicated those plots for our tem portfolios for 17 separate two-year periods from 1932 to 1965 . These results, which also exhibit a remarkable linearity, are presented in Figures 6a and 6 b . Since the evidence seems to indicate that the all-risky asset model describes the data better than the traditional model, and since the definition of our "riskless" interest rate was somewhat arbitrary in any case, these plots were derived from calculations on the raw return data with no reference whatsoever to the "risk-free" rate defined earlier (including the recalculation of the ter portfolios and the estimation of the β_{3}. Figures 7 through 11 contain a replication of Figures 1 through 5 ealculated on the same basis. These results indicate that the basic findings summarized previously cannot be be attributed to misspecification of the riskless rate.
In summary, then, the empirical results suggest that the returns on different securities can be written as a linear function of two factors as giver in (13), that the expected excess return on the beta factor \bar{R}_{2} has in general been positive, and that the expected return on the betaf factor has been higher in more recent subperiods than in earlier subperiods.
B. Explicit Estimation of the Beia Factor and a Crucial Tesi of the Model. Since the traditional form of the asset

188-4978

Figuae 6 Asarage monthif returns versus systematie risk for 17 non owerlamping two year perided from 1932 to 196 à

 sleqุan

pricing model is consistent with the existence of the beta factor as long as the excess returns on the beta factor have a zero mean ${ }^{33}$ our purpose here is to provide a procedure for explicit estination of the time series of the factor. Given such a time series, we can then make explinit estimates of the significance of its mean excess return rather than depending mainly on ans examination of the α for high and low-beta securities. Solving (13) for r_{2} plus the error term, we have an estimate $\hat{f}_{z k}$, of $F_{z r}$

$$
\begin{equation*}
\dot{r}_{2 j t}=\frac{1}{\left(1-\beta_{j}\right)}\left[\tilde{r}_{i}-\beta_{j} \bar{r}_{2 i p}\right]={f_{z t}+\bar{u}_{\mathrm{j}}} \tag{16}
\end{equation*}
$$

where $\bar{u}_{j s}=u_{j p}\left(1-\beta_{j}\right.$. We subscript $\dot{r}_{z j t}$ by j to denote that this is an estimate of $\bar{r}_{z t}$ obtained from the j th asset or portfolio. Now, since we can obtain as many separate estimates of $f_{z t}$ as we have securities or portfolios, we can formulate a combined estimate

$$
\begin{equation*}
r_{z k}^{o}=\sum_{j} h_{i} \dot{r}_{z ; F} \tag{17}
\end{equation*}
$$

which is a linear combination of the $\mathrm{r}_{\text {zin }}$ to provide a much more effieient ertimate of $\bar{r}_{z r}$. The problem is to find that linear combination of the F_{zd} which minimizes the error variance in the estimate of $\mathrm{F}_{2 r}$. That is, we want to

$$
\min _{\lambda_{j}} E\left(r_{z t}^{0}-\bar{r}_{z t}\right)=\min _{\lambda_{j}} E\left(\sum_{j} h_{j} \bar{r}_{z j t}-\bar{r}_{z t}\right)^{3}
$$

subject to $\sum_{3} h_{i}=1$, since we want an unbiased estimate. From the Lagrangian we obtain the first-order conditions

$$
\begin{equation*}
h_{2}, r^{2}\left\{\bar{u}_{i}\right\}-h=0 \quad j=1,2, \ldots, N \tag{18}
\end{equation*}
$$

where λ is the Lagrangan multiplier and N is the total number of securities or nonoverlapping porfolios. These conditions imply that

$$
\begin{equation*}
\frac{h_{j}}{h_{i}}=\frac{\sigma^{2}\left(\hat{\varphi}_{i}\right)}{\sigma^{2}\left(i_{j}\right)} \text { for alliand } \tag{19}
\end{equation*}
$$

which implies that the optimal weights h_{i} are proportional to 1/ $\boldsymbol{r}^{2}\left(\bar{u}_{1}\right)$. That is s_{x}

$$
\begin{equation*}
h_{j}=\frac{K}{\sigma^{*}\left(u_{j}\right)} \quad j=1,2, \ldots, n \tag{20}
\end{equation*}
$$

where $K=1 / \Sigma_{j}\left[1 / \sigma^{*}\left(\dot{u}_{j}\right]\right]$ is a normalizing constant. But from
the definition of \tilde{u}_{5} we know that $\sigma^{2}\left(\tilde{u}_{j}\right)=\sigma^{*}\left(\bar{u}_{j}\right)\left(1-\beta_{j}\right)^{2}$, so

$$
\begin{equation*}
h_{j}=\frac{K\left(1-\beta_{j}\right)^{2}}{\alpha^{2}\left(u_{j}\right)} \tag{21}
\end{equation*}
$$

Equation (21) makes sense, for we are then weighting the estimates in proportion to $\{I-\beta,\}^{2}$ and inversely proportional to $\sigma^{\circ}(t)$. However, since we camnot observe o $\sigma^{*}\left(w_{i}\right)$ directly ${ }^{14}$ or σ (ty). Hoch for fack of exicit estimates, to assume that the we are forced,

$$
\begin{equation*}
h_{2}=K^{\prime}\left(1-\beta_{i}\right)^{2} \tag{20}
\end{equation*}
$$

where $K^{\prime}=1 / \Sigma_{j}\left(1-B_{B}\right)^{2}$.
Equations (17) and (e2) thus provide an unbiased and (approximately) efficient procedore for, estimating j_{z} utilizing all ayailable information. However, there is a problem of bias involved in actually applying this procedure to the security data. The coefficient β_{5} is of course unobservable, and in gendata. The coeffient β_{5} th $\dot{\beta}_{1}$ in the weighting procedure we eral if we use our estimates β_{1} in the wate of F_{z}. To understand
 this, recall that $\dot{\beta}_{1}=\beta_{I}-\varepsilon_{j}$, substioute and 2 and solve for the necessary estimate

Substituting this into (17), using (22), rearranging terms, and taking the probability limit, we have
where $S^{2}(\beta)$ is the cross-sectional variance of the β_{j} and $\bar{\beta}$ is the mean. However, the average standard deviation of the measurement error o(E) for our portfolios is only 0.0101 fimplying an average variance on the order of 0.0001 , and implys ${ }^{\prime}(\beta)$ for our ten portfolios is 0.1144 and $\bar{\beta}=1.007$, this since sill be neglitible and we shall ignore it.
bias will be negligible and
To begint let us apply the estimate of $\tilde{R}_{z f}=r_{z}-r_{r y}$, the excess return data to obtam an estor. Substituting $R_{j i}$ for r_{j} and R_{3} for return on the for ras 2 (16), the $\vec{R}_{z r}$ were estimated for each of our ten for $r_{s t}$ in (16), the $\bar{R}_{z r}$ were estimated for each of our ten
portfolios. These were then averaged to obtain the estimate

$$
R_{z z}^{v}=\sum_{j} h_{j} \hat{A}_{z t t}=K^{v} \sum_{j}\left(I-\beta_{j}\right)\left[\frac{\hat{h}_{3 t}-\hat{\beta}_{j} R_{u r}}{1-\hat{\beta}_{j}}\right]
$$

for each month t. The averate of the R_{i} for the entire period and for each of the four subperiods are given in Table 5 , along with their t yaiues. Table 5 also presents the serial correlation
tables
Estimated Atean Vatues and Serial Correlation of the Excess Returns on the Beta Factor ower the Entite Periods and the Four Subperiods*

Period	$\overline{\mathrm{r}}_{2}^{*}$	$\sigma\left(\kappa_{2}\right)$	$1 \mathrm{~F}^{\text {最: }}$		s(t)
131-1295	0.00338	0.0486	1.62	0.113	2.33
1/31-9139	-0.00849	0.0611	-1.37	0.194	1.49
10 139-6,48	0.00400	0.0455	0.345	0.208	2.19
7148-3157	0.00783	0.0199	4.03	-0.181	-1.87
4/5才-12je5	0.00597	0.0298	4.49	0.417	4.60

"The values of fike ${ }^{\circ}$) were calculated under the assumption of normal distributions.
coefficients $r\left(R_{z,}^{o}, R_{z-1}^{G}\right) n^{3}$ Note that the mean value \bar{R}_{z}^{o} of the beta factor over the whole period has a " E " value of only 1.64 . However, as hypothesized earlier, it was negative in the first subperiod and positive and successively larger in each of the following subperiods. Moreover, in the last two subperiods its " t " values were 4.03 and 4.49 , respectively. These results seem to us to be strong evidence favoring rejection of the traditional form of the asset pricing model which says that R_{2}° should be insiguficantly different from zero.
In order to be sure that the significance levels reported in Table $\overline{5}$ are not spurious and due only to the misapplication of normal distribution theory to a situation in which the variables may actually be distributed according to the infinite variance members of the stable class of distributions. We have performed the significance tests using the stable distribution theory outlined by Fama and Roll [1968]. Table 6 presents the standardized variates (i.e., the " i " values) for \bar{H}_{2} for each of the sample periods given in Table 5 along with the " i " values at the 5% level of significance (two-tail) under

Table 6
Normalized Variate fien t Value $\left(\bar{R}_{2}^{\infty}, \alpha\right)=\bar{R}_{2}^{\alpha}\left[\alpha\left(A_{z}^{\alpha} \alpha\right)\right]$ of the Exeess Reburn on the Beta Factor Under the Assntions

Variance Symmetric Stable Distributions

Perital	1					
	1.5	16	1.7	1.8	1.9	20
[13)-1205	1.33	1.71	2.14	261	$3.11{ }^{\circ}$	3.65°
1139-19.1.	111	-1.4	-1.11	- 3.00	-0.29	-
16109639 10199648	0.82	$\underline{5} 1.00$	1.18	1.38	1.58	1.79
10139-64 74	± 80	3.16	3.70°	4,378	$\stackrel{5.60}{5.36^{\text {a }}}$	
4157-12,65	3.65	3.70	4.40°	2.11		
Walue at the 5^{6}	4.49	3.50	3.48.	3.16	2.93	27
level of sifrificance (twoutathe)	4,4					

[^30] distribution.
(Cf Famand Rolf [19es).
alternative assumptions regarding the value of α, the characteristic exponent of the distribution. The smaller is o, the isher are the extreme tails of the probability distribution: $\alpha=2$ corresponds to the normal distribution and $c=1$ to the Cauchy distribution. Evidence presented by Fama [1965] seems to indicate that α is probably in the range 1.7 to 1,9 for sems to stocks. We have not attempted to obiain explicit common of of for our data, since currently known estimation enodures a quite imprecise and require extremely large procedures are quite imprecise and. Therefore we have simply samples (up to ?, presented the " t " values calculated [1968] for six walues of α dures suggested by Fama and Roll isients in Table 6 that are ranging from 1.5 to 3.0 . The coefficients an asterisk. Clearly, significant at the $5 \% 17$ the resules confirm the impression if $\alpha \alpha$ is greater than 1.7 , the resuls cons. 5
gained from the normal tests, givenin 3 and 6 were obtained Note that the estimates int therefore, athough the figures from the excess return dat the traditional form of the model, are of interest for testing the tracelt of the mean value of f_{z}. they do not give the appropriate led from the total return cata The estimates F_{2}° and F_{n} obtained 11 appear in Table 7 , along with used in Figures 6 through 11 appear in Ia 1 $\sigma\left(f_{z}^{a}\right)$ and $\sigma\left(f_{m}\right)$ and the est [given by (10)] for each of the var-cross-sectional regressions Lgiven by (107) for each of the var

"Cf. © (10).
ious sample periods portrayed in Figures 6 through 11. (Recall that the wo-factor model implies $\gamma_{0}=\bar{T} z$ and $\gamma_{1}=$ $\bar{r}_{u}-\bar{r}$.) One additional item of interest in judging the importance of the beta factor in the determination of security returns is its standard deviation relative to that of the market returas. As Table 7 reveals, $\sigma\left(\mathrm{f}_{z}^{0}\right)$ is roughly 50% as harge as of (rx). Comparison of F_{z}^{a} and y_{y} in Lable I for the tour lob month subperiods indicates that the mean chare market refactor were approximately equal to the averge mary, 1948 turns in the last wo yeriods covering the intervaly, magnitudes December, 1965. Apparently, then, of \bar{F}_{7}° and \bar{r}_{3} indicate that the

V. Conclasion

The traditional form of the capital asset pricing model tates that the expected excess return on a security is equal to its level of systematic risk, β, times the expected excess return on the market portfolio. That is, in capital market equilibrium prices of assets adjust such that

$$
\begin{equation*}
E\left(\bar{R}_{1}\right)=\gamma_{1} \beta_{1} \tag{2}
\end{equation*}
$$

where $\gamma_{1}=E\left\{\bar{A}_{3}\right\}$, the expected excess return on the market portfolio.

An alternative hypothesis of the pricing of capital assets arises from the relaxation of one of pricing model. Relaxatranditional form of the eap riskless borrowing and lending tion of the assumption that risk to the formulation of the kwo opportunities are available leads to the formurne returns $E\left(r_{i}\right)$ on an asset will be glven by

$$
\begin{equation*}
E\left(\tilde{r}_{3}\right)=E\left(\bar{r}_{z}\right)+\left\{E\left(\bar{r}_{\mathrm{M}}\right)-E\left(\bar{r}_{\mathrm{z}}\right)\right] \beta_{;} \tag{25}
\end{equation*}
$$

where $E\left(F_{7}\right)$ is the expected return on a portfolic that has a where $E\left(r_{2}\right)$ is the zero covand thus $\beta_{z}=0$) with the retarnon the market zero covalion. Im the context of this model, the return on 30 -day. Treasury Bills (which we have used as a proxy for a risketess rate) simply represents the return on a particala (25) we can system. Thus, subtracting r_{F} from boms as
rewrite (25) in terms of "excess" returns
$E\left(\hat{N}_{j}\right)=\gamma_{0}+\gamma, \beta$,

The traditional form of the asset pricing model implies that $\gamma_{1}=0$ and $\gamma_{1}=E\left(\tilde{R}_{s f}\right)$ and the two-factor model implies that $\gamma_{0}=E\left(\mathcal{R}_{\mathcal{F}}\right)$, which is not necessanily zero and that $\gamma_{t}=E\left(\tilde{R}_{s}\right)-\mathbb{E}\left(\bar{R}_{z}\right)$. In addition, several other models arise from relaxing some of the assumptions of the traditional asset pricing model which mply $\gamma_{0} \neq 0$ and $\gamma_{1} \neq E\left(R_{H}\right)$ These models involve explicit consideration of the problems of measuring R, the existence of nonmarketable assets, and the existence of differential taxes on capital gains and dividends, and we shall briefly outline them. Our main emphasis has been to test the strict traditional form of the asset pricing model; that is, is vo 0 ? We have made no attempt to provide direct tests of these other altemative hypotheses.
To test the traditional model, we lised all securities listed on the New York Stock Exchange at any time in the interval between 1926 and 1966. The problem we faced was to obtain effient estimates of the mean of the beta factor and its varimese. It would be possible to test the alternative hypotheses by selecting one security at random and estimating its beta from the time series and ascertaining whether its mean return was significantly different from that predicted by the traditional form of the eapital asset pricing model. However, this would be a very inefficient test procedure.
To gain efficiency, we grouped the securities into ten portfolios in such a way that the portfolios had a large spread in their β 's. However, we knew that grouping the securities on the basis of their estmated $\beta^{3} s$ would not give unbiased estimates of the portfolio "Beta," since the β 's used to select the porfolios would contain measurement error. Such a procedure would introduce a selection bias into the tests. To elininate this bins we used an instrumental wariable, the previous period's estimated beta, to select a security's portfolio grouping for the next year. Usint these procedures, we constructed ten portfolios whose estmated β^{\prime} s were unbiased estimates of the portfolio "Beta." We found that much of the sampling variability of the β s estimated for individual securithes was eliminated by using the portfolio groupings. The β 's of the porifolios constructed in this manner ranged from 0.49 to 1.5 , and the estimates of the portfolio β 's for the - subperiods exhibited considerable stationatity.

The time series regressions of the portfolio excess returns on the market portiolio excess retums indicated that highTheta recurities had significantly negative intercepts and low deta securities had significantly positive intercepts, contrary
where $\gamma_{4}=E\left(\bar{R}_{x}\right)$ and $\gamma_{s}=E\left(\overline{\mathrm{R}}_{m}\right)-E\left(\overline{\mathrm{R}}_{\mathrm{z}}\right)$
to the predictions of the traditional form of the model. There was also considerable evidence that this effect became stronger through time, being strongest in the 1947-65 period. The cross-sectional plots of the mean excess returns on the portfolios against the estimuted β^{3} indicated that the relation between mean excess retorn and β was linear. However, the intercept and slope of the cross-sectional relation varied in different subperiods and were not consistent with the traditonal form of the capital asset pricing model. In the two prewar 105 -month subperiods examined, the slope was steeper in the first period than that predicted by the traditional form of the model, and it was fazter in the second period. In each of the two 105 -month postwar periods it was considerably flatter than predicted. From the evidence of both the time series and cross-sectional runs; we were led to reject the hypothesis that γ_{o} in (26) was equal to zerof we therefore concluded that the traditional form of the asset pricing mode! is not consistent with the data.
We also attempted to make explicit estimates of the time serics of returns on the beta factor in order to obtain a more efficient estimate of its mean and variance and thereby enable ourselves to directly test whether or not the mean excess return on the beta factor was zero. We derived a minmum-variance, unbiased linear estimator of the returns on the 1 factor using our portfolio return data. We showed that, given the independence of the residuals the optimum estimator requires knowledge of the unobservable residual variances of each of the portfolios but that this problem could be avoided if they were equal. Under this assumption of equal residual variances, we estimated the time series of returns on the beta factor. However, if these assumptions li.e., the independence of the residuals and equality of their variances) are not validand there is reason to believe they are not-more conplicated procedures are necessary to obtain minimum-vasince estimates. Such estimators, which use the complete covariance structure of the portfolio returns are available dalthough not derived here). However, we feel that a straightforward application of these procedures to the rehurn thata would result in the introduction of serious ex poost Gias in the estimates. Thus we have left a complete investigation of these problems, as well as more detailed tests of the two-factor model, to a future paper. In order to fully utilize the properties of the two-factor model in a number of applied problems (such as portolio evalation, see Jensen [1971] and various issues in valuation
theory), it will be necessary to have minimum-variance unbiased estimates of the tinle series of returns on thance factor, and we hope to provide such estimates in the beta distant fiture.
The evidence obtained from the time series of returns on the beta factorindicated that the beta factor had a nonzero mean that we the mean was nonstationary over time. It seems to us beta factav in established the presence and signinitance of the earlier, we in explaining security returns but, as mentioned ing the existence provided any divect tests aimed at explaingested en economic rationale for we have, however, sugfibrium is consistent with the for why capital market equiBlack [1970] histent with the finding of this second factor. fies are not has shown that if riskless borrowing opportunion an asset will be able, the equilibrium expected returns β factor, the other the market factor
In addition Bu makefactor
In addition, Black and Jensen [1970] have demonstrated a model simithr omitted from the estimated market return result, (Sints in some ways to the tworfactor model would That is, it yields a model similovant to this issue as well.) implies that $7{ }^{2} 0$. Hodel similar in structure to (26) and 6 b and Table 7 the. Hover, it is clear from Figures 6a and and y_{i} in Table 7) is hivhly thesis must be conghy variable and any atternative hypo words, it is not sufficient for an alternative imply a nonzero but constor an aternative model to simply Ofhers have proventant interecpt in (26).
in struct have proveded atternative models that are simithar in structure to the Black-Jensen results. For cxample, Mayers the exias developed an equilibrium model incorporating basic linear relation of the trate assets and has shown that the the constant tain of the traditional model is unaltesed, but $E(R, w)$ The term γ_{n} will be nonzero and γ_{1} will not equal returns are viritually identicin to tel for the structure of asset model. Brennan [1970] bas derived the of the omitted assets of security returns when the eff the equibibrium structure dividends and ratus when the effects of a differential tax on cludes that the tapital gains are considered. He also conchanged, the basic linearity of the traditional model is unγ_{7} will hot equat a noero constant term must be included and Jiave tested for the equit $E\left\{R_{\text {n }}\right.$. Black and Scholes [1970], however foumd that the differevistence of dividend effects and have F that the differential tax on dividends and capital gains
does not affect the structure of security returns and hence cannot explain the results reported here.
There are undonbtedly other economic hypotheses that are consistent with the findings of the existence of a second factor and cousistent also with capital market equilibrium. Each hypothesis must be tested directly to determine whether it can account for the presence of the β factor. The BlackScholes investigation of dividend effects is an example of such atest.

Appendix: The Grouping Solution to the Merstrement Error Problem
Consider first the estimate $\mathrm{B}_{\text {, }}$, of the risk parameter in more detail. We will want to test (10) over some holding period, but we must first obtain the estimates of the risk parameter $\hat{\beta}$, from the time series equation given by (6). For simplicity, we shall assume that the \bar{e}_{f} are independently distributed and have constant yariance for all j and t. The least-squares estimate of β, in (6 , $\hat{\beta}_{j}$, is thus unbiased but subject to a sampling error $\tilde{\epsilon}_{j}$ as in (7), and the variance of the sampling error of the estimate $\beta_{;}$is

$$
\begin{equation*}
\operatorname{var}\left(\tilde{\beta}_{j}^{\tilde{\beta}} \mid \beta_{\bar{j}}\right)=\sigma^{\tilde{n}\left(\bar{\epsilon}_{\dot{\xi}}\right)}=\frac{\left.\sigma^{\sigma(\tilde{e}}\right)}{\phi}=\frac{\sigma^{\sigma}(\bar{e})}{\phi} \tag{A.1}
\end{equation*}
$$

since $\sigma^{(\vec{j}}(\vec{i})$ was assumed equal for all j, and where

$$
\begin{equation*}
\phi=\sum_{==1}^{T}\left(R_{M 2}-R_{, j}\right)^{\top} \tag{A,2}
\end{equation*}
$$

is the sample sum of squared deviations of the independent variable over the T observations used in the time series estimating equation. Hentice ushing (II) we see that

$$
\begin{equation*}
\operatorname{plim} \ddot{\gamma}=\frac{\gamma_{1}}{1+\sigma^{2}(\bar{e}\} \int \phi S^{2}\left(\beta_{j}\right)} \tag{A-3}
\end{equation*}
$$

Let us assume that we can order the firms on the basis of β_{y} or on the basis of some instrumental variable highly correlated with β_{j} but independent of ϵ_{f} Given the N ordered firms, we group them into M equal-size contiguous subgroups, repre sented by $k=1,2, \ldots, M$ and calculate the average return
for each gromp for each month t aceording to

$$
\begin{align*}
\tilde{R}_{R \mathrm{~F}} & =\frac{1}{L} \sum_{j=1}^{t} \tilde{R}_{N^{\prime} t} \quad K=1,2, \ldots, M \tag{A.4}\\
L & =\frac{N}{M} \quad \text { (assumed to be integer) } \tag{A.5}
\end{align*}
$$

where $\bar{R}_{\text {Kir }}$ is the return for month t for security $;$ in group K. We then estimate the systematic risk of the group by applying
least squares to
where

$$
\vec{R}_{n s}=\alpha_{A}+\beta_{k} \vec{R}_{w t}+\hat{e}_{A r} \quad\left\{\begin{array}{l}
K=1,2, \ldots, M \tag{4.6}\\
z=1,2, \ldots, T
\end{array}\right.
$$

and

$$
\begin{equation*}
\bar{e}_{x i}=\frac{1}{L} \sum_{j=1}^{t} \bar{e}_{5, k} \tag{A.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{2}\left(\hat{e}_{s i}\right)=\frac{\sigma^{8}(\hat{e})}{L} \tag{A.8}
\end{equation*}
$$

Equation (A. 8) holds, since, by assumption, the $\bar{e}_{k j t}$ are independently distributed with equal variance. The leastis

$$
\begin{equation*}
\operatorname{var}\left(\dot{\beta}_{h} \mid \beta_{h}\right)=\sigma^{n}\left(\tilde{\epsilon}_{N}\right)=\frac{\sigma^{2}(\tilde{e})}{\phi L} \tag{A.S}
\end{equation*}
$$

Now if we estimate the cross-sectional relation (10) using our Mobservations on $\vec{R}_{N}=\Sigma I_{1} R_{k} / T$ and $\hat{\beta}_{n}$ for some holding
period, we have
where

$$
\begin{align*}
& \bar{R}_{A}=\gamma_{0}+\gamma_{1} \hat{\beta}_{n}+\bar{e}_{n}^{o} \tag{A.10}
\end{align*}
$$

Now the large sample estimate of γ_{1} in (A.10)

$$
\begin{equation*}
\operatorname{plim} \dot{\gamma}_{\mathrm{r}}=\frac{\gamma_{1}}{1+\frac{p \operatorname{lin} \sigma^{2}\left(\tilde{E}_{k}\right)}{\operatorname{plim} S^{2}\left(\beta_{k}\right)}}=\frac{\gamma_{1}}{1+\frac{1}{\operatorname{plim} \frac{1}{L} \sigma^{2}(e)}}=\gamma_{1} \tag{A.12}
\end{equation*}
$$

true as long as we hold the number of groups constant. Thus these grouping procedures will result in unbiased estimates of the parameters of (10) for large samples. Note that $S^{4 \prime}\left(\beta_{k}\right)$, the cross-sectional sample variance of the true group risk coefficients, is constant with increasing $L 50$ long as securities are assigned to groups on the basis of the ranked β. Note also, bowever, that if we randomly assigmed securities to the A groups we would have plim $S^{2}\left(\beta_{5}\right)=p \lim S^{2}\left(\beta_{i}\right) L L$ and $(A .12)$ would thus be tdentical to (A.3). Therefore, random groupring would be of no help in eliminating the bias. As can be seen, the grouping procedures we have already deseribed in the time series tests accomplish these results. While we expect these procedures to substantially reduce the biasts they camot completely eliminate it in out case because the \hat{e}_{1} and therefore the $\bar{\epsilon}_{f}$ are notindependent across firms. However, as discussed in Section III, we expect the remaining bias to be trivially small.

Notes

1. Note that (Ac\} can be valid even though $R_{y t}$ is a weighted average of the R_{1} and therefore Rs contains e_{j} This may be clarified as follows: takine the weighted sum of (3) wing the weithts, X, or ench sectriky in the mar ket portolio we know by the defluithon of R_{x} that $\Sigma_{1} x_{2} R_{3}=R_{s,}, \Sigma, X_{0} a_{3}=$ and $\Sigma_{i} x_{i} w_{f}=0$. Thus by the last equality we krow $X_{j} \varepsilon_{r}=-\Sigma_{i}, x_{j} X_{j}=$

2. We could gevelop the model and tests under the assumption of infinite ariance sthbie distributions, but this would uanecessantly complieate ome of the inalysis, We shall take explicitaccount of these distributional
3. procall that some of the crucial feste af sighificance in Section IV.
 be tonnulsted with $r_{5:}$ omitted from ion and therefore ussumed constant strictle $a_{f}=r_{r}\left(-B_{j} h\right.$ or included as a rarlable tas we have done), which mates abtined with the be known on all But experimoris with ent
 virtualy fientical to those obtabed with the ststumpton of constant r_{r} problem thete, Seresion of r_{r} as a variable in 16], so wre shatly groore this phobiem nere. Ser also Roll [1069] and Willer and Scholes [1972] for the rifhless rate, Minler and Scholes coned throngh misspectfeation of the rishese rate. himet serious. 4. Unhissed measurem

Crass-sectional tests of the mors in $\dot{\beta}_{\text {, }}$ enuse severe dificalties with the eress-sectional tests of the nondel, and it is importint to note that the time biand arenturementerrors in \bar{A} (6) are free of this source of bias, Unas the the time series formulation wita is estionted simultaneously with no systematio bias. Mcasurement errors in $H_{\text {d }}$ may cause diffieulties in

The Copital Asset Pricing Model

ifnore this issugectional and time series forms of the tests, but we th measurement errors in R, an analysis of the problems astsocine whall
 5. Treasury Bit ratec wot (1969).

Dealer commercint and af die previnas montomon Brathers ac Huteter ary Statisties, Foralper rates were obinined for the following month Whisintiton, D, C 6 Tastinston, D.C.
te below we number of partiolio servations across the risk engh portfolios to provide a crayy. As we shall 7. Note that in order for the g_{k}. ary through time our the risk parameters of the aroug
 8. See also Ajile and Scholer the entire risk spectrums feave and enter the procedures that art Sholes [1DTV], who provide ant
suggested herel of many of thentary to but moch different from fosim
And their impliontions for the these prohdems with crossesecitom those - ntuitucly one can soe that the meretation of previous crosectional tests eliminated by these that the mearurement error problemical sonk. thermely small. Since the correl because the evrars in is virtually

 0.0101 and the ha coeficients given in Table 2 for stadard error of esti-

 for each subperas anderrionmed where the coef of tes true valuc. for each subperiod, and the rest where the coefficients were quite stable over time. We repurts were very similar because reestimated cednre seemed to result in a short these restults since this estimet en were frexeased sample wizes tend aghty larger spread of the psination pro-
 orton there is an in onite numbor ors.
porfolins. however, r_{z} is the return on the zero 8 pertfolios. Of all such
29. We say unceason to folin hong for the proof of this point minum varianch to preriod by armaty bigh because the cooftionstint.
3. standard orrors. ence of the traditional form of
ence of the $\frac{i}{}$ factor if ist form of the model is consitient with
 a model that explieitiy ine explanation of the storocture of clearly it would these circumstances die traditated such a factor. In of asset reburns as description of sectrify returnisonal farm would provide an wat under threc years or more, but it wonld byer bairly lengel prowite an nderiods af ate
 slon, and oberve the resicitual warinoth shoviturintervals.

 leave an jasestitation of the properties of these estimates and some additional tests of the two factor model fora future paper, If the assumpe tion of identical cri(a) orade here is inappropriatc, wo still obtant an
 which is of some interest, will be greater than tive true varince.
15. The serial correlation for the entire yeriod aypenrs significant. Indeed, the seral corretation in the last perint, 0,414 , seems very large wn even
 earlier periods seem to barder on signifcance bat show ind

16. As mentioned earher, the elvome of the number of groups is somewhat arbitrary and, for any given sample size, invoves a tradeoft beaveen ber bias and the degree of samplitge emor in the estmates of the paramerers in (10). In an umpublished stady of the properties of the grouping pro cedures by simulation teelmidses, jensen und menda hao baye found that, when o $\left(\xi_{j}\right)=S(B)$, the use of ten grapr whe $N=400$, yields estimater of the coefficient γ, fin 10 , which, on the athenge, are biased downward by less than 0.95 of their troe watue and have at standard error of estimate about 50 othigher that that oblaned with urbrouped data. The ungrouped sample estimates were, of course, 30% ol their true values on the average fas [mplied by (11) for these assumed +ariances].

References

Black, Fischer. "Capital Market Equibibrium whth No Riskless Borrowing or Lending" (forthcoming in the Jotmat of Brsimessus.

- And JFNSEN, MICHAEI, C. "Tneomplete Neasurement of Market Returas and It Implications for Tests of the hasei Prictios Model (wnpublished manuscript. November, 1820 .
, and Scholes Mrios "Dividend Tiolds and Common Stack Returns; A New Nethodology" "Cambridge: Sloan School of Manage
 September, 19701.
Beatment, Fonmit, and Sabesct, Thomas, "Regression with Paretian Distarbances: Some Sampling Rermbe; Econometrics, V, 3s May, 1071 501-10.
Blente, Mansinll "The Assessment of Portolio Perfonmance" \{Ph.D. diswertation, University ofChicago, 19683.
Douglas, George W. "Risk in the Fquity Mathete fin Empirical Appraisal

Fava, Evesene. F. Risk, Retum, and Equilibrium Some Clarifying Com nents." yournal of Fhnotec (March, 1968), 29-70.
 LXXX Comary-February 1971 .
-, and Baduak, Hanver, "Divldend Polies: Ah Empirted Amalysis," jourtal of the Anefictri Statistical Assorinfian, LXIII December.
 1963, 1132-61.
"The Adyustment of Stock Prices to New information." Internationat Eecnomic Rewfw.X.E'ebrary, 1969), 1-i6.
- butions," forirnal of hor "Some Propentios of Symmetrie Stable Distri, butoms, tortrat of the Americen Staristital Association, LXIII SepEKEs; Mhchati \subset "To
JExEN, MCHAEL C "The Performane of Autual Funds in the Period 1945-64, forstug of Fmmac, WXIII (Hay, 1968), $359-416$.
 - "Optimal Utilizationsmess, XLII (April, 1969), 16T-24.

Investanent Performance flarke Forecasts and The Evohation of

 Latyer, Joffs. "The taluation of Rage a sels and $134-90$.
hnestments sin Stock Portotios and Asels and the Selection of Risky
 - "Secunty Prices, Tith and Bunz, 19aral. 13-37.

En the Securities Jarket," this wolume 1972 Decislons and Equilihrium

Invertments, Cowles Foundation Selectons Efficient Dowersification at HFiley \& Sons, 1959). Fondation Honogyaph Na, 16 (New Fork: John Mayers Datio

Under Uncertainty, "this colampens 19 and. Capital hathet Equiburium

Riski A He-examination of Some Recent Findings of Auturn in Relation to Mossmi, ins. "Equilibrium in a Cocent Findings," this volume, 1972.
 PRES5. S. LAHES "H COMpound Eu

Tournhand. "Bias in Fiting the Surpe Dodel to Time Saries Data,"

Sharde, Willian F. "A fimplifed Model for Portfolio Nbalysis," Henage thent Science (fanuary, 1563t, 27天-93.
Captal Asset Priees: A Theory of Narket Equibibiom under Cond tons of Risk, 'Journal offianme, N1

 (Januar, 1006), 119-35
 , ${ }^{-1}$ How to Rate tistipt, 19611

to Error,' 's mads of Mothematical Seatistics Both Variables are Subjee

Infnite Varinnges ipapar preserned at the Berbotioy Systeras Hastag

Risk, Return, and Equilibrium: Empirical Tests

Eugene F. Fama and James D. MacBeth

University of Ckicago

Abstract

This paper tests the relationship between average return and risk for New York Stock Exchange common stocks. The theoretical basis of the tests is the "two-parameter" portfolio model and models of market equilibrium derived from the two-parameter portfolio model. We cannot reject the hypothesis of these models that the pricing of common stocks reflects the attempts of risk-averse investors to hold portfolios that are "efficient" in terms of expected value and dispersion of return. Moreover, the observed "fair game" properties of the coefficients and residuals of the risk-return regressions are consistent with an "efficient capital market"-that is, a market where prices of securities fully reflect available information.

I. Theoretical Background

In the two-parameter portfolio model of Tobin (1958), Markowitz (1959), and Fama (1965b), the capital market is assumed to be perfect in the sense that investors are price takers and there are neither transactions costs nor information costs. Distributions of one-period percentage returns on all assets and portfolios are assumed to be normal or to conform to some other two-parameter member of the symmetric stable class. Investors are assumed to be risk averse and to behave as if they choose among portfolios on the basis of maximum expected utility. A perfect capital market, investor risk aversion, and two-parameter return distributions imply the important "efficient set theorem": The optimal portfolio for any investor must be efficient in the sense that no other portfolio with the same or higher expected return has lower dispersion of return. ${ }^{\text {a }}$

[^31]In the portfolio model the investor looks at individual assets only in terms of their contributions to the expected value and dispersion, or risk, of his portfolio return. With normal return distributions the risk of portfolio p is measured by the standard deviation, $\sigma\left(\widetilde{R}_{p}\right)$, of its return, $\widetilde{R}_{p}{ }^{2}$ and the risk of an asset for an investor who holds p is the contribution of the asset to $\sigma\left(\widetilde{R}_{p}\right)$. If $x_{i p}$ is the proportion of portfolio funds invested in asset $i, \sigma_{i j}=\operatorname{cov}\left(\widetilde{R}_{i}, \widetilde{R}_{j}\right)$ is the covariance between the returns on assets i and j, and N is the number of assets, then

$$
\sigma\left(\widetilde{R}_{p}\right)=\sum_{i=1}^{N} x_{i p}\left[\frac{\sum_{j=1}^{N} x_{i p} \sigma_{i j}}{\sigma\left(\tilde{R}_{p}\right)}\right]=\sum_{i=1}^{N} x_{i p} \frac{\operatorname{cov}\left(\tilde{R}_{i}, \widetilde{R}_{p}\right)}{\sigma\left(\tilde{R}_{p}\right)}
$$

Thus, the contribution of asset i to $\sigma\left(\widetilde{R}_{p}\right)$-that is, the risk of asset i in the portfolio p-is proportional to

$$
\sum_{j=1}^{N} x_{j p} \sigma_{i j} / \sigma\left(\tilde{R}_{p}\right)=\operatorname{cov}\left(\tilde{R}_{i}, \tilde{R}_{p}\right) / \sigma\left(\tilde{R}_{p}\right)
$$

Note that since the weights $x_{j p}$ vary from portfolio to portfolio, the risk of an asset is different for different portfolios.

For an individual investor the relationship between the risk of an asset and its expected return is implied by the fact that the investor's optimal portfolio is efficient. Thus, if he chooses the portfolio m, the fact that m is efficient means that the weights $x_{i m}, i=1,2, \ldots, N$, maximize expected portfolio return

$$
E\left(\widetilde{R}_{m}\right)=\sum_{i=1}^{N} x_{i m} E\left(\widetilde{R}_{i}\right),
$$

subject to the constraints

[^32]$$
\sigma\left(\tilde{R}_{p}\right)=\sigma\left(\tilde{R}_{m}\right) \quad \text { and } \quad \sum_{i=1}^{N} x_{i m}=1
$$

Lagrangian methods can then be used to show that the weights $x_{j m}$ must be chosen in such a way that for any asset. in m

$$
\begin{equation*}
E\left(\tilde{R}_{i}\right)-E\left(\tilde{R}_{m}\right)=S_{m}\left[\frac{\sum_{j=1}^{N} x_{j m} \sigma_{i j}}{\sigma\left(\tilde{R}_{m}\right)}-\sigma\left(\tilde{R}_{m}\right)\right] \tag{1}
\end{equation*}
$$

where S_{m} is the rate of change of $E\left(\widetilde{R}_{p}\right)$ with respect to a change in $\sigma\left(\widetilde{R}_{p}\right)$ at the point on the efficient set corresponding to portfolio m. If there are nonnegativity constraints on the weights (that is, if short selling is prohibited), then (1) only holds for assets i such that $x_{i m}>0$.

Although equation (1) is just a condition on the weights $x_{j m}$ that is required for portfolio efficiency, it can be interpreted as the relationship between the risk of asset i in portfolio m and the expected return on the asset. The equation says that the difference between the expected return on the asset and the expected return on the portfolio is proportional to the difference between the risk of the asset and the risk of the portfolio. The proportionality factor is S_{m}, the slope of the efficient set at the point corresponding to the portfolio m. And the risk of the asset is its contribution to total portfolio risk, $\sigma\left(\widetilde{R}_{m}\right)$.

II. Testable Implications

Suppose now that we posit a market of risk-averse investors who make portfolio decisions period by period according to the two-parameter model. ${ }^{3}$ We are concerned with determining what this implies for observable properties of security and portfolio returns. We consider two categories of implications. First, there are conditions on expected returns that are implied by the fact that in a two-parameter world investors hold efficient portfolios. Second, there are conditions on the behavior of returns through time that are implied by the assumption of the two-parameter model that the capital market is perfect or frictionless in the sense that there are neither transactions costs nor information costs.

A. Expected Returns

The implications of the two-parameter model for expected returns derive from the efficiency condition or expected return-risk relationship of equation (1). First, it is convenient to rewrite (1) as

[^33]\[

$$
\begin{equation*}
E\left(\widetilde{R}_{i}\right)=\left[E\left(\widetilde{R}_{m}\right)-S_{m} \sigma\left(\widetilde{R}_{m}\right)\right]+S_{m} \sigma\left(\tilde{R}_{m}\right) \beta_{i}, \tag{2}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
\beta_{i} \equiv \frac{\operatorname{cov}\left(\tilde{R}_{i}, \tilde{R}_{m}\right)}{\sigma^{2}\left(\tilde{R}_{m}\right)}=\frac{\sum_{j=1}^{N} x_{j m} \sigma_{i j}}{\sigma^{2}\left(\tilde{R}_{m}\right)}=\frac{\operatorname{cov}\left(\tilde{R}_{i}, \tilde{R}_{m}\right) / \sigma\left(\tilde{R}_{m}\right)}{\sigma\left(\tilde{R}_{m}\right)} \tag{3}
\end{equation*}
$$

The parameter β_{i} can be interpreted as the risk of asset i in the portfolio m, measured relative to $\sigma\left(\widetilde{R}_{m}\right)$, the total risk of m. The intercept in (2),

$$
\begin{equation*}
E\left(\tilde{R}_{0}\right) \equiv E\left(\tilde{R}_{m}\right)-S_{m} \sigma\left(\tilde{R}_{m}\right) \tag{4}
\end{equation*}
$$

is the expected return on a security whose return is uncorrelated with \widetilde{R}_{m}-that is, a zero- β security. Since $\beta=0$ implies that a security contributes nothing to $\sigma\left(\widetilde{R}_{m}\right)$, it is appropriate to say that it is riskless in this portfolio. It is well to note from (3), however, that since $x_{i m} \sigma_{i i}=x_{i m}$ $\sigma^{2}\left(\widetilde{R}_{i}\right)$ is just one of the N terms in $\beta_{i}, \beta_{i}=0$ does not imply that security i has zero variance of return.

From (4), it follows that

$$
\begin{equation*}
S_{m}=\frac{E\left(\tilde{R}_{m}\right)-E\left(\tilde{R}_{0}\right)}{\sigma\left(\tilde{R}_{m}\right)} \tag{5}
\end{equation*}
$$

so that (2) can be rewritten

$$
\begin{equation*}
E\left(\tilde{R}_{i}\right)=E\left(\tilde{R}_{0}\right)+\left[E\left(\tilde{R}_{m}\right)-E\left(\tilde{R}_{0}\right)\right] \beta_{i} \tag{6}
\end{equation*}
$$

In words, the expected return on security i is $E\left(\tilde{R}_{0}\right)$, the expected return on a security that is riskless in the portfolio m, plus a risk premium that is β_{i} times the difference between $E\left(\widetilde{R}_{m}\right)$ and $E\left(\widetilde{R}_{0}\right)$.

Equation (6) has three testable implications: (C1) The relationship between the expected return on a security and its risk in any efficient portfolio m is linear. (C2) β_{i} is a complete measure of the risk of security i in the efficient portfolio m; no other measure of the risk of i appears in (6). (C3) In a market of risk-averse investors, higher risk should be associated with higher expected return; that is, $E\left(\widetilde{R}_{m}\right)-E\left(\widetilde{R}_{n}\right)>0$.

The importance of condition C3 is obvious. The importance of C1 and C 2 should become clear as the discussion proceeds. At this point suffice it to say that if Cl and C 2 do not hold, market returns do not refiect the attempts of investors to hold efficient portiolios: Some assets are systematically underpriced or overpriced relative to what is implied by the expected return-risk or efficiency equation (6).

B. Market Equilibrium and the Efficiency of the Market Portfolio

To test conditions Cl-C3 we must identify some efficient portfolio m. This in turn requires specification of the characteristic of market equi-
librium when investors make portfolio decisions according to the twoparameter model.

Assume again that the capital market is perfect. In addition, suppose that from the information available without cost all investors derive the same and correct assessment of the distribution of the future value of any asset or portfolio-an assumption usually called "homogeneous expectations." Finally, assume that short selling of all assets is allowed. Then Black (1972) has sbown that in a market equilibrium, the so-called market portfolio, defined by the weights

$$
x_{i m} \equiv \frac{\text { total market value of all units of asset } i}{\text { total market value of all assets }}
$$

is always efficient.
Since it contains all assets in positive amounts, the market portfolio is a convenient reference point for testing the expected return-risk conditions $\mathrm{C} 1-\mathrm{C} 3$ of the two-parameter model. And the homogeneous-expectations assumption implies a correspondence between ex ante assessments of return distributions and distributions of ex post returns that is also required for meaningful tests of these three hypotheses.

C. A Stochastic Model for Returns

Equation (6) is in terms of expected returns. But its implications must be tested with data on period-by-period security and portfolio returns. We wish to choose a model of period-by-period returns that allows us to use observed average returns to test the expected-return conditions $\mathrm{C} 1-\mathrm{C} 3$, but one that is nevertheless as general as possible. We suggest the following stochastic generalization of (6):

$$
\begin{equation*}
\tilde{R}_{t t}=\tilde{\gamma}_{0 t}+\tilde{\gamma}_{1 t} \beta_{i}+\tilde{\gamma}_{2 t} \beta_{i}^{2}+\tilde{\gamma}_{3 t} s_{i}+\tilde{\eta}_{t t} \tag{7}
\end{equation*}
$$

The subscript t refers to period t, so that $\widetilde{R}_{i t}$ is the one-period percentage return on security i from $t-1$ to t. Equation (7) allows $\tilde{\gamma}_{0 t}$ and $\widetilde{\gamma}_{1 t}$ to vary stochastically from period to period. The hypothesis of condition C3 is that the expected value of the risk premium $\tilde{\gamma}_{1} t$, which is the slope $\left[E\left(\widetilde{R}_{m t}\right)-E\left(\widetilde{R}_{0 t}\right)\right]$ in (6), is positive-that is, $E\left(\tilde{\gamma}_{i t}\right)=E\left(\widetilde{R}_{m t}\right)$ $E\left(\widetilde{R}_{0 t}\right)>0$.

The variable $\beta_{1}{ }^{2}$ is included in (7) to test linearity. The hypothesis of condition C 1 is $E\left(\tilde{\gamma}_{2 t}\right)=0$, although $\tilde{\gamma}_{2 t}$ is also allowed to vary stochastically from period to period. Similar statements apply to the term involving s_{i} in (7), which is meant to be some measure of the risk of security i that is not deterministically related to β_{1}. The hypothesis of condition C2 is $E\left(\widetilde{\gamma}_{3 t}\right)=0$, but $\tilde{\gamma}_{s t}$ can vary stochastically through time.

The disturbance $\tilde{\eta}_{i t}$ is assumed to have zero mean and to be independent of all other variables in (7). If all portfolio return distributions are to be
normal (or symmetric stable), then the variables $\tilde{\eta}_{i t}, \tilde{\gamma}_{0 t}, \tilde{\gamma}_{1 t}, \tilde{\gamma}_{2 t}$ and $\tilde{\gamma}_{3 t}$ must have a multivariate normal (or symmetric stable) distribution.

D. Capital Market Effciency: The Behavior of Returns thraugh Time

$\mathrm{Cl}-\mathrm{C} 3$ are conditions on expected returns and risk that are implied by the two-parameter model. But the model, and especially the underlying assumption of a perfect market, implies a capital market that is efficient in the sense that prices at every point in time fully reflect available information. This use of the word efficient is, of course, not to be confused with portfolio efficiency. The terminology, if a bit unfortunate, is at least standard.

Market efficiency in combination with condition Cl requires that scrutiny of the time series of the stochastic nonlinearity coefficient $\tilde{\gamma}_{2 t}$ does not lead to nonzero estimates of expected future values of $\tilde{\gamma}_{2 t}$. Formally, $\tilde{\gamma}_{2 t}$ must be a fair game. In practical terms, although nonlinearities are observed ex post, because $\tilde{\gamma}_{2 t}$ is a fair game, it is always appropriate for the investor to act ex ante under the presumption that the two-parameter model, as summarized by (6), is valid. That is, in his portfolio decisions he always assumes that there is a linear relationship between the risk of a security and its expected return. Likewise, market efficiency in the twoparameter model requires that the non- β risk coefficient $\tilde{\gamma}_{3 t}$ and the time series of return disturbances $\tilde{\eta}_{i t}$ are fair games. And the fair-game hypothesis also applies to the time series of $\tilde{\gamma}_{1 t}-\left[E\left(\widetilde{R}_{m t}\right)-E\left(\widetilde{R}_{n t}\right)\right]$, the difference between the risk premium for period t and its expected value.

In the terminology of Fama (1970b), these are "weak-form" propositions about capital market efficiency for a market where expected returns are generated by the two-parameter model. The propositions are weak since they are only concerned with whether prices fully reflect any information in the time series of past returns. "Strong-form" tests would be concerned with the speed-of-adjustment of prices to all available information.

E. Market Equilibrium with Riskless Borrowing and Lending

We have as yet presented no hypothesis about $\tilde{\gamma}_{0 t}$ in (7). In the general two-parameter model, given $E\left(\tilde{\gamma}_{2 t}\right)=E\left(\tilde{\gamma}_{3 t}\right)=E\left(\tilde{\eta}_{i t}\right)=0$, then, from (6), $E\left(\widetilde{\gamma}_{0 t}\right)$ is just $E\left(\widetilde{R}_{0 t}\right)$, the expected return on any zero- β security. And market efficiency requires that $\widetilde{\gamma}_{0 t}-E\left(\widetilde{R}_{0 t}\right)$ be a fair game.

But if we add to the model as presented thus far the assumption that there is unrestricted riskless borrowing and lending at the known rate $R_{f t}$, then one has the market setting of the original two-parameter "capital asset pricing model" of Sharpe (1964) and Lintner (1965). In this world, since $\beta_{f}=0, E\left(\tilde{\gamma}_{0 t}\right)=R_{f t}$. And market efficiency requires that $\tilde{\gamma}_{0 t}-R_{f t}$ be a fair game.

It is well to emphasize that to refute the proposition that $E\left(\tilde{\gamma}_{0 t}\right)=R_{f t}$ is only to refute a specific two-parameter model of market equilibrium. Our view is that tests of conditions C1-C3 are more fundamental. We regard $\mathrm{C} 1-\mathrm{C} 3$ as the general expected return implications of the twoparameter model in the sense that they are the implications of the fact - that in the two-parameter portfolio model investors hold efficient portfolios, and they are consistent with any two-parameter model of market equilibrium in which the market portfolio is efficient.

F. The Hypotheses

To summarize, given the stochastic generalization of (2) and (6) that is provided by (7), the testable implications of the two-parameter model for expected returns are:
$C 1$ (linearity)- $E\left(\tilde{\gamma}_{2 t}\right)=0$.
C 2 (no systematic effects of non- β risk) $-E\left(\tilde{\gamma}_{3 t}\right)=0$.
C3 (positive expected return-risk tradeoff)-E($\left.\tilde{\gamma}_{1 t}\right)=E\left(\widetilde{R}_{n i t}\right)-$ $E\left(\tilde{R}_{0 t}\right)>0$.

Sharpe-Lintner (S-L) Hypothesis $E\left(\tilde{\gamma}_{0 t}\right)=R_{f t}$.
Finally, capital market efficiency in a two-parameter world requires
$M E$ (market efficiency)-the stochastic coefficients $\tilde{\gamma}_{2 t}, \tilde{\gamma}_{3 t}, \tilde{\gamma}_{1 t}-$ $\left[E\left(\widetilde{R}_{m t}\right)-E\left(\tilde{R}_{0 t}\right)\right], \tilde{\gamma}_{0 t}-E\left(\widetilde{R}_{0 t}\right)$, and the disturbances $\tilde{\eta}_{i t}$ are fair games. ${ }^{4}$

III. Previous Work ${ }^{5}$

The earliest tests of the two-parameter model were done by Douglas (1969), whose results seem to refute condition C2. In annual and quarterly return data, there seem to be measures of risk, in addition to β, that contribute systematically to observed average returns. These results, if valid, are inconsistent with the hypothesis that investors attempt to hold efficient portfolios. Assuming that the market portfolio is efficient, premiums are paid for risks that do not contribute to the risk of an efficient portfolio.

Miller and Scholes (1972) take issue both with Douglas's statistical techniques and with his use of annual and quarterly data. Using different methods and simulations, they show that Douglas's negative results could be expected even if condition C 2 holds. Condition C 2 is tested below with extensive monthly data, and this avoids almost all of the problems discussed by Miller and Scholes.

4 If $\tilde{\gamma}_{2 t}$ and $\tilde{\gamma}_{3 t}$ are fair games, then $E\left(\tilde{\gamma}_{2 t}\right)=E\left(\tilde{\gamma}_{3 t}\right)=0$. Thus, C 1 and C 2 are implied by ME. Keeping the expected return conditions separate, however, better emphasizes the economic basis of the various hypotheses.
${ }^{5}$ A comprehensive survey of empirical and theoretical work on the two-parameter model is in Jensen (1972).

Much of the available empirical work on the two-parameter model is concerned with testing the S-L hypothesis that $E\left(\tilde{\gamma}_{0 i}\right)=R_{f t}$. The tests of Friend and Blume (1970) and those of Black, Jensen, and Scholes (1972) indicate that, at least in the period since 1940 , on average $\tilde{\gamma}_{0 t}$ is systematically greater than $R_{f i}$. The results below support this conclusion.
In the empirical literature to date, the importance of the linearity condition C1 has been largely overlooked. Assuming that the market portfolio m is efficient, if $E\left(\tilde{\gamma}_{2 t}\right)$ in (7) is positive, the prices of high- β securities are on average too low--their expected returns are too high-relative to those of low- β securities, while the reverse holds if $E\left(\mathcal{\gamma}_{2 t}\right)$ is negative. In short, if the process of price formation in the capital market reflects the attempts of investors to hold efficient portfolios, then the linear relationship of (6) between expected return and risk must hold.

Finally, the previous empirical work on the two-parameter model has not been concerned with tests of market efficiency.

IV. Methodology

The data for this study are monthly percentage returns (including dividends and capital gains, with the appropriate adjustments for capital changes such as splits and stock dividends) for all common stocks traded on the New York Stock Exchange during the period January 1926 through June 1968. The data are from the Center for Research in Security Prices of the University of Chicago.

A. General Approach

Testing the two-parameter model immediately presents an unavoidable "errors-in-the-variables" problem: The efficiency condition or expected return-risk equation (6) is in terms of true values of the relative risk measure β_{i}, but in empirical tests estimates, $\hat{\beta}_{i}$, must be used. In this paper

$$
\hat{\beta}_{i} \equiv \frac{\widehat{\operatorname{cov}}\left(\tilde{R}_{i}, \tilde{R}_{m}\right)}{\hat{\sigma}^{2}\left(\tilde{R}_{m}\right)}
$$

where $\widehat{\operatorname{cov}}\left(\tilde{R}_{i}, \tilde{R}_{m}\right)$ and $\hat{0}^{2}\left(\tilde{R}_{m}\right)$ are estimates of $\operatorname{cov}\left(\tilde{R}_{i}, \tilde{R}_{m}\right)$ and $\sigma^{2}\left(\widetilde{R}_{m}\right)$ obtained from monthly returns, and where the proxy chosen for $\widehat{R}_{m t}$ is "Fisher's Arithmetic Index," an equally weighted average of the returns on all stocks listed on the New York Stock Exchange in month t. The properties of this index are analyzed in Fisher (1966).

Blume (1970) shows that for any portfolio p, defined by the weights $x_{i p}, i=1,2, \ldots, N$,

$$
\hat{\beta}_{p} \equiv \frac{\widehat{\operatorname{cov}}\left(\tilde{R}_{p}, \tilde{R}_{m}\right)}{\hat{\sigma}^{2}\left(\tilde{R}_{m}\right)}=\sum_{i=1}^{N} x_{i p} \frac{\widehat{\operatorname{cov}}\left(\tilde{R}_{i}, \tilde{R}_{m}\right)}{\hat{\sigma}^{2}\left(\tilde{R}_{m}\right)}=\sum_{i=1}^{N} x_{i p} \hat{\beta}_{i}
$$

If the errors in the $\hat{\beta}_{i}$ are substantially less than perfectly positively correlated, the $\hat{\beta}$'s of portfolios can be much more precise estimates of true β 's than the $\hat{\beta}$'s for individual securities.

To reduce the loss of information in the risk-return tests caused by using portfolios rather than individual securities, a wide range of values of portfolio $\hat{\beta}_{p}$'s is obtained by forming portfolios on the basis of ranked values of $\hat{\beta}_{l}$ for individual securities. But such a procedure, naïvely executed could result in a serious regression phenomenon. In a cross section of $\hat{\beta}_{i}$, high observed $\hat{\beta}_{i}$ tend to be above the corresponding true β_{i} and low observed $\hat{\beta}_{i}$ tend to be below the true β_{i}. Forming portfolios on the basis of ranked $\hat{\mathrm{B}}_{i}$ thus causes bunching of positive and negative sampling errors within portfolios. The result is that a large portfolio $\hat{\beta}_{p}$ would tend to overstate the true β_{p}, while a low $\hat{\beta}_{p}$ would tend to be an underestimate.

The regression phenomenon can be avoided to a large extent by forming portfolios from ranked $\hat{\beta}_{6}$ computed from data for one time period but then using a subsequent period to obtain the $\hat{\beta}_{\mathrm{p}}$ for these portfolios that are used to test the two-parameter model. With fresh data, within a portfolio errors in the individual security \hat{p}_{i} are to a large extent random across securities, so that in a portfolio $\widehat{\beta}_{p}$ the effects of the regression phenomenon are, it is hoped, minimized. ${ }^{6}$

B. Details

The specifics of the approach are as follows. Let N be the total number of securities to be allocated to portfolios and let $\operatorname{int}(N / 20)$ be the largest integer equal to or less than $N / 20$. Using the first 4 years (1926-29) of monthly return data, 20 portfolios are formed on the basis of ranked $\hat{\beta}_{i}$ for individual securities. The middle 18 portfolios each has int $(N / 20)$ securities. If N is even, the first and last portfolios each has int $(N / 20)+$ $\frac{1}{2}[N-20 \operatorname{int}(N / 20)]$ securities. The last (highest $\hat{\beta}$) portfolio gets an additional security if N is odd.

The following 5 years (1930-34) of data are then used to recompute the $\hat{\beta}_{i}$, and these are averaged across securities within portfolios to obtain 20 initial portfolio $\hat{p}_{p t}$ for the risk-return tests. The subscript t is added to indicate that each month t of the following four years (1935-38) these $\hat{\beta}_{p t}$ are recomputed as simple averages of individual security $\hat{\rho}_{6}$, thus adjusting the portfolio $\hat{\beta}_{p t}$ month by month to allow for delisting of securities. The component $\hat{\beta}_{i}$ for securities are themselves updated yearly-that

[^34]is, they are recomputed from monthly returns for 1930 through 1935, 1936, or 1937.

As a measure of the non $-\beta$ risk of security i we use $s\left(\hat{\epsilon}_{i}\right)$, the standard deviation of the least-squares residuals $\hat{\epsilon}_{t t}$ from the so-called market model

$$
\begin{equation*}
\tilde{R}_{i t}=a_{i}+\beta^{i} \tilde{R}_{m t}+\tilde{\epsilon}_{i t} \tag{8}
\end{equation*}
$$

The standard deviation $s\left(\hat{\epsilon}_{i}\right)$ is a measure of non β risk in the following sense. One view of risk, antithetic to that of portfolio theory, says that the risk of a security is measured by the total dispersion of its return distribution. Given a market dominated by risk averters, this model would predict that a security's expected return is related to its total return dispersion rather than just to the contribution of the security to the dispersion in the return on an efficient portfolio. ${ }^{7}$ If $B_{i} \equiv \operatorname{cov}\left(\widetilde{R}_{i}, \widetilde{R}_{m}\right) / \sigma^{2}\left(\widetilde{R}_{m}\right)$, then in (8) $\operatorname{cov}\left(\tilde{\epsilon}_{i}, \widetilde{R}_{m}\right)=0$, and

$$
\begin{equation*}
\sigma^{2}\left(\tilde{R}_{i}\right)=\beta_{i}^{2} \sigma^{2}\left(\widetilde{R}_{m}\right)+\sigma^{2}\left(\tilde{\epsilon}_{i}\right)+2 \beta_{i} \operatorname{cov}\left(\tilde{R}_{m,} \tilde{\tilde{\epsilon}}_{i}\right) \tag{9}
\end{equation*}
$$

Thus, from (9), one can say that $s\left(\mathcal{\epsilon}_{i}\right)$ is an estimate of that part of the dispersion of the distribution of the return on security i that is not directly related to β_{6}.

The month-by-month returns on the 20 portfolios, with equal weighting of individual securities each month, are also computed for the 4 -year period 1935-38. For each month t of this period, the following crosssectional regression-the empirical analog of equation (7)-is run:

$$
\begin{gather*}
R_{p t}=\hat{\gamma}_{0 t}+\hat{\gamma}_{1 t} \hat{\beta}_{p, t-1}+\hat{\gamma}_{2 t} \hat{\beta}_{p, t-1}^{2}+\hat{\gamma}_{3 t} \bar{s}_{p, t-1}\left(\hat{\epsilon}_{i}\right)+\hat{\eta}_{p t}, \tag{10}\\
p=1,2, \ldots, 20 .
\end{gather*}
$$

The independent variable $\hat{\beta}_{p, t-1}$ is the average of the $\hat{\beta}_{i}$ for securities in portfolio p discussed above; $\hat{\beta}_{p, t-1}^{2}$ is the average of the squared values of these $\hat{\beta}_{i}$ (and is thus somewhat mislabeled); and $\bar{s}_{p, t-1}\left(\hat{\varepsilon}_{i}\right)$ is likewise the average of $s\left(\hat{c}_{1}\right)$ for securities in portfolio p. The $s\left(\hat{c}_{i}\right)$ are computed from data for the same period as the component $\hat{\beta}_{1}$ of $\hat{\beta}_{p, t-1}$, and like these $\hat{\beta}_{i}$, they are updated annually.

The regression equation (10) is (7) averaged across the securities in a portfolio, with estimates $\hat{\beta}_{p, t-1}, \hat{\beta}_{p, t-1}^{2}$, and $\bar{s}_{p, t-1}\left(\hat{\varepsilon}_{i}\right)$ used as explanatory variables, and with least-squares estimates of the stochastic coefficients $\hat{\gamma}_{0 t}, \hat{\gamma}_{1 t}, \hat{\gamma}_{2 t}$, and $\hat{\gamma}_{3 t}$. The results from (10)-the time series of month-bymonth values of the regression coefficients $\hat{\gamma}_{0 t}, \hat{\gamma}_{1 t}, \hat{\gamma}_{2 t}$, and $\hat{\gamma}_{3 t}$ for the 4-year period 1935-38-are the inputs for our tests of the two-parameter model for this period. To get results for other periods, the steps described

[^35]above are repeated. That is, 7 years of data are used to form portfolios; the next 5 years are used to compute initial values of the independent variables in (10); and then the risk-return regressions of (10) are fit month by month for the following 4 -year period.

The nine different portfolio formation periods (all except the first 7 years in length), initial 5 -year estimation periods, and testing periods (all but the last 4 years in length) are shown in table 1 . The choice of 4 -year testing periods is a balance of computation costs against the desire to reform portfolios frequently. The choice of 7 -year portfolio formation periods and $5-8$-year periods for estimating the independent variables $\hat{\beta}_{p, t-1}$ and $\bar{s}_{p, t-1}\left(\hat{\epsilon}_{i}\right)$ in the risk-return regressions reflects a desire to balance the statistical power obtained with a large sample from a stationary process against potential problems caused by any nonconstancy of the β_{i}. The choices here are in line with the results of Gonedes (1973). His results also led us to require that to be included in a portfolio a security available in the first month of a testing period must also have data for all 5 years of the preceding estimation period and for at least 4 years of the portfolio formation period. The total number of securities available in the first month of each testing period and the number of securities meeting the data requirement are shown in table 1.

C. Some Observations on the Approach

Table 2 shows the values of the 20 portfolios $\hat{\beta}_{p, t-1}$ and their standard errors $s\left(\hat{\beta}_{p, t-1}\right)$ for four of the nine 5 -year estimation periods. Also shown are: $r\left(R_{p}, R_{m}\right)^{2}$, the coefficient of determination between $R_{p t}$ and $R_{m t}$; $s\left(R_{p}\right)$, the sample standard deviation of R_{p}; and $s\left(\hat{\epsilon}_{p}\right)$, the standard deviation of the portfolio residuals from the market model of (8), not to be confused with $\bar{s}_{p, t-1}\left(\hat{f}_{i}\right)$, the average for individual securities, which is also shown. The $\hat{\beta}_{p, t-1}$ and $\bar{s}_{p, t-1}\left(\hat{\epsilon}_{i}\right)$ are the independent variables in the risk return regressions of (10) for the first month of the 4 -year testing periods following the four estimation periods shown.

Under the assumptions that for a given security the disturbances $\tilde{\varepsilon}_{j t}$ in (8) are serially independent, independent of \widetilde{R}_{m}, and identically distributed through time, the standard error of $\hat{\rho}_{i}$ is

$$
\sigma\left(\hat{\beta}_{i}\right)=\frac{\sigma\left(\tilde{\varepsilon}_{i}\right)}{\sqrt{n \sigma\left(\widetilde{R}_{m}\right)},}
$$

where n is the number of months used to compute $\hat{\boldsymbol{\rho}}_{i}$. Likewise,

$$
\sigma\left(\tilde{\beta}_{p, t-1}\right)=\frac{\sigma\left(\tilde{\epsilon}_{p}\right)}{\sqrt{n} \sigma\left(\widetilde{R}_{n}\right)}
$$

Thus, the fact that in table $2, s\left(\hat{\epsilon}_{p}\right)$ is generally on the order of one-third to one-seventh $\bar{s}_{p, t-1}\left(\hat{c}_{i}\right)$ implies that $s\left(\hat{\beta}_{p, t-1}\right)$ is one-third to one-seventh

TABLE 1
Portfolio Formation, Estimation, and Testing Periods

	Periods				
	1	2	3	4	5
Portfolio formation period	1926-29	1927-33	1931-37	1935-41	1939-45
Initial estimation period	1930-34	1934-38	1938-42	1942-46	1946-50
Testing period	1935-38	1939-42	1943-46	1947-50	1951-54
No. of securities available	710	779	804	908	1,011
No. of securities meeting data requirement	435	576	607	704	751

$s\left(\hat{\beta}_{i}\right)$. Estimates of β for portfolios are indeed more precise than those for individual securities.

Nevertheless, it is interesting to note that if the disturbances $\tilde{\epsilon}_{j t}$ in (8) were independent from security to security, the relative increase in the precision of the $\hat{\beta}$ obtained by using portfolios rather than individual securities would be about the same for all portfolios. We argue in the Appendix, however, that the results from (10) imply that the $\tilde{\epsilon}_{t i}$ in (8) are interdependent, and the interdependence is strongest among high $-\beta$ securities and among low- β securities. This is evident in table 2: The ratios $s\left(\hat{\epsilon}_{p}\right) / \bar{s}_{p, t-1}\left(\hat{\gamma}_{i}\right)$ are always highest at the extremes of the $\hat{\beta}_{p, t-1}$ range and lowest for $\hat{\beta}_{p, t-1}$ close to 1.0 . But it is important to emphasize that since these ratios are generally less than .33 , interdependence among the $\tilde{\epsilon}_{i t}$ of different securities does not destroy the value of using portfolios to reduce the dispersion of the errors in estimated β 's.

Finally, all the tests of the two-parameter model are predictive in the sense that the explanatory variables $\hat{\beta}_{p, t-1}$ and $\bar{s}_{p, t-1}\left(\hat{\hat{t}}_{t}\right)$ in (10) are computed from data for a period prior to the month of the returns, the $R_{p t}$, on which the regression is run. Although we are interested in testing the twoparameter model as a positive theory-that is, examining the extent to which it is helpful in describing actual return data--the model was initially developed by Markowitz (1959) as a normative theory-that is, as a model to help people make better decisions. As a normative theory the model only has content if there is some relationship between future returns and estimates of risk that can be made on the basis of current information.

Now that the predictive nature of the tests has been emphasized, to simplify the notation, the explanatory variables in (10) are henceforth referred to as $\hat{\beta}_{p}, \hat{\beta}_{p}{ }^{2}$, and $\bar{s}_{p}\left(\hat{\epsilon}_{i}\right)$.

V. Results

The major tests of the implications of the two-parameter model are in table 3. Results are presented for 10 periods: the overall period 1935-

TABLE 1 (Continued)

	Periods			
	6	7	8	9
Portfolio formation period	1943-49	1947-53	1951-57	1955-61
Initial estimation period ..	1950-54	1954-58	1958-62	1962-66
Testing period	1955-58	1959-62	1963-66	1967-68
No. of securities available	1,053	1,065	1,162	1,261
No. of securities meeting data requirement	802	856	858	845

6/68; three long subperiods, 1935-45, 1946-55, and 1956-6/68; and six subperiods which, except for the first and last, cover 5 years each. This choice of subperiods reflects the desire to keep separate the pre- and postWorld War II periods. Results are presented for four different versions of the risk-return regression equation (10): Panel \mathcal{D} is based on (10) itself, but in panels A-C, one or more of the variables in (10) is suppressed. For each period and model, the table shows: $\bar{\gamma}_{j}$, the average of the month-by-month regression coefficient estimates, $\hat{\gamma}_{j t} ; s\left(\hat{\gamma}_{j}\right)$, the standard deviation of the monthly estimates; and \vec{r}^{2} and $s\left(r^{2}\right)$, the mean and standard deviation of the month-by-month coefficients of determination, $r_{t}{ }^{2}$, which are adjusted for degrees of freedom. The table also shows the first-order serial correlations of the various monthly $\hat{\gamma}_{j t}$ computed either about the sample mean of $\hat{\gamma}_{j t}$ [in which case the serial correlations are labeled $\rho_{M}\left(\hat{\gamma}_{i}\right)$] or about an assumed mean of zero [in which case they are labeled $\left.\rho_{0}\left(\hat{\gamma}_{j}\right)\right]$. Finally, t-statistics for testing the hypothesis that $\overline{\hat{\gamma}}_{j}=0$ are presented. These t-statistics are

$$
t\left(\overline{\hat{\gamma}}_{j}\right)=\frac{\overline{\hat{\gamma}}_{j}}{s\left(\hat{\gamma}_{j}\right) / \sqrt{n}},
$$

where n is the number of months in the period, which is also the number of estimates $\hat{\gamma}_{j t}$ used to compute $\bar{\gamma}_{j}$ and $s\left(\hat{\gamma}_{j}\right)$.

