PROJECT PROPOSAL

•	M.8C	Capit	al	Project Manager	·	Ed Basquill	
roject Nur	nber			Date		07/13/07	
	Non-budget	ed Project fo	or current year	Cost Center		222	
<u> </u>	Project to be	e considere	d for future Capital Plai	ר איז איז איז איז איז איז איז איז איז איז	ority Coae	}	
	Budgeted in	i current Ca	pital Program (provide par	ent program # if child proje	Ct)		
itle of Proj	iect		BEPWTP	Capacity Developm	ent Proiec	t	
nono							
	Expand the cap opportunities a KYDOW.	pacity of BE Pay	yne Water Treatment Plant to production capacity reserve (90 MGD to service future exceeds 15% of maximum	e growth and n day demand	business developmen ds as recommended b	nt Y
roiect Jus	tification: (Pl	ease check all th	nat apply and provide written su	mmary of iustification)			
equilatory		X	Contract Commitment	initially of jublicition of the	Growth Re	elated	x
afety			Contributed Capital		Other (atta	ch explanation)	
ecurity		<u> </u>	Economic Benefit (inclue	le NPV)	(-	
perating R	Requirement	<u> </u>	Improved Customer Se	rvice			
roject Est	imate:						
otal Cost excl	luding Noncash C	Contrib. Capital	Activi	ty (Preliminary design, land	acquisition, c	onstruction, etc)	
000	·	100.000					
009			6NKUA 125514				_
J10		2,500,000	CONST	TACTON			
)11	2,100,00	0-2,500,000	g censi	TWENOU			
ther			<u></u>				_
otal Cost	\$	5,000,000	Noncash Contrib	uted Capital:Labor a	nd/or mater	ials =	
ess Contrib			_ Total Asset Cost	including Noncash C	ontrib. Cap	ital :	
ess Contrib let Cost	\$	5,000,000	_ Total Asset Cost	including Noncash C	ontrib. Cap	itai :5,000,000	
ess Contrib		5,000,000	Total Asset Cost	including Noncash C	ontrib. Cap	ital :5,000,000	
et Cost npact on (\$ Operating Re	5,000,000 evenues / Co	Total Asset Cost =	including Noncash C	ontrib. Cap	n)	
et Cost npact on (\$ Operating Re Category	5,000,000 evenues / Co	_ Total Asset Cost = osts (Detailed documentation Annual am	including Noncash C included in Net Present Vi Dunt (dollars and descript	ontrib. Cap	n) Orgs affect	cted
et Cost	\$ Operating Re Category	5,000,000 evenues / Co	_ Total Asset Cost = 	including Noncash C included in Net Present V DUNT (dollars and descript	ontrib. Cap	n) Orgs affect	cted
ess Contrib et Cost npact on (\$ Operating Re Category	5,000,000 evenues / Co	Total Asset Cost = psts (Detailed documentation Annual amo	including Noncash C	ontrib. Cap	n) Orgs affec	cted
et Cost	\$ Operating Re Category	5,000,000	_ Total Asset Cost = psts (Detailed documentation Annual amo	including Noncash C included in Net Present Vi ount (dollars and descript	ontrib. Cap alue calculatio. ion) rial Numbe	n) Orgs affec	cted
ess Contrib let Cost npact on (lake and N epreciation	\$ Operating Re Category Nodel of new a	5,000,000	_ Total Asset Cost = psts (Detailed documentation Annual amount 	including Noncash C	ontrib. Cap	n) Orgs affec	
ess Contrib let Cost npact on (lake and M epreciation	\$ Operating Re Category Nodel of new a n Life	5,000,000 evenues / Co asset 50 yea	Total Asset Cost = sts (Detailed documentation Annual am irs	including Noncash C included in Net Present Vi Dunt (dollars and descript Se	ontrib. Cap alue calculation on) rial Numbe	n) Orgs affec	
ess Contrib et Cost npact on (lake and M epreciation etirement	\$ Operating Re Category Nodel of new a n Life : Does this re	5,000,000	Total Asset Cost =	including Noncash C included in Net Present Vi DUNT (dollars and descript Se s, please provide def	ontrib. Cap alue calculation on) rial Numbe	n) Orgs affect r 	
et Cost npact on (ake and M epreciation etirement peing retire	\$ Operating Re Category Nodel of new a n Life : Does this re ed, including t	5,000,000 evenues / Co asset 50 yea place an exis undepreciate	Total Asset Cost = sts (Detailed documentation Annual amo Annual Annual amo Annual Annual Ann	including Noncash C included in Net Present Vo punt (dollars and descript Se s, please provide def erial number, date pla	ontrib. Cap alue calculation on) rial Numbe ailed inform iced in serv	n) Orgs affect	
et Cost npact on (lake and M epreciation detirement being retire	\$ Operating Re Category Nodel of new a n Life : Does this re ed, including t	5,000,000 evenues / Co asset 50 yea place an exis	Total Asset Cost = sts (Detailed documentation Annual amo Annual amo ars sting asset Y or N ? If ye d value, make, model, se	including Noncash C included in Net Present Vi punt (dollars and descript Se s, please provide deferrial number, date pla N	ailed inform	n) Orgs affect r nation on asset rice, etc	cted
ess Contrib et Cost npact on (lake and M epreciation etirement being retire lanning do	S Operating Re Category Aodel of new a n Life : Does this re ed, including to cument(s) ref	5,000,000 evenues / Co asset 50 yea place an exis undepreciate	Total Asset Cost =	including Noncash C included in Net Present Vi punt (dollars and descript Se s, please provide def erial number, date pla N Vater Treatment Cap	ailed inform acity Study	n) Orgs affect r nation on asset rice, etc	
ess Contrib et Cost hpact on (ake and N epreciation etirement being retire lanning do uture Plan	S Operating Re Category Category Model of new a n Life : Does this re ed, including to cument(s) refining / Design	5,000,000 evenues / Co asset 50 yea place an exis undepreciate ferenced Support Rec	Total Asset Cost Total Asset Cost (Detailed documentation Annual amo Annual Annual amo Annual Annual An	including Noncash C included in Net Present Vo DUNT (dollars and descript Se s, please provide def rial number, date pla N Vater Treatment Cap	ontrib. Cap alue calculation on) rial Numbe ailed inform iced in serv acity Study N	n) Orgs affect	
ess Contrib et Cost npact on (lake and N epreciation etirement being retire lanning do uture Plan	\$ Operating Re Category Nodel of new a n Life : Does this re ed, including u ocument(s) ref ning / Design	5,000,000 venues / Co asset 50 yea place an exis undepreciate ferenced Support Rec Attach husings	Total Asset Cost 	including Noncash C included in Net Present Vi punt (dollars and descript Se s, please provide def erial number, date pla N Vater Treatment Cap	ontrib. Cap alue calculation on) rial Numbe ailed inform iced in serv acity Study N	n) Orgs affec r nation on asset ice, etc	cted
ess Contrib et Cost npact on (ake and N epreciation etirement being retire lanning do uture Plan	\$ Operating Re Category Nodel of new a n Life : Does this re ed, including to ocument(s) ref ning / Design	5,000,000 venues / Co asset 50 yea place an exis undepreciate ferenced Support Rec Attach busines Capital Project P	Total Asset Cost 	including Noncash C included in Net Present Vi punt (dollars and descript Se s, please provide del erial number, date pla N Vater Treatment Cap	ontrib. Cap alue calculation on) rial Numbe ailed inform iced in serv acity Study N r justification. t consideration	n) Orgs affect	cted
ess Contrib et Cost npact on (ake and M epreciation etirement being retire lanning do uture Plan	\$ Operating Re Category Nodel of new a n Life : Does this re ed, including to bocument(s) ref ining / Design	5,000,000 venues / Co asset 50 yea place an exis undepreciate ferenced Support Rec Attach busines Capital Project Pr	Total Asset Cost 	including Noncash C included in Net Present Vo bunt (dollars and descript Se s, please provide det erial number, date pla N Vater Treatment Cap urther explain scope and/o by the following for budge ed approvals.	ontrib. Cap alue calculation on) rial Numbe ailed inform aced in serv acity Study N r justification. t consideration	n) Orgs affect	cted
ess Contrib et Cost npact on (lake and M epreciation etirement being retire lanning do uture Plan	\$ Operating Re Category Addel of new a n Life : Does this re ed, including u ocument(s) ref ining / Design	5,000,000 evenues / Co esset 50 yea place an exis undepreciate ferenced Support Rec Attach busines Capital Project Plants	Total Asset Cost	including Noncash C included in Net Present Vi DUNT (dollars and descript Se s, please provide def erial number, date pla N Vater Treatment Cap urther explain scope and/o by the following for budge ed approvals.	ailed inform acity Study n justification. t consideration	n) Orgs affect	
ess Contrib et Cost npact on (lake and M epreciation etirement being retire lanning do uture Plan	S Operating Re Category Category Model of new a n Life : Does this re ed, including to comment(s) refining / Design C Braiect Management	5,000,000 venues / Co asset 50 yea place an exis undepreciate ferenced Support Rec Attach busines Capital Project Plants	Total Asset Cost Total Asset Cost (Detailed documentation Annual am Annual am Annua	including Noncash C included in Net Present Vi ount (dollars and descript Se s, please provide det erial number, date pla N Vater Treatment Cap uther explain scope and/o by the following for budge ed approvals.	ontrib. Cap alue calculation on) rial Numbe ailed inform iced in serv acity Study N r justification. t consideration <i>Initial. Dat</i>	n) Orgs affect	
et Cost npact on (ake and N epreciation etirement being retired lanning do uture Plan	\$ Operating Re Category Addel of new a n Life : Does this re ed, including u ocument(s) ref ning / Design	5,000,000	Total Asset Cost Total Asset Cost (Detailed documentation Annual am Annual am Annua	including Noncash C included in Net Present Vi punt (dollars and descript Se s, please provide defended arial number, date pla N Vater Treatment Cap urther explain scope and/of by the following for budge ed approvals. 5) CBSO	ontrib. Cap alue calculation on) rial Numbe ailed inform acity Study N r justification. t consideration <u>Initial. Dat</u>	n) Orgs affect r nation on asset n. <u>be and Forward</u> <u>8/2-2/67</u>	
et Cost npact on (ake and N epreciation etirement being retired lanning do uture Plan 1) 1 2)	S Operating Re Category Aodel of new a n Life : Does this re ed, including t ocument(s) ref ning / Design Project Manage Process Owne 2) P22	5,000,000	Total Asset Cost Total Asset Cost (Detailed documentation Annual amo Annual amo Annua	including Noncash C included in Net Present Vi DUNT (dollars and descript Se s, please provide deferial number, date pla Partial number, date pla N Vater Treatment Cap urther explain scope and/of by the following for budge ed approvals. 5) CBSO 6) CPAC 7) Bresident	ontrib. Cap alue calculation on) rial Numbe ailed inform aced in serv acity Study N r justification. t consideration Initial. Dat	n) Orgs affec r nation on asset rice, etc n. <u>e and Forward</u> <u>\$/22/67</u> <u>\$/22/07</u>	
et Cost pact on (ake and N epreciation etirement being retire anning do uture Plan 1) 1 2)	S Operating Re Category Aodel of new a n Life : Does this re ed, including t ocument(s) ref ning / Design Project Manage Process Owne 3) BSC (A) Plancia	5,000,000	Total Asset Cost Total Asset Cost (Detailed documentation Annual amo Annual amo Annua	including Noncash C included in Net Present Vi bunt (dollars and descript Se s, please provide def erial number, date pla N Vater Treatment Cap urther explain scope and/o by the following for budge ed approvals. 5) CBSO 6) CPAC 7) President	ontrib. Cap alue calculation on) rial Numbe ailed inform ced in serv acity Study N r justification. t consideration Initial. Dat	n) Orgs affec r nation on asset rice, etc n. <u>e and Forward</u> <u>\$/22/67</u>	

÷

ĩ

- - -

PROJECT PROPOSAL (Continued)

Project #	00000	Title	BEPWTP	Capacity Development Project
Project(s) a	and task(s) to be tr	ansferred to new pr	niect	
Start date (nd table(b) to be the			1/1/2010
End date o	f project			12/31/2011
If plant proj	iect list location (i.e	e BFP Allmond et	ic)	BEP
Floyated o	r general service a			Flevated
Elevaled U	i general service a	lea		
KEY MEM	BERS (these employe	es will be given access	to see all costs)	
Project Ma	nager/Task Manag	er	Ed Basquill	
Program M	lanager		Jim Smith	
BSO	-			
Inspector				
Other				
o anon				
PROJECT Distribution Facilities M General Ac General (F Information Meters, Se Preliminary Supply and Transmissi Vehicles/P Water Trea	CATEGORY (highlight Storage Facility lanagement dministrative furniture, Lab/Common Technology ervices and Hydrant / E/S d Pumping Facility ion and Distribution ower Operated Equatment Facility	ght / circle one) munication Equipme ts u uipment	ent)	
FUNDING Agency (be Bond Fund Bullitt Cour	<u>SOURCE</u> (must = 10 specific) Is nty Water Reserve	10%; based on Total Cos	st excluding Noncash Contrib	uted Capital) If Billable or Agency/Developer project,
Customer		400		billing party's name and address:
Depreciatio	on Fund	100		
Goshen Re	eserve			
Infrastructu	ure Reserve			
Operating	Fund (for O&M only)			
Shepherds	sville Reserve			
System De	evelopment Fund			
		100		
To be fille Project set Interest or Template	<u>d out by Project A</u> up in Oracle by na Non-interest	Accounting: ame/date		

FR-1003.01

Rev 04-12-07

SUBMITTED TO

Louisville Water Company

FOR Water Treatment Plant Capacity Study

AUGUST 2007

SUBMITTED BY

CH2NAHILL

Water Treatment Plant Capacity Study

Prepared for

Louisville Water Company

August 2007

CH2MHILL

This study was conducted to identify current water production capacities at the BE Payne and Crescent Hill Water Treatment Plants (BEPWTP and CHWTP), and low cost improvements to expand production capacity production.

Each plant's capacity was evaluated according to the following three components:

- 1. Hydraulics by computer modeling, calibrated by surveying
- 2. Treatment facility loading rates as compared to industry and design standards
- 3. Chemical-handling facilities and pumping equipment

BEPWTP and CHWTP have nominal design capacities of 60 million gallons per day (mgd) and 240 mgd, respectively. These capacities are based on standard filtration rates at each plant and have been confirmed by sanitary surveys conducted by the Kentucky Division of Water (KY DOW) (see Appendix E). As a result of this study, it was determined that the current maximum production capabilities of BEPWTP and CHWTP are 60 mgd and 180 mgd, respectively, as shown in Table ES-1. These maximum capabilities are based on plant hydraulics, treatment facility loading rates, chemical-handling facilities, and pumping equipment. Currently, if either plant is operated above these maximum capacities, softening basin weirs will flood causing improper operation of the plant. Figures ES-1 and ES-2 show current maximum production capacities for each unit process at BEPWTP and CHWTP.

Higher production capacities were investigated for both plants. Hydraulic computer modeling was prepared, calibrated, and conducted to determine flow rate capacities and head losses through each component of the treatment plants. Options to allow increased flow rate were identified and tested.

For the BEPWTP, three hydraulic improvement options were identified to expand from the current capacity of 60 mgd to 90 mgd, and two hydraulic options were identified for an expansion to 120 mgd. Hydraulic improvements included raising weir elevations to eliminate downstream backwater effects, lowering weirs where excess freefall exists to eliminate upstream backwater effects, extending basin walls to attain adequate freeboard, and enlarging or creating new passageway openings in basin walls. Additional improvements are related to treatment processes and equipment and include clear well additions, retrofitting tube settlers in settling basins, high service pumps, and chemical storage and feed facilities.

For the CHWTP, one hydraulic improvement option was identified for an expansion from the current capacity of 180 mgd to 210 mgd, and two hydraulic options were identified for an expansion to 240 mgd. Hydraulic improvements included raising weir elevations to prevent downstream backwater effects, extending basin walls, enlarging or creating new passageway openings in basin walls, and strengthening the piping connections for the east filter influent. Additional improvements are related to treatment processes and equipment and include clear well additions, retrofitting tube settlers in settling basins, high service pumps, and chemical storage and feed facilities.

WDC062640001

COPYRIGHT 2007 BY CH2M HILL, INC. . COMPANY CONFIDENTIAL

TABLE ES-1

Water Treatment Plant Capacities, Present and Future

Capacity	Crescent Hill WTP	BE Payne WTP	Total
Nominal Design, mgd	240	60	300
Current Maximum Production Capability, mgd	180	60	240
Phase 1 Expansion, mgd	210	90	300
Phase 2 Expansion, mgd	240	120	360

Presently, as of publication of this report, Louisville Water Company's (LWC) maximum daily production of 205 mgd occurred in June 2005. Based on the LWC's current maximum day production capacity of 240 mgd, LWC currently has a reserve system capacity of 35 mgd. Upon completion of the Phase 1 and Phase 2 expansions, LWC will increase its reserve capacity to 95 mgd and 155 mgd, respectively.

All capacity improvements were categorized as **Required** or **Discretionary**. Improvements were considered to be **Required** if the improvement would be needed to enable the WTP to: 1) meet KY DOW requirements consistently, and 2) maintain LWC's high standard of water quality. Improvements were considered to be **Discretionary** if their benefit would improve plant operations or redundancy. Some improvements that are based on KY DOW guidelines or recommendations, but are not requirements, would fall into the **Discretionary** category until further investigation is performed to indicate otherwise.

Improvements to eliminate hydraulic bottlenecks are relatively minor with respect to costs for both plants; other improvements for treatment processes and equipment are more costly, as shown in Table ES-2. The total estimated construction costs for expanding the capacity at each plant are presented in this table.

Construction Cost Estimate Summary WTP Phase 2 Expansion Phase 1 Expansion Required **Discretionary** Required **Discretionary** BEPWTP 90 mgd 90 mgd 120 mgd 120 mgd \$5.0 million \$16.9 million \$8.6 million \$26.3 million CHWTP 210 mgd 210 mgd 240 mgd 240 mgd

\$1.6 million

TABLE ES-2

Because of the lack of scope development at this conceptual stage of engineering analysis, these estimates would be considered rough, order-of-magnitude level. The expected accuracy range would be -50/+50 percent. The final cost of the recommended improvements will depend on actual labor and material costs, competitive market conditions, final project scope, schedule, detailed design documents, and other variable

\$20.6 million

\$14.7 million

WDC062640001

\$23.6 million

conditions. As a result, the final cost of the recommended improvements will vary from these estimates.

Sections 2 and 3 of this report identify hydraulic, process, and equipment deficiencies that will result if the WTP capacities are increased. The identification of these deficiencies, and improvement options that were developed to correct them, were based on industry and Kentucky DOW standards and evaluation criteria developed during this project with LWC staff. Prior to designing any improvements to correct the deficiencies the criteria should be revisited in more detail. Example criteria that should be revisited or other issues to investigate are clear well volume requirements, future high service pumping capacities, tube settler feasibility and cost comparisons to new high-rate clarification technologies, future chemical feed rates, and filter high-rate performance testing.

1

|--|

Capital or O	8.M	Capital		Project Manager	Ed Basquill
Project Num	ber			Date	07/13/07
	Non-budget	ed Project for	current year	Cost Center	222
<u> </u>	Project to b	e considered f	or future Capital Plan	Pri	ority Code
	Budgeted in	i current Capit	al Program (provide pare	ont program # if child projec	ct)
Title of Proje	ect		CHFP Ca	apacity Developmen	nt Project
Scope					
	Expand the cap opportunities a KYDOW.	pacity of Crescent and ensure the pro	Hill Filter Plant (CHFP) to 2 duction capacity reserve e	210 MGD to service futur xceeds 15% of maximum	e growth and business development t day demands as recommended by
Project Just	ification: (Pl	ease check all that i	apply and provide written su	mmary of justification)	
Regulatory		X C	ontract Commitment		Growth Related X
Safety		C	ontributed Capital		Other (attach explanation)
Security		E	conomic Benefit (include	e NPV)	
Operating Re	equirement	X ir	nproved Customer Ser	vice	
Project Estin	mate:				<u> </u>
Fotal Cost exclu	ding Noncash C	Contrib. Capital	Activit	y (Preliminary design, land	acquisition, construction, etc)
2008					
2009					
2010		_			
2011		800,000	DUSILN C	דיטהברגט ד	10U
Other -		800,000	FINAL (assince no	5
Other Fotal Cost _ess Contrib _	\$	800,000 1,600,000	Fa Nor C Noncash Contribu Total Asset Cost	uted Capital:Labor an including Noncash Co	J d/or materials = ontrib. Capital = \$1,600,000
Other - Fotal Cost _ .ess Contrib _ Net Cost -	\$	800,000 1,600,000 1,600,000	FRACE Noncash Contribu Total Asset Cost	uted Capital:Labor an including Noncash Co	J d/or materials = ontrib. Capital = \$1,600,000
Other Total Cost Less Contrib Net Cost mpact on O	\$ \$ Pperating Re Category	800,000 1,600,000 1,600,000 evenues / Costa	F. DOL Noncash Contribu Total Asset Cost i S (Detailed documentation i Annual and	included in Net Present Va	Undor materials = contrib. Capital = \$1,600,000 lue calculation) contribution (Cross affected)
Other	\$ \$ perating Re Category	800,000 1,600,000 1,600,000 evenues / Costs	Noncash Contribu Total Asset Cost i s (Detailed documentation i Annual amo	included in Net Present Va	d/or materials = ontrib. Capital = \$1,600,000 lue calculation) on) Orgs affecte
Dther _ Fotal Cost _ Less Contrib _ Net Cost _ mpact on O	\$ \$ Pperating Re Category	800,000 1,600,000 1,600,000 evenues / Costs	F. DOL O Noncash Contribu Total Asset Cost i S (Detailed documentation i Annual amo	included in Net Present Va	Und/or materials = contrib. Capital = \$1,600,000 lue calculation) con) Orgs affecte
Other _ Fotal Cost _ ess Contrib _ Net Cost _ mpact on O	\$ perating Re Category odel of new a	800,000 1,600,000 1,600,000 evenues / Costs asset	Frence Contribution Internation Internatio Internation Internation Internation Internation	included in Net Present Va	d/or materials = ontrib. Capital = \$1,600,000 lue calculation) on) Orgs affecte
Other Total Cost Less Contrib Net Cost mpact on O Vake and Me Depreciation	\$ perating Re Category odel of new a Life	800,000 1,600,000 1,600,000 evenues / Costs asset 50 years	Frence Noncash Contribu Total Asset Cost i (Detailed documentation i Annual amo	included in Net Present Va ount (dollars and description Ser	d/or materials = ontrib. Capital = \$1,600,000 lue calculation) on) Orgs affecte
Other Total Cost Less Contrib Net Cost mpact on O Make and Mo Depreciation Retirement : being retire	\$ Pperating Re Category odel of new a Life Does this re d, including t	800,000 1,600,000 1,600,000 evenues / Costa asset 50 years place an existin undepreciated v	Roncash Contribu Total Asset Cost i a (Detailed documentation i Annual amo g asset Y or N ? If yes alue, make, model, se	included in Net Present Va included in Net Present Va punt (dollars and description Sential number, date place N	d/or materials = contrib. Capital = \$1,600,000 lue calculation) con) Orgs affecte rial Number ailed information on asset ced in service, etc
Other	\$ perating Re Category odel of new a Life Does this re d, including to cument(s) ref	800,000 1,600,000 1,600,000 evenues / Costa evenues / Costa asset 50 years place an existin undepreciated v	Roncash Contribu Total Asset Cost i (Detailed documentation Annual amo g asset Y or N ? If yes alue, make, model, se	ited Capital:Labor an including Noncash Co included in Net Present Va punt (dollars and description Sential number, date place N Vater Treatment Capa	d/or materials = ontrib. Capital = \$1,600,000 <i>lue calculation)</i> on) Orgs affecte rial Number ailed information on asset ced in service, etc acity Study
Other	\$ perating Re Category odel of new a Life Does this re d, including to cument(s) ref ing / Design	800,000 1,600,000 1,600,000 evenues / Cost evenues / Cost asset 50 years place an existin undepreciated v ferenced Support Requir	Red Y or N ?	Ater Treatment Capa	d/or materials = ontrib. Capital = \$1,600,000 <i>lue calculation)</i> <i>on)</i> Orgs affecte rial Number ailed information on asset ced in service, etc acity Study N
Other	\$ perating Re Category odel of new a Life Does this re d, including to cument(s) ref ing / Design	800,000 1,600,000 1,600,000 1,600,000 evenues / Cost: asset 50 years place an existin undepreciated v ferenced Support Requir Attach business c	Roncash Contribu Total Asset Cost i Total Asset Cost i (Detailed documentation i Annual amo g asset Y or N ? If yes alue, make, model, se wed Y or N ?	included in Net Present Va included in Net Present Va ount (dollars and description Sential number, date plac N Vater Treatment Capa	d/or materials = ontrib. Capital = \$1,600,000 <i>lue calculation)</i> on) Orgs affecte rial Number ailed information on asset ced in service, etc acity Study N <i>justification.</i>
Other	\$ Perating Re Category odel of new a Life Does this re d, including to cument(s) refining / Design	800,000 1,600,000 1,600,000 1,600,000 evenues / Costa asset 50 years place an existin undepreciated v ferenced Support Requir Attach business c Capital Project Prop	Roncash Contribu Total Asset Cost i Total Asset Cost i Annual amo g asset Y or N ? If yes alue, make, model, se with the second	Anter Treatment Capa N Vater Treatment Capa N Vater Treatment Capa N	d/or materials = ontrib. Capital = \$1,600,000 lue calculation) on) Orgs affecte rial Number ailed information on asset ced in service, etc acity Study N justification. t cansideration.
Other	\$ perating Re Category odel of new a Life Does this re d, including to cument(s) refining / Design	800,000 1,600,000 1,600,000 1,600,000 venues / Costa asset 50 years place an existin undepreciated v ferenced Support Requir Attach business c Capital Project Propu	Reference Contribution Noncash Contribution Total Asset Cost in S (Detailed documentation Annual amount Annual amount and S (Detailed documentation Annual amount Annual amount S (Detailed documentation and S (Detailed documentation S (Detailed documen	Anter Treatment Capa N Vater Treatment Capa Anter Scope and/or by the following for budget ad approvals.	Id/or materials = ontrib. Capital = \$1,600,000 Iue calculation) on) Orgs affecte rial Number ailed information on asset ced in service, etc acity Study N justification. consideration. Initial, Date and Forward
Other	\$ perating Re Category odel of new a Life Does this re d, including to cument(s) ref ing / Design (cument(s) ref ing / Design	800,000 1,600,000 1,600,000 1,600,000 1,600,000 evenues / Costs asset 50 years place an existin undepreciated v ferenced Support Requir Attach business c Capital Project Propu- Initial, Date of	Red Y or N ? ase and documentation to fur must be approved "x" boxes for require and Forward B (2: 207	Ater Treatment Capa N Vater Treatment Capa rther explain scope and/or by the following for budget of approvals.	Id/or materials = ontrib. Capital = \$1,600,000 I/ue calculation) on) Orgs affecte rial Number ailed information on asset ced in service, etc acity Study N justification. consideration. Initial, Date and Forward ATA S122107
Other	\$ perating Re Category odel of new a Life Does this re d, including to cument(s) ref ing / Design (cument(s) ref process Owner Process Owner	800,000 1,600,000 1,600,000 1,600,000 venues / Costa asset 50 years place an existin undepreciated v ferenced Support Requir Attach business c Capital Project Propo	Red Y or N ? ase and documentation to fur se of yor N ? ase and documentation to fur base for must be approved "x" boxes for require the and Forward Carlow of the approved "x" boxes for require the and Forward	Anter Treatment Capa Anter Explain scope and/or by the following for budget of approvals. 5) CBSO 6) CPAC	Id/or materials = contrib. Capital = State I/ue calculation) fon) Orgs affecte rial Number ailed information on asset ced in service, etc acity Study N ijustification. t cansideration. Initial. Date and Forward Orfs S/12/07 Orfs S/12/07
Other Total Cost Less Contrib Net Cost Impact on O Make and Ma Depreciation Retirement : being retire Planning doo Uture Plann 1) P 2) I	\$ Perating Re Category odel of new a Life Does this re d, including to cument(s) ref ing / Design (c) roject Manage Process Owne 3) BS(800,000 1,600,000 1,600,000 1,600,000 venues / Costa sevenues / Sevenue	S (Detailed documentation in Total Asset Cost in Annual amo g asset Y or N ? If yes value, make, model, se gate and documentation to fur osal form must be approved "x" boxes for require the and Forward S [20] 07 E [20] 07 E [20] 07 E [20] 07 E [20] 07	Anter Treatment Capa Nater Treatment Capa Nater Treatment Capa South (dollars and description Sector) Sector Sector Sector) Sector Sect	Id/or materials = contrib. Capital = State Interview Interview Interview Interview Interview Interview Interview Interview Initial, Date and Forward Initial, Date and Forward

1

2

PROJECT	PROPOSAL	L (Continued)

Project # _	00000	Title	CHFP Capa	city Development Project
Project(s) and	d task(s) to be tra	insferred to new proje	ct	
Start date of	oroject			1/1/2011
End date of p	roject			12/31/2012
If plant project	t, list location (i.e	e. BEP, Allmond, etc)		
Elevated or g	eneral service ar	ea		
KEY MEMBE	RS (these employed	es will be given access to se	ee all costs)	
Project Mana	ger/Task Manag	er	TBD	
Program Man	ager		Carl Fautz	
BSO				
Inspector				
Other				
PROJECT C. Distribution S Facilities Mar General Adm General (Furn Information T Meters, Servi Preliminary E Supply and P Transmission Vehicles/Pow Water Treatr	ATEGORY (highlig itorage Facility nagement inistrative niture, Lab/Comm rechnology ices and Hydrant /S Pumping Facility o and Distribution ver Operated Equ ment Facility	nunication Equipment) s s)	
FUNDING SC Agency (be sp Bond Funds Bullitt County Customer Depreciation Developer Goshen Rese Infrastructure Oldham Coun Operating Fu Shepherdsvil System Devel	DURCE (must = 10) ecific) Water Reserve Fund erve Reserve nty Fund ind (for O&M only) le Reserve elopment Fund	0%; based on Total Cost ex 100 100	cluding Noncash Contributed (If E bill	Capital) Sillable or Agency/Developer project, ing party's name and address:
To be filled of Project set up Interest or No Template	out by Project A o in Oracle by na on-interest	ccounting: me/date		

• 🕈 • •

æ

Rev 04-12-07

SUBMITTED TO

Louisville Water Company

FOR Water Treatment Plant Capacity Study

AUGUST 2007

SUBMITTED BY

CH2NAHILL

Water Treatment Plant Capacity Study

• . •

.

Prepared for

Louisville Water Company

August 2007

CH2MHILL

Executive Summary

This study was conducted to identify current water production capacities at the BE Payne and Crescent Hill Water Treatment Plants (BEPWTP and CHWTP), and low cost improvements to expand production capacity production.

Each plant's capacity was evaluated according to the following three components:

- 1. Hydraulics by computer modeling, calibrated by surveying
- 2. Treatment facility loading rates as compared to industry and design standards
- 3. Chemical-handling facilities and pumping equipment

BEPWTP and CHWTP have nominal design capacities of 60 million gallons per day (mgd) and 240 mgd, respectively. These capacities are based on standard filtration rates at each plant and have been confirmed by sanitary surveys conducted by the Kentucky Division of Water (KY DOW) (see Appendix E). As a result of this study, it was determined that the current maximum production capabilities of BEPWTP and CHWTP are 60 mgd and 180 mgd, respectively, as shown in Table ES-1. These maximum capabilities are based on plant hydraulics, treatment facility loading rates, chemical-handling facilities, and pumping equipment. Currently, if either plant is operated above these maximum capacities, softening basin weirs will flood causing improper operation of the plant. Figures ES-1 and ES-2 show current maximum production capacities for each unit process at BEPWTP and CHWTP.

Higher production capacities were investigated for both plants. Hydraulic computer modeling was prepared, calibrated, and conducted to determine flow rate capacities and head losses through each component of the treatment plants. Options to allow increased flow rate were identified and tested.

For the BEPWTP, three hydraulic improvement options were identified to expand from the current capacity of 60 mgd to 90 mgd, and two hydraulic options were identified for an expansion to 120 mgd. Hydraulic improvements included raising weir elevations to eliminate downstream backwater effects, lowering weirs where excess freefall exists to eliminate upstream backwater effects, extending basin walls to attain adequate freeboard, and enlarging or creating new passageway openings in basin walls. Additional improvements are related to treatment processes and equipment and include clear well additions, retrofitting tube settlers in settling basins, high service pumps, and chemical storage and feed facilities.

For the CHWTP, one hydraulic improvement option was identified for an expansion from the current capacity of 180 mgd to 210 mgd, and two hydraulic options were identified for an expansion to 240 mgd. Hydraulic improvements included raising weir elevations to prevent downstream backwater effects, extending basin walls, enlarging or creating new passageway openings in basin walls, and strengthening the piping connections for the east filter influent. Additional improvements are related to treatment processes and equipment and include clear well additions, retrofitting tube settlers in settling basins, high service pumps, and chemical storage and feed facilities.

TABLE ES-1

Water Treatment Plant Capacities, Present and Future

Capacity	Crescent Hill WTP	BE Payne WTP	Total
Nominal Design, mgd	240	60	300
Current Maximum Production Capability, mgd	180	60	240
Phase 1 Expansion, mgd	210	90	300
Phase 2 Expansion, mgd	240	120	360

Presently, as of publication of this report, Louisville Water Company's (LWC) maximum daily production of 205 mgd occurred in June 2005. Based on the LWC's current maximum day production capacity of 240 mgd, LWC currently has a reserve system capacity of 35 mgd. Upon completion of the Phase 1 and Phase 2 expansions, LWC will increase its reserve capacity to 95 mgd and 155 mgd, respectively.

All capacity improvements were categorized as **Required** or **Discretionary**. Improvements were considered to be **Required** if the improvement would be needed to enable the WTP to: 1) meet KY DOW requirements consistently, and 2) maintain LWC's high standard of water quality. Improvements were considered to be **Discretionary** if their benefit would improve plant operations or redundancy. Some improvements that are based on KY DOW guidelines or recommendations, but are not requirements, would fall into the **Discretionary** category until further investigation is performed to indicate otherwise.

Improvements to eliminate hydraulic bottlenecks are relatively minor with respect to costs for both plants; other improvements for treatment processes and equipment are more costly, as shown in Table ES-2. The total estimated construction costs for expanding the capacity at each plant are presented in this table.

TABLE ES-2

Construction Cost Estimate Summary

WTP	Phase 1	Expansion	Phase 2 I	Expansion
	Required	Discretionary	<u>Required</u>	Discretionary
BEPWTP	90 mgd	90 mgd	120 mgd	120 mgd
	\$5.0 million	\$16.9 million	\$8.6 million	\$26.3 million
CHWTP	210 mgd	210 mgd	240 mgd	240 mgd
	\$1.6 million	\$20.6 million	\$14.7 million	\$23.6 million

Because of the lack of scope development at this conceptual stage of engineering analysis, these estimates would be considered rough, order-of-magnitude level. The expected accuracy range would be -50/+50 percent. The final cost of the recommended improvements will depend on actual labor and material costs, competitive market conditions, final project scope, schedule, detailed design documents, and other variable

١V

conditions. As a result, the final cost of the recommended improvements will vary from these estimates.

Sections 2 and 3 of this report identify hydraulic, process, and equipment deficiencies that will result if the WTP capacities are increased. The identification of these deficiencies, and improvement options that were developed to correct them, were based on industry and Kentucky DOW standards and evaluation criteria developed during this project with LWC staff. Prior to designing any improvements to correct the deficiencies the criteria should be revisited in more detail. Example criteria that should be revisited or other issues to investigate are clear well volume requirements, future high service pumping capacities, tube settler feasibility and cost comparisons to new high-rate clarification technologies, future chemical feed rates, and filter high-rate performance testing.

· • •

FINAL REPORT

SUBMITTED TO

Louisville Water Company

FOR Water Treatment Plant Capacity Study

AUGUST 2007

SUBMITTED BY

Water Treatment Plant Capacity Study

Prepared for

Louisville Water Company

August 2007

CH2MHILL

Executive Summary

This study was conducted to identify current water production capacities at the BE Payne and Crescent Hill Water Treatment Plants (BEPWTP and CHWTP), and low cost improvements to expand production capacity production.

Each plant's capacity was evaluated according to the following three components:

- 1. Hydraulics by computer modeling, calibrated by surveying
- 2. Treatment facility loading rates as compared to industry and design standards
- 3. Chemical-handling facilities and pumping equipment

BEPWTP and CHWTP have nominal design capacities of 60 million gallons per day (mgd) and 240 mgd, respectively. These capacities are based on standard filtration rates at each plant and have been confirmed by sanitary surveys conducted by the Kentucky Division of Water (KY DOW) (see Appendix E). As a result of this study, it was determined that the current maximum production capabilities of BEPWTP and CHWTP are 60 mgd and 180 mgd, respectively, as shown in Table ES-1. These maximum capabilities are based on plant hydraulics, treatment facility loading rates, chemical-handling facilities, and pumping equipment. Currently, if either plant is operated above these maximum capacities, softening basin weirs will flood causing improper operation of the plant. Figures ES-1 and ES-2 show current maximum production capacities for each unit process at BEPWTP and CHWTP.

Higher production capacities were investigated for both plants. Hydraulic computer modeling was prepared, calibrated, and conducted to determine flow rate capacities and head losses through each component of the treatment plants. Options to allow increased flow rate were identified and tested.

For the BEPWTP, three hydraulic improvement options were identified to expand from the current capacity of 60 mgd to 90 mgd, and two hydraulic options were identified for an expansion to 120 mgd. Hydraulic improvements included raising weir elevations to eliminate downstream backwater effects, lowering weirs where excess freefall exists to eliminate upstream backwater effects, extending basin walls to attain adequate freeboard, and enlarging or creating new passageway openings in basin walls. Additional improvements are related to treatment processes and equipment and include clear well additions, retrofitting tube settlers in settling basins, high service pumps, and chemical storage and feed facilities.

For the CHWTP, one hydraulic improvement option was identified for an expansion from the current capacity of 180 mgd to 210 mgd, and two hydraulic options were identified for an expansion to 240 mgd. Hydraulic improvements included raising weir elevations to prevent downstream backwater effects, extending basin walls, enlarging or creating new passageway openings in basin walls, and strengthening the piping connections for the east filter influent. Additional improvements are related to treatment processes and equipment and include clear well additions, retrofitting tube settlers in settling basins, high service pumps, and chemical storage and feed facilities.

WDC062640001

COPYRIGHT 2007 BY CH2M HILL, INC. • COMPANY CONFIDENTIAL

TABLE ES-1

Water Treatment Plant Capacities, Present and Future

Capacity	Crescent Hill WTP	BE Payne WTP	Total
Nominal Design, mgd	240	60	300
Current Maximum Production Capability, mgd	180	60	240
Phase 1 Expansion, mgd	210	90	300
Phase 2 Expansion, mgd	240	120	360

Presently, as of publication of this report, Louisville Water Company's (LWC) maximum daily production of 205 mgd occurred in June 2005. Based on the LWC's current maximum day production capacity of 240 mgd, LWC currently has a reserve system capacity of 35 mgd. Upon completion of the Phase 1 and Phase 2 expansions, LWC will increase its reserve capacity to 95 mgd and 155 mgd, respectively.

All capacity improvements were categorized as **Required** or **Discretionary**. Improvements were considered to be **Required** if the improvement would be needed to enable the WTP to: 1) meet KY DOW requirements consistently, and 2) maintain LWC's high standard of water quality. Improvements were considered to be **Discretionary** if their benefit would improve plant operations or redundancy. Some improvements that are based on KY DOW guidelines or recommendations, but are not requirements, would fall into the **Discretionary** category until further investigation is performed to indicate otherwise.

Improvements to eliminate hydraulic bottlenecks are relatively minor with respect to costs for both plants; other improvements for treatment processes and equipment are more costly, as shown in Table ES-2. The total estimated construction costs for expanding the capacity at each plant are presented in this table.

TABLE ES-2

Construction Cost Estimate Summary

WTP	Phase 1	Phase 1 Expansion		Expansion
- <u> </u>	<u>Required</u>	Discretionary	<u>Required</u>	Discretionary
BEPWTP	90 mgd	90 mgd	120 mgd	120 mgd
	\$5.0 million	\$16.9 million	\$8.6 million	\$26.3 million
СНѠТР	210 mgd	210 mgd	240 mgd	240 mgd
	\$1.6 million	\$20.6 million	\$14.7 million	\$23.6 million

Because of the lack of scope development at this conceptual stage of engineering analysis, these estimates would be considered rough, order-of-magnitude level. The expected accuracy range would be -50/+50 percent. The final cost of the recommended improvements will depend on actual labor and material costs, competitive market conditions, final project scope, schedule, detailed design documents, and other variable

conditions. As a result, the final cost of the recommended improvements will vary from these estimates.

Sections 2 and 3 of this report identify hydraulic, process, and equipment deficiencies that will result if the WTP capacities are increased. The identification of these deficiencies, and improvement options that were developed to correct them, were based on industry and Kentucky DOW standards and evaluation criteria developed during this project with LWC staff. Prior to designing any improvements to correct the deficiencies the criteria should be revisited in more detail. Example criteria that should be revisited or other issues to investigate are clear well volume requirements, future high service pumping capacities, tube settler feasibility and cost comparisons to new high-rate clarification technologies, future chemical feed rates, and filter high-rate performance testing.

WDC062640001

COPYRIGHT 2007 BY CH2M HILL, INC. • COMPANY CONFIDENTIAL

CURRENT PRODUCTION CAPABILITY: 60 MGD

Based on surface loading rate criteria.
 No loading restrictions exist; however, inlet and outlet modifications may be required.
 Based on 8 filters at 5 gpm/sf.
 Pump #8 assumed to be in standby service.