In interpreting these t-statistics one should keep in mind the evidence of Fama (1965a) and Blume (1970) which suggests that distributions of common stock returns are "thick-tailed" relative to the normal distribution and probably conform better to nonnormal symmetric stable distributions than to the normal. From Fama and Babiak (1968), this evidence means that when one interprets large t-statistics under the assumption that the underlying variables are normal, the probability or significance levels obtained are likely to be overestimates. But it is important to note that, with the exception of condition C3 (positive expected return-risk tradeoff), upward-biased probability levels lead to biases toward rejection of the hypotheses of the two-parameter model. Thus, if these hypotheses cannot

TABLE 2
Sample Statistics ror Four Selected Estimation Periods

Statistic	1	2	3	4	5	6	7	8	9	10
	Portfolios for Estimation Period 1934-38									
$\hat{\beta}_{p, t-1}$. 322	. 508	. 651	. 674	. 695	. 792	. 921	. 942	. 970	1.005
$s\left(\hat{\beta}_{p, t-1}\right)$. 027	. 027	. 025	. 023	. 028	. 026	. 032	. 029	. 034	. 027
$r\left(R_{p} R_{m}\right)^{2}$. 709	. 861	. 921	. 936	. 912	. 941	. 932	. 946	. 933	. 958
$s\left(R_{p}\right)$. 040	. 058	. 072	. 074	. 077	. 087	. 101	. 103	. 106	. 109
$s\left(\varphi_{p}\right)$. 022	. 022	. 020	. 019	. 023	. 021	. 026	. 024	. 028	. 022
$\bar{s}_{p, t-1}\left(\hat{c}_{i}\right)$. 085	. 075	. 083	. 078	. 090	. 095	. 109	. 106	. 111	. 097
$s\left(\hat{\epsilon}_{p}\right) / s_{p, t-1}\left(\hat{\varepsilon}_{i}\right)$.	. 259	. 293	. 241	. 244	. 256	. 221	. 238	. 226	. 252	. 227
	Portfolios for Estimation Period 1942-46									
$\hat{\beta}_{p, t-1} \ldots \ldots \ldots$.	. 467	. 537	. 593	. 628	. 707	. 721	. 770	792	. 805	. 894
$s\left(p_{p, t-1}\right)$. 045	. 041	. 044	. 037	. 027	. 032	. 035	. 035	. 028	. 040
$r\left(R_{p} R_{m}\right)^{2}$. 645	. 745	. 753	. 829	. 919	. 898	. 889	. 898	. 934	. 896
$s\left(R_{p}\right)$. 035	. 037	. 041	. 041	. 044	. 046	. 049	. 050	. 050	. 057
$s\left(\hat{E}_{p}\right) \ldots \ldots \ldots \ldots$. 021	. 019	. 020	. 017	. 013	. 015	. 016	. 016	. 013	. 018
$\bar{s}_{p, t-1}\left(\hat{C}_{i}\right)$. 055	. 055	. 063	. 058	. 058	. 063	. 064	. 064	062	. 069
$s\left(\hat{c}_{p}\right) / \bar{s}_{p, t-1}\left(\hat{x}_{i}\right)$. 382	. 345	. 317	. 293	. 224	. 238	. 250	250	. 210	. 261
	Portfolios for Estimation Period 1950-54									
$\hat{\beta}_{p, t-1}$. 418	. 590	. 694	. 751	. 777	. 784	. 929	. 950	. 996	1.014
$s\left(\hat{p}_{p, t-1}\right)$. 042	. 047	. 045	. 037	. 038	. 035	. 050	. 038	. 035	. 029
$r\left(R_{p}, R_{m}\right)^{2}$. 629	. 723	. 798	. 872	. 878	. 895	. 856	. 913	. 933	. 954
$s\left(R_{p}\right)$. 019	. 025	. 028	. 029	. 030	. 030	. 036	. 036	. 037	. 038
$s\left(\varepsilon_{p}\right) \ldots \ldots \ldots \ldots$. 012	. 013	. 013	. 010	. 010	. 010	. 014	011	010	. 008
$\bar{s}_{p, t-1}\left(\varepsilon_{i}\right)$. 040	. 044	. 046	. 048	. 051	. 051	. 052	. 053	. 054	. 057
$s\left(\hat{c}_{p}\right) / s_{p, t-1}\left(\hat{c}_{i}\right)$. 300	. 295	. 283	. 208	. 196	. 196	. 269	208	. 185	. 140
	Portiolios for Estimation Period 1958-62									
$\hat{\beta}_{p, t-1} \ldots \ldots \ldots \ldots$. 626	. 635	. 719	. 801	. 817	. 860	. 920	950	975	. 995
$s\left(\hat{\beta}_{p, t-1}\right)$. 043	. 048	. 039	. 046	. 047	. 033	. 037	038	. 032	. 037
$\boldsymbol{r}\left(R_{y}, R_{m}\right)^{2}$. 783	. 745	. 851	. 835	. 838	. 920	. 913	. 915	. 939	. 925
$s\left(R_{p}\right)$. 030	. 031	. 033	. 037	. 038	. 038	. 041	042	. 043	. 044
$s\left(\hat{\beta}_{p}\right)$.	. 014	. 016	. 013	. 015	. 015	011	. 012	. 012	. 011	. 012
$\bar{s}_{p, t-1}\left(\hat{E}_{i}\right)$. 049	. 052	. 056	. 059	. 064	. 061	. 070	069	. 068	. 064
$s\left(\hat{c}_{p}\right) / \bar{s}_{p, t-1}\left(\hat{c}_{i}\right)$. 286	. 308	. 232	. 254	. 234	. 180	. 171	. 174	162	. 188

be rejected when t-statistics are interpreted under the assumption of normality, the hypotheses are on even firmer ground when one takes into account the thick tails of empirical return distributions.

Further justification for using t-statistics to test hypotheses on monthly common stock returns is in the work of Officer (1971). Under the assumption that distributions of monthly returns are symmetric stable, he estimates that in the post-World War II period the characteristic exponent

TABLE 2 (Continued)

Statistic	11	12	13	14	15	16	17	18	19	20
	Portfolios for Estimation Period 1934-38									
$\hat{\beta}_{p, t-1}$	1.046	1.122	1.181	1.192	1.196	1.295	1.335	1.396	1.445	1.458
$s\left(\hat{\beta}_{p, t-1}\right) \ldots \ldots \ldots$. 028	. 031	. 035	. 028	. 029	. 032	. 032	. 053	. 039	. 053
$r\left(R_{p}, R_{m}\right)^{2}$. 959	. 956	. 951	. 969	. 966	. 966	. 967	. 922	. 958	. 927
$s\left(R_{p}\right)$. 113	. 122	. 128	. 128	. 129	. 140	. 144	. 154	. 156	. 160
$s\left(\hat{E}_{p}\right)$. 023	. 026	. 029	. 023	. 024	026	. 026	. 043	. 032	. 043
$\bar{s}_{p, t-1}\left(\hat{c}_{i}\right)$. 094	. 124	. 120	122	. 132	. 125	. 129	. 158	. 145	. 170
$s\left(\hat{c}_{p}\right) / \bar{s}_{p, t-1}\left(\hat{\epsilon}_{i}\right)$. 245	. 210	. 242	. 188	. 182	. 208	. 202	. 272	. 221	. 253
	Portfolios for Estimation Period 1942-46									
$\hat{\beta}_{p, t-1}$. 949	. 952	1.010	1.038	1.254	1.312	1.316	1.473	1.631	1.661
$s\left(\hat{\beta}_{p, t-1}\right)$. 031	. 036	. 040	. 030	. 034	. 039	. 041	. 084	. 083	. 077
$r\left(R_{p}, R_{n}\right)^{2}$. 942	. 923	. 917	. 954	. 958	. 951	. 945	. 839	. 867	. 887
$s\left(R_{p}\right)$. 059	. 060	. 063	. 064	. 077	. 081	. 081	. 097	. 105	. 106
$s\left(\hat{\epsilon}_{p}\right)$. 014	. 016	. 018	. 014	. 016	. 018	. 019	. 039	. 038	. 036
$\bar{s}_{p, t-1}\left(\hat{A}_{i}\right)$. 073	074	. 085	. 077	. 096	. 083	. 086	. 134	.117	. 122
$s\left(\hat{c}_{p}\right) / \bar{s}_{p, t-1}\left(\hat{c}_{i}\right)$. 192	. 216	. 212	. 182	. 167	. 217	221	. 291	325	. 295
	Portfolios for Estimation Period 1950-54									
$\hat{\beta}_{p, t-1}$	1.117	1.123	1.131	1.134	1.186	1.235	1.295	1.324	1.478	1.527
$s\left(\hat{\beta}_{p, t-1}\right)$. 039	. 027	. 044	. 033	. 037	. 049	. 045	. 046	. 058	. 086
$r\left(R_{p}, R_{m}\right)^{2}$. 934	. 968	. 919	. 952	. 944	. 915	. 933	. 934	. 917	. 841
$s\left(R_{p}\right)$. 042	. 041	. 04.3	. 042	. 044	. 047	. 049	. 050	. 056	. 060
$s\left(\hat{E}_{p}\right)$. 011	. 007	. 012	. 009	. 010	. 014	. 013	. 013	. 016	. 024
$\bar{s}_{p, t-1}\left(\hat{c}_{i}\right)$. 066	. 057	. 066	. 060	. 064	. 064	. 065	. 068	. 076	. 088
$s\left(\hat{c}_{p}\right) / \bar{s}_{p, t-1}\left(\hat{\epsilon}_{i}\right)$. 167	. 12.3	. 182	. 150	. 156	. 219	. 200	. 192	. 210	. 273
	Portfolios for Estimation Period 1958-62									
$\hat{\beta}_{p, t-1}$	1,013	1.019	1.037	1.048	1.069	1.081	1.092	1.098	1.269	1.388
$s\left(\hat{\beta}_{p, t-1}\right)$. 038	. 031	036	. 033	. 036	. 038	. 045	045	. 048	. 065
$r\left(R_{p}, R_{m}\right)^{2}$. 922	. 948	. 934	. 945	. 936	. 931	. 907	. 910	. 922	. 886
$s\left(R_{p}\right)$. 045	. 045	. 046	. 046	. 047	. 048	. 049	. 049	. 056	. 063
$s\left(\hat{t}_{p}\right)$. 013	. 010	. 012	. 011	. 012	. 013	. 015	.015	. 016	. 021
$\bar{s}_{p, t-1}\left(\hat{c}_{i}\right)$	069	. 066	. 067	. 062	. 070	. 072	. 076	. 068	. 070	. 078
$s\left(\hat{c}_{p}\right) / /_{p, t-1}\left(\hat{c}_{i}\right)$. 188	. 152	. 179	. 177	. 171	. 180	. 197	. 220	. 228	. 269

for these distributions is about 1.8 (as compared with a value of 2.0 for a normal distribution). From Fama and Roll (1968), for values of the characteristic exponent so close to 2.0 stable nonnormal distributions differ noticeably from the normal only in their extreme tails-that is, beyond the .05 and .95 fractiles. Thus, as long as one is not concerned with precise estimates of probability levels (always a somewhat meaningless activity), interpreting t-statistics in the usual way does not lead to serious errors.

TABLE 3
Summary Results for the Regression
$R_{p}=\hat{\gamma}_{0 t}+\hat{\gamma}_{2 t} \hat{\beta}_{p}+\hat{\gamma}_{2 t} \hat{\beta}_{p}+\hat{\gamma}_{3 t} \bar{s}_{p}\left(\hat{e}_{t}\right)+\hat{\gamma}_{p t}$

$\mathrm{P}_{\text {Eriod }}$	Staitstic																			
	$\overline{\hat{\gamma}}_{0}$	$\overline{\hat{\gamma}}_{1}$	$\overline{\hat{\gamma}}_{3}$	\bar{p}_{1}	$\overline{\gamma_{0}-R_{f}}$	$s\left(\gamma_{0}\right)$	$s\left(\hat{\gamma}_{1}\right)$	$s\left(\hat{\gamma}_{1}\right)$	$s\left(\hat{\gamma}_{3}\right) \rho_{0}$	$\left(\hat{F}_{0}-R_{p}\right)$	$p_{x L}\left(\hat{\gamma}_{1}\right)$	$\beta_{0}\left(\hat{\gamma}_{3}\right)$	$\rho_{0}\left(\hat{\gamma}_{3}\right)$	$t\left(\bar{\gamma}_{0}\right)$	$t\left(\bar{\gamma}_{2}\right)$	$t\left(\hat{\gamma}_{2}\right)$		$\overline{\hat{\gamma}_{0}-R_{f}}$		$s\left(r^{2}\right)$
Panel A:																				
1935-6/68	. 0061	. 0085		\ldots	. 0048	. 038	. 066			. 15	. 02	...		3.24	2.57	\ldots		2.55	. 29	. 30
1935-45 ${ }^{198}$. 00339	. 01623			. 0037	.022	. 098			. 10	-.03			. 86	1.92			. 82	. 29	. 29
${ }_{1956-5 / 68}^{1946-55}$. 00087	. 00027			.0078	. 0236	. 044			. 27	. 15	\cdots	\ldots	${ }^{3.4} \mathbf{3 . 4 5}$	1.70			3.31 1.39	. 28	. 32 .29
1935-40	. 0024	. 0109	\cdots	\cdots	. 0023	. 064	. 116	\cdots			-. 09	\ldots		. 32	. 75	\ldots		. 31	. 23	. 30
-1941-45	. 00056	. 02029	\ldots	\ldots	. 00044	${ }^{.034}$. 031 .	. 0647	\cdots	\cdots	. 23	. 04	\ldots	\ldots	${ }^{1} \mathbf{i} .27$	2.55	\ldots		${ }_{1.10}^{1.22}$. 39	. 38
1951-55	. 0123	.0024	\cdots	. 01711	. 019	. 035	\ldots	\cdots	. 20	. 08	\cdots	\ldots	5.06	-.53	\ldots	\cdots	4.56	. 24	. 29
1961-6/68 \cdots	. 01001	$-.0143$...		-.0029	. 034	. 048		\cdots	. 22	. 09	\ldots		. 03	${ }_{2.81}^{1.81}$			-. 80	. 32	. 27
Panel B:																				
1935-6/68	. 0049	. 0105	-.0008	\ldots	. 0036	. 052	. 118	. 056 03	-. 11	-. 11	\ldots	1.92	1.79	-. 29	...	1.42	- 32	. 31
${ }^{1935-45} \ldots$	$\xrightarrow{.0074}$. 0079	.0040 -.0087	\cdots	-.0073	. 0061	. 1305	.074	\cdots	$-.10$	-. 31	-. 21	\ldots	1.39 -.07	2.65	${ }_{-2.83}^{.61}$	\cdots	1.36	. 32	. 30
1956-6/68 ...:	-.0069	. 0040	-.0013		-.0043	.054	. 116	. 053		. 17	. 07	. 03	\ldots	1.56	${ }^{2.42}$	-2.89		-. 97	. 30	. 30
1935-40 \ldots	. 00148	. 0141	-. 0017	\ldots	. 0014	. 065	. 160		\cdots	-. 13	-.36	-35	\cdots	. 16	. 75	-19		14	. 24	. 30
	-	. 00004	-.01088	\ldots	- 0.0146	${ }^{.050}$. 1104	.073		-. 04	-. 0.04	-. 04	...	$\stackrel{2.28}{-18}$	1.1.3	- 1.1 .24			. 44	
$1951-55$.0004	. 02815	-.0122		-.0008	. 030	. 085	. 035	\cdots	-17	-14	-. 01	\cdots	. 10	2.55	- 2.72		-. 28	. 28	. 29
${ }_{1961-5 / 68}^{1956-60}$. 002128	-. 0.0075	-.0020	\ldots	--.01088	. 0660	. .138	. 0264		. 14	. 11	-. 26		${ }^{3.388}$	-. 53	$-.54$		2.84 -.01	. 34	. 219

TABLE 3 (Continued)

Inferences based on approximate normality are on even safer ground if one assumes, again in line with the results of Officer (1971), that although they are well approximated by stable nonnormal distributions with $\alpha \cong 1.8$, distributions of monthly returns in fact have finite variances and convergebut very slowly-toward the normal as one takes sums or averages of individual returns. Then the distributions of the means of month-by-month regression coefficients from the risk-return model are likely to be close to normal since each mean is based on coefficients for many months.

A. Tests of the Major Hypotheses of the Two-Parameter Model

Consider first condition C 2 of the two-parameter model, which says that no measure of risk, in addition to β, systematically affects expected returns. This hypothesis is not rejected by the results in panels C and D of table 3. The values of $t\left(\overline{\hat{\gamma}}_{3}\right)$ are small, and the signs of the $t\left(\bar{\gamma}_{3}\right)$ are randomly positive and negative.

Likewise, the results in panels B and D of table 3 do not reject condition Cl of the two-parameter model, which says that the relationship between expected return and β is linear. In panel B, the value of $t\left(\overline{\hat{\gamma}}_{2}\right)$ for the overall period $1935-6 / 68$ is only -.29. In the 5 -year subperiods, $t\left(\bar{\gamma}_{2}\right)$ for $1951-55$ is approximately -2.7 , but for subperiods that do not cover 1951-55, the values of $t\left(\overline{\hat{\gamma}}_{2}\right)$ are much closer to zero.

So far, then, the two-parameter model seems to be standing up well to the data. All is for naught, however, if the critical condition C 3 is rejected. That is, we are not happy with the model unless there is on average a positive tradeoff between risk and return. This seems to be the case. For the overall period $1935 \cdots 6 / 68, t\left(\overline{\hat{\gamma}}_{1}\right)$ is large for all models. Except for the period 1956-60, the values of $t\left(\overline{\hat{\gamma}}_{1}\right)$ are also systematically positive in the subperiods, but not so systematically large.

The small t-statistics for subperiods reflect the substantial month-tomonth variability of the parameters of the risk-return regressions. For example, in the one-variable regressions summarized in panel A, for the period 1935-40, $\bar{\gamma}_{1}=.0109$. In other words, for this period the average incremental return per unit of β was almost 1.1 percent per month, so that on average, bearing risk had substantial rewards. Nevertheless, because of the variability of $\hat{\gamma}_{1 t}$-in this period $s\left(\hat{\gamma}_{1}\right)$ is 11.6 percent per month (1)$t\left(\bar{\gamma}_{1}\right)$ is only .79. It takes the statistical power of the large sample for the overall period before values of $\bar{\gamma}_{1}$ that are large in practical terms also yield large t-values.

But at least with the sample of the overall period $t\left(\overline{\hat{\gamma}}_{1}\right)$ achieves values supportive of the conclusion that on average there is a statistically observable positive relationship between return and risk. This is not the case with respect to $t\left(\bar{\gamma}_{2}\right)$ and $t\left(\overline{\hat{\gamma}}_{8}\right)$. Even, or indeed especially, for the overall period, these t-statistics are close to zero.

The behavior through time of $\hat{\gamma}_{2 t}, \hat{\gamma}_{21}$, and $\hat{\gamma}_{3 t}$ is also consistent with hypothesis ME that the capital market is efficient. The serial correlations $\rho_{93}\left(\hat{\gamma}_{2}\right), p_{41}\left(\hat{\gamma}_{2}\right)$, and $p_{4}\left(\hat{\gamma}_{3}\right)$, are always low in terms of explanatory power and generally low in terms of statistical significance. The proportion of the variance of $\tilde{\gamma}_{\mu}$ explained by first-order serial correlation is estimated by $\rho\left(\hat{\gamma}_{j}\right)^{2}$ which in all cases is small. As for statistical significance, under the hypothesis that the true serial correlation is zero, the standard deviation of the sample coefficient can be approximated by $\sigma(\hat{p})=1 / \sqrt{n}$. For the overall period, $\sigma(\hat{\rho})$ is approximately .05 , while for the $10-$ and 5 -year subperiods $\sigma(\hat{\rho})$ is approximately .09 and .13 , respectively. Thus, the values of $\rho_{31}\left(\hat{\gamma}_{1}\right), \rho_{11}\left(\hat{\gamma}_{2}\right)$, and $\rho_{0}\left(\hat{\gamma}_{3}\right)$ in table 3 are generally statistically close to zero. The exceptions involve primarily periods that include the 1935-40 subperiod, and the results for these periods are not independent. ${ }^{8}$
To conserve space, the serial correlations of the portfolio residuals, $\hat{\eta}_{p t}$, are not shown. In these serial correlations, negative values predominate. But like the serial correlations of the $\hat{\gamma}$'s, those of the $\hat{\eta}$'s are close to zero. Higher-order serial correlations of the $\hat{\gamma}$'s and $\hat{\jmath}$'s bave been computed, and these also are never systematically large.
In short, one cannot reject the hypothesis that the pricing of securities is in line with the implications of the two-parameter model for expected returns. And given a two-parameter pricing model, the behavior of returns through time is consistent with an efficient capital market.

B. The Behaviar of the Market

Some perspective on the behavior of the market during different periods and on the interpretation of the coefficients $\hat{\gamma}_{n t}$ and $\hat{\varphi}_{1 t}$ in the risk-return regressions can be obtained from table 4 . For the various periods of table 3, table 4 shows the sample means (and with some exceptions), the standard

[^36]TABLE 4
Tee Befavior of the Market

Period	Statistic*								
	$\overline{R_{m}}$	$\overline{R_{m}-R_{t}}$	$\overline{\hat{\gamma}}_{1}$	$\bar{\gamma}_{0}$	\bar{R}	$\frac{\widetilde{R}_{m}-R_{f}}{s\left(R_{m}\right)}$	$\frac{\overline{\hat{\gamma}_{\mathbf{I}}}}{s\left(\overline{R_{m}}\right)}$	$s\left(R_{m}\right)$	$s\left(R_{m}\right)$
1935-6/68	. 0143	. 0130	. 0085	. 0061	. 0013	. 2136	. 1388	. 061	. 066
1935-45	. 0197	. 0195	. 0163	. 0039	. 0002	. 2207	. 1844	. 089	.098
1946-55	. 0112	. 0103	. 0027	. 0087	. 0009	. 2378	. 0614	. 043	. 041
1956-6/68	. 0121	. 0095	. 0062	. 0060	.0026	. 2387	. 1560	. 040	. 044
	. 0132	. 0132	. 0109	. 0024	. 0001	. 1221	. 1009	108	. 116
1941-45	. 0274	. 0272	. 0229	. 0056	. 0002	4715	. 3963	. 058	. 069
1946-50	. 0077	. 0070	. 0029	. 0050	. 0007	. 1351	. 0564	. 052	. 047
1951-55	. 0148	. 0136	. 0024	. 0123	. 0012	. 4174	. 0735	. 033	. 035
1956-60	. 0090	. 0070	--. 0059	. 0148	. 0020	. 2080	-. 1755	. 034	. 034
1961-6/68	. 0141	. 0111	. 0143	. 0001	. 0030	. 2567	. 3294	. 043	. 048

* Since $s\left(R_{f}\right)$ is so small relative to $s\left(R_{m}\right), s\left(R_{m}-R_{f}\right)$, which is not shown, is essentially the same as $s\left(R_{m}\right)$. The standard deviations of $\left(R_{m}-R_{t}\right) / s\left(R_{m}\right)$ and $\hat{\uparrow}_{1} / s\left(R_{m}\right)$, also not shown, can be obtained directly from $s\left(R_{n}-R_{f}\right), s\left(\hat{\gamma}_{2}\right)$ and $s\left(R_{m}\right)$. Finally, the t-statistics for $\left(R_{m}-R_{f}\right) / s\left(R_{m}\right)$ and $\hat{\gamma}_{2} / s\left(R_{m}\right)$ are identical with those for $R_{m}-R_{t}$ and $\hat{\gamma}_{1}$.
deviations, t-statistics for sample means, and first-order serial correlations for the month-by-month values of the following variables and coefficients: the market return R_{m}; the riskless rate of interest $R_{f t}$, taken to be the yield on 1-month Treasury bills; $R_{m t}-R_{f t} ;\left(R_{m t}-R_{t t}\right) / s\left(R_{m}\right)$; $\hat{\rho}_{0 t}$ and $\hat{\gamma}_{1 t}$, repeated from panel A of table 3 ; and $\hat{\gamma}_{1 t} / s\left(R_{m}\right)$. The t-statistics on sample means are computed in the same way as those in table 3.

If the two-parameter model is valid, then in equation (7), $E\left(\hat{\gamma}_{0 r}\right)=$ $E\left(\widetilde{R}_{0 t}\right)$, where $E\left(\widetilde{R}_{v t}\right)$ is the expected return on any zero β security or portfolio. Likewise, the expected risk premium per unit of β is $E\left(\widetilde{R}_{m t}\right)$ $E\left(\widetilde{R}_{0 t}\right)=E\left(\tilde{\gamma}_{1 t}\right)$. In fact, for the one-variable regressions of panel A , table 3, that is,

$$
\begin{equation*}
R_{p t}=\hat{\gamma}_{0 t}+\hat{\gamma}_{t t} \hat{\beta}_{p}+\hat{\eta}_{p t}, \tag{11}
\end{equation*}
$$

we have, period by period,

$$
\begin{equation*}
\hat{\gamma}_{1 t}=R_{m t}-\hat{\gamma}_{o r} . \tag{12}
\end{equation*}
$$

This condition is obtained by averaging (11) over p and making use of the least-squares constraint

$$
\sum_{p} \hat{\eta}_{p t}=0.9
$$

Moreover, the least-squares estimate $\hat{\gamma}_{0 t}$ can always be interpreted as the return for month t on a zero- $\hat{\beta}$ portfolio, where the weights given to each
${ }^{9}$ There is some degree of approximation in (12). The averages over p of $R_{p t}$ and $\hat{\beta}_{p}$ are $R_{m t}$ and 1.0 , respectively, only if every security in the market is in some portfolio. With our methodology (see table 1) this is never true. But the degree of approximation turns out to be small: The average of the $R_{p t}$ is always close to $R_{m t}$ and the average $\hat{\beta}_{p}$ is always close to 1.0 .

TABLE 4 (Continued)

Sxatietic*										
$s\left(\hat{\gamma}_{0}\right)$	${ }_{5}\left(R_{f}\right)$	$t\left(\bar{R}_{m}\right)$	$t\left(\overline{R_{m}-R_{f}}\right)$	$1\left(\bar{\gamma}_{2}\right)$	$t\left(\bar{\gamma}_{0}\right)$	$\rho_{s L}\left(R_{m}\right)$	$\left(R_{m}-R^{\prime}\right.$	$p_{\text {dr }}\left(\hat{\gamma}_{2}\right.$	$\rho_{H}\left(\hat{\gamma}_{0}\right)$	$p_{17}\left(R_{f}\right)$
. 038	. 0012	4.71	4.28	2.57	3.24	--.01	-.01	. 02	. 14	. 98
. 025	. 00001	2.56 2.84	2.54 2.60	1.92 .70	.86 3.71	-.07 -.09	-. 07	-. 07	. 10	. 88
. 023	. 00009	2.84 3.72	2.92	1.73	2.45	. 14	.14	. 15	.2 .5	. 92
. 064	. 00001	1.04	1.04			-. 13	-. 13	-. 09	. 07	. 72
. 0334	. 0001	3.68	3.65	2.55	1.27	. 14	. 14	. 15	. 21	. 83
. 031	.0003 .0004	1.15 3.51	1.05 3.22	. 48	1.27 5.06	.09 -.02	-.09	. 08	.18 -.07	. 89
. 020	. 0007	2.07	1.60	-1.37	5.68	. 12	. 13	. 18	. 13	. 80
. 034	. 0008	3.08	2.44	2.81	. 03	. 13	13	. 09	. 21	. 93

of the 20 portfolios to form this zero- $\hat{\beta}$ portfolio are the least-squares weights that are applied to the $R_{p t}$ in computing $\hat{\gamma}_{0 t}{ }^{10}$
In the Sharpe-Lintner two-parameter model of market equilibrium $E\left(\widetilde{\gamma}_{0 t}\right)=E\left(\widetilde{R}_{0 t}\right)=R_{f t}$ and $E\left(\widetilde{\gamma}_{1 t}\right)=E\left(\widetilde{R}_{m t}\right)-E\left(\widetilde{R}_{0 t}\right)=E\left(\widetilde{R}_{m t}\right)-$ $R_{f t}$. In the period 1935-40 and in the most recent period 1961-6/68, $\bar{\gamma}_{1 t}$ is close to $\overline{R_{n}-R_{f}}$ and the t-statistics for the two averages are similar. In other periods, and especially in the period 1951-60, $\bar{\gamma}_{1}$ is substantially less than $\bar{R}_{m}-\bar{R}_{f}$. This is a consequence of the fact that for these periods $\bar{\gamma}_{0}$ is noticeably greater than \bar{R}_{f}. In economic terms, the tradeoff of average return for risk between common stocks and short-term bonds has been more consistently large through time than the tradeoff of average return for risk among common stocks. Testing whether the differences between $\overline{R_{m}-R}$ and $\overline{\hat{\gamma}}_{1}$ are statistically large, however, is equivalent to testing the S-L hypothesis $E\left(\tilde{\gamma}_{0 t}\right)=R_{f t}$, which we prefer to take up after examining further the stochastic process generating monthly returns.

Finally, although the differences between values of $\overline{R_{m}-R_{f}}$ for different periods or between values of $\overline{\hat{\gamma}}_{1}$ are never statistically large, there is a hint in table 4 that average-risk premiums declined from the pre- to the postWorld War II periods. These are average risk premiums per unit of $\hat{\mathrm{p}}$, however, which are not of prime interest to the investor. In making his portfolio decision, the investor is more concerned with the tradeoff of expected portfolio return for dispersion of return-that is, the slope of the efficient set of portfolios. In the Sharpe-Lintner model this slope is

[^37]always $\left[E\left(\widetilde{R}_{m t}\right)-R_{f t}\right] / \sigma\left(\widetilde{R}_{m t}\right)$, and in the more general model of Black (1972), it is $\left[E\left(\widetilde{R}_{m t}\right)-E\left(\widetilde{R}_{0 t}\right)\right] / \sigma\left(\widetilde{R}_{m t}\right)$ at the point on the efficient set corresponding to the market portfolio m. In table 4, especially for the three long subperiods, dividing $\overline{R_{m}}-R_{f}$ and $\overline{\hat{\gamma}}_{1}$, by $s\left(R_{n}\right)$ seems to yield estimated risk premiums that are more constant through time. This results from the fact that any declines in $\overline{\hat{\gamma}}_{1}$ or $\overline{R_{m}-R_{f}}$ are matched by a quite noticeable downward shift in $s\left(R_{n}\right)$ from the early to the later periods (cf. Blume [1970] or Officer [1971]).

C. Errors and True Variation in the Coefficients $\hat{\gamma}_{j t}$

Each cross-sectional regression coefficient $\hat{\gamma}_{j t}$ in (10) has two components: the true $\tilde{\gamma}_{j t}$ and the estimation error, $\widetilde{\phi}_{j t}=\hat{\gamma}_{j t}-\tilde{\gamma}_{j t}$. A natural question is: To what extent is the variation in $\hat{\gamma}_{j t}$ through time due to variation in $\tilde{\gamma}_{j t}$ and to what extent is it due to $\tilde{\phi}_{j t}$ t In addition to providing important information about the precision of the coefficient estimates used to test the two-parameter model, the answer to this question can be used to test hypotheses about the stochastic process generating returns. For example, although we cannot reject the hypothesis that $E\left(\tilde{\gamma}_{4 t}\right)=0$, does including the term involving $\hat{\widehat{~}}_{p}{ }^{2}$ in (10) help in explaining the month-by-month behavior of returns? That is, can we reject the hypothesis that for all t, $\tilde{\gamma}_{2 t}=0$? Likewise, can we reject the hypothesis that month-by-month $\widetilde{\gamma}_{3 t}=0$? And is the variation through time in $\hat{\gamma}_{0 t}$ due entirely to $\widetilde{\phi}_{0 t}$ and to variation in $R_{f i}$?

The answers to these questions are in table 5. For the models and time periods of table 3 , table 5 shows for each $\hat{\gamma}_{j}: s^{2}\left(\hat{\gamma}_{j}\right)$, the sample variance of the month-by-month $\hat{\gamma}_{j t} ; s^{2}\left(\widetilde{\phi}_{j}\right)$, the average of the month-by-month values of $s^{2}\left(\widehat{\phi}_{j t}\right)$, where $s\left(\widetilde{\phi}_{j t}\right)$ is the standard error of $\hat{\gamma}_{j t}$ from the crosssectional risk-return regression of (10) for month t; $s^{2}\left(\hat{\gamma}_{j}\right) \equiv s^{2}\left(\hat{\gamma}_{j}\right)-$ $\overline{s^{2}\left(\widetilde{\phi}_{j}\right)}$; and the F-statistic $F=s^{2}\left(\hat{\gamma}_{j}\right) / s^{2}\left(\tilde{\phi}_{j}\right)$, which is relevant for testing the hypothesis, $s^{2}\left(\hat{\gamma}_{j}\right)=\overline{s^{2}\left(\tilde{\phi}_{j}\right)}$. The numerator of F has $n-1 \mathrm{df}$, where n is the number of months in the sample period; and the denominator has $n(20-K) \mathrm{df}$, where K is the number of coefficients $\hat{\gamma}_{j}$ in the model. ${ }^{11}$
${ }^{11}$ The standard error of $\hat{\gamma}_{j t}, s\left(\mathcal{Y}_{j t}\right)$, is proportional to the standard error of the risk-return residuals, $\hat{n}_{p t}$, for month t, which has $20-K$ df. And n values of $s^{2}\left(\tilde{(}_{j t}\right)$ are averaged to get $s^{2}\left(\tilde{\phi}_{j}\right)$, so that the latter has $n(20-K)$ df. Note that if the underlying return disturbances $\tilde{\eta}_{p t}$ of (10) are independent across p and have identical normal distributions for all p, then $\hat{\gamma}_{j t}$ is the sample mean of a normal distribution and $s^{2}\left(\widehat{\phi}_{j t}\right)$ is proportional to the sample variance of the same normal distribution. If the process is also assumed to be stationary through time, it then follows that $s^{2}\left(\hat{\gamma}_{j t}\right)$ and $s^{2}\left(\widehat{y}_{j t}\right)$ are independent, as required by the F-test. Finally, in the F statistics of table 5 , the values of n are 60 or larger, so that, since K is from 2 to 4, $n(20-K) \geqslant 960$. From Mood and Graybill (1963), some upper percentage points of the F-distribution are:

One clear-cut result in table 5 is that there is a substantial decline in the reliability of the coefficients $\hat{\gamma}_{10}$ and $\hat{\gamma}_{1}$ that is, a substantial increase in $s^{2}\left(\overline{\widetilde{\phi}_{i}}\right)$ and $s^{2}\left(\overline{\boldsymbol{\phi}_{1}}\right)$-when $\hat{\beta}_{p}{ }^{2}$ and/or $\bar{s}_{p}\left(\hat{\epsilon}_{j}\right)$ are included in the riskreturn regressions. The variable $\hat{\beta}_{p}{ }^{2}$ is obviously collinear with $\hat{\beta}_{p}$, and, as can be seen from table $2, \bar{s}_{p}\left(\hat{\epsilon}_{l}\right)$ likewise increases with $\hat{\beta}_{p}$. From panels B and C of table 5 , the collinearity with $\hat{\beta}_{p}$ is stronger for $\hat{\beta}_{p}{ }^{2}$ than for $\bar{s}_{p}\left(\hat{\epsilon}_{j}\right)$.

In spite of the loss in precision that arises from multicollinearity, however, the F-statistics for $\hat{\gamma}_{2}$ (the coefficient of $\hat{\beta}_{p}^{2}$) and $\hat{\gamma}_{: 3}$ the coefficient of $\left.\bar{s}_{p}\left(\hat{\epsilon}_{j}\right)\right]$ are generally large for the models of panels B and C of table 5 , and for the model of panel D which includes both variables. From the F statistics in panel D, it seems that, except for the period 1935-45, the variation through time of $\gamma_{2 t}$ is statistically more noticeable than that of $\tilde{\gamma}_{3 t}$, but there are periods (1941-45, 1956-60) when the values of F for both $\tilde{\gamma}_{2 t}$ and $\tilde{\gamma}_{s t}$ are large.

The F-statistics for $\hat{\gamma}_{11}=\tilde{\gamma}_{11}+\tilde{\phi}_{1 t}$ also indicate that $\tilde{\gamma}_{1 t}$ has substantial variation through time. This is not surprising, however, since $\hat{\rho}_{1}$ is always directly related to \widetilde{R}_{m}. For example, from equation (12), for the one-variable model of panel $\mathrm{A}, \hat{\rho}_{11}=\tilde{R}_{m \prime}-\hat{\rho}_{1 \prime}$.

Finally, the F-statistics for $\hat{\gamma}_{0}=\tilde{\gamma}_{m}+\boldsymbol{\gamma}_{n \prime}$ are also in general large. And the month-by-month variation in $\tilde{\gamma}_{0 t}$ cannot be accounted for by variation in $R_{f f}$. The variance of $R_{f t}$ is so small relative to $s^{2}\left(\hat{\gamma}_{0 t}\right), s^{2}\left(\hat{\gamma}_{0 t}\right)$, and $\overline{s^{1}\left(\tilde{\phi}_{01}\right)}$ that doing the F-tests in terms of $\hat{\gamma}_{m}-R_{f}$ produces results almost identical with those for $\hat{\gamma}_{0 \text { o }}$.

Rejection of the hypothesis that $\gamma_{n t}-R_{f f}=0$ does not imply rejection of the S-L hypothesis-to be tested next-that $E\left(\tilde{\gamma}_{0 f}\right)=R_{f t}$. Likewise, to find that month-by-month $\tilde{\gamma} \mu t=0$ and $\tilde{\gamma}_{3 t} \neq 0$ does not imply rejection of hypotheses C 1 and C 2 of the two-parameter model. These hypotheses, which we are unable to reject on the basis of the results in table 3 , say that $E\left(\tilde{\gamma}_{2 t}\right)=0$ and $E\left(\widetilde{\gamma}_{s t}\right)=0$.

What we have found in table 5 is that there are variables in addition to $\hat{\beta}_{p}$ that systematically affect period-by-period returns. Some of these omitted variables are apparently related to $\hat{\beta}_{p}^{2}$ and $\bar{s}_{p}(\tilde{\mathcal{q}})$. But the latter are almost surely proxies, since there is no economic rationale for their presence in our stochastic risk-return model.

n	$F .90$	$F_{\text {, }}$	F.975	$F_{\text {a }}$	$F_{\text {, \%n }}$
60 (120)	1.35	1.47	1.58	1.73	1.83
60 (∞)	1.29	1.39	1.48	1.60	1.69
120 (120)	1.26	1.35	1.43	1.53	1.61
120 (∞)	1.19	1.25	1.31	1.38	1.43

TABLE 5
Components of the Variances of the $\hat{\gamma}_{j t}$

Period	$s^{2}\left(\widetilde{\gamma}_{0}\right)$	$s^{2}\left(\gamma_{0}\right)$	$\overline{s^{2}\left(\hat{\phi}_{0}\right)}$	${ }^{F}$	$s=\left(\tilde{\gamma}_{1}\right)$	$s^{2}\left(\hat{\gamma}_{1}\right)$	$\overline{s-\left(\tilde{\phi}_{1}\right)}$	F
Panel A:								
1935-6/68	. 00105	. 00142	. 00037	3.84	. 00401	. 00436	. 00035	12.46
1935-45	. 00182	. 00273	. 00091	3.00	. 00863	. 00950	. 00087	10.92
1946-55	. 00057	. 00066	. 00000	7.33	. 00163	. 00171	. 00008	21.38
1956-6/68	. 00077	. 00090	. 00013	6.92	.00181	. 00193	. 00012	16.08
1935-40	. 00265	. 00404	. 00139	2.91	. 01212	. 01347	. 00135	9.98
1941-45	. 000086	. 00118	. 00032	3.69	. 00452	. 00481	. 00029	16.59
1946-50	. 00086	. 00094	. 00008	11.75	. 00216	. 00224	. 00008	28.00
1951-55	. 00027	. 00036	. 00009	4.00	. 00113	. 00121	. 00008	15.12
1956-60	. 00032	. 00041	. 00009	4.56	. 00104	. 00112	. 00008	21.50
1961-6/68	. 00100	. 00114	. 00014	8.14	. 00217	. 00231	. 00014	16.50
Panel B:								
1935-6/68	. 00092	. 00267	. 00175	1.52	. 00564	. 01403	. 00839	1.67
1935-45	. 00057	. 00377	. 00320	1.18	. 00372	. 01941	. 01569	1.24
1946-55.	. 00053	. 00112	. 00059	1.90	. 00651	. 00897	. 00245	3.66
1956 6 6/68	. 00155	. 00294	. 00139	2.12	. 00667	. 01338	. 00671	1.99
1935-40	. 00018	. 00476	. 00458	1.04	. 00374	. 02555	. 02181	1.17
1941-45	. 00101	. 00254	. 00153	1.66	. 00389	. 01225	. 00836	1.46
1946-50 000084	. 00136	. 00052	2.62	. 00868	. 01071	. 00209	5.12
1951-55	. 00024	. 00090	. 00066	1.36	. 00447	. 00729	. 00282	2.58
1956-60	. 00037	. 00087	. 00050	1.74	. 00289	. 00517	. 00228	2.27
1961-6/68	. 00232	. 00431	. 00199	2.16	. 00928	. 01894	.00966	1.96
Panel C:								
1935-6/68	. 00192	. 00266	. 00075	3.55	. 00285	.00428	. 00142	3.01
1935-45	. 00394	. 00533	. 00139	3.83	. 00433	. 00717	. 00283	2.52
1946-55	. 00083	. 00101	. 00018	5.61	. 00261	. 00310	. 00050	6.20
1956-6/68	. 00100	. 00164	.00063	2.60	. 00178	. 00270	. 00092	2.93
1935-40	. 00473	. 00669	. 00196	3.41	. 00732	. 01094	. 00362	3.02
1941-45	. 00307	. 00377	. 00070	5.38	. 00085	. 00274	. 00189	1.45
1946-50	. 00103	. 00117	. 000014	8.36	. 00386	. 00439	. 00053	8.28
3951-55	. 00061	. 00083	. 00022	3.77	. 00140	. 00188	. 00047	4.00
1956-60	. 00079	. 00134	. 00055	2.44	. 00106	. 00204	. 00098	2.08
1961-6/68	. 00109	. 00177	. 00068	2.60	. 00212	. 00300	. 00088	3.41
Panel D:								
1935-6/68	. 00150	. 00566	. 00406	1.39	. 00608	. 01521	. 00913	1.66
1935-45 00233	. 01065	. 00832	1.28	. 00402	. 02118	. 01716	1.23
1946-55	. 00013	. 00176	. 00163	1.08	.00647	. 00916	. 00269	3.41
1956-6/68	. 00194	. 00420	. 00226	1.86	. 00763	. 01485	. 00722	2.06
1935-40	. 00157	. 01263	. 011106	1.14	. 00457	. 02910	. 02453	1.19
1941-45	. 00340	. 00843	. 00503	1.68	. 00365	. 01196	.00832	1.44
1946-50	. 00023	. 00220	.00197	1.12	. 00858	. 01119	. 00261	4.29
1951-55	00006	. 00136	. 00130	1.05	. 00442	. 00719	. 00277	2.60
1956-60	.00092	. 00239	. 001147	1.62	. 00328	. 00602	. 00274	2.20
1961-6/68 00260	. 00539	. 00279	1.93	. 01060	. 02081	. 01021	2.04

D. Tests of the S-L Hypothesis

In the Sharpe-Lintner two-parameter model of market equilibrium one has, in addition to conditions $\mathrm{C} 1-\mathrm{C} 3$, the hypothesis that $E\left(\widetilde{\gamma}_{0 t}\right)=R_{f t}$. The work of Friend and Blume (1970) and Black, Jensen, and Scholes (1972) suggests that the S-L hypothesis is not upheld by the data. At least in the post-World War II period, estimates of $E\left(\mathcal{Y}_{0 t}\right)$ seem to be significantly greater than $R_{f t}$.

Each of the four models of table 3 can be used to test the S-L hypothe-

TABLE 5 (Continued)

Period	$s^{2}\left(\tilde{\gamma}_{2}\right)$	$s^{2}\left(\hat{\gamma}_{3}\right)$	$\overline{s^{2}\left(\widehat{\phi}_{2}\right)}$	F	$s^{2}\left(\tilde{\gamma}_{3}\right)$	${ }_{s}=\left(\hat{(1)}_{8}\right)$	$\bar{s}\left(\tilde{\phi}_{s}\right)$	F
Panel A:								
1935-6/68	\ldots	\ldots	\cdots	\cdots	".	\cdots	.	\cdots
1935-45				\cdots	\cdots	\cdots	\cdots	\cdots
1946-55 1056.	\cdots	\cdots	\cdots	\cdots	...	\ldots		
1956-6/68		\ldots	\cdots	"..	\cdots		\cdots
1935-40		\ldots	\cdots	\cdots	\ldots	\cdots		\ldots
1941-45	".	\cdots	\cdots	* \cdot		\cdots		
1946-50	\cdots	\cdots			
1951-55	\cdots	\ldots	\ldots	\cdots	-••	...	-	\cdots
1956-60 ${ }_{\text {chel }}$			\ldots	\cdots	\cdots	\cdots		
1961-6/68 ...	\ldots	\cdots \cdot	...	\cdots	.	\cdots
Panel 18:								
1935-6/68	. 00121	. 00318	. 00197	1.61	\ldots	\cdots	\cdots	\ldots
1935-45 00171	. 00548	. 00377	1.45		\cdots		\cdots
	. 000063	. 000112	. 00049	2.29 1.78	\ldots	\cdots	\cdots	
1935-40	. 00041	. 00566	.00524	1.08	\ldots	\ldots	\cdots	\cdots
1941 -45 \ldots....	. 000327	. 005527	. 00201	2.62	\ldots	\ldots		
1946 -50 000066	. 00103	. 00037	2.78	...	\ldots	\cdots	
1951-55 00058	. 00120	. 00062	1.94	\cdots	\cdots	\cdots	...
$1956-60$ $1961-6 / 68$. 00033	. 000810	. 000050	1.66 1.81	\ldots	\cdots	\ldots	
1961-6/68 00182	. 00410	. 00227	1.81	\cdots	\cdots	\ldots	
Panel C:								1.83
1935-45	. ${ }^{\text {P }}$	\cdots	\ldots	\cdots	. 535	. 847	. 313	2.71
1946-55	\ldots	\ldots	. 165	. 370	. 206	1.80
1956-6/68	\ldots	\ldots 304	. 968	. 664	1.46
1935-40 \cdot	\ldots	\cdots	\cdots	. 270	. 553	. 282	
1941-45 $\quad 1946 \ldots$	\cdots	\cdots	\ldots	\because	. 1184	1.189 .254	. 349	1.41 1.87
$1946-50$ $1951-55$	\ldots	\ldots	\cdots	\cdots	. 1118	. 254	. .736	1.87 1.79
1956 60 \ldots....			\ldots	\ldots	. 622	1.355	. 734	1.85
1961-6/68 ...		\ldots	\ldots 105	. 722	. 617	1.17
Panel D:								
1935-6/68 ..	. 00061	. 00362	.00301*	1.21	. 276	. 864	. 588	1.47
1935-45		. 00624	. 00644	. 97	. 392	1.001	. 613	1.63
1946-55 . \ldots.	. 00061	. 00148	.00087	1.70	. 028	. 1.383	. 355	1.08 1.50
1956-6/68 00134	. 00304	. 00169	1.80	. 374	1.125	. 751	1.50
1935-40		. 00723	. 00888	. 88	. 120	. 688	. 562	1.21
1941-45 00162	. 00515	. 000353	1.46	. 720	1.395 .348	$\begin{array}{r}.675 \\ .325 \\ \hline\end{array}$	1.07 1.07
1946-50 \ldots.	. 000083	. 000180	. 000096	1.87	. 023	. 348	. 386	1.10
${ }_{1956-60}^{1951-55} \ldots$. 000037	. 001103	. 000066	1.56	-712	1.654	. 941	1.76
1961-6/68 \ldots	. 00202	.00440	. 00238	1.85	. 163	. 787	. 624	1.26

sis. ${ }^{12}$ The most efficient tests, however, are provided by the one-variable
12 The least-squares intercepts $\hat{\gamma}_{0 t}$ in the four cross-sectional risk-return regressions can always be interpreted as returns for month t on zero- $\hat{\mathbf{\beta}}$ portiolios (n. 10). For the three-variable model of panel D, table 3 , the unbiasedness of the least-squares coefficients can be shown to imply that in computing $\hat{\gamma}_{00}$, negative and positive weights are assigned to the 20 portfolios in such a way that the resulting portfolio has not only zero- $\hat{\beta}$ but also zero averages of the $20 \hat{\beta}_{p}^{2}$ and of the $20 \bar{s}_{p}\left(\hat{\epsilon}_{f}\right)$. Analogous statements apply to the two-variable modeis of panels B and C.

Black, Jensen, and Scholes test the S-L hypothesis with a time series of monthly returns on a "minimum variance zero- ${ }^{\mathbf{5}}$ portfolio" which they derive directly. It turns
model of panel A, since the values of $s\left(\hat{\gamma}_{11}\right)$ for this model [which are nearly identical with the values of $\left.s\left(\hat{\beta}_{0}-R_{f}\right)\right]$ are substantially smaller than those for other models. Except for the most recent period 1961-6/68, the values of $\overline{\hat{\gamma}_{0}-R_{f}}$ in panel A are all positive and generally greater than 0.4 percent per month. The value of $t\left(\overline{\gamma_{0}}-\overline{R_{f}}\right)$ for the overall period $1935-6 / 68$ is 2.55 , and the t-statistics for the subperiods 1946-55, 195155, and 1956-60 are likewise large. Thus, the results in panel A, table 3, support the negative conclusions of Friend and Blume (1970) and Black, Jensen, and Scholes (1972) with respect to the S-L hypothesis.

The S-L hypothesis seems to do somewhat better in the two-variable quadratic model of panel B, table 3 and especially in the three-variable model of panel D . The values of $t \overline{\left(\overline{\rho_{0}-R_{f}}\right)}$ are substantially closer to zero for these models than for the model of panel A. This is due to values of $\overline{\hat{\gamma}_{0}-R_{f}}$ that are closer to zero, but it also reflects the fact that $s\left(\hat{\gamma}_{0}\right)$ is substantially higher for the models of panels B and D than for the model of panel A.

But the effects of $\hat{\beta}_{p}{ }^{2}$ and $\bar{s}_{p}\left(\hat{c}_{i}\right)$ on tests of the S-L hypothesis are in fact not at all so clear-cut. Consider the model

$$
\begin{equation*}
\tilde{R}_{i t}=\tilde{\gamma}_{0 t}+\tilde{\gamma}_{1 t} \beta_{i}+\tilde{\gamma}_{2 t}\left(1-\beta_{i}\right)^{2}+\tilde{\gamma}_{3 t} s_{i}+\tilde{\eta}_{i t} \tag{13}
\end{equation*}
$$

Equations (7) and (13) are equivalent representations of the stochastic process generating returns, with $\tilde{\gamma}_{1 t}=\tilde{\gamma}_{1 t}^{\prime}-2 \tilde{\gamma}_{2 t}$ and $\tilde{\gamma}_{0 t}=\tilde{\gamma}^{\prime \prime}{ }_{n t}+\tilde{\gamma}_{2 t}$. Moreover, if the steps used to obtain the regression equation (10) from the stochastic model (7) are applied to (13), we get the regression equation,

$$
\begin{equation*}
R_{p t}=\hat{\gamma}_{0 t}^{\prime}+\hat{\gamma}_{1 t}^{\prime} \hat{\beta}_{p}+\hat{\gamma}_{2 t}\left(1-\hat{\beta}_{p}\right)^{2}+\hat{\gamma}_{3 t} \bar{s}_{p}\left(\hat{\epsilon}_{t}\right)+\hat{\eta}_{p t} \tag{14}
\end{equation*}
$$

where, just as $\hat{\beta}_{p}{ }^{2}$ in (10) is the average of $\hat{\rho}_{i}^{2}$ for securities i in portfolio $p,\left(1-\hat{\beta}_{p}\right)^{2}$ is the average of $\left(1-\hat{\beta}_{i}\right)^{2}$. The values of the estimates $\hat{\gamma}_{2 t}$ and $\hat{\gamma}_{3 t}$ are identical in (10) and (14); in addition, $\hat{\gamma}_{1 t}=\hat{\gamma}_{1 t}^{\prime}-2 \hat{\gamma}_{2 t}$ and $\hat{\gamma}_{0 t}=\hat{\gamma}_{0 t}^{\prime}+\hat{\gamma}_{2 t}$. But although the regression equations (10) and (14) are statistically indistinguishable, tests of the hypothesis $E\left(\tilde{\gamma}_{0 t}\right)=$

[^38]$R_{f t}$ from (10) do not yield the same results as tests of the hypothesis $E\left(\tilde{\gamma}^{\prime}{ }_{0 i}\right)=R_{f i}$ from (14). In panel D of table $3, \overline{\hat{\gamma}_{0}-R_{f}}$ is never statistically very different from zero, whereas in tests (not shown) from (14), the results are similar to those of panel A , table 3. That is, $\bar{\gamma}_{11}^{\prime}-R_{f}$ is systematically positive for all periods but 1961-6/68 and statistically very different from zero for the overall period 1935-6/68 and for the 1946-55, 1951-55, and 1956-60 subperiods.

Thus, tests of the S-L hypothesis from our three-variable models are ambiguous. Perhaps the ambiguity could be resolved and more efficient. tests of the hypothesis could be obtained if the omitted variables for which $\bar{s}_{p}\left(\hat{\epsilon}_{i}\right), \hat{\beta}_{p}{ }^{2}$, or $\left(1-\hat{\beta}_{p}\right)^{2}$ are almost surely proxies were identified. As indicated above, however, at the moment the most efficient tests of the S-L hypothesis are provided by the one-variable model of panel A, table 3, and the results for that model support the negative conclusions of others.

Given that the S-L. hypothesis is not supported by the data, tests of the market efficiency hypothesis that $\tilde{\gamma}_{0 t}-E\left(\tilde{R}_{0 t}\right)$ is a fair game are difficult since we no longer have a specific hypothesis about $E\left(\tilde{R}_{n t}\right)$. And using the mean of the $\hat{\gamma}_{0 t}$ as an estimate of $E\left(\tilde{R}_{0 t}\right)$ does not work as well in this case as it does for the market efficiency tests on γ_{11}. One should note, however, that although the serial correlations $\rho_{M}\left(\hat{\gamma}_{0}\right)$ in table 4 are often large relative to estimates of their standard errors, they are small in terms of the proportion of the time series variance of $\mathcal{Q}_{0 t}$ that they explain, and the latter is the more important criterion for judging whether market efficiency is a workable representation of reality (see n. 8).

VI. Conclusions

In sum our results support the important testable implications of the twoparameter model. Given that the market portfolio is efficient-or, more specifically, given that our proxy for the market portfolio is at least approximately efficient-we cannot reject the hypothesis that average returns on New York Stock Exchange common stocks reflect the attempts of riskaverse investors to hold efficient portfolios. Specifically, on average there seems to be a positive tradeoff between return and risk, with risk measured from the portfolio viewpoint. In addition, although there are "stochastic nonlinearities" from period to period, we cannot reject the hypothesis that on average their effects are zero and unpredictably different from zero from one period to the next. Thus, we cannot reject the hypothesis that in making a portfolio decision, an investor should assume that the relationship between a security's portfolio risk and its expected return is linear, as implied by the two-parameter model. We also cannot reject the hypothesis of the two-parameter model that no measure of risk, in addition to portfolio risk, systematically affects average returns. Finally, the observed fair game properties of the coefficients and residuals of the
risk-return regressions are consistent with an efficient capital marketthat is, a market where prices of securities fully reflect. available information.

Appendix

Some Related Issues

A1. Market Models and Tests of Market Efficiency

The time series of regression coefficients from (10) are, of course, the inputs for the tests of the two-parameter model. But these coefficients can also be useful in tests of capital market efficiency-that is, tests of the speed of price adjustment to different types of new information. Since the work of Fama et al. (1969), such tests have commonly been based on the "one-factor market model":

$$
\begin{equation*}
R_{i t}=\hat{a}_{l}+\hat{\beta}_{i} R_{m t}+\hat{\epsilon}_{i t} \tag{15}
\end{equation*}
$$

In this regression equation, the term involving $R_{m t}$ is assumed to capture the effects of market-wide factors. The effects on returns of events specific to company i, like a stock split or a change in earnings, are then studied through the residuals $\hat{E}_{i t}$.

But given that there is period-to-period variation in $\hat{\gamma}_{0 t}, \hat{\gamma}_{2 t}$, and $\hat{\gamma}_{3 t}$ in (10) that is above and beyond pure sampling error, then these coefficients can be interpreted as market factors, (in addition to $R_{m t}$) that influence the returns on all securities. To see this, substitute (12) into (11) to obtain the "twofactor market model":

$$
\begin{equation*}
R_{p t}=\hat{\gamma}_{0 t}\left(1-\hat{\beta}_{p}\right)+\hat{\beta}_{p} R_{m t}+\hat{\eta}_{p t} \tag{16}
\end{equation*}
$$

In like fashion, from equation (10) itself we easily obtain the "four-factor market model":

$$
\begin{array}{r}
R_{p t}=\hat{\gamma}_{0 t}\left(1-\hat{\beta}_{p}\right)+\hat{\beta}_{p} R_{m t}+\hat{\gamma}_{2 t}\left(\hat{\beta}_{p}^{2}-\hat{\beta}_{p} \overline{\hat{\beta}}^{2}\right)+\hat{\gamma}_{s t} \\
{\left[\bar{s}_{p}\left(\hat{\epsilon}_{i}\right)-\hat{\beta}_{p} \overline{\bar{s}}\left(\hat{\epsilon}_{i}\right)\right]+\hat{\gamma}_{p t},} \tag{17}
\end{array}
$$

where $\overline{\hat{\beta}}^{2}$ and $\overline{\bar{s}}\left(\hat{\epsilon}_{i}\right)$ are the averages over p of the $\hat{\beta}_{p}{ }^{2}$ and the $\bar{s}_{p}\left(\hat{\epsilon}_{i}\right)$.
Comparing equations (15-17) it is clear that the residuals $\hat{\varepsilon}_{t}$ from the one-factor market model contain variation in the market factors $\hat{\gamma}_{0 t}, \hat{\gamma}_{2 t}$, and $\hat{\gamma}_{3 t}$. Thus, if one is interested in the effect on a security's return of an event specific to the given company, this effect can probably be studied more precisely from the residuals of the two- or even the four-factor market models of (16) and (17) than from the one-factor model of (15). This has in fact already been done in a study of changes in accounting techniques by Ball (1972), in a study of insider trading by Jaffe (1972), and in a study of mergers by Mandelker (1972).

Ball, Jaffe, and Mandelker use the two-factor rather than the four-factor market model, and there is probably some basis for this. First, one can see from table 5 that because of the collinearity of $\hat{\beta}_{p}, \hat{\beta}_{p}^{2}$, and $\bar{s}_{p}\left(\hat{\epsilon}_{i}\right)$, the coefficient estimates $\hat{\gamma}_{0 t}$ and $\hat{\gamma}_{1 t}$ have much smaller standard errors in the twofactor model. Second, we have computed residual variances for each of our 20 portfolios for various time periods from the time series of $\hat{\varepsilon}_{p t}$ and $\hat{p}_{p t}$ from (15), (16), and (17). The decline in residual variance that is obtained in
going from (15) to (16) is as predicted: That is, the decline is noticeable over more or less the entire range of $\hat{\beta}_{p}$ and it is proportional to $\left(1-\hat{\beta}_{p}\right)^{2}$. On the other hand, in going from the two to the four-factor model, reductions in residual variance are generally noticeable only in the portfolios with the lowest and highest $\hat{\beta}_{p}$, and the reductions for these two portfolios are generally small. Moreover, including $\bar{s}_{p}\left(\hat{\varepsilon}_{i}\right)$ as an explanatory variable in addition to $\hat{\beta}_{p}$ and $\hat{\beta}_{p}{ }^{2}$ never results in a noticeable reduction in residual variances.

A2. Multifactor Models and Errors in the $\hat{\beta}$

If the return-generating process is a multifactor market model, then the usual estimates of β_{1} from the one-factor model of (15) are not most efficient. For example, if the return-generating process is the population analog of (16), more efficient estimates of β_{i} could in principle be obtained from a constrained regression applied to

$$
\widetilde{R}_{2 t}-\tilde{\gamma}_{0 t}=\beta_{i}\left(\widetilde{R}_{m t}-\widetilde{\gamma}_{0 t}\right)+\tilde{\eta}_{t t}
$$

But this approach requires the time series of the true $\tilde{\gamma}_{0}$. All we have are estimates $\hat{\gamma}_{0 t}$, themselves obtained from estimates of $\hat{\beta}_{p}$ from the one-factor model of (15).
It can also be shown that with a multifactor return-generating process the errors in the $\hat{\beta}$ computed from the one-factor market model of (8) and (15) are correlated across securities and portfolios. This results from the fact that if the true process is a multifactor model, the disturbances of the one-factor model are correlated across securities and porffolios. Moreover, the interdependence of the errors in the $\hat{\beta}$ is higher the farther the true β 's are from 1.0. This was already noted in the discussion of table 2 where we found that the relative reduction in the standard errors of the $\hat{\beta}$'s obtained by using portfolios rather than individual securities is lower the farther $\hat{\beta}_{p}$ is from 1.0.
Interdependence of the errors in the $\hat{\beta}_{p}$ also complicates the formal analysis of the effects of errors-in-the-variables on properties of the estimated coefficients (the $\hat{\gamma}_{j t}$) in the risk-return regressions of (10). This topic is considered in detail in an appendix to an earlier version of this paper that can be made available to the reader on request.

References

Ball, R. "Changes in Accounting Techniques and Stock Prices." Ph.D. dissertation, University of Chicago, 1972.
Black, F. "Capital Market Equilibrium with Restricted Borrowing." J. Bus. 45 (July 1972): 444-55.
Black, F.; Jensen, M.; Scholes, M. "The Capital Asset Pricing Model: Some Empirical Results." In Studies in the Theory of Capital Markets, edited by Michael Jensen. New York: Praeger, 1972.
Blume, M. E. "Portfolio Theory: A Step toward Its Practical Application." J. Bus. 43 (April 1970): 152-73.
Douglas, G. W. "Risk in the Equity Markets: An Empirical Appraisal of Market Efficiency." Yale Econ. Essays 9 (Spring 1969) : 3-45.
Fama, E. F. "The Behavior of Stock Market Prices." J. Bus. 38 (January 1965): 34-105. (a)
"Portfolio Analysis in a Stable Paretian Market." Management Sci. 11 (January 1965): 404-19. (b)
-_Multiperiod Consumption-Investment Decisions." A.E.R. 60 (March 1970): 163-74. (a)
-_. "Efficient Capital Markets: A Review of Theory and Empirical Work." J. Finance 25 (May 1970): 383-417. (b)

- "Risk, Return and Equilibrium." J.P.E. 79 (January/February 1971): 30-55.
Fama, E. F., and Babiak, H. "Dividend Policy: An Empirical Analysis." J. American Statis. Assoc. 48 (December 1968): 1132-61.
Fama, E. F.; Fisher, L.; Jensen, M.; Roll, R. "The Adjustment of Stock Prices to New Information." Internat. Econ. Rev. 10 (February 1969): 1-21.
Fama, E. F., and Miller, M. The Theory of Finance. New York: Holt, Rinehart \& Winston, 1972.
Fama, E. F., and Roll, R. "Some Properties of Symmetric Stable Distributions." J. American Statis. Assoc. 48 (September 1968) : 817-36.

Fisher, L. "Some New Stock Market Indexes." J. Bus, 39 (January 1966): 191225.

Friend, I., and Blume, M. "Measurement of Portfolio Performance under Uncertainty." A.E.R. 60 (Séptember 1970): 561-75.
Gonedes, N. J. "Evidence on the Information Content of Accounting Numbers: Accounting-based and Market-based Estimates of Systematic Risk."J. Financial and Quantitative Analysis (1973): in press.
Jaffe, J. "Security Regulation, Special Information, and Insider Trading." Ph.D. dissertation, University of Chicago, 1972.
Jensen, M. "The Foundations and Current State of Capital Market Theory." Bell J. Econ, and Management Sci. 3 (Autumn 1972): 357-98.
Lintner, J. "The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets." Rev. Econ. and Statis. 47 (February 1965): 13-37.
Mandelker, G. "Returns to Stockholders from Mergers." Ph.D. proposal, University of Chicago, 1972.
Markowitz, H. Portfolio Selection: Efficient Diversification of Investments. New York: Wiley, 1959.
Miller, K. D. "Futures Trading and Investor Returns: An Investigation of Commodity Market Risk Premiums." Ph.D. dissertation, University of Chicago, 1971.

Miller, M., and Scholes, M. "Rates of Return in Relation to Risk: A Re-Examination of Some Recent Findings." In Studies in the Theory of Capital Markets, edited by Michael Jensen. New York: Praeger, 1972.
Mood, A. M., and Graybill, F. A. Introduction to the Theory of Statistics. New York: McGraw-Hill, 1963.
Officer, R. R. "A Time Series Examination of the Market Factor of the New York Stock Exchange." Ph.D. dissertation, University of Chicago, 1971.
Roll, R. The Behavior of Interest Rates. New York: Basic, 1970.
Sharpe, W. F. "Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk." J. Finance 19 (September 1964): 425-42.
Tobin, J. "Liquidity Preference as Behavior towards Risk." Rev. Econ. Studies 25 (February 1958): 65-86.

The effer of dividend policy on the prices of equity staritics bas keen in istue of intefest ia fenancial theory. The traditional view wiss that inverters
 prospect of future diyidends. Consequensy. they bid up the price of high
 [1962) and Gordon (1963]. In their now elassic paper Millet mul Mindigliani (1961) argued that in a world wilhout taxes and trantathons costs, the diwidend policy of a corporation, given its investment policy, has no effee for the prise of its shares. In a world where capital guirs rescive preterethial teaturent telative to dividends, the Miller-Mthdighani tirelevante pro position would seem. to break down. They argite, howeter, that sinte, tas rates wary actoss investors each sorporation weuld altracy to itself a dientete of investors that most desied its dirident policy. Black mad 5 shotes (1974 asset! that cofporations would adjust their payour polisios until in cqualibo

riem the spectrum of policies offered would be such that any onc firm is unable to alfect the price of its shares by (marginal) changes in its payout policy.

In the absence of taxes caphil asset pricing theory suggests that in dividuals choose mean-yanciance efficient-portolios. Under. personat income texes. indiyiduals would be expected to choose portolios that are mean-- variance eflicient in after-tax rates of return. However, the tax baw in the United States are such that some eronomic units (for example, corporations) would sem to prefer dividends relative to capital, gains. Other units for example, non-profit organizations) pay no taxes and would be indiferent to the tevel of yeld for x given level of expected return. The resulting effert of dividend yeld on common stock prices seens to be an empirical issuc.

Brennain (1973) [irst proposed an extended form of the single period Capial Asse! Pricing Molel that recounted for the taxation of dividends. Ender be assumption of proportional individual tax rates not a function of incomel, cortain dividends, and unlimited borrowing at the tiskless rate of interest tamong others) be derived the following equilibrium relationship:

$$
\begin{equation*}
E\left(\mathbb{R}_{j}\right)-r_{t}=b F_{i}+r\left(d_{i}-r_{f}\right) \tag{1}
\end{equation*}
$$

where R_{1} is the before tax total return to security $i_{1} \beta_{1}$ is its sysematic risk, B $=\left[E\left(R_{m}\right)-r_{f}-:\left(d_{m}-r_{f}\right)\right]$ is the after-iax excess rate of retum on the marke portfolio, f_{f} is the return on a riskless asset, d_{1} is the cividend yield on securty di und the subscript m denotes the market portolio. $\frac{7}{}$ is a positive weffectent that accoums for the axation of dividends and interest as odinafy intome and taxinon, of capial gains at a prefermatiof fate.

If empirical tests [of the form (11] to date, the evidence bas been inconsistent. Black and Schotes (1974, p. 11 conclude that

- "...is is not passible to demonstate that the expecteit retern' on bigh yweld eammon stocks difer from the expected returns on low yield common stocks enther before or afier taxes.'
Alcenatwely, stated in terms of the Brennat model, their tests were not sufferenty powerfol either to refect the hypdthesis thin $=0$ or to rejeet the Thyothese that $=0.5$. Rowenberg and Mafthe 119781 atribute the lack of
 stonks onto portiolios and (b) the innfliciency of their estimating procedufes. wheh are equivatent to Ordinary Least Squares. Using an instramenial warisbles approset to the problem of erfors in variabics and a+more tomplete specfication af the variance covariance matrix fof disturbanes in, the repressionth Rosenoserg and Marabe find that the difdend term1 is atantically signeticant. Both the Roserberg ond Marathe and the Black and Sckoles stutied use an zuerage dividend yicha from the prior twelve moth
 are paid quarterly, their proxy understates the expected dividend yidedidexdividend months and overstates it in those months that a stock does rof go - ex-dividencis thereby reducing the efferiency of the ettimate focenticient on the - dividend yield lerm. Both studies (Rosenberg and Marathe in using it. strumental yariables, and Black-Scholes in groupiag) satrifice eficiency to achieve consitutery.

The present paper derives an after-tax version of the Capital Asset Pribing Model that accounts for a progressive tax scheme and both weath and income related constraints on borrowing. Alternative econernetric procedires are used to lest the implications of this model Untike fipior tests of the CAPM, the tests bere use the wariance of the observed betas to artive at maximum likelihood estimators of the coefficiens. Consistotestimators are. obtained witbout loss of efretency. Also for ex-diviceod moniths the expered dividend yield based on prior information is used, and for other months the expected dividend yield "is set squal to tero. While the estimate of the coefficient of dividend yield is of the same orde of magnitute as that found in Black and Scfoles, and lower than that found by Rosenbery and"Marathe the s-value is substandially larger, indicating a substántial increase in efliciency. Furbarmore, the tests are consistent with the eristence of a clientele effect, indicating that the ayersion for dividends relatige to eapityl guins is lower for high yield stocks and higher for-low yithe stocks. This is consistent with the Elton and Gruber (1970) emprical tesults on the exdividerd behavior of common stocks.