CH2MHILL

LWC 2874

CURRENT PRODUCTION CAPABILITY: 180 MGD

LWC 2875

Contents

Exec	utive	Summa	ary iii
1	Intro	ductio	n1-1
	1.1	Appro	ach1-1
	1.2	Assum	uptions for Modeling1-3
		1.2.1	CHWTP
		1.2.2	BEPWTP1-4
	1.3	Criteri	a for Acceptable Modeling Results1-4
2	BEW	TP Res	sults and Conclusions2-1
	2.1	Hydra	ulic Capacity2-1
		2.1.1	Existing WTP Capacity2-1
		2.1.2	Modeling Results for 90-mgd Improvements2-2
		2.1.3	Modeling Results for 120-mgd Improvements2-3
		2.1.4	High-Service Pumps2-4
	2.2	BEPW	TP Treatment Processes2-5
		2.2.1	Flocculation Basins2-5
		2.2.2	Coagulation Basins2-5
		2.2.3	Slow Mix Basins2-5
		2.2.4	Softening Basins2-6
		2.2.5	Clear Wells2-6
		2.2.6	Filtration2-6
	2.3	BEPW	TP Chemical Feed Systems2-6
		2.3.1	Chemical Storage2-6
		2.3.2	Chemical Feed Capacity2-7
3	CHV	VTP Re	sults and Conclusions
	3.1	Hydra	ulic Capacity3-1
		3.1.1	Existing WTP Capacity
		3.1.2	Modeling Results for 210-mgd Improvements
		3.1.3	Modeling Results for 240-mgd Improvements
		3.1.4	Softening Basin Bypass
		3.1.5	Decommissioning South Filters
		3.1.6	Clear Wells
		3.1.7	High-Service Pumps
	3.2	CHW.	IP Treatment Processes
		3.2.1	Flocculation Basins
		3.2.2	Coagulation Basins
		3.2.3	Slow Mix Basins
		3.2.4	Softening Basins
		3.2.5	Filtration
	3.3	CHW	IP Chemical Feed Systems
		3.3.1	Chemical Storage
		3.3.2	Chemical Feed Capacity3-7

COPYRIGHT 2007 BY CH2M HILL, INC. • COMPANY CONFIDENTIAL

4	Sum	imary o	f Improvements	
	4.1	BEPWTP		4-1
		4.1.1	Expansion to 90 mgd	
		4.1.2	Expansion to 120 mgd	4-2
		4.1.3	Electrical Supply and Distribution System	4-4
	4.2	CHW	TP	4-5
		4.2.1	Expansion to 210 mgd	4-6
		4.2.2	Expansion to 240 mgd	4-6
5	Cost Estimates for Recommended Modifications			
6	Recommendations for Implementation			

Appendixes

Α	Survey Point Elevations – BEPWTP				
	Table 1A: Structural Survey Point Elevations - BEPWTP				
	Table 1B: Structural Survey Point Elevations – CHWTP				
	Figure 1A: Structural Survey Locations – CHWTP				
	Figure 1B: Structural Survey Locations – BEPWTP				
	-				

- B BEPWTP Power Distribution One-Line Diagram
- C BEPWTP Construction Cost Estimates
- D CHWTP Construction Cost Estimates
- E Sanitary Surveys

Tables

- ES-1 Water Treatment Plant Capacities, Present and Future
- ES-2 Construction Cost Estimate Summary
- 2-1 BE Payne WTP Structure Elevations
- 2-2 BE Payne WTP Survey and Calibration Hydraulic Summary
- 2-3 BE Payne WTP 35.6 mgd (2 Treatment Trains in Service, 6 of 8 Filters in Service)
- 2-4 BE Payne WTP 57 mgd
- 2-5 BE Payne WTP 90 mgd Option 1A
- 2-6 BE Payne WTP 90 mgd Option 2A
- 2-7 BE Payne WTP 120 mgd Option 3A
- 2-8 BE Payne WTP 120 mgd Option 2B
- 2-9 BE Payne WTP 120 mgd Option 3B
- 2-10 BE Payne WTP Plant Hydraulic Modifications Summary
- 2-11 BE Payne WTP Process Capacity Summary
- 3-1 CHWTP Structure Elevations
- 3-2 CHWTP Survey and Calibration Hydraulic Summary
- 3-3 CHWTP 103 mgd Calibration
- 3-4 CHWTP 151 mgd Calibration
- 3-5 CHWTP 180 mgd Maximum Hydraulic Capacity
- 3-6 CHWTP 210 mgd Option 1 (Only Option for This Capacity)
- 3-7 CHWTP 240 mgd Option 2A

- 3-8 CHWTP 240 mgd Option 2B
- 3-9 Plant Hydraulic Modifications Summary
- 3-10 CHWTP 240 mgd Softening Trains Bypassed
- 3-11 CHWTP 240 mgd
- 3-12 Crescent Hill WTP Process Capacity Summary
- 4-1 Proposed BE Payne WTP Modifications
- 4-2 Proposed Crescent Hill WTP Modifications
- 5-1 Cost Estimates for Proposed BE Payne WTP Modifications
- 5-2 Cost Estimates for Proposed Crescent Hill WTP Modifications

Figures

- ES-1 B.E. Payne WTP Process Flow Diagram
- ES-2 Crescent Hill WTP Process Flow Diagram
- 1-1 B.E. Payne WTP Process Flow Diagram
- 1-2 Crescent Hill WTP Process Flow Diagram
- 2-1 BE Payne WTP Existing Hydraulic Profile
- 2-2 BE Payne WTP 57-mgd Hydraulic Profile
- 2-3 BE Payne WTP 90-mgd Hydraulic Profile
- 2-4 BE Payne WTP 120-mgd Hydraulic Profile
- 3-1 Crescent Hill Filter Plant Existing Hydraulic Profile
- 3-2 Crescent Hill Filter Plant 210-mgd Hydraulic Profile
- 3-3 Crescent Hill Filter Plant 240-mgd Hydraulic Profile
- 3-4 Crescent Hill Filter Plant 240-mgd Softening Bypassed Hydraulic Profile

Section 1 Introduction

This capacity study was conducted to identify current water production limitations and low-cost improvements to help determine whether the BE Payne and Crescent Hill Water Treatment Plants (BEPWTP and CHWTP) can be expanded to meet the following preselected capacities:

Capacity, Million Gallons per Day							
WTP	Present Rating	First Potential Expansion	Second Potential Expansion				
BEPWTP	60	90	120				
CHWTP	180	210	240				

A schematic view of current production capability by unit process for each plant is presented in Figures 1-1 and 1-2; however, the figures do not address the plants' capability to hydraulically transport water between processes. Specifically, the study identifies hydraulic bottlenecks, inadequate chemical storage and feed capacities, and high service– pumping capacities, which may prevent the facilities from meeting future water demands. Additionally, the treatment process loading rates were reviewed and compared to industry standards. Recommendations were made on the basis of hydraulic modeling and industry standard loading rates. This report presents the results of the study.

1.1 Approach

Each plant's capacity was evaluated according to the following three components:

- 1. Hydraulics computer modeling of plant hydraulics to determine limitations, including high-service pumping, but not raw water pumping
- 2. Treatment facility loading rates calculating loading rates for plant flows and comparing them to industry and design standards and requirements
- 3. Chemical-handling facilities calculating chemical feed rates and storage required for plant flows to identify inadequate pumping or feeding equipment and inadequate storage

The available as-built water treatment plant (WTP) construction drawings for each plant were reviewed to identify facility dimensions, piping and conduit configurations, and hydraulic control points. A survey was also conducted at each treatment plant to verify elevations of the control points and other critical structures. Appendix A shows the locations of these points on site plans at both plants. The survey also included water surface elevations at specific flow rates to provide a baseline for calibration of the hydraulic model. CHWTP has been expanded or improved several times since the original treatment facilities were completed. The east filters were constructed in two phases, and the softening basins

WDC062640001

and associated conduits were constructed in three phases. The models were prepared using the most up-to-date record drawings of the facilities available. The CHWTP record drawings contain a different elevation datum for each expansion phase: The filter drawings and first- and second-phase softening basin drawings are based on the Louisville Water Company (LWC) Datum, whereas the third phase softening basin drawings use the National Geodetic Vertical Datum of 1929 (NGVD 29). This survey was conducted using the NGVD 29 Datum. The LWC Datum was translated to the NGVD 29 Datum by adding 404.14 feet to each elevation, per instructions provided by LWC staff.

The modeling was conducted using HYDRO, a CH2M HILL modeling software package. Each plant model starts at a specified downstream condition (typically the highest clear well water surface level) entered by the user and calculates head losses backwards through the treatment plant. The model results have been inverted for presentation in this memorandum so that results start at the head of the plant and end at the clear well. A single flow path is selected and entered into the model by building a scenario consisting of model elements that represent treatment plant structures (weirs, channels, circular or rectangular conduits, orifices, etc.). Each element is populated with appropriate attributes such as length, width, friction coefficient, and percent of base flow. The model is then run, and an output file is produced that consists of the hydraulic and energy grade lines (HGL and EGL) upstream and downstream of each element in the model.

Two water surface surveys were performed at CHWTP to establish a baseline for calibrating the model. The surveys were conducted at plant flows of 103 million gallons per day (mgd) and 151 mgd. Two water surface surveys were conducted at BEPWTP as well; however, the flow difference between the two surveys was very small, and little additional information was gathered from the second survey. As a result, the BEPWTP model was calibrated using the 35.6-mgd plant flow survey results. Treatment flow-tracking data from the LWC supervisory control and data acquisition (SCADA) systems at both plants were provided to verify that flows were consistent for the duration of the water surface surveys. Minor losses and friction factors were adjusted in each model until the HGL results from the model reflected the results of the surveyed water surface elevations. The calibration goal was to have a 0.04-foot (0.5-inch) maximum difference between the model and the actual surveyed water surfaces. The surveyed water surface elevations are not precise owing to the difficulty in measuring moving and sometimes turbulent water surfaces.

BEPWTP was much less complicated to model than CHWTP. BEPWTP consists of identical parallel treatment trains, each containing an approximately even flow split as well as a single filter bank. CHWTP treatment trains are not identical, and the flow downstream of the reaction basins must split to three different filter banks (north, south, and east filters) as well as enter two of the three banks from both ends of the influent channel. To establish the estimated flow split going to each filter bank, a network model was created using EPANET software. The EPANET model was prepared starting at the common reaction basin effluent conduit at the northeast corner of reaction basin 1 and ending at each filter influent channel. Each filter flow, as measured by the SCADA system during the day of surveying, entered as the demand for each node. The starting point in the network model was assumed to be a supply reservoir with the actual surveyed water surface elevation of the reaction basin effluent channel at the northeast corner of reaction basin 1 entered as the reservoir water

WDC062640001

COPYRIGHT 2007 BY CH2M HILL, INC. • COMPANY CONFIDENTIAL

surface elevation. Some assumptions were made about whether certain buried valves were open or closed owing to LWC staff not knowing the current valve positions. The EPANET model produced the approximate flow split in each conduit branch feeding the three filter banks. The flow percentages calculated by the EPANET program were then entered into the appropriate element in the HYDRO model.

After model calibration, the first task was to establish the maximum hydraulic capacity of the existing treatment facilities without any modifications. During the survey of CHWTP, only four of six softening treatment trains were in service. To establish the maximum hydraulic capacity, flow percentages were adjusted in the model to assume that all eight coagulation basins and the six softening trains were in service and that each train was receiving a proportionate amount of flow on the basis of its size. One filter in each filter group was assumed to be out of service. Likewise, during the BEPWTP survey, only two of the three pretreatment trains were in service. The BEPWTP model flow percentages were adjusted after calibration to simulate conditions with all three pretreatment trains and seven of the eight filters being in service to establish the maximum hydraulic capacity.

After the maximum hydraulic capacity was established for each WTP, the model flow rates were adjusted to simulate specified future conditions for each plant. Modifications in each plant were identified to maintain a realistic hydraulic profile as well as adequate freeboard in basins and channels.

The loading rates of the treatment processes for each plant were examined and compared to Kentucky Division of Water (KY DOW) requirements and industry guidelines (for example, recommended standards for waterworks) for current and future flow conditions. The north and south coagulation basins at CHWTP are different sizes. The flow split between the basins was assumed to provide equal surface loading for each group of basins. Likewise, the filtration bed loading was assumed to be equal between each bank of filters. Loading rates were examined for current capacity and for two proposed capacities for each WTP.

Each chemical feed system was examined for dosage capacity as well as required storage. Required dosing capacity and recommended storage were calculated for current and proposed future capacities and compared to existing dosing equipment and storage.

1.2 Assumptions for Modeling

1.2.1 CHWTP

During peak flows, all four south coagulation basins, all four north coagulation basins, and all six softening basins are in service. Flocculation, sedimentation, and softening basin outages usually can be scheduled to occur during off-peak-demand seasons.

In operation are 14 of 15 east filters. (It is good practice to assume one filter will always be in standby service owing to increased frequency of backwashing.) The north filter bank is decommissioned for future capacity analysis.

Flow is split equally among the six slow mix and softening basins. The slow mix basin influent gates are partially closed to help distribute flow equally to slow mix basins 1–4.

COPYRIGHT 2007 BY CH2M HILL, INC. • COMPANY CONFIDENTIAL

Flow around reaction basins 1 and 2 is split 80 percent in the north channel and 20 percent in the south channel, with reaction basin 3 out of service. Flow split is 75 percent in the north channel and 25 percent in the south channel with reaction basin 3 in service. The 80 percent of flow in the north channel is the amount required for calibration with reaction basin 3 out of service. With reaction basin 3 in service, the additional flow splits proportionately to the north and south channels on the basis of channel section area.

1.2.2 BEPWTP

During peak flows, the process basins (flocculation, coagulation, slow mix, softening, and reaction basins) of all three treatment trains are in service. Basin outages can be scheduled to occur during off-peak seasons.

Seven of eight filters are operating; one is in standby mode for backwashing.

1.3 Criteria for Acceptable Modeling Results

After each model was calibrated, several scenarios were examined to establish the existing plant hydraulic capacity. Flow in the model was incrementally increased until one or more sets of criteria were exceeded. The following hydraulic criteria were developed:

- A minimum of 6 inches (and preferably 12 inches) of freeboard must be maintained in open basins.
- A minimum of 6 inches of headspace must be maintained in basins with covers, if the covers were not designed for uplift.
- The amount of fall downstream of a weir has to be equal to or greater than the head on the weir upstream.
- The minimum head loss through the filters is 8 feet.
- Influent weirs may be flooded.

Using these criteria, existing conditions and several capacity scenarios and improvement options were modeled and evaluated for acceptance, as described in the following sections.

Based on surface loading rate criteria.
 No loading restrictions exist; however, inlet and outlet modifications may be required.
 Based on 8 filters at 5 gpm/sf.
 Pump #8 assumed to be in standby service.

FIGURE 1-1 **Current Unit Process Capacities** B.E. Payne WTP

CH2MHILL

WB072007004MKE Figure 1-1_v5.ai 08-07-07 sls

CURRENT PRODUCTION CAPABILITY: 180 MGD

LWC 2884

2.1 Hydraulic Capacity

A survey of the BEPWTP facilities was conducted to obtain baseline hydraulic data for calibrating the model. Tops of walls, weirs, launders, and channels were surveyed to check consistency within the plant as well as to compare the plant to existing record drawings. Table 2-1 summarizes the results of the structures survey. The basin walls are within 0.5 inch of the record drawings. The effluent weirs on the coagulation basins are within 0.25 inch of the record drawings. Varying elevations were surveyed for the softening basin effluent weirs. One reading on softening basin 2 weirs gave an elevation nearly 5 inches lower than the record drawing elevation; this difference is probably due to survey error, since no other variances of this magnitude were observed. Overall, the softening basin effluent weirs are within 0.5 inch of the record drawings. The reaction basin effluent weirs are a little more than 1 inch lower than the record drawings.

After the structure and control point elevations were obtained, the hydraulic model was assembled. One HYDRO model scenario was conducted for the existing treatment plant to calibrate the model. Two sets of survey data were obtained at two different flows; however, the difference between the high and low flows—about 4 mgd—was far less than had been anticipated. The low-flow data were selected for calibrating the model. After the model was assembled and run, minor losses and coefficients were adjusted until the model HGL output was within 0.04 foot of the actual water surface elevation surveyed. Some model elements produced a head loss less than that found by the field survey and required adjustments outside of normal parameters for the given element. Possible reasons for the model discrepancy could be sediment deposits in tunnels or partially closed gates, which increase friction losses. Table 2-1 summarizes the calibrated model outputs and the actual survey readings. Overall, the model tracks very well with the actual conditions with a few exceptions. Notes to Table 2-1 explain why the difference between the model and surveyed elevation may have occurred. Some water surfaces are turbulent, and obtaining an accurate surveyed reading of the surface is sometimes difficult.

2.1.1 Existing WTP Capacity

All treatment basins are currently being renovated. New effluent weirs are being installed in the coagulation, softening, and reaction basins; a new influent box is being constructed in each recarbonation basin; and new clarifier mechanisms are being installed in the coagulation and softening basins, among other improvements. The new construction will alter the hydraulics through each treatment train. The renovation work has only recently begun, and therefore no calibration data could be obtained for the new facilities. However, reasonable coefficients were used for the new facilities for modeling future hydraulic capacities.

Prior to beginning the renovations now underway, the maximum plant hydraulic capacity was 70 mgd. The first criterion violated at increased capacity was the softening basin

WDC062640001

COPYRIGHT 2007 BY CH2M HILL, INC. • COMPANY CONFIDENTIAL

effluent weirs having inadequate fall into the discharge launder. Higher flow rates would result in a backwater condition at the effluent weir and create uneven discharge over the length of each weir. The existing reaction basin effluent weirs are installed at an elevation of 470.75 feet (the average of six survey readings across the weirs). The original construction drawings for the basins called out an elevation of 470.84 feet. The lower installed elevation for the weirs allows 70 mgd to be pushed through the plant instead of the rated 60 mgd. The present renovations will include installing the new reaction basin effluent weirs at the original elevation of 470.84 feet and constructing a new carbon dioxide diffuser and contact structure in the recarbonation basin with an inlet that is 42 inches by 42 inches in size. The 17 present 10-by-48-inch inlet ports into the recarbonation basin will be covered with steel plates. The new 42-inch inlet to the recarbonation basin will create additional head loss as flow exits the softening basin launder. As a result, the additional head loss reduces plant capacity to 57 mgd to avoid flooding the effluent weirs at the softening basins. Lowering the reaction basin effluent weirs to 470.75 feet will allow for additional head drop at the recarbonation influent structure and will increase the hydraulic capacity to 60 mgd. Table 2-4 shows results of the model at 57 mgd with all three treatment trains in service, including the new basin renovations. Figure 2-1 shows the HGL though BEPWTP at the calibration flow prior to the present basin renovations, and Figure 2-2 shows the HGL at the maximum hydraulic capacity of 57 mgd with the new basin renovations in service. During preparation of this report, the LWC was advised about the imminent decrease in capacity because of ongoing plant modifications, so plans are underway to lower the reaction basin weirs. As a result, this plant is now assumed to have an existing capacity of 60 mgd.

2.1.2 Modeling Results for 90-mgd Improvements

The first proposed capacity scenario is a plant flow of 90 mgd. The plant flow was entered into the model and run. Three options were identified to hydraulically handle 90 mgd through the WTP.

Option 1A includes raising basin effluent weirs only. Owing to the larger head loss through the recarbonation basin inlet port, the softening basin weirs need to be raised 7 inches to prevent flooding of the weir or exceeding the criterion set for flow over weirs. The recarbonation inlet restriction would cause the water in the launders to back up, resulting in a 7-inch freeboard in the softening basins. Raising the softening basin weirs would require a higher water level in the mixing basin to provide a driving head to push water through the softening basins. The mixing basin freeboard would be reduced to 2.5 inches, and the softening influent conduit headspace would be reduced to 4 inches. The coagulation basin effluent weir would need to be raised 5 inches, and the resulting freeboard in the coagulation basins would be 9 inches. The flocculation basin water surface elevation rises, resulting in 4 inches of freeboard in the flocculation basins and the coagulation influent conduit being pressurized with 0.2 inch of uplift pressure. Table 2-5 shows the model results of a plant flow of 90 mgd with the raised weirs. Some of the basin freeboards would be less than required to satisfy the criterion, so their concrete walls would need to be extended. Although the coagulation influent channel and mixing basin influent channel covers would need to be removed, additional wall height would be gained, since the covers are 8 inches thick, and satisfactory freeboard would be attained. Because the six existing coagulation flash mixers are supported by the channel cover, a new support system fabricated from structural steel to support the mixers, or a section of the concrete cover could be left in place

WDC062640001

COPYRIGHT 2007 BY CH2M HILL, INC. • COMPANY CONFIDENTIAL

for each mixer, but these ideas need a structural investigation prior to designing modifications.

Option 2A increases the recarbonation inlet port size as well as raising weirs, but not to the extent raised in Option 1A. At the current size of 42 by 42 inches, the recarbonation inlet port would create 0.62 feet of head loss at a plant flow of 90 mgd. Enlarging the port to 60 inches wide by 48 inches high would reduce the head loss through the orifice to 0.23 feet. The softening basin weirs would still need to be raised, but only by 2 inches. The softening basin freeboard would be 12 inches, which is acceptable. The mixing basin freeboard would be less than the desired minimum of 12 inches but is acceptable at 7 inches, and the walls would not need to be extended. Raising weirs at the coagulation basins would also be required for this option. The coagulation basin weirs would need to be raised only 1 inch, and the resulting basin freeboard would be 13 inches. The flocculation basin freeboard would be acceptable at 7.5 inches even though it is less than the desired 12 inches. Headspace in the coagulation influent conduit would be reduced to 2 inches, so the cover would need to be removed. Table 2-6 shows the results of the model at 90 mgd with the larger recarbonation inlet port and the raised weirs.

Option 3A minimizes the amount of work required to increase the plant capacity. The desired goal was to eliminate the need to raise the softening or coagulation basin weirs as well as eliminate the need to enlarge the recarbonation basin inlet port. This goal could be accomplished just by lowering the reaction basin effluent weirs. There would be adequate freefall downstream of the reaction basin effluent weirs, which allows the weirs to be lowered and still maintain the minimum criterion set for flow over weirs. By lowering the reaction basin effluent weirs for flow over weirs. By lowering the reaction basin effluent weirs do not be required to attain the 90-mgd hydraulic capacity through the WTP. The softening, mixing, coagulation, and flocculation basin freeboards would be 14, 9.5, 14.5, and 8.5 inches, respectively, which are acceptable. The headspace in the softening influent conduit and coagulation influent conduit would be 9.5 and 2.5 inches, respectively, so the coagulation influent conduit covers would need to be removed, and the mixers would need a new or modified support system. Table 2-7 shows the model results with a plant flow of 90 mgd and lower reaction basin effluent weirs.

Figure 2-3 shows the hydraulic profile through BEPWTP for each of the three options at 90 mgd.

2.1.3 Modeling Results for 120-mgd Improvements

The second proposed capacity scenario is a plant flow of 120 mgd. The plant flow was entered into the model and run. Two options were identified to hydraulically handle 120 mgd through the WTP:

Option 2B enlarged the recarbonation inlet port, raised basin effluent weirs, and added basin inlet and outlet sluice gates. The recarbonation basin inlet port area was increased by a little more than double the current size. Enlarging the opening any more would not add much additional hydraulic benefit because there are other sites that would be more restrictive at 120 mgd. The recarbonation influent box contains an underflow baffle wall that creates a head loss that cannot easily be relieved. The softening basin effluent weirs would be raised 5 inches, and the resulting softening basin freeboard would be 8.5 inches. The head

losses between the softening and mixing basins would be large, and the water surface elevation in the mixing basins would be higher than the top of the existing wall. Basin walls from the mixing basins upstream to the coagulation influent conduit would need to be raised to contain the water and provide adequate freeboard. Coagulation basin effluent weirs would be raised 8 inches, and additional sluice gates would be added for the flocculation basin influent, coagulation basin effluent, and the mixing basin influent. Table 2-8 shows the results of the model at 120 mgd with the larger recarbonation inlet port, raised weirs, and additional sluice gates.

Option 3B for the 120-mgd scenario is similar to Option 3A for the 90-mgd scenario. The reaction basin effluent weirs would be lowered; however, additional modifications would be required to hydraulically pass 120 mgd through the plant. The recarbonation basin inlet port would need to be enlarged, which in combination with the lower reaction basin effluent weirs would eliminate the need to raise the softening basin effluent weirs. However, the coagulation basin influent, coagulation basin effluent, and mixing basin influent would be added for this option. The mixing basin freeboard would be only 3.5 inches, and the flocculation basin freeboard would be 0.25 inch; thus the walls of both basins would need to be extended. Table 2-9 shows the results of the model at 120 mgd with the lowered reaction basin weirs, additional sluice gates, and raised coagulation basin weirs.

Figure 2-4 shows the hydraulic profile through BEPWTP for both of the options at 120 mgd.

Table 2-10 summarizes the hydraulic modifications required at BEPWTP for each option at plant flows of 90 mgd and 120 mgd.

2.1.4 High-Service Pumps

The BEPWTP high-service pumps were examined to determine the existing station pumping capacity. Station capacity is defined as the total pumping capacity with one unit out of service. The pump capacities were determined by calculating each pump total dynamic head (TDH) and selecting the corresponding flow from the pump curves. TDH was calculated by adding estimated station losses (from the suction to the discharge pressure gauge) to the discharge head (computed from the gauge pressure reading) and subtracting the suction head (typically the clear well water surface elevation).

Pumps 3, 4, 5, and 6 discharge directly into a 60-inch water main supplying the distribution system. Pumps 7 and 8 discharge to a 36-inch water main that connects to the 60-inch water main. Prior to connecting to the 60-inch water main, the 36-inch water main splits, with one leg conveying water out to the distribution system and the other leg connecting to the 60-inch water main. The capacity of Pumps 3, 4, 5, and 6 was determined to be 15.2 mgd each at a pump station discharge gauge pressure of 184.9 pounds per square inch (psi), which was recorded during a peak pumping event in June 2005. Pumps 7 and 8 were determined to have a capacity of 13.5 mgd each at the same gauge pressure. Total pumping capacity was calculated to be 87.8 mgd, with all pumps on and discharge pressure held to 184.9 psi.

The minimum desired high-service station pumping capacity was determined by LWC staff to be equal to the WTP capacity. The existing station capacity was calculated to be 74.3 mgd (one 13.5 mgd pump in standby duty), which provides the high service pump capacity

desired by LWC at the plant production rate of 60 mgd. At higher plant capacities, however, the high-service pumping capacity requirements will exceed the existing capacity.

2.2 **BEPWTP Treatment Processes**

Table 2-11 summarizes the loading rates and hydraulic retention times (HRTs) for the treatment processes for BEPWTP and compares them to existing "Recommended Standards for Water Works" (also known as Ten States Standards) and KY DOW general design guidelines.

2.2.1 Flocculation Basins

The flow-through velocity in the flocculation basins exceeds the Ten States Standards recommended maximum at present and proposed capacities. KY DOW design criteria do not contain guidelines for flow-through velocity in flocculation units. Basin detention time exceeds the recommended minimum for both Ten States Standards (30 minutes) and KY DOW guidelines (40–60 minutes) at the present capacity of 60 mgd, but is less than the KY DOW minimum detention time at 90 mgd and is less than both the KY DOW and Ten States Standards recommended minimum at 120 mgd.

2.2.2 Coagulation Basins

The coagulation basins were assessed in terms of detention time, surface overflow rate, and weir loading rate. Ten States Standards and KY DOW guidelines contain the same recommended minimum detention time of 240 minutes. The basin detention time at the present capacity is less than the recommended minimum. The weir overflow rates for the coagulation basins exceed the Ten States Standards recommended maximum limit of 20,000 gallons per day per foot (gpd/ft). KY DOW guidelines do not contain a recommended maximum weir overflow rate. Surface loading is below the recommended maximum rate for both KY DOW and the Ten States Standards at the present flow of 60 mgd. At 90 mgd, the surface loading rate exceeds the KY DOW recommended maximum and is equal to the Ten States Standards maximum. KY DOW and Ten States Standards recommended maximums are both exceeded at 120 mgd. Subject to KY DOW approval, tube settlers with integral effluent finger weirs could be retrofitted into the basins to effectively handle the overages of detention time, overflow rates, and weir overflow rates.

2.2.3 Slow Mix Basins

The slow mix basins are subject to the Ten States Standards recommendations for flocculation basins. KY DOW does not publish guidelines for slow mix basin design. Because the slow mix basins are in the same size as the flocculation basins, the flow-through velocity at present and proposed flow rates exceeds the recommended Ten States Standards maximum, and the detention time is higher than the Ten States Standards recommended minimum for 60 and 90 mgd, and is less than Ten States Standards 120 mgd, which is the same as that for the flocculation basins.

2.2.4 Softening Basins

The softening basins are subject to the same Ten States Standards' recommendations as coagulation basins, and the basins are the same size the coagulation basins. KY DOW does not publish guidelines for softening basin design. Surface loading is below the Ten States Standards recommended maximum rate at the present flow of 60 mgd and is equal to the recommended maximum rate at 90 mgd. The Ten States Standards recommended maximum is exceeded at 120 mgd. The basin detention time at present and future capacities is less than the recommended minimum. The weir overflow rates for the softening basins exceed the Ten States Standards recommended maximum. Again, similar to the coagulation basins and subject to KY DOW approval, tube settlers with integral effluent finger weirs could be retrofitted into the basins to effectively handle the overages of detention time, overflow rates, and weir overflow rates.

2.2.5 Clear Wells

KY DOW requires that the clear well volume be at a minimum 15 percent of the total 24-hour plant capacity. The existing clear well has a volume of 6 million gallons and is inadequately sized at the present capacity of 60 mgd and at proposed future capacities of 90 and 120 mgd.

2.2.6 Filtration

Filtration rate at the present flow of 60 mgd exceeds KY DOW requirements of 2 gallons per minute per square foot (gpm/ft²) for rapid sand filters. However, high-rate filtration up to 5 gpm/ft² is permitted with continuous turbidity monitoring of each filter effluent and acceptable performance. LWC presently monitors turbidity on each filter effluent. The present rate is less than 5 gpm/ft² at 60 mgd and is acceptable. The filtration rate would be 5.07 gpm/ft² with 7 of 8 filters in service at 90 mgd; however, this rate may be acceptable to KY DOW as long as all filters are performing successfully. Proposed flows of 120 mgd will result in a filtration rate of 6.76 gpm/ft² with 7 of 8 filters in service, a much greater variance. Full-scale demonstration testing showing acceptable filter performance would be required by KY DOW to approve this higher rate.

2.3 BEPWTP Chemical Feed Systems

Table 2-11 summarizes the existing feed systems and future capacities required for the chemicals used at BEP, based on historical feed rates. Each chemical feed system was analyzed to determine its adequacy under existing and future flow conditions on the basis of storage capacity and feed capacity.

2.3.1 Chemical Storage

Table 2-11 lists storage requirements under two conditions. Required storage is calculated on the basis of average dose at average flow for 30 days, and maximum dose at average flow for 14 days. The worst-case condition would dictate the recommended storage capacity required. The treatment plant flow rate was assumed to have a 1.5 peaking factor. Average flow was determined by dividing the plant capacity by 1.5.
The powdered activated carbon (PAC) system contains two 40,000-gallon storage tanks. PAC is not dosed on a regular basis. It is used primarily during taste and odor events or if there is a spill on the Ohio River. If the WTP were expanded to a 120-mgd capacity at maximum dose and average flow, the storage required would be 40,240 gallons. There is adequate existing storage capacity to meet this requirement.

The existing chlorine storage, 24 tons, is sufficient for the present capacity of 60 mgd. At a plant capacity of 90 mgd, the required storage for average dose and average flow conditions would exceed the existing available storage. At 120 mgd the required storage at both flow conditions would exceed current existing storage capacity.

At the present capacity of 60 mgd and future capacities of 90 and 120 mgd, the available ferric chloride storage, 77,000 gallons, exceeds the required ferric chloride storage at average dose and average flow conditions. At 90- and 120-mgd capacity, the required storage exceeds existing storage at maximum dose and average flow conditions.

The existing cationic polymer storage is 5,100 gallons. The required storage for polymer is less than existing storage for all flow conditions except at 120-mgd capacity, where the required storage exceeds available storage at maximum dose and average flow.

Storage requirements for lime and fluoride at all flow conditions are less than the present available capacity of 560 tons for lime and 10,000 gallons for fluoride.

The available ammonia storage is 1,800 gallons. The required storage is less than available storage at all flow conditions except average dose and average flow at 120-mgd plant capacity.

A new carbon dioxide storage and metering facility is currently under construction. The new carbon dioxide storage capacity will be 100 tons. The existing storage is adequate for the existing and 90 mgd WTP capacity, but required storage at 120 mgd will exceed what is available.

2.3.2 Chemical Feed Capacity

The chemical feed capacity analysis compared the required capacity at maximum dose and average WTP flow to the existing available feeding capacity. Table 2-11 indicates the firm feed capacity of the existing chemical systems. Existing firm feed capacity was determined by assuming one of the largest metering pumps or feeders is out of service.

Firm feed capacity is adequate for PAC at all flow conditions. Firm feed capacity is inadequate for the polymer and ammonia systems at all flow conditions. Chlorine and ferric chloride feed systems are inadequate for plant capacities of 90 and 120 mgd. The lime firm feed capacity is inadequate at a plant capacity of 120 mgd. Firm feed capacity of fluoride is inadequate at plant capacities of 90 and 120 mgd.

TABLE 2-1 BE Payne WTP Structure Elevations Louisville Water Company Water Treatment Plant Capacity Study

Structure Description	June 2006 Surveyed Elevation	Facility Record Drawings Elevation	Difference
Coagulation Basin Influent Conduit Top of Wall	474.975	475.0	-0.02
Flocculation Basin Top of Wall	474.445	474.5	-0.06
Coagulation Basin Top of Wall	473.965	474.0	-0.04
Coagulation Basin #1 Effluent Weirs	472.976	473.0	-0.02
Coagulation Basin #2 Effluent Weirs	472.981	473.0	-0.02
Coagulation Basin #3 Effluent Weirs	472.981	473.0	-0.02
Coagulation Basin #1 Effluent Launder Invert	467.685	467.67	0.01
Coagulation Basin #2 Effluent Launder Invert	467.725	467.67	0.06
Coagulation Basin #3 Effluent Launder Invert	467.685	467.67	0.01
Softening Basin Influent Conduit	472.075	474.0	-1.93 *
Softening Basin #1 Effluent Weirs	471.453	471.5	-0.05
Softening Basin #2 Effluent Weirs	471.258	471.5	-0.24 *
Softening Basin #3 Effluent Weirs	471.488	471.5	-0.01
CO2 Reaction Basin #1 Effluent Weirs	470.748	470.84	-0.09
CO2 Reaction Basin #2 Effluent Weirs	470.748	470.84	-0.09
CO2 Reaction Basin #3 Effluent Weirs	470.788	470.84	-0.05
Filter Observation Floor	470.902	470.79	0.11

* Probable Survey Error

TABLE 2-2 BE Payne WTP Survey and Calibration Hydraulic Summary Louisville Water Company Water Treatment Plant Capacity Study

	Wate	r Surface	Difference*	
	Model @ 35.6	Survey		
Location	mgd	Measurement		Model Notes
Coagulation Basin Influent Conduit	473.695	473.665	0.030	Inside Top of Conduit = 474.308'
Flocculation Basin #1		473.425		
Flocculation Basin #2	473.354	473.435	-0.081	Possible sediment in tunnel.
Coagulation Basin #1		473.095		Weir Elevation = 472.976'
Coagulation Basin #2	473.128	473.155	-0.027	Weir Elevation = 472.981'
Coagulation Basin #1 Effluent Launder At Discharge		472.165		Top of Launder Wall
Coagulation Basin #1 Effluent Launder At H.P.		472.285		Top of Launder Wall
Coagulation Basin #2 Effluent Launder At Discharge	472.146	472.185	-0.039	Top of Launder Wall
Coagulation Basin #2 Effluent Launder At H.P.	472.185	472.225	-0.040	Top of Launder Wall
Softening Basin Influent Conduit	472.087	472.075	0.012	
Mixing Basin #1 Influent Channel		472.055		
Mixing Basin #2 Influent Channel	472.039	472.035	0.004	
Mixing Basin #1		471.865		
Mixing Basin #2	471.796	471.865	-0.069	Possible sediment in tunnel.
Softening Basin #1		471.56		Weir Elevation = 471.453'
Softening Basin #2	471.57	471.59	-0.020	Weir Elevation = 471.423'
Softening Basin #1 Effluent Launder South		471.14		Top of Launder Wall
Softening Basin #1 Effluent Launder North		471.21		Top of Launder Wall
Softening Basin #2 Effluent Launder South	471.179	471.17	0.009	Top of Launder Wall
Softening Basin #2 Effluent Launder North	471.189	471.65	-0.461	Survey reading appears to be erroneous.
Recarbonation Basin #1		470.92		
Recarbonation Basin #2	470.885	470.91	-0.025	
CO2 Reaction Basin #1		470.91		Weir Elevation = 470.748'
CO2 Reaction Basin #2	470.877	470.89	-0.013	Weir Elevation = 470.748'
CO2 Reaction Basin #1 Effluent Gullet		469.21		Top of Launder Wall
CO2 Reaction Basin #2 Effluent Gullet	469.213	469.2	0.013	Top of Launder Wall
CO2 Reaction Basin Flume At South End	469.207	469.22	-0.013	Inside Top of Conduit = 471.833'
Filter Influent Flume (@ O/S Filter #2)	469.188	469.172	0.016	Inside Top of Flume = 470.069'
Filter Influent Flume (@ O/S Filter #7)		469.172		Inside Top of Flume = 470.069'
Filter #3 (In Service)	469.152	469.152	0.000	
West Clear Water Reservoir	451.647	451.647	0.000	Inside Top of Clearwell = 459.33'
East Clear Water Reservoir		451.607		Inside Top of Clearwell = 459.33'

* Calibration goal was to obtain 0.04' maximum difference between actual and modeled water surfaces.

 TABLE 2-3

 BE Payne WTP

 35.6 mgd

 2 Treatment Trains in Service

 6 of 8 Filters in Service

 Louisville Water Company Water Treatment Plant Capacity Study

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	D HGL	Notes
245	Flocculation Basin Influent Slujce Gate	473.638	473.695	473.638	473.695	0.057	
240	Flocculation Basin Influent Weir	473.354	473.638	473.354	473.638	0.284	1
235	Flocculation Basin Effluent Port	473.348	473.354	473.348	473.354	0.006	1
230	Flocculation Basin Effluent Sluice Gate	473.254	473.348	473.273	473.348	0.094	1
225	Coagulation Basin Influent Conduit	473.205	473.254	473.224	473.273	0.049	1
220	Coagulation Basin Influent Column	473.188	473.209	473.202	473.224	0.021	
215	Coagulation Basin Column Orifice	473.128	473.202	473.128	473.202	0.074	1
210	Coagulation Basin Effluent Weir	472.185	473.128	472.185	473.128	0.943	Freefall over weir.
205	Coagulation Basin Effluent Launder	472.146	472.185	472.162	472.185	0.039	
200	Coagulation Basin Effluent Sluice Gate	472.087	472.162	472.087	472.162	0.075	1
195	Mixing Basin Influent Sluice Gate	472.039	472.087	472.039	472.087	0.048	1
190	Mixing Basin Influent Weir	471,796	472.039	471,796	472.039	0.243	1 1
185	Mixing Basin Effluent Port	471.79	471,796	471.79	471.796	0.006	1 1
180	Mixing Basin Effluent Sluice Gate	471.696	471.79	471.715	471.79	0.094	1 1
175	Softening Basin Influent Conduit	471.647	471.696	471.666	471.715	0.049	1 1
170	Softening Basin Influent Column	471.63	471.651	471.644	471.666	0.021	1
165	Softening Basin Column Orifice	471.57	471.644	471.57	471.644	0.074	1
160	Softening Basin Effluent Weir	471.189	471.57	471.189	471.57	0.381	1
155	Softening Basin Effluent Launder	471.172	471.189	471.179	471.189	0.017	1
150	Recarbonation Basin Influent Weir	470.885	471.179	470.885	471.179	0.294	1
145	Reaction Basin Influent Baffle Wall	470.877	470.885	470.877	470.885	0.008	1
140	Reaction Basin Effluent Weir	469.233	470.877	469.233	470.877	1.644	Freefall over weir.
135	Reaction Basin Effluent Launder	469.213	469.233	469.222	469.233	0.02	
130	Reaction Basin Effluent Gullet	469.213	469.222	469.218	469.222	0.009	
125	2 of 3 Reaction Basin #2 Effluent	469.216	469.217	469.216	469.218	0.001	1
120	Reaction Basin #2 Effluent	469.214	469.216	469.214	469.216	0.002	1
115	1 of 3 Reaction Basin #1 Effluent	469.211	469.214	469.212	469.215	0.003	1
110	2 of 3 Reaction Basin #1 Effluent	469.209	469.211	469.21	469.212	0.002	1
105	Total Reaction Basin Effluent	469.207	469.208	469.21	469.211	0.001	1
100	Filter Influent Tunnel	469.201	469.204	469.206	469.21	0.003	1
95	Filter Influent Conduit/Channel Transition	469.191	469.206	469.192	469.206	0.015	1
90	Filter Influent Channel	469.19	469.191	469.192	469.192	0.001	
85	Filter Influent Channel	469.182	469.186	469.188	469.192	0.004	1
80	Filter Influent Butterfly Valve	469.152	469.188	469.152	469.188	0.036	1
75	Filter Bed Loss + Rate Controller	455.425	469.152	455.479	469.152	13.727	Filter Bed + Rate Controller
70	Effluent Elbow	455.403	455.425	455.457	455.479	0.022	
65	Filter #1 Effluent Conduit Entry	455.348	455.403	455.402	455.457	0.055	1
60	West Filter Effluent DS of #1	455.398	455.4	455.4	455.402	0.002	1
55	West Filter Effluent DS of #3	455.388	455.391	455.397	455.4	0.003	
50	West Filter Effluent DS of #5	455.372	455.376	455.393	455.398	0.004	1
45	West Filter Effluent DS of #7	455.37	455.372	455.391	455.393	0.002	1
40	West Filter Effluent Conduit Under Chem. Bldg. Tunnel	455.37	455.38	455.381	455.391	0.01	1
35	West Filter Effluent Conduit	455.369	455.375	455.375	455.381	0.006]
30	West Filter Effluent Conduit Entry	455.324	455.375	455.346	455.375	0.051]
25	Filtered Water Channel	455.318	455.324	455.34	455.346	0.006	1
20	Filtered Water Effluent Weir	451.747	455.339	451.75	455.34	3.592	Freefall over weir.
15	Clearwell Influent Channel	451.745	451.747	451.748	451.75	0.002	
10		451.647	451.748	451.647	451.748	0.101	1
5	Clearwell	451.647	451.647	451.647	451.647	0	1

Note: Calibration was performed on the existing treatment plant without present basin modifications.