2. Theary

This section terives a version of the Capital Assel Priang Mowel that accounts for the tav treatment of dividend and interesti incorte ander a progressive faxation schenve. Two lypes of constraints on intividuat twomat ing are imposed. The first constrains the maximum interest on rishless borfowing to be equal to the individuals dividend ineons and the seoond is, a margin requirement that testricts the foction of securiy boidings that may be financed through borrowing. In previous publahed unti. Brennan (1973) derives ant after-tax nersion of the Capital Asset Priting Model mith unlimited borrowing and with constunt lax rates which may vary adoss indiwiduals. tonder his modet when interest on torrowing exaeds dividend income the investor would fay n negation tax The therotical medel

developed here may be viewed as an extension of the Brennan analysist to. account for constrainls on borroxing along with a progressive tat stheme: Special cases of the model are cxamined, whete the income felated constraint and/or the margin constraint on indwidual borrowing ate removed:

The following assumptions are made:

utility functions are mono-
(n, 1) Mdividuals Yon Neumann-Mortenstern uility tunctions are monotone inctearing strictly concase feyctons of after-tax end of period. wealth.
A. 21 Security rates of recurn fave a multivariale normal distribution. of securities and individuals"ate pries takers."
of seciduals have homogentous expectations.
(A.5) All assets are marketable.
(A. 6) a riskless assel, paying a constant rate r_{f}, crists.
(a) 7 Bividends" on securities are paid at the end of the pariod and are A.7) bivon with ernainty at the beginning of the period.

Income taxes are progressive and the mateinal tax rate is a con-- tinuous function of taxable income-
(A.9) There ate no taxes on capital gains.
(A.to) Constraints on indiniduals borowing ate of the form:
(1) A constraint that the interest on borrowine cannos cxeced distdeod income called the income constaint on borrowing andior (ii) is margin constraim that the individults net worth be at last a given fration of the market value of bis holdings of risky semuritices.
Assumptons (A.I) frotrgh (A.6) are statidard assumptions of the Capial Aswet Pricing Mobel. Assumptions (A) and (A.2) taken together imply that preferences can be deseribed over the mean and the variance of after-tax end of period wealth. Linder these conditions individuls. prefer more mean ecturn and are averse to the variance of return. The individualis marginal rale un substimition betueen the riean and wariance of aftertax end of period wealih, at the optimum, tan the weiten as the ratio, of his global risk widerane to his mitial period wealth. That is, if $H_{4}(P)$ is the k th indavidual's ubly tuthon the terms of affer-ux end of period wealh, of the afictax forfole return, and $w^{\prime \prime}$ is his intial wealth.

- that dividëds are announced bit the beginning of tee periog and paîd at its end. Since virms display relatively slable dividend policies this may belz retsonable approximation for a monthiy holding period., . k_{-}^{*}
Assumption (A.8) closely resembers the tax treatment of ortinary dividends in the US. The $\$ 100$ dividend exclusion is ignored since the small
magnitude of the exclusion implits that for the majority of hockhokers the marginal tax rate applicable to ordinary intorae is the samed as that applied to dividends. Assumption (A.9) abstracts frap ibe effects of capilal gains taxes. Since capital guins are taxed only upon realization, thep reatment in a single period model is not possible. It is, however, straightondard to modela
-x capital gains tax on an accrual basis [sce Brennan (197al]. Sifoce most capital gains go unicalized for lone priods, this would tend to overskate the effect bf the actual tar. Noting that the ratio of realizations to accruats is small, and that eapital gains are exempt from tax when tansfered [oy inheritano Diliey (1969) has atgued that the effective tax is raber sman!
Under assuruption (fis), the the individunts ayerage tax rate t^{+}. is a nothdectessirg function of his tarabe end of period intome 1 ,
-

$$
\begin{array}{lll}
t^{3}=g\left(Y_{1}^{2}\right) & \\
g(0)=0, & g\left(Y_{1}\right)=0 & \text { for } r_{1}^{2} \leq 0 . \\
& >0 \text { for } r_{1}>0 .
\end{array}
$$

The kit indwidual's marginal tax mete, writen T^{-i}, is the fast derivatise of laxes paid with respoct to taxable income. This is equal to the average tan. rate plus the product of manble income and the derimative of the average fax. fale.

The margin constraint in assumption (A. 10 - B) resembes insthational margin retrictions. By (A.to-il kormwing is constrand tup to a piat where interest paid equal dividends recriecd. Tris constramt innorporate the cosual empirical observation that loan applitations require information on income (which this consmant acount for) in addition to information on wicath (which the margin constrains acevunts fork One or both of the constrains may be binding for a given individuat This formutation allonts the andysis of an cquilibrium with twh constrints anth suly one of them imposed or with no twortowing constraints.

The following rolation is emphoyd: ,
A_{r}. \quad the tetal belore tax rate of relum on secarity is equat to the ratio of the value of the securiy tr the end of the prindiplus ditisemad over ins current value less ma,

[^39]$\therefore 3$
\qquad
\qquad

[^40]\qquad
d
$3^{\text {Het }}$ the dividend yield on security i, equal to the dollar dividend * divided by the curreat price.
=the fraction of the kth individual's wealth invested in the th risky atset, $i=1,2 \ldots N$ a degative value is a shontsade;,",
$=$ the fraction of the kih individual's weath invefted in the safe asser (a negative value indicales borrowing)
= ine before-tax rate of return on the kth individeral's portfolio,
$W^{*}\left(\mu_{2}: \sigma_{2}^{1}\right)=$ the dith indisidual's initial Heath, and function detived over the $f^{R}\left(\mu_{2}: \sigma_{k}^{2}\right)=$ the $k t h$ individual's expected unity fonction and variance of after-tar portfotio return, μ_{k} and σ_{k}^{2} respectively.

The kth individual's ordinary ibeome is then
$\left.\because \quad Y_{i}^{k}=W^{2}\left(\sum_{i} x_{i}^{k} a_{i}+X_{j}^{k}\right)_{i}\right): \quad{ }_{i}$
The mean after-ax, return on the individualis portfotio is

$$
\begin{equation*}
H_{2}=\sum X_{F}^{k} E \in R_{i} 1+X_{r}^{k} r_{j}-r^{k}\left(\sum_{i} x_{i}^{2} d_{i}+X_{s}^{k} r_{s}\right) . \tag{6}
\end{equation*}
$$

und under assumption (AJ) the variatce of atter-tax feturn is

$$
\begin{aligned}
\sigma_{2}^{2} & =\sum_{1} \sum_{i} x_{1}^{2} x_{j}^{k} \operatorname{cov}\left(R_{i}-d_{i}^{2} A_{i}-d_{j} z^{k}\right) \\
& =\sum_{j} \sum_{1} x_{1}^{2} x_{j}^{2} \cos \left(R_{i} R_{j}\right)
\end{aligned}
$$

By ussumption th. 10-it the inconte conseraint on borrowing is

$$
\begin{equation*}
\left.W^{s}\left\{\sum_{1} x_{r}^{k} d_{1}+x_{r^{\prime}}\right\}\right\} \tag{B}
\end{equation*}
$$

and the margin constraint on tortowing is

$$
\begin{equation*}
14\left\{(1-x) \sum_{1} x_{u}^{u}+x_{n}\right\} \geq 0 \tag{}
\end{equation*}
$$

where $z_{;} 0<3<1$. it the margin sequitement on the individual As pointed out eadier. one of both of these conatraint may be binding.
The kih individuars optimpation problem is stated in tems of the

following Lagrangian:
?

where

λ_{1}^{k}. =the Lagrange multiplier on the k th indivituars budget
it, $S_{2}^{k}=$ the Lagrange multiplicr and non-negative slack teriable for the x_{-} income related constraint on the kthe individuals borrowing re-:-
 when is is not binding it $^{4}=0$ and $S_{2} \geqslant 0$ and
皆 5 margin constraigt on the kh individuals forrowing repectively; again if the construnt is binding (nol binding) $x_{3}>(\Rightarrow) 0$ and $S_{3}^{\star}=\left(\grave{\sum}\right) 0$.
The stationary points satisfy the following first order conditions:
 ditions are the constaints and specty the sigos of the Lagratigian multipliers and ate omithed here. The prostasive nature of the tax schetme [atrumption A.8i] ensures that the mean terianoe efficien fromiter in atter-iax terms is concave, and this together with fist ayersion from asomaption (A.S) is suffecent to guaranter the second ofder conditions for 2 raximurn

 global risk tolerance $\left.0^{2}=11^{2} U^{5} 1-2 f^{2}\right)$ Subtrating reition (I2) Trom relation (11) and pearranging terms gields

$$
\begin{aligned}
& \mathscr{L}^{k} \equiv f^{k}\left(\mu_{k} \sigma_{1}^{*}\right)+\lambda_{1}^{k}\left[1-\sum_{j} X_{i}^{k}-X_{r}^{k}\right]
\end{aligned}
$$

equiberium requires that relation (13) bolds for all indifiduats, and * Marker cqu deat. For markets to ctear all assets baye to be beld which that markets conservation relation (44) that requires the value weighted
impliss the conse imples the conservation retation be equal to the market portfolio, average of all

$$
\begin{equation*}
\sum_{i}\left(W^{k} W^{*}\right) R_{i}^{n}=\dot{k}_{m} \tag{14}
\end{equation*}
$$

or

$$
\sum_{t} y^{\bullet n} \tilde{k}_{z}^{k}=\xi^{-} \bar{R}_{m}
$$

where

$$
\sum_{1}^{2} 3^{n}=w^{-}
$$

(13) by 6\%. stmming over all in-

Whlunhing both sides of relation (13) by fe semming over yides dividuals, using the conservation reation

$$
\begin{equation*}
E\left(R_{1}\right)-r_{t}=a+h B_{1}+c\left(d_{4}-r_{t}\right) \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
& m=\frac{5}{2}
\end{aligned}
$$

The trem: " a ", the incercept of the implied security marke plane is the frational margin requiftment zemes the wrighed aketige of the retios of individual shadose prices on the margin constraim and the expected margena.
 lobal risk tolerances. When $3>0$ ant positive in the absence of matgin
 equitements $(x=0)$ or when the

- curn on a zero beta portfolio Interpreting eq. (15) a is the exce yith is cqual to the riskless fale. Is. (re)at
$a=E\left(R_{x}\right)-r_{r}$ The then the coefrcisnt on beta is equal to the poduet of the variance of the rate of teturn Con the market porfolio and pabad market relative risk aversion, i.e. $b=$ var $\left.\left(\beta_{n}\right) H^{1 y^{m}} 0^{m}\right)$ Since reladon (15) abo holds For the market portfolio, 6 may be alterialively expressod as bere $\left(n_{n}\right)-T /$ $\left.-c\left(d_{n}-r_{f}\right)-d\right]$. If " c " is interprefed as a tox rate b may pe viexed as the expocted after-lax rate of return on a bedge portiotio when ss long the: market portiolio and short a pertollo having a zero beta ana a diviond
 - Gif. The "erm ' 6 ' is a weightod average of individual's marginal tax rates T $1\left(\theta^{k}\left(\theta^{-1}\right) T^{t}\right.$, less the weighted, average of the individuats ratios of the shadow price on the income relaled borrowing constrint hat the experis matginal utity of mean portotio return $\left.\sum_{3}\left(0_{i} 0^{m}\right)_{2}^{*} f^{2}\right)$ For the cases
 binding for all individunls, is simply the meighed awerage of marginal tax rates, gnd is posidue. Otherwise, the sinn of "c depends on dhe magnitudes of these rwo terms. Deline 8 as the set, of indices of those motividuals if for whom the income related constatit is bindiac: and detne f foot B) as the

;
The individuals in N may be voped as a cientele that prefers capial garas
 orence for dividends: in the onotext of this model, thest inotrodant ansh incrased dikidents serve to inerease their debt capacity without suditiont ar obligations: To this woint corpera thided policies have been trated as exorenous in this model.

 dividends and jacteasing (decrejbingl share tepurthans of decresing in-
 any restrictions the IRS may ingonel would adjut the supply of divisents. until an equilibitum was oblained where
\therefore

*. "not affect its marker valper $c=0$ and cividend yteld has no cficet on the before tax fate of return on any sceurity. ${ }^{z}$
Under unnestrited supply effects, $c=0$ and the equilibrium relationship (15) reduces to the before tax tero beta version of the Capital Asset Pricing ispodel:

$$
\begin{equation*}
E\left(\beta_{1}\right)=\left(\alpha \pm r_{f} \mid 1-\beta_{1}\right)+E\left(\tilde{R}_{m}\right) \beta_{\mathrm{f}} \tag{18}
\end{equation*}
$$

Note that this obtains in the presence of taxcs. Long (1975) has studied conditions under which the before tax and alter-fax mean waniance elifient fronters are idention for any individual. He does not, however, study the cquiliorium as is done here: for even though the before tas and after-tax individual mean variance frontiers are not identical, (1) demonstrates that prices are fourd as if there is mos tax effect.
In the case where there are no margen constraints, $a=0$, and relation (18) reduces to the before tax traidional Sharpe-Lintacr wersion of the Capital Asset Pricing Model.

$$
\begin{equation*}
E\left(\mathcal{R}_{f}\right)=r_{f}+\left[E\left(R_{m}\right)-r_{f}\right] P_{r} . \tag{19}
\end{equation*}
$$

Return now to the ense where the income related borowing constraint is
 cket: and the reblion refibecs to an atter-tax vession of the Black (1972), Lintnet $\{1965$, Vasicek \{1971\} zero beta model.

$$
E\left[\vec{R}_{i}\right)-T^{*} d_{i}=\left[r_{r}\left(1-T^{n}\right)+a\right]\left(1-\beta_{j}\right)+\left(E\left(\vec{R}_{m}\right)-T^{n} d_{m}\right) \beta_{1}
$$

When there is no margin consiratnt or when it is non-binding for all individuals, $a=0$, and relation (20) reduaed to an afteratax version of the Sharme (1964). Lintner $\{1965$ madel.

$$
\begin{equation*}
E\left(A_{j}\right)-T^{m} d_{i}=\left[r_{f}\left(1-T^{m}\right)\right]+\left[E\left(R_{m}\right)-T^{m} d^{m}-\nabla_{j}\left(1-T^{m}\right)\right] P_{i} \tag{21}
\end{equation*}
$$

However, in none of these cases is T^{m} a weighted average of individual

 zev zern. If sil isdividuzis had the wame endowments and bad lite tame uivity turetions this consurant wound be nombinding for all individuale.

 major gobleta wind the argwnen tere is that sith the exiatence of two ditioct clienteles, one

 lhat $T^{*}=t^{\prime}$ and rolation, (21) is rdention to the equithium impliot oy Brennan (1973), who assumes a constant tak rate: that may infor across investors.

3. Empirical tests

From the theory, the equilibriuth specification to be tested is

$$
\left.E\left(R_{i}\right)-r_{s}=a+b g_{1}+c a_{i}-r_{s}\right)
$$

The hypoiheses are $a>0, b>0$ and in the absente of dre inoome rehated constraint on borrowing c>0.

In obtaining econometric estmates of a, b and c, two pioblems anse The first is that cxpectutions ate nol directly observed. The usual procedure is to assume that expectationsere rational and that the parameters a, b and a areconstant over time; the realized returns are used on the lefi-fand side

$$
i=1,2-\cdots+v_{n}
$$

$$
\begin{equation*}
i=1.2, T \tag{23}
\end{equation*}
$$

Where \vec{R}_{x} is the return of security it period $t_{0} \beta_{4}$ and $d_{\text {o }}$ are the syspmatio risk and the difldend yield of security i in period 5 rexpectivety. The disturbance term \bar{E}_{f} is $\mathcal{R}_{\mathrm{it}}-E\left(\mathcal{R}_{\mathrm{re}}\right)$, the deviation of the nealized return from is expected value. The coeflicients zout and in comespond to a $\%$ and on
 $\left.t=l_{1}, \ldots, T\right\}$, is not proportional to the identity matrix sine opatemphrancous covariances between security returns are non-zaro. and retura variances differ astoss secisities, hote hat in order to oonserve space of it is used to denole-a column vector. This means that ondinary least square (OLS) estimators are incificient! for cither a cross-setional regrescion in month t, or a pooled time serics and cossesectional regresion. The compuled yariance of the OLS cfimator (based on the asumption that the variance of \bar{z} is propottional to the dontity matrix) is apl equal to we trive, varignce of the estimator.

The second problem is that the irue population B_{0} "s are unolvervable Thes usual procedure use fin elimale from past dath, and this eximate hat ha; associated measuremetit erfor. This means that the OLS etimates will be biased and inconsisten:. The method used in tackling these problems if discussed in this section.
To fix maters, assume that duta exist for rateo of return, trae belas dind

*.
where

$$
\vec{R} \equiv\left\{R_{1} \tilde{K}_{2}, \ldots, R_{5}, \ldots, \hat{R}_{T}\right\}
$$

- and the matrices of explanatory yariables as

$$
I=\left\{X_{1} X_{2, k \times} X_{p} \ldots x_{t}^{i}\right\}
$$

wibere

$$
X_{1}=\left[\begin{array}{ccc}
1 & \beta_{11} & \left(d_{11}-r_{d}\right) \\
1 & \beta_{32} & \left(d_{25}-r_{2}\right) \\
\vdots & \vdots & \vdots \\
1 & \beta_{3,} & \left(d_{3 f}-r_{f_{2}}\right)
\end{array}\right]
$$

 the pooled time series and cross-sectional regression as

$$
R=X \Gamma \div \tilde{E}_{n}
$$

where

$$
\varepsilon \equiv\left\{\bar{t}_{1} \bar{\varepsilon}_{2}, \ldots, \bar{c}_{T}, \ldots-\overline{\tilde{c}}_{T}\right\}_{1}
$$

and

II is assumed that

$$
E(a)=0
$$

and that

$$
E(\bar{z}, \bar{\xi})=V_{\mu}
$$

some symmerrie positive definive matrix of order ($N_{7} \times N, N_{1}$. 11 is also bssumed that security tetuens afe serially uncorielated, so that

$$
E\left\{\hat{t}_{z t} E_{n}\right\}=0 \text { for } f \neq \underline{s}
$$

This mears that the variance-covariance matrix Y ex $E(E)$ is block diagonal. with the off-diagonal blocks being xtre. The matrices Y appean atong the siagoral of 5.
: :

\square

such thini $\left(X_{t}^{*} W_{1}^{-1} X\right)^{-\frac{1}{2}}$ exists. Construct an estimator, using cross-sectional . data in period ts as

$$
\left(i_{i}^{*}+H_{t}^{-1} X_{j}\right)^{-1} X_{i}^{z} W_{t}^{-1} K_{t} .
$$

A This estimator is lineer in \vec{k}, and unbiased for r. This estimater is a linear combination of realized sexurity excess returns it period t. From the fact that

$$
\begin{equation*}
\left(X_{r} W_{t}^{-1} X_{1}\right)^{-1} X_{i}^{\prime} W_{t}^{-1} X_{5}=1 \tag{33}
\end{equation*}
$$

where f is the idendity matrix, it follows that the estimator for 70 in (32) is the realizet excess return on a zero beta portfolio hasing a dividend yield squal to the riskless fate, Similarly, the estimator for γ is the realized excoss, return on'a hedge portfonio that has a beta of one and dividend yield equal 10 zero; and that for 72 is the tealized excess return on a hedge portolio having a zero beta and a dindend yield equal to unity. This interpretation can be given to any' estimator of the form (32). When W_{z}^{-1} (or, equivalently. the portolio weights fiscussed above) is chosen so as to minimize the yariance of the porifolio return, the resulting estimator is the GlS estmator. This is because portolio estimates as in (32) ase linear and unbiased by construction, and by the Gauss-Markow theorem the GLS estimator is the -- Amemiva (1972)].

In te not possible to sperify the elements of the vanance-covariance matrix
 assuming that the Shatpe-singis index model is a torrect description of the return generating process. The process that generates returns af the beginning of period \mathbf{r} Is assumed to be at follows:

$$
\begin{align*}
& =5,0 . \quad i=j+ \tag{35}\\
& I_{13}=E\left|R_{12}\right| R_{3 q}=01 \text {. }
\end{align*}
$$

When thes sperification the element in the th now and the fith column of Furnten as Vilijh is wiven by

$$
\begin{aligned}
& Y_{i}\left[\mathrm{H}_{\mathrm{j}} j \mathrm{j}=\beta_{\mathrm{a}} p_{p_{2}} \sigma_{\text {mear }} \quad i \neq j\right.
\end{aligned}
$$

$$
\begin{align*}
& f, j=1,2, \ldots, v_{t} \tag{36}
\end{align*}
$$

[^41]

Under thitse conditions the GLS estimator of r obtained by usigg data en period t reduces to "

$$
P_{x}=\left(X_{t}^{\prime} \Omega_{t}^{\sim 1} X_{t}\right)^{-1} X_{s}^{\prime} \Omega_{t}^{-1} R_{n}
$$

Where Ω_{t} is a diagonal matrix of order $\left\{\operatorname{sif}_{2} \times N_{t}\right\}$ whose alement in the on row and jth column is given by $\quad, \quad, \quad, \quad$,

$$
\begin{align*}
\dot{\Omega}_{1}(i, j) & =0, \quad i \neq j \quad, \quad \tag{3}\\
& =s_{\text {iiv }}, \quad i=j,
\end{align*}
$$

In appeadix A it is showa that this estimator is the GLS mimator for F. That is, uider the assumptions of the single index medel the entimator minimizes she 'residual risk' of three portiflio seturns subjec to the constraint that the expected returns on thes ponfolios are for in and 72 ' respectively. This estimator cen be construtied as a heterosezacite transfor
 are given by

$$
\begin{align*}
P_{i}(i, j) & =\phi / s_{1} \equiv \phi \sqrt{s_{13}}, & i=j \tag{39}\\
& =0, & i=j
\end{align*}
$$

where ϕ is a posilive sealar. Then f_{s} an also be arivet at from the ots regression on the irnasforned varmbles

$$
\begin{gather*}
R_{i}^{*}=x_{i}^{*} \Gamma+F_{i}^{*} \tag{40}\\
\text { Where } \\
R_{r}^{*}=P K_{r} \text { and } x_{r}^{*}=\beta x_{r}
\end{gather*}
$$

This is equivalent to defating the varimbles in the then nom of $A_{\text {and }} x$ by a factor proportional to the residual siandard entry Note that alsct azd Scholes (1974), who used the portolio spproseh, ssumed in addition to the single index brodel that the rexidual rixk of all scrutities mece cqual: that ${ }^{4}$,
 reduces to OLS on the untramsiomed ratiablex

- stimates of his variable, \boldsymbol{B}_{i} are obtained from bisiorical data. The estimated bela is assumed equal to the fruc bela plus a measurenent error y
*

$$
\cdot \tilde{b}_{a t}=\mathscr{F}_{2 x} \div \tilde{F}_{6}
$$

$$
\begin{equation*}
\dot{C}^{-6} \tag{41}
\end{equation*}
$$

The presence of measurement error muses missptetheation in OLS and GLS estimators and the resulting estimates of r are biased and jonconsistent [sce, for example, fohnston 11972 . for a dicumsion of the bias in the cocticients of a tariable without error fore dividend yiedt see Fisher [19771]. The estimates $F_{i t}$ are oblaned from'a regrestion of \mathcal{R}_{2} on the return of the matkel portiolio $R_{\text {me }}^{\prime}$ from data prior to perioder,

$$
\begin{equation*}
\bar{R}_{i t}=z_{12}+\hat{\beta}_{4} R_{m s}+\tilde{c}_{r} \quad r=1-60, t-59 \ldots, t-1 \tag{+2}
\end{equation*}
$$

Since the sinple index model is assumed, cor $\left(\vec{p}_{\mathrm{F},} \vec{c}_{50}\right)=0$ and bence $\operatorname{cov}\left(\vec{r}_{u n} \vec{r}_{\mathrm{je}}\right)=0$. If the joint probatidity distribution between security tates of return abd market refurn is stationary, the tariance of the measurement ${ }^{+}$ ctrot varl \bar{r}_{6}] is proportional to the variance of the residual tisk term var [$\left.\vec{i}_{7}\right]_{2}$,
 $=0$ Note that itis time peries regicssion yields a meentred beta, pitw its

 made. However, if 5 recognized that if the 'market return used in (dit is nel the irve matket return, then the estmate of β_{i} maty be biased, was been observed by Sharpe (1977). Wayecs (1972) and Roll 11977).

Because of errors in variables, most previous empirical tests have grouped stocks into portsolios. Since errors in measurement in betas for different securition. are less than perfoclly cortelated, grouping, risky assels, into porfolion wotd seduce the asymmotic biss in OLS estmantors Howewer. \&rouping results in a reduction of efficiency caused by the loss of informationi. The eficiency of the OLS extimator of the coeflicient of a single andependent bariable is proportional to the cross sectionat variation in that thdependent variable (bera). For the two independent variables ease (dividend fected and betal. Stchle \{1976\} bas shoun that the effaciency of the OLS estimstar of the coellicient of a given independent variable using grouped
 unctplated by the vatiation in 1he oher indepentery tariable. Since the whin group vorigion in dividend yisld wexplaned by befa is eliminated, the efficiency of the extimate of the dividend yield coefteient using grouped

does not use the grouping approach to errors in variables Insead, use is made of the measurement eror in beta to anive at a consistent fumator for - r_{1}.

In constructing the GLS cstimator Pif (3T), each tariable has beca dellated by a factor proportionali to the residuat standard devation The factor of proportionaliyy was an arbitary positive sealar. The strueture of out problem is sweh that the standard croot of measuremunt in for

 - assamprions.

where R_{m} is the sample mican of the market retum in tie prior 60 mooth pariod, ${ }^{5}$ Assume that of is known and let

$$
\begin{equation*}
\phi=5_{i j}^{\prime} t_{1} \tag{+4}
\end{equation*}
$$

in the definition of P in (39). Thus each variable in the nows of \hat{R}, and x_{1} is
 is used in place of $\beta_{\text {it tunobserved }}$, the measurement ernor in the detated

 replacing β_{u}. Then

11r.ac

$$
\begin{equation*}
J^{2}=\sum_{i=i}^{S}\left|\dot{F}_{i}\right| T \mid \tag{46}
\end{equation*}
$$

where
is inconsistent. This is becrause
where

Thw ways final each cross sectional eationtor is biased exen in large samplesHence the wherall satimstor, weing an arnhmetic mean of the crossemetional grtmators, is inconsistert.
Consider the foliosione enimator in each cross sectional nomth:

$$
I_{1}^{2}=\left(A_{i}^{*} x_{1}^{n}-\left(\begin{array}{lll}
0 & 0 & 0 \tag{49}\\
0 & 1 & 0 \\
x_{2} & 0 & 0
\end{array}\right)\right)^{-1} \frac{\xi^{*} R_{i}^{*}}{N_{5}}
$$

Ther

$$
\begin{equation*}
n \lim A^{2}=\frac{B_{1}^{*} R_{3}}{X_{1}^{3}=R_{1}^{2}} \tag{50}
\end{equation*}
$$

:nd

it follonif that the extimator for yo in (47) is the realized exoss return on a formal portiolio that has, in probabitity limit, a zero beta and a dividend
 fealized excess feturn on a hedge portfolio that has in probability limil, a beta of one (or zero) and a dividend yield equal to zaro (or unity).
The overall estimator.

$$
\begin{equation*}
f=\sum_{i=1}^{T}(f T) \tag{47}
\end{equation*}
$$

-

combines T indepeodent estimates, and is consistent,

Th is shoun in appendix B hat, if $\bar{F}_{\text {ir }}$ and $\bar{\varepsilon}_{\text {: }}$ are jointiy oormat and: indepeodent, then A_{1} is the maximum lokedibod cotimator (MLE for $\Gamma_{\text {. }}$ ursing data in period f.

4. Deta and resuits

Data on seturity rates of return $\left(R_{i n}\right)$ were oblamed trom the menthly fornta lapes supplied by the Center for Research in Sourity Prics (CRSP) at the Udiversity of Chicago. The same senice provides the momhly retum on a value weighted index of all the securities on the tape and this index was used as the market retum (R_{m}) for the time seties regkesmons. From Janung 1931 until December 1951. the monthly return on high srabe ormmerial
 until December 197T the retum on a Treasury Bill faith one month to maturity) was usfi forff. Estimate of cach scitrity's beta $\bar{S}_{\text {in }}$ zud its associated staidard error were obtained from rexressions of the seanity, cxcess retura on the matket exeess return for 60 monthe priot so f .
:This was repeated for all securities on the CRSP tapes from $=1$ (fanuary 1936) 10 $f=T=504$ (Demember 1977) Janury 1936 was thocra as the initial nonth for (subsequent) crose-metional regresiven hewum that whas when dividends first beceme taxable.
 was computed from the CRSP monhly maxter fite Thas is

\because.
if in month t, security i went ex-dividend, and the dollat taxabke dividend D_{i} per share was announced prior to month it and

$$
d_{i}=D_{i r} P_{i M l},
$$

rin monith : securiy i went ex-dividend and this was a rectering dividend hol pressousty announced. Here D_{i}, was the previous igoing back at most 12 monthsk, returting taxable dividend per share, adjusted fot any changes in Whe number of shares outstanding in the interim; where P_{A}, is the closims price in month $t-1$.
This construction assumes that the jnvestor knows at the end of each month whether of no the subsequent morath is an ex-dividend month for a frecurine dividend. However, the surcogate for the dividend \& based only on information that would bave been available ex ance to the investor.
The enoss-sectional tegressions in wach month provide a sequence of
 the first uses OLS , the second uses GLS and the third uses maximum ilikelihood estimation. The econometric procedures devefoped in section 3 apply equally well to the simele variable fegression. alone. This corresponds to a rest of the two factor Capital Asset Prieng Modeh as in Black, Jenser and Scholes (1972) and Fams and MacBeth [1973\} ${ }^{2}$

Where \tilde{u}_{10} is the deviation of $R_{\text {di }}$ from its expected value. These cross sectional
 OLS. the second using GLS and the thite using maximum bikelihood eximation.
The entimated coeflecents were shown to be realized cxecss rates of return on portolios (with tetafo characteristics $)^{6}$ in month 4 . If is assumed that the extess pates of relurn of these ponfolios ere sutionary and setially uncorrelated. Linder thes condisions the mosir eftreient estimators of the

A sinilar computation is made for \%' ${ }^{\prime}$ and
The thice sets of estimators of for y_{1} and $i n$ (and of yo and r) and tweir respociye i-statisties for the overall period January 1936 to December 1977 are provided in Panel A (Panel B) of table 1.

Table 1
 1975:

+	Pancl A: Alter-lax mides					
Procsinre	\%	H_{5}	$\dot{5}$		$\frac{1}{7}$	
OLS	$\begin{aligned} & 0.0 \times 1616 \\ & (4.37) \end{aligned}$	$\begin{aligned} & 0.00963 \\ & 41.51 \end{aligned}$	$0.23\}$	$\begin{aligned} & \text { a0usi } \\ & 4 \times 2 y \end{aligned}$	$\begin{aligned} & 0.0,25) \\ & n .2 \times 7) \end{aligned}$	
pus	$\begin{aligned} & 0,00346 \\ & 9.53] \end{aligned}$	$\begin{aligned} & 0.00344 \\ & \times(1.85) \end{aligned}$	$\begin{aligned} & 0,34 \\ & {[8-4]} \end{aligned}$	$\text { a0as } 16$ 4.009	$\begin{gathered} 0.00402 \\ (1.03) \end{gathered}$	
MRE	$\begin{aligned} & 0.00363 \\ & {[2631} \end{aligned}$	$\begin{aligned} & 9.0011 \\ & \text { (1. } 85\} \end{aligned}$	$\begin{aligned} & 0.718 \\ & \{[62\} \end{aligned}$	$\frac{a x c t a t}{\{3=1}$	$\begin{aligned} & \text { पaxx } \\ & \\| 1 \mathrm{x} 4 \end{aligned}$	

Wotes: The afteriat version castepond toithe regression

The beformiax version corrempods to the regrowion

 antrifer of this time series for extimite
$y_{i}=\sum_{i=1}^{T} \frac{z_{k}}{T^{i}}$,
 where $/=1,2,3$.

The OLS and GL'S estimators ate biased' and inconsistent due to merasurement error in bela. The maximum likelihood estimation' are sonsistent: consistency is a large sample property and for this study the monthly cross scational regressions have between 600 and 1200 firms, and there were 504 monthe. ${ }^{7}$ In Panel, A, table 1 , the MLE estimator of 71 is about 60.7 percent. greater than the cormesponding GES estumator. Consistent with prior: studies the MLE extimator of it is signibicantly positite indieating that invectors are risk averse Also consistent with prior studites the MLE estimator of io is signiticantly positive. In Patel B, tests" of the two factor odel are presented. Note itat in both pancts, the GLS precedure fesilts in
 (Panel 9). Consistent with prior tests of the traditional wersion of the Capial Asset Pricing Model the null hyportesis that $7=0$ is rejected. Consistent with investor risk aversion f is simuificanty positive at the 0.1 level Explanations for a positive inercept $\left(y_{0}>0\right)$ indude, in addition to margin constraints- on borrowing. misspesifiction of the marker periflio [sec Hayers (1972. Sharpe (197T) and Roll (1977)], or beta scrvins as a surtegate for syutemanic skexness [see Krans and Litzenberger (1976)]
The coeficient of the excess dividend yived wariable, fis (Panel a) is bighly significant under all the estimating procedures. The standard errors of the GLS and faximum likelihood cstimators of 7 a are about 25 percent smaller than that of the OLS estimator. The magnitude of the cocincient indicates: that for every dollar of taxable return investor's requise betweet 23 and 24 cents of additional before lax return.

Whise the finding of a sigeificant dividend cocticient contrasts with the Black-Scholes (1974) mains of an insignificant ditidend- effect, the magniwede of the cooltivent in table t is conssitent with their study. The dividend yield lindepeedent) rariable they used was $\left(d_{i}-d_{m}\right){ }_{i} d_{m+}$ where d_{m} was the ayeriage dividend yeld on stocks. Since the coefficient they found was 0.0009 . and the aycrage annual yield in their petiod of study (1936-1966) 8250.048 , pheir estimate of ty can be approximated by $0.0009 / 10.048122$, or 0.225.
it bas been assumed that the variance of the estimator of S is constant we: tine. If: due to the quarterly patteras in the incidence of diwidend pryments, the variances of the estimators are not constant, the equally weighted estimators in (50)" are inelicient relative to an estimator that ccopunts for any seasonal pattern in the variance. Since dividends are usuatily pald anee every quarer, it is possible to compute thres fadependent estimate of r by averaging the eoeficients obtained in ony the first, phly the :eeond and only the shird month of ench quaner. Thes to ohtain'a more f may be weighted by the inverse of their variances to oblin a from table efficienl estimator. This is prowded in tabic 2 As $a n$ be

the overall estimator for $\%$ is very close to the MLE escimate in table 1 the estifinate of the standard error of $\hat{\gamma}_{2}$ is approximatery the same for the first two months, but about 30 percent less for the third month.

Tuble 2
Pooled tione strise and cress section estinates of the ofter-2ax CAPSt: 1935-1977 rbasod on quertely dividead pahernsk*

Wores The afier-rax tesion cerropenils to the requesion
 Gikeliheod estimation is used. The reporied ceeficients are arithrocic anerape of

 arenthess under eth teremient. The osemat en and ow above weiphted initersely by their whinase

It may be inappropriate to treat $\gamma 1$ as an intertmporal constant: in bre absence of income telated constraints on borrowing it is a weightod average of individuals' marginal lat rates, whith may hate ehonged over line Assume that investors have utity functions hat display dexencing aboolute risk aversion and pon-deefeasing relative risk aversion ustume in sodition that the distribution of wealth is indepenjent of indixivual uthity functions Under these conditions the weighe of the mareinal tax rates of madiniduait in the'higber tax brackets mould be geeater than that of indisiduats in lower lax Erackets. Holland (1962) bat shown that from 1582 to 1900 there mas mo pronowned upward teeng in the manginal tax rates of individuals whith taxabte income in excess of 535000 . To examine mapincally whether there is
 ate presented for six subpertods in thble 3. The estimalots of T_{2} for khe subperiods nete consistently positise and cucept for the ti2955 to 12;1061 priod signidea
to the estimate.

FSocs; The atter-tas veriog corteponds to the recression

Taximum thetihood"entimation"is uset for the cross sectiond regersion
 the twaths in tive peiad

It is possible that the positive coefticient on dividend yiold is not a tax. flect and-that in ton-ex-dividend month the effect completey reverses itself. If diwdends are paid quaterfy there would be twice as many non-exdividend months as ex-dividend months. Thus, a complete reversat would require a oegative eflect on returns in each non-dx.dividend month that is hall the absolute size of the efleer in an ex-dividend month. It is also possible that a stock's dividend yield is a proxy for the covatiance of its yeturn with chasses of assets not ineluded in the value weighted index of NYSE stocks uned to alculate betas in the present sludy. If the coeflicient on dividend yield is entirely due to the efforts of omitted assets, the eliect in mon-esdivedend months should be poritive and the same size as the effect in cx . dividend months.

In order to test whether there is a reversal effect or a re-inforcing elfectin nonex-dividend months the following stoss-sectional regression whas extimules:

$$
\begin{align*}
& 1=1,2 \ldots)^{N} \tag{59}
\end{align*}
$$

if a dividend was announced prior to month t to go ex-dividend in month

$$
d_{i k}^{0}=D_{A} / P_{n-1}
$$

oberwise; and

$$
\delta_{y}=1
$$

The wariable ($1-\delta_{i c}$)dit is:intepded to. pitk up the effeet of a dividend payment in subsequent, non-ex-diridend months The variabte $\delta_{i 4}$ det is identicall to $d_{i n}$ the variable used carliet. If dixidends are paid querteriy, apd
 conclude that there is a complete reversal over the cours of the quarter so that there is no nel tax elfect. On the other hand if there is no reversizi, f should not be significantly negative.
The MLE कetmates of the coefticients in (52) are presented in wble fuThe eshimated value of i_{3} is positive and significandy differot from zeroxithis rejects the hypothesis that there is complete reversal
The sipgificant positive is is evidence of a re-infoning efige in nea-cr dividend moaths. If the coctheient on dridend yeld is entirely sunbuable

Tabk

浬	\%	İ.	\%
$\begin{aligned} & \text { Q:coter } \\ & (4.29) \end{aligned}$	$\begin{aligned} & 0.0049\} \\ & \{2.17\} \end{aligned}$	$0.129 .3$	$\begin{aligned} & \operatorname{arasi} \\ & \text { rasi } \end{aligned}$

1-1.2...ns.

 exch certisiont.
.1

 y y. If the effert in ex-dividead months exceeds the combined effect in the subsequent two non-ex-disidend mentiss ar should be more than twice as
 ox-dividend month is more than twite the' size of the effect in a non-sxdividend month. This evidence suggests that the coafticient on dividega yield in ex-dividend months is not soledy attributable to the effects of missing axers and that the eftect in an ex-dividend month exceeds the combined eflect in the subsequent two non-ex-dividend months. If the effect in non-exdividend months is asseried to be enticely due to the effect of missing assets, the difference is $-\hat{\gamma} y=0.225$ is an estimate of the tex effed. However, further theoretical work un the combined effects of transaction costs and personal tases in multi-feriod vatuation framework is required to be able to unders:and the cause of a signifitagt sietd eflect it non-cx-dividend months, For the present it sems reasonable to conctude that 0.225 is 4 lower bound extimate of the tar effect."
The enpitital evidence presenied by Elfon and Gruber (1970) on the exdisidend behasjor of common stocks suggesis that the coefficient on the exoess. dividend yiold term may be a decreasing function of yield. The theoretical rationale for thes thent is fort invettors in fow (high) tax brackets twest in bigh (low) dividend yeld stocks: a possible explination is that instiusional remricions on short sales tesulte in a segmentation of security holdings accoting to investors" iax brackets. Ta provide a simple :eft of this 'chinmele teen. the coeficient c in 22) is hypohesized to be a linear dectetsing function of the ith security's dividend yield. That is r. which is now deperdens on i. is writer c, and given by

$$
c_{1}=1-A x_{x}
$$

ishere i. A \Rightarrow fo and the hypothestacd relationship is

$$
\begin{equation*}
E\left(\bar{R}_{t} h-r_{r}=Q-h \hat{\beta}_{1}-\left(b-h u_{i}\right) \mid d_{s}-r_{f}\right) \tag{1661}
\end{equation*}
$$

The exomemetric model is

 presented in table 5 .

\%	Y	寺		$\hat{7}^{\text {a }}$
$\begin{aligned} & 0,00355 \\ & (265) \end{aligned}$		0.136°	\cdots	$\frac{-5.5}{1-2.70 y}$

each roanth:

$s=1,2 \ldots$

 act maeficent.

Consistent with the cxisience of a clientele eftrol the maximum tivelitood entmate of y_{2} is sigrificatily positive and that of is is semifematy negative both at the $0,0 \mathrm{~s}$ lerel. The magnitude of \bar{y} sussests hat for tery pertentige Foint in yield the implied tax rate for ex-dividend months declines by a06s. For txample. it the annual yidd was 4 perent, the implied tar rate would be appoximately $0.316-6.92(0.04 ; 4)=0.268$, assuminte quartety pastants. The mpirical evidente supporting a clientele coffect sugents the nowd for further esearch thal rigorously derives an equilibrium meded that inomportios institutional restrictions on short saks, along yith perounsl taxes

s. Conclusion

In this paper, an after-tas version of the Capitat Atset Pricing Moutd is derived. The model criends the Brentan ater-kax verobon of the CAPM 10 incerporate weolh and income related consertints on bornuming slong with
 the expected teturn on a xerobeth portfolio bining a dividend yied equal to constraint lends to oftst the eflect that propent The urocome retized
equilibrium strutiure of share prices. The equilibrium relanoonhip indicaits that the before tax expected return on a security is lineatly related to. its systematic risk and to is dividend yield. Unrestricted supply; adjustments in corporate dividends would resule in the before tax version of the CAPM, ip a world where dividends and interest are taxed as ordinary piocome. If inconce telated constraints are non-binding andor corporate supply adjustments are cestricted, the belore tax relurn on a security woutd be an increasing lineat function of its dividead yeld.
Ustike prior rests of the CAPM that uscd grouping or instrumental variables to cormet for measurement error in beta this paper uses the sample estimate of the variance of observed betas to artive at maximum likelihood eitimates of the coellicients in the relations tested. Untike prior studies of the effect of dividend yields on asset prics, which used average monhly yields as a surrogate for the experted yield In both ex-dividend and non-ex-dividend months+ the expected divitend yield based on prior intornation is used for ex-dividerd months and is set ta zero for other months.
The resulh indicate that there is a stropg positive relationship between before tax expected returns and dividend yields of common stocks. Tha coemictent of the dividend yield yariable was positive, less than unity, and signifcanity difterent frem zero. The data indicates that for every dolla increase in return in the form of diwidends, inyestors requite an additional 23 cents in before tax fetum. There was no noticeable wend in the coeticient over time. A test was constructed to determine whether the eflect or dixidend told tevetses itsell in non-ax-dividend monhts, and this hypothosis was rejected. Indeed, the datariadicates that the effect of a dibidend payment en belore tax expected returns is positive in both tbe ex-dividend month and in the subrequemt non-sx-dividend months. However, the combened effect in the subsequent non-ex-dividend months is siznificandy fess thian the effect in the x-dividend month.
Evidenter is also presented for a clientele cffect: that is, that stockholders in higher cax tracters thoose stocks with low yields, and wice wersa. Further work is needed to derive a model that implies the existence of such clinneles and to test its implications.

Appondix A

In thes appendix it is shown that the estimator for Γ_{+}given by

$$
A_{*}=\left(x_{i} ; a_{1}^{-3}, x_{1}\right)^{-1} X_{r} a_{1}^{-1} R_{r}
$$

using taia in period t, is the Generalized Leart Squafes (CLS) estimator for Γ under the assumption of the single index model. It was showa in section 3 of the paper that each extimated coeficient corresponds to the realized excess

Under the assumption of the single indet, model the rariance of the return on such a portfolio is, from eq. (9t) io the text.

$$
\operatorname{var}\left(\sum_{-} h_{i t} R_{i t}-r_{g r}\right)=\left(\sum_{i} h_{i t} f_{i t}\right)^{3} \sigma_{-2}+\sum_{i}^{-} h_{i=2}^{2} \Sigma_{i v}
$$

Suppose one wishes to minimize the variance of the exioss return on swatia portiolio subject to the condition that the expered exoss rearm on the
 zero or unjty- Gence minimizing

$$
\left(\sum_{1} A_{i n} \beta_{i \mathrm{it}}\right)^{*} \dot{\sigma}_{m m}+\sum_{1} h_{i r}^{*} r_{i \mathrm{ip}}
$$

the 'residual risk' of the portiolio subjer to the unbiacedness condition Thus, one is using the residuas risk of the portiolio as the minimand and enforcing the unbiasedness condition. By ponstruction, 0 , 4 the diagenal matrix of the residual rariances to and by winstoction, f_{1} is lineurt and unbiased for r. The wariance of the etimator has seen minimized uadet the

 single index model But by the Gauss-Markoy theorem, the GLS Etimatot [usmg the full matrix V_{1} in (36) asit the yariance-covariance matix] ased estimators. unique mitutuun wariante estimator among the assumpion of the single: .) Hence f, is the GLS estimator for r inder model.

Appendix B
In this section, it is shown that under certain conditions, \hat{H}_{4} in (49) is the maximum Ekelihood estimator for r ingperiod 1 .
a0 errors in the measurement of $\bar{\beta}$, then if:
ecurity returns are multivariate normal. then the GLS estimator in (37) is aso the maximum likelihood estimator [see Johnston (1972)].
Suppose now there are errors in the measurement of β. Then one can use:
wion P defind in (39) with $\phi=s_{i} / \sigma_{1}$ to write the model as
and the cbserved beta as

$$
\begin{equation*}
\bar{\beta}_{u}^{*}=\beta_{i u}^{*}+\bar{\varepsilon}_{2 u^{*}}^{*} \tag{8.2}
\end{equation*}
$$

where
and

$$
\begin{equation*}
\vec{i}_{u}=i_{\Delta} j_{j} \tag{in}
\end{equation*}
$$

Define the sariable

$$
\begin{equation*}
m_{t}=\sum_{t=1}^{X} x_{u} y_{i} N_{m} \tag{8,3}
\end{equation*}
$$

as the faw momornert for a biven sequence $\left\{\left(x_{i n}, y_{u}\right\}, i=1,2, \ldots, N_{1}\right\}$. Then from (B.1) and $\{\mathrm{B} .2$)

In these sit equatione, take expectations and use the laet that

$$
\begin{aligned}
& \because\left(x_{i}\right)=E\left(R_{t}\right)=0, \\
& \text { - } E\left(T_{k}^{B} E_{1}\right)=0 \text {. }
\end{aligned}
$$

The left-hand side of each of (B.4) through (BS) after taking expectations corresponds to the population comomenis of the subscripted variablec.
If c_{s} and c_{H} are independently normally distributed then the correspend ing sample moment is a maximum likelibood sitimatof of the population parameter: Replace these expected valuos by their maximum Bircibeod stmates. There are now six equations for the six unkorn \#arameters 7o
 interest from the follouing 'normal' equations which are in terms of abserved semple estimates.

-The solution to this sel gives etimates for $k=0.1,2$ which are embodied in (49). They are functions of maximum fikelithoed eqtinates sore thai in? addition to (B. 5) through $[B .9$) ode could write an equation fot men

If we fake expectations, using (B.10) and the fate that

$$
\begin{aligned}
& E\left(m_{1}, r\right)=E\left(\sum_{i=1}^{\sum_{1}} \frac{E_{i}^{2}}{i_{i}^{2} N_{i}}\right) \\
& =\frac{1}{N_{t}} \sum_{i=1}^{N} \frac{E\left(\hat{F}_{i}^{2}\right)}{d_{i}^{2}}=\frac{1}{N_{t}} \cdot N_{1} \phi^{2}=\phi_{i}^{2}
\end{aligned}
$$

we have
whese ϕ^{2} is assumed known
By writug down the likelihood function and maximizing it for an analogous mas, Johnston (1963) demonstrates a maximum liketihood estinator over the parameter spate (7o. $Y_{1}, \pi_{2}, F_{i r}$ for $i=I_{n}, \therefore, N_{0} \phi$). This has the undesinable characteristic that the parameter space krows with the sample size. In mexs out in our problem that ϕ is assumed known. If this ϕ satisics (6.15 \} when in (B.15) we use the sample co-moment estimates for the population parameters, then fotnston's M. L. procedute coincides with the satution to (B.11) through (B, 13). Whereas our estimators aro linear in. the returns and en be interpreted as portfolios, the expanded paramexe space estimator in fohnston is non-hnear and has no such analog to theory Thus conditional on d 2 comeiding mith the residual variation in the sample. lsing our entonstes. the estimator in \{49\} is a maximum likelihood estimator

Rulerences

 $+4454$

 125:

fomand \%, 117-6R.

 (MCGrawe fill New Yorkl

 Polntro 10 , 607-356.
 Fixhtrm

od

 CA).
 Hombod. D.M, 1963, Dividends under the inchine tax (NBER, Prention N)

Joumal of Fination 31r- 10 SS-1100.
 portolios and captal budgets, pevicu of Econcmics and Statiaziot 4?, 15-77.
 atd nomprate finamial policy, fournil of Finaroce 34, 737-7*9.

Tor D

 York)
 Chipga, Chicaga. IL).
 HiLl Ner Yorkt
 129-176.
 Finarcial Readrch, Sortheomitg.

 Yotki

 Memoravdem [San Francind CMh

1. Introduction
 tuleles at simple linear relationship between the expected return and, the marnet risk of a selurily. White the results of direet tests have been
 which are selconat for assel pricing, Lizzenocryer and Ramaswamy (197o) show a significant mostive rehationshap beewen diviend yield and return of ermmon stocks for the 1936-9077 period. Basu (1977) frods that priceearnings rathon and risk adjosted returms are related. He chooses to interpret
 therke effeciency testsate often joint teste of the eficient marke hypobesis and a partieulat cquitbrium relationship. Thus, some of the atomaties that hate been atributed to a back of market efletency might well be hae peratidol a misspecifiction of the pricing motel.

This sudy contributes another phece to the emerging puzale. Il examines She setationship between the lotal marke vatue of the common stock of a firm and its return. The results show that, in the $1936-1975$ period, the common stcet of small firms bad, on avirage. higher rigk-adjusted returims

 cuther dratts of this pager.

6

betal as estimales of the measurement crrors. As Theil (1971; p. 610) has pointed out, this method leads to unbinsed maximum likelihood estimitors for die gammas as long as the error in the standarderror of beta is shall and the standard assumbtions of the simple crrorsin-variatbes model arre met. Thus, it is very important that the diagonal model is the correct spec flication of the return-generating prosess, since the residual wariance assumes a critical position in this procedure. The Liezenberger-Ramaswamy muthod is superior from a theoretical viewpoint; however, preliminary wotk has thown that in kads to serious problems when applied to the model of this findy and is 'mot phrsued any further. ${ }^{4}$
Instead of estimaning equation' (3) with data for all securities, it is also pursible to construct arbitrage portfoltos containing stocks of waty large and very simallifirs, toty combinitg lone positions in smati lirms with short positions in lurge fims. A simple time series regression is ron to determine the difference in risheidjusted getums between small and large firms. This fippoach. long famibar in the effentent markets and option pricing literature, has the adrantrige that no assumptions about the exact functional rehtionskips between market value and expected return nest to be made, and it whit therefore be used in this study. -
The sample includes all common stock quoted on the NYSE for at least Five years tetween 1926 and 1975. Monthly price and remen data and the number of shares oustanding at ste end of each month are avaitable in the monthly teturns file of the Center tor Restareh in Secarity. Prices (CRSP) of the Unversty oflthicago. Three dfferent market indices are used; this is in response 10 Roll's (1977) critigue of empirfal tests of the GAPM. Two of the threk are pure common stock indices + the CRSP equally- ind valueweighted indices. The third is mose comprehensive: a value-weighted combinalion of the CRSP malue-weighted index and return data on corporate and government bonds from Ibbotson and Singuefedd (1977) (henceforth "matke index'l." "he weights of the components of this index are derived from information' on the total market value of corporate and government bonds in vatious issues of the Surwy of Current Busimess (updated annually) and from the matket value of common stocks in the CRSP monthly index We. The stock indices, made up of riskier assets, have both higher returns:

 ecalcsume, forcign isseis, ete: it should be considened a firsi step toward hamprehensive index.
 fee fhbusen and Fill \{loz?

dervations or the $\beta_{i}, i=0, \ldots, 2$ ini(4) from theit theorefichivalues also allow us to check whether the grouping procedure is art blfective means' to cliwinate the croos-in-beta problem.
The results are" cssentinlly tidentical for both OLS and GLS and for all three indites. Thus; only one set of results, those for the 'market index' with $G L S$, ist presented in table 1 . For each of the gammas, mree numbers afe reported: the mean of that time serise offecturns which is selevant for the tept of he liypothesis of interess lie, whether or not $\hat{p} 0$ and $\hat{\gamma}$ are different from the risk-Free rate und the risk premiums, respectiyely), the associpted istafistic. and finally, the estimated beta of the lime series of the gamma from (4). Note that the means are cotrected for the devition fitom the theoretical beth as discussed above.

- The table shows a significamly negative estimate for $\%$, or the overall time perfod, Thus, shares of firms with large market valuss have had smaller renfrrs, when averige, that similar smail rams. The CAPM appears to be misprecificel. The table also shows that io is difterent from the risk-free rate. As moth Fama (1976, ch. 9) and Roll (1977) mave pointed out, if a hesi doss net use the true matrket portfolio, the Sharpe-Lintner model might bed wrogely refected. The estinates for y_{0} arc of the same magnitude las those reported by Fama and Macleth (1973) and others. The choice of d market index and the conomerric method does not affect the resiatts. Thus at least. within the concext of this study, the dhoice of a proxy for the market pronfoliondees nof seetr to affeet the resuht and allowing for heterosedastic disturbances does not lead to significandy more efficient estimators.
Beface looking at the results in more dethil, some comments on econometric problems are in order. The resills in table 1 ars based on the "market index' which is likely to the superior so purt stock indices from a theoretical viewpuins since it indudes more assels [Koll (1977)]. This superiority has its proes. The actual betas of the time series of the gammas sire reporited in table 1 in the columins labeled, β_{1}. Recall that ine theoretical values of β_{0} and β_{1} are tero und'ones. respectively. The standard zero-beta potfolio with felurn in tontians high beta stocks in shorl positions, and low, btata stocks in long prositions, white the opposity is the case for the gerasiviestment porfolio with relint in The wetual beas art all signiftumply difierem from the theoretical. vulues. This suggests a regersion effec, to. the past betas of high beta seedrities are overestinuted and the betas of low beta securities are underestimated." Past beta is not complecely uicorreatied with the error of the curtem betu and the instrumental watiable approach to the error-in-variables prohlem is not entirely sukcessful. ${ }^{\text {. }}$

where $R_{10}, R_{n d}$ and R_{n} are the returns on the portfolios containiug the maillest, median-sized and largest firms a! portolio formation time fand R_{1} $=R_{3}+R_{3,}$. The procedure involves lat the calculation of the hiree differences in ratu returns in etch month and (b) running time series regressions of the differenecs on the excess returns of the mathet proxy. The intercept terms pe these regressions are then merpected as the $K_{8}, i=1, \ldots, 3$. Thus, the
 eturn obtuined from holding the smallest frms'long and the largest firmis thon, tepresening zero net investment in a zero-beta portiolio. ${ }^{\text {II }}$ Simple pqually, weiglited portfolios are used rather that more sophisticated minimum wariance portfolios to demonstrate that the size: effect is not due to tome quirk in the covariance matrix.
Table 3 shows that the results of the earlier pests are fully confirmed. \tilde{R}_{2}, the difference in returins between very small firms, and median-size firms, is ypically considerably larger than \bar{R}_{3}, the difference in returns between hedian-sized and very large firms. The aterage excess relurn from holding yery stmall froms long and very latge firms shoty is, on giverage, 1.52 percent
"No ax post sumple bias, is intrubuced, sinee monthly rebaloncing inchudea storks delisted luring the fise yenes, Thus, the portolio sine is generitly acedrate only tor the firsi month of ach' period.

Table 3
Mtan monthy seturns on arbitrage portotios."
$R_{1}-R_{x}=\pi_{1} \div R_{1}\left(R_{n}-R_{y}\right\}$

${ }_{\text {\% }}{ }^{5}$		-
$n=10$	$\pi=40$	$n=50$.

I Earenthers.
Small Ifrms beld loog Large firms beld shorti.
"Small firms hedd long roedian-size firms held short.

per month or 198 perceni on an annuatized basis. This strategy, which dugests very large "prolit opportuntites', leaves the investor' with a pootly diversified portolio. A portfolio of small hirms has typically much lateger residual fisk with respect do a malue-weighted index than a portholso of very lerge firms with the sime number bf secutites [Banz (1978, ch. 3)]. Since the iffy largest firms make up more than 25 percent of the total matket value of fYSE stocks, it is not surptising that alarger part of the variation of the phurn of a potfolio of thoses large firms can be explained by its relation with the value-weighted market index. Tible 3 also shows that the strategy would not have been, successfal in cuery five year subperiod. Nevertheless, the magnitude of thie size effect during the-past forty-tive years is such that it is of more than just academic interest.
${ }_{5}$
The evidence presented in this study, suggests that the CAPN is misspecilica. On average, small NYSE firm have had: significintly larger risk adjusted returns than large NYSE firms over a Corty year period. This size effeet is wot linear in the market proportion for the log of the market propotion) but is most pronounced for the smatlest firms in the stmple. The, eftex is niso not very sable thtough bite An analysis of the ten year subperiods show substantial differences in the magnitude of the cocticient of the size factor table 1).
There is no theoretical fommation for such an effect, We do not even khow whether the factor is size itself or whether size wh just a proxy for one of more trae but, unknown factors cotrolated with size. It is possible, however, wo ofer sme conjecures and efen discuss sone factors for which wite is suspected to prosy. Recent work by Reinganum (IOR0) has elimitated ole obvious candidate: the ptice earning (PIE) rato." He finds that the PiEeflect as reported by Bast (107?) disappars for both NYSE; and AMEX stocks when he controls for size but thin there is a significant silee effect even when be controls for the $P / E-r a t i o$, ide, the P/E-tatio effect is : Froxy for the size eflect and not vice yersa Statman (1980), who found at
1 shenificant negative relationship between tue ratio of book value ánd market whe of ecguity and its return, also reports that this relationstup is just a proxy for the size eflece, Naturally, a harge number of possible factors remain io be tested. ${ }^{\text {ts }}$ But the Reinganum sesults poim out an potentifit problem with. some of the existing negative evidence of the efficient markel hypothesis. Bast belicued 10 have jdemified a market incficiency but his Hfeeffect is'

 1.4) 1.16

The Cross-Section of Expected Stock Returns

EUGENE F. FAMA and KENNETH R. FRENCH*

Abstract

Two easily measured variables, size and book-to-market equity, combine to capture the cross-sectional variation in average stock returns associated with market $\beta_{\text {, }}$ size, leverage, book-to-market equity, and earnings-price ratios. Moreover, when the tests allow for variation in β that is unrelated to size, the relation between market β and average return is flat, even when β is the only explanatory variable.

The AsSet-PRICING model of Sharpe (1964), Lintner (1965), and Black (1972) has long shaped the way academics and practitioners think about average returns and risk. The central prediction of the model is that the market portfolio of invested wealth is mean-variance efficient in the sense of Markowitz (1959). The efficiency of the market portfolio implies that (a) expected returns on securities are a positive linear function of their market $\beta \mathrm{s}$ (the slope in the regression of a security's return on the market's return), and (b) market $\beta \mathrm{s}$ suffice to describe the cross-section of expected returns.
There are several empirical contradictions of the Sharpe-Lintner-Black (SLB) model. The most prominent is the size effect of Banz (1981). He finds that market equity, ME (a stock's price times shares outstanding), adds to the explanation of the cross-section of average returns provided by market β s. Average returns on small (low ME) stocks are too high given their β estimates, and average returns on large stocks are too low.

Another contradiction of the SLB model is the positive relation between leverage and average return documented by Bhandari (1988). It is plausible that leverage is associated with risk and expected return, but in the SLB model, leverage risk should be captured by market β. Bhandari finds, however, that leverage helps explain the cross-section of average stock returns in tests that include size (ME) as well as β.

Stattman (1980) and Rosenberg, Reid, and Lanstein (1985) find that average returns on U.S. stocks are positively related to the ratio of a firm's book value of common equity, BE, to its market value, ME. Chan, Hamao, and Lakonishok (1991) find that book-to-market equity, BE/ME, also has a strong role in explaining the cross-section of average returns on Japanese stocks.

[^42]Finally, Basu (1983) shows that earnings-price ratios (E / P) help explain the cross-section of average returns on U.S. stocks in tests that also include size and market β. Ball (1978) argues that E / P is a catch-all proxy for unnamed factors in expected returns; E / P is likely to be higher (prices are lower relative to earnings) for stocks with higher risks and expected returns, whatever the unnamed sources of risk.
Ball's proxy argument for E/P might also apply to size (ME), leverage, and book-to-market equity. All these variables can be regarded as different ways to scale stock prices, to extract the information in prices about risk and expected returns (Keim (1988)). Moreover, since E/P, ME, leverage, and $\mathrm{BE} / \mathrm{ME}$ are all scaled versions of price, it is reasonable to expect that some of them are redundant for describing average returns. Our goal is to evaluate the joint roles of market β, size, E / P, leverage, and book-to-market equity in the cross-section of average returns on NYSE, AMEX, and NASDAQ stocks.
Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973) find that, as predicted by the SLB model, there is a positive simple relation between average stock returns and β during the pre-1969 period. Like Reinganum (1981) and Lakonishok and Shapiro (1986), we find that the relation between β and average return disappears during the more recent 1963-1990 period, even when β is used alone to explain average returns. The appendix shows that the simple relation between β and average return is also weak in the 50 -year 1941-1990 period. In short, our tests do not support the most basic prediction of the SLB model, that average stock returns are positively related to market β s.
Unlike the simple relation between β and average return, the univariate relations between average return and size, leverage, E / P, and book-to-market equity are strong. In multivariate tests, the negative relation between size and average return is robust to the inclusion of other variables. The positive relation between book-to-market equity and average return also persists in competition with other variables. Moreover, although the size effect has attracted more attention, book-to-market equity has a consistently stronger role in average returns. Our bottom-line results are: (a) β does not seem to help explain the cross-section of average stock returns, and (b) the combination of size and book-to-market equity seems to absorb the roles of leverage and E/P in average stock returns, at least during our 1963-1990 sample period.

If assets are priced rationally, our results suggest that stock risks are multidimensional. One dimension of risk is proxied by size, ME. Another dimension of risk is proxied by BE/ME, the ratio of the book value of common equity to its market value.
It is possible that the risk captured by BE/ME is the relative distress factor of Chan and Chen (1991). They postulate that the earning prospects of firms are associated with a risk factor in returns. Firms that the market judges to have poor prospects, signaled here by low stock prices and high ratios of book-to-market equity, have higher expected stock returns (they are penalized with higher costs of capital) than firms with strong prospects. It is
also possible, however, that BE/ME just captures the unraveling (regression toward the mean) of irrational market whims about the prospects of firms.

Whatever the underlying economic causes, our main result is straightforward. Two easily measured variables, size (ME) and book-to-market equity (BE/ME), provide a simple and powerful characterization of the cross-section of average stock returns for the 1963-1990 period.
In the next section we discuss the data and our approach to estimating β. Section II examines the relations between average return and β and between average return and size. Section III examines the roles of E / P, leverage, and book-to-market equity in average returns. In sections IV and V, we summarize, interpret, and discuss applications of the results.

1. Preliminaries

A. Data

We use all nonfinancial firms in the intersection of (a) the NYSE, AMEX, and NASDAQ return files from the Center for Research in Security Prices (CRSP) and (b) the merged COMPUSTAT annual industrial files of incomestatement and balance-sheet data, also maintained by CRSP. We exclude financial firms because the high leverage that is normal for these firms probably does not have the same meaning as for nonfinancial firms, where high leverage more likely indicates distress. The CRSP returns cover NYSE and AMEX stocks until 1973 when NASDAQ returns also come on line. The COMPUSTAT data are for 1962-1989. The 1962 start date reflects the fact that book value of common equity (COMPUSTAT item 60), is not generally available prior to 1962. More important, COMPUSTAT data for earlier years have a serious selection bias; the pre-1962 data are tilted toward big historically successful firms.

To ensure that the accounting variables are known before the returns they are used to explain, we match the accounting data for all fiscal yearends in calendar year $t-1(1962-1989)$ with the returns for July of year t to June of $t+1$. The 6 -month (minimum) gap between fiscal yearend and the return tests is conservative. Earlier work (e.g., Basu (1983)) often assumes that accounting data are available within three months of fiscal yearends. Firms are indeed required to file their 10-K reports with the SEC within 90 days of their fiscal yearends, but on average 19.8% do not comply. In addition, more than 40% of the December fiscal yearend firms that do comply with the 90 -day rule file on March 31, and their reports are not made public until April. (See Alford, Jones, and Zmijewski (1992).)

We use a firm's market equity at the end of December of year $t-1$ to compute its book-to-market, leverage, and earnings-price ratios for $t-1$, and we use its market equity for June of year t to measure its size. Thus, to be included in the return tests for July of year t, a firm must have a CRSP stock price for December of year $t-1$ and June of year t. It must also have monthly returns for at least 24 of the 60 months preceding July of year t (for
"pre-ranking" β estimates, discussed below). And the firm must have COMPUSTAT data on total book assets (A), book equity (BE), and earnings (E), for its fiscal year ending in (any month of) calendar year $t-1$.
Our use of December market equity in the $\mathrm{E} / \mathrm{P}, \mathrm{BE} / \mathrm{ME}$, and leverage ratios is objectionable for firms that do not have December fiscal yearends because the accounting variable in the numerator of a ratio is not aligned with the market value in the denominator. Using ME at fiscal yearends is also problematic; then part of the cross-sectional variation of a ratio for a given year is due to market-wide variation in the ratio during the year. For example, if there is a general fall in stock prices during the year, ratios measured early in the year will tend to be lower than ratios measured later. We can report, however, that the use of fiscal-yearend MEs, rather than December MEs, in the accounting ratios has little impact on our return tests.

Finally, the tests mix firms with different fiscal yearends. Since we match accounting data for all fiscal yearends in calendar year $t-1$ with returns for July of t to June of $t+1$, the gap between the accounting data and the matching returns varies across firms. We have done the tests using the smaller sample of firms with December fiscal yearends with similar results.

B. Estimating Market β s

Our asset-pricing tests use the cross-sectional regression approach of Fama and MacBeth (1973). Each month the cross-section of returns on stocks is regressed on variables hypothesized to explain expected returns. The timeseries means of the monthly regression slopes then provide standard tests of whether different explanatory variables are on average priced.

Since size, E / P, leverage, and $\mathrm{BE} / \mathrm{ME}$ are measured precisely for individual stocks, there is no reason to smear the information in these variables by using portfolios in the Fama-MacBeth (FM) regressions. Most previous tests use portfolios because estimates of market β s are more precise for portfolios. Our approach is to estimate $\beta \mathrm{s}$ for portfolios and then assign a portfolio's β to each stock in the portfolio. This allows us to use individual stocks in the FM asset-pricing tests.

B.1. β Estimation: Details

In June of each year, all NYSE stocks on CRSP are sorted by size (ME) to determine the NYSE decile breakpoints for ME. NYSE, AMEX, and NASDAQ stocks that have the required CRSP-COMPUSTAT data are then allocated to 10 size portfolios based on the NYSE breakpoints. (If we used stocks from all three exchanges to determine the ME breakpoints, most portfolios would include only small stocks after 1973, when NASDAQ stocks are added to the sample.)

We form portfolios on size because of the evidence of Chan and Chen (1988) and others that size produces a wide spread of average returns and $\beta \mathrm{s}$. Chan and Chen use only size portfolios. The problem this creates is that size and the β s of size portfolios are highly correlated (-0.988 in their data), so
asset-pricing tests lack power to separate size from β effects in average returns.
To allow for variation in β that is unrelated to size, we subdivide each size decile into 10 portfolios on the basis of pre-ranking βs for individual stocks. The pre-ranking $\beta \mathrm{s}$ are estimated on 24 to 60 monthly returns (as available) in the 5 years before July of year t. We set the β breakpoints for each size decile using only NYSE stocks that satisfy our COMPUSTAT-CRSP data requirements for year $t-1$. Using NYSE stocks ensures that the β breakpoints are not dominated after 1973 by the many small stocks on NASDAQ. Setting β breakpoints with stocks that satisfy our COMPUSTAT-CRSP data requirements guarantees that there are firms in each of the 100 size- β portfolios.

After assigning firms to the size- β portfolios in June, we calculate the equal-weighted monthly returns on the portfolios for the next 12 months, from July to June. In the end, we have post-ranking monthly returns for July 1963 to December 1990 on 100 portfolios formed on size and pre-ranking $\beta \mathrm{s}$. We then estimate β s using the full sample (330 months) of post-ranking returns on each of the 100 portfolios, with the CRSP value-weighted portfolio of NYSE, AMEX, and (after 1972) NASDAQ stocks used as the proxy for the market. We have also estimated $\beta \mathrm{s}$ using the value-weighted or the equalweighted portfolio of NYSE stocks as the proxy for the market. These β s produce inferences on the role of β in average returns like those reported below.

We estimate β as the sum of the slopes in the regression of the return on a portfolio on the current and prior month's market return. (An additional lead and lag of the market have little effect on these sum β s.) The sum β s are meant to adjust for nonsynchronous trading (Dimson (1979)). Fowler and Rorke (1983) show that sum $\beta \mathrm{s}$ are biased when the market return is autocorrelated. The 1st- and 2nd-order autocorrelations of the monthly market returns for July 1963 to December 1990 are 0.06 and -0.05, both about 1 standard error from 0. If the Fowler-Rorke corrections are used, they lead to trivial changes in the $\beta \mathrm{s}$. We stick with the simpler sum $\beta \mathrm{s}$. Appendix Table AI shows that using sum $\beta \mathrm{s}$ produces large increases in the $\beta \mathrm{s}$ of the smallest ME portfolios and small declines in the $\beta \mathrm{s}$ of the largest ME portfolios.