LWC 2894

 TABLE 2-4

 BE Payne WTP

 57 mgd - Maximum Hydraulic Capacity

 3 Treatment Trains in Service, Present Basin Modifications Included

 7 of 8 Filters in Service

 Louisville Water Company Water Treatment Plant Capacity Study

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	P HGL	Notes
255	Flocculation Basin Influent Sluice Gate	473.647	473,712	473.647	473.712	0.065	7" Headspace in Coagulation Influent Conduit.
250	Flocculation Basin Influent Weir	473.330	473.647	473.330	473.647	0.317	
245	Flocculation Basin Effluent Port	473.324	473.330	473.324	473.330	0.006	13" Flocculation Basin Freeboard.
240	Flocculation Basin Effluent Sluice Gate	473.216	473.324	473.238	473.324	0.108	
235	Coagulation Basin Influent Conduit	473.160	473.216	473.182	473.238	0.056	
230	Coagulation Basin Influent Column	473.141	473.165	473.158	473.182	0.024	
225	Coagulation Basin Column Ortfice	473.134	473.158	473.134	473.158	0.024	
220	Coagulation Basin Effluent Weir	472.233	473.134	472.233	473.134	0.901	Freefall over Coagulation Basin effluent weir.
215	Coagulation Basin Effluent Launder	472.189	472.233	472.208	472.233	0.044	21" Coagulation Basin Freeboard.
210	Coagulation Basin Effluent Sluice Gate	472.122	472.208	472.122	472.208	0.086	
205	Mixing Basin Influent Sluice Gate	472.067	472.122	472.067	472.122	0.055	14.5" Headspace in Softening Influent Conduit.
200	Mixing Basin Influent Weir	471.830	472.067	471.830	472.067	0.237	
195	Mixing Basin Effluent Port	471.824	471.830	471.824	471.830	0.006	14" Mixing Basin Freeboard.
190	Mixing Basin Effluent Sluice Gate	471.716	471.824	471.738	471.824	0.108	
185	Softening Basin Influent Conduit	471.660	471.716	471.682	471.738	0.056	
180	Softening Basin Influent Column	471.641	471.665	471.658	471.682	0.024	
175	Softening Basin Column Orifice	471.634	471.658	471.634	471.658	0.024	
170	Softening Basin Effluent Weir	471.356	471.634	471.356	471.634	0.278	Limiting Point Of Restriction
165	Softening Basin Effluent Launder	471.338	471.356	471.346	471.356	0.018	13.5" Softening Basin Freeboard.
160	CO2 Injection Box Influent	471.097	471.346	471.097	471.346	0.249	
155	CO2 Injection Box Influent Baffle Port	471.004	471.097	471.004	471.097	0.093	
150	CO2 Injection Box Effluent	470.969	471.004	470.969	471.004	0.035	
145	Reaction Basin Influent Baffle Wall	470.959	470.969	470.959	470.969	0.01	
140	Reaction Basin Effluent Weir	469.343	470.959	469.343	470.959	1.616	Freefall over Reaction Basin effluent weir.
135	Reaction Basin Effluent Launder	469.324	469.343	469.333	469.343	0.019	
130	Reaction Basin Effluent Gullet	469.323	469.333	469.328	469.333	0.01	
125	2 of 3 Reaction Basin #2 Effluent	469.325	469.326	469.326	469.328	0.001	
120	Reaction Basin #2 Effluent	469.322	469.324	469.324	469.327	0.002	
115	1 of 3 Reaction Basin #1 Etfluent	469.319	469.321	469.323	469.325	0.002	
110	2 of 3 Reaction Basin #1 Effluent	469.315	469.318	469.320	469.323	0.003	
105	Total Reaction Basin Effluent	469.313	469.314	469.319	469.320	0.001	
100	Filter Influent Tunnel	469.297	469.306	469.311	469.320	0.009	
95	Filter Influent Conduit/Channel Transition	469.271	469.311	469.275	469.311	0.04	1
90	Filter Influent Channel	469.270	469.271	469.275	469.275	0.001	
85	Filter Influent Channel	469.251	469.259	469.267	409.275	0.008	
80	Fliter Influent Butterny Valve	409.190	409.207	409.190	409.207	0.009	Filter Red & Centrel Volvo
75	Filter Bed Loss + Rate Controller	408.044	409.190	458.940	409.190	0.041	
70	Effluent Elbow	456.603	430.044	436.903	458.940	0.103	1
65	Filter #1 Emuent Conduit Entry	458.700	458.803	450.802	458 802	0.001	1
60	West Filter Educat DS of #3	458 791	458 793	458 800	458.802	0.007	1
50	West Filter Effluent DS of #5	458 777	458 780	458 797	458 800	0.003	
	West Filter Effluent DS of #7	458 759	458 762	458 795	458 797	0.003	1
40	West Filter Effluent Conduit Under Chem Bldg Tunnel	458 726	458 759	458 762	458 795	0.033	1
40	West Filter Effluent Conduit onder onen, blug. runner	458,723	458.742	458.743	458.762	0.019	1
30	West Filter Effluent Conduit Entry	458.621	458.743	458.644	458.743	0.122	1
25	Filtered Water Channel	458.618	458.621	458.641	458.644	0.003	1
20		458.558	458.640	458.561	458.641	0.082	1
15	Cleanvell Influent Channel	458.556	458.558	458.559	458.561	0.002	1
10	Clearweil Influent Butterfly Valve	458.300	458.559	458.300	458.559	0.259	1
	Cleanvel	458,300	458,300	458.300	458.300		1
1 3							

LWC 2895

 TABLE 2-5

 BE Payne WTP

 90 mgd - Option 1A

 3 Treatment Trains in Service; Present Basin Modifications Included

 7 of 8 Filters in Service

 New Modifications - Basin Effluent Weirs Raised

 Louisville Water Company Water Treatment Plant Capacity Study

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	D HGL	Notes
255	Flocculation Basin Influent Sluice Gate	474.192	474.354	474.193	474.354	0.162	0.3" Uplift in Coagulation Influent Conduit.
250	Flocculation Basin Influent Weir	474.109	474.192	474.109	474.193	0.083	
245	Flocculation Basin Effluent Port	474.093	474.109	474.093	474.109	0.016	4" Flocculation Basin Freeboard
240	Flocculation Basin Effluent Sluice Gate	473.826	474.093	473.879	474.093	0.267	
235	Coagulation Basin Influent Conduit	473.686	473.826	473.740	473.879	0.14	
230	Coagulation Basin Influent Column	473.638	473.698	473.679	473.740	0.06	
225	Coagulation Basin Column Orifice	473.621	473.679	473.621	473.679	0.058	
220	Coagulation Basin Effluent Weir	473.276	473.621	473.276	473.621	0.345	Weir raised 473.00' to 473.46'
215	Coagulation Basin Effluent Launder	473.205	473.276	473.235	473.276	0.071	8.5" Coagulation Basin Freeboard
210	Coagulation Basin Effluent Sluice Gate	473.021	473.235	473.021	473.235	0.214	
205	Mixing Basin Influent Sluice Gate	472.883	473.021	472.883	473.021	0.138	3.5" Headspace in Softening Influent Conduit.
200	Mixing Basin Influent Weir	472.819	472.883	472.819	472.883	0.064	
195	Mixing Basin Effluent Port	472.803	472.819	472.803	472.819	0.016	2" Mixing Basin Freeboard
190	Mixing Basin Effluent Stuice Gate	472.536	472.803	472.589	472.803	0.267	
185	Softening Basin Influent Conduit	472.396	472.536	472.450	472.589	0.14	
180	Softening Basin Influent Column	472.348	472.408	472.389	472.450	0.06	
175	Softening Basin Column Onfice	472.331	472.389	472.331	472.389	0.058	
170	Softening Basin Effluent Weir	471.967	472.331	471.967	472.331	0.364	Weir raised 471.50' to 472.17'
165	Softening Basin Effluent Launder	471.931	471.967	471.947	471.967	0.036	6" Softening Basin Freeboard
160	CO2 Injection Box Influent	471.328	471.947	471.328	471.947	0.619	Existing 42" x 42" Orifice. Velocity = 3.8 fps.
155	CO2 Injection Box Influent Baffle Port	471.095	471.328	471.095	471.328	0.233	
150	CO2 Injection Box Effluent	471.007	471.095	471.007	471.095	0.088	
145	Reaction Basin Influent Baffle Wall	470.983	471.007	470.983	471.007	0.024	
140	Reaction Basin Effluent Weir	469.301	470.983	469.301	470.983	1.682	Freefall over Reaction Basin effluent weir.
135	Reaction Basin Effluent Launder	469.249	469.301	469.274	469.301	0.052	
130	Reaction Basin Effluent Gullet	469.249	469.274	469.261	469.274	0.025	
125	2 of 3 Reaction Basin #2 Effluent	469.255	469.257	469.260	469.261	0.002	
120	Reaction Basin #2 Effluent	469.251	469.253	469.258	469.260	0.002	
115	1 of 3 Reaction Basin #1 Effluent	469.246	469.249	469.256	469.258	0.003	
110	2 of 3 Reaction Basin #1 Effluent	469.241	469.244	469.253	469.256	0.003	
105	Total Reaction Basin Effluent	469.236	469.238	469.252	469.253	0.002	
100	Filter Influent Tunnel	469.197	469.219	469.230	469.252	0.022	
95	Filter Influent Conduit/Channel Transition	469.130	469.230	469.140	469.230	0.1	
90	Filter Influent Channel	469.129	469.130	469.140	469.140	0.001	
85	Filter Influent Channel	469.078	469.097	469.121	469.140	0.019	
80	Filter Influent Butterfly Valve	468.950	469.120	468.950	469.120	0.17	Filler Bad - Cashal Makes
75	Filter Bed Loss + Rate Controller	459.575	468.950	459.830	468.950	9.375	
70	Effluent Elbow	459.472	459.575	459.728	459.830	0.103	
65	Filter #1 Eliterit Conquit Enity	409.210	459.472	459.470	459.720	0.207	
60		409.404	459.403	439,409	409.470	0.001	
55	West Filter Effluent DS of #5	459.409	459.447	459,400	459.466	0.003	
50	West Filter Effluent DS of #3	459,403	459.410	459.459	459.400	0.007	1
45	West Filter Effluent Conduit Under Chem. Bidg. Tunnel	459.303	459.370	459.452	459.453	0.007	{
40	West Filter Effluent Conduit Order Grein, Didg. Turner	459 273	459 320	459 322	459 369	0.002	1
35	West Filter Effluent Conduit Entry	459 020	459 322	459.076	459 322	0.302	1
30	AAGOT LING Fillinguit coulonie Funk	459.012	459.020	459.068	459.076	0.008	1
20	Filtered Water Effluent Weir	458.941	459.066	458 948	459.068	0.125	1
	Closervell Influent Chonnel	458 939	458 941	458 946	458 948	0.002	1
10	Closswoll Influent Butterfly Valve	458 300	458 945	458 300	458 945	0.645	60" Butterfly Valve, Velocity = 3.6 fps.
<u> </u>	Clean well	458 300	458 300	458 300	458 300	0.010	
5		400.000	400.000	450.500	400.000		

LWC 2896

 TABLE 2-6

 BE Payne WTP

 90 mgd - Option 2A

 3 Treatment Trains in Service; Present Basin Modifications Included

 7 of 8 Filters in Service

 New Modifications - Larger Recarbonation Basin Influent Port and Raised Coagulation and Softening Basin Effluent Weirs

 Louisville Water Company Water Treatment Plant Capacity Study

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	D HGL	Notes
255	Flocculation Basin Influent Sluice Gate	473.935	474.098	473.936	474.098	0.162	2.5" Headspace in Coagulation Influent Conduit.
260	Flocculation Basin Influent Weir	473.729	473.936	473.729	473.936	0.207	
245	Flocculation Basin Effluent Port	473.713	473.729	473.713	473.729	0.016	8.5" Flocculation Basin Freeboard
240	Flocculation Basin Effluent Sluice Gate	473.446	473.713	473.499	473.713	0.267	
235	Coagulation Basin Influent Conduit	473.305	473.446	473.359	473.499	Q.14	
230	Coagulation Basin Influent Column	473.258	473.318	473.299	473.359	0.06	
225	Coagulation Basin Column Orifice	473.241	473.299	473.241	473.299	0.058	
220	Coagulation Basin Effluent Weir	472.896	473.241	472.896	473.241	0.345	Weir raised 473.00' to 473.08'
215	Coagulation Basin Effluent Launder	472.812	472.896	472.848	472.896	0.084	13" Coagulation Basin Feeboard
210	Coagulation Basin Effluent Sluice Gate	472.633	472.848	472.633	472.848	0.215	
205	Mixing Basin Influent Sluice Gate	472.496	472.633	472.496	472.633	0.137	8" Headspace in Softening Influent Conduit.
200	Mixing Basin Influent Weir	472.399	472.496	472.399	472.496	0.097	
195	Mixing Basin Effluent Port	472.383	472.399	472.383	472.399	0.016	7" Mixing Basin Freeboard
190	Mixing Basin Effluent Sluice Gate	472.116	472.383	472.169	472.383	0.267	
185	Softening Basin Influent Conduit	471.976	472.116	472.030	472.169	0.14	
180	Softening Basin Influent Column	471.928	471.988	471.969	472.030	0.06	
175	Softening Basin Column Orifice	471.911	471.969	471.911	471.969	0.058	
170	Softening Basin Effluent Weir	471.583	471.911	471.583	471.911	0.328	Weir raised 471.50' to 471.75'
165	Softening Basin Effluent Launder	471.542	471.583	471.560	471.583	0.041	11" Softening Basin Freeboard
160	CO2 Injection Box Influent	471.328	471.560	471.328	471.560	0.232	Enlarged 60* x 48* Onfice. Velocity = 2.3 fps.
155	CO2 Injection Box Influent Baffle Port	471.095	471.328	471.095	471.328	0.233	
150	CO2 Injection Box Effluent	471.007	471.095	471.007	471.095	0.088	
145	Reaction Basin Influent Baffle Wall	470.983	471.007	470.983	471.007	0.024	
140	Reaction Basin Effluent Weir	469.301	470.983	469.301	470.983	1.682	Freefall over Reaction Basin effluent weir.
135	Reaction Basin Effluent Launder	469.249	469.301	469.274	469.301	0.052	
130	Reaction Basin Effluent Gullet	469.249	469.274	469.261	469.274	0.025	
125	2 of 3 Reaction Basin #2 Effluent	469.255	469.257	469.260	469.261	0.002	
120	Reaction Basin #2 Effluent	469.251	469.253	469.258	469.260	0.002	
115	1 of 3 Reaction Basin #1 Effluent	469.246	469.249	469.256	469.258	0.003	
110	2 of 3 Reaction Basin #1 Effluent	469.241	469.244	469.253	469.256	0.003	
105	Total Reaction Basin Effluent	469.236	469.238	469.252	469.253	0.002	
100	Filter Influent Tunnel	469.197	469.219	469.230	469.252	0.022	
95	Filter Influent Conduit/Channel Transition	469.130	469.230	469.140	469.230	0.1	
90	Filter Influent Channel	469.129	469.130	469.140	469.140	0.001	
85	Filter Influent Channel	469.078	469.097	469.121	469.140	0.019	
80	Filter influent Butterfly Valve	468.950	469.120	468.950	469.120	0.17	
75	Filter Bed Loss + Rate Controlier	459.575	468.950	459.830	468.950	9.375	Filter Bed + Control Valve
70	Effluent Elbow	459.472	459.575	459.728	459.830	0.103	
65	Filter #1 Effluent Conduit Entry	459.215	459.472	459.470	459.728	0.257]
60	West Filter Effluent DS of #1	459.464	459.465	459.469	459.470	0.001]
55	West Filter Effluent DS of #3	459.444	459.447	459.466	459.469	0.003]
50	West Filter Effluent DS of #5	459.409	459.416	459.459	459.466	0.007]
45	West Filter Effluent DS of #7	459.363	459.370	459.452	459.459	0.007]
40	West Filter Effluent Conduit Under Chem. Bldg. Tunnel	459.281	459.363	459.369	459.452	0.082]
35	West Filter Effluent Conduit	459.273	459.320	459.322	459.369	0.047]
30	West Filter Effluent Conduit Entry	459.020	459.322	459.076	459.322	0.302]
25		459.012	459.020	459.068	459.076	0.008]
20	Filtered Water Effluent Weir	458.941	459.066	458.948	459.068	0.125]
15	Clearwell Influent Channel	458.939	458.941	458.946	458.948	0.002	
10	Clearwell Influent Butterfly Valve	458.300	458.945	458.300	458.945	0.645	60" Butterfly Valve. Velocity = 3.6 fps.
5	Clearwell	458.300	458.300	458.300	458.300		

TABLE 2-7 BE Payne WTP 90 mgd - Option 3A 3 Treatment Trains in Sevice, Present Basin Modifications Included 7 of 8 Fitters in Service New Modifications - Lowered Reaction Basin Effluent Weirs Louisville Water Company Water Treatment Plant Capacity Study

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	DHGL	
255	Flocculation Basin Influent Sluice Gate	473.896	474.058	473.896	474.058	0.162	3" Headspace in Coagulation Influent Conduit.
250	Flocculation Basin Influent Weir	473.649	473.896	473.649	473.896	0.247	· · · · · · · · · · · · · · · · · · ·
245	Flocculation Basin Effluent Port	473.633	473.649	473.633	473.649	0.016	9.5" Flocculation Basin Freeboard
240	Flocculation Basin Effluent Sluice Gate	473.366	473.633	473.419	473,633	0.267	
235	Coagulation Basin Influent Conduit	473.226	473.366	473.28	473.419	0.14	
230	Coagulation Basin Influent Column	473.178	473.238	473.219	473.28	0.06	
225	Coagulation Basin Column Onfice	473.161	473.219	473.161	473.219	0.058	
220	Coagulation Basin Effluent Weir	472.742	473.161	472.742	473.161	0.419	Freefall over Coagulation Basin effluent weir.
215	Coagulation Basin Effluent Launder	472.664	472.742	472.691	472.742	0.068	15" Coagulation Basin Freeboard.
210	Coagulation Basin Effluent Sluice Gate	472.477	472.691	472.477	472.691	0.214	
205	Mixing Basin Influent Sluice Gate	472.339	472.477	472.339	472.477	0.138	10" Headspace in Softening Influent Conduit.
200	Mixing Basin Influent Weir	472.149	472.339	472.149	472.339	0.19	
195	Mixing Basin Effluent Port	472.133	472.149	472.133	472.149	0.016	10" Mixing Basin Freeboard.
190	Mixing Basin Effluent Sluice Gate	471.866	472.133	471.919	472.133	0.267	
185	Softening Basin Influent Conduit	471.726	471.866	471.78	471.919	0.14	
180	Softening Basin Influent Column	471.678	471.738	471.719	471.78	0.06	
175	Softening Basin Column Orifice	471.661	471.719	471.661	471.719	0.058	
170	Softening Basin Effluent Weir	471.303	471.661	471.303	471.661	0.358	Freefall over Softening Basin effluent weir.
165	Softening Basin Effluent Launder	471.257	471.303	471.277	471.303	0.046	14" Softening Basin Freeboard.
160	CO2 Injection Box Influent	470.658	471.277	470.658	471,277	0.619	Existing 42" x 42" Orifice. Velocity = 3.8 fps.
155	CO2 Injection Box Influent Baffle Port	470.425	470.658	470.425	470.658	0.233	
150	CO2 Injection Box Effluent	470.337	470.425	470.337	470.425	0.088	
145	Reaction Basin Influent Baffle Wall	470.313	470.337	470.313	470.337	0.024	
140	Reaction Basin Effluent Weir	469.301	470.313	469.301	470.313	1.012	Freefall over Reaction Basin effluent weir.
135	Reaction Basin Effluent Launder	469.249	469.301	469.274	469.301	0.052	
130	Reaction Basin Effluent Gullet	469.249	469.274	469.261	469.274	0.025	
125	2 of 3 Reaction Basin #2 Effluent	469.255	469.257	469.26	469.261	0.002	
120	Reaction Basin #2 Effluent	469.251	469.253	469.258	469.26	0.002	
115	1 of 3 Reaction Basin #1 Effluent	469.246	469.249	469.256	469.258	0.003	
110	2 of 3 Reaction Basin #1 Effluent	469.241	469.244	469.253	469.256	0.003	
105	Total Reaction Basin Effluent	469.236	469.238	469.252	469.253	0.002	
100	Filter Influent Tunnel	469.197	469.219	469.23	469.252	0.022	
95	Filter Influent Conduit/Channel Transition	469.13	469.23	469.14	469.23	0.1	
90	Filter Influent Channel	469.129	469.13	469.14	469.14	0.001	
85	Filter Influent Channel	469.078	469.097	469.121	469.14	0.019	
80	Filter Influent Butterfly Valve	468.95	469.12	468.95	469.12	0.17	
75	Filter Bed Loss + Rate Controller	459.575	468.95	459.83	468.95	9.375	Filter Bed + Control Valve
70	Effluent Elbow	459.472	459.575	459.728	459.83	0.103	
65	Filter #1 Effluent Conduit Entry	459.215	459.472	459.47	459.728	0.257	
60	West Filter Effluent DS of #1	459.464	459.465	459.469	459.47	0.001	
55	West Filter Effluent DS of #3	459.444	459.447	459.466	459.469	0.003	
50	West Filter Effluent DS of #5	459.409	459.416	459.459	459.466	0.007	
45	West Filter Effluent DS of #7	459.363	459.37	459.452	459.459	0.007	
40	West Filter Effluent Conduit Under Chem. Bldg. Tunnel	459.281	459.363	459.369	459.452	0.082	
35	West Filter Effluent Conduit	459.273	459.32	459.322	459.369	0.047	
30	West Filter Effluent Conduit Entry	459.02	459.322	459.076	459.322	0.302	
25		459.012	459.02	459.068	459.076	0.008	
20	Filtered Water Effluent Weir	458.941	459.066	458.948	459.068	0.125	
15	Clearwell Influent Channel	458.939	458.941	458.946	458.948	0.002	
10	Clearwell Influent Butterfly Valve	458.3	458.945	458.3	458.945	0.645	60" Butterfly Valve. Velocity = 3.6 fps.
5	Clearwell	458.3	458.3	458.3	458.3		

•

 TABLE 24

 BE Payne WTP

 120 mgd - Option 2B

 3 Treatment Trains in Service, Present Basin Modifications Included

 7 of 6 Filters in Service

 New Modifications - Larger Recarbonation Basin Influent Fort, Raised Coagulation and Softening Basin Effluent Weirs, and Additional Flocculation, Coagulation, and Mixing Basin Slulce Gates

 Louisville Water Company Water Treatment Plant Capacity Study

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	DHGL	Notes
							Additional Flocculation Basin Influent Gate. 6.5"
255	Flocculation Basin Influent Sluice Gate	474.820	474.892	474.820	474.892	0.072	Uplift in Coagulation Influent Conduit.
250	Flocculation Basin Influent Weir	474.744	474.820	474.744	474.820	0.076	
245	Flocculation Basin Effluent Port	474.717	474.744	474.717	474.744	0.027	TOW = 474.45'
240	Flocculation Basin Effluent Sluice Gate	474.241	474.717	474.336	474.717	0.476	Existing 60" x 60" Gate, Velocity = 2.5 fps.
235	Coagulation Basin Influent Conduit	473.992	474.241	474.088	474.336	0.249	
230	Coagulation Basin Influent Column	473,906	474.013	473.981	474.088	0.107	
225	Coagulation Basin Column Orifice	473.878	473.981	473.878	473.981	0.103	
220	Coagulation Basin Effluent Weir	473.456	473,878	473.456	473.878	0.422	Weir raised 473.00' to 473.67'
215	Coagulation Basin Effluent Launder	473.334	473.456	473.386	473.456	0.122	6.5" Coagulation Basin Freeboard
210	Coagulation Basin Effluent Sluice Gate	473.291	473.386	473.291	473.386	0.095	Additional Coagulation Basin Effluent Gate.
							Additional Mixing Basin Influent Gate. 0.5" Uplift in
205	Mixing Basin Influent Sluice Gate	473.229	473.291	473.229	473.291	0.062	Softening Influent Conduit.
200	Mixing Basin Influent Weir	473.154	473.229	473.154	473.229	0.075	
195	Mixing Basin Effluent Port	473.127	473.154	473.127	473.154	0.027	TOW = 473.00'
190	Mixing Basin Effluent Sluice Gate	472.651	473.127	472.746	473.127	0.476	Existing 60" x 60" Gate. Velocity = 2.5 fps.
185	Softening Basin Influent Conduit	472.402	472.651	472.498	472.746	0.249	
180	Softening Basin Influent Column	472.316	472.423	472.391	472.498	0.107	
175	Softening Basin Column Orifice	472.288	472.391	472.288	472.391	0.103	1
170	Softening Basin Effluent Weir	471.877	472.288	471.877	472.288	0.411	Weir raised 471.50' to 472.08'
165	Softening Basin Effluent Launder	471.810	471.877	471.840	471.877	0.067	7" Softening Basin Freeboard
160	CO2 Injection Box Influent	471.613	471.840	471.613	471.840	0.227	Enlarged 72" x 54" Orifice. Velocity = 2.3 fps.
155	CO2 Injection Box Influent Baffle Port	471.200	471.613	471.200	471.613	0.413	Existing 120" x 24" Orifice, Velocity = 3.1 fps.
150	CO2 Injection Box Effluent	471.043	471.200	471.043	471,200	0.157	
145	Reaction Basin Influent Baffle Wall	471.000	471.043	471.000	471.043	0.043	
140	Reaction Basin Effluent Weir	469.415	471.000	469.415	471.000	1.585	Freefall over weir.
135	Reaction Basin Effluent Launder	469.334	469.415	469.374	469.415	0.081	
130	Reaction Basin Effluent Gullet	469.331	469.374	469.352	469.374	0.043	
125	2 of 3 Reaction Basin #2 Effluent	469.343	469.344	469.351	459.352	0.001	
120	Reaction Basin #2 Effluent	469.337	469.339	469.349	469.351	0.002	
115	1 of 3 Reaction Basin #1 Effluent	469.330	469.332	469.346	469.349	0.002	
110	2 of 3 Reaction Basin #1 Effluent	469.322	469.325	469.343	469.346	0.003	
105	Total Reaction Basin Effluent	469.314	469.316	469.342	469.344	0.002	
100	Filter Influent Tunnel	469.243	469.283	469.303	469.342	0.04	
95	Filter Influent Conduit/Channel Transition	469.125	469.303	469.144	469.303	0.178	
90	Filter Influent Channel	469.124	469.125	469.142	469.144	0.001	
85	Filter Influent Channel	469.031	469.066	469,108	469.142	0.035	
80	Filter Influent Butterfly Valve	468.805	469.108	468.805	469.108	0.303	
75	Filter Bed Loss + Rate Controller	460.501	468.805	460.955	468.805	8.304	Filter Bed + Control Valve
70	Effluent Elbow	460.320	460.501	460.773	460.955	0.181	
65	Filter #1 Effluent Conduit Entry	459.862	450.320	460.315	460.773	0.458	30" Wall Pipe. Velocity = 5.4 fps.
60	West Filter Effluent DS of #1	460.304	460.306	460.314	460.315	0.002	
55	West Filter Effluent DS of #3	460.269	460.275	460.308	460.314	0.006	1
50	West Filter Effluent DS of #5	460.207	460.220	460.295	460.308	0.013	
45	West Filter Effluent DS of #7	460.126	460.138	460.283	460.295	0.012	
40	West Filter Effluent Conduit Under Chem. Bldg. Tunnel	459.979	460.126	460.136	460.283	0.147	1
35	West Filter Effluent Conduit	459.964	460.048	460.053	460.136	0.084	
30	West Filter Effluent Conduit Entry	459.516	460.053	459.616	460.053	0.537	80" x 60" Orifice. Velocity = 3.2 fps.
25		459.501	459.516	459.601	459.616	0.015	
20	Filtered Water Effluent Weir	459.438	459.598	459.449	459.601	0.16]
15	Clearwell Influent Channel	459.437	459.438	459.448	459.449	0.001	1
10	Clearwell Influent Butterfly Valve	458.300	459.447	458.300	459.447	1.147	60" Butterfly. Velocity = 4.7 fps.
5	Clearwell	458.300	458.300	458.300	458.300		

TABLE 2-9 BE Payne WTP 120 mgd - Option 3B 3 Treatment Trains in Service, Present Basin Modifications Included 7 of 8 Filters in Service New Modifications - Lower Reaction Basin Effluent Weirs, Larger Rec

New Modifications - Lower Reaction Basin Effluent Weirs, Larger Recarbonation Easin Influent Port, Raised Coagulation Basin Effluent Weirs, and Additional Flocculation, Coagulation, and Mixing Basin Sluice Gates Louisville Water Company Water Treatment Plant Capacity Study

Node	Description	HGL DN	HGL UP	EGL DN	FGLUP	DHG	Natar
						PILOE	Notes
255	Flocculation Basin Influent Sluice Gate	474 350	474 499	474 350	174 400		Additional Flocculation Basin Influent Gate, 1.5"
250	Flocculation Basin Influent Weir	474.330	474.422	474.330	474.422	0.072	Uplift in Coagulation Influent Conduit.
245	Flocculation Basin Effluent Port	474.244	474.000	474.244	474.350	0.106	
240	Flocculation Basin Effluent Sluice Gate	474.217	474.244	4/4.21/	4/4.244	0.027	2" Flocculation Basin Freeboard
235	Coagulation Basin Influent Conduit	473.741	4/4.21/	473.836	4/4.21/	0.476	Existing 60" x 60" Gate. Velocity = 2.5 fps.
230	Coagulation Basin Influent Column	473.492	473.74	473.588	473.836	0.249	4
225	Coagulation Basin Column Orifice	473.400	473.513	473.481	4/3.588	0.107	
220	Coagulation Basin Effluent Weir	473.376	473.481	473.378	4/3.481	0.103	
215	Coagulation Basin Effluent Launder	472.931	4/3.3/8	4/2.931	473.378	0.447	Weir raised 473.00' to 473.17'
210	Coagulation Basin Effluent Sluice Gate	472.750	472.931	472.846	472.931	0.149	12.5" Coagulation Basin Freeboard
	Stagelaber Public Enident Blace Gate	4/2./50	472.846	472.750	472.846	0.096	Additional Coagulation Basin Effluent Gate.
205	Mixing Regin Influent Stution Costs					1	Additional Mixing Basin Influent Gate. 6.5"
200	Mixing Basin Influent Solice Gate	4/2.689	472.750	472.689	472.750	0.061	Headspace in Softening Influent Conduit.
195	Mixing Basin Effluent Red	4/2.5/4	472.689	472.574	472.689	0.115	
190	Mixing Basin Effluent Skrige Cata	4/2.54/	472.574	472.547	472.574	0.027	5" Mixing Basin Freeboard
185	Soffering Basin Influent Conduit	472.071	4/2.54/	472.166	472.547	0.476	Existing 60" x 60" Gate Velocity = 2.5 fps.
180	Softening Basin Influent Column	471.822	472.071	4/1.918	472.166	0.249	
175	Softening Basin Column Octoo	4/1./30	4/1.843	4/1.811	471.918	0.107	
170	Softening Basin Effluent Wein	4/1./08	4/1.811	471.708	471.811	0.103	
165	Softening Basin Effluent I aunder	4/1.2//	471.708	471.277	471.708	0.431	Freefall over Softening Basin effluent weir.
100	CO2 Injection Day Influent Launder	471.193	471.277	471.230	471.277	0.084	14.5" Softening Basin Freeboard
165	CO2 Injection Box Influent	470.943	471.230	470.943	471.230	0.287	Enlarged 72" x 48" Orifice. Velocity = 2.6 fps.
150	CO2 Injection Box Induent Bane Port	470.530	470.943	470.530	470.943	0.413	Existing 120" x 24" Orifice. Velocity = 3.1 fps.
145	CO2 Injection Box Emilient	470.373	470.530	470.373	470.530	0.157	
143	Reaction Basin Influent Battle Wall	470.331	470.373	470.331	470.373	0.042	
140	Reaction Basin Emilient Weir	469.415	470.331	469.415	470.331	0.916	Freefall over Reaction Basin effluent weir.
135	Reaction Basin Effluent Launder	469.334	469.415	469.374	469.415	0.081	
130	Reaction Basin Emilient Guilet	469.331	469.374	469.352	469.374	0.043	
125	2 of 3 Reaction Basin #2 Effluent	469.343	469.344	469.351	469.352	0.001	
120	Reaction Basin #2 Effluent	469.337	469.339	469.349	469.351	0.002	
115	1 of 3 Reaction Basin #1 Effluent	469.330	469.332	469.346	469.349	0.002	
130	2 of 3 Reaction Basin #1 Effluent	469.322	469.325	469.343	469.346	0.003	
105	Total Reaction Basin Effluent	469.314	469.316	469.342	469.344	0.002	
100		469.243	469.283	469.303	469.342	0.04	
95	Filter Influent ConquirChannel Transition	469.125	469.303	469.144	469.303	0.178	
90	Filter Influent Channel	469.124	469.125	469.142	469.144	0.001	
00		469.031	469.066	469.108	469.142	0.035	
75	Filter Red Loss + Bota Costellar	468.805	469.108	468.805	469.108	0.303	
70		460.501	468.805	460.955	468.805	8.304	Filter Bed + Control Valve
- 70 65	Eliter #1 Effluent Conduit Entry	460.320	460.501	460.773	460.955	0.181	
60	Most Filter Effuent DS of #1	459.862	460.320	460.315	460.773	0.458	30" Wall Pipe. Velocity = 5.4 fps.
60	West Filler Effluent DS of #1	460.304	460.306	460.314	460.315	0.002	
55	West Filler Efficient DC of #5	460.269	460.275	460.308	460.314	0.006	
50	West Filter Efficient DS of #7	460.207	460.220	460.295	460.308	0.013	
45	West Filter Efficient Conduct Lader Obere Blide T	460.126	460.138	460.283	460.295	0.012	
40	West Filter Efficient Conduit Under Chem. Bidg. Tunnel	459.979	460.126	_460.136	460.283	0.147	
35	West Filter Educat Conduit	459.964	460.048	460.053	460.136	0.084	
30	west Filter Enluent Conduit Entry	459.516	460.053	459.616	460.053	0.537	80" x 60" Orifice. Velocity = 3.2 fps.
25	Ett	459.501	459.516	459.601	459.616	0.015	
20		459.438	459.598	459.449	459.601	0.16	
15	Clearweil Innuent Channel	459.437	459.438	459.448	459.449	0.001	
10	Clearweil Innuent Butterny Valve	458.300	459.447	458.300	459.447	1.147	60" Butterfly. Velocity = 4.7 fps.
5	Clearwell	458.300	458.300	458.300	458 300		

LWC 2900

 TABLE 2-10

 BE Payne WTP

 Plant Hydraulic Modifications Summary

 Louisville Water Company Water Treatment Plant Capacity Study

Option 1 - Raised Weirs Only

Option 2 - Enlarge Reaction Basin Influent Port

Option 3 - Lower Reaction Basin Effluent Weirs

	90 MGD -	Option 1A	90 MGD -	Option 2A	90 MGD -	Option 3A	
						I	
		Resulting		Resulting		Resulting Basin	
		Basin		Basin		Freeboard or	
Description\Flow	Modification	Freeboard	Modification	Freeboard	Modification	Headspace	
Coagulation Basin Influent Conduit	-	-0.3"1	-	2.5"	-	3"	
Flocculation Basin	_	4"	-	8.5"	-	9.5"	
Raise Coagulation Basin Effluent Weir Invert Elevation	473.46'	8.5"	473.08'	13"	_	15"	
Softening Basin Influent Conduit	-	3.5"	-	8"	-	10"	
Mixing Basin	-	2"	-	7"	-	10"	
Raise Softening Basin Effluent Weir Invert Elevation	472.17	6"	471.75'	1 <u>1"</u>	-	14"	
Enlarge Recarbonation Basin Influent Port	-	-	60"w X 48"h	-	-	-	
Lower Reaction Basin Effluent Weir Invert Elevation	-	-	-	-	470.17'	-	
	120 MGD -	Option 1B	120 MGD -	Option 2B	120 MGD - Option 3B		
		Resulting		Resulting			
		Basin		Basin		Resulting Basin	
Description\Flow	Modification	Freeboard	Modification	Freeboard	Modification	Freeboard	
Coagulation Basin Influent Conduit				-6.5"1	-	1.5"1	
Additional Flocculation Basin Influent Gate			48"w X 72"h	-	48"w X 72"h		
Flocculation Basin		10		-3.5"1	<u> </u>	2"	
Raise Coagulation Basin Effluent Weir Invert Elevation		3003	473.67'	6.5"	473.17'	12.5"	
Additional Coagulation Basin Effluent Gate	100	JEND.	60"w X 60"h	-	60" <u>w X</u> 60"h	-	
Softening Basin Influent Conduit	, F0°		-	-0.5"1	-	6.5"	
Additional Mixing Basin Influent Gate	108		48"w X 72"h	-	48"w X 72"h	-	
Mixing Basin	I have		-	-2"1	-	5"	
Raise Softening Basin Effluent Weir Invert Elevation]		472.08'	7"	-	14.5"	
Enlarge Recarbonation Basin Influent Port]		72"w X 54"h		72"w X 48"h		
Lower Reaction Basin Effluent Weir Invert Elevation	1		-	-	470.17'	-	

1. Negative freeboard indicates amount the water surface is above existing structures.

2. Existing effluent weir elevations are 470.84' (Reaction Basin), 471.50' (Softening Basin), & 473.00' (Coagulation Basin).

3. No option exists for raising weirs only for 120 MGD capacity.

TABLE 2-11 BE Payne WTP Process Capacity Summary Louisville Water Company Water Treatment Plant Capacity Study

Flow, mgd Te	Ten States	Kentucky	60	90	120		
Treatment Process		Existing	Standards ¹	Criteria			
Flocculation Units							
Total Number of Units		3					
Units 1-3							
Width (ft)		38.5					
Depth (ft)		17					
Volume (cf, each)		89,667					
Units In Service	3						
Flow-Through Velocity (fpm)			0.5 - 1.5		2.8	4.3	5.7
Detention Time (min.)			30	40-60	48.3	32.2	24.1
Coagulation/Sedimentation Units				<u> </u>			
Total Number of Units		3					
Units 1-3							
Area (sf, each)		20,498					
Depth (ft)		16					
Volume (cf, each)		327,968					
Units In Service	3						
Detention Time (min.)			240	240	188	125	94
Surface Loading Rate (gpm/sf)			0.5	0.75	0.68	1.02	1.36
Weir Overflow Rate (gpd/ft)			20,000		34,965	52,448	69,930
Softening Units							
Total Number of Units		3			Ī		
Mixing Units 1-3							
Width (ft)		38.5					
Depth (ft)		17					
Volume (cf, each)		89,667					
Units In Service	3						
Flow-Through Velocity (fpm)			0.5 - 1.5		2.8	4.3	5.7
Detention Time (min.)			30		48.3	32.2	24.1
Softening Units 1-3							
Area (sf, each)		20,498					
Depth (ft)		16					
Volume (cf, each)		327,968					
Units In Service	3						
Detention Time (min.)			240		188	125	94
Surface Loading Rate (gpm/sf)			0.5	0.75 ³	0.68	1.02	1.36
Weir Overflow Rate (gpd/ft)			20,000		34,965	52,448	69,930
Recarbonation Basins 1-3							
Area (sf, each)		3,000					
Depth (ft)		15.5					
Volume (cf, each)		46,500					
Units In Service	3				- T		
Detention Time (min.)					25	17	13

Eleve med			Ton States		60	00	120
Flow, mga			Ten States	Kentucky	80	90	120
reatment Process		Existing	Standards	Criteria			_
CO2 Reaction Basins 1-3		45.000					
Area (st, each)		15,000					
Depth (ft)		15.5					_
Volume (cf, each)		232,500					
Units In Service	3						
Detention Time (min.)					125	83	63
Surface Loading Rate (gpm/sf)					0.93	1.3 9	1.85
Weir Overflow Rate (gpd/ft)					25,641	38,462	51,282
Filtration							
Total Number of Units		8					
Units 1-8							
Area (sf, each)		1,760					
Units In Service	7						
Rate (gpm/sf)			None	57	3.38	5.07	6.76
Clearwell							
Volume (MG)		6		15%			
Percent Full	100%						
Volume Required, MG				216	9.0	13.5	18.0
High Service Pumps							
System Pressure (psi)		184.9					_
Station Capacity (mgd) 4.5		72.6			60.0	90.0	120.0
Pump No. 3 Capacity (mgd)		15.2			·		<u></u>
Pumo No. 4 Capacity (mod)		15.2			••••		
Pump No. 5 Capacity (mgd)		15.2					
Pump No. 6 Capacity (mgd)		15.2					
Pump No. 7 Capacity (mod)		13.5					
Pump No. 8 Capacity (mgd)		13.5					
Chemical Feed Systems ⁴							
Powdered Activated Carbon (1 lh/gal)					- •		
Available Storage (gal)		77.088	· · ·				_
Firm Capacity (oph)		180					
Average Dose (# Solution/MC) ⁶		0					_
Max Dosa (# Solution/MG)		200					_
Storage Required At Average Dans 8		300					
Average Flow For 30 Days (agl)					0	~	0
Charge Provided At Marine Days		<u> </u>			<u> </u>		
Average Flow For 14 Dave (ad)					70 110	20.170	40.029
Food Required May (mab)					20,119	30,179	40,230
	1				90	135	160
				· · · · · · · · · · · · · · · · · · ·			
Available Storage (ton)	+	24					
		4,000					
Average Dose (# Childrine/MG)		33					
Max Dose (# Chlorine/MG)		45					
Average Flow For 20 Dove (top)	1				10.7	20.6	20.4
Average Flow For 30 Days (1011)	···				19.7	29.0	39.4
Storage Required At Maximum Dose &					407	40.4	05 5
Food Dequired May (con)	<u> </u>				12.7	19,1	20.5
reeu requirea max (ppd)	1				Z,730	4,095	5,460

Flow, mgd			Ten States	Kentucky	60	90	120
Treatment Process	E	xisting	Standards ¹	Criteria			
Ferric Chloride (37%)							
Available Storage (gal)		77.000	T				
Firm Capacity (gph)		351					
Average Dose (# Ferric/MG)		111					
Max Dose (# Ferric/MG)		400					
Storage Required At Average Dose &							
Average Flow For 30 Days (gal)	11		1 1	1	32.061	48.091	64.121
Storage Required At Maximum Dose &				· · · · · · · · · · · · · · · · · · ·			
Average Flow For 14 Days (gal)					53,761	80.641	107 522
Feed Required Max(gph)					240	360	480
Coagulant Aid			·				
Available Storage (gal)		5,100					
Firm Capacity (gph)		2.5					
Average Dose (# Polymer/MG)		10					
Max Dose (# Polymer/MG)		45					
Storage Required At Average Dose &							
Average Flow For 30 Days (gal)			1	')	1,411	2,117	2,823
Storage Required At Maximum Dose &							
Average Flow For 14 Days (gal)]		2,964	4,445	5,927
Feed Required Max (gph)					13	20	26
Lime (99.5%)							
Available Storage (ton)		560		(
Firm Capacity (pph)		2,000					
Average Dose (# Lime/MG)		250					
Max Dose (# Lime/MG)		425					
Storage Required At Average Dose &							
Average Flow For 30 Days (ton)	L1				151	226	302
Storage Required At Maximum Dose &							
Average Flow For 14 Days (ton)					120	179	239
Feed Required Max (pph)					1068	1602	2137
Ammonia (99.5%)							
Available Storage (gal)		1,800					
Firm Capacity (pph)		16					
Average Dose (# Ammonia/MG)		6.9					
Max Dose (# Ammonia/MG)		10					
Storage Required At Average Dose &							
Average Flow For 30 Days (gal)					993	1,490	1,987
Storage Required At Maximum Dose &	i l						
Average Flow For 14 Days (gal)					681	1,021	1,362
Feed Required Max (pph)					25	38	51
Fluaride (19%)							
Available Storage (gal)		0,000					
Firm Capacity (gph)		12					
Average Dose (# Fluoride/MG)		5.8					
Max Dose (# Fluoride/MG)		8.3					
Storage Required At Average Dose &			- T	1			
Average Flow For 30 Days (gal)					3,536	5,303	7,071
Storage Required At Maximum Dose &						Т	
Average Flow For 14 Days (gal)					2,357	3,536	4,714
Feed Required Max (gph)					10.5	15.8	21.0

Flow, mgd		Ten States	Kentucky	60	90	120
Treatment Process	Existing	Standards ¹	Criteria			
Carbon Dioxide						
Available Storage (tons)	100					T
Firm Capacity (pph)	340					
Average Dose (#/MG)	N/A					
Max Dose (#/MG)	200					
Storage Required At Average Dose & Average Flow For 30 Days (tons)				N/A	N/A	N/A
Storage Required At Maximum Dose & Average Flow For 14 Days (tons)				56	84	113
Feed Required Max (pph)				503	754	1,005

NOTES:

1 Ten States Standards 30-Day Recommended Chemical Storage Does Not Distinguish Between Average Or Maximum Dosage.

2 Highlighted Values Either Exceed Existing Capacity Or Are Less Than The Recommended Storage.

3 No KDOW guidance available for softening units: use same rate as given for conventional sedimentation.

4 Firm capacity is the capacity with largest unit out of service.

5 High service pump capacity is to be at least 100% of WTP capacity.

6 Intermittent treatment for tastes and odors.

7 Requires continuous turbidity monitoring on individual filters at rates above 2 gpm/sf.

Page 4 of 4

2

3.1 Hydraulic Capacity

A survey of the CHWTP treatment structures and water surfaces was conducted. Tops of walls, weirs, launders, and channels were surveyed to check their consistency within the plant as well as their consistency with existing record drawings. Table 3-1 summarizes the results of the structures survey. The surveyed elevations are, on average, approximately 1 foot lower than those shown on the record drawings.

The key elevations for use in the model are hydraulic control points; those most important for CHWTP are the basin weirs. The survey results show that not all the softening basin effluent weirs are set at the same elevation. There is a difference of 0.085 foot between the highest and lowest softening basin weirs. The surveyed elevations are an average of two readings from opposite sides of the basins. Variations in weir elevation also exist within each basin. The weirs in softening basin 5, for example, had a difference of 0.08 foot from one side to the other. Likewise, the effluent weir elevations for the reaction basins are not equal. Reaction basin 3 effluent weirs are 0.11 foot lower than the weirs for basin 1, and the basin 2 weirs are halfway between those of 1 and 3. It is unclear why the weirs were installed at different elevations. The lowest elevation weir of a basin set is the limiting hydraulic control point.

Attempts were made to obtain accurate elevations of the slow mix basin influent weirs; however, an uneven crust of calcium carbonate scale has developed on the weirs making a nonuniform weir elevation. In some places along the weirs, the crust had broken free, creating an irregular weir surface. This problem was addressed by taking three or four elevation readings across the encrusted weir and averaging the readings. The resulting average elevation was entered into the model and then minor adjustments were made to have the model produce the actual surveyed water surface elevation.

The coagulation basin effluent weirs are also not all installed at the same elevation. The south basin weirs are approximately 0.05 foot higher than the north basin weirs, and within each basin set (the four south basin weirs and four north basin weirs), a difference of 0.03 foot exists between basins. However, the coagulation basins contain V-notch weirs, and it is difficult to survey the notch invert with a flat-bottomed survey rod; thus the technique used for surveying V-notch weirs may introduce error into the readings. After the structure survey results for CHWTP were obtained from the surveyor and analyzed, it was decided instead to survey the top of the weir for V-notch weirs and the notch depth would then be subtracted to obtain the invert for any future weir surveying.

After the structure and control point elevations were obtained, the hydraulic model was assembled. Two HYDRO model scenarios were conducted for the existing treatment plant to calibrate the model. Water surfaces were surveyed at plant flow rates of approximately 103 and 151 mgd. After the model was assembled, it was run at each of the two flow rates. Minor losses and coefficients were adjusted until the model HGL output was within

WDC062640001

0.04 foot of the actual water surface elevation surveyed. Table 3-2 summarizes and compares the calibrated model outputs and the actual survey readings. The model tracks well with the actual conditions with a few exceptions. The notes in the table explain why the difference between the model and surveyed elevation may have occurred. Some water surfaces are very turbulent and obtaining an accurate surveyed reading of the surface is sometimes difficult. The complete model results for the two calibration runs are shown in Table 3-3 for 103 mgd and Table 3-4 for 151 mgd.

3.1.1 Existing WTP Capacity

After the model was calibrated, several scenarios were examined to establish the existing plant hydraulic capacity. Flow in the model was incrementally increased until basin weirs began to flood. The first weirs to flood were the reaction basin effluent weirs. At approximately 180 mgd, the effluent weirs for reaction basin 3 start to experience backwater effects owing to high effluent channel water levels. The softening basin weirs have approximately 0.16 feet of drop over the effluent weirs, and the coagulation basins have approximately 3.6 feet of drop over the effluent weirs at 180 mgd. Figure 3-1 shows the HGL through CHWTP at the two calibration flows and at the current maximum hydraulic capacity of 180 mgd.

It is noteworthy that when the north filters are decommissioned, about 133 mgd of filtered water flows through the east filter group at a total plant flow rate of 180 mgd, if the south and east filters are loaded evenly. The east filter effluent conduit can accommodate only about 130 mgd without causing uplift on the conduit at its east end.

3.1.2 Modeling Results for 210-mgd Improvements

The first future capacity scenario (Option 1) is a plant flow of 210 mgd. The plant flow was entered into the model and run. The north filters were assumed to be out of service, and filtration rates for the south and east filters were assumed to be equal for all filters —14 in the east group and 5 in the south group. Each time a hydraulic restriction, such as flooding of a weir, was encountered, the control point was reestablished, and the model was then run again. For each successive model run, a control point or restriction working upstream through the plant was modified.

The first problem encountered was the reaction basin effluent weirs. To conform to the hydraulic criteria established, the reaction basin weirs would need to be raised to achieve the 210-mgd flow rate. Raising the weirs enough to prevent backwater effects would result in a reaction basin freeboard of 9.5 inches, an acceptable range. The next significant flow restriction encountered is the effluent conduit for softening basins 1 and 2. The conduit is constructed beneath the floor of slow mix basin 3 and would be very difficult to enlarge. A simple solution would be to redirect the effluent from softening basin 1 to reduce the flow through the effluent conduit. A new effluent port could be constructed in the southwest corner of softening basin 1 and a short channel or conduit constructed to convey the basin effluent flow into the north end of the reaction basin influent channel. The existing conduit beneath slow mix basin 3, which currently conveys flow from softening basin 1 and 2, would carry only softening basin 2 effluent after the new softening basin 1 effluent port is constructed. This effectively reduces the flow by 50 percent, which will reduce the friction loss at the restriction by 75 percent.

Once the softening basin 1 effluent is redirected to relieve the conduit beneath slow mix basin 3, the critical flow path then shifts to softening basins 3 and 4. The softening basin effluent weirs would also need to be raised to accommodate 210 mgd, and the required weir elevation would then be determined by the friction losses downstream of softening basins 3 and 4. Raising the softening basin weirs would result in a freeboard in the softening basins of 10 inches. The higher softening basin water surface would create a freeboard in the slow mix basin of 7 inches, which is less than the recommended 12 inches, but still acceptable. Sufficient freefall over the coagulation basin effluent weirs exists, and no additional improvements would be needed for 210 mgd.

Without modification, the filter effluent conduit for the east filter would develop uplift. The west end of the conduit slopes downward from the first east filter to the clear well entrance and is probably designed for uplift; however, an investigation of the entire conduit, especially the segment within the east filter pipe gallery, should be made to determine whether it can resist an uplift force. Installing a new 36-inch pipeline connecting the east end of this conduit to the west to chamber 1 of the clear well, routed in the Frankfort Avenue right-of-way, would alleviate the backpressure on the conduit and eliminate the uplift.

Because these proposed modifications are relatively low-cost and simple to accomplish, no other options for 210-mgd capacity were developed. Table 3-6 shows the results of the model at 210 mgd. The HGL for each 210-mgd option is shown in Figure 3-2.

3.1.3 Modeling Results for 240-mgd Improvements

The second future capacity scenario is a plant flow of 240 mgd. Again, the north filters were assumed to be out of service, and filtration rates for the south and east filters were assumed to be equal. The east filter bank is fed by a single conduit entering from the south between filters 25 and 27. The conduit tapers as it enters the filter influent channel, creating a large flow restriction. The east filter influent conduit flow restriction needs to be relieved to allow the plant to hydraulically handle 240 mgd. All of the modifications that are required for 210 mgd are also required for 240 mgd; however, the final weir elevations vary. Two proposed methods of relieving the east filter influent conduit were modeled.

Option 2A uses most of the existing piping beneath the control building. The southwest tower contains 60-inch pipe connections that connect the tower with the west end of the east filter influent channel and the tower to the north-south filter influent piping east of the clear well. Both connections are currently closed to prevent settled water from entering the filter influent streams. The proposed piping disconnects the 60-inch pipe from the tower and joins them outside the tower. The new piping would allow filter influent water to flow from the north-south filter influent piping into the east end of the east filter influent channel. A 60-inch pipe can handle approximately 32 mgd for the existing east filter influent conduit to relieve the restriction. Table 3-7 shows the model results at 240 mgd with a new east filter influent conduit. The reaction basin and softening basin weirs are raised, and softening basin 1 effluent has been redirected to bypass the conduit beneath slow mix basin 3.

Option 2B includes connecting a 60-inch pipe from the reaction basin effluent channel near the northwest corner of reaction basin 3; running it around the west, south, and east sides of the softening basins; and tying it into the east filter influent channel on the east side. The

WDC062640001

new pipe would provide a conduit for softened water to flow from the reaction basin effluent channel directly into the east filter bank as well as provide redundancy for the east filter influent. The approximate flow through the new 60-inch pipe would be 38 mgd. The basin modifications required are the same as those recommended for Option 2A; however, the final weir elevations are different. Table 3-8 shows the model results for 240 mgd with the new 60-inch pipe feeding the east side of the east filter influent channel. Figure 3-3 shows the HGL through the treatment plant for each 240-mgd option.

As with the 210-mgd scenario, without modification the filter effluent conduit for the east filters develops uplift. Installing a new 48-inch pipeline connecting the east end of this conduit to the west to chamber 1 of the clear well, routed in the Frankfort Avenue right-of-way, alleviates the backpressure on the conduit and eliminates the uplift.

Table 3-9 is a summary of the hydraulic modifications required at CHWTP for each option at plant flows of 210 mgd and 240 mgd. No basin modifications were needed for the slow mix basins, but they are included in the table to show the freeboard for each option.

3.1.4 Softening Basin Bypass

Another model scenario conducted for CHWTP was to determine whether 240 mgd could be handled hydraulically through the treatment plant while bypassing the softening basins. The existing facilities were studied to first determine whether it was possible to bypass softening by simply redirecting flows. After reviewing the drawings, it was determined that by changing the position of some of the gates at the softening basins, settled water could be diverted directly to the filter influent channel. The following valves would need to be placed in the positions indicated to bypass softening:

- Butterfly valves 302, 303, and 304 need to be closed
- Influent valves 345–347 and 353–355 from slow mix basins 5 and 6 need to be closed
- Sluice gates 305, 306, 311, 453, and 454 need to be open
- Gate valve 308 needs to be open

If these conditions are met, the plant will be able to handle a flow rate of 240 mgd in the softening basin bypass mode. Gate valve 308 would need to be opened to allow settled water to enter the east filter influent channel from the southwest tower. If this valve is not open, the softening basin influent channel would overflow because of the large head required to pass 240 mgd through sluice gate 305. Approximately 95 mgd would enter the east filter bank through the southwest tower and into the east end of the filter influent channel through valve 308. Opening gate valve 310 at the southwest tower would aid in relieving flow through sluice gate 305, though doing so would not be necessary. Table 3-10 shows the results of the model at 240 mgd with settled water entering directly into the filters. Figure 3-4 shows the HGL through the plant with the softening basins bypassed and settled water entering directly to the filters.

3.1.5 Decommissioning South Filters

A final model scenario conducted for CHWTP was to determine whether 240 mgd could be handled hydraulically through the treatment plant with the softening basins in service, but without using the south filters. Two of the 15 east filters were assumed to be in standby service for this analysis. This scenario was successful only when new connections to the west and east ends of the east filter influent channel were installed to reduce the bottleneck of sending all 240 mgd into the current east filter influent channel. If this bottleneck is not addressed, the reaction basin and softening basin walls would have to be raised to maintain the same filter influent channel water level set point for filter rate control. Table 3-11 shows the results of the model at 240 mgd using only 13 east filters. Note that the average filtration rate with 13 filters would be 6.1 gpm/ft². This is a high filtration rate, which would require a demonstration project for KY DOW acceptance; however, acceptable filter performance at this filtration rate is technically achievable.

Although 240 mgd can be delivered to the east filters using the same filter influent channel water level set point if the filter influent modifications are implemented, the filter effluent channel would become pressurized and the filtered water velocity at the exit point into the clear well would be over 14 feet per second. As a result, a new 60-inch filtered water pipeline would be required to connect the east end of the filtered water channel, and be routed in the Frankfort Avenue right-of-way west to chamber 1 of the clear well.

3.1.6 Clear Wells

The existing clear well has a volume of 25 million gallons, which is slightly smaller than the KY DOW-required volume of 15 percent of the total 24-hour plant capacity, which is 27 million gallons at a plant capacity of 180 mgd. Based on this criterion, the clear well would be undersized for any future capacity increases; however, the KY DOW has previously rated CHWTP for a nominal capacity of 240 mgd, so clear well improvements are considered to be discretionary.

3.1.7 High-Service Pumps

The CHWTP high-service pumps were examined to determine the existing station pumping capacity. As for BEPWTP, the pump capacities were determined from pressure readings on the pump discharge and clear well water level. The high-service pumps discharge into three water mains that convey the finished water to the distribution

system. Two of the water mains connect to the distribution system north and south of the pump station, and the third main connects to the distribution system to the north. The mains leave the pump station as 48- and 60-inch pipes to the south and as two 48-inch pipes and a 42-inch pipe to the north. Owing to the age of the pump impellers, each pump was derated 10 percent to account for impeller wear because the measured flow rates were less than those indicated on the original pump performance curves. The pump number and respective capacity in millions of gallons per day are shown in the adjacent table.

Pump No.	Capacity, mgd
2	48.7
4	45.6
5	25.9
6	29.2
7	27.9
8	36.3
10	42.8

Capacities are based on a pump station discharge gauge pressure

of 71.8 psi, which was recorded during a peak pumping event in June 2005. Under this pressure condition all pumps have a combined total of 256.4 mgd. Assuming Pump 6, the largest of the smaller units, is in standby service, the existing station capacity was therefore computed to be 227.2 mgd. Existing pump flowmeter data are available for comparison to calculated flows; however, the accuracy of the meters is not known.

Minimum high-service station pumping capacity was determined by LWC staff to be at least equal to the WTP capacity. Therefore, at the current plant capacity of 180 mgd, high-service pumping capacity is more than adequate. At higher plant capacities, however, the high-service pumping capacity requirements will exceed the existing capacity.

3.2 CHWTP Treatment Processes

Table 3-12 summarizes the loading rates and HRT for the treatment processes for CHWTP and compares them to the existing Ten States Standards and KY DOW general design guidelines.

3.2.1 Flocculation Basins

The flow-through velocity in the flocculation basins exceeds the Ten States Standards recommended maximum at present and proposed capacities. KY DOW design criteria do not contain guidelines for flow-through velocity in flocculation units. Detention time exceeds the recommended minimum for Ten States Standards up to 240 mgd, but is less than the KY DOW recommended minimum detention time at 240 mgd.

3.2.2 Coagulation Basins

The coagulation basins were assessed in terms of detention time, surface overflow rate, and weir loading rate. Ten States Standards and KY DOW guidelines contain the same recommended minimum detention time of 240 minutes. The computed basin detention time at present and future capacities is greater than the recommended minimum. The computed weir overflow rates for the coagulation basins exceed the Ten States Standards' recommended maximum at present and proposed capacities. KY DOW guidelines do not contain recommended weir overflow rates. The calculated surface loading is below the recommended maximum rate for both KY DOW and the Ten State Standards at 180 mgd and 210 mgd. At 240 mgd, the surface loading rate exceeds the KY DOW recommended maximum, but remains below the Ten States Standards' maximum.

3.2.3 Slow Mix Basins

The slow mix basins are subject to the same Ten States Standards recommendations as flocculation basins. The flow-through velocity at present and proposed flow rates exceeds the recommended maximum; however, the detention time is greater than the recommended minimum for present capacity and both proposed future capacities.

3.2.4 Softening Basins

The softening basins are subject to the same Ten States Standards recommendations as coagulation basins. Actual surface loading remains below the recommended maximum rate at present and proposed capacities. The detention time is less than the recommended time for present and future capacity. Weir overflow rate exceeds the recommended rate at both present and the two proposed capacities.

3.2.5 Filtration

Filtration rates at present and proposed capacities exceed KY DOW requirements of 2 gpm/ft² for rapid sand filters, but not the high-rate filtration up to 5 gpm/ft² permitted with continuous turbidity monitoring of each filter effluent. LWC presently monitors turbidity on each filter effluent. The present and proposed future rates are less than 5 gpm/ft² and are acceptable.

The north filter bank may be decommissioned in the near future. The filtration rate at present and proposed future capacities with only the south and east filter banks in service is still less than the KY DOW allowable maximum of 5 gpm/ft², assuming an equal loading rate for each filter.

3.3 CHWTP Chemical Feed Systems

Table 3-12 summarizes the existing feed systems and future capacities required for the chemicals used at CHWTP. Each chemical feed system was analyzed to determine its adequacy under existing and future flow conditions based on storage capacity and feed capacity.

3.3.1 Chemical Storage

Table 3-12 lists storage requirements under two conditions. Ten States Standards recommends providing a 30-day supply of chemicals used for treatment. The recommendation does not include information on what plant flow rate or chemical dose is used for calculating storage requirements. Required storage is calculated based on average dose at average flow for 30 days, and maximum dose at average flow for 14 days. The worst case condition would dictate the recommended storage capacity required. The treatment plant flow rate was assumed to have a 1.5 peaking factor. Average flow was determined by dividing the plant capacity by 1.5.

Presently, there is adequate storage under both flow conditions up to a plant capacity of 240 mgd for PAC, chlorine, polymer, ammonia, and fluoride.

Adequate storage exists for lime under both flow conditions up to a plant capacity of 210 mgd. At 240 mgd, the present storage is inadequate for the average dose and average flow condition for 30 days, but is sufficient for 14 days of storage at maximum dose and average flow.

The existing ferric chloride storage is inadequate for both flow conditions at the present 180-mgd capacity and both future proposed capacities. At the present capacity of 180 mgd, the available storage for average flow and maximum dose is only 7 days.

3.3.2 Chemical Feed Capacity

The chemical feed systems were examined to verify whether the firm capacity for each system is adequate to deliver the required amounts of chemical. Maximum doses were used to calculate the maximum feed rates. Firm capacity is the maximum feeding capacity with one of the largest units out of service for each system.

Chemical feed systems currently in use for PAC, ferric chloride, polymer, lime, ammonia, and fluoride have adequate capacity to deliver the chemicals at the current capacity of 180 mgd and proposed future capacities of 210 and 240 mgd for maximum dose. The feed system for chlorine is inadequate at a plant capacity of 240 mgd and maximum dose.

TABLE 3-1 CHWTP Structure Elevations Louisville Water Company Water Treatment Plant Capacity Study

	June 2006 Surveyed	Facility Record Drawings		
Structure Description	Elevation	Elevation*	Difference	Notes
Raw Water Reservoir Top of Berm	582.559			
Raw Water Reservoir Gatehouse Top Floor	583.839			
North Coagulation Building Top Floor	575.744			
North Coagulation Building Observation Walkway At Center	575.304			
South Coagualtion Building Top Floor	573.074			
South Coagulation Building Observation Walkway At Center	572.594			
North Basin #1 Weir Notch	571.144			Surveyed elevation is average of 4 comer points. 0.13' difference between high and low points.
North Basin #2 Weir Notch	571.174			Surveyed elevation is average of 4 corner points. 0.03' difference between high and low points.
North Basin #3 Weir Notch	571.169			Surveyed elevation is average of 4 comer points. 0.04' difference between high and low points.
North Basin #4 Weir Notch	571.174			Surveyed elevation is average of 4 corner points. 0.05' difference between high and low points.
South Basin #5 Weir Notch	571.229			Surveyed elevation is average of 4 comer points. 0.09' difference between high and low points.
South Basin #6 Weir Notch	571.202			Surveyed elevation is average of 4 corner points. 0.08' difference between high and low points.
South Basin #7 Weir Notch	571.202			Surveyed elevation is average of 4 corner points. 0.07' difference between high and low points.
South Basin #8 Weir Notch	571.217			Surveyed elevation is average of 4 corner points. 0.12' difference between high and low points.
Bottom of North Coagulation Basin Effluent Launder At Discharge	565.719			Surveyed elevation is average of 4 basin effluent launders.
Bottom of South Coagulation Basin Effluent Launder At Discharge	565.709			Surveyed elevation is average of 4 basin effluent launders.
Top of Wall Elevation of Northwest Tower	581.494			
Top of Wall Elevation of Northeast Tower	583.704			
Top of Wall Elevation of Southwest Tower	581.344	582.14	-0.80	1926 Record Drawings.
Top of Wall Elevation of Southeast Tower	582.244			
West Softening Basin Observation Walkway	562.932	563.97	-1.04	Surveyed elevation is average of 2 points. 1971 Record Drawings.
Softening Basin Observation Walkways/Curb	563.723	564.64	-0.92	Surveyed elevation is average of 5 points. 1944 and 1971 Record Drawings.
Slow Mix Basin 1 Influent Weir	563.426	563.64	-0.21	Weir crusted over. Surveyed elevation is average of 3 points on crust. 1944 Record Drawings
Slow Mix Basin 2 Influent Weir	563.152	563.64	-0.49	Weir crusted over. Surveyed elevation is average of 3 points on crust. 1944 Record Drawings.
Slow Mix Basin 3 Influent Weir	563.352	564.14	-0.79	Weir crusted over. Surveyed elevation is average of 3 points on crust. 1956 Record Drawings.
Slow Mix Basin 4 Influent Weir	563.364	564.14	-0.78	Weir crusted over. Surveyed elevation is average of 4 points on crust. 1956 Record Drawings.
Slow Mix Basin 5 Top of Influent Baffle Wall	562.224			
Slow Mix Basin 6 Top of Influent Baffle Wall	562.174			
Softening Basin #1 Weir	562.689	563.64	-0.95	Surveyed elevation is average of 2 points. 1944 Record Drawings.
Softening Basin #2 Weir	562.709	563.64	-0.93	Surveyed elevation is average of 2 points. 1944 Record Drawings.
Softening Basin #3 Weir	562.719	563.64	-0.92	Surveyed elevation is average of 2 points. 1956 Record Drawings.
Softening Basin #4 Weir	562.704	563.64	-0.94	Surveyed elevation is average of 2 points. 1956 Record Drawings.
Softening Basin #5 Weir	562.634	563.64	-1.01	Surveyed elevation is average of 2 points. 1971 Record Drawings.
Softening Basin #6 Weir	562.669	563.64	-0.97	Surveyed elevation is average of 2 points. 1971 Record Drawings.
CO2 Reaction Basin #1 Effluent Weirs	561.779	562.67	-0.89	Surveyed elevation is average of 2 points. 1971 Record Drawings.
CO2 Reaction Basin #2 Effluent Weirs	561.724	562.67	-0.95	Two points surveyed the same. 1971 Record Drawings.
CO2 Reaction Basin #3 Effluent Weirs	561.674	562.67	-1.00	Two points surveyed the same. 1971 Record Drawings.
Observation Floor of North Filters	562.264	562.50	-0.24	1979 Record Drawings.
Observation Floor of South Filters	562.289	563.14	-0.85	1971 Record Drawings. (562.50 - 1979 and 1992 Record Drawings.)
Observation Floor of East Filters	561.504	562.14	-0.64	1926 and 1944 Record Drawings. (561.62 - 1979 Record Drawings.)
North Filters Top of Wall				No continuous curb. Top of Wall is same as Observation Floor.
South Filters Top of Wall				No continuous curb. Top of Wall is same as Observation Floor.
East Filters Top of Wall	561.314			
Bottom of North Filters Influent Channel	558.074	Γ		
Bottom of South Filters Influent Channel	558.424			
Bottom of East Filters Influent Channel	556.294	557.14	-0.85	1926 and 1944 Record Drawings. (556.44 - 1979 Record Drawings.)
		A		

TBBLE 3-1 CHWTP Structure Elevations Louisville Water Company Water Treatment Plant Capacity Study

			225.424	Top of Clearwell Access Hatch - Chamber #3
			\$20°£99	Top of Clearwell Access Hatch - Chamber #2
Surveyed elevation is average of 4 comers.			765.667	New East (#32) Top of Media
Surveyed elevation is average of 3 comers.			663.131	Did East (#19) Top of Media
Surveyed elevation is average of 4 comers. 1992 Record Drawings.	re.0-	99.999	7 69.888	South Filters (#3) Top of Media
Southeast corner of filter.			£55.214	North Filters (#8)Top of Media
			761.48G	Backwash Trough dew East Filters (#32) Backwash Trough
			7 67.338	Γαρ of New East Filters (#32) Βαακwash Trough
			\$10.488	Backwash Trough Cate (#19) Backwash Trough
			2265.724	Top of Old East Filters (#19) Backwash Trough
			621.788	Backwash Trough
1992 Record Drawings.	-0.25	+0.658	687.888	Top of South Filters (#3) Backwash Trough
Could Not Obtain.				Bottom of North Filters Backwash Trough
Could Not Obtain.				Top of North Filters Backwash Trough
sətoN	Difference	*noitsvel3	Elevation	Structure Description
		Record Drawings	June 2006 Surveyed	

* Record drawing elevations were converted from LWC datum to NGVD29 datum with +404.14' correction.

TABLE 3-2

Survey and Calibration Hydraulic Summary Louisville Water Company Water Treatment Plant Capacity Study

	103	MGD		151	MGD		
Treatment Structure	Low Flow Model	Low Flow Actual	Diff.	High Flow Model	High Flow Actual	Diff.	Notes
North Raw Water Reservoir	580.268	580.299	-0.031			San Star	
South Raw Water Reservoir	579.6	579.629	-0.029		1000		
North Flocculation Basins Inlet		571.264			571.324	1	
Flocculation Basin #1		571.224			571.274		
Flocculation Basin #2		571.224			571.284		
Flocculation Basin #3		571.204			571.254	1000	
Flocculation Basin #4		571.224			571.274		
North Coagulation Basin #1		571.084			571.184		
North Coagulation Basin #2		571.124			571,184	1000	
North Coagulation Basin #3		571.154			571,174	10.0	
North Coagulation Basin #4		571.134	le internet	the state of the state	571.154	12	
North Coagulation Basin #1 Effluent Launder		566.244			566.484		
North Coagulation Basin #2 Effluent Launder		566.204		Kana and a second second	566.584	144.5	
North Coagulation Basin #3 Effluent Launder		566.364		11 112	566.744	dia anti-	
North Coagulation Basin #4 Effluent Launder		566.184			566.614	Tel and	
South Flocculation Basins Inlet	571.213	571.314	-0.101	571.308	571.449	-0.141	
Flocculation Basin #5		571.284			571.349	12	
Flocculation Basin #6		571.304	2002		571.389	16 × 40	
Flocculation Basin #7	571.183	571.274	-0.091	571.249	571.309	-0.060	Possible sediment buildup in tunnel.
Flocculation Basin #8		571.294			571.389		
South Coagulation Basin #5		571.204			571.229		
South Coagulation Basin #6		571.164			571.219	No.	
South Coagulation Basin #7	571.156	571.194	-0.038	571.176	571.219	-0.043	
South Coagulation Basin #8	All and some and the second	571.174			571.249		
South Coagulation Basin #5 Effluent Launder		566.424			566.929		
South Coagulation Basin #6 Effluent Launder		566.494			566.939		
South Coagulation Basin #7 Effluent Launder	566.39	566.544	-0.154	566.588	566.809	-0.221	Survey point was upstream of launder discharge. 567.365'
South Coagulation Basin #8 Effluent Launder		566.394	1		566,799		
Northeast Tower	564.701	564.804	-0.103	565.945	566.204	-0.259	Sediment deposition in tunnel and resulting section area not known.
Northwest Tower		564.884			566.169		
Southeast Tower	564.645	564.714	-0.069	565.825	565.854	-0.029	
Southwest Tower		562.194			566.014		Low flow survey reading error.
Softening Basins Influent Splitter Box	563.979	564.019	-0.040	564.364	564.359	0.005	
Slow Mix Basin #1 Influent	563.739	563.739	0.000	563.851	563.799	0.052	Crusting on weir prevents obtaining uniform weir elevation.
Slow Mix Basin #2 Influent		563.529	5		563.579		
Slow Mix Basin #3 Influent		563.849			563.904		

TABLE 3-2 Survey and Calibration Hydraulic Summary Louisville Water Company Water Treatment Plant Capacity Study

Notes	Diff.	High Flow Actual	IsboM wol7 dgiH	Diff.	Low Flow Actual	IsboM wol7 woJ	Treatment Structure
		P63.764			263.649	- un anna an anna anna anna anna anna an	Jneultul 44 nise8 xiM wol2
Model over predicts due to submerged Sedimentation Basin							<i>y</i> ^{<i>n</i>} -: d -:, <i>y</i> -: 0
Weir.	840.0	660.693	280.693	200'0	622.299	987.288	
		620.693			265.849		Z# UISER XIM MOIS
		263.284			262.959		E# UISK RSIN MIX RSIN
		263.164			262.899		44 nisba xim wois
Effluent Weir(~562.69') submerged. Model over predicts due to submerged weir.	971.0	562.839	563.014	0.023	962.729	262.752	Cftening Basin #1
		610.293			262.759		Staning Bain #2
		\$62.794			262.769		5# uisea Buinanos
		£62.784			667.239		5011091103 #4
Actual flow split between sottening basins appears uneven. Model assumes even flow split.	260.0	667.295	968.295	£00.0-	562.309	262.306	abnus⊐ tneutt∃ t# niss8 pninetto2
	1111	262.909			262.379		Soffening Basin #2 Effluent Launder
		562.784	Sec. March 1997 Sold		262.259		Softening Basin #3 Effluent Launder
		262.654			262.139		Softening Basin #4 Effluent Launder
High flow survey reading error.	-1.565	\$15.4314	562.749	700.0-	262.249	262.242	Recarbonation Basin #1
	840.0-	761.295	941.295	600.0-	696.198	96.198	CO2 Reaction Basin Influent Channel-North
	0.054	470.2 3 8	262.128	010.0-	696.195	267.949	CO2 Reaction Basin Influent Channel-South
Survey error is apparent since high flow elevation is lower than low flow elevation.	890.0	477.198	548.168	200.0	608.168	918.193	CO2 Reaction Basin #1
		497.198			662.168		CO2 Reaction Basin #2
	201.0-	561.454	292.162	060.0-	260.939	678.095	CO2 Reaction Basin Effluent Channel
	-0.029	561.214	581.185	0.105	669'099	P60.804	Softened Water Channel
High flow survey reading error.	736.1-	262.954	266.098	-0.043	692.098	912.095	Softened Water Channel To N&S Filters
	-0.053	690.195	900.195	210.0	602.098	127.098	Softened Water Channel To East Filters
	1.1.1.1	7 68.092			729.099		North Filters Influent Channel
		686.098			79.095		South Filters Influent Channel
Banked water at direction change creates uneven water surface.	262.0	£60.174	994.098	780.0	P60.404	164.088	East Filters Influent Channel
Estimated level based on actual filter level less influent losses.	200.0	924.098	584.093	810.0	484.095	667.095	East Filters Influent Channel - East End

Page 2 of 2

TABLE 3-3 CHWTP 103 mgd - Calibration 4 of 6 Softening Trains in Service Louisville Water Company Water Treatment Plant Capacity Study

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	D HGL
385	Raw Water Supply - North Reservoir	580.233	_ 580.245	580.331	580.343	0.012
380	108" North Reservoir Effluent Sluice Gate	580.163	580.331	580.163	580.331	0.168
375	108" South Reservoir Influent Sluice Gate	579.996	580.163	579.996	580.163	0.167
370	108" South Reservoir Effluent Sluice Gate	579.828	579.996	579.828	579.996	0.168
365	108" Influent Sluice Gate	579.563	579.828	579.661	579.828	0.265
360	Raw Water Supply - South Reservoir	579.511	579.563	579.609	579.661	0.052
355	Raw Water Supply	579.252	579.452	579.409	579.609	0.200
350	South Sedimentation Basin Supply	579.180	579.212	579.376	579.409	0.032
345	South Sedimentation Basin Influent Control Valve US	578.968	578.969	579.375	579.376	0.001
340	South Basin Influent Control Valve	570.816	578.968	571.224	579.375	8.152
335	South Sedimentation Basin Influent Control Valve DS	570.815	570.816	571.223	571.224	0.001
330	South Sedimentation Basin Supply	571.022	571.026	571.219	571.223	0.004
325	Flocculator Influent Conduit	571.206	571.212	571.213	571.219	0.006
320	Flocculator Influent Sluice Gate	571.183	571.213	571.183	571.213	0.030
315	Flocculator Effluent Baffle	571.176	571.183	571.180	571.183	0.007
310	Sedimentation Basin Influent Conduit	571.175	571.176	571.179	571.180	0.001
305	Sedimentation Basin Influent Column Orifice	571.156	571.179	571.156	571.179	0.023
300	Coag Basin Effluent Weir	567.010	571.156	567.010	571.156	4.146
295	Coagulation Basin Effluent Launder	566.390	567.010	566.713	567.010	0.620
290	Clarifier Effluent Vertical Conduit	565.047	565.049	565.050	565.052	0.002
285	Clarifier Effluent Sluice Gate	564.987	565.050	564.993	565.050	0.063
280	Coag Basin Rectangular Effluent Conduit	564.975	564.987	564.982	564.993	0.012
275	South Coag Basin Effluent Tunnel	564.758	564.927	564.813	564.982	0.169
270	East Tunnel	564.623	564.791	564.645	564.813	0.168
265	Southeast Tower Gate	564.283	564.645	564.283	564.645	0.362
260	Softening Basin Influent (Butterfly Valve)	563.979	564.283	563.979	564.283	0.304
255	Slow Mix Basin Influent (Sluice Gate)	563.739	563.979	563.740	563.979	0.240
250	Slow Mix Basin Influent Weir	562.786	563.739	562.786	563.740	0.953
245	Slow Mix Basin Effluent Baffle Wall - Orifice	562.761	562.786	562.771	562.786	0.025
240	Softening Basin Influent Conduit	562.742	562.761	562.752	562.771	0.019
235	Softening Basin Effluent Weir	562.416	562.752	562.416	562.752	0.336
230	Softening Basin Effluent Launder	562.352	562.416	562.378	562.416	0.064
225	Softening Basin Effluent Orifice	562.288	562.378	562.350	562.378	0.090
220	Recarbonation Basin Effluent Conduit	562.198	562.288	562.260	562.350	0.090
215	Recarb Basin Effluent Gate #365	562.102	562.260	562.102	562.260	0.158
210	Recarb Basin Effluent Gate #366	561.967	562.102	561.992	562.102	0.135
205	Softening Basin #1 & 2 Effluent Conduit	561.947	561.967	561.971	561.992	0.020

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	DHGL
200	Reaction Basin Influent Channel	561.949	561.960	561.960	561.971	0.011
195	Reaction Basin Influent Sluice Gate	561.845	561.960	561.858	561.960	0.115
190	Reaction Basin Influent Conduit	561.840	561.845	561.852	561.858	0.005
185	Reaction Basin Influent Baffle	561.816	561.852	561.816	561.852	0.036
180	Reaction Basin Effluent Weir	560.877	561.816	560.877	561.816	0.939
175	Reaction Basin Effluent Launder	560.839	560.877	560.858	560.877	0.038
170	Reaction Basin Effluent Gullet	560.805	560.858	560.831	560.858	0.053
165	Reaction Basin #2 Effluent Channel North-1	560.829	560.831	560.830	560.831	0.002
160	Reaction Basin #2 Effluent Channel North	560.826	560.829	560.828	560.830	0.003
155	Reaction Basin #1 Effluent Channel North-3	560.822	560.825	560.825	560.828	0.003
150	Reaction Basin #1 Effluent Channel North-2	560.817	560.820	560.822	560.825	0.003
145	Reaction Basin #1 Effluent Channel North-1	560.811	560.814	560.819	560.823	0.003
140	Reaction Basin #1 Effluent Channel North	560.803	560.808	560.815	560.819	0.005
135	Reaction Basin #1 Effluent	560.782	560.803	560.794	560.815	0.021
130	Softened Water Conduit Entry	560.712	560.794	560.724	560.794	0.082
125	Softened Water Effluent Conduit	560.697	560.712	560.709	560.724	0.015
120	Softened Water Conduit	560.695	560.700	560.704	560.709	0.005
115	East Filter Influent - New Conduit	560.696	560.698	560.702	560.704	0.002
110	East Filter Influent-New Conduit	560.695	560.695	560.702	560.702	0.000
105	Sluice Gate At East Filter Influent	560.589	560.702	560.647	560.702	0.113
100	Dogleg At East Filter Influent	560.554	560.589	560.612	560.647	0.035
95	East Filter Influent Conduit	560.457	560.554	560.514	560.612	0.097
90	New East Filter Influent	560.483	560.491	560.507	560.514	0.008
85	Filter Influent - Downstream of #27 & 28.	560.494	560.498	560.502	560.507	0.004
80	Filter Influent - Downstream of #29 & 30.	560.499	560.501	560.500	560.502	0.002
75	Filter Influent	560.292	560.336	560.456	560.500	0.044
70	Filter Influent Butterfly Valve	560.275	560.292	560.439	560.456	0.017
65	Filter Influent	560.190	560.275	560.354	560.439	0.085
60	Filter Headloss	543.040	560.354	543.204	560.354	17.314
55	Filter Effluent Pipe	542.799	543.040	542.964	543.204	0.241
50	Filter Effluent Chamber Weir	542.801	542.963	542.804	542.964	0.162
45	E. Filter Effluent Upstream of 29 & 30	542.798	542.801	542.802	542.804	0.003
40	E, Filter Effluent Upstream of 27 & 28	542.768	542.773	542.797	542.802	0.005
35	E. Filter Effluent Upstream of 25 & 26	542.699	542.715	542.782	542.797	0.016
30	E. Filter Effluent Upstream of 23 & 24	542.586	542.612	542.759	542.782	0.026
25	E. Filter Effluent Upstream of 21 & 22	542.401	542.453	542.717	542.759	0.052
20	E. Filter Effluent Upstream of 19 & 20	542.230	542.305	542.663	542.718	0.075
15	East Filter Effluent Conduit	541.794	542.094	542.492	542.663	0.300
10	East Filter Clearwell Influent	541.208	541.797	542.322	542.492	0.589
	Clearwell - Chamber #1	538.000	538.000	538.000	538.000	

TABLE 3-4

CHWTP 151 mgd - Calibration 4 of 6 Softening Trains in Service Louisville Water Company Water Treatment Plant Capacity Study

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	DHGL
385	Raw Water Supply - North Reservoir	580.354	580.379	580.563	580.588	0.025
380	108" North Reservoir Effluent Sluice Gate	580.204	580.563	580.204	580.563	0.359
375	108" South Reservoir Influent Sluice Gate	579.845	580.204	579.845	580.204	0.359
370	108" South Reservoir Effluent Sluice Gate	579.487	579.845	579.487	579.845	0.358
365	108" Influent Sluice Gate	578.918	579.487	579.128	579.487	0.569
360	Raw Water Supply - South Reservoir	578.808	578.918	579.017	579.128	0.110
355	Raw Water Supply	578.253	578.682	578.588	579.017	0.429
350	South Sedimentation Basin Supply	578.139	578.202	578.525	578.588	0.063
345	South Sedimentation Basin Influent Control Valve US	577.723	577.725	578.523	578.525	0.002
340	South Basin Influent Control Valve	570.529	577.723	571.328	578.523	7.194
335	South Sedimentation Basin Influent Control Valve DS	570.527	570.529	571.326	571.328	0.002
330	South Sedimentation Basin Supply	570.933	570.941	571.318	571.326	0.008
325	Flocculator Influent Conduit	571.295	571.305	571.308	571.318	0.010
320	Flocculator Influent Sluice	571.249	571.308	571.249	571.308	0.059
315	Flocculator Effluent Baffle	571.235	571.249	571.243	571.249	0.014
310	Sedimentation Basin Influent Conduit	571.214	571.235	571.222	571.243	0.021
305	Sedimentation Basin Influent Column Orifice	571.176	571.222	571.176	571.222	0.046
300	Coag Basin Effluent Weir	567.365	571.176	567.365	571.1 <u>76</u>	3.811
295	Coagulation Basin Effluent Launder	566.588	567.365	567.010	567.365	0.777
290	Clarifier Effluent Vertical Conduit	566.713	566.717	566.721	566.725	0.004
285	Clarifier Effluent Sluice Gate	566.583	566.721	566.597	566.721	0.138
280	Coag Basin Rectangular Effluent Conduit	566.558	566.583	566.572	566.597	0.025
275	South Coag Basin Effluent Tunnel	566.073	566.450	566.195	566.572	0.377
270	East Tunnel	565.775	566.145	565.825	566.195	0.370
265	Southeast Tower Gate	565.014	565.825	565.014	565.825	0.811
260	Softening Basin Influent (Butterfly Valve)	564.364	565.014	564.364	565.014	0.650
255	Slow Mix Basin Influent (Sluice Gate)	563.851	564.364	563.852	564.364	0.513
250	Slow Mix Basin Influent Weir	563.087	563.851	563.087	563.852	0.764
245	Slow Mix Basin Effluent Baffle Wall - Orifice	563.032	563.087	563.054	563.087	0.055
240	Softening Basin Influent Conduit	562.992	563.032	563.014	563.054	0.040
235	Softening Basin Effluent Weir	563.007	563.014	563.007	563.014	0.007
230	Softening Basin Effluent Launder	562.896	563.007	562.941	563.007	0.111
225	Softening Basin Effluent Orifice	562.749	562.941	562.882	562.941	0.192
220	Recarbonation Basin Effluent Conduit	562.656	562.749	562.788	562.882	0.093
215	Recarb Basin Effluent Gate #365	562.449	562.788	562.449	562.788	0.339
210	Recarb Basin Effluent Gate #366	562.162	562.449	562.214	562.449	0.287
205	Softening Basin #1 & 2 Effluent Conduit	562.119	562.162	562.170	562.214	0.043