Chan and Chen (1988) show that full-period β estimates for portfolios can work well in tests of the SLB model, even if the true β S of the portfolios vary through time, if the variation in the β s is proportional,

$$
\begin{equation*}
\beta_{J t}-\beta_{J}=k_{t}\left(\beta_{J}-\beta\right), \tag{1}
\end{equation*}
$$

where $\beta_{j t}$ is the true β for portfolio j at time t, β_{j} is the mean of $\beta_{j t}$ across t, and β is the mean of the β_{j}. The Appendix argues that (1) is a good approximation for the variation through time in the true $\beta \mathrm{s}$ of portfolios (j) formed on size and β. For diehard β fans, sure to be skeptical of our results on the weak role of β in average stock returns, we can also report that the results stand up to robustness checks that use 5 -year pre-ranking β s, or 5 -year post-ranking $\beta \mathrm{s}$, instead of the full-period post-ranking $\beta \mathrm{s}$.

We allocate the full-period post-ranking β of a size- β portfolio to each stock in the portfolio. These are the β_{s} that will be used in the Fama-MacBeth cross-sectional regressions for individual stocks. We judge that the precision of the full-period post-ranking portfolio $\beta \mathbf{s}$, relative to the imprecise β estimates that would be obtained for individual stocks, more than makes up for the fact that true β s are not the same for all stocks in a portfolio. And note that assigning full-period portfolio β s to stocks does not mean that a stock's β is constant. A stock can move across portfolios with year-to-year changes in the stock's size (ME) and in the estimates of its β for the preceding 5 years.

B.2. β Estimates

Table I shows that forming portfolios on size and pre-ranking β s, rather than on size alone, magnifies the range of full-period post-ranking $\beta \mathrm{s}$. Sorted on size alone, the post-ranking $\beta \mathrm{s}$ range from 1.44 for the smallest ME portfolio to 0.92 for the largest. This spread of β s across the 10 size deciles is smaller than the spread of post-ranking β s produced by the β sort of any size decile. For example, the post-ranking β s for the 10 portfolios in the smallest size decile range from 1.05 to 1.79 . Across all 100 size- β portfolios, the post-ranking β s range from 0.53 to 1.79 , a spread 2.4 times the spread, 0.52 , obtained with size portfolios alone.
Two other facts about the β s are important. First, in each size decile the post-ranking β s closely reproduce the ordering of the pre-ranking β s. We take this to be evidence that the pre-ranking β sort captures the ordering of true post-ranking β s. (The appendix gives more evidence on this important issue.) Second, the β sort is not a refined size sort. In any size decile, the average values of $\ln (\mathrm{ME})$ are similar across the β-sorted portfolios. Thus the pre-ranking β sort achieves its goal. It produces strong variation in postranking β s that is unrelated to size. This is important in allowing our tests to distinguish between β and size effects in average returns.

II. β and Size

The Sharpe-Lintner-Black (SLB) model plays an important role in the way academics and practitioners think about risk and the relation between risk and expected return. We show next that when common stock portfolios are formed on size alone, there seems to be evidence for the model's central prediction: average return is positively related to β. The $\beta \mathrm{s}$ of size portfolios are, however, almost perfectly correlated with size, so tests on size portfolios are unable to disentangle β and size effects in average returns. Allowing for variation in β that is unrelated to size breaks the logjam, but at the expense of β. Thus, when we subdivide size portfolios on the basis of pre-ranking $\beta \mathrm{s}$, we find a strong relation between average return and size, but no relation between average return and β.

A. Informal Tests

Table II shows post-ranking average returns for July 1963 to December 1990 for portfolios formed from one-dimensional sorts of stocks on size or β. The portfolios are formed at the end of June each year and their equalweighted returns are calculated for the next 12 months. We use returns for July to June to match the returns in later tests that use the accounting data. When we sort on just size or 5 -year pre-ranking $\beta \mathrm{s}$, we form 12 portfolios. The middle 8 cover deciles of size or β. The 4 extreme portfolios (1A, 1B, 10A, and 10B) split the bottom and top deciles in half.

Table II shows that when portfolios are formed on size alone, we observe the familiar strong negative relation between size and average return (Banz (1981)), and a strong positive relation between average return and β. Average returns fall from 1.64% per month for the smallest ME portfolio to 0.90% for the largest. Post-ranking β s also decline across the 12 size portfolios, from 1.44 for portfolio 1 A to 0.90 for portfolio 10B. Thus, a simple size sort seems to support the SLB prediction of a positive relation between β and average return. But the evidence is muddied by the tight relation between size and the $\beta \mathrm{s}$ of size portfolios.

The portfolios formed on the basis of the ranked market βs of stocks in Table II produce a wider range of $\beta \mathrm{s}$ (from 0.81 for portfolio 1A to 1.73 for 10B) than the portfolios formed on size. Unlike the size portfolios, the β-sorted portfolios do not support the SLB model. There is little spread in average returns across the β portfolios, and there is no obvious relation between β and average returns. For example, although the two extreme portfolios, 1 A and 10 B , have much different $\beta \mathrm{s}$, they have nearly identical average returns (1.20% and 1.18% per month). These results for 1963-1990 confirm Reinganum's (1981) evidence that for β-sorted portfolios, there is no relation between average return and β during the 1964-1979 period.

The 100 portfolios formed on size and then pre-ranking β in Table I clarify the contradictory evidence on the relation between β and average return produced by portfolios formed on size or β alone. Specifically, the two-pass sort gives a clearer picture of the separate roles of size and β in average returns. Contrary to the central prediction of the SLB model, the second-pass β sort produces little variation in average returns. Although the post-xanking β s in Table I increase strongly in each size decile, average returns are flat or show a slight tendency to decline. In contrast, within the columns of the average return and β matrices of Table I, average returns and β s decrease with increasing size.
The two-pass sort on size and β in Table I says that variation in β that is tied to size is positively related to average return, but variation in β unrelated to size is not compensated in the average returns of 1963-1990. The proper inference seems to be that there is a relation between size and average return, but controlling for size, there is no relation between β and average return. The regressions that follow confirm this conclusion, and they produce another that is stronger. The regressions show that when one allows

Table I

Average Returns, Post-Ranking β s and Average Size For Portfolios Formed on Size and then β : Stocks Sorted on ME (Down) then Pre-Ranking β (Across): July 1963 to December 1990

Portfolios are formed yearly. The breakpoints for the size (ME, price times shares outstanding) deciles are determined in June of year $t(t=1963-1990)$ using all NYSE stocks on CRSP. All NYSE, AMEX, and NASDAQ stocks that meet the CRSP-COMPUSTAT data requirements are allocated to the 10 size portfolios using the NYSE breakpoints. Each size decile is subdivided into 10β portfolios using pre-ranking βs of individual stocks, estimated with 2 to 5 years of monthly returns (as available) ending in June of year t. We use only NYSE stocks that meet the CRSP-COMPUSTAT data requirements to establish the β breakpoints. The equal-weighted monthly returns on the resulting 100 portfolios are then calculated for July of year t to June of year $t+1$.
The post-ranking βs use the full (July 1963 to December 1990) sample of post-ranking returns for each portfolio. The pre- and post-ranking βs (here and in all other tables) are the sum of the slopes from a regression of monthly returns on the current and prior month's returns on the value-weighted portfolio of NYSE, AMEX, and (after 1972) NASDAQ stocks The average return is the time-series average of the monthly equal-weighted portfolio returns, in percent. The average size of a portfolio is the time-series average of monthly averages of $\ln (\mathrm{ME})$ for stocks in the portfolio at the end of June of each year, with ME denominated in millions of dollars
The average number of stocks per month for the size- β portfolios in the smallest size decile varies from 70 to 177 . The average number of stocks for the size- β portfolios in size deciles 2 and 3 is between 15 and 41 , and the average number for the largest 7 size deciles is between 11 and 22 .
The All column shows statistics for equal-weighted size-decile (ME) portfolios. The All row shows statistics for equal-weighted portfolios of the stocks in each β group.

	All	Low- β	$\beta-2$	$\beta-3$	$\beta-4$	$\beta-5$	$\beta-6$	$\beta-7$	$\beta-8$	$\beta-9$	High $-\beta$
				Panel A: Average Monthly Returns (in Percent)							
All	1.25	1.34	1.29	1.36	1.31	1.33	1.28	1.24	1.21	1.25	1.14
Small-ME	1.52	1.71	1.57	1.79	1.61	150	1.50	1.37	1.63	1.50	1.42
ME-2	1.29	1.25	1.42	1.36	1.39	1.65	1.61	1.37	1.31	1.34	1.11
ME-3	1.24	1.12	1.31	1.17	1.70	1.29	1.10	1.31	1.36	1.26	0.76
ME-4	1.25	1.27	1.13	1.54	1.06	1.34	1.06	1.41	1.17	1.35	0.98
ME-5	1.29	1.34	1.42	1.39	1.48	1.42	1.18	1.13	1.27	1.18	1.08
ME-6	1.17	1.08	1.53	1.27	1.15	1.20	1.21	1.18	1.04	1.07	1.02
ME-7	1.07	0.95	1.21	1.26	1.09	1.18	1.11	1.24	0.62	1.32	0.76
ME-8	1.10	1.09	1.05	1.37	1.20	1.27	0.98	1.18	1.02	1.01	0.94
ME-9	0.95	0.98	0.88	1.02	1.14	1.07	1.23	0.94	0.82	0.88	0.59
Large-ME	0.89	1.01	0.93	1.10	0.94	0.93	0.89	1.03	0.71	0.74	0.56

Table II

Properties of Portfolios Formed on Size or Pre-Ranking β :

July 1963 to December 1990

At the end of June of eack year $t, 12$ portfolios are formed on the basis of ranked values of size (ME) or pre-ranking β. The pre-ranking β e use 2 to 5 years (as available) of monthly returns ending in June of t. Portfolios 2-9 cover deciles of the ranking variables. The bottom and top 2 portfolios (1A, 1B, 10A, and 10B) split the bottom and top deciles in half. The breakpoints for the ME portfolios are based on ranked values of ME for all NYSE stocke on CRSP. NYSE breakpoints for pre-ranking $\beta \in$ are also used to form the β portfolios. NYSE, AMEX, and NASDAQ stocks are then allocated to the size or β portfolios using the NYSE breakpoints. We calculate each portfolio's monthly equal-weighted return for July of year t to June of year $t+1$, and then reform the portfolios in June of $t+1$.
BE is the book value of common equity plus balance-sheet deferred taxes, A is total book assets, and E is earnings (income before extraordinary items, plus income-statement deferred taxes, minus preferred dividends). BE, A, and E are for each firm's latest fiscal year ending in calendar year $t-1$. The accounting ratios are measured using market equity ME in December of year $t-1$. Firm size $\operatorname{In}(M E)$ is measured in June of year t, with ME denominated in millions of dollars.
The average return is the time-series average of the monthly equal-weighted portfolio returns, in percent. ln(ME) $\ln (\mathrm{BE} / \mathrm{ME}), \ln (\mathrm{A} / \mathrm{ME}), \ln (\mathrm{A} / \mathrm{BE}), \mathrm{E} / \mathrm{P}$, and E / P dummy are the time-series averages of the monthly average values of these variables in each portfolio. Since the E / P dummy is 0 when earnings are positive, and 1 when earnings are negative, E / P dummy gives the average proportion of stocks with negative earnings in each portfolio.
β is the time-series average of the monthly portfolio $\beta \mathrm{s}$. Stocks are assigned the post-ranking β of the size- β portfolio they are in at the end of June of year t (Table I). These individual-firm β_{s} are averaged to compute the monthly βs for each portfolio for July of year t to June of year $t+1$.
Firms is the average number of stocks in the portfolio each month.

	1A	1B	2	3	4	5	6	7	8	9	10A	10B
Panel A: Portfolios Formed on Size												
Return	1.64	1.16	1.29	1.24	1.25	1.29	1.17	1.07	1.10	0.95	0.88	0.90
β	1.44	1.44	1.39	1.34	1.33	1.24	1.22	1.16	1.08	1.02	0.95	0.90
\ln (ME)	1.98	3.18	3.63	4.10	4.50	4.89	5.30	5.73	6.24	6.82	7.39	8.44
$\ln (\mathrm{BE} / \mathrm{ME})$	-0.01	-0.21	-0.23	-0.26	-0.32	-0.36	-0.36	-0.44	-0.40	-0.42	-0.51	-0.65
$\ln (\mathrm{A} / \mathrm{ME})$	0.73	0.50	0.46	0.43	0.37	0.32	0.32	0.24	0.29	0.27	0.17	-0.03
$\ln (\mathrm{A} / \mathrm{BE})$	0.75	0.71	0.69	0.69	0.68	0.67	0.68	0.67	0.69	0.70	0.68	0.62
E/P dummy	0.26	0.14	0.11	0.09	0.06	0.04	0.04	0.03	0.03	0.02	0.02	0.01
$\mathrm{E}(+) / \mathrm{P}$	0.09	0.10	0.10	0.10	0.10	0.10	0.10	0.10	010	0.10	0.09	0.09
Firms	772	189	236	170	144	140	128	125	119	114	60	64

for variation in β that is unrelated to size, the relation between β and average return is flat, even when β is the only explanatory variable.

B. Fama-MacBeth Regressions

Table III shows time-series averages of the slopes from the month-by-month Fama-MacBeth (FM) regressions of the cross-section of stock returns on size, β, and the other variables (leverage, E / P, and book-to-market equity) used to explain average returns. The average slopes provide standard FM tests for determining which explanatory variables on average have non-zero expected premiums during the July 1963 to December 1990 period.

Like the average returns in Tables I and II, the regressions in Table III say that size, $\ln (\mathrm{ME})$, helps explain the cross-section of average stock returns. The average slope from the monthly regressions of returns on size alone is -0.15%, with a t-statistic of -2.58 . This reliable negative relation persists no matter which other explanatory variables are in the regressions; the average slopes on $\ln (\mathrm{ME})$ are always close to or more than 2 standard errors from 0 . The size effect (smaller stocks have higher average returns) is thus robust in the 1963-1990 returns on NYSE, AMEX, and NASDAQ stocks.

In contrast to the consistent explanatory power of size, the FM regressions show that market β does not help explain average stock returns for 1963-1990. In a shot straight at the heart of the SLB model, the average slope from the regressions of returns on β alone in Table III is 0.15% per month and only 0.46 standard errors from 0 . In the regressions of returns on size and β, size has explanatory power (an average slope -3.41 standard errors from 0), but the average slope for β is negative and only 1.21 standard errors from 0. Lakonishok and Shapiro (1986) get similar results for NYSE stocks for 1962-1981. We can also report that β shows no power to explain average returns (the average slopes are typically less than 1 standard error from 0) in FM regressions that use various combinations of β with size, book-to-market equity, leverage, and E / P.

C. Can β Be Saved?

What explains the poor results for β ? One possibility is that other explanatory variables are correlated with true $\beta \mathrm{s}$, and this obscures the relation between average returns and measured β s. But this line of attack cannot explain why β has no power when used alone to explain average returns. Moreover, leverage, book-to-market equity, and E/P do not seem to be good proxies for β. The averages of the monthly cross-sectional correlations between β and the values of these variables for individual stocks are all within 0.15 of 0 .

Another hypothesis is that, as predicted by the SLB model, there is a positive relation between β and average return, but the relation is obscured by noise in the β estimates. However, our full-period post-ranking βs do not seem to be imprecise. Most of the standard errors of the βs (not shown) are

Table III

Average Slopes (t-Statistics) from Month-by-Month Regressions of Stock Returns on β, Size, Book-to-Market Equity, Leverage, and E/P: July 1963 to December 1990

Stocks are assigned the post-ranking β of the size β portfolio they are in at the end of June of year t (Table I). BE is the book value of common equity plus balance-sheet deferred taxes, A is total book assets, and E is earnings (income before extraordinary items, plus income-statement deferred taxes, minus preferred dividends) BE, A, and E are for each firm's latest fiscal year ending in calendar year $t-1$. The accounting ratios are measured using market equity ME in December of year $t-1$. Firm size $\ln (M E)$ is measured in June of year t. In the regressions, these values of the explanatory variables for individual stocks are matched with CRSP returns for the months from July of year t to June of year $t+1$. The gap between the accounting data and the returns ensures that the accounting data are available prior to the returns. If earnings are positive, $\mathrm{E}(+) / \mathrm{P}$ is the ratio of total earnings to market equity and E / P dummy is 0 . If earnings are negative, $\mathrm{E}(+) / \mathrm{P}$ is 0 and E / P dummy is 1 .
The average slope is the time-series average of the monthly regression slopes for July 1963 to December 1990, and the t-statistic is the average slope divided by its time-series standard error.
On average, there are 2267 stocks in the monthly regressions. To avoid giving extreme observations heavy weight in the regressions, the smallest and largest 0.5% of the observations on $\mathrm{E}(+) / \mathrm{P}, \mathrm{BE} / \mathrm{ME}, \mathrm{A} / \mathrm{ME}$, and A / BE are set equal to the next largest or smallest values of the ratios (the 0.005 and 0.995 fractiles). This has no effect on inferences.

β	$\ln (\mathrm{ME})$	$\ln (\mathrm{BE} / \mathrm{ME})$	$\ln (\mathrm{A} / \mathrm{ME})$	$\ln (\mathrm{A} / \mathrm{BE})$	E / P Dummy	$E(+) / P$
$\begin{gathered} 0.15 \\ (0.46) \end{gathered}$						
	$\begin{gathered} -0.15 \\ (-258) \end{gathered}$					
$\begin{gathered} -0.37 \\ (-1.21) \end{gathered}$	$\begin{gathered} -0.17 \\ (-3.41) \end{gathered}$					
		$\begin{gathered} 0.50 \\ (5.71) \end{gathered}$				
			$\begin{gathered} 0.50 \\ (569) \end{gathered}$	$\begin{gathered} -0.57 \\ (-5.34) \end{gathered}$		
					$\begin{gathered} 0.57 \\ (2.28) \end{gathered}$	$\begin{gathered} 4.72 \\ (4.57) \end{gathered}$
	$\begin{gathered} -0.11 \\ (-1.99) \end{gathered}$	$\begin{gathered} 0.35 \\ (4.44) \end{gathered}$				
	$\begin{gathered} -011 \\ (-206) \end{gathered}$		$\begin{gathered} 0.35 \\ (4.32) \end{gathered}$	$\begin{gathered} -050 \\ (-4.56) \end{gathered}$		
	$\begin{gathered} -0.16 \\ (-3.06) \end{gathered}$				$\begin{gathered} 0.06 \\ (038) \end{gathered}$	$\begin{gathered} 2.99 \\ (3.04) \end{gathered}$
	$\begin{gathered} -0.13 \\ (-2.47) \end{gathered}$	$\begin{gathered} 0.33 \\ (4.46) \end{gathered}$			$\begin{gathered} -0.14 \\ (-0.90) \end{gathered}$	$\begin{gathered} 0.87 \\ (1.23) \end{gathered}$
	$\begin{gathered} -0.13 \\ (-2.47) \end{gathered}$		$\begin{gathered} 0.32 \\ (4.28) \end{gathered}$	$\begin{gathered} -0.46 \\ (-4.45) \end{gathered}$	$\begin{gathered} -0.08 \\ (-0.56) \end{gathered}$	$\begin{gathered} 1.15 \\ (1.57) \end{gathered}$

0.05 or less, only 1 is greater than 0.1 , and the standard errors are small relative to the range of the $\beta \mathrm{s}(0.53$ to 1.79$)$.
The β-sorted portfolios in Tables I and II also provide strong evidence against the β-measurement-error story. When portfolios are formed on preranking β s alone (Table II), the post-ranking $\beta \mathrm{s}$ for the portfolios almost perfectly reproduce the ordering of the pre-ranking $\beta \mathrm{s}$. Only the β for portfolio 1B is out of line, and only by 0.02 . Similarly, when portfolios are formed on size and then pre-ranking $\beta \mathrm{s}$ (Table I), the post-ranking β s in each size decile closely reproduce the ordering of the pre-ranking $\beta \mathrm{s}$.
The correspondence between the ordering of the pre-ranking and postranking β s for the β-sorted portfolios in Tables I and II is evidence that the post-ranking β s are informative about the ordering of the true $\beta \mathrm{s}$. The problem for the SLB model is that there is no similar ordering in the average returns on the β-sorted portfolios. Whether one looks at portfolios sorted on β alone (Table II) or on size and then β (Table I), average returns are flat (Table II) or decline slightly (Table I) as the post-ranking $\beta \mathrm{s}$ increase.
Our evidence on the robustness of the size effect and the absence of a relation between β and average return is so contrary to the SLB model that it behooves us to examine whether the results are special to 1963-1990. The appendix shows that NYSE returns for 1941-1990 behave like the NYSE, AMEX, and NASDAQ returns for 1963-1990; there is a reliable size effect over the full 50 -year period, but little relation between β and average return. Interestingly, there is a reliable simple relation between β and average return during the 1941-1965 period. These 25 years are a major part of the samples in the early studies of the SLB model of Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973). Even for the 1941-1965 period, however, the relation between β and average return disappears when we control for size.

III. Book-to-Market Equity, E/P, and Leverage

Tables I to III say that there is a strong relation between the average returns on stocks and size, but there is no reliable relation between average returns and β. In this section we show that there is also a strong crosssectional relation between average returns and book-to-market equity. If anything, this book-to-market effect is more powerful than the size effect. We also find that the combination of size and book-to-market equity absorbs the apparent roles of leverage and E / P in average stock returns.

A. Average Returns

Table IV shows average returns for July 1963 to December 1990 for portfolios formed on ranked values of book-to-market equity (BE/ME) or earnings-price ratio (E / P). The BE/ME and E/P portfolios in Table IV are formed in the same general way (one-dimensional yearly sorts) as the size and β portfolios in Table II. (See the tables for details.)

The relation between average return and E / P has a familiar U-shape (e.g., Jaffe, Keim, and Westerfield (1989) for U.S. data, and Chan, Hamao, and Lakonishok (1991) for Japan). Average returns decline from 1.46% per month for the negative E/P portfolio to 0.93% for the firms in portfolio 1B that have low but positive E / P. Average returns then increase monotonically, reaching 1.72% per month for the highest E / P portfolio.
The more striking evidence in Table IV is the strong positive relation between average return and book-to-market equity. Average returns rise from 0.30% for the lowest BE/ME portfolio to 1.83% for the highest, a difference of 1.53% per month. This spread is twice as large as the difference of 0.74% between the average monthly returns on the smallest and largest size portfolios in Table II. Note also that the strong relation between book-tomarket equity and average return is unlikely to be a β effect in disguise; Table IV shows that post-ranking market βs vary little across portfolios formed on ranked values of BE/ME.

On average, only about 50 (out of 2317) firms per year have negative book equity, BE . The negative BE firms are mostly concentrated in the last 14 years of the sample, 1976-1989, and we do not include them in the tests. We can report, however, that average returns for negative BE firms are high, like the average returns of high BE/ME firms. Negative BE (which results from persistently negative earnings) and high $\mathrm{BE} / \mathrm{ME}$ (which typically means that stock prices have fallen) are both signals of poor earning prospects. The similar average returns of negative and high BE/ME firms are thus consistent with the hypothesis that book-to-market equity captures cross-sectional variation in average returns that is related to relative distress.

B. Fama-MacBeth Regressions

B.1. $B E / M E$

The FM regressions in Table III confirm the importance of book-to-market equity in explaining the cross-section of average stock returns. The average slope from the monthly regressions of returns on $\ln (B E / M E)$ alone is 0.50%, with a t-statistic of 5.71 . This book-to-market relation is stronger than the size effect, which produces a t-statistic of -2.58 in the regressions of returns on $\ln (\mathrm{ME})$ alone. But book-to-market equity does not replace size in explaining average returns. When both $\ln (\mathrm{ME})$ and $\ln (\mathrm{BE} / \mathrm{ME})$ are included in the regressions, the average size slope is still -1.99 standard errors from 0 ; the book-to-market slope is an impressive 4.44 standard errors from 0.

B.2. Leverage

The FM regressions that explain returns with leverage variables provide interesting insight into the relation between book-to-market equity and average return. We use two leverage variables, the ratio of book assets to market equity, A / ME, and the ratio of book assets to book equity, A / BE. We interpret A/ME as a measure of market leverage, while A / BE is a measure

Table IV

Properties of Portfolios Formed on Book-to-Market Equity (BE/ME) and Earnings-Price Ratio (E/P):

 July 1963 to December 1990At the end of each year $t-1,12$ portfolios are formed on the basis of ranked values of BE/ME or E/P. Portfolios 2-9 cover deciles of the ranking variables. The bottom and top 2 portfolios (1A, 1B, 10A, and 10B) split the bottom and top deciles in half. For E/P, there are 13 portfolios; portfolio 0 is stocks with negative E / P. Since $\mathrm{BE} / \mathrm{ME}$ and E / P are not strongly related to exchange listing, their portfolio breakpoints are determined on the basis of the ranked values of the variables for all stocks that satisfy the CRSP-COMPUSTAT data requirements. BE is the book value of common equity plus balance-sheet deferred taxes, A is total book assets, and E is earnings (income before extraordinary items, plus income-statement deferred taxes, minus preferred dividends). BE, A, and E are for each firm's latest fiscal year ending in calendar year $t-1$. The accounting ratios are measured using market equity ME in December of year $t-1$. Firm size $\ln (\mathrm{ME})$ is measured in June of year t, with ME denominated in millions of dollars. We calculate each portfolio's monthly equal-weighted return for July of year t to June of year $t+1$, and then reform the portfolios at the end of year t.
Return is the time-series average of the monthly equal-weighted portfolio returns (in percent). $\ln (\mathrm{ME}), \ln (\mathrm{BE} / \mathrm{ME}), \ln (\mathrm{A} / \mathrm{ME}), \ln (\mathrm{A} / \mathrm{BE}), \mathrm{E}(+) / \mathrm{P}$, and E / P dummy are the time-series averages of the monthly average values of these variables in each portfolio Since the E / P dummy is 0 when earnings are positive, and 1 when earnings are negative, E/P dummy gives the average proportion of stocks with negative earnings in each portfolio.
β is the time-series average of the monthly portfolio β s. Stocks are assigned the post-ranking β of the size- β portfolio they are in at the end of June of year t (Table I). These individual-firm $\beta \mathrm{s}$ are averaged to compute the monthly $\beta \mathrm{s}$ for each portfolio for July of year t to June of year $t+1$. Firms is the average number of stocks in the portfolio each month.

Portfolio	0	1A	1B	2	3	4	5	6	7	8	9	10A	10 B
Panel A: Stocks Sorted on Book-to-Market Equity (BE/ME)													
Return		0.30	0.67	0.87	0.97	1.04	1.17	1.30	1.44	1.50	1.59	1.92	1.83
β		1.36	1.34	1.32	1.30	1.28	1.27	1.27	1.27	1.27	1.29	1.33	1.35
\ln (ME)		4.53	4.67	4.69	4.56	4.47	4.38	4.23	4.06	3.85	3.51	3.06	2.65
$\ln (\mathrm{BE} / \mathrm{ME})$		-2.22	-1.51	-1.09	-0.75	-0.51	-032	-0.14	0.03	0.21	0.42	0.66	1.02
$\ln (\mathrm{A} / \mathrm{ME})$		-1.24	-0.79	-0.40	-0.05	0.20	0.40	0.56	0.71	0.91	1.12	1.35	1.75
$\ln (\mathrm{A} / \mathrm{BE})$		0.94	0.71	0.68	0.70	0.71	0.71	0.70	0.68	0.70	0.70	0.70	0.73
E / P dummy		0.29	0.15	0.10	0.08	0.08	0.08	0.09	0.09	0.11	0.15	0.22	0.36
$\mathrm{E}(+) / \mathrm{P}$		0.03	0.04	0.06	0.08	0.09	0.10	0.11	0.11	0.12	0.12	0.11	0.10
Firms		89	98	209	222	226	230	235	237	239	239	120	117

Table IV-Continued

Table IV-Continued													
Portfolio	0	1 A	18	2	3	4	5	6	7	8	9	10A	10 B
Panel B: Stocks Sorted on Earnings-Price Ratio (E/P)													
Return	1.46	1.04	0.93	0.94	1.03	1.18	1.22	1.33	1.42	1.46	1.57	1.74	1.72
β	1.47	1.40	1.35	1.31	1.28	1.26	1.25	1.26	1.24	1.23	1.24	1.28	1.31
\ln (ME)	2.48	3.64	4.33	4.61	4.64	4.63	4.58	4.49	4.37	4.28	4.07	3.82	3.52
$\ln (\mathrm{BE} / \mathrm{ME})$	-0.10	-0.76	-0.91	-0.79	-0.61	-0.47	-0.33	-0.21	-0.08	0.02	0.15	0.26	0.40
$\ln (\mathrm{A} / \mathrm{ME})$	0.90	-0.05	-0.27	-0.16	0.03	0.18	0.31	0.44	0.58	0.70	0.85	1.01	1.25
$\ln (A / B E)$	0.99	0.70	0.63	0.63	0.64	0.65	0.64	0.65	0.66	0.68	071	0.75	0.86
E / P dummy	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\mathrm{E}(+) / \mathrm{P}$	0.00	0.01	0.03	0.05	0.06	0.08	0.09	0.11	0.12	0.14	0.16	0.20	0.28
Firms	355	88	90	182	190	193	196	194	197	195	195	95	91

of book leverage. The regressions use the natural logs of the leverage ratios, $\ln (\mathrm{A} / \mathrm{ME})$ and $\ln (\mathrm{A} / \mathrm{BE})$, because preliminary tests indicated that logs are a good functional form for capturing leverage effects in average returns. Using logs also leads to a simple interpretation of the relation between the roles of leverage and book-to-market equity in average returns.
The FM regressions of returns on the leverage variables (Table III) pose a bit of a puzzle. The two leverage variables are related to average returns, but with opposite signs. As in Bhandari (1988), higher market leverage is associated with higher average returns; the average slopes for $\ln (\mathrm{A} / \mathrm{ME})$ are always positive and more than 4 standard errors from 0 . But higher book leverage is associated with lower average returns; the average slopes for $\ln (\mathrm{A} / \mathrm{BE})$ are always negative and more than 4 standard errors from 0.
The puzzle of the opposite slopes on $\ln (\mathrm{A} / \mathrm{ME})$ and $\ln (\mathrm{A} / \mathrm{BE})$ has a simple solution. The average slopes for the two leverage variables are opposite in sign but close in absolute value, e.g., 0.50 and -0.57 . Thus it is the difference between market and book leverage that helps explain average returns. But the difference between market and book leverage is book-tomarket equity, $\ln (\mathrm{BE} / \mathrm{ME})=\ln (\mathrm{A} / \mathrm{ME})-\ln (\mathrm{A} / \mathrm{BE})$. Table III shows that the average book-to-market slopes in the FM regressions are indeed close in absolute value to the slopes for the two leverage variables.
The close links between the leverage and book-to-market results suggest that there are two equivalent ways to interpret the book-to-market effect in average returns. A high ratio of book equity to market equity (a low stock price relative to book value) says that the market judges the prospects of a firm to be poor relative to firms with low BE/ME. Thus BE/ME may capture the relative-distress effect postulated by Chan and Chen (1991). A high book-to-market ratio also says that a firm's market leverage is high relative to its book leverage; the firm has a large amount of market-imposed leverage because the market judges that its prospects are poor and discounts its stock price relative to book value. In short, our tests suggest that the relativedistress effect, captured by BE/ME, can also be interpreted as an involuntary leverage effect, which is captured by the difference between A/ME and A/BE.

B.3. E / P

Ball (1978) posits that the earnings-price ratio is a catch-all for omitted risk factors in expected returns. If current earnings proxy for expected future earnings, high-risk stocks with high expected returns will have low prices relative to their earnings. Thus, E / P should be related to expected returns, whatever the omitted sources of risk. This argument only makes sense, however, for firms with positive earnings. When current earnings are negative, they are not a proxy for the earnings forecasts embedded in the stock price, and E/P is not a proxy for expected returns. Thus, the slope for E/P in the FM regressions is based on positive values; we use a dummy variable for E / P when earnings are negative.

The U -shaped relation between average return and E / P observed in Table IV is also apparent when the E / P variables are used alone in the $F M$ regressions in Table III. The average slope on the E/P dummy variable (0.57% per month, 2.28 standard errors from 0) confirms that firms with negative earnings have higher average returns. The average slope for stocks with positive E/P (4.72% per month, 4.57 standard errors from 0) shows that average returns increase with E / P when it is positive.

Adding size to the regressions kills the explanatory power of the E / P dummy. Thus the high average returns of negative E/P stocks are better captured by their size, which Table IV says is on average small. Adding both size and book-to-market equity to the E/P regressions kills the E/P dummy and lowers the average slope on E / P from 4.72 to $0.87(t=1.23)$. In contrast, the average slopes for $\ln (\mathrm{ME})$ and $\ln (\mathrm{BE} / \mathrm{ME})$ in the regressions that include E / P are similar to those in the regressions that explain average returns with only size and book-to-market equity. The results suggest that most of the relation between (positive) E / P and average return is due to the positive correlation between E / P and $\ln (\mathrm{BE} / \mathrm{ME})$, illustrated in Table IV; firms with high E / P tend to have high book-to-market equity ratios.

IV. A Parsimonious Model for Average Returns

The results to here are easily summarized:
(1) When we allow for variation in β that is unrelated to size, there is no reliable relation between β and average return.
(2) The opposite roles of market leverage and book leverage in average returns are captured well by book-to-market equity.
(3) The relation between E/P and average return seems to be absorbed by the combination of size and book-to-market equity.
In a nutshell, market β seems to have no role in explaining the average returns on NYSE, AMEX, and NASDAQ stocks for 1963-1990, while size and book-to-market equity capture the cross-sectional variation in average stock returns that is related to leverage and E/P.

A. Average Returns, Size and Book-to-Market Equity

The average return matrix in Table V gives a simple picture of the two-dimensional variation in average returns that results when the 10 size deciles are each subdivided into 10 portfolios based on ranked values of BE/ME for individual stocks. Within a size decile (across a row of the average return matrix), returns typically increase strongly with $\mathrm{BE} / \mathrm{ME}$: on average, the returns on the lowest and highest BE/ME portfolios in a size decile differ by $0.99 \%(1.63 \%-0.64 \%)$ per month. Similarly, looking down the columns of the average return matrix shows that there is a negative relation between average return and size: on average, the spread of returns across the size portfolios in a $\mathrm{BE} / \mathrm{ME}$ group is 0.58% per month. The average return matrix gives life to the conclusion from the regressions that,

Table V

Average Monthly Returns on Portfolios Formed on Size and
 Book-to-Market Equity; Stocks Sorted by ME (Down) and then BE/ME (Across): July 1963 to December 1990

In June of each year t, the NYSE, AMEX, and NASDAQ stocks that meet the CRSP. COMPUSTAT data requirements are allocated to 10 size portfolios using the NYSE size (ME) breakpoints. The NYSE, AMEX, and NASDAQ stocks in each size decile are then sorted into $10 \mathrm{BE} / \mathrm{ME}$ portfolios using the book-to-market ratios for year $t-1$. $\mathrm{BE} / \mathrm{ME}$ is the book value of common equity plus balance-sheet deferred taxes for fiscal year $t-1$, over market equity for December of year $t-1$. The equal-weighted monthly portfolio returns are then calculated for July of year t to June of year $t+1$.
Average monthly return is the time-series average of the monthly equal-weighted portfolio returns (in percent).
The All column shows average returns for equal-weighted size decile portfolios. The All row shows average returns for equal-weighted portfolios of the stocks in each BE/ME group.

	Book-to-Market Portfolios										
	All	Low	2	3	4	5	6	7	8	9	High
All	1.23	0.64	0.98	1.06	1.17	1.24	1.26	1.39	1.40	1.50	1.63
Small-ME	1.47	0.70	1.14	1.20	1.43	1.56	1.51	1.70	1.71	1.82	1.92
ME-2	1.22	0.43	1.05	0.96	1.19	1.33	1.19	1.58	1.28	1.43	1.79
ME-3	1.22	0.56	0.88	1.23	0.95	1.36	1.30	1.30	1.40	1.54	1.60
ME-4	1.19	0.39	0.72	1.06	1.36	1.13	1.21	1.34	1.59	1.51	1.47
ME-5	1.24	0.88	0.65	1.08	1.47	1.13	1.43	1.44	1.26	1.52	1.49
ME-6	1.15	0.70	0.98	1.14	1.23	0.94	1.27	1.19	1.19	1.24	1.50
ME-7	1.07	0.95	1.00	0.99	0.83	0.99	1.13	0.99	1.16	1.10	1.47
ME-8	1.08	0.66	1.13	0.91	0.95	0.99	1.01	1.15	1.05	1.29	155
ME-9	0.95	0.44	0.89	0.92	1.00	1.05	0.93	0.82	1.11	1.84	1.22
Large-ME	0.89	0.93	0.88	0.84	0.71	0.79	0.83	0.81	0.96	0.97	1.18

controlling for size, book-to-market equity captures strong variation in average returns, and controlling for book-to-market equity leaves a size effect in average returns.

B. The Interaction between Size and Book-to-Market Equity

The average of the monthly correlations between the cross-sections of $\ln (\mathrm{ME})$ and $\ln (\mathrm{BE} / \mathrm{ME})$ for individual stocks is -0.26 . The negative correlation is also apparent in the average values of $\ln (\mathrm{ME})$ and $\ln (\mathrm{BE} / \mathrm{ME})$ for the portfolios sorted on ME or BE/ME in Tables Π and IV. Thus, firms with low market equity are more likely to have poor prospects, resulting in low stock prices and high book-to-market equity. Conversely, large stocks are more likely to be firms with stronger prospects, higher stock prices, lower book-tomarket equity, and lower average stock returns.

The correlation between size and book-to-market equity affects the regressions in Table III. Including $\ln (\mathrm{BE} / \mathrm{ME})$ moves the average slope on $\ln (\mathrm{ME})$ from $-0.15(t=-2.58)$ in the univariate regressions to $-0.11(t=-1.99)$ in the bivariate regressions. Similarly, including $\ln (M E)$ in the regressions
lowers the average slope on $\ln (\mathrm{BE} / \mathrm{ME}$) from 0.50 to 0.35 (still a healthy 4.44 standard errors from 0). Thus, part of the size effect in the simple regressions is due to the fact that small ME stocks are more likely to have high book-to-market ratios, and part of the simple book-to-market effect is due to the fact that high BE/ME stocks tend to be small (they have low ME).

We should not, however, exaggerate the links between size and book-tomarket equity. The correlation (-0.26) between $\ln (\mathrm{ME})$ and $\ln (\mathrm{BE} / \mathrm{ME})$ is not extreme, and the average slopes in the bivariate regressions in Table III show that $\ln (\mathrm{ME})$ and $\ln (\mathrm{BE} / \mathrm{ME})$ are both needed to explain the cross-section of average returns. Finally, the 10×10 average return matrix in Table V provides concrete evidence that, (a) controlling for size, book-to-market equity captures substantial variation in the cross-section of average returns, and (b) within $B E / M E$ groups average returns are related to size.

C. Subperiod Averages of the FM Slopes

The message from the average FM slopes for 1963-1990 (Table III) is that size on average has a negative premium in the cross-section of stock returns, book-to-market equity has a positive premium, and the average premium for market β is essentially 0 . Table VI shows the average FM slopes for two roughly equal subperiods (July 1963-December 1976 and January 1977December 1990) from two regressions: (a) the cross-section of stock returns on size, $\ln (\mathrm{ME})$, and book-to-market equity, $\ln (\mathrm{BE} / \mathrm{ME})$, and (b) returns on β, $\ln (\mathrm{ME})$, and $\ln (\mathrm{BE} / \mathrm{ME})$. For perspective, average returns on the valueweighted and equal-weighted (VW and EW) portfolios of NYSE stocks are also shown.

In FM regressions, the intercept is the return on a standard portfolio (the weights on stocks sum to 1) in which the weighted averages of the explanatory variables are 0 (Fama (1976), chapter 9). In our tests, the intercept is weighted toward small stocks (ME is in millions of dollars so $\ln (\mathrm{ME})=0$ implies $\mathrm{ME}=\$ 1$ million) and toward stocks with relatively high book-tomarket ratios (Table IV says that $\ln (\mathrm{BE} / \mathrm{ME})$ is negative for the typical firm, so $\ln (B E / M E)=0$ is toward the high end of the sample ratios). Thus it is not surprising that the average intercepts are always large relative to their standard errors and relative to the returns on the NYSE VW and EW portfolios.

Like the overall period, the subperiods do not offer much hope that the average premium for β is economically important. The average FM slope for β is only slightly positive for 1963-1976 (0.10% per month, $t=0.25$), and it is negative for 1977-1990 (-0.44% per month, $t=-1.17$). There is a hint that the size effect is weaker in the 1977-1990 period, but inferences about the average size slopes for the subperiods lack power.

Unlike the size effect, the relation between book-to-market equity and average return is so strong that it shows up reliably in both the 1963-1976 and the 1977-1990 subperiods. The average slopes for $\ln (B E / M E)$ are all more than 2.95 standard exrors from 0 , and the average slopes for the

Table VI
Subperiod Average Monthly Returns on the NYSE Equal-Weighted and Value-Weighted Portfolios and Subperiod Means of the Intercepts and Slopes from the Monthly FM Cross-Sectional Regressions of Returns on (a) Size (ln(ME)) and Book-to-Market Equity ($\mathbf{n n}(\mathrm{BE} / \mathrm{ME})$), and (b) $\beta, \ln (\mathrm{ME})$, and $\ln (\mathrm{BE} / \mathrm{ME})$
Mean is the time-series mean of a monthly return, Std is its time-series standard deviation, and $t(\mathrm{Mn})$ is Mean divided by its time-series standard error.

Variable	7/63-12/90 (330 Mos.)			7/63-12/76 (162 Mos.)			1/77-12/90 (168 Mos.)		
	Mean	Std	$t(\mathrm{Mn})$	Mean	Std	$t(\mathrm{Mn})$	Mean	Std	$t(\mathrm{Mn})$
NYSE Value-Weighted (VW) and Equal-Weighted (EW) Portfolio Returns									
VW	0.81	4.47	3.27	0.56	4.26	1.67	1.04	4.66	2.89
EW	0.97	5.49	3.19	0.77	5.70	1.72	1.15	5.28	2.82
$R_{2 t}=\mathrm{a}+\mathrm{b}_{2 t} \ln \left(\mathrm{ME}_{t t}\right)+\mathrm{b}_{3 t} \ln \left(\mathrm{BE} / \mathrm{ME}_{t t}\right)+e_{t t}$									
a	1.77	8.51	3.77	1.86	10.10	2.33	1.69	6.67	3.27
b_{2}	-0.11	1.02	-1.99	-0.16	1.25	-1.62	-0.07	0.73	- 1.16
${ }^{\mathrm{b}_{3}}$	0.35	1.45	4.43	0.36	1.53	2.96	0,35	1.37	3.30
$R_{1 t}=\mathrm{a}+\mathrm{b}_{1 t} \beta_{3 t}+\mathrm{b}_{2 t} \ln \left(\mathrm{ME}_{t t}\right)+\mathrm{b}_{3 t} \ln \left(\mathrm{BE} / \mathrm{ME}_{t}\right)+\mathrm{e}_{3 t}$									
a	2.07	5.75	6.55	1.73	6.22	3.54	2.40	5.25	5.92
b_{1}	-0.17	5.12	-0.62	0.10	5.33	0.25	-0.44	4.91	-1.17
b_{2}	-0.12	0.89	-2.52	-0.15	1.03	-1.91	-0.09	0.74	-1.64
b_{3}	0.33	1.24	4.80	0.34	1.36	3.17	0.31	1.10	-3.67

subperiods (0.36 and 0.35) are close to the average slope (0.35) for the overall period. The subperiod results thus support the conclusion that, among the variables considered here, book-to-market equity is consistently the most powerful for explaining the cross-section of average stock returns.
Finally, Roll (1983) and Keim (1983) show that the size effect is stronger in January. We have examined the monthly slopes from the FM regressions in Table VI for evidence of a January seasonal in the relation between book-tomarket equity and average return. The average January slopes for $\ln (B E / M E)$ are about twice those for February to December. Unlike the size effect, however, the strong relation between book-to-market equity and average return is not special to January. The average monthly February-to-December slopes for $\ln (\mathrm{BE} / \mathrm{ME})$ are about 4 standard errors from 0 , and they are close to (within 0.05 of) the average slopes for the whole year. Thus, there is a January seasonal in the book-to-market equity effect, but the positive relation between $B E / M E$ and average return is strong throughout the year.

D. β and the Market Factor: Caveats

Some caveats about the negative evidence on the role of β in average returns are in order. The average premiums for β, size, and book-to-market
equity depend on the definitions of the variables used in the regressions. For example, suppose we replace book-to-market equity ($\ln (\mathrm{BE} / \mathrm{ME})$) with book equity $(\ln (\mathrm{BE}))$. As long as size ($\ln (\mathrm{ME}))$ is also in the regression, this change will not affect the intercept, the fitted values or the R^{2}. But the change, in variables increases the average slope (and the t-statistic) on $\ln (M E)$. In other words, it increases the risk premium associated with size. Other redefinitions of the β, size, and book-to-market variables will produce different regression slopes and perhaps different inferences about average premiums, including possible resuscitation of a role for β. And, of course, at the moment, we have no theoretical basis for choosing among different versions of the variables.

Moreover, the tests here are restricted to stocks. It is possible that including other assets will change the inferences about the average premiums for β, size, and book-to-market equity. For example, the large average intercepts for the FM regressions in Table VI suggest that the regressions will not do a good job on Treasury bills, which have low average returns and are likely to have small loadings on the underlying market, size, and book-to-market factors in returns. Extending the tests to bills and other bonds may well change our inferences about average risk premiums, including the revival of a role for market β.

We emphasize, however, that different approaches to the tests are not likely to revive the Sharpe-Lintner-Black model. Resuscitation of the SLB model requires that a better proxy for the market portfolio (a) overturns our evidence that the simple relation between β and average stock returns is flat and (b) leaves β as the only variable relevant for explaining average returns. Such results seem unlikely, given Stambaugh's (1982) evidence that tests of the SLB model do not seem to be sensitive to the choice of a market proxy. Thus, if there is a role for β in average returns, it is likely to be found in a multi-factor model that transforms the flat simple relation between average return and β into a positively sloped conditional relation.

V. Conclusions and Implications

The Sharpe-Lintner-Black model has long shaped the way academics and practitioners think about average return and risk. Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973) find that, as predicted by the model, there is a positive simple relation between average return and market β during the early years (1926-1968) of the CRSP NYSE returns file. Like Reinganum (1981) and Lakonishok and Shapiro (1986), we find that this simple relation between β and average return disappears during the more recent $1963-1990$ period. The appendix that follows shows that the relation between β and average return is also weak in the last half century (1941-1990) of returns on NYSE stocks. In short, our tests do not support the central prediction of the SLB model, that average stock returns are positively related to market β.

Banz (1981) documents a strong negative relation between average return and firm size. Bhandari (1988) finds that average return is positively related to leverage, and Basu (1983) finds a positive relation between average return
and E/P. Stattman (1980) and Rosenberg, Reid, and Lanstein (1985) document a positive relation between average return and book-to-market equity for U.S. stocks, and Chan, Hamao, and Lakonishok (1992) find that BE/ME is also a powerful variable for explaining average returns on Japanese stocks.
Variables like size, E/P, leverage, and book-to-market equity are all scaled versions of a firm's stock price. They can be regarded as different ways of extracting information from stock prices about the cross-section of expected stock returns (Ball (1978), Keim (1988)). Since all these variables are scaled versions of price, it is reasonable to expect that some of them are redundant for explaining average returns. Our main result is that for the 1963-1990 period, size and book-to-market equity capture the cross-sectional variation in average stock returns associated with size, E / P, book-to-market equity, and leverage.

A. Rational Asset-Pricing Stories

Are our results consistent with asset-pricing theory? Since the FM intercept is constrained to be the same for all stocks, FM regressions always impose a linear factor structure on returns and expected returns that is consistent with the multifactor asset-pricing models of Merton (1973) and Ross (1976). Thus our tests impose a rational asset-pricing framework on the relation between average return and size and book-to-market equity.
Even if our results are consistent with asset-pricing theory, they are not economically satisfying. What is the economic explanation for the roles of size and book-to-market equity in average returns? We suggest several paths of inquiry.
(a) The intercepts and slopes in the monthly FM regressions of returns on $\ln (\mathrm{ME})$ and $\ln (\mathrm{BE} / \mathrm{ME})$ are returns on portfolios that mimic the underlying common risk factors in returns proxied by size and book-to-market equity (Fama (1976), chapter 9). Examining the relations between the returns on these portfolios and economic variables that measure variation in business conditions might help expose the nature of the economic risks captured by size and book-to-market equity.
(b) Chan, Chen, and Hsieh (1985) argue that the relation between size and average return proxies for a more fundamental relation between expected returns and economic risk factors. Their most powerful factor in explaining the size effect is the difference between the monthly returns on low- and high-grade corporate bonds, which in principle captures a kind of default risk in returns that is priced. It would be interesting to test whether loadings on this or other economic factors, such as those of Chen, Roll, and Ross (1986), can explain the roles of size and book-tomarket equity in our tests.
(c) In a similar vein, Chan and Chen (1991) argue that the relation between size and average return is a relative-prospects effect. The earning prospects of distressed firms are more sensitive to economic
conditions. This results in a distress factor in returns that is priced in expected returns. Chan and Chen construct two mimicking portfolios for the distress factor, based on dividend changes and leverage. It would be interesting to check whether loadings on their distress factors absorb the size and book-to-market equity effects in average returns that are documented here.
(d) In fact, if stock prices are rational, $\mathrm{BE} / \mathrm{ME}$, the ratio of the book value of a stock to the market's assessment of its value, should be a direct indicator of the relative prospects of firms. For example, we expect that high BE/ME firms have low earnings on assets relative to low BE/ME firms. Our work (in progress) suggests that there is indeed a clean separation between high and low BE/ME firms on various measures of economic fundamentals. Low BE/ME firms are persistently strong performers, while the economic performance of high BE/ME firms is persistently weak.

B. Irrational Asset-Pricing Stories

The discussion above assumes that the asset-pricing effects captured by size and book-to-market equity are rational. For BE/ME, our most powerful expected-return variable, there is an obvious alternative. The cross-section of book-to-market ratios might result from market overreaction to the relative prospects of firms. If overreaction tends to be corrected, BE/ME will predict the cross-section of stock returns.
Simple tests do not confirm that the size and book-to-market effects in average returns are due to market overreaction, at least of the type posited by DeBondt and Thaler (1985). One overreaction measure used by DeBondt and Thaler is a stock's most recent 3 -year return. Their overreaction story predicts that 3 -year losers have strong post-ranking returns relative to 3 -year winners. In FM regressions (not shown) for individual stocks, the 3 -year lagged return shows no power even when used alone to explain average returns. The univariate average slope for the lagged return is negative, -6 basis points per month, but less than 0.5 standard errors from 0 .

C. Applications

Our main result is that two easily measured variables, size and book-tomarket equity, seem to describe the cross-section of average stock returns. Prescriptions for using this evidence depend on (a) whether it will persist, and (b) whether it results from rational or irrational asset-pricing.
It is possible that, by chance, size and book-to-market equity happen to describe the cross-section of average returns in our sample, but they were and are unrelated to expected returns. We put little weight on this possibility, especially for book-to-market equity. First, although BE/ME has long been touted as a measure of the return prospects of stocks, there is no evidence that its explanatory power deteriorates through time. The 1963-1990 relation between $B E / M E$ and average return is strong, and remarkably similar
for the 1963-1976 and 1977-1990 subperiods. Second, our preliminary work on economic fundamentals suggests that high-BE/ME firms tend to be persistently poor earners relative to low-BE/ME firms. Similarly, small firms have a long period of poor earnings during the 1980 s not shared with big firms. The systematic patterns in fundamentals give us some hope that size and book-to-market equity proxy for risk factors in returns, related to relative earning prospects, that are rationally priced in expected returns.

If our results are more than chance, they have practical implications for portfolio formation and performance evaluation by investors whose primary concern is long-term average returns. If asset-pricing is rational, size and $\mathrm{BE} / \mathrm{ME}$ must proxy for risk. Our results then imply that the performance of managed portfolios (e.g., pension funds and mutual funds) can be evaluated by comparing their average returns with the average returns of benchmark portfolios with similar size and BE/ME characteristics. Likewise, the expected returns for different portfolio strategies can be estimated from the historical average returns of portfolios with matching size and BE/ME properties.

If asset-pricing is irrational and size and $\mathrm{BE} / \mathrm{ME}$ do not proxy for risk, our results might still be used to evaluate portfolio performance and measure the expected returns from alternative investment strategies. If stock prices are irrational, however, the likely persistence of the results is more suspect.

Appendix
 Size Versus β : 1941-1990

Our results on the absence of a relation between β and average stock returns for 1963-1990 are so contrary to the tests of the Sharpe-Lintner-Black model by Black, Jensen, and Scholes (1972), Fama and MacBeth (1973), and (more recently) Chan and Chen (1988), that further tests are appropriate. We examine the roles of size and β in the average returns on NYSE stocks for the half-century 1941-1990, the longest available period that avoids the high volatility of returns in the Great Depression. We do not include the accounting variables in the tests because of the strong selection bias (toward successful firms) in the COMPUSTAT data prior to 1962.

We first replicate the results of Chan and Chen (1988). Like them, we find that when portfolios are formed on size alone, there are strong relations between average return and either size or β; average return increases with β and decreases with size. For size portfolios, however, size (ln(ME)) and β are almost perfectly correlated (-0.98), so it is difficult to distinguish between the roles of size and β in average returns.

One way to generate strong variation in β that is unrelated to size is to form portfolios on size and then on β. As in Tables I to III, we find that the resulting independent variation in β just about washes out the positive simple relation between average return and β observed when portfolios are formed on size alone. The results for NYSE stocks for 1941-1990, are thus much like those for NYSE, AMEX, and NASDAQ stocks for 1963-1990.

This appendix also has methodological goals. For example, the FM regressions in Table III use returns on individual stocks as the dependent variable. Since we allocate portfolio β s to individual stocks but use firm-specific values of other variables like size, β may be at a disadvantage in the regressions for individual stocks. This appendix shows, however, that regressions for portfolios, which put β and size on equal footing, produce results comparable to those for individual stocks.

A. Size Portfolios

Table AI shows average monthly returns and market β s for 12 portfolios of NYSE stocks formed on the basis of size (ME) at the end of each year from 1940 to 1989. For these size portfolios, there is a strong positive relation between average return and β. Average returns fall from 1.96% per month for the smallest ME portfolio (1A) to 0.93% for the largest (10B) and β falls from 1.60 to 0.95 . (Note also that, as claimed earlier, estimating β as the sum of the slopes in the regression of a portfolio's return on the current and prior month's NYSE value-weighted return produces much larger $\beta \mathrm{s}$ for the smallest ME portfolios and slightly smaller β s for the largest ME portfolios.)
The FM regressions in Table AI confirm the positive simple relation between average return and β for size portfolios. In the regressions of the size-portfolio returns on β alone, the average premium for a unit of β is 1.45% per month. In the regressions of individual stock returns on β (where stocks are assigned the β of their size portfolio), the premium for a unit of β is 1.39%. Both estimates are about 3 standard errors from 0 . Moreover, the β s of size portfolios do not leave a residual size effect; the average residuals from the simple regressions of returns on β in Table AI show no relation to size. These positive SLB results for 1941-1990 are like those obtained by Chan and Chen (1988) in tests on size portfolios for 1954-1983.

There is, however, evidence in Table AI that all is not well with the $\beta \mathrm{s}$ of the size portfolios. They do a fine job on the relation between size and average return, but they do a lousy job on their main task, the relation between β and average return. When the residuals from the regressions of returns on β are grouped using the pre-ranking β s of individual stocks, the average residuals are strongly positive for low- β stocks $(0.51 \%$ per month for group 1A) and negative for high- β stocks (-1.05% for 10B). Thus the market lines estimated with size-portfolio β s exaggerate the tradeoff of average return for β; they underestimate average returns on low $-\beta$ stocks and overestimate average returns on high $-\beta$ stocks. This pattern in the β-sorted average residuals for individual stocks suggests that (a) there is variation in β across stocks that is lost in the size portfolios, and (b) this variation in β is not rewarded as well as the variation in β that is related to size.

B. Two-Pass Size- β Portfolios

Like Table I, Table AII shows that subdividing size deciles using the (pre-ranking) $\beta \mathrm{s}$ of individual stocks results in strong variation in β that is

Table AI

Average Returns, Post-Ranking β s and Fama-MacBeth Regression Slopes for Size Portfolios of NYSE Stocks: 1941-1990

At the end of each year $t-1$, stocks are assigued to 12 portfolios using ranked values of ME. Included are all NYSE stocks that have a CRSP price and shares for December of year $t-1$ and returns for at least 24 of the 60 months ending in December of year $t-1$ (for pre-ranking β estimates). The middle 8 portfolios cover size deciles 2 to 9 . The 4 extreme portfolios (1A, 1B, 10A, and 10B) split the smallest and largest deciles in half. We compute equal-weighted returns on the portfolios for the 12 months of year t using all surviving stocks. Average Return is the time-series average of the monthly portfolio returns for 1941-1990, in percent. Average firms is the average number of stocks in the portfolios each month The simple β s are estimated by repressing the 1941-1990 sample of post-ranking monthly returns for a size portfolio on the current month's value-weighted NYSE portfolio return. The sum β s are the sum of the slopes from a regression of the post-ranking monthly returns on the current and prior month's VW NYSE returns.
The independent variables in the Fama-MacBeth regressions are defined for each firm at the end of December of each year $t-1$. Stocks are assigned the post-ranking (sum) β of the size portfolio they are in at the end of year $t-1$. ME is price times shares outstanding at the end of year $t-1$. In the individual-stock regressions, these values of the explanatory variables are matched with CRSP returns for each of the 12 months of year t. The portfolio regressions match the equal-weighted portfolio returns with the equal-weighted averages of β and $\ln (\mathrm{ME})$ for the surviving stocks in each month of year t. Slope is the average of the (600) monthly FM regression slopes and SE is the standard error of the average slope The residuals from the monthly regressions for year t are grouped into 12 portfolios on the basis of size (ME) or pre-ranking β (estimated with 24 to 60 months of data, as available) at the end of year $t-1$. The average residuals are the time-series averages of the monthly equal-weighted portfolio residuals, in percent. The average residuals for regressions (1) and (2) (not shown) are quite similar to those for regressions (4) and (5) (shown).

	Dortfolios Formed on Size											
	1A	1 B	2	3	4	5	6	7	8	9	10A	10 B
Ave. retarn	1.96	1.59	1.44	1.36	1.28	1.24	1.23	1.17	1.15	1.13	0.97	0.93
Ave. firms	57	56	110	107	107	108	111	113	115	118	59	59
Simple β	1.29	1.24	1.21	1.19	1.16	113	1.13	1.12	1.09	1.05	1.00	0.98
Standard error	0.07	0.05	0.04	0.03	0.02	002	0.02	0.02	0.01	0.01	0.01	0.01
Sum β	1.60	1.44	1.37	1.32	1.26	1.23	1.19	1.17	1.12	1.06	0.99	0.95
Standard error	0.10	0.06	0.05	0.04	0.03	0.03	0.03	0.02	0.02	0.01	0.01	0.01

Table AI-Continued

	Portfolio Regressions				Individual Stock Regressions					
	(1) β	(2) $\ln (\mathrm{ME})$	(3) β and $\ln (\mathrm{ME})$		(4) 0	(5) $\ln (\mathrm{ME})$		(6) β and $\ln (\mathrm{ME})$		
Slope SE	1.45	-0.137	305	0.149	1.39		133	0.71		
	0.47	0.044	1.51	0115	0.46		. 043	0.81		062
Average Residuals for Stocks Grouped on Size										
	1A	IB 2	3	45	6	7	8	9	10A	10 B
Regression (4)	0.17	0.00-0.04	-0.06	$-0.05-0.04$	000	-003	0.03	008	0.01	004
Standard error	0.11	0.060 .04	0.04	$0.04 \quad 0.04$	0.03	0.03	0.03	0.03	0.05	0.06
Regression (5)	0.30	$0.02-0.05$	-006	$-0.08-0.07$	-0.03	-0.04	0.02	0.08	0.01	0.13
Standard error	0.14	0.07004	$\cdot 0.04$	004004	0.04	0.03	0.03	0.03	0.04	007
Regression (6)	0.20	0.02-0.05	-0.07	$-0.08-006$	-001	-002	0.04	009	0.00	0.06
Standard error	0.10	0.060 .04	004	0040.04	0.03	0.03	0.03	0.03	005	005
Average Residuals for Stocks Grouped on Pre-Ranking β										
	1A	1B 2	3	45	6	7	8	9	10A	10 B
Regression (4)	0.51	$0.61 \quad 0.38$	0.32	$0.16 \quad 0.12$	0.03	-0.10	-0.27	-0.31	-0.66	-1.05
Standard error	0.21	0.190 .13	0.08	0040.03	0.04	005	0.09	011	018	0.23
Regression (5)	-0.10	$0.00 \quad 0.02$	0.09	$0.05 \quad 0.07$	0.05	0.00	-0.03	-0.01	-0.11	-033
Standard error	0.11	$0.10 \quad 0.07$	0.05	0.040 .03	0.03	0.04	0.05	0.07	010	013
Regression (6)	0.09	0.250 .13	0.19	$0.11 \quad 0.14$	0.09	0.01	-0.11	-0.12	-0.38	-070
Standard error	0.41	$0.37 \quad 0.24$	0.14	0070.04	0.04	0.09	0.16	0.21	034	0.43

Table AII

Properties of Portfolios Formed on Size and Pre-Ranking β : NYSE Stocks

Sorted by ME (Down) then Pre-Ranking β (Across): 1941-1990

At the end of year $t-1$, the NYSE stocks on CRSP are assigned to 10 size (ME) portfolios Each size decile is subdivided into 10β portfolios using pre-ranking βs of individual stocks, estimated with 24 to 60 monthly returns (as available) ending in December of year $t-1$. The equal-weighted monthly returns on the resulting 100 portfolios are then calculated for year t. The average returns are the time-series averages of the monthly returns, in percent. The post-ranking βs use the full 1941-1990 sample of post-ranking returns for each portfolio. The pre- and post-ranking fs are the sum of the slopes from a regression of monthly returns on the current and prior month's NYSE value-weighted market return. The average size for a portfolio is the time-series average of each month's average value of $\ln (M E)$ for stocks in the portfolio ME is denominated in millions of dollars. There are, on average, sbout 10 stocks in each size β portfolio each month. The All column shows parameter values for equal-weighted size-decile (ME) portfolios. The All rows show parameter values for equal-weighted portfolios of the stocks in each β group.

| | All | Low- β | $\beta-2$ | $\beta-3$ | $\beta-4$ | $\beta-5$ | $\beta-6$ | $\beta-7$ | $\beta-8$ | $\beta-9$ | High- β |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | Panel A: Average Monthly | Return (in Percent) | | | | | | |
| All | | 1.22 | 1.30 | 1.32 | 1.35 | 1.36 | 1.34 | 1.29 | 1.34 | 1.14 | 1.10 |
| Small-ME | 1.78 | 1.74 | 1.76 | 2.08 | 1.91 | 1.92 | 1.72 | 1.77 | 1.91 | 1.56 | 146 |
| ME-2 | 1.44 | 1.41 | 1.35 | 1.33 | 1.61 | 1.72 | 1.59 | 1.40 | 1.62 | 1.24 | 1.11 |
| ME-3 | 1.36 | 1.21 | 1.40 | 1.22 | 1.47 | 1.34 | 1.51 | 1.33 | 1.57 | 1.33 | 121 |
| ME-4 | 1.28 | 1.26 | 1.29 | 1.19 | 1.27 | 1.51 | 1.30 | 1.19 | 1.56 | 1.18 | 1.00 |
| ME-5 | 1.24 | 1.22 | 1.30 | 1.28 | 1.33 | 1.21 | 1.37 | 1.41 | 1.31 | 0.92 | 1.06 |
| ME-6 | 1.23 | 1.21 | 1.32 | 137 | 1.09 | 1.34 | 1.10 | 1.40 | 1.21 | 1.22 | 1.08 |
| ME-7 | 1.17 | 1.08 | 1.23 | 1.37 | 1.27 | 1.19 | 1.34 | 1.10 | 1.11 | 0.87 | 1.17 |
| ME-8 | 1.15 | 1.06 | 1.18 | 1.26 | 1.25 | 1.26 | 1.17 | 1.16 | 1.05 | 1.08 | 1.04 |
| ME-9 | 1.13 | 0.99 | 1.13 | 1.00 | 1.24 | 1.28 | 1.31 | 1.15 | 1.11 | 1.09 | 1.05 |
| Large-ME | 0.95 | 0.99 | 1.01 | 1.12 | 1.01 | 0.89 | 0.95 | 0.95 | 1.00 | 0.90 | 0.68 |

Table AII-Continued

independent of size. The β sort of a size decile always produces portfolios with similar average $\ln (\mathrm{ME})$ but muck different (post-ranking) $\beta \mathrm{s}$. Table AII also shows, however, that investors are not compensated for the variation in β that is independent of size. Despite the wide range of $\beta \mathrm{s}$ in each size decile, average returns show no tendency to increase with β. AII
The FM regressions in Table AII formalize the roles of size and β in NYSE average returns for 1941-1990. The regressions of returns on β alone show that using the $\beta \mathrm{s}$ of the portfolios formed on size and $\beta_{\text {, rather than size }}$ alone, causes the average slope on β to fall from about 1.4% per month (Table AI) to about 0.23% (about 1 standard error from 0). Thus, allowing for variation in β that is unrelated to size flattens the relation between average return and β, to the point where it is indistinguishable from no relation at all.
The flatter market lines in Table AIII succeed, however, in erasing the negative relation between β and average residuals observed in the regressions of returns on β alone in Table AI. Thus, forming portfolios on size and β (Table AIII) produces a better description of the simple relation between average return and β than forming portfolios on size alone (Table AI). This improved description of the relation between average return and β is evidence that the β estimates for the two-pass size β portfolios capture variation in true β s that is missed when portfolios are formed on size alone.

Unfortunately, the flatter market lines in Table AIII have a cost, the emergence of a residual size effect. Grouped on the basis of ME for individual stocks, the average residuals from the univariate regressions of returns on the $\beta \mathrm{s}$ of the 100 size β portfolios are strongly positive for small stocks and negative for large stocks (0.60% per month for the smallest ME group, 1A, and -0.27% for the largest, 10B). Thus, when we allow for variation in β that is independent of size, the resulting β s leave a large size effect in average returns. This residual size effect is much like that observed by Banz (1981) with the $\beta \mathrm{s}$ of portfolios formed on size and β.

The correlation between size and β is -0.98 for portfolios formed on size alone. The independent variation in β obtained with the second-pass sort on β lowers the correlation to -0.50 . The lower correlation means that bivariate regressions of returns on β and $\ln (\mathrm{ME})$ are more likely to distinguish true size effects from true β effects in average returns.

The bivariate regressions (Table AIII) that use the $\beta \mathrm{s}$ of the size- β portfolios are more bad news for β. The average slopes for $\ln (M E)$ are close to the values in the univariate size regressions, and almost 4 standard errors from 0 , but the average slopes for β are negative and less than 1 standard error from 0 . The message from the bivariate regressions is that there is a strong relation between size and average return. But like the regressions in Table AIII that explain average returns with β alone, the bivariate regressions say that there is no reliable relation between β and average returns when the tests use β s that are not close substitutes for size. These uncomfortable SLB results for NYSE stocks for 1941-1990 are much like those for NYSE, AMEX, and NASDAQ stocks for 1963-1990 in Table III.

C. Subperiod Diagnostics

Our results for 1941-1990 seem to contradict the evidence in Black, Jensen, and Scholes (BJS) (1972) and Fama and MacBeth (FM) (1973) that there is a reliable positive relation between average return and β. The $\beta \mathrm{s}$ in BJS and FM are from portfolios formed on β alone, and the market proxy is the NYSE equal-weighted portfolio. We use the β s of portfolios formed on size and β, and our market is the value-weighted NYSE portfolio. We can report, however, that our inference that there isn't much relation between β and average return is unchanged when (a) the market proxy is the NYSE EW portfolio, (b) portfolios are formed on just (pre-ranking) $\beta \mathrm{s}$, or (c) the order of forming the size $-\beta$ portfolios is changed from size then β to β then size.

A more important difference between our results and the earlier studies is the sample periods. The tests in BJS and FM end in the 1960s. Table AIV shows that when we split the 50-year 1941-1990 period in half, the univariate FM regressions of returns on β produce an average slope for 1941-1965 (0.50% per month, $t=1.82$) more like that of the earlier studies. In contrast, the average slope on β for $1966-1990$ is close to $0(-0.02, t=0.06)$.

But Table AIV also shows that drawing a distinction between the results for 1941-1965 and 1966-1990 is misleading. The stronger tradeoff of average return for β in the simple regressions for 1941-1965 is due to the first 10 years, 1941-1950. This is the only period in Table ATV that produces an average premium for β (1.26% per month) that is both positive and more than 2 standard errors from 0 . Conversely, the weak relation between β and average return for 1966-1990 is largely due to 1981-1990. The strong negative average slope in the univariate regressions of returns on β for 1981-1990 ($-1.01, t=-2.10$) offsets a positive slope for 1971-1980 (0.82, $t=1.27$).

The subperiod variation in the average slopes from the FM regressions of returns on β alone seems moot, however, given the evidence in Table AIV that adding size always kills any positive tradeoff of average return for β in the subperiods. Adding size to the regressions for 1941-1965 causes the average slope for β to drop from $0.50(t=1.82)$ to $0.07(t=0.28)$. In contrast, the average slope on size in the bivariate regressions ($-0.16, t=-2.97$) is close to its value ($-0.17, t=-2.88$) in the regressions of returns on $\ln (\mathrm{ME})$ alone. Similar comments hold for 1941-1950. In short, any evidence of a positive average premium for β in the subperiods seems to be a size effect in disguise.