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	DHGL
200	Reaction Basin Influent Channel	562.128	562.146	562.152	562.170	0.018
195	Reaction Basin Influent Sluice Gate	561.906	562,152	561.933	562.152	0.246
190	Reaction Basin Influent Conduit	561.893	561.906	561.921	561.933	0.013
185	Reaction Basin Influent Baffle	561.842	561.921	561.842	561.921	0.079
180	Reaction Basin Effluent Weir	561.295	561.842	561.295	561.842	0.547
175	Reaction Basin Effluent Launder	561.245	561.295	561.270	561.295	0.050
170	Reaction Basin Effluent Gullet	561.176	561.270	561.223	561.270	0.094
165	Reaction Basin #2 Effluent Channel North-1	561.220	561.222	561.221	561.223	0.002
160	Reaction Basin #2 Effluent Channel North	561.214	561.218	561.218	561.221	0.004
155	Reaction Basin #1 Effluent Channel North-3	561.207	561.211	561.214	561.218	0.004
150	Reaction Basin #1 Effluent Channel North-2	561.198	561.203	561.209	561.214	0.005
145	Reaction Basin #1 Effluent Channel North-1	561.186	561.192	561.203	561.209	0.006
140	Reaction Basin #1 Effluent Channel North	561.172	561.179	561.196	561.203	0.007
135	Reaction Basin #1 Effluent	561.145	561.172	561.168	561.196	0.027
130	Softened Water Conduit Entry	560.992	561.168	561.017	561.168	0.176
125	Softened Water Effluent Conduit	560.960	560.992	560.985	56 <u>1.017</u>	0.032
120	Softened Water Conduit	560.957	560.967	560.975	560.985	0.010
115	East Filter Influent - New Conduit	560.959	560.963	560.971	56 <mark>0.975</mark>	0.004
110	East Filter Influent-New Conduit	560.956	560.957	560.970	560.971	0.001
105	Sluice Gate At East Filter Influent	560.712	560.970	560.849	560.970	0.258
100	Dogleg At East Filter Influent	560.629	560.712	560.767	560.849	0.083
95	East Filter Influent Conduit	560.397	560.629	560.534	560.767	0.232
90	New East Filter Influent	560.447	560.466	560.515	560.534	0.019
85	Filter Influent - Downstream of #27 & 28.	560.469	560.481	560.504	56 <u>0.51</u> 5	0.012
80	Filter Influent - Downstream of #29 & 30.	560.483	560.491	560.496	560.503	800.0
75	Filter Influent	560.190	560.255	560.431	560.496	0.065
70	Filter Influent Butterfly Valve	560.166	560.190	560.407	560.431	0.024
65	Filter Influent	560.040	560.166	560.281	560.407	0.126
60	Filter Headloss	544.100	560.281	544.341	560.281	<u>16.181</u>
55	Filter Effluent Pipe	543.747	544.100	543.989	544.341	0.353
50	Filter Effluent Chamber Weir	543.863	543.988	543.888	<u>543.989</u>	0.125
45	E. Filter Effluent Upstream of 29 & 30	543.859	543.863	543.884	543.888	0.004
40	E. Filter Effluent Upstream of 27 & 28	543.803	543.812	543.875	<u>543.88</u> 4	0.009
35	E. Filter Effluent Upstream of 25 & 26	543.706	543.729	543.853	543.875	0.023
30	E. Filter Effluent Upstream of 23 & 24	543.630	543.656	543.830	543.853	0.026
25	E. Filter Effluent Upstream of 21 & 22	543.455	543.501	543.791	543.830	0.046
20	E. Filter Effluent Upstream of 19 & 20	543.185	543.266	543.732	543.792	0.081
15	East Filter Effluent Conduit	542.671	542.857	543.638	543.732	0.186
10	East Filter Clearwell Influent	541.956	542.673	543.443	543.638	<u>0.717</u>
5	Clearwell - Chamber #1	541.200	541.200	541.200	541.200	

TABLE 3-5

CHWTP 180 mgd - Maximum Hydraulic Capacity 6 of 6 Softening Trains in Service 14 of 15 East Filters In Service, 5 of 6 South Filters in Service, North Filters Decommisioned

Louisville Water Company Water Treatment Plant Capacity Study

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	DHGL
385	Raw Water Supply - North Reservoir	580.251	580.287	580.549	580.585	0.036
380	108" North Reservoir Effluent Sluice Gate	580.039	580.549	580.039	580.549	0.51
375	108" South Reservoir Influent Sluice Gate	579.529	580.039	579.529	580.039	0.51
370	108" South Reservoir Effluent Sluice Gate	579.019	579.529	579.019	579.529	0.51
365	108" Influent Sluice Gate	578.212	579.019	578.509	579.019	0.807
360	Raw Water Supply - South Reservoir	578.055	578.212	578.353	578.509	0.157
355	Raw Water Supply	577.266	577.876	577.743	578.353	0.61
350	South Sedimentation Basin Supply	577.105	577.195	577.652	577.743	0.09
345	South Sedimentation Basin Influent Control Valve US	576.514	576.517	577.649	577.652	0.003
340	South Basin Influent Control Valve	570.266	576.514	571.402	577.649	6.248
335	South Sedimentation Basin Influent Control Valve DS	570.263	570.266	571.399	571.402	0.003
330	South Sedimentation Basin Supply	570.840	570.851	571.388	<u>571.399</u>	0.011
325	Flocculator Influent Conduit	571.354	571.369	571.373	571.388	0.015
320	Flocculator influent Sluice	571.289	571.373	571.289	571.373	0.084
315	Flocculator Effluent Baffle	571.269	571.289	571.281	571.289	0.02
310	Sedimentation Basin Influent Conduit	571.240	571.269	571.252	571.281	0.029
305	Sedimentation Basin Influent Column Orifice	571.186	571.252	571.186	571.252	0.066
300	Coag Basin Effluent Weir	567.553	571.186	567.553	571.186	3.633
295	Coagulation Basin Effluent Launder	566.693	567.553	567.167	567.553	0.86
290	Clarifier Effluent Vertical Conduit	566.921	566.926	566.932	566.937	0.005
285	Clarifier Effluent Sluice Gate	566.736	566.932	566.756	566.932	0.196
280	Coag Basin Rectangular Effluent Conduit	566.700	566.736	566.720	566.756	0.036
275	South Coag Basin Effluent Tunnel	566.011	566.547	566.184	566.720	0.536
270	East Tunnel	565.591	566.113	565.662	566.184	0.522
265	Southeast Tower Gate	564.510	565.662	564.510	565.662	1.152
260	Softening Basin Influent (Butterfly Valve)	564.099	564.510	564.099	564.510	0.411
255	Slow Mix Basin Influent (Sluice Gate)	563.781	564.099	563.781	564.099	0.318
250	Slow Mix Basin Influent Weir	562.805	563.781	562.805	563.781	0.976
245	Slow Mix Basin Effluent Baffle Wall - Orifice	562.770	562.805	562.784	562.805	0.035
240	Softening Basin Influent Conduit	562.745	562.770	562.759	562.784	0.025
235	Softening Basin Effluent Weir	562.594	562.759	562.594	562.759	0.165
230	Softening Basin Effluent Launder	562.513	562.594	562.545	562.594	0.081
225	Softening Basin Effluent Orifice	562.425	562.545	562.508	562.545	0.12
220	Recarbonation Basin Effluent Conduit	562.366	562.425	562.449	562.508	0.059
215	Recarb Basin Effluent Gate #365	562.235	562.449	562.235	562.449	0.214
210	Recarb Basin Effluent Gate #366	562.054	562.235	562.087	562.235	0.181
Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	DHGL
----------	--	---------	---------	---------	-----------------	--------
205	Softening Basin #1 & 2 Effluent Conduit	562.027	562.054	562.060	562.087	0.027
200	Reaction Basin Influent Channel	562.030	562.045	562.046	562.060	0.015
195	Reaction Basin Influent Sluice Gate	561.891	562.046	561.908	562.046	0.155
190	Reaction Basin Influent Conduit	561.883	561.891	561.901	561.908	0.008
185	Reaction Basin Influent Baffle	561.851	561.901	561.851	561.901	0.05
180	Reaction Basin Effluent Weir	561.495	561.851	561.495	561.851	0.356
175	Reaction Basin Effluent Launder	561.481	561.495	561.488	561.495	0.014
170	Reaction Basin Effluent Gullet	561.436	561.488	561.462	561.488	0.052
165	Reaction Basin #2 Effluent Channel North-1	561.448	561.456	561.453	561.462	0.008
160	Reaction Basin #2 Effluent Channel North	561.438	561.445	561.446	561.454	0.007
155	Reaction Basin #1 Effluent Channel North-3	561.427	561.434	561.439	561.447	0.007
150	Reaction Basin #1 Effluent Channel North-2	561.415	561.422	561.432	561.440	0.007
145	Reaction Basin #1 Effluent Channel North-1	561.402	561.410	561.425	561.432	0.008
140	Reaction Basin #1 Effluent Channel North	561.388	561.396	561.416	561.425	0.008
136	Reaction Basin #1 Effluent	561.357	561.388	561.385	561.416	0.031
130	Softened Water Conduit Entry	561.161	561.385	561.197	561.385	0.224
125	Softened Water Effluent Conduit	561.123	561.161	561.159	561.197	0.038
120	Softened Water Conduit	561.118	561.133	561.144	561.159	0.015
115	East Filter Influent - New Conduit	561.121	561.127	561.138	561.144	0.006
110	East Filter Influent-New Conduit	561.117	561.118	561.137	561.138	0.001
105	Sluice Gate At East Filter Influent	560.768	561.137	560.964	561.137	0.369
100	Dogleg At East Filter influent	560.651	560.768	560.846	560.964	0.117
	East Filter Influent Conduit	560.320	560.651	560.516	560.846	0.331
	New East Filter Influent	560.389	560.417	560.489	560.516	0.028
85	Filter Influent - Downstream of #27 & 28.	560.422	560.439	560.473	560.489	0.017
80	Filter Influent - Downstream of #29 & 30.	560.444	560.455	560.462	560.473	0.011
74	Filter Influent	560.027	560.120	560.370	560.462	0.093
70	Filter Influent Butterfly Valve	559.993	560.027	560.336	560.370	0.034
	5 Filter Influent	559.815	559.993	560.158	560.336	0.178
	Filter Headloss	544.785	560.158	545.128	560.158	15.373
5	5 Filter Effluent Pine	544.284	544.785	544.627	545. <u>128</u>	0.501
50	D Filter Effluent Chamber Weir	544.494	544.625	544.525	544.627	0.131
	51F Filter Effluent Upstream of 29 & 30	544.489	544.494	544.520	544.525	0.005
4	DE Filter Effluent Upstream of 27 & 28	544.423	544.435	544.507	544.520	0.012
- 4	5 E Filter Effluent Upstream of 25 & 26	544.310	544.343	544.475	544.507	0.033
3	OLE Filter Effluent Upstream of 23 & 24	544.229	544.256	544.450	544.475	0.027
	5 Filter Effluent Upstream of 21 & 22	544.039	544.086	544.411	544.450	0.047
	OLE Filter Effluent Unstream of 19 & 20	543.749	543.831	544.349	544.411	0.082
- 4	5 East Filter Effluent Conduit	543.205	543.387	544.254	544.349	0.182
\vdash		542.357	543.146	544.045	544.254	0.789
	Edeptiell - Chamber #1	541.200	541.200	541.200	541.200	

5 Clearwell - Chamber i * Limiting Point of Restriction

TABLE 3-6

CHWTP 210 mgd - Option 1 (Only option for this capacity) 6 of 6 Softening Trains in Service 14 of 15 East Filters in Service, 5 of 6 South Filters in Service, North Filters Decommissioned 55 mgd to South Filters/155 mgd to East Filters Modifications - Weirs Raised and Softening Basin Effluent Modified Louisville Water Company Water Treatment Plant Capacity Study

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	D HGL	Notes
385	Raw Water Supply - North Reservoir	578.063	578.112	578.468	578.517	0.049	
380	108" North Reservoir Effluent Sluice Gate	577.774	578.468	577.774	578.468	0.694	
375	108" South Reservoir Influent Sluice Gate	577.080	577.774	577.080	577.774	0.694	
370	108" South Reservoir Effluent Sluice Gate	576.386	577.080	576.386	577.080	0.694	
365	108" Influent Sluice Gate	574.419	576.386	574.824	576.386	1.967	
360	Raw Water Supply - South Reservoir	574.206	574.419	574.611	574.824	0.213	
355	Raw Water Supply	573.132	573.962	573.781	574.611	0.83	Existing 96" Pipe.
350	South Sedimentation Basin Supply	572.912	573.035	573.658	573.781	0.123	
345	South Sedimentation Basin Influent Control Valve US	572.108	572.112	573.654	573.658	0.004	
340	South Basin Influent Control Valve	569.943	572.108	571.489	573.654	2.165	20% closed.
335	South Sedimentation Basin Influent Control Valve DS	569.939	569.943	571.485	571.489	0.004	
330	South Sedimentation Basin Supply	570.724	570.740	571.470	571.485	0.016	
325	Flocculator Influent Conduit	571.425	571.444	571.451	571.470	0.019	
320	Flocculator Influent Sluice	571.336	571.451	571.336	571.451	0.115	
315	Flocculator Effluent Baffle	571.309	571.336	571.325	571.336	0.027	
310	Sedimentation Basin Influent Conduit	571.269	571.309	571.285	571.325	0.04	
305	Sedimentation Basin Influent Column Orifice	571.195	571.285	571.195	571.285	0.09	
300	Coag Basin Effluent Weir	567.737	571.195	567.737	571.195	3.458	Freefall over Coagulation Basin weir.
295	Coagulation Basin Effluent Launder	566.795	567.737	567.321	567.737	0.942	
290	Clarifier Effluent Vertical Conduit	566.917	566.925	566.932	566.940	0.008	
285	Clarifier Effluent Sluice Gate	566.667	566.932	566.693	566.932	0.265	
280	Coag Basin Rectangular Effluent Conduit	566.617	566.667	566.644	566.693	0.05	
275	South Coag Basin Effluent Tunnel	565.679	566.408	565.915	566.644	0.729	
270	East Tunnel	565.112	565.818	565.208	565.915	0.706	
265	Southeast Tower Gate	564.820	565.208	564.820	565.208	0.388	
260	Softening Basin Influent (Butterfly Valve)	564.260	564.820	564.260	564.820	0.56	
							Partially closed sluice gate to balance
255	Slow Mix Basin Influent (Sluice Gate)	563.827	564.260	563.828	564.260	0.433	flow.
250	Slow Mix Basin Influent Weir	563.140	563.827	563.140	563.828	0.687	Freefall over weir.
245	Slow Mix Basin Effluent Baffle Wall - Orifice	563.093	563.140	563.112	563.140	0.047	7" Slow Mix Basin Freeboard
240	Softening Basin Influent Conduit	563.058	563.093	563.077	563.112	0.035	
235	Softening Basin Effluent Weir	562.766	563.077	562.766	563.077	0.311	Weir raised to 563.00'
230	Softening Basin Effluent Launder	562.499	562.766	562.598	562.766	0.267	10" Softening Basin Freeboard
225	Softening Basin Effluent Orifice	562.519	562.598	562.547	562.598	0.079	
220	Recarbonation Basin Effluent Conduit	562.498	562.519	562.527	562.547	0.021	Redirect Softening Basin #1 Effluent

Page 1 of 2

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	D HGL	Notes
215	Recarb Basin Effluent Gate #365	562.454	562,527	562.454	562.527	0.073	Redirect Softening Basin #1 Effluent
210	Recarb Basin Effluent Gate #366	562.392	562.454	562.403	562.454	0.062	Redirect Softening Basin #1 Effluent
205	Softening Basin #1 & 2 Effluent Conduit	562.383	562,392	562.394	562,403	0.009	Redirect Softening Basin #1 Effluent
200	Reaction Basin Influent Channel	562.357	562.374	562.377	562.394	0.017	
195	Reaction Basin Influent Sluice Gate	562.167	562.377	562.190	562.377	0.21	
190	Reaction Basin Influent Conduit	562.156	562.167	562.180	562.190	0.011	
185	Reaction Basin Influent Baffle	562.112	562.180	562.112	562.180	0.068	9.5" Reaction Basin Freeboard.
180	Reaction Basin Effluent Weir	561.844	562.112	561.844	562.112	0.268	Weir raised to 562.00'
175	Reaction Basin Effluent Launder	561.828	561.844	561.835	561.844	0.016	
170	Reaction Basin Effluent Gullet	561.774	561.835	561.804	561.835	0.061	1
165	Reaction Basin #2 Effluent Channel North-1	561.786	561.797	561.794	561.804	0.011	1
160	Reaction Basin #2 Effluent Channel North	561.773	561.782	561.785	561.794	0.009	
155	Reaction Basin #1 Effluent Channel North-3	561.759	561.768	561.775	561.785	0.009	
150	Reaction Basin #1 Effluent Channel North-2	561.744	561.753	561.766	561.776	0.009	
145	Reaction Basin #1 Effluent Channel North-1	561.727	561.737	561.756	561.767	0.01	
140	Reaction Basin #1 Effluent Channel North	561.708	561.719	561.746	561.756	0.011	1
135	Reaction Basin #1 Effluent	561.672	561.708	561.709	561.746	0.036	1
130	Softened Water Conduit Entry	561.404	561.709	561.453	561.709	0.305	1
125	Softened Water Effluent Conduit	561.352	561.404	561.400	561.453	0.052	1
120	Softened Water Conduit	561.346	561.366	561.381	561.400	0.02	1
115	East Filter Influent - New Conduit	561.350	561.358	561.373	561.381	0.008	
110	East Filter Influent-New Conduit	561.346	561.346	561.372	561.373	0	<u> </u>
105	Sluice Gate At East Filter Influent	560.884	561.372	561.144	561.372	0.488	Existing Sluice Gate
100	Dogleg At East Filter Influent	560.729	560.884	560.988	561.144	0.155	
95	East Filter Influent Conduit	560.291	560.729	560.551	560.988	0.438	Tapered conduit.
90	New East Filter Influent	560.427	560.455	560.524	560.551	0.028	
85	Filter Influent - Downstream of #27 & 28.	560.468	560.482	560.511	560.524	0.014	
80	Filter Influent - Downstream of #29 & 30.	560.493	560.500	560.504	560.510	0.007	
75	Filter Influent	559.912	560.037	560.378	560.504	0.125	
70	Filter Influent Butterfly Valve	559.865	559.912	560.332	560.378	0.047	
65	Filter Influent	559.623	559.865	560.090	560.332	0.242	
60	Filter Headloss	545.493	560.090	545.960	560.090	14.597	Filter Bed + Controller
55	Filter Effluent Pipe	544.811	545.493	545.277	545.960	0.682	Existing 24" Pipe. 5.5 fps velocity.
50	Filter Effluent Chamber Weir	545.136	545.276	545.153	545.277	0.14	
45	E. Filter Effluent Upstream of 29 & 30	545.133	545.136	545.150	545.153	0.003	
40	E. Filter Effluent Upstream of 27 & 28	545.070	545.081	545.140	545.150	0.011	1
35	E. Filter Effluent Upstream of 25 & 26	544.951	544.982	545.108	545.140	0.031]
30	E. Filter Effluent Upstream of 23 & 24	544.783	544.826	545.065	545.108	0.043]
25	E. Filter Effluent Upstream of 21 & 22	544.555	544.622	544.998	545.065	0.067]
20	E. Filter Effluent Upstream of 19 & 20	544.309	544.358	544.949	544.998	0.049]
15	East Filter Effluent Conduit	543.715	543.889	544.821	544.917	0.174]
10	East Filter Clearwell Influent	543.321	543.463	544.679	544.822	0.142]
5	Clearwell - Chamber #1	541.200	541.200	541.200	541.200		1

TABLE 3-7
CHWTP
240 mgd - Option 2A
6 of 6 Softening Trains in Service
14 of 15 East Filters in Service, 5 of 6 South Filters in Service, North Filters Decommissioned
63 mgd to South Filters/177 mgd to East Filters
Modifications - 60-Inch Influent Pipe to West End of East Filters, Weirs Raised, and Softening Basin Effluent Modified
the site We Michael Commence Michael Transformer & Direct Comments Structure

Louisville Water Company Water Treatment Plant Capacity Study

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	D HGL	Notes
385	Raw Water Supply - North Reservoir	580,174	580.237	580.703	580.766	0.063	
300	108" North Reservoir Effluent Sluice Gate	579 796	580,703	579.796	580,703	0.907	
375	108" South Reservoir Influent Sluice Gate	578,890	579,796	578.890	579.796	0.906	
370	108" South Reservoir Effluent Sluice Gate	577.983	578.890	577.983	578.890	0.907	
365	108" Influent Sluice Gate	575.415	577.983	575.944	577.983	2.568	
360	Raw Water Supply - South Reservoir	575.136	575.415	575.665	575.944	0.279	
355	Raw Water Supply Court Roberton	573.733	574.818	574.580	575.665	1.085	Existing 96" Pipe
350	South Sedimentation Basin Supply	573,446	573.607	574.420	574.580	0.161	
345	South Sedimentation Basin Influent Control Valve US	572.396	572.401	574.415	574.420	0.005	
340	South Basin Influent Control Valve	569.568	572.396	571.588	574.415	2.828	20% closed.
335	South Sedimentation Basin Influent Control Valve DS	569.563	569.568	571.583	571.588	0.005	
330	South Sedimentation Basin Supply	570.589	570.609	571.563	571.583	0.02	
325	Elocculator Influent Conduit	571.503	571.528	571.537	571.563	0.025	
320	Flocoulator Influent Sluice	571.387	571.537	571.387	571.537	0.15]
315	Flocculator Effluent Baffle	571.352	571.387	571.372	571.387	0.035	
310	Sedimentation Basin Influent Conduit	571.300	571.352	571.321	571.372	0.052	
305	Sedimentation Basin Influent Column Orifice	571.204	571.321	571.204	571.321	0.117	
300	Coag Basin Effluent Weir	568.229	571.204	568.229	571.204	2.975	Freefall over Coagulation Basin weir.
295	Coagulation Basin Effluent Launder	567.794	568.229	567.975	568.229	0.435	
290	Clarifier Effluent Vertical Conduit	567.945	567.955	567.964	567.975	0.01	
285	Clarifier Effluent Sluice Gate	567.617	567.964	567.652	567.964	0.347	
280	Coag Basin Rectangular Effluent Conduit	567.553	567.617	567.588	567.652	0.064	
275	South Coag Basin Effluent Tunnel	566.327	567.280	566.635	567.588	0.953	
270	Fast Tunnel	565.591	566.509	565.717	566.635	0.918	
265	Southeast Tower Gate	565.210	565.717	565.210	565.717	0.507	
260	Softening Basin Influent (Butterfly Valve)	564.479	565.210	564.479	565.210	0.731	
							Partially closed sluice gate to balance
255	Slow Mix Basin Influent (Sluice Gate)	563.913	564.479	563.914	564.479	0.566	flow.
250	Slow Mix Basin Influent Weir	563.497	563.913	563.497	563.914	0.416	Freefall over Mixing Basin weir.
245	Slow Mix Basin Effluent Baffle Wall - Orifice	563.435	563.497	563.460	563.497	0.062	3" Mixing Basin Freeboard
240	Softening Basin Influent Conduit	563.390	563.435	563.414	563.460	0.045	
235	Softening Basin Effluent Weir	563.035	563.414	563.035	563.414	0.379	Weir raised to 563.33'.
230	Softening Basin Effluent Launder	562.715	563.035	562.834	563.035	0.32	6" Softening Basin Freeboard.
225	Softening Basin Effluent Orifice	562.731	562.834	562.768	562.834	0.103	
220	Recarbonation Basin Effluent Conduit	562.704	562.731	562.741	562.768	0.027	Redirect Softening Basin #1 Effluent.

Page 1 of 2

				EGI DN	EGLUP	D HGL	Notes
Node	Description	HGL DN	HOLUP	500.016	562 741	0.095	Redirect Softening Basin #1 Effluent.
215	Recarb Basin Effluent Gate #365	562.646	562.741	562.640	562.646	0.08	Redirect Softening Basin #1 Effluent.
210	Recarb Basin Effluent Gate #366	562.566	562.646	562.580	562.580	0.012	Redirect Softening Basin #1 Effluent.
205	Softening Basin #1 & 2 Effluent Conduit	562.554	562.566	562.568	562 568	0.02	
200	Reaction Basin Influent Channel	562.523	562.543	562.549	562.500	0.275	
195	Reaction Basin Influent Sluice Gate	562.274	562.549	562.305	562 205	0.270	
100	Reaction Basin Influent Conduit	562.260	562.274	562.291	562.305	0.014	8.5" Reaction Basin Freeboard.
190	Reaction Basin Influent Baffle	562.203	562.291	562.203	562.291	0.295	Weir raised to 562.08'.
180	Reaction Basin Effluent Weir	561.908	562.203	561.908	562.203	0.019	
175	Reaction Basin Effluent Launder	561.889	561.908	561.897	501.900	0.079	
170	Reaction Basin Effluent Gullet	561.818	561.897	561.858	501.057	0.013	
165	Reaction Basin #2 Effluent Channel North-1	561.835	561.848	561.845	561.000	0.012	
160	Reaction Basin #2 Effluent Channel North	561.818	561.830	561.833	561 933	0.012	
155	Reaction Basin #1 Effluent Channel North-3	561.800	561.812	561.821	561 822	0.012	
150	Reaction Basin #1 Effluent Channel North-2	561.781	561.793	561.810	561.910	0.012	
1/15	Reaction Basin #1 Effluent Channel North-1	561.759	561.772	561./9/	561 707	0.014	1
140	Reaction Basin #1 Effluent Channel North	561.735	561.749	561.784	561 794	0.014	
125	Reaction Basin #1 Effluent	561.691	561.735	561./40	561 740	0.399	Channel Entry Into Conduit.
120	Softened Water Conduit Entry	561.341	561.740	561.405	501.740	0.068	
126	Softened Water Effluent Conduit	561.273	561.341	561.337	561 227	0.000	1
120	Softened Water Conduit	561.267	561.292	561.311	561 211	0.025	1
110	S East Filter Influent - New Conduit	561.276	561.285	561.302	561 302	0.003	1
110	East Filter Influent-New Conduit	561.270	561.271	561.301	561 304	0.001	Existing Sluice Gate
	S Shice Gate At East Filter Influent	560.831	561.301	561.033	561.032	0.122	Futurin C vienes 2 m
10	Dogleg At East Filter Influent	560.709	560.831	560.911	560.014	0.122	4
	5 East Filter Influent Conduit	560.368	560.709	560.570	560.570	0.041	4
	DINew East Filter Influent	560.409	560.445	560.536	560.570	0.030	1
	5 Filter Influent - Downstream of #27 & 28.	560.464	560.482	560.519	560.530	0.018	4
	0 Filter Influent - Downstream of #29 & 30.	560.497	560.505	560.510	560 514	0.003	4
⊢ ²	5 Filter Influent	559.737	559.901	560.347	560.317	0.04	4
	0 Filter Influent Butterfly Valve	559.677	559.737	560.286	560.347	0.00	-
	5 Eilter Influent	559.361	559.677	559.970	550.200	13 609	Filter Bed + Control Valve
	O Eilter Headloss	546.361	559.970	546.970	559.970	0.801	Existing 24" Pipe, 6.3 fps.
	5 Silter Effluent Pine	545.470	546.361	546.079	540.970	0.031	
	O Filter Effluent Chamber Weir	545.931	546.077	545.953	545.079	0.003	4
	ELE Eitter Effluent Unstream of 29 & 30	545.928	545.931	545.950	545.953	0.003	-1
	DE. Filter Effluent Upstream of 27 & 28	545.845	545.859	545.936	545.950	0.014	4
	ELE Eilter Effluent Upstream of 25 & 26	545.689	545.730	545.895	545.936	0.041	4
	DOLE. Filler Effluent Lipstream of 23 & 24	545.470	545.526	545.839	545.895	0.050	-1
	SUE, Filler Effluent Upstream of 21 & 22	545.172	545.260	545.751	545.839	0.088	-1
	25 E. Filter Effluent Upstream of 19 & 20	544.788	544.915	545.623	545.751	0.149	-1
	201E. Filler Effluent Conduit	544.336	544.484	545.474	545.623	0.140	-1
	15 East Filter Cleanvell Influent	543.328	543.700	545.102	545.474	0.372	-1
	10 Last Filler Clearweil mildent	541.200	541.200	541.200	541.200		
	5 Clearweil - Charliber #1						

•

TABLE 3-8

CHWTP 240 mgd - Option 2B 6 of 6 Softening Trains in Service 14 of 15 East Filters in Service, 5 of 6 South Filters in Service, North Filters Decommissioned 63 MGD to South Filters/177 MGD to East Filters Modifications - 60-inch Influent Pipe to East End of East Filters, Weirs Raised, and Softening Basin Effluent Modified

Louisville Water Company Water Treatment Plant Capacity Study

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	D HGL	Notes
385	Raw Water Supply - North Reservoir	580.174	580.237	580.703	580.766	0.063	
380	108" North Reservoir Effluent Sluice Gate	579.796	580.703	579.796	580.703	0.907	1
375	108" South Reservoir Influent Sluice Gate	578.890	579.796	578.890	579.796	0.906	1
370	108" South Reservoir Effluent Sluice Gate	577.983	578.890	577.983	578.890	0.907	1
365	108" Influent Sluice Gate	575.415	577.983	575.944	577.983	2.568	1
360	Raw Water Supply - South Reservoir	575.136	575.415	575.665	575.944	0.279	1
355	Raw Water Supply	573.733	574.818	574.580	575.665	1.085	Existing 96" Pipe
350	South Sedimentation Basin Supply	573.446	573.607	574.420	574.580	0.161	
345	South Sedimentation Basin Influent Control Valve US	572.396	572.401	574.415	574.420	0.005	1
340	South Basin Influent Control Valve	569.568	572.396	571.588	574.415	2.828	20% closed.
335	South Sedimentation Basin Influent Control Valve DS	569.563	569.568	571.583	571.588	0.005	
330	South Sedimentation Basin Supply	570.589	570.609	571.563	571.583	0.02	1
325	Flocculator Influent Conduit	571.503	571.528	571.537	571.563	0.025	1
320	Flocculator Influent Sluice	571.387	571.537	571.387	571.537	0.15	1
315	Flocculator Effluent Baffle	571.352	571.387	571.372	571.387	0.035	1
310	Sedimentation Basin Influent Conduit	571.300	571.352	571.321	571.372	0.052	1
305	Sedimentation Basin Influent Column Orifice	571.204	571.321	571.204	571.321	0.117	1
300	Coag Basin Effluent Weir	568.204	571.204	568.204	571.204	3	Freefall over Coagulation Basin weir.
295	Coagulation Basin Effluent Launder	567.753	568.204	567.941	568.204	0.451	
290	Clarifier Effluent Vertical Conduit	567.911	567.921	567.930	567.941	0.01	· ·
285	Clarifier Effluent Sluice Gate	567.583	567.930	567.618	567.930	0.347	1
280	Coag Basin Rectangular Effluent Conduit	567.519	567.583	567.554	567.618	0.064	
275	South Coag Basin Effluent Tunnel	566.293	567.246	566.601	567.554	0.953	
270	East Tunnel	565.557	566.475	565.683	566.601	0.918	1
265	Southeast Tower Gate	565.177	565.683	565.177	565.683	0.506	
260	Softening Basin Influent (Butterfly Valve)	564.445	565.177	564.445	565.177	0.732	1
							Partially closed sluice gate to balance
255	Slow Mix Basin Influent (Sluice Gate)	563.880	564.445	563.880	564.445	0.565	flow.
250	Slow Mix Basin Influent Weir	563.377	563.880	563.377	563.880	0.503	Freefall over Mixing Basin weir.
245	Slow Mix Basin Effluent Baffle Wall - Orifice	563.315	563.377	563.340	563.377	0.062	4" Mixing Basin Freeboard.
240	Softening Basin Influent Conduit	563.270	563.315	563.294	563.340	0.045	
235	Softening Basin Effluent Weir	562.961	563.294	562.961	563.294	0.333	Weir raised to 563.21'.
230	Softening Basin Effluent Launder	562.631	562.961	562.754	562.961	0.33	7.5" Softening Basin Freeboard.
225	Softening Basin Effluent Orifice	562.651	562.754	562.688	562.754	0.103	
220	Recarbonation Basin Effluent Conduit	562.624	562.651	562.661	562.688	0.027	Redirect Softening Basin #1 Effluent.

Page 1 of 2

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	DHGL	Notes
215	Recarb Basin Effluent Gate #365	562.566	562.661	562.566	562.661	0.095	Redirect Softening Basin #1 Effluent.
210	Recarb Basin Effluent Gate #366	562.486	562.566	562.500	562.566	0.08	Redirect Softening Basin #1 Effluent.
205	Softening Basin #1 & 2 Effluent Conduit	562.474	562.486	562.488	562.500	0.012	Redirect Softening Basin #1 Effluent.
200	Reaction Basin Influent Channel	562.443	562.462	562.469	562.488	0.019	
195	Reaction Basin Influent Sluice Gate	562.194	562.469	562.225	562.469	0.275	1
190	Reaction Basin Influent Conduit	562.180	562.194	562.211	562.225	0.014	1
185	Reaction Basin Influent Baffle	562.123	562.211	562.123	562.211	0.088	9.5" Reaction Basin Freeboard.
180	Reaction Basin Effluent Weir	561.831	562.123	1 561.831	562.123	0.292	Weir raised to 562.00'.
175	Reaction Basin Effluent Launder	561.811	561.831	1 561.820	561.831	0.02	
170	Reaction Basin Effluent Gullet	561.738	561.820	561.779	561.820	0.082	1
165	Reaction Basin #2 Effluent Channel North-1	561.756	561.770	561,766	561.779	0.014	1
160	Reaction Basin #2 Effluent Channel North	561.739	561.751	561.754	561.766	0.012	1
155	Reaction Basin #1 Effluent Channel North-3	561.721	561,733	561.742	561,754	0.012	4
150	Reaction Basin #1 Effluent Channel North-2	561.701	561.713	561.731	561.742	0.012	4
145	Reaction Basin #1 Effluent Channel North-1	561.679	561.692	561.718	561 731	0.012	4
140	Reaction Basin #1 Effluent Channel North	561.655	561.669	561.704	561,718	0.014	1
135	Reaction Basin #1 Effluent	561.610	561.655	561.660	561.704	0.045	1
130	Softened Water Conduit Entry	561.280	561.659	561,325	561.659	0.379	1
125	Softened Water Effluent Conduit	561.232	561.280	561.277	561.325	0.048	4
120	Softened Water Conduit	561.227	561.245	561.259	561.277	0.018	4
115	East Filter Influent - New Conduit	561.232	561.239	561.252	561.259	0.007	4
110	East Filter Influent-New Conduit	561.227	561.228	561.251	561.252	0.001	1
105	Sluice Gate At East Filter Influent	560.839	561.251	561.047	561.251	0.412	Evisting Sluice Gate
100	Dogleg At East Filter Influent	560.714	560.839	560.922	561.047	0 125	
95	East Filter Influent Conduit	560.362	560.714	560.570	560.922	0.352	4
90	New East Filter Influent	560.409	560.445	560.536	560.570	0.036	4
85	Filter Influent - Downstream of #27 & 28.	560.464	560.482	560.519	560.536	1 0.018	4
80	Filter Influent - Downstream of #29 & 30.	560.497	560.505	560.510	560.519	0.008	1
75	(Filter Influent	559.737	559.901	560.347	560.511	0.164	4
70	Filter Influent Butterfly Valve	559.677	559.737	560.286	560.347	1 0.06	1
65	Filter Influent	559.361	559.677	559.970	560,286	0.316	4
60	Filter Headloss	546.361	559.970	546.970	559.970	13,609	Filter Bed + Control Valve
55	Filter Effluent Pipe	545.470	546.361	546.079	546.970	0.891	Existing 24" Pipe 6.3 frs
50	Filter Effluent Chamber Weir	545.931	546.077	545.953	546.079	0.146	
45	E. Filter Effluent Upstream of 29 & 30	545.928	545.931	545.950	545.953	0.003	4
40	E. Filter Effluent Upstream of 27 & 28	545.845	545.859	545.936	545 950	0.014	1
35	E. Filter Effluent Upstream of 25 & 26	545.689	545.730	545.895	545 936	0.041	4
30	E. Filter Effluent Upstream of 23 & 24	545.470	545.526	545 839	545 895	0.056	4
25	E. Filter Effluent Upstream of 21 & 22	545.172	545,260	545,751	545,839	0.000	4
20	E. Filter Effluent Upstream of 19 & 20	544,788	544.915	545.623	545.751	0.127	4
15	(East Filter Effluent Conduit	544 336	544 484	545 474	545 623	0.148	4
4						1 U. 1994 a	
10	East Filter Clearwell Influent	543,328	543 700	545 102	545 474	0 372	1

Page 2 of 2

TABLE 3-9 CHWTP Plant Hydraulic Modifications Summary Louisville Water Company Water Treatment Plant Capacity Study

	210 MGD	- Option 1	240 MGD - Option 2A		240 MGD - Option 2B	
Description\Flow	Modification	Resulting Basin Freeboard	Modification	Resulting Basin Freeboard	Modification	Resulting Basin Freeboard
New East Filter Influent-West End			60" Pipe		-	
New East Filter Influent-East End					60" Pipe	
Raise Reaction Basin Effluent Weir Invert Elevation	562.00'	9.5"	562.08'	8.5"	562.00'	9.5"
New Softening Basin #2 Outlet	60"x60"	10"	60"x60"	6"	60"x60"	7.5"
Raise Softening Basin Effluent Weir Invert Elevation	563.00'		563.33'		563.21'	
Slow Mix Basins	-	7"	-	3"	-	4.5"

1. Existing average Reaction Basin effluent weir elevation is 561.72'.

2. Existing average Softening Basin effluent weir elevation is 562.69'.

Page 1 of 1

TABLE 3-10
CHWTP
240 mgd
Softening Trains Bypassed
14 of 15 East Filters in Service, 5 of 6 South Filters in Service, North Filters Decommissionec
63 mgd to South Filters/177 mgd to East Filters
Modifications - 60-Inch Connection Pipe to West End of East Filters Placed into Service
Louisville Water Company Water Treatment Plant Capacity Study

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	D HGL	Notes
240	Raw Water Supply - North Reservoir	580.133	580.197	580.662	580.726	0.064	
235	108" North Reservoir Effluent Sluice Gate	579.756	580.662	579.756	580.662	0.906	
230	108" South Reservoir Influent Sluice Gate	578.849	579.756	578.849	579.756	0.907	
225	108" South Reservoir Effluent Sluice Gate	577.943	578.849	577.943	578.849	0.906	
220	108" Influent Sluice Gate	575.374	577.943	575.903	577.943	2.569	
215	Raw Water Supply - South Reservoir	575.096	575.374	575.625	575.903	0.278	
210	Raw Water Supply	573.693	574.777	574.54	575.625	1.084	Existing 96" Pipe
205	South Sedimentation Basin Supply	573.406	573.566	574.38	574.54	0.16	
200	South Sedimentation Basin Influent Control Valve US	572.355	572.36	574.375	574.38	0.005	
195	South Basin Influent Control Valve	569.568	572.355	571.588	574.375	2.787	20% closed.
190	South Sedimentation Basin Influent Control Valve DS	569.563	569.568	571.583	571.588	0.005	
185	South Sedimentation Basin Supply	570.589	570.609	571.563	571.583	0.02	
180	Flocculator Influent Conduit	571.503	571.528	571.537	571.563	0.025	
175	Flocculator Influent Sluice	571.387	571.537	571.387	571.537	0.15	
170	Flocculator Effluent Baffle	571.352	571.387	571.372	571.387	0.035	
165	Sedimentation Basin Influent Conduit	571.3	571.352	571.321	571.372	0.052	
160	Sedimentation Basin Influent Column Orifice	571.204	571.321	571.204	571.321	0.117	
155	Coag Basin Effluent Weir	567.913	571.204	567.913	571.204	3.291	Freefall over Coagulation Basin weir.
150	Coagulation Basin Effluent Launder	566.893	567.913	567.468	567.913	1.02	
145	Clarifier Effluent Vertical Conduit	565.815	565.826	565.835	565.845	0.011	
140	Clarifier Effluent Sluice Gate	565.488	565.835	565.522	565.835	0.347	
135	Coag Basin Rectangular Effluent Conduit	565.424	565.488	565.458	565.522	0.064	
130	South Coag Basin Effluent Tunnel	564.198	565.15	564.506	565.458	0.952	
125	East Tunnel	563.462	564.38	563.588	564.506	0.918	
120	Southeast Tower Gate	563.081	563.588	563.081	563.588	0.507	
115	Sluice Gate At 5&6 Settled Water Influent	561.31	563.081	561.31	563.081	1.771	Existing Sluice Gate. New Flow Path.
110	Sluice Gate To Lower Conduit	560.72	561.31	560.72	561.31	0.59	Existing Sluice Gate. New Flow Path.
105	Sluice Gate At East Filter Influent	560.615	560.72	560.688	560.72	0.105	
100	Dogleg At East Filter Influent	560.572	560.615	560.645	560.688	0.043	
95	East Filter Influent Conduit	560.449	560.572	560.522	560.645	0.123	~80 MGD In Conduit

Node	Description	HGL DN	HGL UP	EGL DN	EGL ÜP	D HGL	Notes
90	New East Filter Influent	560.355	560.393	560.487	560.522	0.038	
85	Filter Influent - Downstream of #27 & 28.	560.412	560.43	560.469	560.487	0.018	
80	Filter Influent - Downstream of #29 & 30.	560.446	560.455	560.46	560.469	0.009	
75	Filter Influent	559.688	559.851	560.297	560.461	0.163	
70	Filter Influent Butterfly Valve	559.627	559.688	560.236	560.297	0.061	
65	Filter Influent	559.311	559.627	559.92	560.236	0.316	
60	Filter Headloss	546.361	559.92	546.97	559.92	13.559	Filter Bed + Control Valve
55	Filter Effluent Pipe	545.47	546.361	546.079	546.97	0.891	Existing 24" Pipe. 6.3 fps.
50	Filter Effluent Chamber Weir	545.931	546.077	545.953	546.079	0.146	
45	E. Filter Effluent Upstream of 29 & 30	545.928	545.931	545.95	545.953	0.003	
40	E. Filter Effluent Upstream of 27 & 28	545.845	545.859	545.936	545.95	0.014	
35	E. Filter Effluent Upstream of 25 & 26	545.689	545.73	545.895	545.936	0.041	
30	E. Filter Effluent Upstream of 23 & 24	545.47	545.526	545.839	545.895	0.056	
25	E. Filter Effluent Upstream of 21 & 22	545.172	545.26	545.751	545.839	0.088	
20	E. Filter Effluent Upstream of 19 & 20	544.788	544.915	545.623	545.751	0.127	
15	East Filter Effluent Conduit	544.336	544.484	545.474	545.623	0.148	
10	East Filter Clearwell Influent	543.328	543.7	545.102	545.474	0.372	
5	Clearwell - Chamber #1	541.2	541.2	541.2	541.2		

TABLE 3-11 CHWTP 240 MGD 6 of 6 Softening Trains in Service 13 of 15 East Filters in Service, North and South Filters Decommissioned Modifications - 60-Inch Influent Pipe to East and West Ends of East Filters, Weirs Raised, and Softening Basin Effluent Modified Louisville Water Commpany Water Treatment Plant Capacity Study

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	D HGL	Notes
385	Raw Water Supply - North Reservoir	580.174	580.237	580.703	580.766	0.063	
380	108" North Reservoir Effluent Sluice Gate	579.796	580.703	579.796	580.703	0.907	1
375	108" South Reservoir Influent Sluice Gate	578.890	579.796	578.890	579.796	0.906	
370	108" South Reservoir Effluent Sluice Gate	577.983	578.890	577.983	578.890	0.907	
365	108" Influent Sluice Gate	575.415	577.983	575.944	577.983	2.568	
360	Raw Water Supply - South Reservoir	575.136	575.415	575.665	575.944	0.279	
355	Raw Water Supply	573.733	574.818	574.580	575.665	1.085	Existing 96" Pipe
350	South Sedimentation Basin Supply	573.446	573.607	574.420	574.580	0.161	
345	South Sedimentation Basin Influent Control Valve US	572.396	572.401	574.415	574.420	0.005	
340	South Basin Influent Control Valve	569.568	572.396	571.588	574.415	2.828	20" closed.
335	South Sedimentation Basin Influent Control Valve DS	569.563	569.568	571.583	571.588	0.005	
330	South Sedimentation Basin Supply	570.589	570.609	571.563	571.583	0.020	
325	Elocculator Influent Conduit	571.503	571.528	571.537	571.563	0.025	
320	Elocculator Influent Sluice	571.387	571.537	571.387	571.537	0.150	
315	Elocculator Effluent Baffle	571.352	571.387	571.372	571.387	0.035	
310	Sedimentation Basin Influent Conduit	571.300	571.352	571.321	571.372	0.052	
305	Sedimentation Basin Influent Column Orifice	571.204	571.321	571.204	571.321	0.117	
300	Coag Basin Effluent Weir	568.229	571.204	568.229	571.204	2.975	Freefall over Coagulation Basin weir.
295	Coagulation Basin Effluent Launder	567.794	568.229	567.975	568.229	0.435	
290	Clarifier Effluent Vertical Conduit	567.945	567.955	567.964	567.975	0.010	
285	Clarifier Effluent Sluice Gate	567.617	567.964	567.652	567.964	0.347	
280	Coag Basin Rectangular Effluent Conduit	567.553	567.617	567.588	567.652	0.064	
275	South Coag Basin Effluent Tunnel	566.327	567.280	566.635	567.588	0.953	
270	Fast Tunnel	565.591	566.509	565.717	566.635	0,918	
265	Southeast Tower Gate	565.210	565.717	565.210	565.717	0.507	
260	Softening Basin Influent (Butterfly Valve)	564.479	565.210	564.479	565.210	0.731	
							Partially closed sluice gate to balanace
255	Slow Mix Basin Influent (Sluice Gate)	563.913	564.479	563.914	564.479	0.566	flow.
250	Slow Mix Basin Influent Weir	563.497	563.913	563.497	563.914	0.416	Freefall over Mixing Basin weir.
245	Slow Mix Basin Effluent Baffle Wall - Orifice	563.435	563.497	563.460	563.4 9 7	0.062	3" Mixing Basin Freeboard
240	Softening Basin Influent Conduit	563.390	563.435	563.414	563.460	0.045	
235	Softening Basin Effluent Weir	563.035	563.414	563.035	563.414	0.379	Weir raised to 563.33'.
230	Softening Basin Effluent Launder	562.715	563.035	562.834	563.035	0.320	6" Softening Basin Freeboard.
225	Softening Basin Effluent Orifice	562.731	562.834	562.768	562.834	0.103	
220	Recarbonation Basin Effluent Conduit	562.704	562.731	562,741	562.768	0.027	Redirect Softening Basin #1 Effluent.
215	Recarb Basin Effluent Gate #365	562.646	562.741	562.646	562.741	0.095	Redirect Softening Basin #1 Effluent.
210	Recarb Basin Effluent Gate #366	562.566	562.646	562.580	562.646	0.080	Redirect Softening Basin #1 Effluent.
205	Softening Basin #1 & 2 Effluent Conduit	562.554	562.566	562.568	562.580	0.012	Redirect Softening Basin #1 Effluent.
200	Reaction Basin Influent Channel	562.523	562.543	562.549	562.568	0.020	
195	Reaction Basin Influent Sluice Gate	562.274	562.549	562.305	562.549	0.275	

Node	Description	HGL DN	HGL UP	EGL DN	EGL UP	PHGL	Notes
190	Reaction Basin Influent Conduit	562.260	562.274	562.291	562.305	0.014	
185	Reaction Basin Influent Baffle	562.203	562.291	562.203	562.291	0.088	8.5" Reaction Basin Freeboard.
180	Reaction Basin Effluent Weir	561.914	562.203	561.914	562.203	0.289	Weir raised to 562.08'.
175	Reaction Basin Effluent Launder	561.895	561.914	561.904	561.914	0.019	
170	Reaction Basin Effluent Gullet	561.825	561.904	561.864	561.904	0.079	
165	Reaction Basin #2 Effluent Channel North-1	561.842	561.855	561.851	561.864	0.013	
160	Reaction Basin #2 Effluent Channel North	561.825	561.836	561.840	561.851	0.011	
155	Reaction Basin #1 Effluent Channel North-3	561.807	561.818	561.828	561.840	0.011	
150	Reaction Basin #1 Effluent Channel North-2	561.787	561.799	561.817	561.828	0.012	1
145	Reaction Basin #1 Effluent Channel North-1	561.765	561.779	561.804	561.817	0.014	
140	Reaction Basin #1 Effluent Channel North	561.750	561.762	561.792	561,804	0.012	
135	Reaction Basin #1 Effluent	561.710	561.750	561.752	561.792	0.040	
130	Softened Water Conduit Entry	561.417	561.752	561.461	561.752	0.335	
125	Softened Water Effluent Conduit	561.371	561.417	561.414	561.461	0.046	
120	Softened Water Conduit	561.346	561.371	561.389	561.414	0.025]
115	East Filter Influent - New Conduit	561.353	561.363	561.380	561.389	0.010]
110	East Filter Influent-New Conduit	561.348	561.348	561.379	561.380	0.000	
105	Sluice Gate At East Filter Influent	560.852	561.379	561.108	561.379	0.527	Existing Sluice Gate.
100	Dogleg At East Filter Influent	560.698	560.852	560.954	561.108	0.154	
95	East Filter Influent Conduit	560.265	560.698	560.522	560.954	0.433	Existing East Filter Influent Conduit.
90	New East Filter Influent	560.367	560.402	560.489	560.522	0.035	
85	Filter Influent - Downstream of #27 & 28.	560.449	560.460	560.479	560.489	0.011	
80	Filter Influent - Downstream of #29 & 30.	560.477	560.479	560.477	560.479	0.002	
75	Filter Influent	558.846	559.191	560.133	560.477	0.345]
70	Filter Influent Butterfly Valve	558.718	558.846	560.004	560.133	0.128	1
65	Filter Influent	558.052	558.718	559.338	560.004	0.666	Existing 24" Pipe. 7.9 fps.
60	Filter Headloss	548.052	559.338	549.338	559.338	11.286	Filter Bed + Control Valve
55	Filter Effluent Pipe	546.171	548.052	547.458	549.338	1.881	Existing 24" Pipe. 7.9 fps.
50	Filter Effluent Chamber Weir	547.263	547.455	547.313	547.458	0.192	
45	E. Filter Effluent Upstream of 29 & 30	547.256	547.263	547.305	547.313	0.007	-
40	E. Filter Effluent Upstream of 27 & 28	547.077	547.107	547.275	547.305	0.030	
35	E. Filter Effluent Upstream of 25 & 26	546.738	546.827	547.186	547.275	0.089	
30	E. Filter Effluent Upstream of 23 & 24	546.269	546.390	547.065	547.186	0.121	
25	E. Filter Effluent Upstream of 21 & 22	545.633	545.822	546.875	547.065	0.189	
20	E. Filter Effluent Upstream of 19 & 20	544.814	545.086	546.603	546.875	0.272	
15	East Filter Effluent Conduit	544.330	544.512	546.420	546.603	0.182	
10	East Filter Clearwell Influent	537.943	538.741	541.200	541.998	0.798	Existing 72"x52" Conduit. 14.5 fps.
5	Clearwell - Chamber #1	541.200	541.200	541.200	541.200		

TABLE 3-12

Crescent Hill Water Treatment Plant Process Capacity Summary

Louisville Water Company Water Treatment Plant Capacity Study

Flow, mgd		Ten States		Kentucky	180 210 24		240
Process	_	Existing Standards [†]		Criteria			
Flocculation Units							
Total Number of Units		8					
Units 1-4 (North Basins)							
Width (ft)		22.75			· · · · · ·		
Depth (ft)		22					
Volume (cf, each)		89,089					
Units In Service	4						
Flow-Through Velocity (fpm)			0.5 - 1.5		3.8	4.5	5.1
Detention Time (min.)			30	40-60	46.4	39.8	34.8
Units 5-8 (South Basins)							
Width (ft)		24.5					
Depth (ft)		24					
Volume (cf, each)		104,664					
Units In Service	4						
Flow-Through Velocity (fpm)			0.5 - 1.5		3.8	4.5	5.1
Detention Time (min.)			30	40-60	46.4	39.8	34.8
Coagulation/Sedimentation Units							
Total Number of Units		8				_	
Units 1-4 (North Basins)							
Area (sf, each)		20,900					
Depth (ft)		28					
Volume (cf, each)		638,928					
Units In Service	4						
Detention Time (min.)			240	240	332	284	249
Surface Loading Rate (gpm/sf)			0.5	0.75	0.63	0.73	0.84
Weir Overflow Rate (gpd/ft)			20,000		32.787	38.252	43.717
Units 5-8 (South Basins)							
Area (sf, each)		28.900					
Depth (ft)		24		····			
Volume (cf. each)		746,496					
Units In Service	4						
Detention Time (min.)			240	240	332	284	249
Surface Loading Rate (gpm/sf)			0.5	0.75	0.63	0.73	0.84
Weir Overflow Rate (god/ft)			20,000	0.10	38.404	44 804	51 205
Softening Units				·······	30,404 [44,004]	51,205
Total Number of Units		6					
Slow Mix Linits 1-4							
Width (ft)		50.5		ł			
Depth (ft)		16.5					
Volume (of each)		147.405	<u> </u>				
		147,485					
	-4	 					
Determine Time (min.)			0.5 - 1.5		3.3	3.9	4.5
Detention Time (min.)					53.0	45.4	39.7
SIOW MIX Units 5-6							
Width (ft)		50.5					
Depth (ft)		16.5					
Volume (cf. each)		164,150					
Units In Service	2						
Flow-Through Velocity (fpm)			0.5 - 1.5		3.3	3.9	4.5
Detention Time (min.)			30		58.9	50.5	44.2

Flow, mad		Ten States	Kentucky	180	210	240	
Process		Existing	Standards ¹	Criteria			
Softening Units 1-6							
Area (sf. each)		37.249					
Depth (ft)		16					
Volume (cf. each)		628,996					
Units In Service	6						
Detention Time (min.)			240		226	194	169
Surface Loading Bate (gpm/sf)			0.5	0.75 ³	0.56	0.65	0.75
Weir Overflow Rate (gpth/of)			20,000		38.860	45.337	51.813
Recarbonation Basin #1	الم و و و و						0.14.14
Volume (cf. each)	[⁻]	15,810					
Detention Time (min.)		10,010			2.8	2.4	2.1
Recarbonation Basin #2							
Volume (cf. each)		77 376		1			
Detention Time (min)					13.9	11.9	10.4
Becarbonation Basin #3			l				
Area (sf each)		71 424					
Detention Time (min.)		1,121			12.8	11.0	9.6
CO2 Reaction Basine 182			I				
Area (sf)		28 644	(
Depth (ff)		15 25	· · · ·				
Volume (cf. each)		436 821					
Lipite In Service	2	400,021					
Detention Time (min.)					79	67	59
Surface Loading Bate (npm/sf)					1.45	1.69	1 94
Woir Overflow Pate (apd/ft)					68 372	79 767	91 162
CO3 Reaction Racin 3					00,012	13,101	01,102
Aroa (sf)	· · · · ·	28 707		1			
Depth (ft)		15 25					
Volume (cf. each)		439 150					
Unite la Service	1	400,100					
Detention Time (min.)	· · ·				79	67	59
Surface Loading Rate (nom/sf)					1 45	1.69	1.94
Weir Overflow Rate (and/ft)					63 583	74 180	84 777
Filtration			L		00,000	1 1,100	01,117
Total Number of Units		33		Γ			
Units 1-6 (South Filters)				_			
Area (sf. each)		2 100		1			
Units In Service	5						
Bate (com/sf)	<u> </u>		None	5 ⁵	3 13	3.65	4 18
Linits 7-18 (North Filters) ⁶				LŸ	0.10	0.00	1.10
Area (sf. each)		1.050	1				
	0	1,030					
Deta (anm/of)	v		Nono	55	2 12	3.65	1 18
Rate (gpin/st)			None		3.13	5.05	4.10
Units 19-33 (East Filters)		0.400	1	T			
Area (si, each)		2,100					
	14		Neze	E 5	2.42	2.65	4 10
Rate (gpm/sr)				3	3.13	3.05	4.10
		25	1	4.50/			
Volume (MG)	1000/	25		10%			
Percent Full	100%				27	22	26
	I				21	32	30
Prign Service Pumps		74.0	1	1	. i		
System Pressure (psi)		/1.8					

Flow. mad		Ten States	Kentucky	180	210	240
Process	Existing	Standards ¹	Criteria			
Station Canacity (mrd) 7,8,9	927.9			180	210	240
Bump No. 2 Conscitu (mrd)	/8 7			- 100	210	2.40
Pump No. 2 Capacity (mgd)	45.6					
Pump No. 5 Capacity (mgd)	25.9					
Pump No. 6 Capacity (mgd)	29.2					
Pump No. 7 Capacity (mgd)	27.9					
Pump No. 8 Capacity (mgd)	36.3					
Pump No. 10 Capacity (mgd)	42.8					
· •···· · · · · · · · · · · · · · · · ·		•				
Chemical Feed Systems 7						
Powdered Activated Carbon (1 lb/1 gal)					
Available Storage (gal)	120000					
Firm Capacity (gph)	500					
Average Dose (# Solution/MG)	50					
Max Dose (# Solution/MG)	300					
Storage Required At Average Dose &						
Average Flow For 30 Days (gal)				21,592	25,191	28,790
Storage Required At Maximum Dose &						
Average Flow For 14 Days (gal)				60,358	70,417	80,477
Feed Required Max(gph)				26 9	314	359
Chlorine (99.5%)			·			
Available Storage (ton)	180					
Firm Capacity (ppd)	10000					
Average Dose (# Chlorine/MG)	32					
Max Dose (# Chlorine/MG)	45	l				
Storage Required At Average Dose &					07	77
Average Flow For 30 Days (tons)				58	0/	
Storage Required At Maximum Dose &				20	45	E 1
Average Flow For 14 Days (tons)				38	40	10010
Feed Required Max(ppd)				0190	9004	10919
Available Starage (agl)	82000	<u> </u>				
Available Sturage (gal)	1500	<u> </u>				
Average Dose (# Eerric/MG)	128	<u>+</u>				
Max Dose (# Ferric/MG)	400	<u> </u>				
Storage Required At Average Dose &		<u> </u>				
Average Flow For 30 Days (gal))	1	110,951	129,443	147,935
Storage Required At Maximum Dose &		1				
Average Flow For 14 Days (gal)				161,383	188,281	215,178
Feed Required Max(gph)				720	841	961
Cationic Polymer						
Available Storage (gal)	19000					
Max Feed Capacity (gph)	565					
Average Dose (# Polymer/MG)	4					
Max Dose (# Polymer/MG)	60					
Storage Required At Average Dose &						
Average Flow For 30 Days (gal)				1,764	2,058	2,352
Storage Required At Maximum Dose &		1	1	1		
Average Flow For 14 Days (gal)				11,855	13,830	15,806
Feed Required Max(gph)			<u> </u>	53	62	71
Lime (99.5%)					·	
Available Storage (ton)	283		L			
Max Feed Capacity (pph)	4000	ļ				
Average Dose (# Lime/MG)	125	 		L		
Max Dose (# Lime/MG)	250	<u> </u>		L		
Storage Required At Average Dose &		1	1		004	202
Average Flow For 30 Days (tons)		├ ────	<u> </u>	226	204	302
Storage Required At Maximum Dose &				044	246	202
Freed Dequired Max(Tab)	┝ ──		┣───	1995	240	2614
Ammonia (00 5%)			L	1000	2133	2014
Available Storage (cal)	12000		<u> </u>			
A standble olurage (gal)	12000	L	L	L	L	L

Flow, mgđ		Ten States	Kentucky	180	210	240
Process	Existing	Standards ¹	Criteria			
Max Feed Capacity (pph)	154					
Average Dose (# Ammonia/MG)	5.8					
Max Dose (# Ammonia/MG)	10					
Storage Required At Average Dose & Average Flow For 30 Days (gal)				2,508	2,926	3,344
Storage Required At Maximum Dose & Average Flow For 14 Days (gal)				4,362	5,089	5,816
Feed Required Max(pph)				76	88	101
Fluoride (19%)						
Available Storage (gal)	16800					
Max Feed Capacity (gph)	75					
Average Dose (# Fluoride/MG)	6.7					
Max Dose (# Fluoride/MG)	8.3					
Storage Required At Average Dose & Average Flow For 30 Days (gal)				12,198	14,231	16,264
Storage Required At Maximum Dose & Average Flow For 14 Days (gal)				7.071	8,250	9,428
Feed Required Max(gph)				31.6	36.8	42.1

NOTES:

1 Ten States Standards 30-Day Recommended Chemical Storage Does Not Distinguish Between Average Or Maximum Dosage.

2 Highlighted Values Either Exceed Existing Capacity Or Are Less Than The Recommended Storage.

3 No KDOW guidance available for softening units; use same rate as given for conventional sedimentation.

4 Only one feed unit exists.

5 Requires continuous turbidity monitoring on individual filters at rates above 2 gpm/sf.

6 North filters are assumed to be decommissioned.

7 Firm capacity excludes largest unit.

8 Pumps were derated 10% for impeller wear.

9 High service pump capacity is to be at least 100% of WTP capacity

Page 4 of 4

Section 4 Summary of Improvements

To help ensure that BEPWTP and CHWTP can successfully expand their capacities to meet future demands, several improvements are required to increase hydraulic, treatment, and chemical storage and feed capacities. Improvements identified in Sections 2 and 3 and further described in Section 4 are based mostly on KY DOW and other industry standards; however, these modifications will need to be further developed and reviewed with KY DOW to confirm their acceptance before moving forward with designing plant expansions.

All improvements were categorized as **Required** or **Discretionary**. Improvements were considered to be **Required** if the improvement would be needed to enable the WTP to: 1) meet KY DOW requirements consistently, and 2) maintain LWC's high standard of water quality. Improvements were considered to be **Discretionary** if their benefit would improve plant operations or redundancy. Some improvements that are based on KY DOW guidelines or recommendations, but are not requirements, would fall into the **Discretionary** category until further investigation is performed to indicate otherwise.

4.1 BEPWTP

Two specific future capacities were examined for BEPWTP. The following improvements are required for each of the two future capacities.

4.1.1 Expansion to 90 mgd

Hydraulic

One of the following three options must be implemented to boost hydraulic capacity:

- **Option 1A.** Raise softening basin effluent weirs to 472.17 feet and raise coagulation basin effluent weirs to 473.46 feet. Extend the mixing and flocculation basin walls and remove the coagulation and softening influent conduit covers.
- **Option 2A.** Raise softening basin effluent weirs to 471.75 feet, raise coagulation basin effluent weirs to 473.08 feet, and enlarge the recarbonation basin inlet to 60 inches wide by 48 inches high. Remove the coagulation influent conduit cover.
- **Option 3A.** Lower reaction basin effluent weirs to 470.17 feet. Remove the coagulation influent conduit cover.

Chemical Systems and Equipment

Provide 300 ft² (about 13 by 22 feet) of additional building storage space and install an additional 6 tons of chlorine storage. The chlorine feed rate capacity is slightly less than that required for 30 days of storage; however, increasing this capacity by such a small amount does not appear justified, particularly since chlorine feed rates will probably decrease with

WDC062640001

River Bank Filtration (RBF) raw water, so this improvement should be considered discretionary.

The 14-day maximum dose and average flow storage criterion slightly exceeds the existing ferric chloride storage capacity at the 90-mgd plant capacity; however, the 30-day average dose storage criterion does not exceed existing capacity. The feed rate at 90 mgd would also exceed the firm metering pump capacity. Improvements to increase the ferric storage and feed capacities by such a small amount do not appear justified. However, one of the two existing tanks is reported to have a failed liner, and the other tank is cracked, so both need to be repaired or replaced. The cost for these repairs is not included in the cost estimate.

Install fourth 170-pounds-per-hour (pph) carbon dioxide feed unit to serve as a standby for the three existing units.

Replace existing coagulant aid polymer metering pumps with three new 10-gallons-perhour (gph) pumps. This improvement should be considered discretionary since the future need for this polymer is questionable.

Replace existing ammoniators with three new 20-pph units.

Add one 9-gph, fluoride-metering pump.

Install two additional 15.2-mgd, 1,500-horsepower (hp) and one 13.5-mgd, 1,250-hp highservice pumps with associated piping and electrical equipment. Expand building by approximately 750 ft² per pump to accommodate new pumps.

Facilities and Processes

Install 4-foot-deep tube settlers with integral finger weirs/launders in the coagulation and softening basins, cantilevered about 13.3 feet off the perimeter walls. Each basin would be equipped with 6,944 ft² for a total of 20,832 ft² for the coagulation basins and 20,832 ft² for softening basins. The tube settlers in the softening basins should be considered a discretionary improvement since lime softening is not a critical process for providing safe drinking water.

Construct a third clear well connecting to the existing two clear wells. Provide 3 million gallons of volume to attain a total volume of 10 percent of the WTP capacity over a 24-hour period, or 7.5 million gallons of volume to attain a total volume of 15 percent of the WTP capacity over a 24-hour period. Although KY DOW design criteria calls for 15 percent of the WTP capacity over a 24-hour period, offsite elevated storage might be an alternative to onsite storage and this could be investigated with KY DOW before an expansion is planned. As a result, these clear well improvements should be considered discretionary unless they are shown to be necessary to meet KY DOW requirements or to address operating requirements. However, in the future LWC may choose to add clear well volume to increase process stability.

4.1.2 Expansion to 120 mgd

Hydraulic

One of the following two options must be implemented to boost hydraulic capacity:

COPYRIGHT 2007 BY CH2M HILL, INC. • COMPANY CONFIDENTIAL

4-2

- **Option 2B**. Raise softening basin effluent weirs to 472.08 feet and raise coagulation basin effluent weirs to 473.67 feet. Enlarge the recarbonation basin inlet to 72 inches wide by 54 inches high; install an additional 48 inches by 72 inches mixing basin and flocculation basin influent sluice gate and 60 inches by 60 inches coagulation basin effluent sluice gate for each basin. Extend the mixing and flocculation basin walls and remove the covers and extend the walls for the coagulation and softening influent conduits.
- Option 3B. Lower reaction basin effluent weirs to 470.17 feet. Enlarge the recarbonation basin inlet to 72 inches wide by 48 inches high, install an additional 48 inches by 72 inches mixing basin and flocculation basin influent sluice gate and 60 inches by 60 inches coagulation basin effluent sluice gate for each basin. Raise the coagulation basin effluent weirs to 473.17 feet. Extend the mixing and flocculation basin walls and remove the coagulation influent conduit top and extend the channel walls.

Chemical Systems and Equipment

Expand the storage room by 700 ft² (about 26 by 27 feet) to install an additional 16 tons of chlorine storage. (Note that the existing storage capacity is barely exceeded with the 120-mgd plant capacity using the 14-day maximum dose and average flow criterion; however, the recommendations herein are based on the more stringent 30-day criterion.) Provide two evaporators at 2,800 ponds per day (ppd) each. Replace three chlorinators, each with capacity for 2,800 ppd.

The 14-day maximum dose and average flow storage criterion considerably exceeds the existing ferric chloride storage capacity at the 120-mgd plant capacity; however, the 30-day average dose storage criterion still does not exceed the existing capacity. The feed rate requirement at 120 mgd would also exceed the firm metering pump capacity. An additional 35,000 gallons of ferric chloride storage and new metering pumps could be installed to supplement the existing storage, but these improvements should be treated as discretionary because the 30-day at average dose criterion is still met and ferric chloride dosages may substantially decline after the RBF raw water project is completed. We recommend that maximum dosages and consumption be reviewed regularly to determine whether future changes are warranted.

Install an additional 1,000 gallons of coagulant aid polymer storage and replace existing polymer-metering pumps with three new 13-gph pumps. Again, this improvement should be considered discretionary since the future need for this polymer is questionable.

Although the lime feed facilities would be short by a small margin, improvements to increase these capacities by such a small amount do not appear justified. We recommend that maximum dosages and consumption be reviewed regularly to determine whether future changes are warranted.

The ammonia storage requirement using the 30-day criterion exceeds available capacity, but using the 14-day criterion at maximum dose does not exceed available capacity, so improvements to expand storage do not appear justified. Ammonia availability and reliability of delivery should be evaluated to determine whether additional storage is warranted.

Replace existing ammoniators with three new 26-pph units.

WDC062640001

COPYRIGHT 2007 BY CH2M HILL, INC. . COMPANY CONFIDENTIAL

Add one 9-gph, fluoride-metering pump.

Install three additional 15.2-mgd, 1,500-hp and one 13.5-mgd, 1,250-hp high-service pumps with associated piping and electrical equipment. Expand building by 750 ft² per pump to accommodate new pumps.

Facilities and Processes

Install 4-foot-deep tube settlers with integral finger weirs/launders in the coagulation and softening basins, cantilevered about 18.5 feet off the perimeter walls. Each basin would be equipped with 9,259 ft² for a total of 27,776 ft² for the coagulation basins and 27,776 ft² for softening basins.

Petition KY DOW to pilot test a filter to demonstrate effective filtration at rates above 5 gpm/ft².

Construct a third clear well connecting to the existing two clear wells. Provide 6 million gallons of volume to attain a total volume of 10 percent of the WTP capacity over a 24-hour period, or 12 million gallons of volume to attain a total volume of 15 percent of the WTP capacity over a 24-hour period. Although KY DOW design criteria calls for 15 percent of the WTP capacity over a 24-hour period, offsite elevated storage might be an alternative to onsite storage and this could be investigated with KY DOW before an expansion is planned. As a result, these clear well improvements should be considered discretionary unless they are shown to be necessary to meet KY DOW requirements or to address operating requirements.

Proposed modifications for BEWTP are described and summarized in Table 4-1.

4.1.3 Electrical Supply and Distribution System

A task included this project was to explore the possibility of expanding the existing power distribution system, as shown on Appendix B, Power Distribution One Line Diagram, dated August 2004. This one line diagram does not include electrical equipment that is fed from MCC-5 or MCC-6 or Unit Substation US-1 or US-2, but drawing excerpts were provided for review.

The high-service pumps would be the only significant new electrical loads for the plant expansion scenarios. On the basis of the above recommendations, the following new loads would occur:

Scenario	90 mgd	120 mgd
No. of 15.2 mgd pumps	1 @ 1,500 hp	3 @ 1,500 hp
No. of 13.5 mgd pumps	1 @ 1,250 hp	1 @ 1,250 hp

The following assumptions were made for developing and evaluating electrical loads:

1. The new high-service pumps mentioned above would be connected in a semibalanced fashion across MCC-1 and MCC-2.

WDC062640001

- 2. The plant is normally operated in a balanced fashion, meaning that the tie circuit breaker 52-TIE is normally open and breakers 52-M1 and 52-M2 are normally closed.
- 3. One of the three existing 400-hp low lift pump station pumps is a standby unit. No new low lift pumps have been included in this analysis.
- 4. One of the existing 1,500-hp high lift pumps is a standby unit.
- 5. One of the two existing 350-hp blowers is a standby unit.
- 6. One of the two existing 700-hp wash water pumps is a standby unit.
- 7. The feeder ampacity to MCC-1 and MCC-2 matches the feeder breakers (52-F1 and 52-F2, 1,200 amps each).

The ratings of the existing buses, circuit breaker frame sizes, and transformer sizes were evaluated with considerations of scenarios 1 and 2. Nodal analysis was used after converting each motor and transformer into AC amperes at the appropriate voltage.

Two services are shown at the top of the one-line diagram. They are referred to as the underground service and the overhead service. Each one is fed through a 25-megavolt (MVA) transformer. We have been informed that the underground service is normally used. The 25-MVA underground service transformer feeds two 10-MVA step-down transformers via medium-voltage circuit breakers. Each of these 10-MVA transformers provide the 4,160-volt (V) power for all of the service equipment shown on the one-line diagram as well as the equipment at the two low-lift pump stations and unit substations US-1 and US-2.

If the underground service is lost, power would be provided to the water treatment plant via the overhead service without any loss of capacity to the plant.

The new pumps identified for 90-mgd and 120-mgd expansions can be accommodated by the power distribution system without replacing major gears (switchgear, transformers, tie switches, circuit breaker frames). However, any existing protective relays would need their settings changed for either capacity. In addition, the settings of several of the power circuit breakers would need adjustment. Plus, some of these breakers' rating plugs would need to be replaced with plugs of higher amperage rating.

Any expansion beyond 120 mgd is not recommended because the anticipated loads at this point approach the limits for

- MCC-1 bus
- MCC-2 bus
- The feeder breaker and feeder for MCC-1
- The feeder breaker and feeder for MCC-2

Although the power factor correction is not shown on the one-line diagram, it is provided in the MCC of each of the major loads, such as the pumps.

4.2 CHWTP

Two specific future capacities were examined for CHWTP. The following improvements are required for each of the two future capacities.

WDC062640001

COPYRIGHT 2007 BY CH2M HILL, INC. • COMPANY CONFIDENTIAL

4.2.1 Expansion to 210 mgd

Hydraulic (Option 1 Only)

Raise reaction basin effluent weirs to 562.00 feet and raise softening basin effluent weirs to 563.00 feet.

Construct a new 60- by 60-inch softening basin 1 outlet in the southwest corner of the basin.

Connect the new outlet to north end of the reaction basin influent channel.

Chemical Systems and Equipment

The existing ferric chloride storage volume would be short by about 106,000 gallons; however, replacement facilities are scheduled to be constructed so this improvement is not included in the cost estimate.

A small increase in high service pumping capacity could be achieved by replacing one smaller high service pump (<30 mgd) with a larger pump (48 mgd similar to Pump No. 2) to obtain a net capacity increase of 18 or 20 mgd. However, this improvement is not necessary and considered discretionary because the existing station capacity at 227.2 mgd, exceeds the required capacity of 210 mgd for this capacity scenario.

Facilities and Processes

Install 4-foot-deep tube settlers with integral finger weirs/launders in the coagulation basins, cantilevered about 9.4 feet and 11.1 feet off the perimeter walls of the north and south basins, respectively. Each basin would be equipped with 5,100 ft² for a total of 20,400 ft² for the north coagulation basins and 7,052 ft² for a total of 28,208 ft² for the south coagulation basins. Although the Ten States Standards criteria for overflow rate and weir loading rate would be exceeded, the KY DOW criterion of 0.75 gpm/ft² for overflow rate is not exceeded so this improvement should be viewed as discretionary.

Construct a new 7-million-gallon clear well connecting to the existing clear well. Although KY DOW design criteria calls for 15 percent of the WTP capacity over a 24-hour period, offsite elevated storage might be an alternative to onsite storage and could be investigated with KY DOW before an expansion is planned. Furthermore, the CHWTP has been previously rated at a nominal capacity of 240 mgd. As a result, this clear well improvement should be considered discretionary unless it is shown to be necessary to meet KY DOW requirements or to address operating requirements. However, in the future LWC may choose to add clear well volume to increase process stability.

4.2.2 Expansion to 240 mgd

Hydraulic

One of the following two options must be implemented to boost hydraulic capacity:

• **Option 2A**. Install a 60-inch pipe around the outside of the southwest tower to provide a direct connection between present valves 308 and 310. Raise the reaction basin effluent weirs to 562.08 feet and raise the softening basin effluent weirs to 563.33 feet. Construct a new 60- by 60-inch softening basin 1 outlet in the southwest corner of the basin. Connect the new outlet to the north end of the reaction basin influent channel.

WDC062640001

COPYRIGHT 2007 BY CH2M HILL, INC. • COMPANY CONFIDENTIAL

• **Option 2B**. Install a 60-inch pipe from the reaction basin effluent channel at the northwest corner of reaction basin 3 along the west, south, and east sides of the softening basins to the east end of the east filter influent conduit. Raise the reaction basin effluent weirs to 562.00 feet and raise the softening basin effluent weirs to 563.21 feet. Construct a new 60- by 60-inch softening basin 1 outlet in the southwest corner of the basin. Connect the new outlet to the north end of the Reaction basin influent channel.

Chemical Systems and Equipment

The existing ferric chloride storage volume would be short by about 133,000 gallons; however, replacement facilities are scheduled to be constructed, so this improvement is not included in the cost estimate.

Although the lime storage would be short by a small margin, improvements to increase this capacity by such a small amount does not appear justified. We recommend that maximum dosages and consumption be reviewed regularly to determine whether future changes are warranted.

Although the chlorine storage and feed facilities would be short by a small margin, improvements to increase this capacity by such a small amount do not appear justified. We recommend that maximum dosages and consumption be reviewed regularly to determine whether future changes are warranted.

A small increase in high service pumping capacity can be achieved by replacing one smaller high service pump (<30 mgd) with a larger pump (48 mgd similar to Pump No. 2) to obtain a net capacity increase of 18 or 20 mgd. This would bring pump station capacity to about 245 mgd, which would be sufficient to satisfy the criterion of setting station capacity to at least 100 percent of WTP capacity.

Alternatively, a discretionary improvement could be provided if more than 100 percent capacity were desired for this pump station. By installing two additional 35-mgd, 1,200-hp high-service pumps with associated piping and electrical equipment a firm station capacity of 278 mgd, which is 115 percent of WTP capacity, could be provided. For this improvement, assume a new building is needed to accommodate the two new pumps and it could be constructed on the north side of the existing high service pump station using an 12- by 24-foot wet well connected to the existing clear well with a 72-inch diameter pump. An at-grade building would house two vertical turbine pumps, each sized at 35 mgd and 1,200 hp.

Facilities and Processes

Install 4-foot-deep tube settlers with integral finger weirs/launders in the coagulation basins, cantilevered about 10.9 feet and 12.8 feet off the perimeter walls of the north and south basins, respectively. Each basin would be equipped with 5,828 ft² for a total of 23,314 ft² for the north coagulation basins and 8,060 ft² for a total of 32,238 ft² for the south coagulation basins.

Construct a new 11-million-gallon clear well connecting to the existing clear well. Although KY DOW design criteria calls for 15 percent of the WTP capacity over a 24-hour period, offsite elevated storage might be an alternative to onsite storage and could be investigated with KY DOW before an expansion is planned. Furthermore, the CHWTP has been

WDC062640001

COPYRIGHT 2007 BY CH2M HILL, INC. • COMPANY CONFIDENTIAL

4-7

previously rated at a nominal capacity of 240 mgd. As a result, similar to the 210 mgd expansion scenario, this clear well improvement should be considered discretionary unless it is shown to be necessary to meet KY DOW requirements or to address operating requirements.

Softening Basin Bypass

In addition to treatment through the existing unit processes at CHWTP, the option to bypass the softening basins was investigated. The existing facilities are capable of diverting 240 mgd settled water directly to the filters by placing certain valves in either an open or closed position as described above. The only modifications required would be to replace inoperable valves. A critical valve for bypassing the softening basins is valve 308. If the softening basins were bypassed valve 308 should be replaced because it probably has not been operated in over 35 years.

Proposed modifications for CHWTP are described and summarized in Table 4-2.

TABLE 4-1

Proposed BE Payne WTP Modifications

		Option	- <u>"</u>			
<u>No.</u>	Description	No.	Quantity	Unit	Remarks	Type ¹
		-			3 basins at 572 If each; demo exist weirs and lintels; install 6" conc cap to	
	Raise Coagulation Basin Walls and				weir wall (8" thick); provide new 4x4x3/8 SST angle, FRP v-notch weir, and	
1	Weirs 0.46'.	1A	1,716	lf	SST anchors	R
					3 basins at 572 If each; demo exist weirs and lintels and apply coating,	
_	Raise Coagulation Basin Weir Plates				provide new 4x4x3/8 SST angle, FRP v-notch weir, and SST anchors; no	
2	0.08'.	2A	1,716	lf	new concrete	R
					3 basins at 572 If each; demo exist weirs and lintels; install 6" conc cap to	
	Raise Coagulation Basin Walls and				weir wall (8" thick); provide new 4x4x3/8 SST angle, FRP v-notch weir, and	
3	Weirs 0.67'	2B	1,716	lf	SST anchors	<u> </u>
					3 basins at 572 If each; demo exist weirs and lintels and apply coating,	
	Raise Coagulation Basin Weir Plates				provide new 4x4x3/8 SST angle, FRP v-notch weir, and SST anchors; no	
4	0.17'	3B	1,716	lf	new concrete	R
					3 basins at 572 If each; demo exist weirs and lintels; install 6" conc cap to	
	Raise Softening Basin Walls and				weir wall (8" thick); provide new 4x4x3/8 SST angle, FRP v-notch weir, and	
5	Weirs 0.67'	1A	1,716	lf	SST anchors	R
					3 basins at 572 If each; demo exist weirs and lintels and apply coating,	
	Raise Softening Basin Weir Plates				provide new 4x4x3/8 SST angle, FRP v-notch weir, and SST anchors; no	
6	0.25'	2A	1,716	lf	new concrete	R
					3 basins at 572 If each; demo exist weirs and lintels; install 6" conc cap to	
	Raise Softening Basin Walls and				weir wall (8" thick); provide new 4x4x3/8 SST angle, FRP v-notch weir, and	
7	Weirs 0.58'	2B	1,716	lf	SST anchors	R
					3 basins at 780 If each; remove lintel and weir plate, sawcut and remove	
	Lower Reaction Basin Launder Walls	3A &			top 8" of launder wall (8" thick), coat top of wall, and reinstall existing lintel	
8	and Weirs 0.67'	3B	2,340	ĺf	and weir plate with SST anchors.	R
	Install additional 60"x60" Coag.	2B &			Saw cut 14" thick conc. wall, coat edges, install self-contained, surface-	
9	Basin Effluent Sluice Gates	3B	3	ea	mounted Rodney Hunt sluice gate with manual floor stand operator.	R
	Install additional 48"x72" Mixing	2B &			Saw cut 14" thick conc. wall, coat edges, install self-contained, surface-	
10	Basin Influent Sluice Gates	3B	3	ea	mounted Rodney Hunt sluice gate with manual floor stand operator.	R
	Install additional 48"x72" Floc Basin	2B &			Saw cut 14" thick conc. wall, coat edges, install self-contained, surface-	
11	Influent Sluice Gates	3B	3	ea	mounted Rodney Hunt sluice gate with manual floor stand operator.	R
	Enlarge Recarb Basin Influent Wall					
12	Openings to 60"x48"	2A	3	ea	Saw cut 14" thick conc. wall, coat edges	R