D. Can the SLB Model Be Saved?

Before concluding that β has no explanatory power, it is appropriate to consider other explanations for our results. One possibility is that the variation in β produced by the β sorts of size deciles in just sampling error. If so, it is not surprising that the variation in β within a size decile is unrelated to average return, or that size dominates β in bivariate tests. The standard errors of the β s suggest, however, that this explanation cannot save the SLB

Table AIII

Average Slopes, Their Standard Errors (SE), and Average Residuals from Monthly FM Regressions for Individual NYSE Stocks and for Portfolios Formed

on Size and Pre-Ranking β : 1941-1990

Stocks are assigned the past-ranking β of the size- β portfolio they are in at the end of year $t-1$ (Table AII). $\ln (\mathrm{ME})$ is the atural \log of price times shares outstanding at the end of year $t-1$. In the individual-stock regressions, these values of the explanatory variables are matched with CRSP returns for each of the 12 months in year t. The portfolio regressions match the equal-weighted portfolio returns for the size- β portfolios (Table AII) with the equal-weighted averages of β and $\ln (\mathrm{ME})$ for the surviving stocks in each month of year t. Slope is the time-series average of the monthly regression slopes from 1941-1990 (600 months); SE is the time-series standard error of the average slope.
The residuals from the monthly regressions in year t are grouped into 12 portfolios on the basis of size or pre-ranking β (estimated with 24 to 60 months of returns, as available) as of the end of year $t-1$. The average residuals are the time-series averages of the monthly equal-weighted averages of the residuals in percent. The average residuals (not shown) from the FM regressions (1) to (3) that use the returns on the 100 size- β portfolios as the dependent variable are always within 0.01 of those from the regressions for individual stock returns. This is not surprising given that the correlation between the time-series of 1941-1990 monthly FM slopes on β or $\ln (\mathrm{ME})$ for the comparable portfolio and individual stock regressions is always greater than 0.99 .

	(1) β	Portfolio Regressions					Individual Stock Regressions					
		(2) $\ln (\mathrm{ME})$		(3) β and \ln (ME)			(4) β	(5) \ln (ME)		(6) β and $\overline{\ln (\mathrm{ME})}$		
	Average Residuals for Stocks Grouped on Pre-Ranking β											
	1A	18	2	3	4	5	6	7	8	9	10A	10B
Regression (4)	-0.08	0.03	-0.01	008	0.04	0.08	0.04	0.02	-0.03	0.02	-011	-0.32
Standard error	0.07	0.05	0.03	0.03	0.03	0.03	0.04	0.04	004	0.04	0.06	0.07
Regression (5)	-0.10	0.00	0.02	0.09	0.05	0.07	0.05	0.00	-0.03	-0.01	-0.11	-0.33
Standard error	0.11	0.10	0.07	0.05	0.04	0.03	0.03	0.04	0.05	0.07	010	0.13
Regression (6)	-0.17	-0.07	-0.02	0.07	0.04	006	0.05	0.03	0.00	0.04	-0.04	-0.23
Standard error	0.05	0.04	0.03	0.03	003	0.03	0.03	0.03	0.04	0.04	0.06	0.07

Table AIV

Subperiod Average Returns on the NYSE Value-Weighted and Equal-Weighted Portfolios and Average Values of the
 Intercepts and Slopes for the FM Cross-Sectional Regressions of Individual Stock Returns on β and Size (In(ME))

Mean is the average VW or EW return or an average slope from the monthly cross-sectional regressions of individual stock returns on β and/or $\ln (\mathrm{ME})$. Std is the standard deviation of the time-series of returns or slopes, and $t(\mathrm{Mn})$ is Mean over its time-series standard error. The average slopes (not shown) from the FM regressions that use the returns on the 100 size β portfolios of Table AII as the dependent variable are quite close to those for individual stock returns. (The correlation between the 1941-1990 month-by-month slopes on β or $\ln (M E)$ for the comparable portfolio and individual stock regressions is always greater than 0.99 .)

Panel A									
Variable	1941-1990 (600 Mos.)			1941-1965 (300 Mos.)			1966-1990 (300 Mos.)		
	Mean	Std	$t(\mathrm{Mn})$	Mean	Std	t(Mn)	Mean	Std	$t(\mathrm{Mn})$
NYSE Value-Weighted (VW) and Equal-Weighted (EW) Portfolio Returns									
VW	0.93	4.15	549	1.10	3.58	5.30	0.76	4.64	2.85
EW	1.12	5.10	5.37	1.33	4.42	5.18	0.91	5.70	2.77
$R_{z t}=\mathrm{a}+\mathrm{b}_{1 t} \beta_{\mathrm{at}}+e_{1 t}$									
a	0.98	3.93	6.11	0.84	3.18	4.56	1.13	4.57	4.26
b_{1}	0.24	5.52	1.07	0.50	4.75	1.82	-0.02	6.19	-006
$R_{t t}=\mathrm{a}+\mathrm{b}_{2 t} \ln \left(\mathrm{ME} \mathrm{E}_{t}\right)+e_{t t}$									
a	1.70	8.24	5.04	1.88	6.43	5.06	1.51	9.72	2.69
b_{2}	-0.13	1.06	-3.07	-0.17	1.01	-2.88	-0.10	1.11	-1.54
$R_{r t}=\mathrm{a}+\mathrm{b}_{1 t} \beta_{2 t}+\mathrm{b}_{2 t} \ln \left(\mathrm{ME}_{t t}\right)+e_{t t}$									
a	1.97	6.16	7.84	1.80	4.77	6.52	2.14	7.29	5.09
b_{1}	-0.14	5.05	-0.66	0.07	4.15	0.28	-0.34	5.80	-1.01
b_{2}	-0.15	0.96	-3.75	-0.16	0.94	-2.97	-0.13	0.99	-2.34

Table AIV-Continued

Panel B:										
Return	1941-1950		1951-1960		1961-1970		1971-1980		1981-1990	
	Mean	$t(\mathrm{Mn})$	Mean	$t(\mathrm{Mn})$	Mean	$t(\mathrm{Mn})$	Mean	$t(\mathrm{Mn})$	Mean	$t(\mathrm{Mn})$
NYSE Value-Weighted (VW) and Equal-Weighted (EW) Portfolio Returns										
Vw	1.05	2.88	1.18	3.95	0.66	1.84	0.72	1.67	1.04	2.40
EW	1.59	3.16	1.13	3.76	0.88	1.96	1.04	1.82	0.95	2.01
	$R_{t i}=\mathrm{a}+\mathrm{b}_{1 t} \beta_{\mathrm{s}}+e_{t t}$									
a	0.24	0.66	1.41	6.36	0.64	1.94	0.27	0.62	2.35	5.99
b_{1}	1.26	2.20	-0.19	-0.63	0.32	0.72	0.82	1.27	-1.01	-2.10
	$R_{2 t}=\mathrm{a}+\mathrm{b}_{2 t} \ln \left(\mathrm{ME}_{t i}\right)+e_{t t}$									
a	2.63	3.47	1.08	2.73	1.78	2.50	2.18	2.03	0.82	1.20
b_{2}	-0.37	-2.90	0.03	0.53	-0.17	-2.19	-0.20	-1.57	0.04	0.57
	$R_{t t}=\mathrm{a}+\mathrm{b}_{1 t} \beta_{t t}+\mathrm{b}_{2 t} \ln \left(\mathrm{ME} \mathrm{E}_{t t}\right)+e_{t t}$									
a	2.14	3.93	1.38	4.03	2.01	4.16	1.50	2.12	2.84	4.25
b_{1}	0.34	0.75	-0.17	-0.53	-011	-0.27	0.41	0.75	-1.14	-2.16
b_{2}	-0.34	-2.92	0.01	0.20	-0.18	-2.89	-0.16	-1.50	-0.07	-0.84

model. The standard errors for portfolios formed on size and β are only slightly larger (0.02 to 0.11) than those for portfolios formed on size alone (0.01 to 0.10 , Table AI). And the range of the post-ranking $\beta \mathrm{s}$ within a size decile is always large relative to the standard errors of the $\beta \mathrm{s}$.

Another possibility is that the proportionality condition (1) for the variation through time in true $\beta \mathrm{s}$, that justifies the use of full-period post-ranking β s in the FM tests, does not work well for portfolios formed on size and β. If this is a problem, post-ranking β s for the size- β portfolios should not be highly correlated across subperiods. The correlation between the half-period (1941-1965 and 1966-1990) β s of the size- β portfolios is 0.91 , which we take to be good evidence that the full-period β estimates for these portfolios are informative about true β s. We can also report that using 5 -year β s (pre- or post-ranking) in the FM regressions does not change our negative conclusions about the role of β in average returns, as long as portfolios are formed on β as well as size, or on β alone.
Any attempt to salvage the simple positive relation between β and average return predicted by the SLB model runs into three damaging facts, clear in Table AII. (a) Forming portfolios on size and pre-ranking β s produces a wide range of post-ranking β s in every size decile. (b) The post-ranking β s closely reproduce (in deciles 2 to 10 they exactly reproduce) the ordering of the pre-ranking β s used to form the β-sorted portfolios. It seems safe to conclude that the increasing pattern of the post-ranking βs in every size decile captures the ordering of the true β s. (c) Contrary to the SLB model, the β sorts do not produce a similar ordering of average returns. Within the rows (size deciles) of the average return matrix in Table AII, the high- β portfolios have average returns that are close to or less than the low- β portfolios.

But the most damaging evidence against the SLB model comes from the univariate regressions of returns on β in Table AIII. They say that when the tests allow for variation in β that is unrelated to size, the relation between β and average return for 1941-1990 is weak, perhaps nonexistent, even when β is the only explanatory variable. We are forced to conclude that the SLB model does not describe the last 50 years of average stock returns.

REFERENCES

Alford, Andrew, Jennifer J. Jones, and Mark E. Zmijewski, 1992, Extensions and violations of the statutory SEC Form 10-K nling date, Unpublished manuscript, University of Chicago, Chicago, IL.
Ball, Ray, 1978, Anomalies in relationships between securities' yields and yield-surrogates, Journal of Financial Economics 6, 103-126.
Banz, Rolf W., 1981, The relationship between return and market value of common stocks, Journal of Financial Economics 9, 3-18.
Basu, Sanjoy, 1983, The relationship between earnings yield, market value, and return for NYSE common stocks: Further evidence, Journal of Financial Economics 12, 129-156.
Bhandari, Laxmi Chand, 1988, Debt/Equity ratio and expected common stock returns: Empirical evidence, Journal of Finance 43, 507-528.
Black, Fischer, 1972, Capital market equilibrium with restricted borrowing, Journal of Business 45, 444-455.
——, Michael C. Jensen, and Myron Scholes, 1972, The capital asset pricing model: some empirical tests, in M. Jensen, ed.: Studies in the Theory of Capital Markets (Praeger).
Chan, Louis K., Yasushi Hamao, and Josef Lakonishok, 1991, Fundamentals and stock returns in Japan, Journal of Finance 46, 1739-1789
Chan, K. C. and Nai-fu Chen, 1988, An unconditional asset-pricing test and the role of firm size as an instrumental variable for risk, Journal of Finance 43, 309-325.
——, and Nai-fu Chen, 1991, Structural and return characteristics of small and large firms, Journal of Finance 46, 1467-1484.
, Nai-fu Chen, and David A. Hsieh, 1985, An exploratory investigation of the firm size effect, Journal of Financial Economics 14, 451-471.
Chen, Nai-fu, Richard Roll, and Stephen A. Ross, 1986, Economic forces and the stock market, Journal of Business 56, 383-403.
DeBondt, Werner F. M., and Richard H. Thaler, 1985, Does the stock market overreact, Journal of Finance 40, 557-581.
Dimson, Elroy, 1979, Risk measurement when shares are subject to infrequent trading, Journal of Financial Economics 7, 197-226.
Fama, Eugene F., 1976, Foundations of Finance (Basic Books, New York).
——, and James MacBeth, 1973, Risk, return and equilibrium: Empirical tests, Journal of Political Economy 81, 607-636.
Fowler, David J. and C. Harvey Rorke, 1983, Risk measurement when shares are subject to infrequent trading: Comment, Journal of Financial Economics 12, 279-283.
Jaffe, Jeffrey, Donald B. Keim, and Randolph Westerfield, 1989, Earnings yields, market values, and stock returns, Journal of Finance 44, 135-148.
Keim, Donald B., 1983, Size-related anomalies and stock return seasonality, Journal of Financial Economics 12, 13-32.
——, 1988, Stock market regularities: A synthesis of the evidence and explanations, in Elroy Dimson, ed.: Stock Market Anomalies (Cambridge University Press, Cambridge).
Lakonishok, Josef, and Alan C. Shapiro, 1986, Systematic risk, total risk and size as determinants of stock market returns, Journal of Banking and Finance 10, 115-132.
Lintner, John, 1965, The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets, Review of Economics and Statistics 47, 13-37.
Markowitz, Harry, 1959, Portfolio Selection: Efficient Diversification of Investments (Wiley, New York).
Merton, Robert C., 1973, An intertemporal capital asset pricing model, Econometrica 41, 867-887.
Reinganum, Marc R., 1981, A new empirical perspective on the CAPM, Journal of Financial and Quantitative Analysis 16, 439-462.
Roll, Richard, 1983, Vas ist Das? The turn-of-the-year effect and the return premia of small firms, Journal of Portfolio Management 9, 18-28.
Rosenberg, Barr, Kenneth Reid, and Ronald Lanstein, 1985, Persuasive evidence of market inefficiency, Journal of Portfolio Management 11, 9-17.
Ross, Stephen A., 1976, The arbitrage theory of capital asset pricing, Journal of Economuc Theory 13, 341-360.
Sharpe, William F., 1964, Capital asset prices: a theory of market equilibrium under conditions of risk, Journal of Finance 19, 425-442.
Stambaugh, Robert F., 1982, On the exclusion of assets from tests of the two-parameter model: A sensitivity analysis, Journal of Financial Economucs 10, 237-268.
Stattman, Dennis, 1980, Book values and stock returns, The Chicago MBA. A Journal of Selected Papers 4, 25-45.

Case No. 2009-00354
Atmos Energy Corporation, Kentucky/Mid-States Division
AG DR Set No. 1
Question No. 1-074
Page 1 of 1

REQUEST:

[Rate of Return] - Please provide copies of all workpapers, spreadsheets, etc. used, referenced or generated by Dr. Vander Weide in the preparation of his analysis. Please provide the aforementioned copies in both hard copy and electronic (Microsoft Excel) formats, with all data and formulae intact.

RESPONSE:

Please see Attachment 1 for Dr. Vander Weide's workpapers.

ATTACHMENT:

ATTACHMENT 1 - Atmos Energy Corporation, Dr. James Vander Weide Workpapers, 68 Pages.

Respondent: Dr. James Vander Weide

Table 1
Cost of Equity Model Results

Method	Model Result
Discounted Cash Flow	11.90%
Ex Ante Risk Premium	10.90%
Ex Post Risk Premium	10.60%
Historical CAPM	10.20%
DCF CAPM	11.50%
Average	11.00%

ATMOS ENERGY

SCHEDULE 1

SUMMARY OF DISCOUNTED CASE FLOW ANALYSIS

FOR NATURAL GAS COMPANIES

Line No. Company

		d_{0}	D_{0}	P_{0}	Growth	Cost of Equity
1	AGL Resources	0.430	1.72	31.017	4.25\%	10.5\%
2	Atmos Energy	0.330	1.32	25.230	5.00\%	11.0\%
3	EQT Corp.	0.220	0.88	35.962	9.00\%	11.9\%
4	National Fuel Gas	0.325	1.34	35.078	8.50\%	12.9\%
5	Nicor Inc.	0.465	1.86	33.610	4.33\%	10.6\%
6	NiSource Inc.	0.230	0.92	11.570	3.00\%	12.0\%
7	Northwest Nat. Gas	0.395	1.58	43.398	4.75\%	8.9\%
8	ONEOK Inc.	0.400	1.68	29.035	7.25\%	13.8\%
9	Piedmont Natural Gas	0.270	1.08	23.733	6.93\%	12.2\%
10	South Jersey Inds.	0.298	1.19	34.848	9.67\%	13.7\%
11	Southwest Gas	0.238	0.95	21.663	6.00\%	10.9\%
12	Market-Weighted Average					11.9\%

ATMOS ENERGY

SCHEDULE 1 (continued)

UE LINE SAFETY RANKS AND STANDARD \& POOR'S BOND RATINGS FOR PROXY GAS COMPANTES

Lime No.	Company	Safety Rank	S\&P BOND RATING	S\&P BOND RATING (Numerical)	Market Cap \$ (Mil)
1	AGL Resources	2	A-	5	2,598
2	Atmos Energy	2	BBB+	6	2,499
3	EQT Corp.	3	BBB	7	5,024
4	National Fuel Gas	2	BBB	7	3,227
5	Nicor Inc.	3	AA	1	1,648
6	NiSource Inc.	3	BBB-	8	3,539
7	Northwest Nat. Gas	1	AA-	2	1,183
8	ONEOK Inc.	3	BBB	7	3,485
9	Piedmont Natural Gas	2	A	4	1,796
10	South Jersey Inds.	2	BBB +	6	1,099
11	Southwest Gas	3	BBB	7	1,083
12	Market-Weighted Average	2.5	BBB +	6	
13	Simple Average	2.4	A-to BBB +	5.5	

Line No. Date	DCF	Bond Yeld	Risk Premium
1 Jun-98	0.1554	0.0703	0.0451
2 Jut-98	0.1486	0.0703	0.0483
3 Aug. 98	0.1234	0.0700	0.0534
$4 \mathrm{Sep}-98$	0.1273	0.0693	0.0580
$50 \mathrm{Ct}-98$	0.1260	0.0696	0.0564
6 Nov-98	0.1211	0.0703	0.0508
7 Dec-98	0.1185	0.0691	0.0484
8 Jan-99	0.1195	0.0697	0.0498
9 Feb-99	0.1243	0.0709	0.0534
$10 \mathrm{Mar}-99$	0.1257	0.0726	0.0531
11 Apr. 99	0.1260	0.0722	0.0538
12 May.99	0.1221	0.0747	0.0474
13 Jun-99	0.1208	0.0774	0.0434
14 Jur-99	0.1222	0.0771	0.0451
15 Aug-99	0.1220	0.0791	0.0429
16 Sep-99	0.1228	0.0793	0.0433
17 Oct-99	0.1233	0.0806	0.0427
18 Nov-99	0.1240	0.0794	0.0446
19 Dec .99	0.1280	00814	0.0466
20 Jan-00	0.1301	0.0835	0.0466
21 Feb-00	0.1344	0.0825	0.0519
22 Mar -00	0.1344	0.0828	0.0516
23 Apr-00	0.1316	0.0829	0.0487
24 May-00	0.1292	0.0870	0.0422
25 Jun-00	0.1295	0.0836	0.0459
26 Jul-00	0.1317	0.0825	0.0492
27 Aug-00	0.1290	0.0813	0.0477
28 Sep-00	0.1257	0.0823	0.0434
$2900 t-00$	0.1260	0.0814	0.0446
30 Nov-00	0.1251	0.0811	0.0440
31 Dec.00	0.1239	0.0784	0.0455
32 Jan-01	0.1261	0.0780	0.0481
$33 \mathrm{Feb}-01$	0.1261	0.0774	0.0487
$34 \mathrm{Mar-01}$	0.1275	0.0768	0.0507
35 Apr-01	0.1227	0.0794	0.0433
36 May-01	0.1302	0.0798	0.0503
37 Jun-01	0.1304	0.0785	0.0519
$38 \mathrm{Jul}-01$	0.1338.	0.0778	0.0560
39 Aug.01	0.1327	0.0759	0.0568
40 Sep-01	0.1268	0.0775	0.0493
41 Oct-01	0.1268	0.0763	0.0505
42 Nov-01	0.1268	0.0757	0.0511
43 Dac-01	0.1254	0.0783	0.0471
44 Jan-02	0.1236	0.0766	0.0470
45 Feb -02	0.1241	0.0754	0.0487
$46 \mathrm{Mar-02}$	0.1189	0.0776	0.044
47 Apr-02	0.1959	0.0757	0.0402
48 May-02	0.1162	0.0752	0.0410
49 Jun -02	0.1170	0.0741	0.0429
$50 . \mathrm{Jul} 02$	0.1242	0.0731	0.0511
51 Aug-02	0.1234	0.0717	0.0517
52 Sep-02	0.1260	0.0708	0.0552
$53 \mathrm{Oct}-02$	0.1250	0.0723	0.0527
54 Nov-02	0.1221	00714	0.0507
55 Dec 02	0.1216	0.0707	0.0509
56 Jan-03	0.1219	0.0706	0.0513
57 Feb -03	0.1232	0.0693	0.0539
$58 \mathrm{Mar-03}$	0.1195	0.0679	0.0516
$59 \mathrm{Apr-03}$	0.1162	0.0664	0.0498
60 May-03	0.1126	0.0636	0.0490
61 Jun-03	0.1114	0.0621	0.0493
62 Jul-03	0.1127	0.0657	0.0470
63 Aug.03	0.1139	0.0678	0.0461
$64 \mathrm{Sep}-03$	0.1127	0.0656	0.0471
$650 \mathrm{Cc}-03$	0.1123	0.0643	0.0480
$66 \mathrm{Nov-03}$	0.1089	0.0637	0.0452
67 Dec-03	0.1071	0.0627	0.0444

68 Jan -04	0.1059	0.0615	0.0444
69 Feb 04	0.1039	0.0615	0.0424
$70 \mathrm{Mar-04}$	0.6037	0.0597	0.0440
71 Apr.04	0.1041	0.0635	0.0406
72 May-04	0.1045	0.0662	0.0383
73 Jun-04	0.1036	0.0646	0.0390
74 Jul- 04	0.1011	0.0627	0.0384
75 Aug.04	0.1008	0.0614	0.0394
76 Sep-04	0.0976	0.0598	0.0378
77 Oct 04	0.0974	0.0594	0.0380
78 Nov-04	0.0962	0.0597	0.0365
79 Dec-04	0.0970	0.0592	0.0378
80 Jan-05	0.0990	0.0578	0.0412
81 Feb-05	0.0979	0.0561	0.0418
$82 \mathrm{Mar-05}$	0.0979	0.0583	0.0396
83 Apr-05	0.0988	0.0564	0.0424
84 May-05	0.0981	0.0553	0.0427
85 Jun-05	0.0976	0.0540	0.0436
86 Jul-05	0.0966	0.0551	0.0415
87 Aug-05	0.0969	0.0550	0.0419
88 Sep-05	0.0980	0.0552	0.0428
$89 \mathrm{Oct-05}$	0.0990	0.0579	0.0411
90 Nov-05	0.1049	0.0588	0.0461
91 Dec-05	0.1045	0.0580	0.0465
92 Jan-06	0.0982	0.0575	0.0407
93 Feb-06	0.1124	0.0582	0.0542
94 Mar-06	0.1127	0.0598	0.0529
95 Apr-06	0.1100	0.0629	0.0471
96 May -06	0.1056	0.0642	0.0414
97 Jun-06	0.1049	0.0640	0.0409
98 Jul-06	0.1087	0.0637	0.0450
99 Aug-06	0.1041	0.0620	0.0421
100 Sep -06	0.1053	0.0600	0.0453
101 Oct-06	0.1030	0.0598	0.0432
102 Nov-06	0.1033	0.0580	0.0453
$103 \mathrm{DEC}-06$	0.1035	0.0581	0.0454
104 Jan-07	0.1013	0.0596	0.0417
105 Feb - 07	0.1018	0.0590	0.0428
$100 \mathrm{Mar-07}$	0.1018	0.0585	0.0433
107 Apr-07	$0.1007{ }^{\circ}$	0.0597	0.0410
108 May-07	0.0967	0.0599	0.0368
109 Jun-07	0.0970	00630	0.0340
110 Jut-07	0.1006	0.0625	0.0381
111 Aug-07	0.1021	0.0624	0.0397
112 Sep-07	0.1014	0.0618	0.0396
$113 \mathrm{Cct}-07$	0.1080	0.0611	0.0469
114 Nov-07	0.1083	0.0597	0.0488
115 Dec-07	0.1084	0.0616	0.0468
116 Jan-08	0.1113	0.0602	0.0511
$117 \mathrm{Feb}-08$	0.1139	0.0621	0.0518
$118 \mathrm{Mar}-\mathrm{OB}$	0.1147	0.0621	0.0526
119 Apt-08	0.1167	0.0629	0.0538
120 May-08	0.1069	0.0627	0.0442
121 Jun-08	0.1062	0.0538	0.0424
122 Jul 08	0.1086	0.0640	0.0446
123 Aug-08	0.1123	0.0637	0.0486
124 Sep -08	0.1130	0.0649	0.0481
125 Oct-08	0.1213	0.0756	0.0457
126 Nov-08	0.1221	0.0760	0.0461
127 Dec-08	0.1162	0.0654	0.0508
128 Jan-09	0.1131	0.0639	0.0492
129 Feb -09	0.1155	0.0630	0.0524
$130 \mathrm{Mar-09}$	0.1198	0.0642	0.0556
131 Apr-09	0.1446	0.0648	0.0498
132 May-09	0.1225	0.0649	0.0576
133 Jun -09	0.1208	0.0620	0.0588
134 Julog	0.1166	0.0597	0.0569
135 Average	0.1145	0.0679	0.0466

	AGL	AGL	AGL	AGL	AGL	AGL	AGL A	ATO	ATO	Ato	ATO A	ATO A	ATO	ATO	Cascade	Cascade	Cascade	Cascade
Month Ending	High	Low	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend
Jun-98	20.00	19.38	19.69	1.08	4.32\%	10.48\%	0.0073	30.50	29.25	29.88	1.06	8.53\%	12.64\%	0.0070	15.88	15.50	15.69	0.96
Jul-98	20.56	18.56	19.56	1.08	4.36\%	10.56\%	0.0076	30.94	28.25	29.59	1.06	8.53\%	12.68\%	0.0075	15.81	14.69	15.25	0.96
Aug-98	19.44	17.94	18.69	1.08	4.43\%	10.93\%	0.0061	30.50	27.63	29.06	1.06	8.53\%	12.76\%	0.0058	16.31	14.63	15.47	0.96
Sep-98	19.56	17.69	18.63	1.08	4.54\%	11.07\%	0.0060	28.88	24.75	26.81	1.06	8.53\%	13.12\%	0.0058	16.50	15.19	15.84	0.96
Oct-98	21.19	18.81	20.00	1.08	4.54\%	10.61\%	0.0059	30.94	28.13	29.53	1.10	8.53\%	12.85\%	0.0055	17.56	16.00	16.78	0.96
Nov-98	22.00	20.31	21.16	1.08	4.54\%	10.27\%	0.0058	32.25	29.19	30.72	1.10	8.45\%	12.60\%	0.0054	18.31	16.13	17.22	0.96
Dec-98	23.38	21.19	22.28	1.08	4.54\%	9.98\%	0.0056	32.25	27.63	29.94	1.10	8.95\%	13.23\%	0.0057	18.69	17.31	18.00	96
Jan-99	23.38	19.81	21.59	1.08	4.54\%	10.15\%	0.0067	33.00	28.88	30.94	1.10	8.95\%	13.09\%	0.0060	18.13	15.88	17.00	0.96
Feb-99	20.06	18.31	19.19	1.08	4.59\%	10.93\%	0.0072	29.69	23.25	26.47	1.10	8.95\%	13.79\%	0.0063	16.75	15.06	15.91	96
Mar-99	20.00	17.50	18.75	1.08	4.66\%	11.15\%	0.0071	26.25	22.75	24.50	1.10	8.95\%	14.19\%	0.0062	16.63	88	15.75	96
Apr-99	18.94	16.81	17.88	1.08	4.66\%	11.48\%	0.0065	27.38	23.88	25.63	1.10	8.12\%	13.09\%	0.0047	16.25	14.38	15.31	0.96
May-99	19.06	17.88	18.47	1.08	4.66\%	11.25\%	0.0062	25.94	23.75	24.84	1.10	8.12\%	13.25\%	0.0047	16.94	15.63	16.28	0.96
Jun-99	19.44	18.44	18.94	1.08	4.66\%	11.09\%	0.0060	26.31	24.38	25.34	1.10	8.12\%	13.15\%	0.0046	19.75	16.38	18.06	0.96
Jul-99	20.75	18.50	19.63	1.08	4.61\%	10.80\%	0.0057	26.25	24.13	25.19	1.10	8.12\%	13.18\%	0.0051	18.88	17.13	18.00	0.96
Aug-99	19.19	17.88	18.53	1.08	4.66\%	11.23\%	0.0059	26.38	24.25	25.31	1.10	8.12\%	13.15\%	0.0051	18.44	16.19	17.31	0.96
Sep-99	18.88	15.63	17.25	1.08	4.66\%	11.73\%	0.0062	25.50	23.75	24.63	1.10	8.12\%	13.29\%	0.0051	18.69	17.44	18.06	0.96
Oct-99	17.88	15.56	16.72	1.08	4.89\%	12.21\%	0.0058	25.00	22.50	23.75	1.14	7.96\%	13.52\%	0.0050	18.38	16.81	17.59	0.96
Nov-99	19.19	17.19	18.19	1.08	5.16\%	11.89\%	0.0057	23.63	22.00	22.81	1.14	7.39\%	13.15\%	0.0049	18.06	16.44	17.25	. 96
Dec-99	19.00	16.56	17.78	1.08	5.16\%	12.05\%	0.0059	22.69	19.63	21.16	1.14	7.39\%	13.61\%	0.0051	17.81	15.38	6.59	96
Jan-00	18.00	16.00	17.00	1.08	5.16\%	12.37\%	0.0065	20.50	16.75	18.63	1.14	7.39\%	14.48\%	0.0052	16.44	4.19	15.31	96
Feb-00	17.44	16.00	16.72	1.08	5.24\%	12.58\%	0.0067	18.25	15.69	16.97	1.14	7.34\%	15.13\%	0.0055	15.50	13.38	14.44	0.96
Mar-00	18.38	16.75	17.56	1.08	5.24\%	12.22\%	0.0062	18.88	15.25	17.06	1.14	7.09\%	14.82\%	0.0052	16.13	13.50	14.81	0.96
Apr-00	18,31	16.88	17.59	1.08	5.24\%	12.21\%	0.0067	16.88	14.25	15.56	1.14	7.09\%	15.59\%	0.0049	16.38	14.94	15.66	0.96
May-00	18.44	15.75	17.09	1.08	5.36\%	12.54\%	0.0072	18.38	14.94	16.66	1.14	6.59\%	14.48\%	0.0048	17.75	15.94	16.84	0.96
Jun-00	17.31	15.50	16.41	1.08	5.36\%	12.85\%	0.0073	20.56	17.50	19.03	1.14	7.09\%	14.00\%	0.0046	18.13	15.31	16.72	0.96
Jul-00	18.19	16.06	17.13	1.08	5.96\%	13.17\%	0.0055	20.63	17.75	19.19	1.14	6.84\%	13.68\%	0.0039	17.06	15.81	16.44	0.96
Aug-00	19.56	17.91	18.73	1.08	5.96\%	12.54\%	0.0052	23.25	20.00	21.63	1.14	6.84\%	12.89\%	0.0036	17.94	16.38	17.16	0.96
Sep-00	20.50	18.75	19.63	1.08	5.96\%	12.23\%	0.0048	22.38	- 19.50	20.94	1.14	6.67\%	12.92\%	0.0034	17.88	15.50	16.69	.96
Oct-00	20.94	18.81	19.88	1.08	5.96\%	12.15\%	0.0056	23.13	-19.19	21.16	1.16	6.67\%	12.96\%	0.0037	18.63	16.75	7.69	. 96
Nov-00	23.00	19.88	21.44	1.08	5.95\%	11.68\%	0.0055	25.44	$4 \quad 23.00$	24.22	1.16	6.95\%	12.44\%	0.0036	20.50	17.31	18.9	. 96
Dec-00	23.19	21.44	22.31	1.08	5.95\%	11.45\%	0.0055	26.25	- 21.56	23.91	1.16	6.34\%	11.88\%	0.0035	20.88	17.38	19.13	30.96
Jan-01	22.31	19.50	20.91	1.08	5.95\%	11.83\%	0.0060	25.75	- 23.25	- 24.50	1.16	6.95\%	12.38\%	0.0036	20.69	17.38	19.03	30.96
Feb-01	21.94	20.00	- 20.97	1.08	5.95\%	11.81\%	0.0060	24.70	- 22.51	$1 \quad 23.61$	1.16	6.95\%	12.59\%	0.0037	19.21	17.85	18.53	$3 \quad 0.96$
Mar-01	21.99	20.01	121.00	1.08	5.95\%	11.80\%	0.0059	23.99	920.85	- 22.42	1.16	6.95\%	12.89\%	0.0037	21.00	18.81	19.90	0.96
Apr-01	22.86	20.90	- 21.88	1.08	5.51\%	11.10\%	0.0048	24.05	$5 \quad 21.15$	- 22.60	1.16	6.93\%	12.83\%	0.0045	20.60	18.70	19.65	$5 \quad 0.96$
May-01	24.25	22.10	- 23.18	1.08	6.59\%	11.92\%	0.0049	23.98	$8 \quad 22.45$	- 23.22	1.16	7.36\%	13.12\%	0.0044	20.97	19.00	19.98	- 0.96

	Cascade	Cascade	Cascade	EGN	EGN	EGN	EGN	EGN	EGN	EGN	EQT	EQT	EQT	EQT	EQT	EQT	EQT
Month Ending	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF
Jun-98	3.38\%	10.20\%	0.0011	20.44	19.75	20.09	0.62	8.05\%	11.60\%	0.0042	28.45	25.13	26.79	1.18	8.56\%	13.68\%	0.0092
Jul-98	3.38\%	10.40\%	0.0012	20.75	17.06	18.91	0.64	8.05\%	11.95\%	0.0045	28.22	22.97	25.60	1.18	9.00\%	14.39\%	0.0081
Aug-98	3.38\%	10.30\%	0.0009	19.25	15.25	17.25	0.64	8.05\%	12.33\%	0.0036	23.49	20.30	21.90	1.18	8.44\%	14.72\%	0.0057
Sep-98	3.38\%	10.13\%	0.0009	19.13	15.13	17.13	0.64	8.05\%	12.36\%	0.0035	24.43	19.42	21.93	1.18	8.44\%	14.72\%	0.0064
Oct-98	3.38\%	9.75\%	0.0009	19.13	17.69	18.41	0.64	8.05\%	12.06\%	0.0032	27.50	23.61	25.56	1.18	7.42\%	12.74\%	0.0063
Nov-98	3.38\%	9.58\%	0.0009	19.44	17.44	18.44	0.64	8.05\%	12.05\%	0.0032	28.15	25.49	26.82	1.18	7.42\%	12.48\%	0.0066
Dec-98	3.38\%	9.31\%	0.0008	19.50	17.81	18.66	0.64	8.05\%	12.00\%	0.0032	28.57	25.52	27.05	1.18	7.58\%	12.61\%	0.0066
Jan-99	3.38\%	9.66\%	0.0010	19.75	16.38	18.06	0.64	8.05\%	12.14\%	0.0032	28.39	24.33	26.36	1.18	7.58\%	12.74\%	0.0059
Feb-99	3.38\%	10.11\%	0.0010	17.25	13.25	15.25	0.64	7.55\%	12.38\%	0.0033	25.39	23.40	24.40	1.18	7.93\%	13.53\%	0.0063
Mar-99	3.38\%	10.17\%	0.0010	15.75	13.13	14.44	0.64	7.24\%	12.33\%	0.0032	25.94	24.67	25.31	1.18	7.56\%	12.94\%	0.0059
Apr-99	3.38\%	10.37\%	0.0009	17.44	14.50	15.97	0.64	7.24\%	11.84\%	0.0027	26.00	22.44	24.22	1.18	7.21\%	12.81\%	0.0060
May-99	3.45\%	10.02\%	0.0009	19.81	17.00	18.41	0.64	7.24\%	11.22\%	0.0025	31.15	25.51	28.33	1.18	6.79\%	11.55\%	0.0061
Jun-99	3.45\%	9.36\%	0.0008	19.94	18.13	19.03	0.64	7.24\%	11.09\%	0.0025	36.82	30.54	33.68	1.18	6.79\%	10.78\%	0.0067
Jul-99	3.45\%	9.38\%	0.0009	19.31	18.38	18.84	0.66	7.24\%	11.25\%	0.0031	38.04	35.78	36.91	1.18	7.58\%	11.25\%	0.0067
Aug-99	3.45\%	9.62\%	0.0009	19.31	17.50	18.41	0.66	7.20\%	11.30\%	0.0031	37.61	35.84	36.73	1.18	7.44\%	11.12\%	0.0065
Sep-99	3.45\%	9.36\%	0.0009	20.38	18.81	19.59	0.66	7.20\%	11.05\%	0.0031	37.30	35.33	36.32	1.18	7.61\%	11.34\%	069
Oct-99	3.45\%	9.52\%	0.0009	21.25	18.13	19.69	0.66	7.20\%	11.03\%	0.0032	37.73	34.72	36.23	1.18	7.61\%	11.35\%	0.0066
Nov-99	4.20\%	10.44\%	0.0010	19.75	18.31	19.03	0.66	7.20\%	11.17\%	0.0032	36.68	34.32	35.50	1.18	7.83\%	11.65\%	0.0064
Dec-99	4.20\%	10.69\%	0.0010	19.25	15.75	17.50	0.66	7.20\%	11.52\%	0.0034	35.75	32.28	34.02	1.18	7.83\%	11.82\%	0.0063
Jan-00	4.20\%	11.25\%	0.0011	18.94	16.13	17.53	0.66	7.20\%	11.51\%	0.0029	36.74	32.28	34.51	1.18	7.83\%	11.76\%	0.0070
Feb-00	4.20\%	11.69\%	0.0012	17.75	14.75	16.25	0.66	7.20\%	11.86\%	0.0030	37.88	32.25	35.07	1.18	8.39\%	12.28\%	0.0081
Mar-00	4.20\%	11.49\%	0.0011	18.69	14.69	16.69	0.66	7.20\%	11.73\%	0.0029	46.00	35.81	40.91	1.18	11.17\%	14.58\%	0.0110
Apr-00	4.20\%	11.09\%	0.0009	18.88	16.00	17.44	0.66	7.89\%	12.25\%	0.0030	47.25	41.62	44.44	1.18	11.17\%	14.31\%	0.0120
May-00	4.27\%	10.67\%	0.0009	23.69	17.06	20.38	0.66	7.89\%	11.62\%	0.0030	50.88	46.06	48.47	1.18	12.22\%	15.12\%	. 0143
jun-00	4.27\%	10.72\%	0.0009	22.50	19.50	21.00	- 0.66	7.89\%	11.50\%	0.0029	51.38	45.62	48.50	1.18	12.14\%	15.01\%	0.0135
Jul-00	4.27\%	10.83\%	0.0010	24.50	21.00	22.75	-0.68	7.89\%	11.32\%	0.0034	- 54.44	46.81	50.63	1.18	12.38\%	15.16\%	0.0125
Aug-00	4.27\%	10.55\%	0.0010	26.50	21.50	24.00	- 0.68	9.46\%	12.76\%	0.0038	- 59.75	52.31	56.03	1.18	12.25\%	14.76\%	0.0127
Sep-00	4.27\%	10.73\%	0.0010	30.38	25.25	27.81	10.68	9.70\%	12.55\%	0.0035	-63.44	56.38	59.91	1.18	12.25\%	14.60\%	0.0134
Oct-00	4.27\%	10.36\%	0.0009	33.56	26.94	30.25	- 0.68	9.70\%	12.32\%	0.0044	64.38	56.50	60.44	1.18	11.69\%	14.00\%	0.0111
Nov-00	4.20\%	9.88\%	0.0008	31.81	128.00	29.91	10.68	9.70\%	12.35\%	0.0045	-60.00	55.75	57.88	1.18	13.08\%	15.53\%	0.0121
Dec-00	4.20\%	9.82\%	0.0009	33.50	- 26.06	29.78	$8 \quad 0.68$	11.75\%	14.46\%	0.0053	66.75	55.75	61.25	1.18	13.08\%	15.39\%	0.0145
Jan-01	4.20\%	9.84\%	0.0009	32.44	- 27.50	29.97	$7 \quad 0.68$	11.75\%	14.44\%	0.0052	26.69	55.38	61.04	1.18	13.92\%	16.26\%	0.0131
Feb-01	4.27\%	10.07\%	0.0010	- 32.06	- 27.50	- 29.78	80.68	11.75\%	14.46\%	0.0052	263.34	57.04	60.19	1.18	12.64\%	14.98\%	0.0118
Mar-01	4.27\%	9.67\%	0.0009	35.30	27.75	31.52	20.68	11.75\%	- 14.31\%	0.0050	70.50	57.55	64.03	1.28	12.94\%	15.34\%	0.0142
Apr-01				38.10	- 32.70	35.40	0.68	11.40\%	\% 13.67\%	0.0050	- 40.00	39.26	39.63	0.64	11.44\%	13.35\%	0.0068
May-01				40.25	- 31.70	- 35.98	- 0.68	11.00\%	- 13.23\%	0.0046	- 40.50	38.04	39.27	0.64	12.34\%	14.28\%	0.0130

	Keyspan	Keyspan	Keyspan	Keyspan	Keyspan	Keyspan	Keyspan	LG	LG	LG	LG	LG	LG	L.G			
Month Ending	High	Low	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High		
Jun-98	30.69	29.25	29.97	1.50				24.69	24.25	24.47	1.32					36.00	34.81
Jul-98	30.75	26.50	28.63	1.20				25.00	23.06	24.03	1.32					36.50	33.63
Aug-98	30.25	26.69	28.47	1.20	7.88\%	12.75\%	0.0315	23.81	22.38	23.09	1.32					34.44	31.50
Sep-98	29.25	25.38	27.31	1.20	9.50\%	14.65\%	0.0351	24.31	22.38	23.34	1.32					37.19	33.38
Oct-98	32.25	28.69	30.47	1.78	9.50\%	16.39\%	0.0342	26.00	23.00	24.50	1.32					40.25	35.75
Nov-98	30.75	29.56	30.16	1.78	7.88\%	14.74\%	0.0308	26.06	24.44	25.25	1.32					40.00	38.00
Dec-98	31.25	29.19	30.22	1.78	7.88\%	14.73\%	0.0308	27.00	24.63	25.81	1.32					39.63	37.63
Jan-99	31.31	27.06	29.19	1.78	7.88\%	14.97\%	0.0326	27.00	23.44	25.22	1.32					40.13	36.00
Feb-99	28.94	26.50	27.72	1.78	7.88\%	15.36\%	0.0333	24.19	22.38	23.28	1.32					36.38	33.63
Mar-99	28.13	25.13	26.63	1.78	7.88\%	15.67\%	0.0329	23.69	20.63	22.16	1.32					37.88	34.69
Apr-99	26.88	24.63	, 25.75	1.78	7.88\%	15.95\%	0.0310	21.31	20.00	20.66	1.34					38.00	35.44
May-99	27.63	26.50	27.06	1.78	7.88\%	15.55\%	0.0296	22.38	20.13	21.25	1.34					38.19	35.00
Jun-99	27.69	25.88	26.78	1.78	7.88\%	15.63\%	0.0294	23.63	21.50	22.56	1.34					39.50	37.00
Jul-99	27.94	26.38	27.16	1.78	8.88\%	16.58\%	0.0303	23.75	23.00	23.38	1.34					39.94	37.50
Aug-99	30.00	26.56	28.28	1.78	8.88\%	16.27\%	0.0297	23.75	21.56	22.66	1.34					40.13	38.56
Sep-99	31.06	28.31	29.69	1.78	8.88\%	15.92\%	0.0291	23.38	21.25	22.31	1.34					40.13	37.50
Oct-99	29.69	27.00	28.34	1.78	8.88\%	16.26\%	0.0310	23.44	21.00	22.22	1.34					41.13	39.44
Nov-99	29.69	24.88	27.28	1.78	- 9.08\%	16.77\%	0.0321	23.00	21.13	22.06	1.34					41.13	39.00
Dec-99	26.06	22.50	24.28	1.78	-9.08\%	17.74\%	0.0345	23.00	20.00	21.50	1.34					40.50	38.88
Jan-00	24.25	22.06	23.16	1.78	- 9.08\%	18.18\%	0.0307	21.88	18.88	20.38	1.34					39.75	36.50
Feb-00	23.63	20.31	21.97	1.78	-9.16\%	18.77\%	0.0319	20.00	17.50	18.75	1.34					39.31	36.19
Mar-00	27.88	20.19	24.03	1.78	89.16\%	17.92\%	0.0293	21.38	18.63	20.00	1.34					42.88	36.50
Apr-00	30.13	26.00	28.06	1.78	- 9.44\%	16.93\%	0.0271	20.63	19.25	19.94	1.34					42.75	38.50
May-00	30.88	28.50	29.69	1.78	-9.64\%	16.73\%	0.0280	20.50	19.13	19.81	1.34					41.00	38.63
Jun-00	32.69	30.13	31.41	1.78	- 9.64\%	16.33\%	0.0269	19.94	18.75	19.34	1.34					41.38	37.88
Jul-00	33.19	30.94	- 32.06	- 1.78	8 9.64\%	16.19\%	0.0326	20.13	19.19	19.66	1.34					40.69	37.63
Aug-00	36.94	31.88	- 34.41	1.78	-9.64\%	15.73\%	0.0311	21.88	19.63	20.75	1.34					43.13	39.13
Sep-00	40.14	- 34.19	- 37.16	- 1.78	- 9.68\%	15.32\%	0.0286	22.69	20.88	21.78	1.34	3.67\%	10.55\%	0.0016		41.75	38.94
Ott-00	40.63	34.94	- 37.78	-1.78	-9.68\%	15.22\%	0.0306	22.94	21.38	22.16	1.34	3.67\%	10.43\%	0.0019		41.44	37.63
Nov-00	38.63	333.50	- 36.06	- 1.78	-9.64\%	15.45\%	0.0317	23.63	21.75	22.69	1.34	3.67\%	10.27\%	0.0019		41.63	37.50
Dec-00	43.63	383.00	- 40.81	1.78	8 9.64\%	14.76\%	0.0307	24.75	22.13	23.44	1.34	3.67\%	10.05\%	0.0019		44.63	40.13
Jan-01	41.94	- 35.19	- 38.56	- 1.78	-9.64\%	15.07\%	0.0341	24.63	21.25	22.94	1.34	3.67\%	10.19\%	0.0018		43.25	37.26
Feb-01	40.80	- 37.15	- 38.98	1.78	8 9.64\%	15.01\%	0.0342	24.15	21.26	22.70	1.34	3.67\%	10.26\%	0.0018		39.09	37.26
Mar-01	38.90	- 34.20	- 36.55	- 1.78	8 9.64\%	15.37\%	0.0343	24.48	22.28	23.38	1.34	3.67\%	10.07\%	0.0017		41.15	38.00
Apr-01	41.10	- 38.15	- 39.63	-1.78	- 9.64\%	14.92\%	0.0317	24.48	23.10	23.79	1.34	3.67\%	9.95\%	0.0018		43.40	40.20
May-01	40.50	- 37.85	- 39.17	71.78	- 11.07\%	16.48\%	0.0335	25.30	23.10	24.20	1.34	3.33\%	9.49\%	0.0016		46.00	42.53

	NJR	NJR	NJR	NJR	NJR	GAS	GAS	GAS	GAS	GAS	GAS	GAS	N	N	N	
Month Ending	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend
Jun-98	35.41	1.64	5.83\%	11.09\%	0.0046	40.31	39.81	40.06	1.48	7.26\%	11.49\%	0.0146				
Jul-98	35.06	1.64	5.83\%	11.14\%	0.0046	41.00	37.13	39.06	1.48	7.80\%	12.16\%	0.0152				
Aug-98	32.97	1.64	5.83\%	11,48\%	0.0036	39.75	37.38	38.56	1.48	7.26\%	11.66\%	0.0112				
Sep-98	35.28	1.64	5.83\%	11.10\%	0.0034	41.94	37.13	39.53	1.48	7.26\%	11.55\%	0.0107				
Oct-98	38.00	1.64	5.88\%	10.77\%	0.0034	44.25	40.44	42.34	1.48	6.83\%	10.82\%	0.0105				
Nov-98	39.00	1.64	5.88\%	10.65\%	0.0034	44.44	42.00	43.22	1.48	6.83\%	10.73\%	0.0104				
Dec-98	38.63	1.64	5.88\%	10.69\%	0.0034	42.94	40.38	41.66	1.48	5.48\%	9.48\%	0.0092				
Jan-99	38.06	1.68	5.88\%	10.89\%	0.0037	42.94	38.13	40.53	1.48	5.48\%	9.59\%	0.0092				
Feb-99	35.00	1.68	6.00\%	11.46\%	0.0039	38.63	36.50	37.56	1.48	5.48\%	9.92\%	0.0095				
Mar-99	36.28	1.68	6.00\%	11.26\%	0.0037	38.81	34.69	36.75	1.48	5.70\%	10.25\%	0.0095				
Apr-99	36.72	1.68	6.00\%	11.20\%	0.0037	37.63	34.13	35.88	1.56	5.70\%	10.62\%	0.0098				
May-99	36.59	1.68	6.00\%	11.22\%	0.0037	38.63	36.38	37.50	1.56	5.70\%	10.41\%	0.0094				
Jun-99	38.25	1.68	6.00\%	10.99\%	0.0035	39.50	36.81	38.16	1.56	5.70\%	10.32\%	0.0092				
Jul-99	38.72	1.68	6.00\%	10.92\%	0.0037	39.44	36.75	38.09	1.56	5.82\%	10.46\%	0.0091				
Aug-99	39.34	1.68	6.00\%	10.85\%	0.0037	39.50	37.63	38.56	1.56	6.13\%	10.72\%	0.0093				
Sep-99	38.81	1.68	6.00\%	10.91\%	0.0037	40.00	35.69	37.84	1.56	6.13\%	10.81\%	0.0094				
Oct-99	40.28	1.68	6.00\%	10.73\%	0.0037	39.38	36.56	37.97	1.56	6.56\%	11.24\%	0.0096				
Nov-99	40.06	1.68	5.90\%	10.65\%	0.0036	38.69	34.38	36.53	1.56	6.49\%	11.36\%	0.0098				
Dec-99	39.69	1.68	5.90\%	10.70\%	0.0037	34.94	31.19	33.06	1.56	6.49\%	11.88\%	0.0104				
Jan-00	38.13	1.72	5.90\%	11.02\%	0.0041	36.38	31.31	33.84	1.56	6.49\%	11.75\%	0.0093				
Feb-00	37.75	1.72	6.10\%	11.28\%	0.0042	35.69	29.69	32.69	1.56	6.21\%	11.65\%	0.0093				
Mar-00	39.69	1.72	6.10\%	11.02\%	0.0040	33.31	29.38	31.34	1.56	6.21\%	11.88\%	0.0091				
Apr -00	40.63	1.72	6.10\%	10.91\%	0.0039	34.88	32.06	33.47	1.66	6.21\%	11.86\%	0.0098				
May-00	39.81	1.72	6.38\%	11.30\%	0.0042	37.13	32.75	34.94	1.66	6.24\%	11.65\%	0.0101				
Jun-00	39.63	1.72	6.38\%	11.32\%	0.0042	37.50	32.38	34.94	1.66	6.24\%	11.65\%	0.0099				
Jul-00	39.16	1.72	6.38\%	11.38\%	0.0037	35.50	32.13	33.81	1.66	6.24\%	11.84\%	0.0091				
Aug-00	41.13	1.72	6.38\%	11.14\%	0.0035	40.06	34.81	37.44	1.66	6.24\%	11.29\%	0.0085				
Sep-00	40.34	1.72	6.38\%	11.24\%	0.0034	39.38	35.25	37.31	1.66	6.24\%	11.30\%	0.0080				
Oct-00	39.53	1.72	-6.38\%	11.34\%	0.0034	36.38	32.19	34.28	1.66	6.24\%	11.76\%	0.0079				
Nov-00	39.56	1.72	6.50\%	11.46\%	0.0036	40.00	34.81	37.41	1.66	6.13\%	11.18\%	0.0077				
Dec-00	42.38	1.72	-6.50\%	11.12\%	0.0035	43.88	38.00	40.94	1.66	6.13\%	10.73\%	0.0075				
Jan-01	40.25	1.76	6.50\%	11.49\%	0.0035	42.38	35.21	38.79	1.66	6.13\%	10.99\%	0.0083				
Feb-01	38.17	1.76	-6.83\%	12.11\%	0.0037	39.20	- 35.95	37.58	1.66	6.13\%	11.15\%	0.0085				
Mar-01	39.58	1.76	-6.83\%	11.92\%	0.0036	38.49	- 35.12	36.81	1.66	6.13\%	11.26\%	0.0084				
Apr-01	41.80	1.76	-6.83\%	11.64\%	0.0032	39.90	- 35.95	37.93	1.76	5.93\%	11.20\%	0.0075				
May-01	44.26	1.76	6.83\%	11.37\%	0.0030	39.47	- 37.20	38.34	1.76	5.94\%	11.15\%	0.007				

	N	N	NI	NWN		NWN		NWN		NWN	NWN	NWN	NUI	NUI	NUI	NUI	NUI	NUI
Month Ending	Growth	DCF	DCF	High		Low		Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF
Jun-98					28.06		26.38	27.22	1.22	5.26\%	10.31\%	0.0043	25.63	25.00	25.31	0.98	10.60\%	15.18\%
Jul-98					28.00		26.00	27.00	1.22	5.16\%	10.25\%	0.0042	25.94	22.13	24.03	0.98	10.60\%	15.42\%
Aug-98					27.25		24.25	25.75	1.22	5.16\%	10.50\%	0.0033	22.44	20.31	21.38	0.98	10.60\%	16.04\%
Sep-98					27.75		24.50	26.13	1.22	5.16\%	10.43\%	0.0032	23.44	20.63	22.03	0.98	10.60\%	15.87\%
Oct-98					29.25		26.25	27.75	1.22	5.18\%	10.13\%	0.0033	23.44	21.56	22.50	0.98	10.27\%	15.41\%
Nov-98					29.63		27.13	28.38	1.22	4.42\%	9.23\%	0.0030	25.94	23.31	24.63	0.98	10.27\%	14.96\%
Dec.98					30.25		25.75	28.00	1.22	4.42\%	9.29\%	0.0031	27.00	23.81	25.41	0.98	10.27\%	14.82\%
Jan-99					27.00		23.38	25.19	1.22	4.42\%	9.85\%	0.0034	27.06	22.19	24.63	0.98	10.27\%	14.96\%
Feb-99					24.81		22.13	23.47	1.22	4.42\%	10.25\%	0.0035	23.25	20.38	21.81	0.98	10.27\%	15.58\%
Mar-99					25.50		21.00	23.25	1.22	4.42\%	10.31\%	0.0034	22.94	20.75	21.84	0.98	9.70\%	14.97\%
Apr-99					23.44		19.50	21.47	1.22	4.42\%	10.81\%	0.0033	22.75	20.81	21.78	0.98	9.70\%	14.99\%
May-99					27.00		21.31	24.16	1.22	4.42\%	10.08\%	0.0030	25.00	21.69	23.34	0.98	9.70\%	14.63\%
Jun-99					26.38		22.63	24.50	1.22	4.42\%	10.00\%	0.0030	25.63	23.25	24.44	0.98	9.70\%	14.40\%
Jul-99					27.88		24.00	25.94	1.22	4.42\%	9.69\%	0.0030	28.06	24.88	26.47	0.98	9.70\%	14.04\%
Aug-99					27.69		25.00	26.34	1.22	4.42\%	9.60\%	0.0030	27.00	24.75	25.88	0.98	9.70\%	14.14\%
Sep-99					27.44		23,31	25.38	1.22	4.42\%	9.81\%	0.0031	26.56	24.63	25.59	0.98	9.70\%	14.19\%
Oct-99					26.38		23.75	25.06	1.24	4.42\%	9.97\%	0.0031	25.63	23.44	24.53	0.98	9.70\%	14.39\%
Nov-99					27.00		23.00	25.00	1.24	4.28\%	9.83\%	0.0031	27.16	24.00	25.58	0.98	9.70\%	14.19\%
Dec-99					25.13		21.13	23.13	1.24	4.02\%	10.02\%	0.0032	28.19	24.75	26.47	0.98	9.70\%	14.04\%
Jan-00					22.25		19.19	20.72	1.24	4.02\%	10.73\%	0.0034	30.75	25.06	27.91	0.98	9.70\%	13.81\%
Feb-00					22.50		18.50	20.50	1.24	4.02\%	10.80\%	0.0034	27.94	22.94	25.44	0.98	12.20\%	16.82\%
Mar-00					19.88		17.75	18.81	1.24	4.02\%	11.43\%	0.0035	26.25	23.25	24.75	0.98	12.20\%	16.95\%
Apr-00					22.00		18.88	20.44	1.24	4.02\%	10.82\%	0.0028	27.81	25.25	26.53	0.98	12.20\%	16.63\%
May-00					22.50		20.00	21.25	1.24	3.70\%	10.22\%	0.0028	28.19	25.94	27.06	0.98	12.20\%	16.54\%
Jun-00					23.88		21.50	22.69	1.24	4.03\%	10.15\%	0.0027	28.19	26.56	27.38	0.98	12.20\%	16.49\%
Jul-00					24.00		21.63	22.81	1.24	4.53\%	10.64\%	0.0029	28.69	26.19	27.44	0.98	13.16\%	17.47\%
Aug-00					23.94		22.13	23.03	1.24	4.53\%	10.58\%	0.0029	30.31	27.63	28.97	0.98	13.16\%	17.24\%
Sep-00					24.63		22.19	23.41	1.24	4.53\%	10.48\%	0.0027	32.44	28.63	30.53	0.98	13.16\%	17.03\%
Oct-00					23.44		21.88	22.66	1.24	4.53\%	10.68\%	0.0027	31.19	27.88	29.53	0.98	13.16\%	17.16\%
Nov-00					24.94		22.56	23.75	1.24	4.42\%	10.28\%	0.0026	31.00	28.88	29.94	0.98	11.95\%	15.86\%
Dec-00					27.50		23.88	25.69	1.24	4.42\%	9.83\%	0.0026	33.94	28.00	30.97	0.98	11.95\%	15.73\%
Jan-01					26.75		24.00	25.38	1.24	4.42\%	9.90\%	0.0026	32.31	25.31	28.81	0.98	11.95\%	16.01\%
Feb-01					26.65		23.62	25.14	1.24	4.50\%	10.03\%	. 0.0026	28.28	26.35	27.32	0.98	11.95\%	16.24\%
Mar-01					24.45		23.05	23.75	1.24	4.50\%	10.36\%	-0.0027	28.40	25.44	26.92	0.98	11.95\%	16.30\%
Apr-01					24.10		22.00	23.05	1.24	4.33\%	10.36\%	- 0.0024	27.03	21.95	24.49	0.98	10.92\%	15.67\%
May-01					24.25		21.65	22.95	1.24	4.25\%	10.31\%	0.0023	22.92	20.62	21.77	0.98	10.95\%	16.30\%

	NUI	OKE	OKE	OKE	OKE	OKE	OKE	OKE	Peoples	Peoples	Peoples	Peoples	Peoples	Peoples	Peoples	
Month Ending	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High
Jun-98	0.0034	20.16	19.31	19.73	0.60	7.00\%	10.47\%	0.0080	39.00	36.75	37.88	1.92	5.61\%	11.36\%	0.0094	33.81
Jul-98	0.0033	20.47	17.00	18.73	0.60	7.00\%	10.65\%	0.0084	38.63	33.88	36.25	1.92	5.61\%	11.62\%	0.0099	34.63
Aug-98	0.0026	17.59	14.88	16.23	0.60	7.00\%	11.22\%	0.0068	37.00	33.06	35.03	1.92	5.61\%	11.84\%	0.0078	30.88
Sep-98	0.0025	18.63	14.97	16.80	0.60	7.00\%	11.08\%	0.0065	38.00	32.13	35.06	1.92	5.61\%	11.83\%	0.0075	34.50
Oct-98	0.0024	18.16	16.50	17.33	0.60	7.67\%	11.65\%	0.0065	38.19	35.50	36.84	1.92	4.81\%	10.68\%	0.0071	35.44
Nov-98	0.0023	18.97	17.13	18.05	0.60	7.67\%	11.49\%	0.0064	39.50	37.13	38.31	1.92	4.81\%	10.45\%	0.0069	35.50
Dec-98	0.0023	18.47	16.19	17.33	0.60	7.00\%	10.95\%	0.0061	40.13	37.19	38.66	1.92	4.36\%	9.92\%	0.0066	36.13
Jan-99	0.0023	18.59	14.25	16.42	0.62	7.00\%	11.32\%	0.0057	40.25	33.56	36.91	1.92	4.36\%	10.19\%	0.0067	36.63
Feb-99	0.0024	15.44	13.00	14.22	0.62	7.00\%	12.00\%	0.0061	34.75	31.75	33.25	1.92	4.36\%	10.85\%	0.0071	34.81
Mar-99	0.0022	14.94	12.25	13.59	0.62	6.50\%	11.71\%	0.0057	36.00	32.06	34.03	1.92	4.64\%	10.99\%	0.0070	35.00
Apr-99	0.0023	14.53	12.25	13.39	0.62	6.50\%	11.79\%	0.0053	38.44	32.13	35.28	1.96	4.64\%	10.89\%	0.0072	35.88
May-99	0.0022	15.25	13.72	14.48	0.62	6.50\%	11.38\%	0.0050	39.88	37.00	38.44	1.96	4.64\%	10.37\%	0.0068	33.94
Jun-99	0.0021	16.06	14.50	15.28	0.62	6.50\%	11.12\%	0.0048	39.94	37.63	38.78	1.96	4.64\%	10.32\%	0.0066	33.88
Jui-9	0.0022	16.56	15.41	15.98	0.62	6.67\%	11.09\%	0.0052	239.50	36.56	38.03	1.96	4.64\%	10.43\%	0.0070	34.38
Aug-99	0.0022	16.34	15.00	15.67	0.62	6.67\%	11.18\%	0.0052	38.00	35.81	36.91	1.96	4.64\%	10.61\%	0.0071	34.19
Sep-99	0.0022	15.78	14.81	15.30	0.62	6.67\%	11.29\%	0.0053	37.88	34.00	35.94	1.96	4.64\%	10.78\%	0.0073	34.00
Oct-99	0.0022	15.38	14.00	14.69	0.62	6.67\%	11.49\%	0.0053	39.00	34.50	36.75	1.96	4.44\%	10.43\%	0.0065	32.50
Nov-99	0.0022	15.06	13.13	14.09	0.62	6.67\%	11.70\%	0.0055	39.44	35.63	37.53	1.96	5.13\%	11.03\%	0.0069	33.19
Dec-99	0.0022	14.63	12.50	13.56	0.62	6.67\%	11.90\%	0.0056	- 38.00	33.25	35.63	1.96	5.13\%	11.35\%	0.0072	32.88
Jan-00	0.0024	14.13	12.19	13.16	0.62	6.67\%	12.06\%	0.0055	33.69	30.38	32.03	2.00	5.13\%	12.21\%	0.0077	30.69
Feb-00	0.0029	13.34	10.88	12.11	0.62	6.67\%	12.54\%	0.0058	32.88	27.44	30.16	2.00	5.13\%	12.66\%	0.0081	29.69
Mar-00	0.0028	12.78	11.16	11.97	0.62	6.67\%	12.61\%	0.0056	29.50	26.19	27.84	2.00	5.13\%	13.31\%	0.0082	26.75
Apr-00	0.0030	13.19	12.06	12.63	0.62	6.67\%	12.29\%	0.0046	32.19	26.63	29.41	2.00	5.19\%	12.93\%	0.0071	28.25
May-00	0.0031	14.72	12.34	13.53	0.62				34.38	29.88	32.13	2.00	5.19\%	12.25\%	0.0071	30.38
Jun-00	0.0030	15.63	12.88	14.25	0.62				35.06	32.00	33.53	2.00	5.19\%	11.95\%	0.0068	31.31
Jul-00	0.0029	13.89	12.63	13.26	0.62	6.67\%	12.02\%	0.0049	33.50	31.25	32.38	2.00	5.44\%	12.47\%	0.0072	29.13
Aug-00	0.0028	16.28	13.31	14.80	0.62	6.67\%	11.45\%	0.0046	- 35.13	31.63	33.38	2.00	6.06\%	12.91\%	0.0073	29.94
Sep-00	0.0027	20.00	15.91	17.95	0.62	6.67\%	10.60\%	0.0040	- 35.38	31.50	33.44	2.00	6.06\%	12.90\%	0.0069	31.19
Oct-00	0.0029	22.38	19.00	20.69	0.62	6.67\%	10.08\%	0.0046	- 34.88	31.75	33.31	2.00	6.06\%	12.92\%	0.0065	30.63
Nov-00	0.0027	21.56	19.81	20.69	0.62	6.67\%	10.08\%	0.0047	43.00	34.00	38.50	2.00	6.25\%	12.18\%	0.0063	34.38
Dec-00	0.0027	25.31	20.41	22.86	0.62				46.94	41.13	44.03	2.00	6.25\%	11.42\%	0.0059	39.44
Jan-01	0.0025	24.34	21.44	22.89	0.62				44.63	35.88	40.25	2.04	6.25\%	12.03\%	0.0081	38.00
Feb-01	0.0026	23.98	21.33	22.65	0.62				40.40	36.74	38.57	2.04	6.25\%	12.29\%	0.0083	34.19
Mar-01	0.0025	22.71	18.13	20.42	0.62				41.95	37.01	39.48	2.04	6.25\%	12.15\%	0.0080	35.50
Apr-01	0.0022	22.50	19.31	20.90	0.62	7.67\%	11.07\%	0.0057	7 41.12	37.80	39.46	2.04	6.25\%	12.15\%	0.0076	36.55
May-01	0.0022	21.95	20.38	21.16	0.62	11.60\%	15.08\%	0.0074	411.15	38.45	39.80	2.04	5.57\%	11.38\%	0.0069	36.00

	PNY	PNY Average		PNY Dividend	PNY Growth	PNY	PNY	Semco	Semco	Semco	Semco		Semco DCF	Semco DCF	SJI High	S.J		
Month Ending	Low			DCF		DCF	High	Low	Average	Dividend	Growth							
Jun-98		32.94	33.38		1.30	7.33\%	11.80\%	0.0071	17.75	17.38	17.56	0.76					27.88	27.25
Jul-98		28.88	31.75	1.30	7.33\%	12.03\%	0.0077	18.00	17.00	17.50	0.80					27.88	25.50	
Aug-98		27.88	29.38	1.30	7.33\%	12.42\%	0.0061	17.25	13.50	15.38	0.80					26.38	22.75	
Sep-98		28.06	31.28	1.30	7.33\%	12.10\%	0.0058	15.75	13.13	14.44	0.80					26.31	22.00	
Oct-98		32.38	33.91	1.30	7.33\%	11.73\%	0.0060	17.25	14.50	15.88	0.80					27.00	25.44	
Nov-98		32.75	34.13	1.30	6.75\%	11.10\%	0.0057	17.50	15.75	16.63	0.80					26.13	25.00	
Dec-98		33.75	34.94	1.30	6.75\%	10.99\%	0.0056	17.25	15.50	16.38	0.80					26.25	25.06	
Jan-99		30.00	33.31	1.30	6.75\%	11.20\%	0.0057	17.50	15.88	16.69	0.80					26.69	25.50	
Feb-99		28.63	31.72	1.30	6.75\%	11.43\%	0.0058	16.38	14.75	15.56	0.80					25.50	21.50	
Mar-99		32.88	33.94	1.30	6.60\%	10.96\%	0.0054	15.94	14.25	15.09	0.80					25.00	21.63	
Apr-99		31.13	33.50	1.38	6.10\%	10.78\%	0.0061	16.88	14.00	15.44	0.80	12.17\%	18.42\%	0.0024		24.81	21.63	
May-99		31.06	32.50	1.38	6.10\%	10.92\%	0.0060	15.00	13.25	14.13	0.80	12.17\%	19.01\%	0.0024		30.00	23.06	
Jun-99		30.75	32.31	1.38	6.10\%	10.95\%	0.0060	15.56	13.25	14.41	0.80	12.17\%	18.87\%	0.0023		28.69	26.81	
Jul-99		30.69	32.53	1.38	6.10\%	10.92\%	0.0053	16.00	15.13	15.56	0.82	12.17\%	18.52\%	0.0022		30.75	28.19	
Aug-99		32.75	33.47	1.38	6.10\%	10.78\%	0.0052	16.00	14.00	15.00	0.82	12.17\%	18.77\%	0.0023		30.75	28.38	
Sep-99		30.31	32.16	1.38	6.10\%	10.97\%	0.0053	14.75	13.00	13.88	0.82	12.17\%	19.31\%	0.0023		30.13	25.06	
Oct-99		30.25	31.38	1.38	6.10\%	11.10\%	0.0053	15.38	13.63	14.50	0.82					27.38	25.50	
Nov-99		30.50	31.84	1.38	6.10\%	11.02\%	0.0053	14.25	13.13	13.69	0.82					30.25	26.13	
Dec-99		28.94	30.91	1.38	6.07\%	11.14\%	0.0054	13.88	10.94	12.41	0.82					29.50	28.00	
Jan-00		28.25	29.47	1.38	6.07\%	11.40\%	0.0059	12.88	11.25	12.06	0.82	8.25\%	16.21\%	0.0019		29.50	28.38	
Feb-00		23.69	26.69	1.38	6.07\%	11.96\%	0.0062	14.00	11.00	12.50	0.82	8.60\%	16.30\%	0.0019		29.63	28.75	
Mar-00		24.00	25.38	1.38	6.00\%	12.20\%	0.0061	12.25	10.75	11.50	0.82	8.60\%	16.98\%	0.0020		29.44	27.56	
Apr-00		25.19	26.72	1.46	6.00\%	12.23\%	0.0054	13.13	11.13	12.13	0.84	8.60\%	16.74\%	0.0018		28.81	26.56	
May-00		27.00	28.69	1.46	5.67\%	11.45\%	0.0053	15.00	11.81	13.41	0.84	8.60\%	15.94\%	0.0018		27.00	25.94	
Jun-00		26.56	28.94	1.46	5.67\%	11.39\%	0.0052	13.94	11.50	- 12.72	0.84	8.60\%	16.35\%	0.0019		27.63	24.50	
Juloo		26.88	28.00	1.46	5.67\%	11.59\%	0.0053	15.19	12.25	- 13.72	0.84	8.60\%	15.77\%	0.0017		27.56	26.06	
Aug-00		26.50	28.22	1.46	5.67\%	11.54\%	0.0052	16.06	14.25	- 15.16	0.84	8.60\%	15.08\%	0.0016		27.75	26.38	
Sep-00		27.13	29.16	1.46	5.67\%	11.35\%	0.0048	16.94	14.50	- 15.72	0.84	8.60\%	14.84\%	0.0015		29.25	26.94	
Oct-00		28.25	29.44	1.46	5.67\%	11.30\%	0.0045	15.94	13.75	-14.84	0.84	8.60\%	15.22\%	0.0019		30.13	28.25	
Nov-00		29.19	31.78	1.46	5.67\%	10.87\%	0.0044	16.63	14.81	15.72	0.84	8.60\%	14.84\%	0.0019		29.75	28.56	
Dec-00		32.50	35.97	1.46	5.67\%	10.26\%	0.0042	16.13	14.50	- 15.31	0.84	-8.60\%	15.01\%	0.0020		29.81	29.00	
Jan-01		33.00	35.50	1.46	5.43\%	10.07\%	0.0046	15.44	13.19	-14.31	0.84	- 8.25%	15.09\%	0.0017		32.25	29.19	
Feb-01		31.75	32.97	1.46	5.43\%	10.43\%	0.0048	15.10	13.81	14.46	0.84	7.75\%	14.49\%	0.0017		32.00	29.00	
Mar-01		31.82	33.66	1.46	5.43\%	10.33\%	0.0047	14.50	13.53	314.01	0.84	7.75\%	14.71\%	0.0017		31.85	27.60	
Apr-01		34.20	35.38	1.54	5.43\%	10.34\%	0.0045	15.05	13.85	514.45	0.84	7.75\%	14.50\%	0.0014		30.95	29.05	
May-01		34.01	35.00	1.54	5.43\%	10.40\%	0.0043	15.20	14.00	- 14.60	0.84	7.28\%	13.93\%	0.0013		31.55	29.95	