		Option				
No.	Description	No.	Quantity	Unit	Remarks	Туре'
	Enlarge Recarb Basin Influent Wall					_
13	Openings to 72"x54"	2B	33	ea	Saw cut 14" thick conc. wall, coat edges	R
	Enlarge Recarb Basin Influent Wall					
14	Openings to 72"x48"	3B	3	ea	Saw cut 14" thick conc. wall, coat edges	R
	Demo Coagulated Water Distribution	1A &			Channel area is 10'x310' and 8" thick. Saw cut perimeter, remove and	
	Channel Covers	2B	3,100	sf	dispose. Coat saw cut edges.	R
	Demo Mixing Basin Distribution	1A &			Channel area is 10'x310' and 8" thick. Saw cut perimeter, remove and	
16	Channel Covers	2B	3,100	sf	dispose. Coat saw cut edges.	<u> </u>
	Raise Coagulated Water Distribution					
17	Channel Covers 0.5'	2B	640	lf	Install 6" conc cap to perimeter basin wall (14" thick)	R
		1A &				
18	Raise Floc Basin Walls 0.5'	3B	760	lf	Install 6" conc cap to perimeter basin wall (14" thick)	R
	Raise Floc Basin Walls 1.0'	2B	760	lf	Install 12" conc cap to perimeter basin wall (14" thick)	R
	_	1A &				
20	Raise Mixing Basin Walls 0.5'	3B	760	lf	Install 6" conc cap to perimeter basin wall (14" thick)	R
	Raise Mixing Basin Walls 1.0'	2B	760	lf	Install 12" conc cap to perimeter basin wall (14" thick)	R
~~~	Retrofit tube settlers in coagulation	1A, 2A			Install 4' deep tube settlers with integral weir and launders cantilevered off	_
22	pasins	& 3A	20,832	sf	perimeter walls of basins. Cantilevered width is 13.3'.	R
	Detrefit tube estilent in estimation	44 04				
00	Retrotit tube settlers in softening	1A, 2A	00.000		Install 4' deep tube settlers with integral weir and launders cantilevered off	
	pasins	& 3A	20,832	st	perimeter walls of pasins. Cantilevered width is 13.3'.	<u>D</u>
	Detrofit tube pottlare in apprulation	20.0			Terefold Al alexandria e californi califoldade califold de la califold de la califold de la califold de la cal	
24	hasing	20 04	277 70	of	Install 4 deep tube settlers with integral weir and launders cantilevered off	<b>D</b>
	Dasilis	50	27,770	SI		ĸ
	Retrofit tubo sottlers in coffeeing	20.8			Install 4 doop tube pattlers with integral wair and loundars partilevered off	
25	having	2004	27 776	of	nistan 4 deep tube settiers with integral well and launders cantilevered off	D
	003113		21,110	51	Expand below grade aleas well especify by providing east in place	U
		10 20			Expand below grade clear well capacity by providing cast-in-place	
26	Clear well expansion ²	ነጥ, ረጥ ዴ ጓል	3 0 ³	MG		D
		<u>u un</u>	0.0	NG	Expand below grade clear well canacity by providing east in place	U
		14 24			concrete, independent compartment interconnected to existing clear well	
262	Clear well expansion ²	£ 3∆	7 5 ⁴	MG	using same elevations	р
_20a		u on			Expand below grade clear well canacity by providing east in place	
		2B &			concrete independent compartment interconnected to existing clear wall	
27	Clear well expansion ²	38	6 0 ³	MG	using same elevations	П
			0.0		doing currie of ruliond.	U

		Option	·			
No.	Description	No.	Quantity	Unit	Remarks	Type ¹
					Expand below grade clear well capacity by providing cast-in-place	
		2B &			concrete, independent compartment interconnected to existing clear well	
_27a	Clear well expansion ²	3B	12.0 ⁴	MG	using same elevations.	D
			1 @ 15.2		Vertical turbine pump at TDH = 450', one at 15.2 mgd (1500 hp) and one at	
	High service pumps and building	1A, 2A	and 1 @		13.5 mgd (1250 hp), with connecting piping and valves. Assume an	
28	expansion	& 3A	13.5	mgd	additional 750 sf of new building space per pump.	R
			3@15.2		Vertical turbine pump at TDH = 450', three at 15.2 mgd (1500 hp) and one	
	High service pumps and building	2B &	and 1 @		at 13.5 mgd (1250 hp), with connecting piping and valves. Assume an	
29	expansion	3B	13.5	mgd	additional 750 sf of new building space per pump.	R
					Remove and replace existing pumps with 3 new metering pumps similar to	
					Milton Roy Centrac S, 10 gal/hr each for the 90 mgd expansion or 13	
	Increase coag. aid polymer metering				gal/hr each for the 120 mgd expansion. Assume existing bldg space is	
30	pump capacity	ALL	3@10	gph	adequate.	D
		2B &				
<b>3</b> 1	Increase coag. aid polymer storage	3B	1,000	gal	Add 1,000 gal storage tank (outdoors)	D
					Provide 3 new ammoniators at 20 pph each for the 90 mgd expansion and	
					26 pph each for the 120 mgd expansion. Assume existing bldg space is	
32	Increase ammoniator feed capacity	ALL	3@20	pph	adequate.	R
	Increase fluoride metering pump				Provide 1 new metering pump similar to Milton Roy Centrac S, at 9 gal/hr.	
33	capacity	ALL	1@9	gph	Assume existing bldg space is adequate.	R
	Provide standby carbon dioxide feed				Provide 1 new panel similar to three existing ones just being installed.	
34	panel	ALL	170	pph	Assume existing bldg space is adequate.	R
		1A, 2A			Expand the existing chlorine storage room by about 300 sf for additional	
35	Expand chlorine storage room	& 3A	6	ton	equipment.	D
	Expand chlorine storage room;				Provide 2 evaporators at 2,800 lb/day each. Replace three chlorinators,	
	convert chlorine system to liquid	2B &			each with capacity for 2,800 ppd. Expand the existing chlorine storage	
36	extraction and provide 2 evaporators	3B	5,600	ppd	room by about 700 sf for additional equipment.	R
	Increase ferric chloride metering	2B &			Provide 2 new metering pumps similar to Milton Roy Milroyal C, totaling	
37	pump capacity	3B	2@70	gph	140 gal/hr. Assume existing bldg space is adequate.	D
		2B &			Add 3 storage tank totalling 35,000 gal (outdoors) in new containment	
38	Increase ferric chloride storage	3B	35,000	gal	area.	D

#### Note:

¹R=Required; D=Discretionary

²Only one clearwell option will be selected for each capacity option.

³Volume based on 10% of Water Treatment Plant capacity over 24 hours.

⁴Volume based on 15% of Water Treatment Plant capacity over 24 hours.

## TABLE 4-2 Proposed Crescent Hill WTP Modifications

		Option				1
NO.	Description	No.	Quantity	Unit	Remarks	Type [.]
1	Raise Softening Basin Weirs 0.18', Option 1	1	4,632	lf	6 basins at 772 If each; demo exist weirs and lintels and apply coating, provide new 4x4x3/8 SST angle, FRP v-notch weir, and SST anchors; no new concrete	R
2	Raise Softening Basin Weirs 0.48', Option 2A	2A	4,632	lf	6 basins at 772 If each; demo exist weirs and lintels; install 5" conc cap to weir wall (8" thick); provide new 4x4x3/8 SST angle, FRP v-notch weir, and SST anchors	R
3	Raise Softening Basin Weirs 0.39', Option 2B	2B	4,632	lf	6 basins at 772 If each; demo exist weirs and lintels; install 5" conc cap to weir wall (8" thick); provide new 4x4x3/8 SST angle, FRP v-notch weir, and SST anchors	R
4	Raise Reaction Basin Weirs 0.28', Option 1 & 2B	1 & 2B	2,699	lf	2 basins at 876 If each and 1 basin at 947 If; demo exist weirs and lintels and apply coating, provide new 4x4x3/8 SST angle, FRP v-notch weir, and SST anchors; no new concrete	R
5	Raise Reaction Basin Weirs 0.36', Option 2A	2A	2,699	lf	2 basins at 876 If each and 1 basin at 947 If; demo exist weirs and lintels; install 5" conc cap to weir wall (8" thick); provide new 4x4x3/8 SST angle, FRP v-notch weir, and SST anchors	R
6	Install Orifice In Wall w/ 60"x60" Sluice Gate for Softening Basin No. 1	ALL	1	еа	Saw cut 14" thick conc. wall, coat edges, install self-contained, surface- mounted Rodney Hunt sluice gate with manual floor stand operator.	R
7	Install concrete cap on Slow Mix Basins 0.5'	2A & 2B	2,828	if	4 basins at 458' + 2 basins at 498'; install 6" high concrete cap on 12" thick walls.	R
8	East end 60" filter influent	28	2 150	lf	Low pressure 60" PCCP pipe with trenching and imported granular backfill, 6' average cover, partial shoring required, push-on joints, 7 90-degree ells, saw cut 2 existing 16" thick conc. walls for pipe penetrations plus two more wall penetrations at each termination point (penetrations must be watertight), 60" flod resilient seat gate value with electric actuator	R
	West end 60" filter influent		2,100		Class 150 60" DIP flanged joint nine 3 90-degree ells 1 flad resilient seat	
9	connection	2A	30	lf	gate valve with electric actuator, restricted work space	R
10	East end 36" filter effluent connection	1	650	lf	Class 150 36" DIP push-on joint pipe, 4 90-degree ells, 1 resilient seat gate valve with electric actuator.	R
<b>1</b> 1	East end 48" filter effluent connection	2A & 、 2B	650	lf	Class 150 48" DIP push-on joint pipe, 4 90-degree ells, 1 resilient seat gate valve with electric actuator.	R

		Option				
<u>No.</u>	Description	<u>No.</u>	Quantity	Unit	Remarks	Type ¹
					Install 4' deep tube settlers with integral weir and launders cantilevered off	
40	Retroit tube settlers in coagulation				perimeter walls of basins. Cantilevered width is 9.4' or north basins and	_
12	basins	1	48,608	sf	11.1' for south basins.	D
13	Retrofit tube settlers in coagulation basins	2A & 2B	55,552	sf	Install 4' deep tube settlers with integral weir and launders cantilevered off perimeter walls of basins. Cantilevered width is 10.9' for north basins and 12.8' for south basins.	R
					Expand below grade clear well capacity by providing cast-in-place concrete, independent compartment interconnected to existing clear well	
14	Clear well expansion	1	7	MG	using same elevations.	D
					Expand below grade clear well capacity by providing cast-in-place	
		2A &			concrete, independent compartment interconnected to existing clear well	
15	Clear well expansion	2B	11	MG	using same elevations.	D
16	High service pumps, 48 mgd	1	1	ea	Replace smallest existing pump with 48 mgd pump.	D
	_	2A &				
17	High service pumps, 48 mgd ²	2B	1	ea	Replace smallest existing pump with 48 mgd pump.	R
					Veritical turbine pumps at TDH = 165', 1200 hp, with connecting discharge	
	_	2A &			piping and valves. Assume new building space and wet well will be	
18	High service pumps, 35 mgd ²	2B	2	өа	constructed northwest of existing pump station.	D

Note:

¹R=Required; D=Discretionary ²Only one pump option will be selected for the 240 mgd expansion.

# SECTION 5 Cost Estimates for Recommended Modifications

Construction cost estimates have been prepared for the various capacity options and are included in Appendixes C and D. Because of the lack of scope development at this conceptual stage of engineering analysis, these estimates would be considered rough order-of-magnitude level. The expected accuracy range would be -50/+50 percent. A construction contingency of 15 percent is being used to account for unknowns. This conceptual cost estimate has been prepared for guidance in project evaluation and implementation from the information available. The final cost of the project will depend on actual labor and material costs, competitive market conditions, final project scope, schedule, detailed design documents, and other variable conditions. As a result, the final project cost will vary from these estimates.

The following assumptions were developed for preparation of the cost estimates.

- 1. Raising weirs up to 3 inches can be accomplished by installing new lintels and weir plates only without concrete wall extensions. At BEPWTP existing weirs are new and can be reused.
- 2. Raising weirs more than 3 inches will require extending the concrete launder wall.
- 3. New weirs will be V-notch type.
- 4. Basin wall extensions at BEPWTP are 14 inches thick and at CHWTP are 12 inches thick.
- 5. The clarifier mechanisms (turntable/platform elevation) in each basin do not restrict raising the weirs.
- 6. Conduit covers at BEPWTP can be cut vertically at the wall joint to maintain slab thickness as part of the wall.
- 7. New sluice gates shall be flush mount, self contained type with manual operator.
- 8. Buried piping will be low pressure prestressed concrete cylinder pipe (PCCP).
- 9. Interior piping will be class 150 ductile iron pip (DIP), flanged joints.
- 10. New valves will be flanged resilient seat gate type.
- 11. New below grade clear wells will be interconnected with existing.
- 12. New CHWTP pumps will be installed in a new pump building northwest of the existing high-service pump building using a brick veneer building above a wet well that is connected to Chamber 4 of the existing clear well. The proposed new pumps will be vertical turbine type and set at a 35-mgd capacity.
- 13. New BEPWTP pumps will be vertical turbine type, set into the existing or new clear well and kept at the same capacity as the existing two sizes.

WDC062640001

- 14. Existing chemical building spaces are adequate for new and replacement metering pumps.
- 15. For BEPWTP electrical system, all units except one of the largest is in service for each system (high service, low service, etc.). Electrical loads are balanced between the two plant feeds.
- 16. Tube settler loading rate is 3 gpm/ft². Tube settler supports can be cantilevered off perimeter basin walls to the lengths required so that tube supports will not interfere with scraper mechanisms. The proposed configurations show a considerable cantilevered length, which would need to be confirmed by tube settler manufacturers prior to design.
- 17. Lime, ferric chloride, chlorine gas storage, and ferric chloride feed requirements for future capacities at CHWTP would not be met by existing facilities. Ferric chloride and chlorine facilities are scheduled for replacement, so modifications to these are not proposed. The variance for the lime storage requirement versus what is available is small, lime dosages in the short term are not critical to treatment, and providing new storage would be very expensive, so we do not recommend providing additional lime storage.
- 18. Several of the cost estimates are based on CH2M HILL historical data for similar projects.

Most of the estimated costs for the recommended modifications are related to process improvements, not hydraulics. For example, clear well storage is the single most expensive item and more clear well storage is needed for all future capacity scenarios.

Table 5-1 and Table 5-2 summarize the proposed modifications for BEPWTP and CHWTP, respectively. The cost items for each capacity scenario are stand-alone. For example, the costs shown for expansion to 120 mgd at BEPWTP are based on the plant's existing 60-mgd capacity and would not be added to the costs for expanding to 90 mgd. Likewise for CHWTP, the costs shown for expansion to 240 mgd are based on the plant's existing 180-mgd capacity and would not be added to the costs for expanding to 210 mgd. Each of the recommended improvements has been categorized as Required or Discretionary as previously defined in Section 4.

TABLE 5-1										
Cost E	Estimates for Proposed B	E Payne W	TP Modi	fications						
				Option Cost \$1 000s ¹						
No.	Description	Quantity	Unit	1A	2A	3A	2B	3B		
	Capacity, mgd			90	90	90	120	120	1.750	
	Raise Coagulation Basin			•					R	
1	Walls and Weirs 0.46'.	1,716		\$332						
2	Weir Plates 0.08'	1 716	lf		\$224				R	
<u> </u>		1,710			ΨΖΖΨ		<u> </u>			
	Raise Coagulation Basin						i		R	
3	Walls and Weirs 0.67'	1,716	lf				\$332			
	Raise Coagulation Basin						1		R	
4	Weir Plates 0.17'	1,716	lf					\$224		
5	Raise Softening Basin	1 716	IF	\$222			, 		R	
	Raise Softening Rasin Weir	1,710		\$33Z						
6	Plates 0.25'	1.716	lf		\$224				R	
	Raise Softening Basin	.,					├ !			
7	Walls and Weirs 0.58'	1,716	lf				\$332		R	
	Lower Reaction Basin									
	Launder Walls and Weirs	0.040	15			<b>***</b> **			R	
8	U.b/	2,340	11			\$266	-	\$266		
	Coag. Basin Effluent Sluice								R	
9	Gates	3	ea				\$44	\$44		
	Install additional 48"x72"						<del></del>			
	Mixing Basin Influent						!		R	
10	Sluice Gates	3	ea				\$4 <del>9</del>	\$49		
	Install additional 48"x72"						1			
1 11	Gates	3	00				¢10	\$40	R	
	Enlarge Recarb Basin	J	ea							
	Influent Wall Openings to						ļ		R	
12	60"x48"	3	ea		\$6		I			
	Enlarge Recarb Basin		1				1			
	Influent Wall Openings to								R	
13	72"X54"	3	ea				\$7			
	Influent Wall Openings to		-				1		R	
14	72"x48"	3	ea .					\$7		
	Demo Coagulated Water									
1	Distribution Channel						,		R	
15	Covers	3,100	sf	\$111			\$111		+	
	Demo Mixing Basin									
16	Covers	3 100	ef	\$65			\$65		R	
- 10	Raise Coagulated Water	3,100	- 31	Ψ <b>U</b> U					-	
	Distribution Channel								R	
17	Covers 0.5'	640	lf				\$65			
									R	
18	Raise Floc Basin Walls 0.5'	760	lf	\$77				\$77		
10	Raise Floc Basin Walls 1 0	760	lf :				\$120		R	
13	Raise Mixing Basin Walls		+				\$12 <del>3</del>			
20	0.5'	760	lf	\$77				\$77	R	
	Raise Mixing Basin Walls					······································			Р	
21	1.0'	760	lf i				\$129			
	Option Cost, \$1,000s ¹									
----------------------	------------------------------------	-------------------	--------------	----------------	--------------------	-------------------	---------------------------------------	------------------	-------------------	--
No.	Description	Quantity	Unit	1A	2A	3A	2B	38	Type ²	
	Capacity, mgd			90	90	90	120	120		
	Retrofit tube settlers in								B	
22	coagulation basins	20,832	sf	\$2,930	\$2,930	\$2,930				
	Retrofit tube settlers in		_						D	
23	softening basins	20,832	sf	\$2,930	\$2,930	\$2,930		· · · · · ·		
	Retrofit tube settlers in	07 770					<b>*</b> ****	A0.007	R	
24	Coagulation basins	27,776	st				\$3,907	\$3,907		
25	Retroit tube settiers in	27 776	of				\$2.007	\$2.007	D	
20	Clear well expansion ³	21,110			\$5 500	<b>*F 5</b> 00	\$3,907	\$3,907		
20	Clear well expansion	3.0	MG	\$5,529	\$5,529 #40,004	\$0,529				
268	Clear well expansion	1.5	MG	\$13,821	\$13,821	\$13,821				
27	Clear well expansion	<u>6.0</u> *	MG				\$11,057	\$11,057	D	
27a	Clear well expansion [°]	12.0 ³	MG	1			\$22,114	\$22,114	D	
		1@15.2								
	High service pumps and	and 1 @		<b>04 000</b>					R	
28	building expansion	13.5	mgd	\$1,693	\$1,693	\$1,693		·		
		3@15.2								
20	High service pumps and	and 1 @	mad				\$2 E47	\$2 E47	R	
- 29	Ingroses Coog Aid	13.5	nıyu				φ3,34 <i>1</i>	φ3,347		
	Rolymer metering pump									
30	canacity	3@10	aph	\$43	\$43	\$13	\$13	\$43		
- 30	Increase Coart Aid	3@10	gpn	<b>\$40</b>	φ <del>4</del> 0	φ+υ	- <del>4</del> 40	φ <del>4</del> 0		
31	Polymer Storage	1 000	len	1			\$6	\$6	D	
	Increase Ammonia	1,000	gui				<del></del>	<del></del>		
32	metering pump capacity	3@20	pph	\$45	\$45	\$45	\$45	\$45	R	
	Increase fluoride metering		<u> </u>	ļī · ·	·····			····		
33	pump capacity	1@9	gph	\$14	\$14	\$14	\$14	\$14	R	
	Provide standby carbon									
34	dioxide feed panel	170	pph	\$15	\$15	\$15	\$15	\$15	R	
	Expand chlorine storage			1						
35	roam by 300 sf	6	ton	\$90	\$90	\$90				
	Convert chlorine system to									
	liquid extraction and									
	provide two 2,800 ppd			I					R	
	evaporators; expand						1			
-	chlorine storage room by	10						<b>*</b> 040		
	700 St	10	ton				\$240	\$240		
77	Increase terric chionae	2 9 70					<b>d</b> EC	<b>*</b> =0	D	
	Ingroase forrig chloride	2@10	gpn	<u>.</u>			000	900		
38	Indiedse lerric chionde	35 000	ral				\$196	\$106	D	
	storage	55,000	yai	!			<u> </u>	ψ130 	-	
				¢5 601	\$5 151	\$4 963	080.02	\$9 561		
	TOTAL DISCRETIONARY			\$16.994	\$16 884	\$16 88A	\$26 322	\$26 322		
	COMBINED TOTAL 6			\$72 575	\$72 125	\$21 947	\$25 AD2	\$24.992		
				<i>422,313</i>	<i>422,</i> 030	Ψ <b>Ζ 1,0</b> 4/	4JJ,40Z	<i>4</i> 34,003		
Note			•····	ļ			1			
¹ Coste	shown are total amounts to ex	mand from c	urrent cor	acity to each	respective (	nanacity in th	e table			
	uired: D=Discretionary				i i especiive (	σαρασική τη τη				
³ Only or										
	he dear well option will be se	etment Diest	an capaci				÷			
	based on 10% of Water Tre		capacity	over 24 noul	S		· · · · · · · · · · · · · · · · · · ·			
	e based on 15% of vvater fre	ament Plant	capacity	over 24 noui	S.				⊢ <b>I</b>	
i ne co	st for the clear well at 10% of	wir capaci	ty is not il	ncluded in th	e Discretiona	ry or Combin	ned sums.			

TABL	E 5-2						
Cost	Estimates for Proposed Crescent Hill WTP	Modificati	ons				
							1
				Opti	on Cost, \$10	00's ¹	
No.	Description	Quantity	Unit	1	2A	2B	Type ²
	Capacity, mgd	1		210	240	240	
1	Raise Softening Basin Weirs, Option 1	4,632	lf	\$606			R
2	Raise Softening Basin Weirs, Option 2A	4,632	lf		\$865		R
3	Raise Softening Basin Weirs, Option 2B	4,632	lf			\$865	R
4	Raise Reaction Basin Weirs, Option 1 & 2B	2,699	lf	\$353		\$353	R
5	Raise Reaction Basin Weirs, Option 2A	2,699	lf		\$762		R
6	Install Orifice In Wall w/ 60"x60" Sluice Gate for Softening Basin No. 1	1	ea	\$48	\$48	\$48	R
7	Install concrete cap on Slow Mix Basins	2,828	١f		\$255	\$255	R
8	East end 60" filter influent connection	2,150	lf			\$3,600	R
9	West end 60" filter influent connection	30	lf		\$398		R
10	East end 36" filter effluent connection	650	lf	\$639			R
11	East end 48" filter effluent connection	650	lf		\$852	\$852	R
12	Retrofit tube settlers in coagulation basins	48,608	sf	\$6,838			D
13	Retrofit tube settlers in coagulation basins	55,552	sf		\$7,814	\$7,814	R
14	Clear well expansion	7	MG	\$12,900			D
15	Clear well expansion	11	MG		\$20,271	\$20,271	D
16	High service pumps, 48 mgd ^{3,5}	1	ea	\$900			D
17	High service pumps, 48 mgd ^{3,5}	1	ea		\$900	\$900	R
18	High service pumps, 35 mgd ^{4,5}	2	ea		\$3,345	\$3,345	D
				\$1.646	\$11 894	\$14 687	
}	TOTAL DISCRETIONARY			\$20,638	\$23,616	\$23.616	
	COMBINED TOTAL ⁶			\$22,000	\$32 165	\$34.058	
				<i>\$22,20</i> 4	φ <b>32,10</b> 3	434,330	
Note:				1			
¹ Costs	shown are total amounts to expand from current of	apacity to ea	ch respe	ctive capacit	v in the table	l	+
² R=Re	guired: D=Discretionary						1
³ Includ	es replacing the smallest existing pump with a new	v 48 mad pur	nn				
⁴ Includ	es building sized for 2 pumps	<u></u>					
5Only	one nump ontion will be selected for 210 MGD evo	ansion					L
6 Ontion	2A and 2B totals reflect required cost to replace	a numn with	a new 49	mad nump (	line 17) and	do not includ	
the dia	scrationary cost to add new numps (line 18)		a new 40	ingu pump (			
	service and new pumps (interio).	t i i i i i i i i i i i i i i i i i i i					

# **Recommendations for Implementation**

Previous sections of this report identified hydraulic, process, and equipment deficiencies that will result if the WTP capacities are increased. The identification of these deficiencies and improvement options that were developed to correct the deficiencies were based on industry and KY DOW standards and on evaluation criteria developed with LWC staff during this project. Prior to any improvements being designed to correct the deficiencies, the criteria should be revisited in more detail. Consider the following:

- Clear well expansions are the single most costly item for any proposed WTP capacity increase. The clear well volume needed for disinfection contact time should be assessed. At CHWTP the clear well is not used to meet regulatory contact time requirements, and once the RBF Phase 2 improvements are implemented, the BEWTP clear well also will not be used to meet contact time requirements. The equalization volume needed for diurnal demand and variable pumping patterns should be determined and compared to available storage (as compared to dead storage that cannot be used) in the clear wells. The resulting need for clear well volume at each plant may or may not correspond to the KY DOW criterion of providing 15 percent of one day's WTP capacity. If the needed volume is less than 15 percent, KY DOW should be contacted with LWC's findings to request a variance from this requirement. Also, elevated storage offsite in the distribution system might be considered by KY DOW as offsetting the lack of storage onsite, but this would need to be confirmed in discussions with KY DOW.
- High-service pump capacities were based on an arbitrary guideline of 100 percent of the WTP capacity and matching the existing hydraulic grade line of the distribution system. The true capacity needed to meet future diurnal demand requirements in each pressure zone by each WTP should be determined by computer modeling of the distribution system network to obtain more-realistic operating conditions. New pump sizes were set equal to existing pump sizes at BEPWTP. Instead, it may be advisable to replace existing pumps with larger pumps at both plants in the next WTP capacity expansion to avoid excessive pumping units.
- Chemical storage and feed rates were determined on the basis of historical average and maximum feed rates. Feed rates in the future may change, particularly at BEPWTP, which will be converted to 100 percent riverbank filtration water, and should be revisited to better determine future feed rates so that new feed and/or storage facilities are not unnecessarily acquired or accidentally ignored.
- Filtration rates at BEPWTP (and at CHWTP if the South Filters are decommissioned) will exceed the KY DOW established maximum rate of 5 gpm/ft², if the plant capacities are increased. As a result, it will be necessary and prudent to design and conduct a full-scale demonstration project for high-rating filters beyond 5 gpm/ft². This project should be planned with involvement by KY DOW staff.

WDC062640001

- Retrofitting tube settlers into existing settling basins allows for much greater capacity without increasing the settling basin footprint. However, the estimated cost for this work is significant, ranging from \$3 to \$4 million at BEPWTP to \$7 to \$8 million at CHWTP. Tube settlers also have a life span of 10–15 years, depending on manufacturer and operations and maintenance methods. Prior to design of such retrofits, the feasibility and estimated costs should be revisited and compared to the cost of constructing high-rate clarification processes within the same footprint to replace the coagulation and softening basins. Candidate high-rate clarification processes include the following:
  - Upflow solids contact (sludge blanket) clarifiers
  - Sand-ballasted sedimentation
  - Inclined-plate sedimentation with new sludge collection technology
- Criteria were established for minimum freeboard of 6 inches (12 inches preferred) in open basins and minimum headspace of 6 inches in conduits and tanks with covers not designed for uplift. Wall extensions and lid removals were recommended on the basis of these criteria. These criteria should be revisited to confirm that 6 inches of freeboard is adequate prior to changes being made to the hydraulic grade lines in either plant.

# Appendix A Survey Point Elevations—BEPWTP

# Appendix A TABLE 1A

Structural Survey Point Elevations--BEPWTP

Structure DescriptionSurvey PointElevationCoagulation Basin Influent Conduit Top of Wall1-1474.975Flocculation Basin Top of Wall1-3473.965Coagulation Basin Top of Wall1-3473.965West Basin Walkway1-4467.685West Basin Walkway1-4467.685Coagulation Basin #1 Effluent Weirs2.1a472.968Coagulation Basin #2 Effluent Weirs2.2a472.968Coagulation Basin #2 Effluent Weirs2.2c472.968Coagulation Basin #3 Effluent Weirs2.3a472.968Coagulation Basin #3 Effluent Weirs2.3a472.968Coagulation Basin #3 Effluent Launder Invert3-1467.685Coagulation Basin #1 Effluent Launder Invert3-2467.725Coagulation Basin #2 Effluent Launder Invert3-2467.725Coagulation Basin #2 Effluent Weirs6-1a471.473Softening Basin #2 Effluent Weirs6-1a471.473Softening Basin #2 Effluent Weirs6-2a471.433Softening Basin #3 Effluent Weirs6-3a471.483CO2 Reaction Basin #3 Effluent Weirs7-1a470.773CO2 Reaction Basin #1 Effluent Weirs7-3a470.773CO2 Reaction Basin #3 Effluent Weirs7-3a470.773 <t< th=""><th></th><th></th><th>June 2006 Surveyed</th></t<>			June 2006 Surveyed
Coagulation Basin Top of Wall         1-1         474.4975           Flocculation Basin Top of Wall         1-2         474.445           Coagulation Basin Top of Wall         1-3         473.965           West Basin Walkway         1-4         467.885           Coagulation Basin #1 Effluent Weirs         2-1a         473.008           Coagulation Basin #1 Effluent Weirs         2-1b         472.968           Coagulation Basin #2 Effluent Weirs         2-2a         472.968           Coagulation Basin #2 Effluent Weirs         2-2a         472.968           Coagulation Basin #2 Effluent Weirs         2-2a         472.968           Coagulation Basin #3 Effluent Weirs         2-3a         472.968           Coagulation Basin #3 Effluent Veirs         2-3a         472.968           Coagulation Basin #3 Effluent Veirs         3-4         472.968           Coagulation Basin #3 Effluent Launder Invert         3-3         467.855           Softening Basin #1 Effluent Veirs         6-1a         471.473           Softening Basin #1 Effluent Weirs         6-1a         471.473           Goagulation Basin #3 Effluent Weirs         6-3a         471.433           Softening Basin #3 Effluent Weirs         6-3a         471.433           CO2 Reaction Basin #1 Effluent Weirs	Structure Description	Survey Point	Elevation
Flocculation Basin Top of Wall       1-2       474.445         Coagulation Basin Top of Wall       1-3       473.965         West Basin Walkway       1-4       467.685         Coagulation Basin #1 Effluent Weirs       2-1a       473.008         Coagulation Basin #1 Effluent Weirs       2-1a       472.968         Coagulation Basin #2 Effluent Weirs       2-2a       472.968         Coagulation Basin #2 Effluent Weirs       2-2a       472.968         Coagulation Basin #2 Effluent Weirs       2-2a       472.968         Coagulation Basin #3 Effluent Weirs       2-3a       472.968         Coagulation Basin #3 Effluent Launder Invert       3-3       472.968         Coagulation Basin #3 Effluent Launder Invert       3-3       467.725         Coagulation Basin #3 Effluent Launder Invert       3-3       467.685         Softening Basin #3 Effluent Weirs       6-1a       471.473         Gottom Basin #3 Effluent Weirs       6-2a       471.473         Softening Basin #2 Effluent Weirs       6-3a       471.423         Softening Basin #3 Effluent Weirs       7-1a       470.703         CO2 Reaction Basin #3 Effluent Weirs       7-3a       470.773         CO2 Reaction Basin #3 Effluent Weirs       7-3a       470.773         <	Coagulation Basin Influent Conduit Top of Wall	1-1	474.975
Coagulation Basin Top of Wall         1-3         473.965           West Basin Walkway         1-4         467.885           Coagulation Basin #1 Effluent Weirs         2-1a         473.008           Coagulation Basin #1 Effluent Weirs         2-1b         472.968           Coagulation Basin #2 Effluent Weirs         2-2a         472.968           Coagulation Basin #2 Effluent Weirs         2-2a         472.968           Coagulation Basin #3 Effluent Weirs         2-2a         472.968           Coagulation Basin #3 Effluent Weirs         2-3a         472.968           Coagulation Basin #3 Effluent Launder Invert         3-1         467.885           Coagulation Basin #1 Effluent Launder Invert         3-1         467.885           Coagulation Basin #1 Effluent Launder Invert         3-2         467.725           Coagulation Basin #2 Effluent Launder Invert         3-3         467.885           Softening Basin #1 Effluent Weirs         6-1a         471.433           Softening Basin #3 Effluent Weirs         6-1a         471.433           Softening Basin #3 Effluent Weirs         7-1a         470.723           Coagulation Basin #3 Effluent Weirs         7-2a         470.733           Coagulation Basin #3 Effluent Weirs         7-3a         470.733 <td< td=""><td>Flocculation Basin Top of Wall</td><td>1-2</td><td>474.445</td></td<>	Flocculation Basin Top of Wall	1-2	474.445
West Basin Walkway         1-4         467.685           Coagulation Basin #1 Effluent Weirs         2-1a         473.008           Coagulation Basin #1 Effluent Weirs         2-1b         472.968           Coagulation Basin #2 Effluent Weirs         2-1d         472.978           Coagulation Basin #2 Effluent Weirs         2-2a         472.968           Coagulation Basin #3 Effluent Weirs         2-2a         472.968           Coagulation Basin #3 Effluent Weirs         2-2d         472.968           Coagulation Basin #3 Effluent Launder Invert         2-3a         472.968           Coagulation Basin #3 Effluent Launder Invert         3-1         467.685           Coagulation Basin #2 Effluent Launder Invert         3-2         467.255           Coagulation Basin #2 Effluent Launder Invert         3-3         467.685           Softening Basin #2 Effluent Weirs         6-1a         471.473           Softening Basin #2 Effluent Weirs         6-2a         471.433           Softening Basin #3 Effluent Weirs         6-3a         471.433           Softening Basin #3 Effluent Weirs         7-1a         470.773           CO2 Reaction Basin #1 Effluent Weirs         7-2a         470.763           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793	Coagulation Basin Top of Wall	1-3	473.965
2-1a         473.008           2-1b         472.968           2-1c         472.978           2-1d         472.978           2-1d         472.978           2-1d         472.968           2-2a         472.968           2-2b         472.968           2-2c         472.968           2-2c         472.968           2-2a         472.968           2-2a         473.008           2-2a         472.968           2-2a         472.968           2-3a         472.968           2-3b         472.968           Coagulation Basin #3 Effluent Weirs         2-3d           Coagulation Basin #2 Effluent Launder Invert         3-1           2-3d         472.968           Coagulation Basin #3 Effluent Launder Invert         3-2           Coagulation Basin #3 Effluent Veirs         6-1a           471.473         6-1b           6-1b         471.473           Softening Basin #3 Effluent Weirs         6-3a           6-2b         471.423           Softening Basin #3 Effluent Weirs         7-1a           6-2b         471.423           Softening Basin #3 Effluent Weirs         7-2a	West Basin Walkway	1-4	467.685
Coagulation Basin #1 Effluent Weirs         2-1b         472.968           2-1c         472.978         2.1d         472.978           Coagulation Basin #2 Effluent Weirs         2-2a         472.968         2-2b         472.968           Coagulation Basin #3 Effluent Weirs         2-2a         472.968         2-2c         472.968           Coagulation Basin #3 Effluent Weirs         2-3a         472.968         2-2c         473.008           Coagulation Basin #3 Effluent Launder Invert         3-1         467.685         473.018         2-3d         472.968           Coagulation Basin #1 Effluent Launder Invert         3-1         467.685         477.968         477.968           Coagulation Basin #2 Effluent Launder Invert         3-2         467.725         467.725         Coagulation Basin #3 Effluent Weirs         6-1a         471.473           Softening Basin #1 Effluent Weirs         6-1a         471.473         6-1b         471.473           Softening Basin #2 Effluent Weirs         6-3a         471.473         470.723           CO2 Reaction Basin #1 Effluent Weirs         7-1a         470.723           CO2 Reaction Basin #2 Effluent Weirs         7-3a         470.733           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793 <td< td=""><td></td><td>2-1a</td><td>473.008</td></td<>		2-1a	473.008
2-1c         472.978           2-1d         472.978           2-1d         472.978           2-2a         472.968           2-2b         472.978           2-2b         472.978           2-2c         472.978           2-2c         472.968           2-2c         472.968           2-2d         473.018           2-3a         472.968           2-3c         473.018           2-3d         472.968           Coagulation Basin #1 Effluent Launder Invert         3-1           3-1         467.685           Softening Basin #2 Effluent Weirs         6-1a	Coaculation Basin #1 Effluent Weirs	2-1b	472.968
2-1d         472.948           Coagulation Basin #2 Effluent Weirs         2-2a         472.968           2-2b         472.968         2-2c         472.968           2-2c         472.968         2-2d         473.008           2-3a         472.968         2-3a         472.968           2-3a         472.968         2-3a         472.968           2-3a         472.968         2-3a         472.968           2-3d         472.968         2-3a         472.968           Coagulation Basin #3 Effluent Launder Invert         3-1         467.685           Coagulation Basin #1 Effluent Launder Invert         3-3         467.685           Coagulation Basin #2 Effluent Launder Invert         3-3         467.685           Softening Basin #3 Effluent Weirs         6-1a         471.473           Softening Basin #3 Effluent Weirs         6-2a         471.093           Gotz Reaction Basin #1 Effluent Weirs         6-3a         471.423           Softening Basin #3 Effluent Weirs         7-1a         470.723           CO2 Reaction Basin #1 Effluent Weirs         7-2a         470.763           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a		2-1c	472.978
Coagulation Basin #2 Effluent Weirs         2-2a         472.968           2-2b         472.978         2-2c         472.968           2-2d         473.008         2-3a         472.968           2-3a         472.968         2-3b         472.968           2-3a         472.968         2-3c         473.018           2-3a         472.968         2-3c         473.018           2-3d         472.968         2-3c         473.018           2-3d         472.968         2-3d         472.968           Coagulation Basin #1 Effluent Launder Invert         3-1         467.685           Coagulation Basin #2 Effluent Launder Invert         3-3         467.685           Softening Basin #3 Effluent Weirs         6-1a         471.473           Softening Basin #3 Effluent Weirs         6-2a         471.433           Softening Basin #3 Effluent Weirs         6-3a         471.433           Softening Basin #3 Effluent Weirs         7-1a         470.723           CO2 Reaction Basin #1 Effluent Weirs         7-1a         470.733           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.763           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.763           Filter Observation Floor		2-1d	472.948
Coagulation Basin #2 Effluent Weirs         2-2b         472.978           2-2c         472.968         2-2c         472.968           Coagulation Basin #3 Effluent Weirs         2-3a         472.968           Coagulation Basin #3 Effluent Weirs         2-3b         472.968           Coagulation Basin #1 Effluent Launder Invert         3-1         467.685           Coagulation Basin #2 Effluent Launder Invert         3-2         467.725           Coagulation Basin #3 Effluent Launder Invert         3-3         467.685           Softening Basin #3 Effluent Weirs         6-1a         471.473           Softening Basin #3 Effluent Weirs         6-1a         471.473           Softening Basin #3 Effluent Weirs         6-2a         471.433           Softening Basin #3 Effluent Weirs         6-3a         471.423           Softening Basin #3 Effluent Weirs         6-3a         471.423           Softening Basin #3 Effluent Weirs         7-1a         470.723           CO2 Reaction Basin #1 Effluent Weirs         7-2a         470.733           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.733           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.733           Top of Filter Media (#3)         11-3a         464.092           1		2-2a	472.968
2-2c         472.968           2-2d         473.008           2-3a         472.968           2-3b         472.968           2-3c         473.018           2-3c         473.018           2-3d         472.968           3-3         561           2-3d         471.433           Softening Basin #2 Effluent Weirs         <	Conquilation Racin #2 Effluent Maire	2-2b	472.978
2-2d         473.008           Coagulation Basin #3 Effluent Weirs         2-3a         472.968           2-3b         472.968         2-3c         473.018           2-3c         473.018         2-3c         473.018           2-3c         473.018         2-3c         473.018           2-3c         473.018         2-3c         473.018           2-3d         472.968         2-3d         472.968           Coagulation Basin #1 Effluent Launder Invert         3-1         467.685           Coagulation Basin #2 Effluent Launder Invert         3-3         467.685           Softening Basin #1 Effluent Weirs         6-1a         471.473           Softening Basin #2 Effluent Weirs         6-2a         471.093           Softening Basin #3 Effluent Weirs         6-3a         471.483           Softening Basin #3 Effluent Weirs         6-3a         471.483           CO2 Reaction Basin #1 Effluent Weirs         7-1a         470.723           CO2 Reaction Basin #2 Effluent Weirs         7-2a         470.763           CO2 Reaction Basin #3 Effluent Weirs         7-3b         470.733           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3b	Coagulation Basin #2 Endent Weils	2-2c	472.968
Coagulation Basin #3 Effluent Weirs         2-3a         472.968           Coagulation Basin #1 Effluent Launder Invert         3-1         467.685           Coagulation Basin #1 Effluent Launder Invert         3-1         467.685           Coagulation Basin #2 Effluent Launder Invert         3-2         467.725           Coagulation Basin #3 Effluent Launder Invert         3-3         467.685           Softening Basin #3 Effluent Weirs         6-1a         471.473           Softening Basin #1 Effluent Weirs         6-2a         471.473           Softening Basin #2 Effluent Weirs         6-2a         471.433           Softening Basin #3 Effluent Weirs         6-3a         471.433           Softening Basin #3 Effluent Weirs         6-3a         471.433           CO2 Reaction Basin #1 Effluent Weirs         7-1a         470.723           CO2 Reaction Basin #2 Effluent Weirs         7-2a         470.763           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           Filter Observation Floor         8         470.902           Top of Filter Media (#3)         11-3a         464.052           <		2-2d	473.008