	UGI	UGI	UGI	UGI	UGI	WGL	WGL	WGL	WGL	WGL	WGL	WGL	NFG	NFG	NFG	NFG	NFG	NFG
Month Ending	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF
Jun-98	24.44	1.44				27.88	26.19	27.03	1.20	4.63\%	9.61\%	0.0073	41.22	38.51	39.87	1.800	7.42\%	12.62\%
Jul-98	24.63	1.46				27.69	23.63	25.66	1.20	4.71\%	9.96\%	0.0072	41.22	37.51	39.37	1.800	8.10\%	13.40\%
Aug-98	22.97	1.46				25.56	23.06	24.31	1.20	4.71\%	10.26\%	0.0057	42.22	37.87	40.05	1.800	8.10\%	13.31\%
Sep-98	22.13	1.46				27.88	23.75	25.81	1.20	4.71\%	9.93\%	0.0053	44.72	38.45	41.59	1.800	7.70\%	12.69\%
Oct-98	23.03	1.46				28.75	26.13	27.44	1.20	4.71\%	9.61\%	0.0059	47.22	44.06	45.64	1.800	7.70\%	12.24\%
Nov-98	24.31	1.46				26.63	24.94	25.78	1.20	4.83\%	10.06\%	0.0062	46.86	42.70	44.78	1.800	7.50\%	12.12\%
Dec-98	23.13	1.46				27.13	25.13	26.13	1.20	4.83\%	9.99\%	0.0061	44.66	42.94	43.80	1.800	7.50\%	12.23\%
Jan-99	22.88	1.46				27.38	23.44	25.41	1.20	4.71\%	10.01\%	0.0056	44.68	40.60	42.64	1.800	7.50\%	12.36\%
Feb-99	21.00	1.46				24.75	22.25	23.50	1.20	4.71\%	10.45\%	0.0058	41.20	38.55	39.88	1.800	8.07\%	13.30\%
Mar-99	17.69	1.46	6.00\%	15.51\%	0.0057	25.00	21.31	23.16	1.20	4.75\%	10.58\%	0.0057	42.52	38.12	40.32	1.800	7.81\%	12.97\%
Apr-99	17.25	1.46	6.00\%	15.76\%	0.0044	24.44	21.00	22.72	1.22	4.75\%	10.80\%	0.0061	42.74	36.42	39.58	1.800	7.50\%	12.74\%
May-99	19.03	1.46	6.00\%	14.82\%	0.0041	25.38	23.25	24.31	1.22	4.75\%	10.39\%	0.0057	46.93	42.43	44.68	1.800	7.36\%	11.99\%
Jun-99	19.88	1.46	6.00\%	14.44\%	0.0039	27.06	24.06	25.56	1.22	4.75\%	10.11\%	0.0055	48.57	45.29	46.93	1.860	7.36\%	11.91\%
Jul-99	21.81	1.46	6.00\%	13.67\%	0.0041	28.69	25.00	26.84	1.22	4.71\%	9.81\%	0.0057	48.78	45.35	47.07	1.860	7.58\%	12.13\%
Aug-99	23.75	1.46	6.00\%	13.03\%	0.0039	28.88	26.50	27.69	1.22	4.71\%	9.65\%	0.0056	47.19	44.68	45.94	1.860	7.58\%	12.24\%
Sep-99	23.28	1.46	6.67\%	13.89\%	0.0042	28.13	25.38	26.75	1.22	4.71\%	9.83\%	0.0057	48.11	44.19	46.15	1.860	7.58\%	12.22\%
Oct-99	23.13	1.50	6.67\%	14.14\%	0.0042	27.31	25.00	26.16	1.22	4.71\%	9.95\%	0.0062	48.59	45.56	47.08	1.860	7.58\%	12.12\%
Nov-99	21.53	1.50	6.67\%	14.71\%	0.0044	29.44	26.50	27.97	1.22	4.71\%	9.60\%	0.0060	52.43	48.47	50.45	1.860	7.19\%	11.41\%
Dec-99	20.72	1.50	6.67\%	15.03\%	0.0046	29.25	27.06	28.16	1.22	4.63\%	9.48\%	0.0060	50.26	46.19	48.23	1.860	7.19\%	11.61\%
Jan-00	21.06	1.50	6.67\%	14.89\%	0.0047	27.55	24.50	26.03	1.22	4.63\%	9.89\%	0.0068	46.75	43.12	44.94	1.860	7.19\%	11.94\%
Feb-00	19.91	1.50	6.67\%	15.39\%	0.0049	26.00	21.75	23.88	1.22	4.63\%	10.37\%	0.0072	45.13	39.38	42.26	1.860	7.19\%	12.24\%
Mar-00	20.25	1.50	6.67\%	15.23\%	0.0047	27.63	23.00	25.31	1.22	4.63\%	10.04\%	0.0067	44.75	39.69	42.22	1.860	7.19\%	12.25\%
Apr-00	21.09	1.50	6.67\%	14.88\%	0.0043	26.94	24.88	25.91	1.24	4.63\%	10.00\%	0.0061	48.06	43.12	45.59	1.860	7.19\%	11.87\%
May-00	21.59	1.50				27.63	25.63	26.63	1.24	4.57\%	9.79\%	0.0062	51.88	46.25	49.07	1.860	6.79\%	11.12\%
Jun-00	21.19	1.50	6.67\%	14.84\%	0.0044	27.44	24.06	25.75	1.24	4.63\%	10.04\%	0.0063	51.88	48.00	49.94	1.920	7.19\%	11.59\%
Jul-00	21.50	1.55	6.67\%	15.00\%	0.0043	25.50	23.94	24.72	1.24	4.63\%	10.27\%	0.0059	52.38	48.12	50.25	1.920	7.19\%	11.57\%
Aug-00	22.38	1.55	6.67\%	14.66\%	0.0041	27.06	24.50	25.78	1.24	4.63\%	10.03\%	0.0057	53.69	49.50	51.60	1.920	7.19\%	11.45\%
Sep-00	23.31	1.55	6.67\%	14.33\%	0.0038	27.75	24.94	26.34	1.24	4.63\%	9.91\%	0.0053	58.81	52.38	55.60	1.920	7.19\%	11.14\%
Oct-00	23.03	1.55	6.67\%	14.43\%	0.0039	27.50	24.81	26.16	1.24	4.63\%	9.95\%	0.0050	59.62	51.12	55.37	1.920	7.44\%	11.42\%
Nov-00	23.06	1.55				28.50	25.38	26.94	1.24	4.43\%	9.58\%	0.0049	59,19	53.50	56.35	1.920	7.58\%	11.49\%
Dec-00	24.34	1.55				31.50	27.44	29.47	1.24	4.43\%	9.13\%	0.0048	64.50	53.38	58.94	1.920	7.58\%	11.32\%
Jan-01	23.94	1.55				30.50	27.06	28.78	1.24	4.43\%	9.25\%	0.0050	63.19	52.43	57.81	1.920	7.58\%	11.39\%
Feb-01	24.19	1.55				28.70	26.37	27.54	1.24	4.43\%	9.47\%	0.0052	55.40	50.97	53.19	1.920	7.50\%	11.64\%
Mar-01	24.11	1.55				27.95	25.82	26.89	1.24	4.43\%	9.59\%	0.0052	56.00	50.01	53.01	1.920	7.50\%	11.66\%
Apr-01	25.59	1.55	6.00\%	12.92\%	0.0034	29.10	26.30	27.70	1.26	4.43\%	9.52\%	0.0049	57.61	53.59	55.60	1.920	7.50\%	11.46\%
May-01	26.70	1.55	7.00\%	13.69\%	0.0035	29.40	27.90	28.65	1.26	4.43\%	9.35\%	0.0046	57.97	53.07	55.52	1.920	8.51\%	12.51\%

	NFG	STR	STR	STR	STR	STR	STR	STR	AGL	ATO	CGC	EGN	EQT	KSE	LG	NJR	GAS	N	NWN
Month Ending	DCF	High	Low	Average	Dividend	Growth	DCF	DCF											
Jun-98	0.0126	20.50	18.69	19.59	0.660	8.75\%	12.66\%	0.0122	1.10	0.88	0.18	0.58	1.06			0.65	2.00		0.65
Jul-98	0.0132	18.55	16.85	17.70	0.660	8.95\%	13.29\%	0.0125	1.10	0.90	0.18	0.58	0.85			0.63	1.90		0.62
Aug-98	0.0100	17.49	15.35	16.42	0.660	9.15\%	13.84\%	0.0088	1.10	0.90	0.18	0.58	0.77	4.90		0.63	1.90		0.62
Sep-98	0.0107	18.54	14.94	16.74	0.660	9.06\%	13.66\%	0.0100	1.10	0.90	0.18	0.58	0.89	4.90		0.63	1.90		0.62
Oct-98	0.0108	19.25	17.83	18.54	0.660	9.11\%	13.26\%	0.0103	1.10	0.85	0.18	0.53	0.97	4.10		0.63	1.90		0.65
Nov-98	0.0104	19.17	18.01	18.59	0.660	9.11\%	13.25\%	0.0102	1.10	0.85	0.18	0.53	1.04	4.10		0.63	1.90		0.65
Dec-98	0.0104	18.69	16.55	17.62	0.660	9.91\%	13.48\%	0.0105	1.10	0.85	0.18	0.53	1.03	4.10		0.63	1.90		0.65
Jan-99	0.0098	18.46	15.84	17.15	0.660	8.83\%	13.31\%	0.0088	1.30	0.90	0.20	0.53	0.92	4.30		0.68	1.90		0.68
Feb-99	0.0101	17.31	15.36	16.34	0.660	8.83\%	13.53\%	0.0097	1.30	0.90	0.20	0.53	0.93	4.30		0.68	1.90		0.68
Mar-99	0.0093	17.79	16.11	16.95	0.660	8.61\%	13.13\%	0.0086	1.30	0.90	0.20	0.53	0.93	4.30		0.68	1.90		0.68
Apr-99	0.0107	18.09	15.21	16.65	0.660	8.55\%	13.15\%	0.0097	1.10	0.70	0.18	0.45	0.91	3.80		0.65	1.80		0.60
May-99	0.0107	18.82	17.31	18.07	0.660	8.55\%	12.79\%	0.0098	1.10	0.70	0.18	0.45	1.05	3.80		0.65	1.80		0.60
Jun-99	0.0108	19.35	17.89	18.62	0.660	8.55\%	12.66\%	0.0096	1.10	0.70	0.18	0.45	1.26	3.80		0.65	1.80		0.60
Jul-99	0.0104	18.86	17.59	18.23	0.660	8.50\%	12.70\%	0.0092	1.10	0.80	0.20	0.58	1.23	3.80		0.70	1.80		0.65
Aug-99	0.0105	19.03	18.01	18.52	0.680	8.50\%	12.75\%	0.0094	1.10	0.80	0.20	0.58	1.22	3.80		0.70	1.80		0.65
Sep-99	0.0107	19.22	17.50	18.36	0.680	8.50\%	12.79\%	0.0090	1.10	0.80	0.20	0.58	1.26	3.80		0.70	1.80		0.65
Oct-99	0.0108	18.73	17.14	17.94	0.680	8.50\%	12.90\%	0.0090	1.00	0.78	0.20	0.60	1.22	4.00		0.72	1.80		0.65
Nov-99	0.0105	17.75	16.19	16.97	0.680	8.21\%	12.85\%	0.0086	1.00	0.78	0.20	0.60	1.14	4.00		0.72	1.80		0.65
Dec-99	0.0102	17.05	14.58	15.82	0.680	8.50\%	13.49\%	0.0080	1.00	0.78	0.20	0.60	1.09	4.00		0.72	1.80		0.65
Jan-00	0.0109	16.56	14.40	15.48	0.680	8.50\%	13.60\%	0.0090	1.00	0.69	0.19	0.48	1.13	3.20		0.71	1.50		0.60
Feb-00	0.0104	15.63	13.56	14.60	0.680	8.50\%	13.92\%	0.0085	1.00	0.69	0.19	0.48	1.25	3.20		0.71	1.50		0.60
Mar-00	0.0109	19.00	14.00	16.50	0.680	8.50\%	13.28\%	0.0102	1.00	0.69	0.19	0.48	1.47	3.20		0.71	1.50		0.60
Apr-00	0.0121	19.31	17.12	18.22	0.680	8.50\%	12.83\%	0.0107	1.00	0.58	0.15	0.45	1.52	2.90		0.65	1.50		0.48
May-00	0.0130	20.56	18.00	19.28	0.680	8.55\%	12.64\%	0.0118	1.00	0.58	0.15	0.45	1.64	2.90		0.65	1.50		0.48
Jun-00	0.0126	20.62	18.88	19.75	0.680	8.55\%	12.54\%	0.0110	1.00	0.58	0.15	0.45	1.59	2.90		0.65	1.50		0.48
Jul-00	0.0107	20.19	18.88	19.54	0.680	8.55\%	12.58\%	0.0094	0.88	0.60	0.20	0.63	1.71	4.20		0.68	1.60		0.58
Aug-00	0.0111	22.00	19.56	20.78	0.680	8.55\%	12.34\%	0.0101	0.88	0.60	0.20	0.63	1.83	4.20		0.68	1.60		0.58
Sep-00	0.0109	28.00	21.38	24.69	0.680	8.39\%	11.57\%	0.0115	0.88	0.60	0.20	0.63	2.07	4.20	0.35	0.68	1.60		0.58
Oct-00	0.0101	29.50	26.00	27.75	0.680	8.94\%	11.78\%	0.0107	1.10	0.68	0.20	0.85	1.89	4.80	0.43	0.73	1.60		0.60
Nov-00	0.0110	31.88	27.00	29.44	0.700	8.93\%	11.68\%	0.0112	1.10	0.68	0.20	0.85	1.82	4.80	0.43	0.73	1.60		0.60
Dec-00	0.0121	31.25	26.38	28.82	0.700	8.92\%	11.73\%	0.0123	1.10	0.68	0.20	0.85	2.18	4.80	0.43	0.73	1.60		0.60
Jan-01	0.0099	29.94	27.12	28.53	0.700	8.92\%	11.76\%	0.0111	1.20	0.70	0.23	0.85	1.92	5.40	0.42	0.73	1.80		0.63
Feb-01	0.0100	28.45	26.70	27.58	0.700	8.92\%	11.86\%	0.0110	1.20	0.70	0.23	0.85	1.87	5.40	0.42	0.73	1.80		0.63
Mar-01	0.0102	29.95	26.35	28.15	0.700	8.79\%	11.67\%	0.0107	1.20	0.70	0.23	0.85	2.24	5.40	0.42	0.73	1.80		0.63
Apr-01	0.0099	33.17	26.80	29.99	0.700	8.58\%	11.27\%	0.0114	1.10	0.90		0.93	1.30	5.40	0.45	0.70	1.70		0.60
May-01	0.0107	33.75	30.05	31.90	0.700	9.27\%	11.82\%	0.0111	1.10	0.90		0.93	2.42	5.40	0.45	0.70	1.70		0.60

	NUI	OKE	PGL	PNY	SEN	SJI	swx	UGI	WGL	NFG	STR	Mkt Cap	Ave. DCF
Month Ending													
Jun-98	0.35	1.20	1.30	0.95			0.55		1.20	1.57	1.51	15.72	11.54\%
Jul-98	0.33	1.20	1.30	0.98			0.63		1.10	1.49	1.43	15.20	11.86\%
Aug-98	0.33	1.20	1.30	0.98			0.63		1.10	1.49	1.26	19.84	12.34\%
Sep-98	0.33	1.20	1.30	0.98			0.63		1.10	1.72	1.50	20.43	12.73\%
Oct-98	0.30	1.10	1.30	1.00			0.58		1.20	1.73	1.53	19.62	12.60\%
Nov-98	0.30	1.10	1.30	1.00			0.58		1.20	1.68	1.51	19.62	12.11\%
Dec-98	0.30	1.10	1.30	1.00			0.58		1.20	1.67	1.52	19.62	11.85\%
Jan-99	0.30	1.00	1.30	1.00			0.80		1.10	1.57	1.31	19.78	11.95\%
Feb-99	0.30	1.00	1.30	1.00			0.80		1.10	1.50	1.42	19.82	12.43\%
Mar-99	0.30	1.00	1.30	1.00			0.80	0.75	1.10	1.47	1.34	20.47	12.57\%
Apr-99	0.30	0.88	1.30	1.10	0.25		0.83	0.55	1.10	1.84	1.45	19.57	12.60\%
May-99	0.30	0.88	1.30	1.10	0.25		0.83	0.55	1.10	1.79	1.53	19.94	12.21\%
Jun-99	0.30	0.88	1.30	1.10	0.25		0.83	0.55	1.10	1.84	1.53	20.20	12.08\%
Jul-99	0.33	0.98	1.40	1.00	0.25		0.85	0.63	1.20	1.78	1.51	20.77	12.22\%
Aug-99	0.33	0.98	1.40	1.00	0.25		0.85	0.63	1.20	1.79	1.53	20.79	12.20\%
Sep-99	0.33	0.98	1.40	1.00	0.25		0.85	0.63	1.20	1.81	1.47	20.79	12.26\%
Oct-99	0.33	0.98	1.30	1.00		0.33	0.85	0.63	1.30	1.88	1.46	20.99	12.33\%
Nov-99	0.33	0.98	1.30	1.00		0.33	0.85	0.63	1.30	1.92	1.40	20.90	12.40\%
Dec-99	0.33	0.98	1.30	1.00		0.33	0.85	0.63	1.30	1.80	1.22	20.56	12.80\%
Jan-00	0.33	0.87	1.20	0.98	0.23	0.33	0.68	0.60	1.30	1.74	1.25	18.97	13.01\%
Feb-00	0.33	0.87	1.20	0.98	0.23	0.33	0.68	0.60	1.30	1.60	1.15	18.85	13.44\%
Mar-00	0.33	0.87	1.20	0.98	0.23	0.33	0.68	0.60	1.30	1.74	1.50	19.56	13.44\%
Apr-00	0.33	0.68	1.00	0.80	0.20	0.33	0.60	0.53	1.10	1.85	1.52	18.14	13.16\%
May-00	0.33		1.00	0.80	0.20	0.33	0.60		1.10	2.03	1.62	17.34	12.92\%
Jun-00	0.33		1.00	0.80	0.20	0.33	0.60	0.53	1.10	1.91	1.55	17.62	12.95\%
Juloo	0.35	0.85	1.20	0.95	0.23	0.30	0.60	0.60	1.20	1.93	1.56	20.83	13.17\%
Aug-00	0.35	0.85	1.20	0.95	0.23	0.30	0.60	0.60	1.20	2.06	1.74	21.26	12.90\%
Sep-00	0.35	0.85	1.20	0.95	0.23	0.30	0.60	0.60	1.20	2.20	2.23	22.47	12.57\%
Oct-00	0.40	1.10	1.20	0.95	0.30	0.33	0.63	0.65	1.20	2.11	2.17	23.89	12.60\%
Nov-00	0.40	1.10	1.20	0.95	0.30	0.33	0.63		1.20	2.24	2.23	23.36	12.51\%
Decoo	0.40		1.20	0.95	0.30	0.33	0.63		1.20	2.47	2.42	23.05	12.39\%
Jan-01	0.38		1.60	1.10	0.28	0.34	0.68		1.30	2.07	2.24	23.83	12.61\%
Feb-01	0.38		1.60	1.10	0.28	0.34	0.68		1.30	2.05	2.21	23.73	12.61\%
Mar-01	0.38		1.60	1.10	0.28	0.34	0.68		1.30	2.12	2.21	24.17	12.75\%
Apr-01	0.37	1.30	1.60	1.10	0.25	0.35	0.65	0.68	1.30	2.20	2.58	25.44	12.27\%
May-01	0.37	1.30	1.60	1.10	0.25	0.35	0.65	0.68	1.30	2.26	2.50	26.55	13.02\%

	AGL A	AGL	AGL	AGL.	AGL	AGL	AGL	ATO	ATO A	ATO	ATO A	ATO	ATO A	ATO	Cascade	Cascade	Cascade	
Month Ending	High L	Low	Average	Dividend	Growth	DCF	DCF	High	Low A	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend
Jun-01	24.09	22.50	23.30	1.08	6.59\%	11.89\%	0.0051	24.00	22.49	23.24	1.16	7.36\%	13.11\%	0.0046	20.50	19.05	19.77	0.96
Jul-01	24.22	22.18	23.20	1.08	7.16\%	12.51\%	0.0062	24.55	19.60	22.07	1.16	8.00\%	14.10\%	0.0052	21.30	19.10		
Aug-01	24.50	21.10	22.80	1.08	7.16\%	12.60\%	0.0063	22.84	19.85	21.35	1.16	7.50\%	13.78\%	0.0052	22.00	19.35		
Sep-01	22.05	18.95	20.50	1.08	6.59\%	12.63\%	0.0067	22.35	20.66	21.51	1.16	6.33\%	12.50\%	0.0050	22.50	19.50		
Oct-01	21.49	19.50	20.49	1.08	6.75\%	12.80\%	0.0068	22.21	20.30	21.25	1.16	6.33\%	12.57\%	0.0050	21.60	19.62		
Nov-01	22.19	20.55	21.37	1.08	6.75\%	12.54\%	0.0066	21.94	19.46	20.70	1.16	6.33\%	12.74\%	0.0051	22.80	19.66		
Dec-01	23.24	21.08	22.16	1.08	7.00\%	12.60\%	0.0067	21.70	19.45	20.58	1.18	6.00\%	12.55\%	0.0048				
Jan-02	23.02	20.60	21.81	1.08	7.00\%	12.69\%	0.0069	21.99	20.54	21.27	1.18	6.00\%	12.33\%	0.0048				
Feb-02	22.78	20.95	21.87	1.08	8.43\%	14.18\%	0.0081	22.65	20.26	21.46	1.18	6.00\%	12.27\%	0.0050				
Mar-02	23.69	22.16	22.93	1.08	8.43\%	13.91\%	0.0078	24.50	22.13	23.31	1.18	6.00\%	11.76\%	0.0048				
Apr-02	24.34	2280	23.57	1.08	7.00\%	12.25\%	0.0068	24.55	23.44	23.99	1.18	6.00\%	11.59\%	0.0047				
May-02	24.17	22.80	23.48	1.08	7.00\%	12.27\%	0.0066	24.29	22.73	23.51	1.18	7.60\%	13.40\%	0.0053				
Jun-02	23.50	21.51	22.51	1.08	7.00\%	12.51\%	0.0064	23.65	21.00	22.32	1.18	7.33\%	13.43\%	0.0048				
Jul-02	23.35	17.25	20.30	1.08	7.00\%	13.12\%	0.0068	23.47	17.56	20.51	1.18	7.14\%	13.78\%	0.0050				
Aug-02	23.28	20.50	21.89	1.08	7.13\%	12.80\%	0.0064	22.95	20.41	21.68	1.18	7.14\%	13.41\%	0.0050				
Sep-02	23.70	21.52	22.61	1.08	7.13\%	12.62\%	0.0066	22.35	20.70	21.53	1.18	7.71\%	14.06\%	0.0054				
Oct-02	24.09	20.50	22.30	1.08	7.00\%	12.56\%	0.0068	22.30	20.62	- 21.46	1.18	7.71\%	14.08\%	0.0054	20.20	18.10		
Nov-02	24.50	22.70	23.60	1.08	7.00\%	12.25\%	0.0066	23.15	21.27	22.21	1.18	6.57\%	12.66\%	0.0049	20.33	18.75		
Dec-02	25.00	23.75	24.38	1.08	7.00\%	12.08\%	0.0069	23.88	22.38	- 23.13	1.20	6.71\%	- 12.66\%	0.0049	20.44	17.70		
Jan-03	25.41	22.71	24.06	1.08	7.00\%	12.15\%	0.0070	24.31	21.40	- 22.85	1.20	6.71\%	12.73\%	0.0050	20.24	18.05		
Feb-03	23.14	21.90	22.52	1.08	7.00\%	12.50\%	0.0072	22.47	21.01	21.74	1.20	6.43\%	12.75\%	0.0050	19.69	18.50		
Mar-03	23.70	22.03	22.87	1.08	6.47\%	11.86\%	0.0065	21.90	20.85	- 21.38	1.20	6.29\%	- 12.71\%	0.0051	19.63	18.20		
Apr-03	25.87	23.30	24.59	1.08	6.23\%	11.23\%	0.0061	22.94	21.05	- 21.99	1.20	6.09\%	12.32\%	0.0049	19.54	18.20		
May-03	26.98	24.50	25.74	1.08	5.59\%	10.33\%	0.0055	24.98	- 22.37	- 23.68	1.20	6.09\%	- 11.86%	0.0046	19.80	18.36		
Jun-03	26.98	25.28	26.13	- 1.12	5.59\%	10.44\%	0.0061	25.50	- 23.60	- 24.55	1.20	6.09\%	-11.65\%	0.0048				
Jul-03	27.67	25.35	26.51	1.12	5.53\%	10.30\%	0.0061	25.14	424.05	- 24.60	1.20	6.09\%	- 11.64\%	0.0049				
Aug-03	27.92	26.82	27.37	1.12	5.53\%	10.15\%	0.0060	24.84	23.00	- 23.92	1.20	6.09\%	- 11.80\%	0.0049				
Sep-03	28.49	27.77	28.13	31.12	5.43\%	9.92\%	0.0064	24.98	- 23.81	124.40	1.20	6.09\%	-11.69\%	0.0051				
Oct-03	29.04	27.24	28.14	41.12	5.43\%	9.92\%	0.0064	424.95	24.05	$5 \quad 24.50$	1.20	6.09\%	- 11.67\%	0.0050				
Nov-03	28.72	27.50	28.11	1.12	4.71\%	9.17\%	0.0059	- 24.89	- 24.27	$7 \quad 24.58$	1.20	5.67\%	\% 11.21\%	0.0048				
Dec-03	29.35	-28.25	28.80	1.12	4.71\%	9.06\%	0.0059	25.00	- 23.92	24.46	1.22	5.67\%	\% 11.33\%	0.0051				
Jan-04	30.63	- 28.50	29.62	21.12	4.71\%	8.94\%	0.0062	225.96	- 24.30	- 25.13	- 1.22	5.67\%	\% 11.17\%	0.0053				
Feb-04	29.39	27.87	28.63	31.12	4.31\%	8.67\%	0.0057	26.70	- 24.80	- 25.75	-1.22	5.67\%	\% 11.04\%	0.0050				
Mar-04	29.02	28.01	28.52	21.16	4.03\%	8.56\%	0.0055	26.99	- 25.04	426.02	- 1.22	5.60\%	\% 10.91\%	0.0054				
Apr-04	29.41	27.53	28.47	$7 \quad 1.16$	4.40\%	8.95\%	0.0057	726.16	- 24.10	- 25.13	-1.22	5.60\%	\% 11.10\%	0.0055				
May-04	28.99	26.51	27.75	-1.16	4.80\%	9.49\%	0.0065	- 25.10	- 23.40	- 24.25	-1.22	6.67\%	\% 12.43\%	0.0066				

	Cascade	Cascade	Cascade	EGN	EGN	EGN	EGN	EGN	EGN	EGN	EQT	EQT	EQT	EQT	EQT	EQT	EQT
Month Ending	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF
Jun-01				34.80	28.80	31.80	0.68	11.00\%	13.52\%	0.0049	37.88	31.80	34.84	0.64	11.75\%	13.93\%	0.0118
Jul-01				28.21	23.95	26.08	0.68	11.00\%	14.08\%	0.0048	36.60	31.35	33.98	0.64	11.75\%	13.98\%	0.0134
Aug-01				27.20	24.70	25.95	0.68	11.00\%	14.09\%	0.0048	36.05	31.83	33.94	0.64	10.50\%	12.71\%	0.0109
Sep-01				27.28	21.50	24.39	0.70	11.50\%	14.91\%	0.0055	32.32	26.00	29.16	0.64	10.44\%	13.01\%	0.0112
Oct-01				25.20	21.50	23.35	0.70	11.50\%	15.06\%	0.0055	33.80	29.15	31.48	0.64	10.44\%	12.82\%	0.0120
Nov-01				25.05	22.00	23.52	0.70	11.50\%	15.03\%	0.0055	34.69	31.00	32.85	0.64	10.44\%	12.72\%	0.0117
Dec-01				25.09	22.17	23.63	0.70	11.50\%	15.02\%	0.0048	34.38	31.00	32.69	0.64	10.44\%	12.73\%	0.0123
Jan-02				24.68	22.16	23.42	0.70	11.50\%	15.05\%	0.0050	33.92	29.32	31.62	0.64	10.25\%	12.62\%	0.0113
Feb-02				23.60	21.69	22.65	0.70	11.25\%	14.91\%	0.0049	33.00	29.50	31.25	0.64	10.00\%	12.39\%	0.0115
Mar-02				26.49	22.50	24.49	0.70	9.75\%	13.09\%	0.0042	35.66	32.68	34.17	0.64	10.00\%	12.18\%	0.0114
Apr-02				29.25	26.45	27.85	0.70	7.40\%	10.27\%	0.0032	37.55	34.00	35.78	0.64	9.81\%	11.89\%	0.0116
May-02				29.20	26.00	27.60	0.70	7.20\%	10.09\%	0.0031	37.27	35.45	36.36	0.68	10.19\%	12.38\%	0.0117
Jun-02				27.81	24.70	26.26	0.70	7.20\%	10.24\%	0.0035	36.22	33.54	34.88	0.68	10.19\%	12.47\%	0.0107
Jul-02				27.53	21.65	24.59	0.70	7.40\%	10.65\%	0.0037	34.72	28.67	31.70	0.68	10.19\%	12.70\%	0.0110
Aug-02				27.20	24.29	25.75	0.70	7.40\%	10.51\%	0.0039	36.49	32.82	34.66	0.68	10.19\%	12.48\%	0.0119
Sep-02				26.49	23.84	25.17	0.72	7.40\%	10.67\%	0.0040	36.25	33.17	34.71	0.68	10.19\%	12.48\%	0.0116
Oct-02				28.21	22.50	25.35	0.72	7.00\%	10.23\%	0.0037	36.00	32.09	34.05	0.68	10.19\%	12.53\%	0.0115
Nov-02				28.60	26.72	27.66	0.72	7.00\%	9.96\%	0.0036	36.55	34.10	35.33	0.68	10.19\%	12.44\%	0.0114
Dec-02				29.99	26.72	28.35	0.72	7.00\%	9.89\%	0.0039	36.89	34.62	35.76	0.68	10.17\%	12.39\%	0.0112
Jan-03				30.95	28.08	29.52	0.72	7.00\%	9.77\%	0.0038	37.30	34.83	36.07	0.68	10.17\%	12.37\%	0.0118
Feb-03				30.85	28.47	29.66	0.72	7.20\%	9.97\%	0.0039	37.84	34.44	36.14	0.68	10.17\%	12.37\%	0.0115
Mar-03				32.06	30.32	31.19	0.72	7.20\%	9.83\%	0.0046	37.90	36.05	36.98	0.68	9.56\%	11.70\%	0.0115
Apr-03				33.19	31.72	32.45	0.72	7.20\%	9.73\%	0.0045	39.00	37.08	38.04	0.68	9.56\%	11.64\%	0.0116
May-03				33.95	31.60	32.78	0.72	7.25\%	9.75\%	0.0044	40.27	37.72	39.00	0.80	9.56\%	11.95\%	0.0123
Jun-03				34.29	32.35	33.32	0.72	7.25\%	9.71\%	0.0040	42.00	40.02	41.01	0.80	9.56\%	11.83\%	0.0103
Jul-03				34.80	31.35	33.08	0.72	7.00\%	9.47\%	0.0039	41.27	38.37	39.82	1.20	9.56\%	13.08\%	0.0110
Aug-03				35.99	32.96	34.48	0.72	7.00\%	9.37\%	0.0039	39.80	37.85	38.83	1.20	9.44\%	13.04\%	0.0111
Sep-03				37.09	35.30	36.20	0.74	7.00\%	9.32\%	0.0044	41.65	39.29	40.47	1.20	9.44\%	12.90\%	0.0119
Oct-03				38.93	36.14	37.54	0.74	7.00\%	9.24\%	0.0043	41.97	40.68	41.33	1.20	9,50\%	12.89\%	0.0119
Nov-03				39.04	36.62	37.83	0.74	7.00\%	9.22\%	0.0043	41.60	39.95	40.78	1.20	9.78\%	13.22\%	0.0121
Dec-03				42.00	38.55	40.28	0.74	7.00\%	9.08\%	0.0044	43.42	41.34	42.38	1.20	9.78\%	13.09\%	0.0121
Jan-04				44.72	40.72	42.72	0.74	7.00\%	8.96\%	0.0046	44.92	42.34	43.63	1.20	9.75\%	12.96\%	0.0128
Feb-04				43.49	40.89	42.19	0.74	7.00\%	8.98\%	0.0044	44.86	42.50	43.68	1.20	9.75\%	12.96\%	0.0121
Mar-04				43.20	39.87	41.54					44.45	42.10	43.28	1.20	9.75\%	12.99\%	0.0125
Apr-04				42.61	40.41	41.51					47.80	43.99	45.90	1.20	9.71\%	12.76\%	0.0123
May-04				44.95	40.12	42.54					48.70	45.16	46.93	1.20	9.40\%	12.37\%	0.0127

Month Ending	Keyspan High	Keyspan Low	Keyspan Average	Keyspan Dividend	Keyspan Growth	Keyspan DCF	Keyspan DCF	LG High	LG Low	LG Average	LG Dividend	$L G$ Growth	LG DCF	LG DCF	$\begin{aligned} & \text { NJR } \\ & \text { High } \end{aligned}$		
Jun-01	40.05	36.37	38.21	1.78	11.07\%	16.62\%	0.0351	25.30	23.58	24.44	1.34	3.33\%	9.42\%	0.0017		45.96	42.27
Jul-01	37.20	29.10	33.15	1.78	11.39\%	17.82\%	0.0329	25.40	21.75	23.57	1.34	3.33\%	9.65\%	0.0018		45.33	41.00
Aug-01	32.86	29.85	31.36	1.78	11.39\%	18.20\%	0.0341	25.35	21.95	23.65	1.34	3.33\%	9.63\%	0.0018		45.81	42.85
Sep-01	33.40	31.50	32.45	1.78	8.38\%	14.77\%	0.0296	24.87	22.40							45.50	42.24
Oct-01	35.35	31.86	33.60	1.78	8.38\%	14.55\%	0.0290	25.30	22.60							46.95	43.45
Nov-01	34.44	32.52	33.48	1.78	8.38\%	14.57\%	0.0291	25.10	22.70							48.80	44.91
Dec-01	34.98	31.53	33.26	1.78	7.83\%	14.04\%	0.0298									47.35	44.82
Jan-02	35.55	31.25	33.40	1.78	7.17\%	13.31\%	0.0281									46.86	44.20
Feb-02	32.59	30.01	31.30	1.78	6.83\%	13.37\%	0.0280									31.16	29.23
Mar-02	36.72	31.98	34.35	1.78	6.83\%	12.78\%	0.0259									32.00	30.06
Apr-02	37.45	34.35	35.90	1.78	6.71\%	12.39\%	0.0248									32.90	30.29
May-02	38.20	35.15	36.68	1.78	6.71\%	12.27\%	0.0239									32.59	30.20
Jun-02	38.00	35.60	36.80	1.78	6.71\%	12.25\%	0.0251									30.70	28.45
Jul-02	38.19	27.41	32.80	1.78	6.71\%	12.94\%	0.0270									31.10	24.35
Aug-02	36.68	33.78	35.23	1.78	6.71\%	12.50\%	0.0252									32.87	29.50
Sep-02	34.85	31.96	33.41	1.78	7.75\%	13.92\%	0.0288									33.29	30.65
Oct-02	36.98	30.75	33.86	1.78	7.75\%	13.84\%	0.0282	24.35	21.79							33.20	29.52
Nov-02	37.15	33.80	35.48	1.78	7.75\%	13.55\%	0.0275	24.50	22.75							32.03	29.86
Dec-02	36.16	34.20	35.18	1.78	7.88\%	13.74\%	0.0282	24.84	23.00							33.60	31.20
Jan-03	38.14	33.01	35.57	1.78	8.00\%	13.80\%	0.0282	24.90	23.00							33.60	30.01
Feb-03	34.19	31.02	32.60	1.78	7.78\%	14.11\%	0.0290	23.80	21.85							32.67	30.42
Mar-03	33.44	31.07	32.25	1.78	7.10\%	13.46\%	0.0255	23.96	21.90							33.70	31.70
Apr-03	34.25	31.87	33.06	1.78	7.10\%	13.30\%	0.0249	24.29	23.10							34.79	32.25
May-03	37.51	33.28	35.39	1.78	6.64\%	12.40\%	0.0228	26.92	23.80							35.49	32.60
Jun-03	36.70	35.12	35.91	1.78	6.64\%	12.31\%	0.0240									36.60	35.12
Jul-03	35.80	33.52	34.66	1.78	6.64\%	12.52\%	0.0248									36.87	34.50
Aug-03	34.47	32.30	33.39	1.78	6.64\%	12.75\%	0.0252									36.39	33.70
Sep-03	35.83	33.83	34.83	1.78	6.55\%	12.40\%	0.0246									37.36	35.81
Oct-03	36.28	34.37	35.33	1.78	6.55\%	12.31\%	0.0244									38.00	35.76
Nov-03	35.45	33.64	34.55	1.78	5.88\%	11.74\%	0.0230									39.25	36.45
Dec-03	37.09	34.86	35.98	1.78	-5.88\%	11.50\%	0.0218									39.54	37.55
Jan-04	37.26	35.72	36.49	1.78	- 5.88%	11.42\%	0.0229									39.49	37.75
Feb-04	38.00	36.16	37.08	1.78	- 5.29%	10.71\%	0.0204									40,00	37.63
Mar-04	38.60	36.87	37.74	1.78	5.29\%	10.62\%	0.0227									39.20	36.81
Apr-04	38.99	35.41	37.20	1.78	- 5.14\%	10.54\%	0.0225									38.90	36.55
May-04	36.90	33.87	35.39	1.78	4.89\%	10.56\%	0.0241									41.98	38.51

	NJR	NJR	NJR	NJR	NJR	GAS	GAS	GAS	GAS	GAS	GAS	GAS	NI	NI		
Month Ending	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend
Jun-01	44.11	1.76	6.83\%	11.39\%	0.0031	39.20	37.98	38.59	1.76	5.94\%	11.12\%	0.0074				
Jul-01	43.17	1.76	6.83\%	11.49\%	0.0037	39.40	34.00	36.70	1.76	5.79\%	11.23\%	0.0083				
Aug-01	44.33	1.76	6.38\%	10.90\%	0.0035	39.23	36.70	37.97	1.76	5.79\%	11.05\%	0.0083				
Sep-01	43.87	1.76	6.38\%	10.94\%	0.0038	39.74	37.00	38.37	1.76	5.90\%	11.11\%	0.0089				
Oct-01	45.20	1.76	6.38\%	10.81\%	0.0037	40.90	38.14	39.52	1.76	5.90\%	10.95\%	0.0087				
Nov-01	46.85	1.76	6.38\%	10.65\%	0.0037	39.84	37.52	38.68	1.76	5.90\%	11.06\%	0.0088				
Dec-01	46.09	1.76	6.38\%	10.72\%	0.0039	42.00	38.20	40.10	1.76	6.00\%	10.98\%	0.0089				
Jan-02	45.53	1.76	6.33\%	10.72\%	0.0040	41.90	39.55	40.73	1.76	6.00\%	10.90\%	0.0088				
Feb-02	30.20	1.20	6.33\%	10.85\%	0.0041	42.69	39.67	41.18	1.76	6.00\%	10.85\%	0.0094				
Mar-02	31.03	1.20	6.33\%	10.72\%	0.0038	46.20	41.69	43.94	1.76	6.00\%	10.54\%	0.0091				
Apr-02	31.60	1.20	6.33\%	10.65\%	0.0037	49.00	44.99	47.00	1.76	5.80\%	10.03\%	0.0086				
May-02	31.40	1.20	6.67\%	11.03\%	0.0038	49.00	46.05	47.52	1.84	5.80\%	10.18\%	0.0084				
Jun-02	29.58	1.20	6.67\%	11.30\%	0.0036	48.70	45.75	47.23	1.84	5.80\%	10.21\%	0.0084				
Jul-02	27.73	1.20	6.67\%	11.61\%	0.0037	47.83	18.09	32.96	1.84	6.00\%	12.37\%	0.0104				
Aug-02	31.18	1.20	6.67\%	11.06\%	0.0036	31.50	23.80	27.65	1.84	6.00\%	13.62\%	0.0087				
Sep-02	31.97	1.20	6.67\%	10.95\%	0.0039	29.39	17.25	23.32	1.84	6.00\%	15.08\%	0.0081				
Oct-02	31.36	1.20	6.67\%	11.03\%	0.0040	31.77	24.25	28.01	1.84	5.50\%	12.99\%	0.0070				
Nov-02	30.94	1.20	6.67\%	11.09\%	0.0040	33.29	29.72	31.51	1.84	5.17\%	11.79\%	0.0063				
Dec-02	32.40	1.20	6.67\%	10.89\%	0.0039	35.39	30.55	32.97	1.84	5.17\%	11.49\%	0.0066				
Jan-03	31.80	1.24	6.67\%	11.12\%	0.0040	35.62	30.65	33.13	1.84	5.17\%	11.45\%	0.0066				
Feb-03	31.54	1.24	7.00\%	11.50\%	0.0041	32.30	29.75	31.02	1.84	5.17\%	11.89\%	0.0068				
Mar-03	32.70	1.24	7.00\%	11.34\%	0.0041	31.85	23.70	27.78	1.84	5.17\%	12.70\%	0.0059				
Apr-03	33.52	1.24	7.00\%	11.23\%	0.0040	30.47	27.05	28.76	1.84	5.17\%	12.43\%	0.0057				
May-03	34.05	1.24	6.50\%	10.64\%	0.0037	36.30	- 29.07	32.68	1.86	5.17\%	11.61\%	0.0052				
Jun-03	35.86	1.24	6.50\%	10.43\%	0.0035	39.30	- 35.29	37.30	1.86	5.17\%	10.80\%	0.0063				
Jul-03	35.69	1.24	6.50\%	10.45\%	0.0035	37.70	- 35.35	36.53	1.86	4.38\%	10.09\%	0.0060				
Aug-03	35.05	-1.24	6.50\%	10.52\%	0.0036	36.40	33.51	34.96	1.86	4.38\%	10.35\%	0.0061				
Sep-03	36.59	1.24	6.50\%	10.35\%	0.0036	36.05	534.00	35.03	1.85	4.38\%	10.34\%	0.0056				
Oct-03	36.88	1.24	6.50\%	10.32\%	0.0036	36.62	232.75	34.69	1.86	4.33\%	10.35\%	0.0056				
Nov-03	37.85	-1.30	6.50\%	10.40\%	0.0036	34.45	- 32.03	33.24	1.86	4.04\%	10.30\%	0.0055				
Dec-03	38.55	1.30	6.00\%	9.81\%	0.0034	34.65	- 32.86	33.76	1.86	3.86\%	10.02\%	0.0052				
Jan-04	38.62	21.30	6.00\%	9.81\%	0.0036	34.24	432.49	33.37	1.86	3.83\%	10.06\%	0.0055				
Feb-04	38.82	21.30	8.00\%	9.79\%	0.0034	36.25	- 32.55	34.40	1.86	3.73\%	9.76\%	0.0051				
Mar-04	38.01	1.30	-6.25\%	10.13\%	0.0036	37.43	34.76	36.10	1.86	3.68\%	9.42\%	0.0054				
Apr-04	37.73	31.30	6.33\%	10.24\%	0.0036	35.65	- 33.31	34.48	1.86	3.68\%	9.69\%	0.0055				
May-04						34.50	32.04	33.27	1.86	3.67\%	9.91\%	0.0060				

	N	NI	N	NWN		NWN		NWN	NWN	NWN	NWN	NWN	NUI	NUI	NUI	NUI	NUI	NUI
Month Ending	Growth	DCF	DCF	High		Low		Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF
Jun-01					25.00		23.90	24.45	1.24	4.25\%	9.93\%	0.0023	22.40	20.60	21.50	0.98	10.95\%	16.37\%
Jul-01					25.15		23.58	24.36	1.24	4.24\%	9.94\%	0.0025	23.60	21.40	22.50	0.98	10.95\%	16.12\%
Aug-01					25.50		23.81	24.65	1.24	4.55\%	10.20\%	0.0027	23.95	22.30	23.13	0.98	10.95\%	15.98\%
Sep-01					25.85		22.39	24.12	1.24	4.64\%	10.42\%	0.0029	22.70	20.08				
Oct01					26.00		22.00	24.00	1.24	4.64\%	10.45\%	0.0029	22.19	20.18				
Nov-01					25.00		23.39	24.19	1.24	4.64\%	10.40\%	0.0029	23.15	20.45				
Dec-01																		
Jan-02																		
Feb-02																		
Mar-02																		
Apr-02													26.91	24.50	25.70	0.98	7.33\%	11.70\%
May-02													27.25	25.35	26.30	0.98	7.33\%	11.60\%
Jun-02					30.10		27.60	28.85	1.26	5.30\%	10.23\%	0.0029	27.50	24.24	25.87	0.98	7.33\%	11.67\%
Jut-02					30.20		23.46	26.83	1.26	5.30\%	10.60\%	0.0031	27.45	15.87	21.66	0.98	7.67\%	12.89\%
Aug-02					29.70		27.53	28.62	1.26	5.30\%	10.27\%	0.0031	20.60	17.85	19.23	0.98	7.67\%	13.56\%
Sep-02					29.99		27.00	28.50	1.26	5.30\%	10.29\%	0.0032	22.25	18.84	20.55	0.98	7.67\%	13.18\%
Oct-02					30.70		28.54	29.62	1.26	5.30\%	10.09\%	0.0030	22.25	9.65	15.95	0.98	7.67\%	14.80\%
Nov-02					30.18		25.50	27.84	1.26	5.30\%	10.41\%	0.0031	15.27	12.40	13.84	0.98	5.33\%	13.41\%
Dec-02					27.84		25.63	26.73	1.26	5.67\%	11.01\%	0.0031	17.50	15.25	16.38	0.98	5.33\%	12.12\%
Jan-03					28.47		25.49	26.98	1.26	5.67\%	10.96\%	0.0030	77.40	15.20	16.30	0.98	5.33\%	12.16\%
Feb-03					26.26		24.05	25.15	1.26	4.67\%	10.30\%	0.0029	16.03	14.90	15.47	0.98	5.33\%	12.53\%
Mar-03					25.72		24.13	24.92	1.26	4.67\%	10.35\%	0.0029	15.74	13.13				
Apr-03					26.00		24.77	25.39	1.26	4.67\%	10.25\%	0.0029	15.83	14.00				
May-03					28.52		25.52	27.02	1.26	4.67\%	9.90\%	0.0027	16.05	13.20				
Jun-03					28.88		27.20	28.04	1.26	4.67\%	9.71\%	0.0032						
Jul-03					28.65		27.03	27.84	1.26	4.67\%	9.75\%	0.0033						
Aug-03					29.00		27.02	28.01	1.26	4.67\%	9.71\%	0.0033						
Sep-03					30.10		28.40	29.25	1.26	4.67\%	9.50\%	0.0026						
Oct-03					30.50		28.51	29.51	1.26	4.67\%	9.46\%	0.0026						
Nov-03					30.85		28.91	29.88	1.30	4.17\%	9.02\%	0.0024						
Dec-03					31.30		29.50	30.40	1.30	4.17\%	8.94\%	0.0024						
Jan-64					31.97		29.95	30.96	1.30	4.17\%	8.85\%	0.0025						
Feb-04					32.00		30.07	31.04	1.30	4.88\%	9.58\%	0.0026						
Mar-04					33.00		30.90	31.95	1.30	4.88\%	9.44\%	0.0028						
Apr-04					31.65		29.15	30.40	1.30	4.88\%	9.68\%	0.0028						
May-04					29.84		27.46	28.65	1.30	4.88\%	9.98\%	0.0031						

	NUI	OKE	OKE	OKE	OKE	OKE	OKE	OKE	Peoples	Peoples	Peoples	Peoples	Peoples	Peoples	Peoples	PNY	
Month Ending	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High	
Jun-01	0.0023	21.80	19.01	20.40	0.62	11.60\%	15.21\%	0.0077	42.30	38.65	40.48	2.04	5.57\%	11.28\%	0.0071		35.90
Jul-01	0.0020	20.48	17.45	18.97	0.62	11.60\%	15.49\%	0.0060	40.75	34.35	37.55	2.04	5.43\%	11.59\%	0.0067		35.80
Aug-01	0.0020	18.45	15.80	17.13	0.62	11.60\%	15.91\%	0.0063	39.91	36.56	38.24	2.04	5.57\%	11.63\%	0.0088		34.11
Sep-01		16.95	14.17	15.56	0.62	10.00\%	14.69\%	0.0062	39.98	36.81	38.40	2.04	5.57\%	11.60\%	0.0072		35.10
Oct-01		18.40	16.15	17.27	0.62	10.00\%	14.21\%	0.0060	42.94	37.70	40.32	2.04	5.57\%	11.31\%	0.0070		32.15
Nov-01		18.30	16.70	17.50	0.62	10.00\%	14.16\%	0.0060	40.35	37.54	38.95	2.04	5.57\%	11.51\%	0.0071		34.80
Dec.01		18.22	16.40	17.31	0.62	10.00\%	14.21\%	0.0064	38.68	35.40	37.04	2.04	5.58\%	11.84\%	0.0068		36.60
Jan-02		17.99	16.82	17.41	0.62	10.00\%	14.18\%	0.0067	38.99	35.50	37.25	2.04	5.58\%	11.80\%	0.0072		35.89
Feb-02		18.70	16.34	17.52	0.62	8.67\%	12.77\%	0.0067	37.40	35.25	36.33	2.08	5.58\%	12.09\%	0.0074		34.05
Mar-02		20.92	18.11	19.52	0.62	9.20\%	12.90\%	0.0067	39.98	37.06	38.52	2.08	5.58\%	11.71\%	0.0071		36.25
Apr-02	0.0015	21.95	20.28	21.12	0.62	9.20\%	12.61\%	0.0065	40.18	38.01	39.09	2.08	5.58\%	11.62\%	0.0069		37.95
May-02	0.0014	23.14	20.77	21.95	0.62	9.20\%	12.48\%	0.0062	40.45	38.00	39.23	2.08	5.58\%	11.60\%	0.0067		38.00
Jun-02	0.0018	22.00	19.70	20.85	0.62	9.20\%	12.66\%	0.0065	39.40	36.05	37.73	2.08	5.75\%	12.02\%	0.0066		37.94
Jul-02	0.0021	22.19	14.62	18.41	0.62	9.20\%	13.12\%	0.0068	37.97	29.07	33.52	2.08	5.69\%	12.76\%	0.0072		37.70
Aug-02	0.0020	21.00	17.21	19.10	0.62	8.92\%	12.69\%	0.0062	33.95	27.80	30.88	2.08	5.75\%	13.45\%	0.0070		37.21
Sep 02	0.0019	19.95	17.85	18.90	0.62	8.58\%	12.38\%	0.0064	35.32	32.51	33.92	2.08	5.75\%	12.74\%	0.0064		37.00
Oct-02	0.0022	19.36	16.67	18.02	0.62	8.58\%	12.57\%	0.0063	36.60	31.06	33.83	2.08	5.50\%	12.50\%	0.0062		36.45
Nov-02	0.0019	19.55	17.43	18.49	0.62	8.58\%	12.46\%	0.0062	37.25	33.69	35.47	2.08	5.50\%	12.16\%	0.0060		36.50
Dec02	0.0014	19.71	18.56	19.13	0.62	8.58\%	12.33\%	0.0061	38.99	35.41	37.20	2.08	5.50\%	11.85\%	0.0063		36.77
Jan-03	0.0014	20.20	16.75	18.48	0.68	8.58\%	12.85\%	0.0063	40.35	36.14	38.24	2.12	5.50\%	11.79\%	0.0063		36.87
Feb-03	0.0014	17.55	16.00	16.77	0.68	8.50\%	13.20\%	0.0065	37.56	35.31	36.44	2.12	5.00\%	11.58\%	0.0062		35.40
Mar-03		18.58	17.13	17.85	0.68	8.80\%	13.23\%	0.0072	36.43	34.93	35.68	2.12	5.25\%	11.99\%	0.0066		35.88
Apr-03		19.45	18.14	18.80	0.68	8.80\%	13.00\%	0.0070	39.34	35.16	37.25	2.12	4.74\%	11.16\%	0.0060		37.65
May-03		20.58	18.50	19.54	0.68	8.80\%	12.84\%	0.0068	44.60	38.46	41.53	2.12	4.99\%	10.75\%	0.0057		39.69
Jun-03		20.99	19.28	20.14	0.68	8.80\%	12.72\%	0.0083	45.25	42.45	43.85	2.12	4.99\%	10.44\%	0.0057		41.50
Jul03		21.28	19.56	20.42	0.68	8.80\%	12.66\%	0.0084	44.30	40.89	42.60	2.12	4.99\%	10.60\%	0.0059		39.74
Aug-03		21.20	18.75	19.98	0.68	8.00\%	11.92\%	0.0079	41.36	39.53	40.45	2.12	5.14\%	11.06\%	0.0061		39.32
Sep-03		21.68	20.17	20.93	0.68	8.67\%	12.44\%	0.0072	42.56	40.06	41.31	2.12	5.14\%	10.94\%	0.0059		39.95
Oct-03		21.24	19.45	20.35	0.68	8.65\%	12.52\%	0.0072	42.72	40.03	41.38	2.12	5.14\%	10.93\%	0.0059		39.98
Nov-03		20.16	19.20	19.68	0.72	7.98\%	12.20\%	0.0070	40.90	38.82	39.86	212	4.80\%	10.79\%	0.0058		41.13
Dec-03		22.44	19.65	21.05	0.72	7.98\%	11.92\%	0.0070	42.64	40.06	41.35	2.12	4.80\%	10.57\%	0.0055		43.95
Jan-04		23.32	21.64	22.48	0.72	7.98\%	11.67\%	0.0072	43.26	41.37	42.32	2.12	5.00\%	10.65\%	0.0058		
Feb-04		22.78	21.65	22.22	0.76	7.98\%	11.92\%	0.0070	44.70	42.47	43.59	2.16	5.00\%	10.59\%	0.0055		41.86
Mar-04		23.47	21.66	22.57	0.76	7.73\%	11.60\%	0.0099	46.03	43.52	44.78	2.16	5.00\%	10.43\%	0.0063		43.06
Apr-04		23.04	20.75	21.90	0.76	7.73\%	11.72\%	0.0100	45.19	41.15	43.17	2.16	5.00\%	10.64\%	0.0064		43.03
ay-04		21.45	19.69	20.57	0.84	6.50\%	11.15\%	0.0102	42.01	38.91	40.46	2.16	4.50\%	10.50\%	0.0068		41.05

	PNY		PNY	PNY	PNY	PNY	PNY	Semco	Semco	Semico	Semco	Semco	Semco		SJl		SJ	
Month Ending	Low		Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High		Low	
Jun-01		33.56	34.73	1.54	5.43\%	10.44\%	0.0045	14.98	13.61	14.29	0.84	7.28\%	14.07\%	0.0014		31.12		29.95
Jul-01		32.15	33.98	1.54	5.33\%	10.45\%	0.0047	15.24	14.05	14.64	0.84	7.28\%	13.91\%	0.0015		31.95		30.65
Aug-01		31.93	33.02	1.54	5.00\%	10.25\%	0.0047	15.75	14.10	14.93	0.84	7.14\%	13.63\%	0.0015		32.65		30.75
Sep-01		29.19	32.14	1.54	4.75\%	10.13\%	0.0050	14.70	13.90	14.30	0.84	6.54\%	13.28\%	0.0016		32.96		29.30
Oct-01		30.01	31.08	1.54	4.75\%	10.32\%	0.0050	14.85	11.43	13.14	0.84	6.54\%	13.89\%	0.0016		34.00		30.41
Nov-01		30.55	32.67	1.54	4.75\%	10.04\%	0.0049	12.90	11.25	12.07	0.84	6.54\%	14.56\%	0.0017		34.08		32.57
Dec-01		32.60	34.60	1.54	4.67\%	9.66\%	0.0048	12.12	8.88	10.50	0.84	6.40\%	15.65\%	0.0014		34.10		32.50
Jan-02		32.90	34.40	1.54	4.67\%	9.69\%	0.0048	11.40	9.91	10.66	0.84	5.50\%	14.53\%	0.0013		32.79		31.40
Feb-02		31.79	32.92	1.60	4.67\%	10.13\%	0.0050									31.65		29.95
Mar-02		32.01	34.13	1.60	4.50\%	9.75\%	0.0046									32.70		30.30
Apr-02		35.00	36.48	1.60	4.50\%	9.41\%	0.0044									35.50		31.70
May-02		35.00	36.50	1.60	4.50\%	9.41\%	0.0043									36.65		34.19
Jun-02		33.68	35.81	1.60	4.50\%	9.50\%	0.0041									35.05		32.30
Jul-02		27.35	32.53	1.60	4.50\%	10.02\%	0.0044									36.05		28.20
Aug-02		32.80	35.00	1.60	4.50\%	9.62\%	0.0045				-					33.60		31.80
Sep-02		33.62	35.31	1.60	4.50\%	9.57\%	0.0047									33.10		31.01
Oct-02		31.55	34.00	1.60	4.50\%	9.77\%	0.0049	8.15	6.85							33.30		31.40
Nov-02		32.76	34.63	1.60	4.50\%	9.68\%	0.0048	7.37	6.40							32.60		31.50
Dec-02		34.25	35.51	1.60	4.50\%	9.55\%	0.0047	7.25	5.60							33.65		32.24
Jan-03		33.95	35.41	1.66	4.50\%	9.75\%	0.0048	6.20	4.49							33.75		31.75
Feb-03		33.22	34.31	1.66	4.50\%	9.92\%	0.0049	4.94	3.15			.				32.41		30.55
Mar-03		33.53	34.70	1.66	4.50\%	9.86\%	0.0046	4.26	3.52							32.05		30.94
Apr-03		35.15	36.40	1.66	4.50\%	9.61\%	0.0044	5.65	3.51							35.15		31.54
May-03		36.53	38.11	1.66	4.67\%	9.55\%	0.0043	- 7.34	5.03							37.75		34.80
Jun-03		38.78	- 40.14	1.66	5.00\%	9.65\%	0.0043											
Jul-03		37.38	- 38.56	- 1.66	5.00\%	9.84\%	0.0044											
Aug-03		37.23	- 38.28	-1.66	5.20\%	10.09\%	0.0046											
Sep-03		38.69	- 39.32	2 1.66	5.20\%	9.95\%	0.0047											
Oct-03		38.85	539.42	-1.66	5.20\%	- 9.94\%	0.0047											
Nov-03		39.41	40.27	1.66	5.20\%	-9.84\%	0.0046											
Dec-03		40.71	142.33	-1.66	5.20\%	- 9.64\%	0.0046											
Jan-04																		
Feb-04		40.39	- 41.13	-1.72	5.00\%	- 9.70\%	0.0047											
Mar-04		40.70	- 41.88	$3 \quad 1.72$	4.75\%	- 9.35\%	0.0047											
Apr-04		39.80	- 41.42	21.72	4.75\%	- 9.40%	0.0047											
May-04		38.32	239.69	-1.72	4.80\%	-9.66\%	0.0051											

	SJI		S 1		SJI		SJ		SJI		SWX		SWX		SWX	SWX	SWX	SWX	SWX	UGI	UGI
Month Ending	Average		Dividend		Growth			DCF		DCF	High		Low		Average	Dividend	Growth	DCF	DCF	High	Low
Jun-01		30.54		1.48		6.00\%		11.51\%		0.0016		24.67		23.08	23.88	0.82	4.67\%	8.51\%	0.0022	27.26	25.42
Jul-01		31.30		1.48		6.00\%		11.38\%		0.0018		24.24		22.75	23.49	0.82	4.67\%	8.57\%	0.0024	27.30	25.30
Aug-01		31.70		1.48		5.67\%		10.96\%		0.0017		24.40		22.52	23.46	0.82	4.67\%	8.57\%	0.0024	29.48	26.50
Sep-01		31.13		1.48		5.83\%		11.23\%		0.0019		23.23		18.61						29.10	25.12
Oct-01		32.20		1.48		5.83\%		11.04\%		0.0018		22.56		20.31						29.40	26.69
Nov-01		33.33		1.48		5.83\%		10.86\%		0.0018		21.60		20.48						30.42	28.93
Dec-01		33.30		1.48		6.20\%		11.26\%		0.0019										31.53	29.33
Jan-02		32.10		1.48		6.20\%		11.45\%		0.0020										31.15	27.77
Feb-02		30.80		1.48		6.20\%		11.67\%		0.0019										29.35	27.09
Mar-02		31.50		1.48		5.33\%		10.64\%		0.0017										31.49	28.45
Apr-02		33.60		1.50		5.33\%		10.37\%		0.0017										33.21	30.99
May-02		35.42		1.50		5.33\%		10.10\%		0.0016		24.75		23.40	24.07	0.82	5.00\%	8.82\%	0.0028	32.95	31.00
Jun-02		33.67		1.50		5.33\%		10.36\%		0.0016		24.75		23.01	23.88	0.82	5.00\%	8.85\%	0.0027	32.47	29.40
Jul-02		32.13		1.50		5.33\%		10.60\%		0.0017		24.75		18.10	21.43	0.82	5.00\%	9.29\%	0.0029	33.08	25.67
Aug-02		32.70		1.50		5.33\%		10.51\%		0.0018		23.65		21.15	22.40	0.82	5.75\%	9.88\%	0.0030	36.48	30.90
Sep-02		32.06		1.50		5.33\%		10.61\%		0.0018		22.50		20.60	21.55	0.82	5.00\%	9.27\%	0.0029	36.76	33.58
Oct-02		32.35		1.50		5.33\%		10.57\%		0.0016		22.75		19.82	21.28	0.82	5.00\%	9.32\%	0.0028	26.23	23.27
Nov-02		32.05		1.50		5.33\%		10.62\%		0.0016		22.90		21.40	22.15	0.82	5.00\%	9.15\%	0.0027	26.99	24.53
Dec-02												23.63		22.00	22.81	0.82	5.00\%	9.03\%	0.0029	25.43	24.47
Jan-03												23.64		21.11	22.38	0.82	5.00\%	9.11\%	0.0023	27.89	24.93
Feb-03												21.96		19.92	20.94	0.82	4.75\%	9.14\%	0.0029	28.37	26.03
Mar-03												20.89		19.30	20.09	0.82	5.00\%	9.58\%	0.0026	30.57	27.41
Apr-03												21.28		19.74	20.51	0.82	5.00\%	9.49\%	0.0026	32.55	29.00
May-03												21.77		20.05	20.91	0.82	5.25\%	9.66\%	0.0026	34.49	30.60
Jun-03												22.45		20.78	21.62	0.82	5.25\%	9.52\%	0.0024	35.05	30.70
Jul03												21.72		20.14	20.93	0.82	5.25\%	9.66\%	0.0025	33.45	30.90
Aug-03												22.83		20.80	21.82	0.82	5.25\%	9.48\%	0.0025	31.45	28.95
Sep-03												23.49		22.25	22.87	0.82	5.45\%	9.49\%	0.0026	31.09	28.86
Oct-03												23.48		22.28	22.88	0.82	5.45\%	9.48\%	0.0026	31.44	28.85
Nov-03												23.15		22.01	22.58	0.82	5.50\%	9.59\%	0.0026	32.69	30.57
Dec-03												23.18		22.05	22.62	0.82	5.50\%	9.58\%	0.0025	34.20	32.10
Jan-04												24.05		22.39	23.22	0.82	5.33\%	9.30\%	0.0025	34.35	31.40
Feb-04												23.99		22.68	23.34	0.82	5.33\%	9.28\%	0.0024	33.10	31.90
Mar-04												23.57		22.81	23.19	0.82	5.33\%	9.31\%	0.0026	33.47	31.80
Apr-04												24.06		22.75	23.41	0.82	5.33\%	9.27\%	0.0026	33.40	31.29
May-04												23.36		21.50						32.14	29.85

	UGI	UGI	UGI	UGI	UGI	WGL	WGL	WGL	WGL	WGL	WGL	WGL	NFG	NFG	NFG	NFG	NFG Growth	NFG
Month Ending	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF
Jun-01	26.34	1.55	7.00\%	13.78\%	0.0036	28.65	26.00	27.32	1.26	4.43\%	9.59\%	0.0049	57.94	51.79	54.87	2.020	8.51\%	12.78\%
Jul-01	26.30	1.60	7.00\%	14.02\%	0.0045	28.40	25.26	26.83	1.26	4.40\%	9.66\%	0.0052	52.76	44.85	48.81	2.020	8.51\%	13.32\%
Aug-01	27.99	1.60	6.50\%	13.05\%	0.0042	28.10	26.60	27.35	1.26	4.40\%	9.56\%	0.0052	50.30	46.94	48.62	2.020	7.78\%	12.57\%
Sep-01	27.11	1.60	7.00\%	13.80\%	0.0048	27.64	25.30	26.47	1.26	4.40\%	9.73\%	0.0056	24.20	21.96	23.08	1.010	8.00\%	13.06\%
Oct-01	28.05	1.60	7.00\%	13.57\%	0.0047	28.53	26.00	27.27	1.26	4.40\%	9.57\%	0.0055	24.90	22.30	23.60	1.010	8.00\%	12.95\%
Nov-01	29.68	1.60	7.00\%	13.20\%	0.0047	28.17	26.80	27.48	1.26	4.40\%	9.53\%	0.0055	23.89	21.95	22.92	1.010	7.57\%	12.65\%
Dec-01	30.43	1.60	7.00\%	13.05\%	0.0047	29.75	27.00	28.38	1.26	4.20\%	9.16\%	0.0054	24.95	22.06	23.51	1.010	7.57\%	12.52\%
Jan-02	29.46	1.60	7.00\%	13.25\%	0.0049	29.48	25.85	27.67	1.26	4.20\%	9.29\%	0.0057	25.00	22.16	23.58	1.010	7.57\%	12.50\%
Feb-02	28.22	1.60	6.50\%	13.00\%	0.0047	27.13	25.71	26.42	1.26	4.20\%	9.53\%	0.0056	24.90	22.00	23.45	1.010	7.57\%	12.53\%
Mar-02	29.97	1.60	6.50\%	12.61\%	0.0045	27.54	26.31	26.93	1.26	4.17\%	9.40\%	0.0052	25.70	23.90	24.80	1.010	7.57\%	12,26\%
Apr-02	32.10	1.60	6.17\%	11.85\%	0.0042	27.95	26.25	27.10	1.26	3.80\%	8.97\%	0.0049	24.98	23.10	24.04	1.010	7.57\%	12.41\%
May-02	31.98	1.60	6.17\%	11.87\%	0.0041	27.40	25.68	26.54	1.27	3.80\%	9.14\%	0.0049	23.90	22.02	22.96	1.010	7.57\%	12.64\%
Jun-02	30.94	1.60	6.17\%	12.07\%	0.0039	26.70	24.46	25.58	1.27	3.80\%	9.34\%	0.0047	23.25	21.38	22.32	1.040	7.57\%	12.95\%
Jul-02	29.38	1.65	6.17\%	12.59\%	0.0042	26.22	19.25	22.73	1.27	4.40\%	10.69\%	0.0055	22.84	15.61	19.23	1.040	7.57\%	13.83\%
Aug-02	33.69	1.65	6.88\%	12.50\%	0.0044	25.15	23.50	24.32	1.27	4.40\%	10.27\%	0.0050	21.00	18.60	19.80	1.040	7.57\%	13.64\%
Sep-02	35.17	1.65	6.88\%	12.26\%	0.0048	24.62	22.75	23.69	1.27	4.40\%	10.43\%	0.0052	20.91	19.58	20.25	1.040	7.57\%	13.51\%
Oct-02	24.75	1.10	6.88\%	11.97\%	0.0048	25.15	21.94	23.55	1.27	4.40\%	10.46\%	0.0052	20.48	17.95	19.22	1.040	7.57\%	13.83\%
Nov-02	25.76	1.10	6.88\%	11.77\%	0.0048	24.45	22.18	23.32	1.27	4.40\%	10.53\%	0.0052	21.00	19.76	20.38	1.040	7.57\%	13.47\%
Dec-02	24.95	1.10	6.88\%	11.93\%	0.0049	24.49	22.65	23.57	1.27	4.40\%	10.46\%	0.0052	21.86	20.54	21.20	1.040	7.57\%	13.23\%
Jan-03	26.41	1.10	6.88\%	11.64\%	0.0048	25.69	23.15	24.42	1.27	4.40\%	10.24\%	0.0050	21.54	20.02	20.78	1.040	7.57\%	13.35\%
Feb-03	27.20	1.10	7.25\%	11.89\%	0.0049	26.10	24.38	25.24	1.27	4.20\%	9.84\%	0.0049	20.75	18.97	19.86	1.040	7.17\%	13.20\%
Mar-03	28.99	1.10	6.33\%	10.64\%	0.0054	26.96	25.00	25.98	1.27	4.33\%	9.81\%	0.0050	22.25	19.63	20.94	1.040	6.50\%	12.18\%
Apr-03	30.77	1.14	6.33\%	10.54\%	0.0053	27.50	26.30	26.90	1.27	4.33\%	9.62\%	0.0048	23.62	21.60	22.61	1.040	6.50\%	11.75\%
May-03	32.55	1.14	6.33\%	10.31\%	0.0051	28.14	25.97	27.05	1.28	4.43\%	9.73\%	0.0048	25.75	23.15	24.45	1.040	6.33\%	11.17\%
Jun-03	32.88	1.14	6.33\%	10.26\%	0.0049	28.79	26.62	27.71	1.28	4.43\%	9.60\%	0.0046	26.90	25.60	26.25	1.08	6.33\%	11.01\%
Jul-03	32.18	1.14	6.33\%	10.35\%	0.0050	27.62	25.21	26.42	1.28	4.43\%	9.86\%	0.0048	27.51	24.13	25.82	1.08	6.33\%	11.09\%
Aug-03	30.20	1.14	6.33\%	10.62\%	0.0052	26.90	25.28	26.09	1.28	4.64\%	10.15\%	0.0049	23.95	22.51	23.23	1.08	6.17\%	11.46\%
Sep-03	29.98	1.14	6.33\%	10.65\%	0.0050	27.97	26.90	27.44	1.28	4.64\%	9.87\%	0.0046	24.10	22.64	23.37	1.08	6.17\%	11.43\%
Oct-03	30.15	1.14	6.33\%	10.63\%	0.0050	28.47	27.37	27.92	1.28	4.64\%	9.78\%	0.0046	23.85	21.71	22.78	1.08	6.17\%	11.57\%
Nov-03	31.63	1.14	6.33\%	10.42\%	0.0048	28.16	26.20	27.18	1.28	4.14\%	9.40\%	0.0044	23.90	22.76	23.33	1.08	4.80\%	10.00\%
Dec-03	33.15	1.14	6.33\%	10.23\%	0.0049	28.55	26.63	27.59	1.28	4.14\%	9.32\%	0.0042	25.01	23.16	24.09	1.08	4.80\%	9.83\%
Jan-04	32.88	1.14	6.00\%	9.92\%	0.0051	28.70	27.15	27.93	1.28	3.86\%	8.96\%	0.0042	25.74	24.40	25.07	1.08	4.25\%	9,06\%
Feb-04	32.50	1.14	6.33\%	10.31\%	0.0050	28.98	27.74	28.36	1.28	3.86\%	8.88\%	0.0040	26.48	24.75	25.62	1.08	4.25\%	8.95\%
Mar-04						30.18	28.88	29.53	1.28	3.86\%	8.68\%	0.0043	26.25	24.26	25.26	1.08	4.25\%	9.02\%
Apr-04						30.39	27.75	29.07	1.28	3.86\%	8.76\%	0.0044	25.20	23.75	- 24.48	1.08	4.00\%	8.92\%
May-04						29.15	26.66	27.91	1.30	3.93\%	9.12\%	0.0049	25.57	23.90	- 24.74	1.08	3.00\%	7.82\%

	NUI	OKE	PGL	PNY	SEN	SJI	swx	UGI	WGL	NFG	STR	Mkt Cap	Ave. DCF
Month Ending													
Jun-01	0.37	1.30	1.60	1.10	0.25	0.35	0.65	0.68	1.30	2.06	2.00	25.60	13.04\%
Jul-01	0.30	0.95	1.40	1.10	0.27	0.38	0.68	0.78	1.30	1.90	1.90	24.36	13.38\%
Aug-01	0.30	0.95	1.40	1.10	0.27	0.38	0.68	0.78	1.30	1.90	1.83	24.00	13.27\%
Sep-01	0.30	0.95	1.40	1.10	0.27	0.38		0.78	1.30	1.83	1.63	22.48	12.68\%
Oct-01		0.95	1.40	1.10	0.27	0.38		0.78	1.30	1.86	1.78	22.54	12.68\%
Nov-01		0.95	1.40	1.10	0.27	0.38		0.80	1.30	1.78	1.89	22.55	12.68\%
Dec-01		1.02	1.30	1.11	0.20	0.38		0.81	1.33	1.96	2.04	22.53	12.54\%
Jan-02		1.04	1.34	1.10	0.20	0.39		0.82	1.35	1.82	1.95	22.00	12.36\%
Feb-02		1.18	1.39	1.11		0.37		0.82	1.34	1.95	1.82	22.52	12.41\%
Mar-02	0.30	1.20	1.40	1.10		0.38		0.83	1.29	1.94	2.09	23.22	11.89\%
Apr-02	0.30	1.20	1.40	1.10		0.38		0.83	1.29	1.90	2.28	23.46	11.59\%
May-02	0.30	1.20	1.40	1.10		0.38	0.78	0.83	1.29	1.86	2.25	24.17	11.62\%
Jun-02	0.40	1.30	1.40	1.10		0.40	0.78	0.83	1.29	1.80	2.02	25.38	11.70\%
Jul-02	0.40	1.30	1.40	1.10		0.40	0.78	0.83	1.29	1.55	1.85	24.95	12.42\%
Aug-02	0.34	1.11	1.19	1.07		0.38	0.70	0.81	1.10	1.63	2.04	22.89	12.34\%
Sep-02	0.33	1.20	1.16	1.13		0.39	0.72	0.90	1.15	1.59	1.87	23.09	12.60\%
Oct-02	0.35	1.20	1.20	1.20		0.38	0.73	0.98	1.20	1.62	2.11	24.06	12.50\%
Nov-02	0.35	1.20	1.20	1.20		0.38	0.73	0.98	1.20	1.66	2.14	24.13	12.21\%
Dec-02	0.28	1.20	1.30	1.20			0.78	1.00	1.20	1.67	2.28	24.34	12.16\%
Jan-03	0.28	1.20	1.30	1.20			0.78	1.00	1.20	1.66	2.25	24.43	12.19\%
Feb-03	0.28	1.20	1.30	1.20			0.78	1.00	1.20	1.57	2.28	24.33	12.32\%
Mar-03		1.30	1.30	1.10			0.65	1.20	1.20	1.76	2.43	23.76	11.95\%
Apr-03		1.30	1.30	1.10			0.65	1.20	1.20	1.89	2.48	23.99	11.62\%
May-03		1.30	1.30	1.10			0.65	1.20	1.20	2.07	2.67	24.47	11.26\%
Jun-03		1.90	1.60	1.30			0.75	1.40	1.40	2.10	2.77	29.22	11.14\%
Jul03		1.90	1.60	1.30			0.75	1.40	1.40	1.95	2.64	28.81	11.27\%
Aug-03		1.90	1.60	1.30			0.75	1.40	1.40	1.88	2.66	28.80	11.39\%
Sep-03		1.60	1.50	1.30			0.75	1.30	1.30	1.86	2.55	27.74	11.27\%
Oct-03		1.60	1.50	1.30			0.75	1.30	1.30	1.82	2.63	27.79	11.23\%
Nov-03		1.60	1.50	1.30			0.75	1.30	1.30	1.88	2.83	28.05	10.89\%
Dec-03		1.70	1.50	1.40			0.75	1.40	1.30	1.99	2.92	29.01	10.71\%
Jan-04		1.70	1.50				0.75	1.40	1.30	1.90	2.80	27.43	10.59\%
Feb-04		1.70	1.50	1.40			0.75	1.40	1.30	1.90	2.80	28.83	10.39\%
Mar-04		2.40	1.70	1.40			0.78		1.40	2.10	3.00	28.10	10.37\%
Apr-04		2.40	1.70	1.40			0.78		1.40	2.10	3.00	28.10	10.41\%
May-04		2.40	1.70	1.40					1.40	2.10	3.00	26.33	10.45\%

	AGL	AGL	AGL.	AGL.	AGL	AGL	AGL	ATO	ATO	ATO	ATO	ATO	ATO	ATO	Cascade	Cascade	Cascade	Cascade
Month Ending	High	Low	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend
Jun-04	29.20	27.92	28.56	1.16	4.83\%	9.38\%	0.0067	25.60	24.20	24.90	1.22	4.40\%	9.89\%	0.0051				
Jul-04	29.75	28.60	29.18	1.16	4.83\%	9.29\%	0.0057	26.18	24.40	25.29	1.22	4.07\%	9.46\%	0.0042				
Aug-04	30.50	28.82	29.66	1.16	4.33\%	8.69\%	0.0056	25.55	24.45	25.00	1.22	3.80\%	9.24\%	0.0047				
Sep-04	31.27	30.20						25.87	24.70									
Oct-04	31.26	30.11						25.90	24.60									
Nov-04	33.26	30.64						27.06	25.15									
Dec-04																		
Jan-05	34.80	32.00	33.40	1.16	4.33\%	8.20\%	0.0050	27.70	25.90	26.80	1.24	4.40\%	9.58\%	0.0042				
Feb-05	36.09	33.91	35.00	1.16	4.32\%	8.01\%	0.0058	29.15	27.20	28.18	1.24	4.40\%	9.32\%	0.0066				
Mar-05	35.84	34.07	34.96	1.24	4.32\%	8.27\%	0.0058	28.45	26.70	27.58	1.24	4.40\%	9.43\%	0.0066				
Apr-05	27.75	25.50	26.63	1.24	4.32\%	9.53\%	0.0079	36.30	33.80	35.05	1.24	5.54\%	9.53\%	0.0066				
May-05	28.29	26.15	27.22	1.24	3.93\%	9.00\%	0.0075	35.29	33.40	34.35	1.24	5.54\%	9.61\%	0.0066				
Jun-05	28.99	28.03	28.51	1.24	4.58\%	9.45\%	0.0076	38.89	35.15	37.02	1.24	5.92\%	9.70\%	0.0064				
Jul-05	29.59	28.53	29.06	1.24	4.58\%	9.36\%	0.0073	39.32	37.42	- 38.37	1.24	5.92\%	9.57\%	0.0062				
Aug-05	29.97	28.26	29.12	1.24	4.58\%	9.35\%	0.0073	39.09	35.29	37.19	1.24	5.92\%	9.69\%	0.0062				
Sep-05	29.74	28.10	28.92	1.24	4.64\%	9.44\%	0.0069	37.95	35.93	36.94	1.24	5.92\%	9.71\%	0.0055				
Oct-05	28.62	25.55	27.09	1.48	4.64\%	10.79\%	0.0078	37.54	32.25	34.90	1.24	5.92\%	9.94\%	0.0056				
Nov-05	27.20	25.85	26.53	1.48	4.64\%	10.92\%	0.0083	36.68	34.55	35.62	1.24	5.92\%	9.86\%	0.0058				
Dec-05	35.99	33.74	- 34.87	1.48	4.63\%	9.38\%	0.0069	26.90	25.83	26.37	1.24	5.70\%	11.03\%	0.0063				
Jan-06	36.28	34.83	35.56	1.48	4.63\%	9.29\%	0.0065	27.08	26.02	26.55	1.26	6.40\%	11.82\%	0.0065				
Feb-06	36.48	34.40	35.44	1.48	4.63\%	9.34\%	0.0130	27.01	25.97	26.49	1.26	5.32\%	10.69\%	0.0116				
Mar-06	36.28	34.75	35.52	1.48	4.63\%	9.30\%	0.0130	26.95	25.98	26.47	1.26	5.32\%	10.70\%	0.0117				
Apr-06	36.37	34.43	35.40	1.48	4.43\%	9.10\%	0.0091	26.80	26.09	26.45	1.26	5.40\%	10.79\%	0.0085				
May-06	36.67	34.63	- 35.65	1.48	4.25\%	8.88\%	0.0075	27.73	25.55	- 26.64	1.26	6.17\%	11.56\%	0.0074				
Jun-06	38.13	35.36	- 36.75	1.48	4.25\%	8.74\%	0.0077	28.03	26.01	27.02	1.26	6.17\%	11.48\%	0.0076				
Jul-06	39.40	37.16	- 38.28	1.48	4.25\%	8.56\%	0.0069	29.25	27.75	28.50	1.26	6.17\%	11.20\%	0.0074				
Aug-06	40.00	34.97	37.49	1.48	4.28\%	8.68\%	0.0070	29.15	27.63	- 28.39	1.26	6.17\%	11.22\%	0.0074				
Sep-06	36.85	34.76	- 35.81	1.48	4.28\%	8.89\%	0.0074	28.97	27.80	- 28.39	1.26	6.17\%	11.22\%	0.0077				
Oct-06	38.66	36.04	- 37.35	1.48	4.21\%	8.63\%	0.0072	30.96	28.40	- 29.68	1.26	6.17\%	10.99\%	0.0080				
Nov-06	38.83	37.18	- 38.01	1.48	4.21\%	8.55\%	0.0075	- 33.09	30.73	$3 \quad 31.91$	1.26	6.17\%	10.65\%	0.0080				
Dec-06	40.09	38.11	- 39.10	1.48	4.25\%	8.47\%	0.0074	- 32.87	31.50	- 32.19	1.26	6.17\%	10.61\%	0.0079				
Jan-07	40.21	38.20	- 39.21	1.48	4.50\%	8.71\%	0.0071	32.30	30.36	- 31.33	1.28	6.15\%	10.79\%	0.0072				
Feb-07	42.90	39.53	341.22	1.64	4.10\%	8.53\%	0.0074	- 33.07	31.23	- 32.15	1.28	6.15\%	10.67\%	0.0075				
Mar-07	42.99	39.62	41.31	1.64	4.50\%	8.94\%	0.0076	- 42.99	39.62	- 41.31	1.28	6.17\%	9.68\%	0.0069				
Apr-07	44.67	42.67	43.67	1.64	4.30\%	8.48\%	0.0072	2 32.71	30.66	- 31.69	1.28	6.17\%	10.76\%	0.0076				
May-07	44.01	41.50) 42.76	1.64	4.50\%	8.78\%	0.0069	33.47	31.59	32.53	1.28	5.75\%	10.20\%	0.0068				

	Cascade	Cascade	Cascade	EGN		EGN E	EGN	EGN EG	EGN EGN	EGN E	EGN	EQT E	EQT EQ	EQT			EQT	
Month Ending	Growth	DCF	DCF	High		Low A	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend G	Growth	DCF	DCF
Jun-04					48.56	43.45	46.01					51.72	47.34	49.53	1.52	9.33\%	12.90\%	0.0169
Jul-04					49.40	45.87	47.64	0.74	7.00\%	8.75\%	0.0053	52.58	49.89	51.24	1.52	9.33\%	12.78\%	0.0143
Aug-04					47.56	45.95	46.76	0.74	7.00\%	8.78\%	0.0051	52.51	49.92	51.22	1.52	9.43\%	12.89\%	0.0137
Sep-04					51.93	47.29	49.61	0.74	7.00\%	8.68\%	0.0056	54.49	52.15	53.32	1.52	9.43\%	12.75\%	0.0151
Oct-04					53.90	50.87	52.39					55.80	53.36	54.58	1.52	9.43\%	12.67\%	0.0166
Nov-04					58.69	53.73	56.21					59.85	55.01	57.43	1.52	9.43\%	12.51\%	0.0164
Dec-04												61.18	56.54	58.86	1.52	9.49\%	12.50\%	0.0173
Jan-05								0.38				61.18	55.78	58.48	1.52	9.49\%	12.52\%	0.0152
Feb-05								0.38				60.06	56.96	58.51	1.52	9.50\%	12.53\%	0.0144
Mar-05					34.09	32.10	33.10	0.40	6.50\%			61.24	56.01	58.63	1.52	9.50\%	12.52\%	0.0144
Apr-05					33.66	30.40	32.03	0.40	6.50\%	7.91\%	0.0057	29.52	28.16	28.84	0.76	9.40\%	12.47\%	0.0153
May-05					32.65	28.75	30.70	0.40	6.50\%	7.97\%	0.0057	31.87	28.77	30.32	0.76	9.40\%	12.32\%	0.0151
Jun-05					35.64	31.70	33.67	0.40	6.50\%	7.84\%	0.0061	34.42	31.78	33.10	0.84	9.40\%	12.35\%	0.0157
Jul-05					37.81	34.16	35.99	0.40	6.50\%	7.75\%	0.0059	36.30	34.01	35.16	0.84	9.40\%	12.18\%	0.0151
Aug-05					38.32	33.90	36.11	0.40	6.50\%	7.75\%	0.0059	37.71	34.02	35.87	0.84	9.40\%	12.12\%	0.0150
Sep-05					43.56	38.17	40.87	0.40	6.50\%	7.60\%	0.0056	39.90	37.62	38.76	0.84	9.40\%	11.92\%	, 148
Oct-05					44.31	36.12	40.22	0.40	6.50\%	7.62\%	0.0056	41.15	34.51	37.83	0.84	9.40\%	11.98\%	0.0149
Nov-05					38.73	34.50	36.62	0.40	6.50\%	7.73\%	0.0060	38.98	36.08	37.53	0.84	9.40\%	12.00\%	0.0157
Dec-05					38.89	36.03	37.46	0.40	6.50\%	7.70\%	0.0058	39.51	36.01	37.76	0.84	9.40\%	11.98\%	0.0142
Jan-06					39.49	36.35	37.92	0.40	6.50\%	7.69\%	0.0055	39.02	35.82	37.42	0.84	9.40\%	12.01\%	0.0136
Feb-06												37.19	34.05	35.62	0.84	9.50\%	12.24\%	0.0275
Mar-06												37.87	35.22	36.55	0.84	9.50\%	12.17\%	0.0265
Apr-06												37.00	34.92	35.96	0.84	9.80\%	12.52\%	0.0196
May-06					35.76	32.16	33.96	- 0.44	7.33\%	8.80\%	0.0065	35.85	32.20	34.03	0.88	9.80\%	12.82\%	0.0150
Jun-06					38.42	32.90	35.66	- 0.44	7.33\%	8.73\%	0.0067	34.78	31.59	33.19	0.88	9.80\%	12.90\%	0.0157
Jul-06					43.14	36.95	40.05	50.44	7.33\%	8.58\%	0.0074	436.29	32.55	34.42	0.88	9.80\%	12.78\%	0.0154
Aug-06					44.48	41.04	42.76	- 0.44	7.33\%	-8.50\%	0.0073	36.91	34.85	35.88	- 0.88	9.80\%	12.66\%	0.0153
Sep-06					44.02	39.78	41.90	0.44	7.33\%	- 8.52\%	0.0077	37.48	34.12	35.80	- 0.88	9.80\%	12.67\%	0.0159
Oct-06					42.90	- 38.50	40.70	0.44	6.00\%	- 7.21\%	0.0064	42.35	34.83	38.59	0.88	9.75\%	12.41\%	0.0173
Nov-06					45.37	42.40	43.89	0.44	5.67\%	6.79\%	0.0065	-44.48	40.06	42.27	0.88	9.75\%	12.17\%	0.0182
Dec06					47.60	-44.99	46.30	0.44	5.67\%	\% 6.73\%	0.0064	44.10	41.58	42.84	- 0.88	- 9.75\%	12.14\%	0.0183
Jan-07					46.95	- 43.78	45.37	$7 \quad 0.45$	5.00\%	-6.09\%	0.0053	34.69	39.26	41.48	- 0.88	9.80\%	12.27\%	0.0167
Feb-07					49.35	- 45.75	47.55	50.46	5.00\%	6.07\%	0.0057	74.55	42.00	43.28	- 0.88	9.80\%	12.17\%	0.0171
Mar-07					51.43	- 46.55	48.99	$9 \quad 0.46$	5.00\%	\% 6.04\%	0.0060	- 50.50	41.19	45.85	$5 \quad 0.88$	9.75\%	11.98\%	0.0190
Apr-07					57.00	- 51.05	54.03	30.46	5.00\%	\% 5.94\%	- 0.0059	953.39	47.96	50.68	- 0.88	9.83\%	11.85\%	\% 0.0188
May-07					60.49	- 55.86	58.18	$8 \quad 0.46$	5.00\%	\% 5.88\%	0.0060	- 52.77	49.75	51.26	- 0.88	- 9.75\%	11.75\%	0.0478

	N	N	NI	NWN		NWN		NWN	NWN	NWN	NWN	NWN		NUI	NUI				NUI
Month Ending	Growth	DCF	DCF	High		Low		Average	Dividend	Growth	DCF	DCF		High	Low	Average	Dividend	Growth	DCF
Jun-04					30.75		28.89	29.82	1.30	4.88\%	9.78\%		0.029						
Jul-04					31.55		29.13	30.34	1.30	4.17\%	8.95\%		. 0023						
Aug-04					30.90		28.84												
Sep-04					32.37		30.48												
Oct-04					32.35		30.77												
Nov-04					34.13		31.34												
Dec.04					34.06		32.04	33.05	1.30	5.50\%	9.94\%		. 0033						
Jan-05					34.02		32.42	33.22	1.30	5.50\%	9.91\%		. 0030						
Feb-05					37.24		33.73	35.49	1.30	5.50\%	9.63\%		. 0028						
Mar-05					37.17		35.04	36.11	1.30	5.50\%	9.56\%		. 0029						
Apr-05					36.50		34.36												
May-05					37.71		35.04												
Jun-05					38.67		36.14	37.41	1.30										
Jul-05					39.20		37.67	38.44	1.30	5.60\%	9.41\%		0.0026						
Aug-05					39.63		35.62	37.63	1.30	5.60\%	9.49\%		. 0022						
Sep-05					37.74		35.60	36.67	1.30	5.60\%	9.60\%		. 0025						
Oct-05					37.77		33.25	35.51	1.30	5.30\%	9.42\%		0.0024						
Nov-05					35.48		33.88	34.68	1.38	5.30\%	9.78\%		0.0026						
Dec-05					35.78		33.95	34.87	1.38	5.63\%	10.10\%		0.0026						
Jan-06					36.57		34.54	35.56	1.38	5.30\%	9.67\%		. 0024						
Feb-06					35.83		32.83	34.33	1.38	5.30\%	9.83\%		0.0048						
Mar-06					35.49		33.08	34.29	1.38	5.30\%	9.83\%		0.0048						
Apr-06					35.79		33.79	34.79	1.38	5.38\%	9.85\%		0.0034						
May-06					36.00		33.30	34.65	1.38	5.38\%	9.87\%		. 0028						
Jun-06					37.04		34.23	35.64	1.38	5.96\%	10.35\%		0.0031						
Jul-06					38.43		35.81	37.12	1.38	5.96\%	10.17\%		0.0030						
Aug-06					38.53		36.70	37.62	1.38	5.96\%	10.11\%		0.0030						
Sep-06					40.08		37.67	38.88	1.38	5.96\%	9.98\%		0.0030						
Oct-06					41.94		38.85	40.40	1.42	5.88\%	9.85\%		. 0030						
Nov-06					41.51		38.53	40.02	1.42	4.88\%	8.85\%		0.0029						
Dec-06					43.69		40.80	42.25	1.42	4.88\%	8.64\%		0.0028						
Jan-07					42.98		39.89	41.44	1.42	4.88\%	8.71\%		0.0025						
Feb-07					46.30		39.79	43.05	1.42	4.88\%	8.57\%		. 0028						
Mar-07					46.34		42.47	44.41	1.42	4.88\%	8.46\%		. 0030						
Apr-07					51.50		45.57	48.54	1.42	4.88\%	8.15\%		0.0029						
May-07					52.85		44.05	48.45	1.42	4.88\%	8.15\%		0.0025						

	SJI		SJ		SJI		SJI		SJ			SWX		SWX		SWX	SWX	SWX	SWX	SWX	UGI	UGI
Month Ending	Average		Dividend		Growth			DCF		DCF		High		Low		Average	Dividend	Growth	DCF	DCF	High	Low
Jun-04													24.20		22.29							
Jul-04													24.46		22.70	23.58	0.82	3.70\%	7.55\%	0.0021		
Aug-04													23.82		22.87	23.35	0.82	3.70\%	7.59\%	0.0020		
Sep-04													24.15		23.15	23.65	0.82	3.70\%				
Oct-04													24.68		23.45	24.07	0.82	3.70\%				
Nov-04													25.98		24.42	25.20	0.82	3.70\%				
Dec-04													26.15		24.46	25.31	0.82	3.70\%				
Jan-05													25.68		24.00	24.84	0.82	3.70\%	7.35\%	0.0022		
Feb-05													25.90		24.00	24.95	0.82	6.47\%	10.20\%	0.0030		
Mar-05													26.13		23.66	24.90	0.82	6.47\%	10.21\%	0.0029		
Apr-05													25.59		23.53						25.30	22.20
May-05													25.38		24.35						27.26	25.20
Jun-05													26.35		24.85						27.95	24.62
Jul-05													26.95		25.00						29.66	27.27
Aug-05													27.42		25.64						29.98	25.50
Sep-05													28.07		26.88						29.25	26.88
Oct-05										.			27.86		25.14						28.64	22.60
Nov-05													27.56		26.00						24.36	21.17
Dec-05																						
Jan-06																						
Feb-06																						
Mar-06																						
Apr-06		26.64		0.90		5.30\%		9.09\%			0.0026											
May-06		26.76		0.90		5.30\%		9.08\%			0.0021											
Jun-06		26.66		0.90		5.30\%		9.09\%			0.0022											
Jul-06																						
Aug-06																						
Sep-06																						
Oct-06		30.22		0.90		6.00\%		9.36\%			0.0024											
Nov-06		31.85		0.90		6.33\%		9.53\%			0.0027											
Dec-06		33.34		0.90		6.33\%		9.38\%			0.0026											
Jan-07		32.88		0.98		7.00\%		10.40\%			0.0027											
Feb-07		34.18		0.98		6.67\%		9.93\%			0.0027											
Mar-07		35.79		0.98		6.75\%		9.86\%			0.0029											
Apr-07		38.67		0.98		6.75\%		9.63\%			0.0028											
May-07		39.60		0.98		7.25\%		10.07\%			0.0026											

	UGI					WGL	WGL.	WGL	WGL	WGL	WGL	WGL	NFG	NFG	FFG Average	NFG Dividend	NFG Growth	$\begin{aligned} & \text { NFG } \\ & \text { DCF } \end{aligned}$
Month Ending	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High	Low A	Average	Dividend	Growth	DCF
Jun-04						29.42	27.36	28.39	1.30	3.67\%	8.76\%	0.0049	25.38	24.20	24.79	1.08	3.25\%	8.07\%
Jul-04						29.04	26.91	27.98	1.30	3.57\%	8.73\%	0.0041	26.78	24.84	25.81	1.08	4.33\%	9.00\%
Aug-04						28.97	27.30	28.14	1.30	3.67\%	8.80\%	0.0040	27.11	25.05	26.08	1.12	4.33\%	9.13\%
Sep-04						29.67	27.74	28.71	1.30	3.48\%	8.50\%	0.0043	28.43	26.60	27.52	1.12	4.33\%	8.87\%
Oct-04						29.18	27.71	28.45	1.30	3.57\%	8.64\%	0.0047	29.06	27.80	28.43	1.12	4.33\%	8.72\%
Nov-04						30.97	28.20	29.59	1.30	3.57\%	8.44\%	0.0046	28.75	27.30	28.03	1.12	4.33\%	8.79\%.
Dec-04						31.43	29.63	30.53	1.30	3.88\%	8.61\%	0.0050						
Jan-05						31.27	28.85	30.06	1.30	3.88\%	8.69\%	0.0043						
Feb-05						31.66	29.93	30.80	1.30	3.88\%	8.57\%	0.0041						
Mar-05						31.97	30.00	30.99	1.30	3.88\%	8.54\%	0.0041						
Apr-05						31.35	29.66	30.51	1.30	3.88\%	8.62\%	0.0042	29.33	26.80				
May-05						32.80	30.32	31.56	1.33	3.88\%	8.57\%	0.0042	28.20	26.20				
Jun-05						33.96	32.40	33.18	1.33	3.80\%	8.26\%	0.0037	29.49	27.72				
Jul-05						34.79	32.96	33.88	1.33	3.80\%	8.16\%	0.0035	30.40	28.86				
Aug-05						34.70	31.50	33.10	1.33	3.80\%	8.27\%	0.0036	30.40	27.74				
Sep-05						33.49	31.39	32.44	1.33	4.00\%	8.57\%	0.0035	35.04	29.70	32.37	1.16	6.00\%	10.06\%
Oct-05						32.88	29.10	30.99	1.33	4.00\%	8.79\%	0.0036	35.27	29.51	32.39	1.16	5.03\%	9.05\%
Nov-05						31.31	29.80	30.56	1.33	4.00\%	8.86\%	0.0038	32.66	29.25	30.96	1.16	5.03\%	9.23\%
Dec-05						31.14	29.74	30.44	1.33	3.75\%	8.61\%	0.0034	34.1	30.58	32.34	1.16	5.03\%	9.05\%
Jan-06						31.30	29.77	30.54	1.33	3.75\%	8.60\%	0.0033	35.43	31.09	33.26	1.16	4.03\%	7.90\%
Feb-06						31.49	29.61	30.55	1.33	3.75\%	8.59\%	0.0065						
Mar-06						31.08	29.59	30.34	1.33	3.75\%	8.62\%	0.0063						
Apr-06						30.74	28.80	29.77	1.35	3.75\%	8.79\%	0.0046						
May-06						29.93	27.04	28.49	1.35	3.75\%	9.02\%	0.0037	35.98	33.30	34.64	1.20	5.00\%	8.88\%
Jun-06						29.39	27.82	28.61	1.35	3.75\%	9.00\%	0.0038	36.75	33.18	34.97	1.20	5.00\%	8.84\%
Jul-06						30.32	28.44	29.38	1.35	3.75\%	8.86\%	0.0036	37.43	34.95	36.19	1.20	5.00\%	8.71\%
Aug-06						31.18	29.01	30.10	1.35	3.75\%	8.74\%	0.0035	39.16	- 36.76	37.96	1.20	5.00\%	8.54\%
Sep-06						31.82	30.05	30.94	1.35	3.75\%	8.60\%	0.0036	38.71	1 35.42	37.07	1.20	5.00\%	8.62\%
Oct-06						33.02	31.16	32.09	1.35	3.50\%	8.16\%	0.0037	37.96	- 35.02	36.49	1.20	5.40\%	9.10\%
Nov-06						33.41	31.84	32.63	1.35	3.33\%	7.90\%	0.0037	39.10	- 36.50	37.80	1.20	4.67\%	8.21\%
Dec-06						33.55	32.33	32.94	1.35	3.33\%	7.86\%	0.0036	40.21	- 37.67	38.94	1.20	5.53\%	9.00\%
Jan-07						32.98	30.99	31.99	1.35	3.25\%	7.91\%	0.0032	40.94	- 36.94	38.94	1.20	4.67\%	8.11\%
Feb-07						33.00	31.23	32.11	1.35	3.50\%	8.16\%	0.0034	43.79	- 40.60	42.20	1.20	4.57\%	7.74\%
Mar-07						32.52	30.37	31.45	1.35	3.50\%	8.26\%	0.0035	43.60	- 40.46	42.03	1.20	4.57\%	7.75\%
Apr-07						34.61	31.88	33.25	1.37	3.50\%	8.07\%	0.0034	47.87	43.28	45.58	1.20	4.57\%	7.50\%
May-07						35.77	33.82	34.80	1.37	3.50\%	7.86\%	0.0032	47.65	- 44.91	46.28	1.20	4.57\%	7.45\%

	NFG	STR	STR	STR	STR	STR	STR	STR	AGL	ATO	CGC	EGN	EQT	KSE	LG	NJR	GAS	NI	NWN
Month Ending	DCF	High	Low A	Average	Dividend	Growth	DCF	DCF											
Jun-04	0.0064	38.85	36.58	37.72	0.86	8.14\%	10.76\%	0.0132	1.80	1.30			3.30	6.00					0.75
Jul-04	0.0061	42.06	37.83	39.95	0.86	8.33\%	10.81\%	0.0124	1.80	1.30		1.80	3.30	6.20		1.10			0.75
Aug-04	0.0059	41.40	39.80	40.60	0.86	8.57\%	11.01\%	0.0120	2.00	1.60		1.80	3.30	6.20		1.20	1.60		
Sep-04	0.0073	46.40	40.01	43.21	0.86	8.57\%	10.86\%	0.0133				1.80	3.30	6.20		1.20	1.60		
Oct-04	0.0073	49.70	45.02	47.36	0.86	8.44\%	10.53\%	0.0153					3.60	6.10		1.20	1.60		
Nov-04	0.0074	51.54	47.36	49.45	0.86	8.56\%	10.56\%	0.0154					3.60	6.10		1.20	1.60		
Dec-04		52.12	47.40	49.76	0.86	8.69\%	10.68\%	0.0164					3.60	6.10		1.20	1.60		0.88
Jan-05		51.52	46.73	49.13	0.86	8.64\%	10.66\%	0.0151	1.80	1.30			3.60	6.30		1.20	1.60		0.90
Feb-05		53.57	49.38	51.48	0.86	8.50\%	10.42\%	0.0140	2.20	2.15			3.50	6.30		1.10	1.60		0.90
Mar-05		62.75	52.19	57.47	0.86	8.50\%	10.22\%	0.0144	2.20	2.18			3.60	6.30		1.20	1.60		0.95
Apr-05		61.50	54.49	58.00	0.86	8.81\%	10.52\%	0.0175	2.75	2.28		2.38	4.05	6.42		1.26	1.76		
May-05		63.19	54.85	59.02	0.86	8.81\%	10.49\%	0.0175	2.75	2.28		2.38	4.05	6.42		1.26	1.76		
Jun-05		67.19	62.16	64.68	0.90	9.30\%	10.91\%	0.0201	2.89	2.38		2.81	4.58	6.65		1.29	1.83		
Jul-05		71.47	65.95	68.71	0.90	9.30\%	10.81\%	0.0194	289	2.38		2.81	4.58	6.65		1.29	1.83		1.01
Aug-05		78.24	69.43	73.84	0.90	9.30\%	10.71\%	0.0192	289	2.38		2.81	4.58	6.65		1.29	1.83		1.01
Sep-05	0.0069	88.77	76.00	82.39	0.90	9.71\%	10.98\%	0.0197	2.74	2.12		2.79	4.69	6.08		1.17	1.78		0.97
Oct-05	0.0062	89.56	71.12	80.34	0.90	9.71\%	11.01\%	0.0198	2.74	2.12		2.79	4.69	6.08		1.17	1.78		0.97
Nov-05	0.0066	81.35	73.75	77.55	0.90	11.44\%	12.81\%	0.0242	2.74	2.12		2.79	4.69	6.08		1.17	1.78		0.97
Dec-05	0.0067	84.77	74.43	79.60	0.90	11.74\%	13.05\%	0.0236	2.75	2.14		2.79	4.43	6.25		1.21	1.81		0.96
Jan-06	0.0056	85.70	75.77	80.74	0.90	11.71\%	13.03\%	0.0224	2.75	2.14		2.79	4.43	6.25		1.21	1.81		0.96
Feb-06		82.35	71.26	76.81	0.90	11.38\%	1276\%	0.0436	2.75	2.14			4.43			1.21			0.96
Mar-06		75.45	67.37	71.41	0.90	11.38\%	1287\%	0.0448	2.75	2.15			4.28			1.22			0.95
Apr-06		81.90	68.43	75.17	0.90	11.57\%	12.98\%	0.0324	2.75	2.15			4.28			1.22	1.75		0.95
May-06	0.0076	82.08	67.48	74.78	0.94	11.16\%	12.64\%	0.0226	2.88	2.19		2.53	4.01			1.27	1.82		0.98
Jun-06	0.0079	81.00	67.68	74.34	- 0.94	11.16\%	12.65\%	0.0236	2.88	2.19		2.53	4.01			1.27	1.82		0.98
Jul-06	0.0080	89.00	75.68	82.34	- 0.94	13.26\%	14.63\%	0.0316	2.84	2.34		3.06	4.27			1.37	1.89		1.03
Aug-06	0.0077	91.02	84.85	87.94	40.94	11.59\%	12.85\%	0.0278	2.84	2.34		3.06	4.27			1.37	1.89		1.03
Sep-06	0.0080	87.00	78.06	82.53	30.94	11.59\%	12.93\%	0.0291	2.84	2.33		3.06	4.27				1.89		1.03
Oct-06	0.0082	86.88	77.48	82.18	- 0.94	11.16\%	12.50\%	0.0250	2.92	2.55		3.15	4.92			1.44	1.89		1.08
Nov-06	0.0077	87.30	79.78	83.54	40.94	11.52\%	12.85\%	0.0275	3.07	2.62		3.33	5.25			1.44			1:14
Dec-06	0.0084	89.56	82.45	86.01	10.94	11.59\%	12.88\%	0.0277	3.05	2.61		3.33	5.28			1.43			1.14
Jan-07	0.0074	82.81	75.96	79.39	0.94	11.82\%	13.22\%	0.0240	3.18	2.59		3.40	5.29			1.31	2.06		1.13
Feb-07	0.0073	86.32	79.33	82.83	30.94	11.82\%	13.16\%	0.0257	3.16	2.56		3.40	5.11			1.36			1.18
Mar-07	0.0075	91.15	81.65	86.40	- 0.94	11.18\%	12.46\%	0.0262	3.41	2.84		4.00	6.35			1.50			1.41
Apr-07	0.0073	50.00	44.61	47.30	- 0.49	11.18\%	12.40\%	0.0260	3.41	2.84		4.00	6.35			1.50			1.41
May-07	0.0068	54.32	48.16	51.24	40.49	9.25\%	10.35\%	0.0238	3.19	2.70		4.10	6.13				1.90		1.23

	NuI	OKE	PGL	PNY	SEN	SJ	SWX	UGI	WGL	NFG	STR	Mkt Cap	Ave, DCF
Month Ending													
Jun-04		2.40	1.60	1.60					1.40	2.00	3.10	25.25	10.36\%
Jul-04		2.50	1.60	1.60			0.83		1.40	2.00	3.40	29.58	10.11\%
Aug-04		2.50	1.60	1.70			0.83		1.40	2.00	3.40	31.13	10.08\%
Sep-04		2.50	1.60	1.70			0.83		1.40	2.30	3.40	27.83	9.76\%
Oct-04		2.80	1.70	1.80			0.90		1.50	2.30	4.00	27.50	9.74\%
Nov-04		2.80	1.70	1.80			0.90		1.50	2.30	4.00	27.50	9.62\%
Dec-04		2.80	1.70	1.80			0.90		1.50		4.00	26.08	9.70\%
Jan-05		2.90	1.66	1.79			0.90		1.47		4.20	29.62	9.90\%
Feb-05		2.80	1.65	1.77			0.90		1.44		4.10	30.41	9.79\%
Mar-05		3.00	1.63	1.78			0.90		1.49		4.40	31.23	9.79\%
Apr-05		3.13		1.90					1.60		5.50	33.04	9.88\%
May-05		3.13		1.90					1.60		5.50	33.04	9.81\%
Jun-05		3.43		1.88					1.60		6.64	35.98	9.76\%
Jul-05		3.43		1.88					1.60		6.64	36.99	9.66\%
Aug-05		3.43		1.88					1.60		6.64	36.99	9.69\%
Sep-05		2.71		1.79					1.53	2.57	6.78	37.72	9.80\%
Oct-05		2.71		1.79					1.53	257	6.78	37.72	9.90\%
Nov-05		2.71							1.53	2.57	6.78	35.93	10.49\%
Dec05		2.63	1.40						1.49	2.75	6.74	37.34	10.45\%
Jan-06		2.63	1.40	1.83					1.49	2.75	6.74	39.17	9.82\%
Feb-06									1.49		6.74	19.71	11.24\%
Mar-06									1.43		6.84	19.64	11.27\%
Apr-06		3.87	1.39			0.77			1.43		6.84	27.42	11.00\%
May-06		4.01	1.42	1.92		0.78			1.39	2.94	6.13	34.27	10.56\%
Jun-06		4.01		1.92		0.78			1.39	2.94	6.13	32.85	10.49\%
Jul-06		4.41		1.90					1.43	3.26	7.65	35.44	10.87\%
Aug-06		4.41		1.90					1.43	3.17	7.65	35.36	10.41\%
Sep-06		4.41		1.90					1.43	3.17	7.65	33.97	10.53\%
Oct-06		4.58				0.91			1.59	3.18	7.05	35.25	10.30\%
Nov-06		4.80				0.97			1.62	3.29	7.49	35.02	10.33\%
Dec-06		4.81				0.97			1.61	3.26	7.52	35.00	10.35\%
Jan-07		4.77		1.97		1.00			1.55	3.56	7.06	38.86	10.13\%
Feb-07		4.60		1.88		1.00			1.53	3.43	7.08	36.28	10.18\%
Mar-07		5.40				1.16			1.68	3.89	8.41	40.05	10.18\%
Apr-07		5.40				1.16			1.68	3.89	8.41	40.05	10.07\%
May-07		5.51				1.06			1.62	3.68	9.29	40.40	9.67\%

	AGL	AGL	AGL	AGL	AGL	AGL	AGL	ATO	ATO	ATO	ATO	ATO	ATO	ATO	Cascade	Cascade	Cascade Average	Cascade Dividend
Month Ending	High	Low	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High	Low	Average	Dividend
Jun-07	42.80	39.52	41.16	1.64	4.50\%	8.95\%	0.0071	32.60	29.11	30.86	1.28	5.10\%	9.77\%	0.0065				
Jul-07								30.84	28.01	29.43	1.28	6.17\%	11.12\%	0.0081				
Aug-07								28.90	23.87	26.39	1.28	6.17\%	11.70\%	0.0085				
Sep-07								28.73	27.28	28.01	1.28	6.17\%	11.37\%	0.0083				
Oct-07	41.16	36.65	38.91	1.64	4.97\%	9.71\%	0.0075	29.63	27.54	28.59	1.28	5.63\%	10.70\%	0.0073				
Nov-07	39.21	35.85	37.53	1.64	4.97\%	9.88\%	0.0076	28.18	26.01	27.10	1.30	5.63\%	11.07\%	0.0075				
Dec-07	38.65	35.42	37.04	1.64	4.97\%	9.95\%	0.0077	28.83	26.10	27.47	1.30	5.63\%	10.99\%	0.0075				
Jan-08	38.69	35.49	37.09	1.68	4.97\%	10.06\%	0.0078	28.85	26.00	27.43	1.30	5.63\%	11.00\%	0.0074				
Feb-08	39.13	34.63	36.88	1.68	5.25\%	10.39\%		29.29	25.84	27.57	1.30	5.22\%	10.54\%	0.0066				
Mar-08	35.62	33.45	34.54	1.68	5.25\%	10.74\%		26.52	25.00	25.76	1.30	5.22\%	10.92\%	0.0068				
Apr-08	36.05	33.73	34.89	1.68	5.25\%	10.69\%		28.27	25.55	26.91	1.30	5.22\%	10.67\%	0.0066				
May-08	36.50	34.06	35.28	1.68	5.25\%	10.63\%	0.0059	28.64	27.14	27.89	1.30	4.67\%	9.90\%	0.0054				
Jun-08	36.42	33.46	34.94	1.68	5.25\%	10.68\%	0.0061	27.84	26.31	27.08	1.30	4.67\%	10.06\%	0.0056				
Jui-08	35.44	32.66	34.05	1.68	5.25\%	10.82\%	0.0075	28.00	25.00	26.50	1.30	4.67\%	10.18\%	0.0066				
Aug-08	34.66	32.20	33.43	1.68	5.25\%	10.93\%	0.0075	27.80	25.61	26.71	1.30	5.00\%	10.48\%	0.0071				
Sep-08	35.01	30.60	32.81	1.68	4.83\%	10.60\%	0.0089	28.66	25.52	27.09	1.30	5.00\%	10.41\%	0.0091				
Oct08	32.07	24.02	28.05	1.68	4.83\%	11.60\%	0.0098	28.25	19.68	23.97	1.30	5.00\%	11.13\%	0.0089				
Nov-08	31.00	25.95	28.48	1.68	4.83\%	11.49\%	0.0100	25.23	22.26	23.75	1.30	5.00\%	11.18\%	0.0096				
Dec-08	31.39	26.90	29.15	1.68	4.25\%	10.72\%	0.0086	24.97	21.98	23.48	1.30	5.00\%	11.26\%	0.0083				
Jan-09	32.11	29.67	30.89	1.68	4.25\%	10.35\%	0.0084	25.22	23.20	24.21	1.32	5.00\%	11.96\%	0.0084				
Feb-09	34.93	27.13	31.03	1.72	4.25\%	10.47\%	0.0086	26.17	21.54	23.86	1.32	5.00\%	11.25\%	0.0086				
Mar-09	27.97	24.02	- 26.00	1.72	4.25\%	11.70\%	0.0099	23.94	20.07	22.01	1.32	5.00\%	11.79\%	0.0098				
Apr-09	31.50	26.00	28.75	1.72	4.25\%	10.97\%	0.0093	25.30	22.52	23.91	1.32	5.00\%	11.24\%	0.0094				
May-09	31.97	28.12	30.05	1.72	4.25\%	10.68\%	0.0119	26.43	23.44	24.94	1.32	5.00\%	10.97\%	0.0115				
Jun-09	32.38	29.15	- 30.77	1.72	4.25\%	10.52\%	0.0117	25.51	24.20	24.86	1.32	5.00\%	10.99\%	0.0115				
Jul-09	34.43	30.05	32.24	1.72	4.25\%	10.23\%	0.0098	27.39	24,41	25.90	1.32	5.00\%	10.75\%	0.0099				

	Keyspan	Keyspan	Keyspan	Keyspan	Keyspan	Keyspan	Keyspan	LG	LG	LG	LG	LG	LG	LG	NJR		
Month Ending	High	Low	Average	Dividend	Growt	DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High		
Jun-07																55.24	49.80
Jul-07																51.82	45.91
Aug-07																52.70	45.50
Sep-07																50.50	46.26
Oct-07																33.47	30.59
Nov-07																32.29	29.62
Dec-07																33.23	30.95
Jan-08																	
Feb-08																33.47	30.59
Mar-08																32.29	29.62
Apr-08																33.23	30.95
May-08																34.35	31.47
Jun-08																34.63	32.09
Jul-08																	
Aug-08																	
Sep-08																	
Oct-08																	
Nov-08																	
Dec-08																	
Jan-09																	
Feb-09																	
Mar-09																35.98	29.95
Apr-09																34.84	30.79
May-09																33.60	30.95
Jun-09																37.57	33.57
Jul-09																40.61	35.99

	NJR	NJR		NJR		NJR	NJR	GAS	GAS	GAS	GAS	GAS	GAS	GAS	N	N	N	N
Month Ending	Average	Dividend		Growth		DCF	DCF	High	Low	Average	Dividend	Growth	DCF	DCF	High	Low	verage	Dividend
Jun-07								47.47	42.17	44.82	1.86	4.60\%	9.24\%	0.0043				
Jut-07	48.87		1.52		5.67\%	9.17\%	0.0037											
Aug-07	49.10		1.52		5.67\%	9.16\%	0.0037											
Sep-07	48.38		1.52		5.67\%	9.21\%	0.0037											
Oct-07																		
Nov-07																		
Dec-07																		
Jan-08																		
Feb-08	32.03		1.07		5.50\%	9.25\%	0.0032	42.62	33.99	38.31	1.86	4.00\%	9.42\%	0.0040				
Mar-08	30.96		1.07		5.50\%	9.38\%	0.0032	34.29	32.35	33.32	1.86	4.00\%	10.25\%	0.0044				
Apr-08	32.09		1.12		5.50\%	9.43\%	0.0032	36.00	33.33	34.67	1.86	4.00\%	10.00\%	0.0042				
May-08	32.91		1.12		6.00\%	9.85\%	0.0029	41.60	35.08	38.84	1.86	4.20\%	9.55\%	0.0037				
Jun-08	33.36		1.12		6.00\%	9.80\%	0.0030	44.55	40.20	42.38	1.86	4.20\%	9.10\%	0.0036				
Jul-08								43.25	38.01	40.63	1.86	4.50\%	9.63\%	0.0046				
Aug-08								46.84	39.29	43.07	1.86	4.25\%	9.07\%	0.0051				
Sep-08								51.99	42.00	47.00	1.86	4.25\%	8.66\%	0.0063				
Oct-08								48.42	35.25	41.84	1.86	4.25\%	9.22\%	0.0070				
Nov-08								47.60	34.46	41.03	1.86	4.25\%	9.31\%	0.0065				
Dec-08								39.50	32.53	36.02	1.86	2.85\%	8.56\%	0.0044	11.97	10.45	11.21	0.92
Jan-09								35.89	31.95	33.92	1.86	2.85\%	8.92\%	0.0046	11.40	9.60	10.50	0.92
Feb-09								36.34	28.38	32.36	1.86	2.85\%	9.22\%	0.0050	10.88	8.47	9.68	0.92
Mar-09	32.97		1.24		7.00\%	11.30\%		34.46	27.50	30.98	1.86	6.00\%	12.86\%		10.32	7.79	9.06	0.92
Apr-09	32.81		1.24		7.00\%	11.32\%		34.00	30.78	32.39	1.86	6.00\%	12.55\%		11.20	9.64	10.42	0.92
May-09	32.28		1.24		7.00\%	11.39\%		34.03	30.28	32.16	1.86	4.30\%	10.80\%	0.0076	11.62	10.39	11.01	0.92
Jun-09	35.57		1.24		7.00\%	10.98\%		35.37	31.73	33.55	1.86	4.30\%	10.52\%	0.0074	11.82	10.79	11.31	0.92
Jul-09	38.30		1.24		7.00\%	10.69\%		37.42	32.83	35.13	1.85	4.33\%	10.27\%	0.0062	13.39	11.41	12.40	0.92

	NUI	OKE	OKE	OKE	OKE	OKE	OKE DCF	OKE DCF	Peoples High	Peoples Low	Peoples Average	Peoples Dividend	Peoples Growh	Peoples DCF	Peoples DCF	$\begin{aligned} & \text { PNY } \\ & \text { High } \end{aligned}$	
Month Ending Jun-07	DCF	High 54.82	Low 47.91	$\begin{aligned} & \text { Average } \\ & \mathbf{5 1 . 3 7} \end{aligned}$	1.36	8.80%	11.86%	0.0162									27.47
Jut-07		55.27	50.45	52.86	1.44	8.80\%	11.95\%	0.0168									
Aug-07		52.09	41.85	46.97	1.44	8.80\%	12.35\%	0.0173									
Sep.07		47.80	45.60	46.70	1.44	8.80\%	12.37\%	0.0174									
Oct-07		50.20	46.91	48.56	1.44	8.80\%	12.24\%	0.0153									
Nov-07		52.16	45.96	49.06	1.44	8.80\%	12.20\%	0.0153									
Dec. 07		48.11	43.71	45.91	1.44	8.80\%	12.44\%	0.0156									
Jan-08		49.38	43.38	46.38	1.52	8.80\%	12.60\%	0.0168									
Feb-08		49.69	45.76	47.73	1.52	9.07\%	12.77\%	0.0159									25.95
Mar-08		48.66	43.60	46.13	1.52	9.07\%	12.90\%	0.0160									27.32
Apr-08		49.63	44.68	47.16	1.52	9.07\%	12.82\%	0.0157									27.68
May-08		51.33	46.57	48.95	1.52	8.60\%	12.19\%	0.0124									27.42
Jun-08		50.69	47.15	48.92	1.52	8.60\%	12.20\%	0.0128									27.95
Jul-08		50.05	44.44	47.25	1.52	9.07\%	12.81\%	0.0163									27.06
Aug-08		46.59	41.80	44.20	1.52	9.07\%	13.07\%	0.0161									29.20
Sep-08		45.97	33.00	39.49	1.60	8.60\%	13.31\%	0.0155									35.29
Oct-08		34.98	21.56	28.27	1.60	9.07\%	15.71\%	0.0199									33.96
Nov-08		32.52	23.51	28.02	1.60	9.07\%	15.78\%	0.0182									34.19
Dec-08		30.04	24.19	27.12	1.60	9.07\%	16.00\%	0.0164									32.94
Jan-09		31.74	27.05	29.40	1.60	9.07\%	15.45\%	0.0144									31.98
Feb-09		29.72	20.92	25.32	1.60	9.07\%	16.51\%	0.0149									27.55
Mar-09		23.84	18.10	20.97	1.60	7.25\%	16.13\%	0.0163									26.74
Apr-09		27.01	21.91	24.46	1.60	7.25\%	14.83\%	0.0150									26.75
May-09		29.31	25.51	27.41	1.60	7.25\%	13.99\%	0.0195									24.86
Jun-09		30.50	27.93	29.22	1.60	7.25\%	13.57\%	0.0189									25.50
Julog		33.46	27.50	30.48	1.68	7.25\%	13.61\%	0.0175									25.18

Month Ending	$\begin{aligned} & \text { PNY } \\ & \text { Low } \end{aligned}$		PNY Average	PNY Dividend	PNY Growth	PNY DCF	PNY DCF	Sernco High	Semco Low	Semco Average	Semco Dividend	Semco Growth	Semco DCF	Semco DCF	SJI High		
Jun-07		24.37	25.92	0.96												39.28	34.53
Jul-07																36.48	32.37
Aug-07																35.98	31.20
Sep-07																36.41	31.83
Oct-07																37.78	33.80
Nov-07																38.50	35.32
Dec-07																38.03	34.73
Jan-08																38.41	33.82
Feb-08		24.28	25.12	1.00	5.17\%	9.65\%	0.0047									36.88	34.05
Mar-08		24.05	25.69	1.00	5.17\%	9.55\%	0.0046									35.71	31.90
Apr-08		26.03	26.86	1.04	5.54\%	9.91\%	0.0047									37.54	35.31
May-08		25.70	26.56	1.04	5.54\%	9.96\%	0.0041									39.25	36.36
Jun-08		25.23	26.59	1.04	5.54\%	9.95\%	0.0042									39.36	36.70
Jul-08		25.00	26.03	1.04	5.75\%	10.27\%	0.0054									38.90	36.00
Aug-08		26.19	27.70	1.04	5.75\%	9.99\%	0.0057									37.47	33.10
Sep-08		27.53	31.41	1.04	7.93\%	11.74\%	0.0099										
Oct-08		20.52	27.24	1.04	7.93\%	12.33\%	0.0107										
Nov-08		28.85	31.52	1.04	7.93\%	11.73\%	0.0109										
Dec-08		29.21	31.08	1.04	7.87\%	11.72\%	0.0080									40.58	33.58
Jan-09		24.77	28.38	1.04	7.13\%	11.32\%	0.0072									40.78	35.33
Feb-09		23.62	25.59	1.04	7.13\%	11.79\%	0.0080									38.68	34.66
Mar-09		20.68	23.71	1.08	7.00\%	12.22\%	0.0076									35.93	31.98
Apr-09		24.11	25.43	1.08	7.00\%	11.86\%	0.0074									36.20	33.70
May-09		21.65	23.26	1.08	6.77\%	12.09\%	0.0096									36.20	33.04
Jun-09		22.71	24.11	1.08	6.77\%	11.90\%	0.0094									35.13	33.23
Jul-09		22.50	23.84	1.08	6.93\%	12.12\%	0.0080									37.53	33.96

	S.J		SJI		S.J		S\\|		S.ll		SWX		swx		SWX		swx				swx	swx	UGI	UGI
Month Ending	Average		Dividend		Growth			DCF		DCF	High		Low		Average		Dvidend		Growth		DCF	DCF	High	Low
Jun-07		36.91		0.98		7.25\%		10.28\%		0.0027														
Jul-07		34.43		0.98		7.00\%		10.24\%		0.0030														
Aug-07		33.59		0.98		7.00\%		10.32\%		0.0031														
Sep-07		34.12		0.98		7.00\%		10.27\%		0.0030														
Oct-07		35.79		0.98		7.00\%		10.12\%		0.0029														
Nov-07		36.91		0.98		7.00\%		10.02\%		0.0029														
Dec-07		36.38		0.98		7.00\%		10.07\%		0.0029														
Jan-08		36.12		1.03		6.63\%		9.87\%		0.0028														
Feb-08		35.47		1.03		6.60\%		9.90\%		0.0027		29.96		25.48		27.72		0.86		5.67\%	9.16\%	0.0030		
Mar-08		33.81		1.03		6.60\%		10.07\%		0.0028		28.35		25.14		26.75		0.86		5.67\%	9.29\%	0.0030		
Apr-08		36.43		1.08		6.60\%		9.97\%		0.0027		30.05		27.90		28.98		0.86		5.67\%	9.01\%	0.0029		
May-08		37.81		1.08		6.60\%		9.84\%		0.0024		31.74		28.90		30.32		0.90		6.00\%	9.35\%	0.0025		
Jun-08		38.03		1.08		6.60\%		9.82\%		0.0024		31.35		28.98		30.17		0.90		6.00\%	9.37\%	0.0026		
Jul-08		37.45		1.08		7.00\%		10.29\%		0.0030		30.07		27.63		28.85		0.90		6.00\%	9.52\%	0.0032		
Aug-08		35.29		1.08		6.67\%		10.15\%		0.0029		30.69		27.56		29.13		0.90		6.00\%	9.49\%	0.0034		
Sep-08												33.29		28.27		30.78		0.90		6.00\%	9.30\%	0.0037		
Oct-08												30.78		21.46		26.12		0.90		6.00\%	9.90\%	0.0046		
Nov-08												26.84		21.11		23.98		0.90		6.00\%	10.25\%	0.0044		
Dec08		37.08		1.14		7.00\%		10.49\%		0.0040		25.80		22.74		24.27		0.90		6.00\%	10.20\%	0.0037		
Jan-09		38.06		1.14		7.50\%		10.92\%		0.0039		26.36		23.97		25.17		0.90		6.00\%	10.05\%	0.0037		
Feb-09		36.67		1.14		7.50\%		11.05\%		0.0046		26.38		19.35		22.87		0.95		6.00\%	10.72\%	0.0035		
Mar-09		33.96		1.19		7.00\%		11.00\%		0.0040		22.28		17.08		19.68		0.95		6.00\%	11.49\%	0.0036		
Apr-09		34.95		1.19		7.00\%		10.89\%		0.0039		21.61		19.77		20.69		0.95		6.00\%	11.22\%	0.0035		
May-09		34.62		1.19		9.67\%		13.69\%		0.0066		21.15		18.96		20.06		0.95		6.00\%	11.39\%	0.0051		
Jun-09		34.18		1.19		9.67\%		13.74\%		0.0066		22.32		21.05		21.69		0.95		6.00\%	10.97\%	0.0049		
Jul-09		35.75		1.19		9.67\%		13.56\%		0.0055		24.92		21.58		23.25		0.95		6.00\%	10.63\%	0.0042		

	UGI	UG!		UGI	UGI	WGL	WGL	WGL Average	WGL Dividend	WGL Growth	WGL DCF	WGL DCF	$N F G$ High	NFG	NFG Average	NFG Dividend	$\begin{aligned} & \text { NFG } \\ & \text { Growth } \end{aligned}$	$\begin{aligned} & \mathrm{NFG} \\ & \mathrm{DCF} \end{aligned}$
Month Ending	Average				DC	High 3591	Low 31.82	Average 33.87	Dividend 1.3	3.50%	7.98\%	0.0032	46.94	42.75	Average 44.85	1.24	4.57\%	7.65\%
Jul-07						33.44	29.79	31.62	1.37	3.33\%	8.13\%	0.0039	46.72	43.19	44.96	1.24	5.23\%	8.32\%
Aug-07						35.01	29.79	32.40	1.37	3.33\%	8.01\%	0.0038	46.02	40.95	43.49	1.24	5.23\%	8.42\%
Sep-07						34.60	31.55	33.08	1.37	3.33\%	7.92\%	0.0038	47.00	43.20	45.10	1.24	5.23\%	8.31\%
Oct-07													49.29	45.20	47.25	1.24	5.23\%	8.17\%
Nov-07													49.06	45.63	47.35	1.24	5.23\%	8.16\%
Dec07													50.29	46.56	48.43	1.24	5.23\%	8.10\%
Jan-08													46.90	38.04	42.47	1.24	5.23\%	8.50\%
Feb-08						33.38	31.11	32.25	1.37	4.00\%	8.74\%		48.70	41.56	45.13	1.24	3.65\%	6.68\%
Mar-08						33.49	30.26	31.88	1.37	4.00\%	8.79\%		48.78	44.27	46.53	1.24	3.65\%	6.59\%
Apr-08						33.94	31.84	32.89	1.44	5.50\%	10.45\%		53.35	47.00	50.18	1.24	3.65\%	6.37\%
May-08						35.69	33.51	34.60	1.44	5.50\%	10.20\%	0.0038						
Jun-08						36.22	34.17	35.20	1.44	5.50\%	10.12\%	0.0039						
Jul-08																		
Aug-08																		
Sep08																		
Oct-08							.											
Nov-08																		
Dec-08																		
Jan-09																		
Feb-09																		
Mar-09						34.32	28.89	31.61	1.47	4.00\%	9.19\%		32.75	26.67	29.71	1.30	5.00\%	9.92\%
Apr-09						33.29	30.21	31.75	1.47	4.00\%	9.16\%		34.17	29.83	32.00	1.30	5.00\%	9.56\%
May-09						31.70	28.59	30.15	1.47	4.00\%	9.44\%		34.34	30.56	32.45	1.34	5.00\%	9.64\%
Jun-09						32.60	29.91	31.26	1.47	4.00\%	9.25\%		37.61	33.09	35.35	1.34	5.00\%	9.25\%
Jul-09						33.79	30.37	32.08	1.47	4.00\%	9.11\%		41.10	33.77	37.44	1.34	8.50\%	12.65\%

	NFG	STR	STR	STR	STR	STR	STR	STR	AGL	ATO	CGC	EGN	EQT	KSE	LG	NJR	GAS	N	NWN
Month Ending	DCF	High	Low	Average	Dividend	Growth	DCF	DCF											
Jun-07	0.0070	55.84	51.49	53.66	0.49	9.25\%	10.30\%	0.0237	3.19	2.70		4.10	6.13				1.90		1.23
Jul-07	0.0094	58.75	49.50	54.13	0.49	8.50\%	9.54\%	0.0242		2.58		4.23	6.47			1.41			
Aug-07	0.0095	52.54	44.42	48.48	0.49	8.50\%	9.66\%	0.0245		2.58		4.23	6.47			1.41			
Sep-07	0.0094	53.27	48.52	50.90	0.49	8.50\%	9.60\%	0.0243		2.58		4.23	6.47			1.41			
Oct-07	0.0086	57.36	50.67	54.02	0.49	8.70\%	9.74\%	0.0250	2.86	2.51		4.66	6.58						1.29
Nov-07	0.0086	57.16	51.46	54.31	0.49	8.70\%	9.74\%	0.0250	2.86	2.51		4.66	6.58						1.29
Dec-07	0.0085	56.59	53.02	54.81	0.49	8.70\%	9.73\%	0.0250	2.86	2.51		4.66	6.58						1.29
Jan-08	0.0089	57.48	45.00	51.24	0.49	8.88\%	9.98\%	0.0242	2.82	2.46		4.45	6.98						1.26
Feb-08		58.00	49.42	53.71	0.49	9.00\%	10.05\%	0.0271		2.52		4.93	8.21			1.37	1.71		1.20
Mar-08		58.32	52.70	55.51	0.49	9.00\%	10.02\%	0.0270		2.52		4.93	8.21			1.37	1.71		1.20
Apr-08		65.03	56.17	60.60	0.49	9.00\%	9.93\%	0.0264		2.52		5.48	8.21			1.37	1.71		1.20
May-08		68.74	60.59	64.67	0.49	9.00\%	9.88\%	0.0263	2.57	2.50		5.48	8.21			1.36	1.78		1.22
Jun-08		71.64	63.42	67.53	0.49	9.00\%	9.84\%	0.0270	2.57	2.50		5.48	6.84			1.36	1.78		1.22
Jul-08		74.87	52.02	63.44	0.49	9.00\%	9.89\%	0.0241	2.57	2.39		4.26	6.84				1.78		1.19
Aug-08		54.64	46.91	50.78	0.49	9.00\%	10.12\%	0.0246	2.54	2.50		4.00	6.53				2.07		1.29
Sep-08		50.69	36.96	43.83	0.49	9.00\%	10.29\%	0.0216	2.40	2.50		2.78	4.54				2.09		1.36
Oct-08		40.35	20.66	30.51	0.49	9.00\%	10.86\%	0.0236	2.33	2.20		2.41	4.06				2.09		1.35
Nov-08		35.26	22.59	28.93	0.49	9.00\%	10.96\%	0.0230	2.31	2.27		2.21	4.36				1.84		1.32
Dec08		34.10	24.26	29.18	0.49	9.00\%	10.95\%	0.0214	2.40	2.20		2.12	4.30				1.52	3.01	1.12
Jan-09		37.70	30.00	33.85	0.49	9.00\%	10.68\%	0.0212	2.58	2.38		2.30	5.05				1.63	2.95	1.20
Feb-09		37.73	28.14	32.94	0.50	9.00\%	10.75\%	0.0207	2.13	200		1.92	4.02				1.42	2.40	1.08
Mar-09		33.55	24.85	29.20	0.50	8.00\%	9.96\%	0.0199	2.46	2.43		2.61	4.73					3.15	1.14
Apr-09		32.69	28.51	30.60	0.50	8.00\%	9.87\%	0.0198	2.46	2.43		2.61	4.73					3.15	1.14
May-09		36.93	28.98	32.96	0.50	7.00\%	8.72\%		2.44	2.30			4.46				1.54	3.22	1.15
Jun-09		36.52	30.46	33.49	0.50	7.00\%	8.69\%		2.44	2.30			4.46				1.54	3.22	1.15
Jul-09	0.0150	35.40	27.98	31.69	0.50	1.00\%	2.69\%		2.60	2.50			5.02				1.65	3.54	1.18

	NUI	OKE	PGL	PNY	SEN	SJI	swx	UGI	WGL	NFG	STR	Mkt Cap	Ave. DCF
Month Ending													
Jun-07		5.51				1.06			1.62	3.68	9.29	40.40	9.70\%
Jul-07		4.96				1.05			1.70	3.98	8.95	35.33	10.06\%
Aug-07		4.96				1.05			1.70	3.98	8.95	35.33	10.21\%
Sep-07		4.96				1.05			1.70	3.98	8.95	35.33	10.14\%
Oot-07		4.64				1.07				3.89	9.50	37.00	10.80\%
Nov-07		4.64				1.07				3.89	9.50	37.00	10.83\%
Dec.07		4.64				1.07				3.89	9.50	37.00	10.84\%
Jan-08		4.87				1.04				3.84	8.88	36.58	11.13\%
Feb-08		4.98		1.94		1.10	1.32				10.80	40.07	11.39\%
Mar-08		4.98		1.94		1.10	1.32				10.80	40.07	11.47\%
Apr-08		4.98		1.94		1.10	1.32				10.80	40.63	11.67\%
May-08		4.69		1.90		1.11	1.23		1.70		12.27	46.03	10.69\%
Jun-08		4.69		1.90		1.11	1.23		1.70		12.27	44.66	10.62\%
Jut-08		4.69		1.95		1.07	1.23				8.99	36.95	10.86\%
Aug-08		4.57		2.12		1.06	1.32				9.00	36.99	11.23\%
Sep-08		3.33		2.41			1.14				5.98	28.52	11.30\%
Oct-08		3.49		2.39			1.29				5.99	27.58	12.13\%
Nov-08		3.07		2.46			1.14				5.58	26.57	12.21\%
Dec-08		3.05		2.02		1.13	1.08				5.82	29.77	11.62\%
Jan-09		2.93		2.00		1.13	1.15				6.25	31.56	11.31\%
Feb-09		2.35		1.77		1.07	0.86				5.00	26.03	11.55\%
Mar-09		2.93		1.82		1.05	0.91				5.82	29.04	11.98\%
Apr-09		2.93		1.82		1.05	0.91				5.82	29.04	11.46\%
May-09		3.06		1.75		1.06	0.99					21.97	12.25\%
Jun-09		3.06		1.75		1.06	0.99					21.97	12.08\%
Jul-09		3.49		1.80		1.10	1.08			3.23		27.18	11.66\%

Line No.	Date	DCF	Bond Yleld	Risk Premlum	y	x x	$\mathrm{X} \quad \mathrm{X}$	x		
1	Jun-88	0.1154	0.0703	0.0451	Risk Premium	Lag Risk Premium	A Bond Yleld	Lag Yeld	Adjusted Risk Premium	Adjusted Bond Yield
2	Jut-98	0.1186	0.0703	0.0483	0.0483	0.0451	0.0703	0.0703	0.0120	0.0135
3	Aug-98	0.1234	0.0700	0.0534	0.0534	0.0483	0.0700	0.0703	0.0143	0.0332
4	Sep-98	0.1273	0.0683	0.0580	0.0580	0.0534	0.0693	0.0700	0.0150	0.0128
5	Oct-98	0.1250	0.0696	0.0564	0.0564	0.0580	0.0696	0.0693	0.0095	0.0137
6	Nov-98	0.1211	0.0703	0.0508	0.0508	0.0564	0.0703	0.0696	0.0053	0.0141
7	Dec-98	0.1185	0.0691	0.0494	0.0494	0.0508	0.0891	0.0703	0.0083	0.0123
8	Jant-99	0.1195	0.0697	0.0498	0.0498	0.0494	0.0697	0.0691	0.0100	0.0139
9	Feb-99	0.1243	0.0709	0.0534	0.0534	0.0498	0.0709	0.0697	0.0132	0.0146
10	Mar-99	0.1257	0.0726	0.0531	0.0531	0.0534	0.0726	0.0709	0.0100	0.0154
11	Apr-99	0.1260	0.0722	0.0538	0.0538	0.0531	0.0722	0.0726	0.0110	0.0136
12	May-99	0.1221	0.0747	0.0474	0.0474	0.0538	0.0747	0.0722	0.0040	0.0164
13	Jun-99	0.1208	0.0774	0.0434	0.0434	0.0474	0.0774	0.0747	0.0051	0.0171
14	Jul-99	0.1222	0.0771	0.0451	0.0451	0.0434	0.0771	0.0774	0.0101	0.0146
15	Aug-99	0.1220	0.0791	0.0429	0.0429	0.0451	0.0791	0.0771	0.0065	0.0169
16	Sep-99	0.1226	0.0793	0.0433	0.0433	0.0429	0.0793	0.0791	0.0086	0.0154
17	Oct-99	0.1233	0.0806	0.0427	0.0427	0.0433	0.0806	0.0793	0.0077	0.0166
18	Nov-99	0.1240	0.0794	0.0446	0.0446	0.0427	0.0794	0.0806	0.0101	0.0143
19	Dec-99	0.1280	0.0814	0.0466	0.0465	0.0446	0.0814	0.0794	0.0106	0.0173
20	Jan-00	0.1301	0.0835	0.0466	0.0465	0.0466	0.0835	0.0814	0.0090	0.0178
21	Feb-00	0.1344	0.0825	0.0519	0.0519	0.0466	0.0825	0.0835	0.0143	0.0151
22	Mar-00	0.1344	0.0828	0.0516	0.0516	0.0519	0.0828	0.0825	0.0098	0.0162
23	Apr-00	0.1316	0.0829	0.0487	0.0487	0.0516	0.0829	0.0828	0.0070	0.0161
24	May- 00	0.1292	. 0.0870	0.0422	0.0422	0.0487	0.0870	0.0829	0.0028	0.0201
25	Jun 00	0.1295	-0.0836	0.0459	0.0459	0.0422	0.0836	0.0870	0.0119	0.0134
26	Jul.00	0.1317	0.0825	0.0492	0.0492	0.0459	0.0825	0.0836	0.0121	0.0150
27	Aug-00	0.1290	0.0813	0.0477	0.0477	0.0492	0.0813	0.0825	0.0080	0.0147
28	Sep-00	0.1257	0.0823	0.0434	0.0434	0.0477	0.0823	0.0813	0.0049	0.0167
29	OCL-00	0.1260	0.0814	0.0446	0.0446	0.0434	0.0814	0.0823	0.0095	0.0150
30	Nov-00	0.1251	0.0811	0.0440	0.0440	0.0446	0.0811	0.0814	0.0080	0.0154
31	Dec-00	0.1239	-0.0784	0.0455	0.0455	0.0440	0.0784	0.0811	0.0099	0.0129
32	Jan-01	0.1261	- 0.0780	0.0481	0.0481	0.0455	0.0780	0.0784	0.0114	0.0147
33	Feb-01	0.1261	0.0774	0.0487	0.0487	0.0481	0.0774	0.0780	0.0098	0.0144
34	Mar-01	0.1275	50.0768	0.0507	0.0507	0.0487	0.0768	0.0774	0.0114	0.0143
35	Apr-01	0.1227	- 0.0784	0.0433	0.0433	0.0507	0.0794	0.0768	0.0023	0.0174
36	May-01	0.1302	20.0799	0.0503	0.0503	0.0433	0.0799	0.0794	0.0154	0.0158
37	Jun-01	0.1304	- 0.0785	0.0519	0.0519	0.0503	0.0785	0.0799	0.0113	0.0140
38	Jul-01	0.4338	- 0.0778	0.0560	0.0560	0.0519	- 0.0778	0.0785	0.0141	0.0144
39	Aug-01	0.1327	$7 \quad 0.0759$	0.0568	0.0568	0.0550	- 0.0759	0.0778	0.0116	0.0131
40	Sep-01	0.1268	$8 \quad 0.0775$	0.0493	0.0493	0.0568	0.0775	0.0759	0.0034	0.0162
41	Oct-01	0.1268	80.0763	0.0505	0.0505	0.0493	-0.0763	0.0775	0.0108	0.0137
42	Nov-01	0.1268	80.0757	0.0511	0.0511	0.0505	-0.0757	0.0763	0.0103	0.0141
43	Dec-01	0.1254	$4 \quad 0.0783$	0.0471	0.0471	0.0511	10.0783	0.0757	0.0058	0.0172
44	Jan-02	0.1236	$6 \quad 0.0766$	0.0470	0.0470	0.0471	0.0766	0.0783	0.0090	0.0134
45	Feb-02	0.1241	10.0754	0.0487	0.0487	0.0470	- 0.0754	0.0766	- 0.0108	0.0136
46	Mar-02	0.1189	- 0.0776	0.0413	0.0413	0.0487	70.0776	0.0754	0.0020	0.0167
47	Apr-02	0.1159	- 0.0757	0.0402	0.0402	0.0413	- 0.0757	0.0776	0.0069	0.0131
48	May-02	0.1462	20.0752	0.0410	0.0410	0.0402	20.0752	0.0757	0.0086	0.0141
49	Junt-02	0.1170	$0 \quad 0.0741$	0.0429	0.0429	0.0410	- 0.0741	0.0752	20.0098	0.0134
50	Jut-02	0.1242	20.0731	0.0511	0.0511	0.0429	- 0.0731	0.0741	10.0164	0.0133
51	Aug-02	0.1234	$4 \quad 0.0717$	0.0517	0.0517	0.0511	10.0717	0.0731	10.0105	0.0127
52	Sep-02	0.1260	00.0708	0.0552	0.0552	0.0517	$7 \quad 0.0708$	0.0717	- 0.0134	0.0129
53	Oct.02	0.1250	00.0723	0.0527	0.0527	0.0552	20.0723	0.0708	80.0082	0.0151
54	Nov-02	0.1221	10.0714	0.0507	0,0507	0.0527	$7 \quad 0.0714$	0.0723	-0.0081	0.0130
55	Dec-02	0.1216	$6 \quad 0.0707$	0.0509	0.0509	0.0507	$7 \quad 0.0707$	0.0714	- 0.0099	0.0131
56	Jan-03	0.1219	$9 \quad 0.0706$	0,0513	0.0513	0.0509	-0.0706	0.0707	70.0102	0.0135
57	Feb-03	0.1232	20.0693	0.0539	0.0539	0.0513	30.0693	0.0706	. 0.0125	0.0123
58	Mar-03	0.1195	50.0679	0.0516	0.0516	0.0539	- 0.0578	0.0693	30.0081	0.0120
59	Apr-03	0.1162	20.0664	0.0498	0.0498	- 0.0516	60.0664	406679	- 0.0081	0.0116
60	May-03	0.1126	$6 \quad 0.0636$	0.0490	0.0490	0.0498	80.0636	. 0.0664	40.0089	0.0400
61	Junt03	0.1114	$4 \quad 0.0621$	0.0493	0.0493	0.0490	0.0621	10.0636	60.0097	0.0108
62	Jul-03	0.1127	7 00657	0.0470	0.0470	0.0493	30.0657	-0.0621	10.0072	0.0166
63	Aug-03	0.1139	- 0.0578	0.0461	0.0461	0.0470	0.0678	- 0.0657	70.0081	0.0148

64	Sep-03	0.1427	0.0856	0.0471	0.0471	0.0461	0.0656	0.0678	0.0099	0.0109
65	$\mathrm{Oct-03}$	0.1123	0.0643	0.0480	0.0480	0.0471	0.0643	0.0656	0.0400	0.0113
66	Nov-03	0.1089	0.0637	0.0452	0.0452	0.0480	0.0637	0.0643	0.0065	0.0118
67	Dec-03	0.1071	0.0627	0.0444	0.0444	0.0452	0.0627	0.0637	0.0079	0.0143
68	Jan-04	0.1059	0.0615	0.0444	0.0444	0.0444	0.0615	0.0627	0.0086	0.0109
69	Feb-04	0.1039	0.0615	0.0424	0.0424	0.0444	0.0615	0.0615	0.0066	0.0119
70	Mar.04	0.1037	0.0597	0.0440	0.0440	0.0424	0.0597	0.0615	0.0098	0.0101
71	Apr-04	0.1041	0.0635	0.0406	0.0406	0.0440	0.0635	0.0597	0.0051	0.0453
72	May-04	0.1045	0.0662	0.0383	0.0383	0.0406	0.0662	0.0635	0.0055	0.0149
73	Jun-04	0.1036	0.0646	0.0390	0.0390	0.0383	0.0646	0.0662	0.0081	0.0112
74	Jul-04	0.1011	0.0627	0.0384	0.0384	0.0390	0.0627	0.0646	0.0068	0.0105
75	Aug-04	0.1008	0.0614	0.0394	0.0394	0.0384	0.0614	0.0627	0.0085	0.0108
76	Sep-04	0.0976	0.0598	0.0378	0.0378	0.0394	0.0598	0.0614	0.0060	0.0402
77	Oct-04	0.0974	0.0594	0.0380	0.0380	0.0378	0.0594	0.0598	0.0075	0.0111
78	Nov-04	0.0962	0.0597	0.0365	0.0365	0.0380	0.0597	0.0594	0.0058	0.0117
79	Dec-04	0.0970	0.0592	0.0378	0.0378	0.0365	0.0592	0.0597	0.0083	0.0410
80	Jan-05	0.0990	0.0578	0.0412	0.0412	0.0378	0.0578	0.0592	0.0107	0.0100
81	Feb-05	0.0979	0.0561	0.0418	0.0418	0.0412	0.0561	0.0578	0.0085	0.0094
82	Mar-05	0.0979	0.0583	0.0396	0.0396	0.0418	0.0583	0.0561	0.0058	0.0130
83	App-05	0.0988	0.0564	0.0424	0.0424	0.0396	0.0564	0.0583	0.0104	0.0093
84	May-05	0.0981	0.0553	0.0427	0.0427	0.0424	0.0553	0.0564	0.0085	0.0098
85	Jun-05	0.0976	0.0540	0.0438	0.0436	0.0427	0.0540	0.0553	0.0091	0.0093
86	Jut-05	0.0966	0.0551	0.0415	0.0415	0.0436	0.0551	0.0540	0.0063	0.0145
87	Aug-05	0.0969	0.0550	0.0419	0.0419	0.0415	0.0550	0.0551	0.0084	0.0105
88	Sep-05	0.0980	0.0552	0.0428	0.0428	0.0419	0.0552	0.0550	0.0090	0.0108
89	Oct-05	0.0990	0.0579	0.0411	0.0411	0.0428	0.0579	0.0552	0.0065	0.0133
90	Nov-05	0.1049	0.0588	0.0461	0.0461	0.0411	0.0588	0.0579	0.0129	0.0121
91	Dec. 05	0.1045	0.0580	0.0965	0.0465	0.0461	0.0580	0.0588	0.0093	0.0105
92	Jan-06	0.0982	0.0575	0.0407	0.0407	0.0465	0.0575	0.0580	0.0031	0.0107
93	Feb-06	0.1124	0.0582	0.0542	0.0542	0.0407	0.0582	0.0575	0.0214	0.0118
94	Mar-06	0.1127	0.0598	0.0529	0.0529	0.0542	0.0598	0.0582	0.0092	0.0128
95	Apr-06	0.1100	0.0629	0.0479	0.0471	0.0529	0.0629	0.0598	0.0044	0.0146
95	May-06	0.1056	0.0642	0.0414	0.0414	0.0471	0.0642	0.0629	0.0034	0.0134
97	Jun-06	0.1049	0.0640	0.0409	0.0409	0.0414	0.0640	0.0642	0.0075	0.0122
98	Jul-06	0.1087	0.0637	0.0450	0.0450	0.0409	0.0637	0.0640	0.0120	0.0120
99	Aug-06	0.6041	0.0620	0.0421	0.0421	0.0450	0.0620	0.0637	0.0058	0.0106
103	Sep. 66	0.1053	0.0600	0.0453	0.0453	0.0421	0.0600	0.0620	0.0113	0.0099
101	Oct-06	0.1030	0.0598	0.0432	0.0432	0.0453	0.0598	0.0600	0.0066	0.0114
102	Nov-06	0.1033	0.0580	0.0453	0.0453	0.0432	0.0580	0.0598	0.0104	0.0097
103	Dec-06	0.1035	0.0581	0.0454	0.0454	0.0453	0.0581	0.0580	0.0088	0.0113
104	Jan-07	0.1013	0.0596	0.0417	0.0417	0.0454	0.0598	0.0581	0.0051	0.0127
105	Feb-07	0.1018	0.0590	0.0428	0.0428	0.0417	0.0590	0.0596	0.0091	0.0109
106	Mar-07	0.1018	0.0585	0.0433	0.0433	0.0428	0.0585	0.0590	0.0087	0.0109
107	Apr-07	0.1007	0.0597	0.0410	0.0410	0.0433	0.0597	0.0585	0.0061	0.0125
108	May-07	0.0967	0.0599	0.0368	0.0368	0.0410	0.0599	0.0597	0.0037	0.0117
109	Jun-07	0.0970	0.0630	0.0340	0.0340	0.0368	0.0630	0.0599	0.0043	0.0146
110	Jut-07	0.1006	0.0625	0.0381	0.0381	0.0340	0.0625	0.0639	0.0107	0.0116
111	Aug-07	0.1021	0.0624	0.0397	0.0397	0.0381	0.0624	0.0625	0.0089	0.0119
112	Sep-07	0.1014	0.0618	0.0396	0.0396	0.0397	0.0618	0.0624	0.0076	0.0114
113	Oct-07	0.1080	0.0611	0.0469	0.0469	0.0396	0.0611	0.0518	0.0149	0.0112
114	Nov-07	0.1083	0.0597	0.0486	0.0485	0.0469	0.0597	0.0511	0.0107	0.0104
115	Dec-07	0.1084	0.066	0.0468	0.0468	0.0486	0.0616	0.0597	0.0076	0.0134
116	Jan-08	0.1113	0.0602	0.0511	0.0511	0.0468	0.0602	0.0616	0.0133	0.0105
117	Feb-08	0.1139	0.0621	0.0518	0.0518	0.0511	0.0621	0.0602	0.0106	0.0135
118	Mar08	0.1147	0.0621	0.0526	0.0526	0.0518	0.0621	0.0621	0.0108	0.0120
119	Apr-08	0.1167	0.0629	0.0538	0.0538	0.0526	0.0629	0.0621	0.0113	0.0128
120	May-08	0.1069	0.0627	0.0442	0.0442	0.0538	0.0627	0.0629	0.0008	0.0119
121	Jun-08	0.1062	0.0638	0.0424	0.0424	0.0442	0.0638	0.0627	0.0067	0.0131
122	Jul-08	0.1086	0.0640	0.0446	0.0446	0.0424	0.0640	0.0638	0.0104	0.0125
123	Aug-08	0.1123	0.0637	0.0486	0.0486	0.0446	0.0637	0.0540	0.0125	0.0120
124	Sep-08	0.1130	0.0649	0.0681	0.0481	0.0486	0.0649	0.0637	0.0089	0.0135
125	Oct-08	0.1213	0.0756	0.0457	0.0457	0.0481	0.0756	0.0849	0.0069	0.0232
126	Nov-08	0.1227	0.0760	0.0461	0.0461	0.0457	0.0760	0.0756	0.0092	0.0150
127	Dec-08	0.1162	0.0654	0.0508	0.0508	0.0461	0.0654	0.0760	0.0136	0.0040

128	Jan-09	0.1131	0.0639	0.0482	0.0492	0.0508	0.0639	0.0654	0.0082	0.0111
129	Feb-09	0.11155	0.0630	0.0524	0.0524	0.0492	0.0630	0.0639	0.0127	0.0115
130	Mar-09	0.1198	0.0642	0.0556	0.0556	0.0524	0.0642	0.0530	0.0133	0.0133
131	Apr-09	0.1146	0.0648	0.0498	0.0498	0.0556	0.0648	0.0642	0.0130	
132	May-09	0.1225	0.0649	0.0576	0.0576	0.0498	0.0649	0.0648	0.0049	0.0175
133	Jun-09	0.1208	0.0620	0.0588	0.0588	0.0576	0.0620	0.0649	0.0126	
134	Jut-09	0.1166	0.0597	0.0569	0.0569	0.0588	0.0597	0.0620	0.0096	

```
Regression Analysis - Linear model: Y = a + b*X
```

Dependent variable: Risk Premium
Independent variable: Bond Yield
Parameter
Pstimate
Intercept

Source	Sum of Squares	Df	Mean Square	F-Ratio	P -Value
Model	0.000241579	1.	0.000241579	9.26	0.0028
Residual	0.00344483	1.32	0.0000260972		
Total (Corr.)	0.00368641	133			

Correlation Coefficient $=0.255992$
R-squared $=6.55321$ percent
R-squared (adjusted for d.f.) $=5.84528$ percent
Standard Error of Est. $=0.00510855$
Mean absolute error $=0.00417017$
Durbin-Watson statistic $=0.482343$ ($\mathrm{P}=0.0000$)
Lag 1 residual autocorrelation $=0.738621$

Dependent variable: RiskPremium_1

	Estimate	Standard	T	
Parameter	Error	Statistic	P-Value	
CONSTANT	0.00674849	0.00282192	2.39145	0.0182
LagRiskPremium	0.80731.	0.0529898	15.2352	0.0000
ABondYield	-0.60463	0.133268	-4.53695	0.0000
LagYield	0.637726	0.132834	4.80092	0.0000

Analysis of Variance

| Source | Sum of Squares | Df | Mean Square | F-Ratio | P-Value |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: |
| Model | 0.00250579 | 3 | 0.000835264 | 91.43 | 0.0000 |
| Residual | 0.00117847 | 129 | 0.0000091354 | | |
| | 0.00368426 | 132 | | | |

R-squared $=68.0135$ percent
R-squared (adjusted for d.f.) $=67.2696$ percent
Standard Error of Est. $=0.00302248$
Mean absolute error $=0.00218227$
Durbin-Watson statistic $=1.88326(P=0.2514)$
Lag 1 residual autocorrelation $=0.054764$

Dependent variable: AdjustedRiskPremium Independent variable: AdjustedBondYield				
		Standard	T	
Parameter	Estimate	Error	Statistic	p-value
Intercept	0.0130414	0.00150143	8.68599	0.0000
Slope	-0.306783	0.113389	-2.70559	0.0077

Analysis of Variance

Source	Sum of Squares		Mean Square	F-Ratio	P-Value
Model	0.0000739149		0.0000739149	7.32	0.0077
Residual	0.00132276	131	0.0000100974		
Total (Corr.)	0.00139667	132			
Correlation Coefficient $=-0.230048$					
R -squared $=5.29222$ percent					
R-squared (adjusted for d.f.) $=4.56926$ percent					
Standard Error of Est. $=0.00317764$					
Mean absolute error $=0.00242696$					
Durbin-Watson statistic $=1.82467$ ($\mathrm{P}=0.1569$)					
Lag 1 residual autocorrelation $=0.0838633$					

Schadule 4
Comparative Returns on S\&P 500 Stock Index and Moody's A-Rated Utility Bonds 1937-2009

Line			Stock		A-rated	
		S\&P 500	viden	Stoc	Bond	
No. Year		Stock Price	Yield	Return	Price	Return
1	2009	865.58	0.0310		\$88.43	
2	2008	1,380.33	0.0211	-35.19\%	\$72.25	4\%
3	2007	1,424.16	0.0181	-1.27\%	\$72.91	4.59\%
4	2006	1,278.72	0.0183	13.20\%	\$75.25	2.20\%
5	2005	1,181,41	0.0177	10.01\%	\$74.91	5.80\%
6	2004	1,132.52	0.0162	5.94\%	\$70.87	11.34\%
7	2003	895,84	0.0180	28.22\%	\$62.26	20.27\%
8	2002	1,140.21	0.0138	-20.05\%	\$57.44	15.35\%
9	2001	1,335.63	0.0116	-13.47\%	\$56.40	8,93\%
10	2000	1,425.59	0.0118	-5.13\%	\$52.60	14.82\%
11	1999	1,248.77	0.0130	15.46\%	\$63.03	-10.20\%
12	1898	963.35	0.0162	31.25\%	\$62.43	7.38\%
13	1997	766.22	0.0195	27.68\%	\$56.62	17.32\%
14	1996	814.42	0.0231	27.02\%	\$60.91	-0.48\%
15	1995	485.25	0,0287	34.93\%	\$50.22	29.26\%
16	1994	472.99	0.0269	1.05\%	\$60.01	-9.65\%
17	1993	435.23	0.0288	11.56\%	\$53.13	20.48\%
18	1992	416.08	0.0290	7.50\%	\$49.56	15.27\%
19	1991	325.49	0.0382	31.65\%	\$44.84	19.44\%
20	1980	339.97	0.0341	-0.85\%	\$45.60	7.11\%
21	1988	285.41	0.0364	22.76\%	\$43.06	15.18\%
22	1988	250.48	0.0366	17.61\%	\$40.10	17.36\%
23	1987	264.51	0.0317	-2.13\%	\$48.82	-9.84\%
24	1986	208.19	0.0390	30.95\%	\$39.98	32.36\%
25	1985	171.61	0.0451	25.83\%	\$32.57	35.05\%
26	1984	168.39	0.0427	7.41\%	\$31.48	16.12\%
27	1983	144.27	0.0479	20.12\%	\$29.41	20.65\%
28	1982	117.28	0.0595	28.96\%	\$24.48	36.48\%
29	1981	132.97	0.0480	-7.00\%	\$20.37	-3.01\%
30	1980	110.87	0.0541	25.34\%	\$34.69	-3.81\%
31	1979	99.71	0.0533	16.52\%	\$43.91	-11.89\%
32	1978	90.25	0.0532	15.80\%	\$49.09	-2.40\%
33	1977	103,80	0.0399	-9.06\%	\$50.95	4.20\%
34	1976	98.86	0.0380	10.96\%	\$43.91	25.13\%
35	1975	72.56	0.0507	38.56\%	\$41.76	14.75\%
36	1974	96.11	0.0364	-20.86\%	\$52.54	-12.91\%
37	1973	118.40	0.0269	-16.14\%	\$58.51	-3.37\%
38	1972	103.30	0.0296	17.58\%	\$56.47	10.69\%
39	1971	93.49	0.0332	13.81\%	\$53.93	12.13\%
40	1970	90.31	0.0356	7.08\%	\$50.46	14.81\%
41	1969	102.00	0.0306	-8.40\%	\$62.43	-12.76\%
42	1968	95.04	0.0313	10.45\%	\$66.97	-0.81\%
43	1967	84.45	0.0351	16.05\%	\$78.69	-9.81\%
44	1966	93.32	0.0302	-6.48\%	\$86.57	-4.48\%
45	1965	86.12	0.0299	11.35\%	\$91.40	-0.91\%
46	1984	76.45	0.0305	15.70\%	\$92.01	3.68\%
47	1983	65.06	0.0331	20.82\%	\$93.56	2.61\%
48	1962	69.07	0.0297	-2.84\%	\$89,60	8.89\%
49	1981	59.72	0.0328	18.94\%	\$89.74	4.29\%
50	1980	58.03	0.0327	6.18\%	\$84.36	11.13\%
51	1959	55.62	0.0324	7.57\%	\$91.55	-3.49\%
52	1958	41.12	0.0448	39.74\%	\$101.22	-5.60%
53	1957	45.43	0.0431	-5.18\%	\$100.70	4.49\%
54	1956	44.15	0.0424	7.14\%	\$113.00	-7.35\%
55	1955	35.60	0.0438	28.40\%	\$116.77	0.20\%
56	1954	25.46	0.0569	45.52\%	\$112.79	7.07\%
57	1953	26.18	0.0545	2.70\%	\$114.24	2.24\%
58	1952	24.19	0.0582	14.05\%	\$113.41	4.26\%
59	1951	21.21	0,0634	20.39\%	\$123.44	-4.89\%
60	1950	16.88	0.0665	32.30\%	\$125.08	1.89\%
${ }^{6}$	1949	15.36	0.0620	16.10\%	\$119.82	7.72\%
62	1948	14.83	0.0571	9.28\%	\$118.50	4.49\%
63	1947	15.21	0.0449	1.89\%	\$126.02	-2.79\%
64	1946	18.02	0.0356	-12.03\%	\$126.74	2.59\%
65	1945	13.49	0.0460	38.18\%	\$118,82	9.11\%
66	1944	11.85	0.0495	18.79\%	\$119.82	3.34\%
67	1943	10.09	0.0554	22.98\%	\$118.50	4.49\%
68	1942	8.93	0.0788	20.87\%	\$117.63	4.14\%
69	1941	10.55	0.0638	-8.98\%	\$116.34	4.55\%
70	1940	12.30	0.0458	-9.65\%	\$112.39	7.08\%
71	1939	12.50	0.0348	1.88\%	\$105.75	10.05\%
72	1938	11.31	0.0784	18.36\%	\$99.83	9.94\%
73	1937	17.59	0.0434	-31.36\%	\$103,18	0.63\%
	500 R	1937-2009	10.8\%			
	ted Util	Bond Return	6.3\%			
	Premi		4.5\%			

Schedule 5
Comparative Returns on S\&P Utility Stock Index and Moody's A-Rated Utility Bonds 1937-2009

Ex Post Risk Premium Cost of Equity

Risk Premium Utility Stock Index 4.2\%
Risk Premium SP500 4.5\%
A-rated Utility Bond Yield 5.97\%
Risk Premium Cost of Equity Utilities 10.2\%
Risk Premium Cost of Equity S\&P500 10.4%
Flotation cost 0.27\%
Ex Post Risk Premium Cost of Equity 10.6\%

		SUMMARY OUTPUT								
Time $\quad S$	SP Util Risk Premium									
2008	-0.2614	Regression Statistics								
2007	0.1196	Multiple R	0.113							
006	0.1856	R Square	0.013							
2005	0.1025	Adjusted R Square	(0.001)							
2004	0.1150	Standard Error	0.151							
2003	0.0321	Observations	72							
2002	-0.3008									
2001	-0.2683	ANOVA								
2000	0.1796		df	SS	MS	F	Significance F			
1999	0.0848	Regression	1	0.021	0.021	0.912	0.343			
1998	0.0809	Residual	70	1.594	0.023					
1997	0.0126	Total	71	1.615						
1996	0.0431									
1995	0.0823		Coefficients	dard Em	t Stat	P-value	Lower 95\%	Upper 95	95.0	95.0\%
1994	0.0582	Intercept	1.654	1.688	0.980	0.331	(1.713)	5.020	(1.713)	5.020
1993	-0.0954	Time	(0.001)	0.001	(0.955)	0.343	(0.003)	0.001	(0,003)	0.001
1992	-0.0281									
1991	-0.0519									
1990	-0.0678									
1989	0.1951									
1988	-0.0255									
1987	0.0410									
1986	0.0551									
1985	-0.0504									
1984	0.0383									
1983	-0.0049									
1982	-0.0628									
1981	0.1241									
1980	0.1683									
1979	0.2068									
1978	0.0636									
1977	-0.0004									
1976	-0.0243									
1975	0.1749									
-974	-0.0138									
1973	-0.1008									
1972	-0.0557									
1971	-0.1219									
1970	0.0464									
1969	-0.0162									
1968	0.0608									
1967	0.1003									
1966	0.0276									
1965	- 0.0225									
1964	- 0.1243									
1963	- 0.0686									
1862	-0.0464									
1961	0.1818									
1960	- 0.1139									
1959	0.0849									
1958	-0.4248									
1957	. 0.0341									
1956	0.1451									
1955	- 0.0997									
1954	40.1530									
1953	0.0738									
1952	2 0.1110									
1951	10.2199									
1950	0.0271									
1949	- 0.2010									
1948	0.0092									
1947	-0.0762									
1946	-0.0959									
1945	$5 \quad 0.4879$									
1944	$4 \quad 0.1731$									
1943	30.3296									
942	20.1322									
1941	$1-0.3292$									
1940	- -0.2360									
1939	0.0121									
1938	$8 \quad 0.0959$	-								
1937	$7 \quad-0.3755$									

Schedule 6

Using the Arithmetic Mean to Estimate the Cost of Equity Capital

End Year 1	Ending Wealth	Probability
	$\$ 1.30$	0.5
	$\$ 0.90$	0.5

End of Year 2	Ending Wealth		Value		Probability	Value x Probability	
	(1.30) (1.30)	$=$	\$	1.69	0.25	\$	0.42
	(1.30) (.9)	$=$	\$	1.17	0.50	\$	0.59
	(.9) (.9)	=	\$	0.81	0.25	\$	0.20
	Expected Wealth	=				\$	1.21

Cost of Equity $=\quad 1(1+k)^{2}=1.21$

Cost of Equity $=\quad \mathbf{k}=(1.21 / 1)^{.5}-1=10 \% \quad 10 \%$

Arithmetic mean $=(30 \%)(.5)+(-10 \%)(.5)=1 \quad 10 \%$

Geometric mean $=[(1.3)(.9)]^{5}-1=.082=8.2 \quad 8.2 \%$

Thus, the geometric mean is not equal to the cost of equity capital.
For an investment with an uncertain outcome, the arithmetic mean is the best measure of the cost of equity capit:

Schedule 7
Calculation of Capital Asset pricing Model Cost of Equity

Using SBBI 7.1 percent Risk Premium

Line No.	Proxy Companies		
1	Risk-free Rate	4.38%	
2	Beta	0.85 Average Beta Proxy Companies	
3	Risk Premium	6.50% Long-horizon SBBI risk premium	
4	Beta x Risk Premium	5.53%	
6	Flotation cost	0.27%	
7	Cost of Equity	10.2%	

Schedule 7 (continued)
Calculation of Capital Asset pricing Model Cost of Equity Using SBBI 7.1 percent Risk Premium

Line No.	Company	Beta	Market Cap $\$$
1	AGL Resources	0.75	2,598
2	Atmos Energy	0.65	2,499
3	EQT Corp.	1.15	5,024
4	National Fuel Gas	0.90	3,227
5	Nicor Inc.	0.75	1,648
6	NiSource Inc.	0.85	3,539
7	Northwest Nat. Gas	0.60	1,183
8	ONEOK Inc.	0.95	3,485
9	Piedmont Natural Gas	0.65	1,796
10	South Jersey Inds.	0.65	1,099
11	Southwest Gas	0.75	1,083
12	Market-Weighted Average	0.85	

Betas from The Value Line Investment Analyzer August 2009

Schedule 8
Calculation of Capital Asset pricing Model Cost of Equity
Using DCF Estimate of the Expected Rate of Return on the Market Portfolio

Line No.

1	Risk-free Rate	4.38%	20-year Treasury Bond Yield
2	Beta	0.85 Average Beta Proxy Companies	
3	DCF S\&P 500	12.7% DCF Cost of Equity S\&P 500 (see following)	
4	Risk Premium	8.4%	
5	Beta $*$ RP	7.1%	
6	Flotation cost		
6	Cost of Equity	11.5%	

Schedule 8
'alculation of Capital Asset pricing Model Cost of Equity Using DCF Estimate of the Expected Rate of Return on the Market Portfolio

Company				Cost of
	P_{0}	D_{0}	Growth	Equity
AMERISOURCEBERGEN	18.38	0.20	11.57\%	12.9\%
AETNA	25.61	0.04	12.60\%	12.8\%
ALLERGAN	47.14	0.20	13.28\%	13.8\%
ASSURANT	24.26	0.60	8.75\%	11.6\%
ALlstate	25.15	0.80	9.20\%	12.9\%
APPLIED MATS	11.75	0.24	8.71\%	11.1\%
ABERCROMBIE \& FTTCH	27.61	0.70	1098\%	14.0\%
AON	37.40	0.60	12.35\%	14.3\%
AMERICAN EXPRESS	25.55	0.72	10.00\%	13.3\%
BOEING	43.97	1.68	8.29\%	12.7\%
BECTON DICKINSON	67.82	1.32	11.72\%	14.0\%
FRANKLIN RESOURCES	70.83	0.84	10.00\%	11.4\%
BROWN-FORMAN 'B'	44.95	1.15	8.10\%	11.0\%
BANK OF NEW YORK MELLON	28.69	0.36	11.43\%	12.9\%
BEMIS	25.01	0.90	8.00\%	12.1\%
BRISTOL MYERS SQUIBB	20.23	1.24	7.04\%	14.1\%
CA	18.01	0.16	9.60\%	10,6\%
CATERPILLAR	36.63	1.68	9.00\%	14.4\%
CHUBB	40.82	1.40	8.50\%	12.5\%
COCA COLA ENTS	17.31	0.32	9.20\%	11.3\%
COLGATE-PALM	68.42	1.76	9.75\%	12.8\%
CLOROX	55.64	2.00	9.67\%	13.9\%
COMCAST ${ }^{\text {A }}{ }^{\prime}$	14.45	0.27	11.25\%	13.5\%
CME GROUP	291.33	4.60	10,92\%	12.8\%
CUMMINS	34.44	0.70	10.33\%	12.7\%
CMS ENERGY	11.92	0.50	6.75\%	11.5\%
CONSOL EN.	35.90	0.40	12.03\%	13.3\%
COSTCO WHOLESALE	47.29	0.72	11.54\%	13.3\%
CAMPBELL SOUP	28.57	1.00	8.43\%	12.5\%
CSX	33.21	0.88	9.88\%	13.0\%
CINTAS	23.53	0.47	11.75\%	14.1\%
CVS CAREMARK	31.75	0.30	13.05\%	14.2\%
DOMINION RES.	32.50	1.75	6.36\%	12.5\%
DEERE	42.30	1.12	7.60\%	10.6\%
QUEST DIAGNOSTICS	53.12	0.40	12.39\%	13.3\%
DUKE ENERGY	14.38	0.96	3.50\%	11.0\%
ESTEE LAUDER COS.'A'	33.17	0.55	12,00\%	14.0\%
EATON	45.95	200	7.25\%	12.2\%
ENTERGY	74.35	3.00	9.02\%	13.7\%
FAMILY DOLLAR STORES	30.50	0.54	12.15\%	14.3\%
FIRSTENERGY	39.49	2.20	6.67\%	13.1\%
FEDERATED INVRS. ${ }^{\text {' }}$	24.16	0.96	9.00\%	13.6\%
FLUOR	47.91	0.50	12.40\%	13.6\%
FORTUNE BRANDS	36.46	0.76	8.23\%	10.6\%
FPL GROUP	56.43	1.89	9.59\%	13.5\%
GENERAL DYNAMICS	55.12	1.52	8.86\%	12.1\%
GENERAL ELECTRIC	12.66	0.40	9.07\%	12.7\%
GENUINE PARTS	33.66	1.60	6.00\%	11.4\%
GAP	16.37	0.34	10.00\%	12.4\%
GOLDMAN SACHS GP.	143.65	1.40	12.40\%	13.6\%
WW GRAINGER	81.86	1.84	11.26\%	13.9\%
HASBRO	25.19	0.80	9.00\%	12.7\%
HOME DEPOT	24.20	0.90	9.88\%	14.2\%

HARTFORD FINL.SVS.GP.	13.78	0.20	9.33\%	11.0\%
HARLEY-DAVIDSON	18.41	0.40	9.50\%	12.0\%
HONEYWELL INTL.	32.88	1.21	9.38\%	13.7\%
HEWLETT-PACKARD	37.47	0.32	10.07\%	11.1\%
HARRIS	29.42	0.76	11.00\%	14.0\%
INTERNATIONAL BUS MCHS	106.61	2.20	9.92\%	12.3\%
INTL.GAME TECH	16.02	0.24	12.50\%	14.3\%
nNTEL	16.61	0.56	10.00\%	14.0\%
ITT	43.96	0.85	8.50\%	10.7\%
PENNEY JC	28.39	0.80	10.27\%	13.6\%
JOHNSON \& JOHNSON	56.35	1.96	8.13\%	12.1\%
JANUS CAPITAL GP.	11.11	0.04	10.67\%	11.1\%
JP MORGAN CHASE \& CO.	35.33	0.20	12.00\%	12.7\%
NORDSTROM	21.78	0.64	10.00\%	13.4\%
kellogg	45.48	1.50	9.84\%	13.7\%
KB HOME	15.03	0.25	10.50\%	12.4\%
KRAFT FOODS	26.03	1.16	8.47\%	13.6\%
LENNAR 'A'	9.43	0.16	8.67\%	10,6\%
L3 COMMUNICATIONS	72.36	1.40	10.66\%	12.9\%
LOCKHEED MARTIN	80.81	2.28	10.56\%	13.9\%
LINCOLN NAT.	16.66	0.04	11.45\%	11.7\%
LOWES COMPANIES	20.03	0.36	11.75\%	13.9\%
SOUTHWEST ARRLINES	6.99	0.02	12.67\%	13.0\%
MCDONALDS	57.06	2.00	8.99\%	13.1\%
MCEESSON	43.02	0.48	11.27\%	12.6\%
MOODY'S	27.52	0.40	9.00\%	10.7\%
MEDTRONIC	33.68	0.82	10.54\%	13.4\%
3M	60.46	2.04	10.13\%	14.1\%
MORGAN STANLEY	27.72	0.20	11.60\%	12.4\%
MICROSOFT	22.15	0.52	10.17\%	12.9\%
M\&T BK.	51.92	2.80	4.72\%	10.8\%
NSOURCE	11.57	0.92	3.00\%	11.9\%
NKEE ' ${ }^{\prime}$	54.06	1.00	12.11\%	14.3\%
NORTHEAST UTILITES	21.59	0.95	8.33\%	13.4\%
NEWELL RUBBERMAD	11.08	0.20	9.80\%	11.9\%
OMNTCOM GP.	31.94	0.60	11.63\%	13.9\%
PEOPLES UNITED FINANCIAL	15.78	0.61	9.33\%	13.8\%
Paccar	32.16	0.36	10.25\%	11.6\%
PG\&E	37.52	1.68	7.07\%	12.2\%
PROCTER \& GAMBLE	52.00	1.76	9.50\%	13.5\%
PROGRESS ENERGY	36.58	2.48	5.36\%	13.1\%
PARKER-HANNIFIN	44.24	1.00	10.00\%	12.6\%
PERKINELMER	17.12	0.28	11.75\%	13.7\%
PINNACLE WEST CAP.	28.90	2.10	5.67\%	14.0\%
PEPCO HOLDINGS	13.10	1.08	3.67\%	13.0\%
PRAXAIR	73.12	1.60	9.62\%	12.2\%
POLO RALPH LAUREN 'A'	54.40	0.20	13.75\%	14.2\%
ROCKWELL AUTOMATION	33.22	1.16	8.00\%	12.0\%
RADIOSHACK	13.91	0.25	9.48\%	11.6\%
RAYTHEON 'B'	45.34	1.24	11.14\%	14.4\%
SCANA.	31.74	1.88	5.34\%	12.1\%
SCHERING-PLOUGH	24.40	0.26	11.10\%	12.4\%
SHERWIN-WILLIAMS	54.89	1.42	8.83\%	11.8\%
SARA LEE	9.49	0.44	8.43\%	13.8\%
SOUTHERN	30.07	1.75	4.97\%	11.6\%
STANLEY WORKS	35.98	1.32	8.00\%	12.2\%
STRYKER	39.44	0.40	12.53\%	13.7\%
AT\&T	24.84	1.64	4.11\%	11.5\%
MOLSON COORS BREWING 'B'	43.13	0.96	10.82\%	13.4\%
TTFFANY \& CO	27.46	0.68	10.75\%	13.7\%
TJX COS.	30.80	0.48	12.17\%	14.0\%
T ROWE PRICE GP.	41.15	1.00	10.75\%	13.6\%

TOTAL SYSTEM SERVICES	13.49	0.28	9.38%	11.8%
TIME WARNER	24.90	0.75	8.06%	11.5%
TEXTRON	11.10	0.08	11.40%	12.2%
UNITED PARCEL SER.	51.34	1.80	7.65%	11.7%
UNTTED TECHNOLOGIES	52.29	1.54	9.00%	12.4%
VERIZON COMMUNICATIONS	30.23	1.84	4.58%	11.4%
WALGREEN	30.32	0.55	12.00%	14.2%
WISCONSN ENERGY	40.33	1.35	9.03%	12.9%
WELLS FARGO \& CO	23.91	0.20	10.75%	11.7%
WINDSTREAM	8.45	1.00	0.82%	14.0%
WESTERN UNION	17.00	0.04	11.64%	11.9%
XCEL ENERGY	18.19	0.98	6.58%	12.8%
DENTSPLY INTL.	30.02	0.20	12.67%	13.5%
XTO EN.	39.15	0.50	11.40%	12.9%
Market-weighted Average				12.7%

TABLE 5
WEIGHTED AVERAGE COST OF CAPITAL
Source of Capital \% of Total Cost Rate Weighted Cost Long-term Debt $48.6 \% \quad 6.87 \% \quad 3.34 \%$ Common Equity $\quad 51.4 \% \quad 11.00 \% \quad 5.66 \%$ Total $100.00 \% \quad 9.00 \%$

Atmos Energy Corporation, Kentucky/Mid-States Division AG DR Set No. 1
 Question No. 1-075
 Page 1 of 1

REQUEST:

[Rate of Return] - Please refer to the testimony of Dr. Vander Weide, page 3, lines 1519. Please provide the data that supports the statement regarding equity ratios and the financial risk of Atmos Energy Corporation versus the remainder of the proxy group.

RESPONSE:

Please see Attachment 1 for the data supporting the statement regarding the financial risk of Dr. Vander Weide's comparable companies. The equity ratio for Atmos Energy's ratemaking capital structure is cited in response to Answer 86 of Dr. Vander Weide's direct testimony. The data supporting the ratemaking capital structure is discussed in the testimony of Company Witness Robert J. Smith.

ATTACHMENT:

ATTACHMENT 1 - Atmos Energy Corporation, Comparable Companies Financial Risk, 1 Page.

Respondent: Dr. James Vander Weide

Sources of Data: The Value Line Investment Analyzer, August 2009, and I/B/E/S Thomson Reuters

CASE 2009-00354
ATTACHMENT 1
TO AG DR SET NO. 1
QUESTION NO. 1-75

REQUEST:

[Rate of Return] - Please refer to the testimony of Dr. Vander Weide, page 3, line 20 through page 4, line 2. Please provide the studies and data that support the statements regarding the forecasted yield on utility bonds, the small size premium for small market capitalization and that CAPM underestimates the cost of equity for companies with betas less than 1.0.

RESPONSE:

a) Please see Attachment 4 to the Company's response to AG DR Set No. 1, Question No. 1-73 for the Blue Chip Financial Forecasts, dated August 1, 2009, that support the statement regarding the forecasted yield on utility bonds.
b) Regarding the request for "studies and data that support the small size premium for small market capitalization companies," please see Dr. Vander Weide's testimony, Answer 79, and Table 4. A description of these studies is contained in Ibbotson SBBI 2009 Valuation Yearbook Market Results for Stocks, Bonds, Bills, and Inflation 1926-2008. Dr. Vander Weide does not have the underlying data supporting these studies.
c) The studies supporting the conclusion that the CAPM underestimates the cost of equity for companies less than 1.0 are cited and summarized in response to Question 81, pp. 28-29 of Dr. Vander Weide's testimony. Copies of these articles are supplied in the Company's response to AG DR Set No. 1, Question No. 1-73. Dr. Vander Weide does not have the underlying data reported in these articles.

Respondent: Dr. James Vander Weide

REQUEST:

[Rate of Return] - Please refer to the testimony of Dr. Vander Weide. With reference to the proxy group referenced on page 17 of the testimony and in Schedule 1, Pages 3334.
a. Please explain in detail why Dr. Vander Weide considered it appropriate to include Atmos Energy Corporation in the proxy group in his analysis.
b. Please provide a listing of all companies considered for inclusion in the proxy group but rejected by Dr. Vander Weide including the specific reason(s) for the rejection.

RESPONSE:

a) Dr. Vander Weide considers it to be appropriate to include Atmos in the proxy group because Atmos Energy satisfies the criteria for inclusion in his proxy group. These criteria are cited in Dr. Vander Weide's testimony on p. 17.
b) At the time of his studies, each of the following companies met all of Dr. Vander Weide's selection criteria with the exception of the criterion that a selected company must have at least two analysts included in the I/B/E/S mean growth forecast. The following table indicates the number of I/B/E/S estimates available for each company at the time of Dr. Vander Weide's studies.

Company	Ticker	No. of I/B/E/S Estimates	Selected
AGL Resources	AGL	2	yes
Atmos Energy	ATO	3	yes
EQT Corp.	EQT	2	yes
Nicor Inc.	GAS	3	yes
National Fuel Gas	NFG	2	yes
NiSource Inc.	NI	4	yes
Northwest Nat. Gas	NWN	2	yes
ONEOK Inc.	OKE	2	yes
Piedmont Natural Gas	PNY	3	yes
South Jersey Inds.	SJI	3	yes
Southwest Gas	SWX	2	yes
Energen Corp.	EGN	1	no
Laclede Group	LG	NA	no
MDU Resources	MDU	1	no

Case No. 2009-00354
Atmos Energy Corporation, Kentucky/Mid-States DivisionAG DR Set No. 1
Question No. 1-077
Page 2 of 2
New Jersey Resources NJR 1 no
Questar Corp. STR 1 no
UGI Corp. UGI 1
WGL Holdings Inc. WGL 1no
Respondent: Dr. James Vander Weide

REQUEST:

[Rate of Return] - With respect to page 25, lines 14-25, please provide: (1) the source documents for the 5.97% utility bond yield; (2) copies of the source documents and data used to compute the risk premium; please provide copies of the source documents, workpapers, and data in (1) and (2) both hard copy and electronic (Microsoft Excel) formats, with all data and formulae intact.

RESPONSE:

1) There is no source document for the 5.97 percent average yield on Moody's Arated utility bonds. Dr. Vander Weide obtained the July 2009 average Moody's A-rated utility bond yield equal to 5.97 percent electronically.
2) Dr. Vander Weide's work papers are supplied in the Company's response to AG DR Set No. 1, Question No. 1-74.

Respondent: Dr. James Vander Weide

REQUEST:

[Rate of Return] - With respect to page 15 , lines 14-16, please provide copies of the source documents and data used to compute the flotation cost adjustment of 5%. Please provide copies of the source documents, workpapers, and data in both hard copy and electronic (Microsoft Excel) formats, with all data and formulae intact.

RESPONSE:

Dr. Vander Weide's flotation cost adjustment of five percent in his application of the DCF model is derived as explained in his direct testimony beginning on page 15, Question 44, through page 17, Answer 48, and in Appendix 3. In addition, as discussed in Answer 46 and shown in detail in Schedule 2, Atmos Energy, in fact, has incurred flotation costs equal to approximately five percent of its stock price when it has issued new equity securities. Dr. Vander Weide's work papers are provided in the Company's response to AG DR Set No. 1, Question No. 1-74.

Respondent: Dr. James Vander Weide

REQUEST:

[Rate of Return] - With respect to page 13, lines 14-19, please explain why I/B/E/S Thompson Reuters was used as the sole source of EPS growth rate forecasts as opposed to one of the other sources of analysts EPS growth rate forecasts such as Zacks or Yahool.

RESPONSE:

Dr. Vander Weide has purchased the I/B/E/S data for many years. Thus, the I/B/E/S data are a consistent data source for the purpose of his studies. Further, in purchasing the I/B/E/S data, Dr. Vander Weide is also able to obtain earnings growth estimates for all U.S. companies, along with complementary information such as the number of analysts' estimates in the mean estimate, stock prices, dividends, and market capitalization, from a single data source.

Respondent: Dr. James Vander Weide

[^0]: Direct Testimony of James H. Vander Weide, Ph.D.
 On behalf of Atmos Energy Corporation

[^1]: Direct Testimony of James H. Vander Weide, Ph.D. On behalf of Atmos Energy Corporation Page 73

[^2]: ${ }^{1}$ ADRs are American Depository Receipts (also called American Depository Shares) that are fraded in the United States for foreign issuers. Unit offerings are bundles of securities (frequently, a share plus a warrant to buy a share at some exercise price), commonly issued in small IPOs by young, speculative companies taken public by less-prestigious investment bankers.
 ${ }^{2}$ Rights offerings give existing shareholders the right to buy the securities offered. While they are common in many countries, rights offerings have been rare in the United States during the last twenty years. See Smith (1977), Hansen and Pinkerton (1982), and Hansen (1988) for a discussion of rights offerings. Shelf registrations arc offerings whereby a company meeting certain qualifications is permitted to issue securities without issuing a prospectus (taking the securities "off the shelf" and selling them). In our sample period, shelf equity offerings are practically nonexistent, although there are many bond offerings (typically smaller issues) using shelf registrations that we exclude.

[^3]: Scrial bonds have the individual bonds maturing on different dates, with the coupons varying depending upon the maturity date. Reset and floating-rate bonds have the interest rate changing periodically, with the new interest rate determined either by an auction (reset) or a formula (floaters).

[^4]: ${ }^{4}$ If the offerings with missing expense information have systematically higher or lower expenses than those for which SDC reports information, our procedure would result in biased estimates of average expenses. To check this, for a sample of bond offerings in 1994 that are missing expense information, we used the Securities and Exchange Commission's Edgar electronic database (http;//www.sec.gov/cgi-bin/srch-edgar) to find the expense information. The expenses for these issues are representative of those for which SDC reports information, suggesting our numbers do not have important biases.
 ${ }^{5}$ Following the practice of SDC, we report as separate offerings two bond issues by the same company on the same day if they have different maturity dates, provided they are not explicitly serial bonds. For example, on September 22, 1994, Southern Pacific Transport issued two bonds, one with proceeds of $\$ 8.1$ million with a coupon rate of 7.61 percent, and the other with proceeds of $\$ 8.8$ million and a coupon rate of 7.77 percent. We treat these as two distinct offerings.
 ${ }^{\text {GT}}$ The highest credit rating is $A A A$, followed by $A A, A, B B B, B B, B, C$, and D, in order of their perceived default probabilities. These ratings are further partitioned by pluses and minuses.

[^5]: ${ }^{8}$ Calomiris and Raff (1995) report that for convertible bonds, the average spread in 1963-65 was 3.7 percent and in 1971-72 it was 32 percent. Our 1990-94 sample has an average spread of 2.9 percent.
 ${ }^{9}$ Beatty and Welch (1996) report the average direct and indirect costs for a sample of 980 IPO from 1992 to 1994 . Whereas we aggregate auditing, legal, printing, and other direct expenses, they report audit expenses and legal expenses separately. For all proceeds classes, legal expenses are slightly higher than auditor expenses.

[^6]: *I nould like to thanh the participants at the Public Utilties Economics and Finance Seminar, sponsored by AT \& T at the Graduate School of Management, Universtly of Calforma, Los Angeles, and the participants at the Finance Workshop, Graduate School of Management, Unversil of Rochester, especsally MI Jensen, I Long. J Magure, W Mihkelson, T Miller, R Rubach, L Wakeman and J Warner This research is supported by the Managerial Economics Research Center, Graduate School of Management, Unversity of Rochester

[^7]: ${ }^{2}$ Commonwealth Edison Proxy Statement, 1976.
 ${ }^{3}$ See SEC (1940, 1941, 1944, 1949, 1951, 1957, 1970, 1974).
 ${ }^{4}$ One empirical regularity in the data presented in table I should be noted. To a first approximation, the differences in costs among financing methods are explained by the differences in underwiter compensation. Compare 'Other Expenses' for Underwriting and Rights with Standby Underwriting with 'Total Costs' for Rights.

[^8]: ${ }^{5}$ This is a consertatue estimate of the value Merton (1973) has demonstrated that the louer bound on the value of an option is the difference between the stock price and the discounted evercise price
 ${ }^{6}$ Although postage expenses are not reported to the SEC, estimates were obtamed from summaries of expenses reported to the New York State Public Uulities Commission for a sample of firms For the sample, the maximum postage expense as a percentage of total proceeds was one-tenth of one percent Even if this were understated by a factor of ten, it would be of insufficient magnitude to explain even the smallest reported difference in costs Moreover, the marginal postage expense could be reduced to zero by malling the rights with other required mailings, such as dividend checks or quarterly reports

[^9]: If the firm sells bouds rather than stock, the costs of selfing the issue can be amortized over the life of the issue In no case, however, may these costs be erpensed ether for tax or reporting purposes
 ${ }^{8}$ There is a limuted benefit from issuing rights to the owners of the firm under Regulation T, the Federal Reserve regulation restricting margin credit For an owner who wishes to borrow to acquire addiuonal stock, Reg T provides for the establishment of a "Special Subscription Account' which lowers the effective margin requirement by permitung a customer to purchase on an instaliment basis a margin security acqured through the exerctse of subscription rights expiring within 90 days Under this provision, 75 percent of the market value of the acquired stock can be borrowed instially Quarterly installments are required over a 12 month peniod to bring the position up to proper margin

[^10]: ${ }^{9}$ Note that since the expenses associated with rating equits capital are not tax deductible. these figures are comparable without luriher adjustment
 ${ }^{10}$ Estimates vary bui ballpark figures on how investors react [to rights offerings] are as follons 50° "exervise therrights 40° " 4 ell out for carh, and 10° odo nothing [Vaming Rights' (Mav 2. 1977) Barrons p 25]
 "If the far market value of the rights is less than fitieen percent of the tarr market value of the stock, the shareholder can choose to set the hasis of the rights at zero learing unaffected the basis of the stock The shareholder might choose this altername if the cost of the boohheeping evceeded the present value of the tax saving or 11 he anucipated being in a higher tav bracket when his remaming holdings were sold
 1^{2} See Bailey (1969) for a discussion of the ellective rate of capral gams tax, drcounted to reflect the luability deferral

[^11]: "If taxes were important, firms would avoid rights offerings when share prices had risen However the evidence presented in table 2 shows that, on average, firms have had abnormal positive price changes during the 12 months before an offering
 ${ }^{16}$ Stockbrokers holding securites for safekeepng do not allow the warrants to expre unexercised If no insiructions are received, the broker will sell the rights immediately before expiraton
 "Amencan Telephone and Telegraph Co, Nouce of 1976 Annual Meeting and Proxy Statement
 ${ }^{18}$ Also note that arburage profits must not be avalable When a stock trades ex rights, a right is issued for each share outstanding At the ex nights date, the expected change in the stock price nust equal the expected value of the ught, or profit opportunttes nould exist if the sum of the ex rights value of the stock plus the value of the right at the ex rights date were

[^12]: systematically different from the value of the stock immediately before the ex rights date, then profits could be made by taking an appropriate position in the stock upon the announcement of the rights issue.
 ${ }^{19}$ Thus, if the amendment [to remove the preemptive right from the corporate charter] is adopted, the company will be able to obtain the amount of capital needed through the issuance of fewer shares. Over a period of time this will result in slightly less dilution, higher equity value per share and better earnings per share." [Commonwealth Edison Proxy Statement, 1976.]
 ${ }^{20}$ E.g., Commonwealth Edison suggests, "Selling pressures often unduly depress both stock and rights values during the two or three week offering period which is a practical necessity when stock is sold with preemptive rights. Because the majority of stockholders do not exercise their rights but offer them for sale, the market value of the rights is driven far too low. Outsiders are then able to benefit by selling large amounts of stock during the offering period while buying rights for almost nothing and then exercising their rights to purchase stock at a discount to cover their sales. As a result, rights offerings tend to cost the company more than the rights themselves are worth to the stockholders who get them.'

[^13]: ${ }^{22}$ The 'split effect' adjustment used by Nelson is derived in footnote I
 ${ }^{23}$ See eg Bugham (1977, pp 473-474)

[^14]: ${ }^{24}$ Although the rules of farr practice were established by the NASD, and not Congress or the SEC, there is little difference in the impact These rules are a response to the SEC's self regulatory position If the SEC found them unsatisfactory the SEC could establish superseding regulation
 ${ }^{25}$ See History of Corparate Finance for the Decade (1972)

[^15]: ${ }^{26}$ One difference between Ibbotson's unseasoned issues and the seasoned issues evammed here is that the unseasoned shares trade on the OTC marhet One hy pothess which has been suggested to explain the diferences in the results is that the underpricing is a method of compensating the underwrter for mantaining a secondars market in the security Although the argument can explain why underuriter's compensation (including underpricing costs) for unseasoned issues is higher than for seasoned issues it does not explan the differentral underpricing
 ${ }^{27}$ Another type of "insurance" might be reletant If material errors are found in the registratoon statement of a public issue, parues who allege damage can bring suit The suit typically names as co-defendants the firm, the board of directors of the firm, the firm saccountants, and the firm s undertriter If the underw ruter assumes a large share of the liablity for the error, sheltering the firm from suit, then the underurnter will recene a normal compensation for bearing that risk
 Direct evidence on the hypothesis that underwrters reduce the firm's lability in case of a sutt is expensine to obtan, economic studies of securities Iraud suits have not been published However indirect evdence suggests that this factor cannot be of a sufficientls large magnitude to make this an importani factor in the chove of underuritten issues over rights issues First. damage must be demonstrated-ie in addition to finding a material mustatement in the registration statement, the share price must have fallen atier the offering Second, the underwriters explictly seek to limit their liability as much as is legally teasible "IIssuer-Underwiter Indemmification agreements are unversally used in todays underwriting These agreements, although varying in specific language provde essentally for indemmitication of the 'passively' gulty party by the party whose omssions or misstatements were the source of the labilits " (See 'The Evpanding Liabilw of Security Underwrters", Duke Lan Jounal, Dec 1969, pp $(19 \mid-12+6)$ Thus undernnters contracts seek to minmuze their exposure in this area Third it the courts imposed a signifiednt share of the responsibity for material errors on the underwriter, it would be expected that accounting firms would recognize this by oftering lower rates for secuntles work to firms employing underwriters. This does not seem to be the case At least when this issue was rased with several partners of eight big accounting firms, this effect was denied The judicial procedure tends to mate the labality of each of the groups of defendants in this type of suit sirtually independent.

[^16]: ${ }^{30}$ Certain management compensation plans, such as stock option plans, make managers* compensation a function of the price of the furm's shares if the compensation plan were not adjusted to reflect the effect of the rights offering on the sbare price, management could be expected to provide a strong lobby in favor of employing underwriters in fact, however, employee stock option plans have general clauses calling for adjustment of the terms of the plan to refiect relevant captal structure changes Furthermore, most plans include spectic reference to rights issues Thus, agency costs resultug from compensation plans do not seem to offer an explanation of the observed behavior
 ${ }^{31}$ This argument is simular to that of Manne (1966), especially Chapter V
 ${ }^{32}$ See Downs (1957) Basically, if a person owns 100 shares in a firm, his vote only matters If the vote is thed or his 'sıde' would have lost by 100 votes or less The probability is low that out of 50 milhon votes, the issue will split that way Thus the expected benefit (benefit times probabilty) of voting is very small

[^17]: ${ }^{33}$ For a firm wath 50 million shares outstanung, a ten percent increase in the number of outstanding shares would change the percentage ounership for someone with 100 shares only in the sixith decimal place With so many inespensise alternate ways for a stochholder to maintan his proportionate interest in the firm the proportionate interest argument lachs importance

[^18]: ${ }^{34}$ See Weston and Brigham (1975), SEC (1974), and Pessin (1976)

[^19]: ${ }^{35}$ The underwnter may make a 'standby commiment' dunng a rights offering under which he will purchase and distmbute to the pubilc any amourt of the rights issue not purchased by the present securty holders This form will be discussed further below
 ${ }^{36}$ Agreements are usually subject to conditions, most allow the underwriters to vord therr obligation in the event of specified adverse developments For example, a negative finding in the lawyer's or auditor's reports may allow voiding the contract

[^20]: ${ }^{44}$ In the 1880 it was customary to require a stockholder to appear in person in the office of the corporation to subscribe to the issue After the 18803, it became customary to send out a printed slip of paper so the stockholders could sign and subscribe for the stock without actually having to appear Later, it became the practice to make these slips of paper transferable, so that they could be sold Around 1910 the engraved form of warrant was first issued
 ${ }^{45}$ The Uniform Practice Code of the National Association of Securty Dealers, Inc, provides that subscription nghts issued to securty holders shall be traded in the market on the basis of one right accruing on each share of outstanding stock, except when otherwise designated by the National Uniform Practice Commuttee Thus, the price quotation will be based on a single rught esen though several nghts may be necessary to purchase one new share
 ${ }^{46}$ This procedure is comparable to that used in setting the ex dividend date

[^21]: ${ }^{+7}$ A proporwoned fee miolves more than one price for the shares handled by the underuriter For example there may be one price for the first 15° of the issue, a higher price for from 15°. 1030° of the issue, and a still higher price for any of the issue over 30° which is unevercised through the rights offering and must be purchased by the undern rater
 ${ }^{48}$ Through the late 1940 s underwnters were prohibited from trading in the rights during the offering This arrangement increased the underwriters rish because the li-day ume period allowed large adverse price movements in the stock. The NYSE instituled a sluds in 1947 after the fallure of three rights offerings They found than on 43 rights offermgs which had been successful the total underuriting profit was approximately $\$ 24$ multion, while on the three unsuccesslul offerings, their losses were in evcess of $\$ 3$ milhon Underwriters were reportedls relusing to sign standby agreements unless the offertag period were as short as fise days Since the volated NYSE rules no NYSE listed firms used rights issues with standby underuiting agreements In response to this impasse, the NYSE now allows underuriters to trade in the nights it hours after the rights offering is made

[^22]: ${ }^{49}$ This last assumpiton is necessary to avord the problem of the dependence of the dynamic

[^23]: ${ }^{3}$ Since the contract calls for the payment only at t^{*}, to find the current talue of the underwriting contract does not require discounting
 ${ }^{53}$ If this were not the case, arbitrage profits could be earned by acquiring an underuring contract and establishing the above hedge

[^24]: ${ }^{34}$ This equation implicitly defines the bid because B appears twice in the equation The explicit solution for equibbrium bid can be found by standard numerical analysis techniques
 ${ }^{5}{ }^{\mathrm{A}}$ sufficient condirion for the bid to be less than the market value of the shares is that $(1-\gamma)$ be less than er r^{T} Since T is generally a matter of days, this condition should be met

[^25]:

[^26]: artitle.

[^27]: which sold new shares, thes the AChise shown on Fizure i would be very close to one over tine. A domemental affect and a relativa decline in share prices worald bee represented as a decline in AGRRs below one. A fusorable effect woukl be septesembed an an incrake in ACRRS. Alse notice that the x-axis displays time with megrative numbers as days before the AD and poxitive thembers as days after the AD. The All, or conserimy tate, is alesigrated os zera.

[^28]: *he wish to thark Ewgene Finta, Joha Long, David Mayers, Merten Niller, and Water of for benefits obtumed in converations on these issleses and D. Besenfelder, J. Sheter, and B. Whate for programiming assistance This seweareh has been partially supparted by the Unibersity of Fochexter Systens Analysis Program under Buran of Naxal Fersonnel contract number $\mathfrak{N} .00022-69.60085$, The National Seience Foundation urider grant G5-7ght, The Ford Foundation, the Wells Farge Bark, the Manufactuers National Bank of Detroit, and the Security Trust Gompany. The calculations Here carried ont at the University of Roficster Computing Center, which is in part supported by National Seictice Foundation grant 0 J 82 B .

 Unitersity of Clatigaco.
 4 University of Hochester.
 SMassanhugetts Institufe of Tephrelagy.

[^29]:

[^30]: Yote: a s characterlstic expancut, $\sigma\left(f_{i}, a\right)=$ dispersion parameter of th

[^31]: Received August 24, 1971. Final version received for publication September 2, 1972. Research supported by a grant from the National Science Foundation. The comments of Professors F. Black, L. Fisher, N. Gonedes, M. Jensen, M. Miller, R. Officer, H. Roberts, R. Roll, and M. Scholes are gratefully acknowledged. A special note of thanks is due to Black, Jensen, and Officer.
 ${ }^{1}$ Although the choice of dispersion parameter is arbitrary, the standard deviation

[^32]: is common when return distributions are assumed to be normal, whereas an interfractile range is usually suggested when returns are generated from some other symmetric stable distribution.

 It is well known that the mean-standard deviation version of the two-parameter portfolio model can be derived from the assumption that investors have quadratic utility functions. But the problems with this approach are also well known. In any case, the empirical evidence of Fama (1965a), Blume (1970), Roll (1970), K. Miller (1971), and Officer (1971) provides support for the "distribution" approach to the model. For a discussion of the issues and a detailed treatment of the two-parameter model, see Fama and Miller (1972, chaps. 6-8).

 We also concentrate on the special case of the two-parameter model obtained with the assumption of normally distributed returns. As shown in Fama (1971) or Fama and Miller (1972, chap. 7), the important testable implications of the general symmetric stable model are the same as those of the normal model.
 2 Tildes (\sim) are used to denote random variables. And the one-period percentage return is most often referred to just as the return.

[^33]: a multiperiod version of the two-parameter model is in Fama (1970a) or Fama and Miller (1972, chap. 8).

[^34]: 8The errors-in-the-variables problem and the technique of using portfolios to solve it were first pointed out by Blume (1970). The portfolio approach is also used by Friend and Blume (1970) and Black, Jensen, and Scholes (1972). The regression phenomenon that arises in risk-return tests was first recognized by Blume (1970) and then by Black, Jensen, and Scholes (1972), who offer a solution to the problem that is similar in spirit to ours.

[^35]: TFor those accustomed to the portfoho viewpoint, this alternative model may seem so naĩve that it should be classified as a straw man. But it is the model of risk and return implied by the "liquidity preference" and "market segmentation" theories of the term structure of interest rates and by the Keynesian "normal backwardation" theory of commodity futures markets. For a discussion of the issues with respect to these markets, see Roll (1970) and K. Miller (1971).

[^36]: ${ }^{8}$ The serial correlations of $\hat{\gamma}_{2}$ and $\hat{\gamma}_{3}$ about means that are assumed to be zero provide a test of the fair game property of an efficient market, given that expected returns are generated by the two-parameter model-that is, given $E\left(\tilde{\gamma}_{3 f}\right)=E\left(\tilde{\gamma}_{3 f}\right)$ $=0_{\text {. Likewise, }} \rho_{0}\left(\hat{\varphi}_{0 r}-R_{f 1}\right)$ provides a test of market efficiency with respect to the behavior of $\hat{\gamma}_{0 t}$ through time, given the validity of the Sharpe-Lintner hypothesis (about which we have as yet said nothing). But, at least for $\hat{\gamma}_{2 k}$ and $\hat{\gamma}_{31}$, computing the serial correlations about sample means produces essentially the same results.

 To test the market efficiency bypothesis on $\tilde{\gamma}_{1 t}-\left[E\left(\tilde{R}_{m t}\right)-E\left(\widetilde{R}_{\mathrm{m}}\right)\right]$, the sample mean of the $\hat{\gamma}_{1 t}$ is used to estimate $E\left(\tilde{R}_{m \prime}\right)-E\left(\tilde{R}_{0 f}^{\prime}\right)$, thus implicitiy assuming that the expected risk premium is constant. That this is a reasonable approximation in the sense that the $\rho_{M}\left(\hat{\vartheta}_{1}\right)$ are small\}, probably reflects the fact that variation in $E\left(\tilde{R}_{m t}\right)-E\left(\tilde{K}_{11}\right)$ is trivial relative to the month-by-month variation in $\hat{\gamma}_{1 t}$

 Finally, it is well to note that in terms of the implications of the serial correlations for making good portfolio decisions-and thus for judging whether market efficiency is a workable representation of reality-the fact that the serial correlations are low in terms of explanatory power is more important than whether or not they are low in terms of statistical significance.

[^37]: 10 That $\hat{\gamma}_{0 t}$ is the return on a zero- $\hat{\beta}$ portfolio can be shown to follow from the unbiasedness of the least-squares coefficients in the cross-sectional risk-return regresm sions. If one makes the Gauss-Markov assumptions that the underlying disturbances $\tilde{\mathrm{T}}_{\mathrm{pb}}$ of (11) have zero means, are uncorrelated across p, and have the same variance for all p, then it follows almost directly from the Gauss-Markov Theorem that the least-squares estimate $\hat{\gamma}_{0 t}$ is also the return for month t on the minimum variance zero- $\hat{\beta}$ portfolio that can be constructed from the 20 portfolio $\hat{\beta}_{p}$.

[^38]: out, however, that this portfolio is constructed under what amounts to the assumptions of the Gauss-Markov Theorem on the underlying disturbances of the one-variable risk-return regression (11). With these assumptions the least-squares estimate $\hat{\gamma}_{0 t 1}$ obtained from the cross-sectional risk-return regression of (11) for month t, is precisely the return for month t on the minimum variance zero- $\hat{\beta}$ portfolio that can be constructed from the 20 portfolio $\hat{\hat{p}}_{p}$. Thus, the tests of the S-L bypothesis in panel A of table 3 are conceptually the same as those of Black, Jensen, and Scholes.

 If one makes the assumptions of the Gauss-Markov Theorem on the underlying disturbances of the models of panels $B-D$ of table 3 , the regression intercepts for these models can likewise be interpreted as returns on minimum-variance zero- $\hat{\beta}$ portfolios. These portfolios then differ in terms of whether or not they also constrain the averages of the $20 \hat{\beta}_{p}^{2}$ and of the $20 \bar{s}_{p}\left(\hat{c}_{i}\right)$ to be zero. Given the collinearity of $\hat{\beta}_{p}, \hat{\beta}_{p}{ }^{2}$, and $\bar{s}_{p}\left(\bar{c}_{i}\right)$, however, the assumptions of the Gauss-Markov Theorem cannot apply to all four of the models.

[^39]: \therefore

[^40]: .

[^41]:

[^42]: *Graduate School of Business, University of Chicago, 1101 East 58th Street, Chicago, LL 60637. We acknowledge the helpful comments of David Booth, Nai-fu Chen, George Constantinides, Wayne Ferson, Edward George, Campbell Harvey, Josef Lakonishok, Rex Sinquefield, René Stulz, Mark Zmijeweski, and an anonymous referee. This research is supported by the National Science Foundation (Fama) and the Center for Research in Security Prices (French).