Coagulation Basin #3 Effluent Weirs         2-3b         472.968           Coagulation Basin #1 Effluent Launder Invert         3-1         467.685           Coagulation Basin #2 Effluent Launder Invert         3-2         467.725           Coagulation Basin #3 Effluent Launder Invert         3-3         467.685           Coagulation Basin #3 Effluent Launder Invert         3-3         467.685           Softening Basin #1 Effluent Weirs         6-1a         471.473           Softening Basin #2 Effluent Weirs         6-2a         471.493           Softening Basin #3 Effluent Weirs         6-3a         471.483           Softening Basin #3 Effluent Weirs         6-3a         471.483           CO2 Reaction Basin #1 Effluent Weirs         7-1a         470.723           CO2 Reaction Basin #1 Effluent Weirs         7-2a         470.763           CO2 Reaction Basin #2 Effluent Weirs         7-3a         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           Top of Filter Media (#3)         11-3a         464.052           Top of Filter Media (#6)         11-6a         463.342		2-3a	472.968
2-3c         473.018           2-3d         472.968           Coagulation Basin #1 Effluent Launder Invert         3-1         467.685           Coagulation Basin #2 Effluent Launder Invert         3-2         467.725           Coagulation Basin #3 Effluent Launder Invert         3-3         467.685           Softening Basin #1 Effluent Weirs         6-1a         471.473           6-1b         471.473         6-2a         471.093           Softening Basin #2 Effluent Weirs         6-2a         471.093           6-2b         471.423         50fening Basin #3 Effluent Weirs         6-3a         471.423           Softening Basin #3 Effluent Weirs         6-3a         471.483         6-3b         471.423           Softening Basin #3 Effluent Weirs         7-1a         470.723         7.1b         470.723           CO2 Reaction Basin #1 Effluent Weirs         7-2a         470.763         7.2b         470.763           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793         7.3b         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793         7.3b         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793         11-3a         464.052           Top	Consulation Booin #2 Effluent Maire	2-3b	472.968
2-3d         472.968           Coagulation Basin #1 Effluent Launder Invert         3-1         467.685           Coagulation Basin #2 Effluent Launder Invert         3-2         467.725           Coagulation Basin #3 Effluent Launder Invert         3-3         467.685           Softening Basin #1 Effluent Weirs         6-1a         471.473           6-1b         471.473         6-1b         471.433           Softening Basin #1 Effluent Weirs         6-2a         471.093           6-2b         471.423         6-3a         471.423           Softening Basin #2 Effluent Weirs         6-3a         471.433           Softening Basin #3 Effluent Weirs         6-3a         471.433           CO2 Reaction Basin #1 Effluent Weirs         7-1a         470.723           CO2 Reaction Basin #2 Effluent Weirs         7-2a         470.763           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           Top of Filter Media (#3)         11-3a         464.052           11-3a         464.022         11-3b	Coaguiation Basin #3 Endent Weirs	2-3c	473.018
Coagulation Basin #1 Effluent Launder Invert         3-1         467.685           Coagulation Basin #2 Effluent Launder Invert         3-2         467.725           Coagulation Basin #3 Effluent Launder Invert         3-3         467.685           Softening Basin #1 Effluent Weirs         6-1a         471.473           6-1b         471.473         6-1b         471.473           Softening Basin #1 Effluent Weirs         6-2a         471.093           Softening Basin #2 Effluent Weirs         6-2a         471.423           Softening Basin #3 Effluent Weirs         6-3a         471.483           CO2 Reaction Basin #3 Effluent Weirs         7-1a         470.723           CO2 Reaction Basin #1 Effluent Weirs         7-2a         470.763           CO2 Reaction Basin #2 Effluent Weirs         7-2a         470.763           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           Top of Filter Media (#3)         11-3a         464.052           Top of Filter Media (#6)         11-3d         464.232           Top		2-3d	472.968
Coagulation Basin #2 Effluent Launder Invert         3-2         467.725           Coagulation Basin #3 Effluent Launder Invert         3-3         467.685           Softening Basin #1 Effluent Weirs         6-1a         471.473           6-1b         471.433         6-1b         471.433           Softening Basin #2 Effluent Weirs         6-2a         471.093         6-2a         471.093           Softening Basin #2 Effluent Weirs         6-3a         471.423         6-3a         471.433           Softening Basin #3 Effluent Weirs         6-3a         471.433         6-3b         471.433           Softening Basin #3 Effluent Weirs         6-3a         471.433         6-3b         471.433           Softening Basin #3 Effluent Weirs         7-1a         470.723         71.433         470.723           CO2 Reaction Basin #1 Effluent Weirs         7-2a         470.763         7-2b         470.733           CO2 Reaction Basin #2 Effluent Weirs         7-3a         470.793         7-3b         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793         11-3a         464.052           Top of Filter Media (#3)         11-3a         464.0	Coagulation Basin #1 Effluent Launder Invert	3-1	467.685
Coagulation Basin #3 Effluent Launder Invert         3-3         467.685           Softening Basin #1 Effluent Weirs         6-1a         471.473           Genter         6-1b         471.433           Softening Basin #2 Effluent Weirs         6-2a         471.093           Softening Basin #2 Effluent Weirs         6-2a         471.423           Softening Basin #3 Effluent Weirs         6-3a         471.423           Softening Basin #3 Effluent Weirs         6-3a         471.483           CO2 Reaction Basin #1 Effluent Weirs         7-1a         470.723           CO2 Reaction Basin #2 Effluent Weirs         7-1a         470.723           CO2 Reaction Basin #2 Effluent Weirs         7-2a         470.763           CO2 Reaction Basin #2 Effluent Weirs         7-3a         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           Top of Filter Media (#3)         11-3a         464.052           Top of Filter Media (#6)         11-6a         463.342           Top of Filter Media (#6)         1	Coagulation Basin #2 Effluent Launder Invert	3-2	467.725
Softening Basin #1 Effluent Weirs         6-1a         471.473           6-1b         471.433           Softening Basin #2 Effluent Weirs         6-2a         471.093           6-2b         471.423         6-2b         471.423           Softening Basin #3 Effluent Weirs         6-3a         471.483         6-3b         471.483           Softening Basin #3 Effluent Weirs         6-3a         471.483         6-3b         471.493           CO2 Reaction Basin #1 Effluent Weirs         7-1a         470.723         7-1b         470.723           CO2 Reaction Basin #2 Effluent Weirs         7-2a         470.763         7-2b         470.733           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793         7-3b         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793         7-3b         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793         470.793         7-3b         470.783           Filter Observation Floor         8         470.902         11-3a         464.052         11-3b         464.052           Top of Filter Media (#3)         11-3a         464.262         11-3d         464.262         11-3d         464.262           Top of Filter Me	Coagulation Basin #3 Effluent Launder Invert	3-3	467.685
6-1b         471.433           Softening Basin #2 Effluent Weirs         6-2a         471.093           6-2b         471.423         6-2b         471.423           Softening Basin #3 Effluent Weirs         6-3a         471.483         6-3b         471.483           6-2D         471.423         6-3b         471.483         6-3b         471.483           6-2D         6-3b         471.483         6-3b         471.493           CO2 Reaction Basin #1 Effluent Weirs         7-1a         470.723         7-1b         470.773           CO2 Reaction Basin #2 Effluent Weirs         7-2a         470.763         7-2b         470.763           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793         7-3b         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793         7-3b         470.783           Filter Observation Floor         8         470.902         11-3a         464.052           Top of Filter Media (#3)         11-3a         464.052         11-3b         464.052           Top of Filter Media (#6)         11-6a         463.342         11-6b         463.342           Top of Filter Media (#6)         11-6b         463.342         11-6c         463.562	Softening Basin #1 Effluent Weirs	6-1a	471.473
Softening Basin #2 Effluent Weirs         6-2a         471.093           Softening Basin #3 Effluent Weirs         6-3a         471.423           Softening Basin #3 Effluent Weirs         6-3a         471.483           6-3b         471.493         6-3b         471.493           CO2 Reaction Basin #1 Effluent Weirs         7-1a         470.723         7-1b         470.773           CO2 Reaction Basin #2 Effluent Weirs         7-2a         470.763         7-2b         470.763           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3b         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           Filter Observation Floor         8         470.902           Top of Filter Media (#3)         11-3a         464.052           Top of Filter Media (#6)         11-3c         464.262           Top of Filter Media (#6)         11-6a         463.342           Top of Filter Media (#6)         11-6b         463.342           Top of Filter Media (#6)         11-6c         463.562	-	6-1b	471.433
6-2b         471.423           Softening Basin #3 Effluent Weirs         6-3a         471.483           6-3b         471.493         6-3b         471.493           CO2 Reaction Basin #1 Effluent Weirs         7-1a         470.723           7-1b         470.773         72a         470.763           CO2 Reaction Basin #2 Effluent Weirs         7-2a         470.763           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           CO2 Reaction Floor         8         470.902           Top of Filter Media (#3)         11-3a         464.052           Top of Filter Media (#6)         11-3c         464.262           Top of Filter Media (#6)         11-6a         463.342           Top of Filter Media (#6)         11-6b         463.342           Top of Filter Media (#6)         11-6b         463.342           11-6c	Softening Basin #2 Effluent Weirs	6-2a	471.093
Softening Basin #3 Effluent Weirs         6-3a         471.483           CO2 Reaction Basin #1 Effluent Weirs         7-1a         470.723           CO2 Reaction Basin #1 Effluent Weirs         7-1a         470.723           CO2 Reaction Basin #2 Effluent Weirs         7-2a         470.763           CO2 Reaction Basin #2 Effluent Weirs         7-2a         470.763           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           CO2 Reaction Floor         8         470.902           Top of Filter Media (#3)         11-3a         464.052           Top of Filter Media (#6)         11-3c         464.262           Top of Filter Media (#6)         11-6b         463.342           Top of Filter Media (#6)         11-6c         463.562           11-6c         463.562         11-		6-2b	471.423
6-3b         471.493           CO2 Reaction Basin #1 Effluent Weirs         7-1a         470.723           7-1b         470.773         7.2a         470.763           CO2 Reaction Basin #2 Effluent Weirs         7-2a         470.763           7-2b         470.733         7.3a         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           Top of Filter Observation Floor         8         470.902           11-3a         464.052         11-3b         464.052           Top of Filter Media (#3)         11-3c         464.052         11-3d         464.232           Top of Filter Media (#6)         11-6a         463.342         11-6b         463.342           Top of Filter Media (#6)         11-6b         463.342         11-6c         463.562           11-6b         463.412         11-6c         463.562         11-6d         463.472	Softening Basin #3 Effluent Weirs	6-3a	471.483
CO2 Reaction Basin #1 Effluent Weirs         7-1a         470.723           CO2 Reaction Basin #2 Effluent Weirs         7-2a         470.763           CO2 Reaction Basin #2 Effluent Weirs         7-2a         470.763           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           Filter Observation Floor         8         470.902           Top of Filter Media (#3)         11-3a         464.052           Top of Filter Media (#3)         11-3c         464.232           Top of Filter Media (#6)         11-6a         463.342           Top of Filter Media (#6)         11-6b         463.412           Top of Filter Media (#6)         11-6c         463.423		6-3b	471.493
7-1b         470.773           CO2 Reaction Basin #2 Effluent Weirs         7-2a         470.763           7-2b         470.733         7-2b         470.733           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           Filter Observation Floor         8         470.902           Top of Filter Media (#3)         11-3a         464.052           11-3b         464.092         11-3c         464.232           11-3d         464.262         11-3d         464.262           11-3d         464.262         11-6a         463.342           Top of Filter Media (#6)         11-6b         463.412           Top of Filter Media (#6)         11-6b         463.412	CO2 Reaction Basin #1 Effluent Weirs	7-1a	470.723
CO2 Reaction Basin #2 Effluent Weirs         7-2a         470.763           7-2b         470.733           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           Filter Observation Floor         8         470.902           Top of Filter Media (#3)         11-3a         464.052           Top of Filter Media (#3)         11-3c         464.232           Top of Filter Media (#6)         11-6a         463.342           Top of Filter Media (#6)         11-6b         463.412		7-1b	470.773
7-2b         470.733           CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           7-3b         470.783         7-3b         470.783           Filter Observation Floor         8         470.902         11-3a         464.052           Top of Filter Media (#3)         11-3b         464.092         11-3c         464.232           Top of Filter Media (#6)         11-6a         463.342         11-6b         463.412           Top of Filter Media (#6)         11-6c         463.562         11-6c         463.472	CO2 Reaction Basin #2 Effluent Weirs	7-2a	470.763
CO2 Reaction Basin #3 Effluent Weirs         7-3a         470.793           7-3b         7-3b         470.783           Filter Observation Floor         8         470.902           Top of Filter Media (#3)         11-3a         464.052           11-3b         464.092         11-3c           11-3d         464.232         11-3d           Top of Filter Media (#6)         11-6a         463.342           Top of Filter Media (#6)         11-6c         463.562		7-2b	470.733
7-3b         470.783           Filter Observation Floor         8         470.902           Top of Filter Media (#3)         11-3a         464.052           Top of Filter Media (#3)         11-3b         464.092           Top of Filter Media (#6)         11-6a         463.342           Top of Filter Media (#6)         11-6c         463.562           11-6c         463.562         11-6d	CO2 Reaction Basin #3 Effluent Weirs	7-3a	470.793
Filter Observation Floor         8         470.902           Top of Filter Media (#3)         11-3a         464.052           11-3b         464.092         11-3c         464.232           11-3d         464.262         11-3d         464.262           11-3d         464.342         11-6a         463.342           Top of Filter Media (#6)         11-6b         463.412           11-6c         463.562         11-6d         463.472		7-3b	470.783
Top of Filter Media (#3)         11-3a         464.052           11-3b         464.092         11-3c         464.232           11-3d         464.262         11-3d         464.262           11-3d         464.262         11-6a         463.342           Top of Filter Media (#6)         11-6b         463.412           11-6c         463.562         11-6d         463.472	Filter Observation Floor	8	470.902
Top of Filter Media (#3)         11-3b         464.092           11-3c         464.232         11-3d         464.262           11-3d         464.262         11-6a         463.342           Top of Filter Media (#6)         11-6b         463.412           11-6c         463.562         11-6d         463.472		11-3a	464.052
I op of Filter Media (#3)         11-3c         464.232           11-3d         464.262         11-3d         464.262           11-6a         463.342         11-6b         463.412           Top of Filter Media (#6)         11-6c         463.562           11-6d         463.472         11-6d         463.472		11-3b	464.092
11-3d         464.262           11-6a         463.342           11-6b         463.412           11-6c         463.562           11-6d         463.472	I op of Hilter Media (#3)	11-3c	464.232
Top of Filter Media (#6) 11-6a 463.342 11-6b 463.412 11-6c 463.562 11-6d 463.472		11-3d	464.262
Top of Filter Media (#6) 11-6b 463.412 11-6c 463.562 11-6d 463.472		11-6a	463.342
10p of Filter Media (#6) 11-6c 463.562 11-6d 463.472		11-6b	463.412
11-6d 463 472	I op of Hilter Media (#6)	11-6c	463.562
		11-6d	463.472

		June 2006
		Surveyed
Structure Description	Survey Point	Elevation
Raw Water Reservoir Top of Berm	1	582.559
Raw Water Reservoir Gatehouse Top Floor	2	583.839
North Coagulation Building Top Floor	3	575.744
North Coagulation Building Observation Walkway At Center	4	575.304
South Coagualtion Building Top Floor	5	573.074
South Coagulation Building Observation Walkway At Center	6	572.594
	7-1a	571.174
North Basin #1 Weir Notch	7-1b	571.214
	7-1c	571.084
	7-1d	571.104
	7-2a	571.194
North Basin #2 Weir Notch	7-2b	571.174
	7-2c	571.164
	7-2d	571.164
	7-3a	571.174
North Basin #3 Weir Notch	7-3b	571.174
	7-3c	571.184
	7-3d	571.144
	7-4a	571.144
North Basin #4 Weir Notch	7-4b	571.194
	7-4c	571.174
	7-4d	571.184
	8-5a	571.224
South Basin #5 Weir Notch	8-5b	571.254
	8-5c	571.264
	8-5d	571.174
	8-6a	571.194
South Basin #6 Weir Notch	8-6b	571.244
	8-6c	<u>571.164</u>
	8-6d	571.204
	8-7a	571.204
South Basin #7 Weir Notch	8-7b	571.164
	8-7c	571.204
	8-7d	571.234
	8-8a	571.154
South Basin #8 Weir Notch	8-8b	571.204
	8-8c	571.234
	8-8d	571.274
	9-1	565.684
Bottom of North Coagulation Basin Effluent Lounder At Discharge	9-2	565.654
Bottom of North Coagulation Basin Enruent Launder At Discharge	9-3	565.854
	9-4	565.684
	10-5	565.704
Bottom of South Coggulation Basin Effluent Loundar At Dischasse	10-6	565.684
Bottom of South Coaguiation Dasin Chluent Launder At Discharge	10-7	565.744
	10-8	565.704
Top of Wall Elevation of Northwest Tower	11	581.494
Top of Wall Elevation of Northeast Tower	12	583.704
Top of Wall Elevation of Southwest Tower	13	581.344
Top of Wall Elevation of Southeast Tower	14	582.244

		June 2006
		Surveyed
Structure Description	Survey Point	Elevation
	15-5	562 894
West Softening Basin Observation Walkway	15-6	562.969
	15-1	563.614
	15-2	563.759
Softening Basin Observation Walkways/Curb	15-3	563,769
, , , , , , , , , , , , , , , , , , ,	15-4	563.694
	15-7	563.779
Slow Mix Basin 1 Influent Weir	16-1	563.152
Slow Mix Basin 2 Influent Weir	16-2	563.426
Slow Mix Basin 3 Influent Weir	16-3	563.364
Slow Mix Basin 4 Influent Weir	16-4	563.352
Slow Mix Basin 5 Top of Influent Baffle Wall	16-5	562.224
Slow Mix Basin 6 Top of Influent Baffle Wall	16-6	562.174
Coffering Desig #4 Misin	18-1a	562.689
Softening Basin #1 Weir	18-1b	562.729
	18-2a	562.699
Softening Basin #2 Weir	18-2b	562.679
Deficient Designed Database	18-3a	562.719
Softening Basin #3 Weir	18-3b	562.689
	18-4a	562.719
Softening Basin #4 Weir	18-4b	562.719
	18-5a	562.674
Softening Basin #5 Weir	18-5b	562.594
	18-6a	562,664
Softening Basin #6 Weir	18-6b	562.674
	19-1a	561.774
CO2 Reaction Basin #1 Emuent Weirs	19-1b	561.784
COO Departing Depin #0 Effluent Mains	19-2a	561.724
CO2 Reaction Basin #2 Emuent Weirs	19-2b	561.724
CO2 Beastion Basin #2 Effluent Waire	19-3a	561.674
	19-3b	561.674
Observation Floor of East Filters	20-3	561.504
Observation Floor of North Filters	20-2	562.264
Observation Floor of South Filters	20-1	562.289
East Filters Top of Wall	21-3	561.314
	21-4	561.164
Bottom of North Filters Influent Channel	22-2	558.074
Bottom of South Filters Influent Channel	22-1	558.424
Bottom of East Filters Influent Channel	22-3	556.294
North Filters (#8)Top of Media	23-8d	555.214
	23-3a	555.609
South Filters (#3) Top of Media	23-3b	555.699
	23-3c	555.609
	23-3d	555.699
	23-19a	553.194
Old East (#19) Top of Media	23-19b	553.164
	23-19d	553.034
	23-32a	554.294
New East (#32) Top of Media	23-32b	552.924
	23-32c	553.134
	23-32d	554.314







# Appendix B BEPWTP Power Distribution One-Line Diagram



# Appendix C BEPWTP Construction Cost Estimates



PROJECT: CLIENT NAME: LOCATION: DESIGN STAGE: Conceptual ESTIMATOR: CHECKED BY:

**BE Paynes WTP Modifications** Louisville Water Co. Louisville, KY PROJECT MGR: Jerry Anderson/ LOU D. Jones / GNV

PROJECT No.: 346133.01.A1 CONTRACT No .: ESTIMATE No .: **BID DATE:** 9/25/06 - 7763.15 **CCI INDEX: REV No.:** Rev. 1 12/12/06 TEMPLATE No.: 4.1

#	FACILITIES %'s	01000 GENERAL	02000 SITEWORK	03000 CONCRETE	04000 MASONRY	05000 METALS	06000 WOOD	07000 MOISTURE	08000 DOORS	09000 FINISHES	10000 SPECIALS	11000 EQUIP	12000 FURNISH	13000 I &C	14000 CONVEY	15000 MECH	16000 ELECT	TOTAL
01	Coagulation Basin Weirs Opt 1A	3.00% \$9,947		\$98,778		\$207,806				\$15,025								\$331,556
02	Coagulation Basin Weirs Opt 2A	3.00% \$6,733				\$207,806				\$9,900								\$224,439
03	Coagulation Basin Weirs Opt 2B	3.00% \$9,947		\$98,778		\$207,806				\$15,025								\$331,556
04	Coagulation Basin Weirs Opt 3B	3.00% \$6,733				\$207,806				\$9,900								\$224,439
05	Softening Basin Weirs Opt 1A	3.00% \$9,947		\$98,778		\$207,806				\$15,025								\$331,556
06	Softening Basin Weirs Opt 2A	3.00% \$6,733				\$207,806				\$9,900								\$224,439
07	Softening Basin Weirs Opt 2B	3.00% \$9,947		\$98,778	1	\$207,806				\$15,025								\$331,556
08	Reaction Basin Weirs Opt 2A	3.00% \$7,993		\$127,385		\$104,279				\$26,776								\$266,433
09	Coag. Basin 2B & 3B Sluice Gates	3.00% \$1,307		\$6,662								\$35,612						\$43,582
10	Mixing Basin 2B & 3B Sluice	3.00% \$1,463		\$6,542								\$40,761						\$48,766
11	Floc Basin 2B & 3B Sluice Gates	3.00% \$1,463		\$6,542								\$40,761						\$48,766
12	Recarb Basin Infl Wall Opening	3.00% \$181		\$5,696						\$141		11						\$6,017
13	Recarb Basin Infl Wall Opening	3.00% \$224		\$7,085						\$163								\$7,473
		NEW STREET					CONTRACTOR OF											1 - Y - S - S - 1

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004

Report Date: 12/12/2006 11:06:45



 PROJECT:
 BE Paynes WTP Modifications

 CLIENT NAME:
 Louisville Water Co.

 LOCATION:
 Louisville, KY

 DESIGN STAGE:
 Conceptual

 PROJECT MGR:
 Jerry Anderson/ LOU

 ESTIMATOR:
 D. Jones / GNV

 CHECKED BY:
 Conceptual

 PROJECT No.:
 346133.01.A1

 CONTRACT No.:
 ESTIMATE No.:

 BID DATE:
 CCI INDEX:

 OCLINDEX:
 9/25/06 - 7763.15

 REV No.:
 Rev. 1 12/12/06

 TEMPLATE No.:
 4.1

	\$6,906
	\$59,584 \$111,335
	\$59,584 \$111,335
	\$64,659
	\$76,782
	\$128,630
	\$76,782
	\$128,630
	\$2,930,382
	\$6,908,782
	\$3,907,175
	\$3,907,175
	\$13,821,025

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004 Report Date: 12/12/2006 11:06:45

LWC 2978



 PROJECT:
 BE Paynes WTP Modifications

 CLIENT NAME:
 Louisville Water Co.

 LOCATION:
 Louisville, KY

 DESIGN STAGE:
 Conceptual

 PROJECT MGR:
 Jerry Anderson/ LOU

 ESTIMATOR:
 D. Jones / GNV

 CHECKED BY:
 Conceptual

 PROJECT No.:
 346133.01.A1

 CONTRACT No.:
 ESTIMATE No.:

 BID DATE:
 CI INDEX:

 OCI INDEX:
 9/25/06 - 7763.15

 REV No.:
 Rev. 1 12/12/06

 TEMPLATE No.:
 4.1

#	FACILITIES %'s	01000 GENERAL	02000 SITEWORK	03000 CONCRETE	04000 MASONRY	05000 METALS	06000 WOOD	07000 MOISTURE	08000 DOORS	09000 FINISHES	10000 SPECIALS	11000 EQUIP	12000 FURNISH	13000 I &C	14000 CONVEY	15000 MECH	16000 ELECT	TOTAL
27	Clear Well Expan. 2B & 3B	3.00% \$663,409		\$*,***,***														\$22,113,640
28	H S Pumps & Bldg 1A,2A&3A	3.00% \$76,182		\$670,320								\$947,617		5.00% \$126,971		\$464,385	10.00% \$253,942	\$2,539,416
29	H S Pumps & Bldg ,2B&3B	3.00% \$133,031		\$1,228,919								\$1,633,293		5.00% \$221,719		\$773,974	10.00% \$443,437	\$4,434,374
30	Coag Aid Polymer Metering Pum	3.00% s \$1,288		\$452												\$41,181		\$42,920
31	Coag Aid Polymer Storage	3.00% \$184		\$452			2					\$4,320				\$1,192		\$6,148
32	Ammonia Metering Pumps	3.00% \$1,343		\$452												\$42,969		\$44,763
33	Fluoride Metering Pumps	3.00% \$432		\$226	1											\$13,727		\$14,384
34	Carbon Dioxide Feed Panel	3.00% \$461										\$14,896						\$15,357
35	Convert CL Sys to Liquid	3.00% \$3,225		\$74,480								\$29,792						\$107,497
36	Ferric Chloride Metering Pumps	3.00% \$1,672		\$452												\$53,602		\$55,725
37	Ferric Chloride Storage	3.00% \$5,879		\$20,736								\$160,430				\$8,938		\$195,983
						c												
		1000					1 .				6.000	aless a			5			1.11

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004

LWC 2979



 PROJECT:
 BE Paynes WTP Modifications

 CLIENT NAME:
 Louisville Water Co.

 LOCATION:
 Louisville, KY

 DESIGN STAGE:
 Conceptual

 PROJECT MGR:
 Jerry Anderson/ LOU

 ESTIMATOR:
 D. Jones / GNV

 CHECKED BY:
 Conceptual

 PROJECT No.:
 346133.01.A1

 CONTRACT No.:
 ESTIMATE No.:

 BID DATE:
 COLINDEX:

 CCI INDEX:
 9/25/06 - 7763.15

 REV No.:
 Rev. 1 12/12/06

 TEMPLATE No.:
 4.1

#	FACILITIES %'s	01000 GENERAL	02000 SITEWORK	03000 CONCRETE	04000 MASONRY	05000 METALS	06000 WOOD	07000 MOISTURE	08000 DOORS	09000 FINISHES	10000 SPECIALS	11000 EQUIP	12000 FURNISH	13000 I &C	14000 CONVEY	15000 MECH	16000 ELECT	TOTAL
	TOTAL	\$1,925,110	\$0	\$37,949,562	\$0	\$1,558,923	\$0	\$0	\$0	\$140,193	\$0	\$16,172,342	\$0	\$348,690	\$0	\$1,399,966	\$816,547	\$64,170,382
	PERCENT OF TOTAL	3.00%	0.00%	59.14%	0.00%	2.43%	0.00%	0.00%	0.00%	0.22%	0.00%	25.20%	0.00%	0.54%	0.00%	2.18%	1.27%	

PROJECT PARAMETER PRICING											
Project Size	>	1.00	LS								
Cost Per LS	>	\$64,170,382 \$	S/LS								

Project Notes: The cost estimates have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final cost of the project will depend upon the actual labor and material costs, competitive market conditions, final project costs, implementation schedule and other variable factors. As a result, the final project costs will vary from the estimates presented herein. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific financial decisions to help ensure proper project evaluation and adequate funding. A contingency has been included for a provision of unforeseeable elements of cost, within the defined project scope.

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004

Report Date: 12/12/2006 11:06:45



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

#### MARKUPS SETS USED

MARKUP RESOURCE	DESCRIPTION	MARKUP COMPC	NENT ITEM	PERCENT	TO-MAT'L	TO-LABOR	TO-EQUIP	TO-INSTALL S/C
GC-MK	CH2M HILL Standard	d Markup Set	Success PWS Bra	anch assigned to: C	H2M Hill Nati	onal Average Te	emplate	
		1. Overhead		10.00%	Yes	Yes	Yes	Yes
		2. Profit		5.00%	Yes	Yes	Yes	Yes
		3. Mob/ Demob		3.00%	Yes	Yes	Yes	Yes
		4. Preformance	Bond	1.20%	Yes	Yes	Yes	Yes
		5. Insurance		1.50%	Yes	Yes	Yes	Yes
		6. Contingency		15.00%	Yes	Yes	Yes	Yes
		7. Escalation		6.00%	Yes	Yes	Yes	Yes

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004 Report Date: 12/12/2006 11:07:05 Page No. 1



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRE RATE	<u>MH</u>	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
01 Coagulation Basin Weirs Opt 1A CONCRETE									
050903400400 Drilling, layout,, 4" deep, 5/8" dia, conc, for Dowels 090601200700 Concrete, scarify skin 033100203050812 Concrete Cap Cast-in-Place, 4,000psi, 8" Wide x 6" Deep	Unit Costs> 2,574.00 Ea. Unit Costs> 1,149.72 S.F. Unit Costs> 22.36 CY	0.16 \$412 288.47 \$6,450	CARP 46.87 A1A 47.32 CONC06 43.23	0.167 430 0.036 41 24.738 553	7.83 \$20,149 1.70 \$1,959 1069.46 \$23,913	1.40 \$1,612 528.49 \$11,817		7.99 \$20,560 3.11 \$3,571 1886.42 \$42,180	11.90 <b>\$30,627</b> 4.63 <b>\$5,319</b> 2810.00 <b>\$62,832</b>
Subtotal Markups using GC-MK		\$6,862 \$3,360			\$46,020 \$22,532	\$13,429 \$6,575		\$66,311	\$32,466
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$10,222		1,024	\$68,552	\$20,004		\$66,311	\$98,778 <i>\$0.00</i>

01 Coagulation Basin Weirs Opt 1A METALS								
Demo Existing Weirs and Lintels	Unit Costs> 1,716.00 LF Unit Costs>	3.10	E3 61.41 E3	0.080 137 0.030	4.91 \$8,430 1.84	0.30 \$510 0.11	5.21 \$8,941 5.05	7.76 <b>\$13,318</b> 7.53
Instal New 4 x 4 x 3/8" Angle Stainless Steel FRP V Notch Weir	16,816.80 LB Unit Costs> 1,716.00 LF	\$52,132 22.00 \$37,752	61.41 E3 61.41	505 0.070 120	\$30,982 4.30 \$7,377	\$1,875 0.26 \$446	\$84,989 26.56 \$45,575	\$126,600 39.56 \$67,889
Subtotal Markups using GC-MK		\$89,884 \$44,007			\$46,789 \$22,908	\$2,832 \$1,386	\$139,505	\$68,301
TOTAL 05000 METALS 1.00 LS 1.00 LS		\$133,891		762	\$69,697	\$4,218	\$139,505	\$207,806 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



#### CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9 PROJECT: BE Paynes WTP Modifications DESIGN STRGE: Conceptual PROJECT No.: 346133.01.71 PROJECT No.: 346133.01.71

#### ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

SHRINIA 00000 LATOT 200. r 200. t		898'9\$		2'£\$ \$3'5	Þ	£0 <del>4</del> ,8≵	280'0L\$	\$0.00 \$15,025
Subtotal Markups using GC-MK		†9∠'1\$ †09'£\$		r,\$\$ ),r\$	6 7	\$4,299 \$2,105	Z80'01\$	866Ԡ\$
39206000150 Patching concrete at Weir , small area, epoxy grout Coating, Concrete Cap	Unit Costs> 1,716.00 LF Unit Costs> 2,865.72 SF	\$3,604 \$3,604	45'43 CEEI	11,2\$ 13	1	1.50 992,1	84,299 1.50 86,788 3.37	<b>\$6,403</b> 2.23 <b>\$8,622</b> 5.02
Af tqO stiew nissa notation Po RINISHES								
DESCRIPTION	מדץ טאוד	SJAIRETAM	RATE I	ROBAJ HM	ЕОЛЕМЕИТ	O/S TISNI	TOTAL TOBRIC	TOTAL W/MRKUPS

12/12/2006 11:07:31 Page No. 2 רעספוינא פו כאדאש אורד' ועכי או אוֹפֿאוָצ אפצפּויאפּק - Cobאינפֿאָן 200¢ CHSW אורד' ועכי



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRE RATE	MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
02 Coagulation Basin Weirs Opt 2A METALS									
Demo Existing Weirs and Lintels Instal New 4 x 4 x 3/8" Angle Stainless Steel	Unit Costs> 1,716.00 LF Unit Costs> 16,816.80 LB Unit Costs>	3.10 \$52,132 22.00	E3 61.41 E3 61.41 E3	0.080 137 0.030 505 0.070	4.91 \$8,430 1.84 \$30,982 4.30	0.30 \$510 0.11 \$1,875 0.26		5.21 \$8,941 5.05 \$84,989 26 56	7.76 <b>\$13,318</b> 7.53 <b>\$126,600</b> 39.56
FRP V Notch Weir	1,716.00 LF	\$37,752	61.41	120	\$7,377	\$446		\$45,575	\$67,889
Subtotal Markups using GC-MK		\$89,884 \$44,007			\$46,789 \$22,908	\$2,832 \$1,386		\$139,505	\$68,301
TOTAL 05000 METALS 1.00 LS 1.00 LS		\$133,891		762	\$69,697	\$4,218		\$139,505	\$207,806 <i>\$0.00</i>

02 Coagulation Basin Weirs Opt 2A FINISHES					- 1			
039206000150 Patching concrete at Weir , small area, epoxy grout Coating Concrete At Weir	Unit Costs> 1,716.00 LF Unit Costs> 572.00 SF	2.10 \$3,604	CEFI 42.43	0.030 51	1.27 \$2,184	1.50 \$858	3.37 \$5,788 1.50 \$858	5.02 <b>\$8,622</b> 2.23 <b>\$1,278</b>
Subtotal Markups using GC-MK		\$3,604 \$1,764			\$2,184 \$1,069	\$858 \$420	\$6,646	\$3,254
TOTAL 09000 FINISHES 1.00 LS 1.00 LS		\$5,368		51	\$3,254	\$1,278	\$6,646	\$9,900 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION	άτη πνιτ	MATERIALS	CRE RATE	MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
03 Coagulation Basin Weirs Opt 2B CONCRETE									
050903400400 Drilling, layout,, 4" deep, 5/8" dia, conc, for Dowels 090601200700 Concrete, scarify skin 033100203050812 Concrete Cap Cast-in-Place, 4,000psi, 8" Wide x 6" Deep	Unit Costs> 2,574.00 Ea. Unit Costs> 1,149.72 S.F. Unit Costs> 22.36 CY	0.16 \$412 288.47 \$6,450	CARP 46.87 A1A 47.32 CONC06 43.23	0.167 430 0.036 41 24.738 553	7.83 \$20,149 1.70 \$1,959 1069.46 \$23,913	1.40 \$1,612 528.49 \$11,817		7.99 \$20,560 3.11 \$3,571 1886.42 \$42,180	11.90 \$30,627 4.63 \$5,319 2810.00 \$62,832
Subtotal Markups using GC-MK		\$6,862 \$3,360			\$46,020 \$22,532	\$13,429 \$6,575		\$66,311	\$32,466
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$10,222		1,024	\$68,552	\$20,004		\$66,311	\$98,778 <i>\$0.00</i>

03 Coagulation Basin Weirs Opt 2B METALS								
Demo Existing Weirs and Lintels Instal New 4 x 4 x 3/8" Angle Stainless Steel	Unit Costs> 1,716.00 LF Unit Costs> 16,816.80 LB Unit Costs>	3.10 \$52,132 22.00	E3 61.41 E3 61.41 E3	0.080 137 0.030 505 0.070	4.91 \$8,430 1.84 \$30,982 4.30	0.30 \$510 0.11 \$1,875 0.26	5.21 \$8,941 5.05 \$84,989 26.56	7.76 <b>\$13,318</b> 7.53 <b>\$126,600</b> 39.56
FRP V Notch Weir	1,716.00 LF	\$37,752	61.41	120	\$7,377	\$446	\$45,575	\$67,889
Subtotal Markups using GC-MK		\$89,884 \$44,007			\$46,789 \$22,908	\$2,832 \$1,386	\$139,505	\$68,301
TOTAL 05000 METALS 1.00 LS 1.00 LS		\$133,891		762	\$69,697	\$4,218	\$139,505	\$207,806 \$0.00

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRE RATE	<u>w</u> мн	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
03 Coagulation Basin Weirs Opt 2B FINISHES									
039206000150 Patching concrete at Weir , small area, epoxy grout Coating, Concrete Cap	Unit Costs> 1,716.00 LF Unit Costs> 2,865.72 SF	2.10 \$3,604	CEFI 42.43	0.030 51	1.27 \$2,184		1.50 \$4,299	3.37 \$5,788 1.50 \$4,299	5.02 <b>\$8,622</b> 2.23 <b>\$6,403</b>
Subtotal Markups using GC-MK		\$3,604 \$1,764			\$2,184 \$1,069		\$4,299 \$2,105	\$10,087	\$4,938
TOTAL 09000 FINISHES 1.00 LS 1.00 LS		\$5,368		51	\$3,254		\$6,403	\$10,087	\$15,025 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



#### ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

81 00050 JATOT 81 00.1 81 00.1		168,5512		297	<b>∠69'69\$</b>	812,42	909'681\$	908'202\$
Subtotal Markups using GC-MK		200' <b>††\$</b> †88'68\$		11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	687,94 <b>2</b> 806,52 <b>8</b>	\$2,832 \$6,78	909'6E L\$	106,88\$
Semo Existing Weirs and Lintels nstal New 4 x 4 x 3/8" Angle Stainless Steel FRP V Notch Weir	Unit Costs> 1,716.00 LF Unit Costs> 16,816.80 LB Unit Costs>	3.10 \$52,132 \$22.00 \$37,752	61.41 63 63 63.41 63.41 63.41	130 0.030 130 0.030 0.030 0.030	10.4 00.4,8\$ 48.1 580,00\$ 775,7\$	0.30 \$510 71,0 75,13 75,13 6448 8448	5.21 \$8,941 5.05 \$84,989 26,56 \$45,575	<b>815,518</b> 815,518 832,62 832,62 832,62 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,73 845,753 845,755,755 845,755,755,755,755,755,755,755,755,755,7
<b>84 Coagulation Basin Weirs Opt 3B</b> METALS								
DESCRIPTION	QTY UNIT	<b>SJAIRETAM</b>	RATE CRE	нм	EABOR E	OUIPMENT INSTLS/C	DIRECT	M/MBKUPS

<i>00[.]0\$</i> 006'6\$	979'9\$	872,12	\$3,254	١g		\$2'368		SEHRINIF 00000 JATOT 2000 LS 2000 LS
\$3`524	979'9\$	\$928 \$858	\$5,184 \$630,18			497,1 <b>\$</b> 403,604		Subtotal Markups using GC-MK
5.02 \$ <b>8,622</b> 5.23	2.37 858\$ 9.50 3.37 3.37	02.1 828\$	72.1 481,2 <b>8</b>	060.0 13	45'43 CEEI	\$3,604 \$3,604	Unit Costs	39206000150 'atching concrete at Weir , small area, epoxy grout Coating Concrete At Weir
								04 Coagulation Basin Weirs Opt 3B

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004

12/12/2006 11:07:31 Page No. 6

00:00



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRE RATE	EW MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
05 Softening Basin Weirs Opt 1A CONCRETE									
050903400400 Drilling, layout,, 4" deep, 5/8" dia, conc, for Dowels 090601200700 Concrete, scarify skin 033100203050812 Concrete Cap Cast-in-Place, 4,000psi, 8" Wide x 6" Deep	Unit Costs> 2,574.00 Ea. Unit Costs> 1,149.72 S.F. Unit Costs> 22.36 CY	0.16 \$412 288.47 \$6,450	CARP 46.87 A1A 47.32 CONC06 43.23	0.167 430 0.036 41 24.738 553	7.83 \$20,149 1.70 \$1,959 1069.46 \$23,913	1.40 \$1,612 528.49 \$11,817		7.99 \$20,560 3.11 \$3,571 1886.42 \$42,180	11.90 \$30,627 4.63 \$5,319 2810.00 \$62,832
Subtotal Markups using GC-MK		\$6,862 \$3,360			\$46,020 \$22,532	\$13,429 \$6,575		\$66,311	\$32,466
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$10,222		1,024	\$68,552	\$20,004		\$66,311	\$98,778 <i>\$0.00</i>

05 Softening Basin Weirs Opt 1A METALS								
Demo Existing Weirs and Lintels Instal New 4 x 4 x 3/8" Angle Stainless Steel	Unit Costs> 1,716.00 LF Unit Costs> 16,816.80 LB Unit Costs>	3.10 \$52,132 22.00	E3 61.41 E3 61.41 E3	0.080 137 0.030 505 0.070	4.91 \$8,430 1.84 \$30,982 4.30	0.30 \$510 0.11 \$1,875 0.26	5.21 \$8,941 5.05 \$84,989 26,56	7.76 <b>\$13,318</b> 7.53 <b>\$126,600</b> 39.56
FRP V Notch Weir	1,716.00 LF	\$37,752	61.41	120	\$7,377	\$446	\$45,575	\$67,889
Subtotal Markups using GC-MK		\$89,884 \$44,007			\$46,789 \$22,908	\$2,832 \$1,386	\$139,505	\$68,301
TOTAL 05000 METALS 1.00 LS 1.00 LS		\$133,891		762	\$69,697	\$4,218	\$139,505	\$207,806 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRE RATE	<u>w</u> мн	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
05 Softening Basin Weirs Opt 1A FINISHES									
039206000150 Patching concrete at Weir , small area, epoxy grout Coating, Concrete Cap	Unit Costs> 1,716.00 LF Unit Costs> 2,865.72 SF	2.10 \$3,604	CEFI 42.43	0.030 51	1.27 \$2,184		1.50 \$4,299	3.37 \$5,788 1.50 \$4,299	5.02 <b>\$8,622</b> 2.23 <b>\$6,403</b>
Subtotal Markups using GC-MK		\$3,604 \$1,764			\$2,184 \$1,069		\$4,299 \$2,105	\$10,087	\$4,938
TOTAL 09000 FINISHES 1.00 LS 1.00 LS		\$5,368		51	\$3,254		\$6,403	\$10,087	\$15,025 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: BE Paynes WTP Modifications DESIGN STAGE: Conceptual PROJECT No.: 346133.01.A1

ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRE RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
06 Softening Basin Weirs Opt 2A METALS									
Demo Existing Weirs and Lintels	Unit Costs> 1,716.00 LF Unit Costs>	3.10 \$52 132	E3 61.41 E3 61.41	0.080 137 0.030 505	4.91 \$8,430 1.84 \$30,982	0.30 \$510 0.11 \$1.875		5.21 \$8,941 5.05 \$84,989	7.76 <b>\$13,318</b> 7.53 <b>\$126 600</b>
FRP V Notch Weir	Unit Costs> 1,716.00 LF	22.00 \$37,752	E3 61.41	0.070 120	4.30 \$7,377	0.26 \$446		26.56 \$45,575	39.56 <b>\$67,889</b>
Subtotal Markups using GC-MK		\$89,884 \$44,007	2		\$46,789 \$22,908	\$2,832 \$1,386		\$139,505	\$68,301
TOTAL 05000 METALS 1.00 LS 1.00 LS		\$133,891		762	\$69,697	\$4,218		\$139,505	\$207,806 <i>\$0.00</i>

06 Softening Basin Weirs Opt 2A FINISHES								
039206000150 Patching concrete at Weir , small area, epoxy grout Coating Concrete At Weir	Unit Costs> 1,716.00 LF Unit Costs> 572.00 SF	2.10 \$3,604	CEFI 42.43	0.030 51	1.27 \$2,184	1.50 \$858	3.37 \$5,788 1.50 \$858	5.02 <b>\$8,622</b> 2.23 <b>\$1,278</b>
Subtotal Markups using GC-MK		\$3,604 \$1,764			\$2,184 \$1,069	\$858 \$420	\$6,646	\$3,254
TOTAL 09000 FINISHES 1.00 LS 1.00 LS		\$5,368		51	\$3,254	\$1,278	\$6,646	\$9,900 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRE RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
07 Softening Basin Weirs Opt 2B CONCRETE									
050903400400 Drilling, layout,, 4" deep, 5/8" dia, conc, for Dowels 090601200700 Concrete, scarify skin 033100203050812 Concrete Cap Cast-in-Place, 4,000psi, 8" Wide x 6" Deep	Unit Costs> 2,574.00 Ea. Unit Costs> 1,149.72 S.F. Unit Costs> 22.36 CY	0.16 \$412 288.47 \$6,450	CARP 46.87 A1A 47.32 CONC06 43.23	0.167 430 0.036 41 24.738 553	7.83 \$20,149 1.70 \$1,959 1069.46 \$23,913	1.40 \$1,612 528.49 \$11,817		7.99 \$20,560 3.11 \$3,571 1886.42 \$42,180	11.90 \$30,627 4.63 \$5,319 2810.00 \$62,832
Subtotal Markups using GC-MK		\$6,862 \$3,360			\$46,020 \$22,532	\$13,429 \$6,575		\$66,311	\$32,466
TOTAL 03000 CONCRETE 1.00 LS <i>1.00 LS</i>		\$10,222		1,024	\$68,552	\$20,004		\$66,311	\$98,778 <i>\$0.00</i>

07 Softening Basin Weirs Opt 2B METALS	2							
Demo Existing Weirs and Lintels Instal New 4 x 4 x 3/8" Angle Stainless Steel	Unit Costs> 1,716.00 LF Unit Costs> 16,816.80 LB Unit Costs>	3.10 \$52,132 22.00	E3 61.41 E3 61.41 E3	0.080 137 0.030 505 0.070	4.91 \$8,430 1.84 \$30,982 4.30	0.30 \$510 0.11 \$1,875 0.26	5.21 \$8,941 5.05 \$84,989 26.56	7.76 \$13,318 7.53 \$126,600 39.56
FRP V Notch Weir	1,716.00 LF	\$37,752	61.41	120	\$7,377	\$446	\$45,575	\$67,889
Subtotal Markups using GC-MK		\$89,884 \$44,007			\$46,789 \$22,908	\$2,832 \$1,386	\$139,505	\$68,301
TOTAL 05000 METALS 1.00 LS <i>1.00 LS</i>		\$133,891		762	\$69,697	\$4,218	\$139,505	\$207,806 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION	ατή υνιτ	MATERIALS	CRE RATE	MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
07 Softening Basin Weirs Opt 2B FINISHES									
039206000150 Patching concrete at Weir , small area, epoxy grout Coating, Concrete Cap	Unit Costs> ,716.00 LF Unit Costs> 2,865.72 SF	2.10 \$3,604	CEFI 42.43	0.030 51	1.27 \$2,184		1.50 \$4,299	3.37 \$5,788 1.50 \$4,299	5.02 <b>\$8,622</b> 2.23 <b>\$6,403</b>
Subtotal Markups using GC-MK		\$3,604 \$1,764			\$2,184 \$1,069		\$4,299 \$2,105	\$10,087	\$4,938
TOTAL 09000 FINISHES 1.00 LS <i>1.00 LS</i>		\$5,368		51	\$3,254		\$6,403	\$10,087	\$15,025 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: BE Paynes WTP Modifications DESIGN STAGE: Conceptual PROJECT No.: 346133.01.A1

ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRI RATE	EW MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
08 Reaction Basin Weirs Opt 2A CONCRETE									
022203600820 Saw cutting, concrete walls, rod reinforcing, 2"inch of depth 022203101450	Unit Costs> 4,680.00 L.F. Unit Costs>	0.47 \$2,200	B89B 39.55 B9C	0.210 983 0.571	8.31 \$38,871 20.86	6.09 \$28,510 2.10		14.87 \$69,581 22.96	22.15 <b>\$103,648</b> 34.20
Cutout demo, conc walls, bar reinf 039206000150 Patching conc 1/4" thick, small area, epoxy grout	38.90 C.F. Unit Costs> 1,567.80 S.F.	6.20 \$9,720	36.53 CEFI 42.43	22 0.080 125	\$811 3.40 \$5,322	\$82		\$893 9.60 \$15,042	<b>\$1,330</b> 14.29 <b>\$22,407</b>
Subtotal Markups using GC-MK		\$11,920 \$5,836			\$45,004 \$22,034	\$28,592 \$13,999		\$85,517	\$41,869
TOTAL 03000 CONCRETE 1.00 LS <i>1.00 LS</i>		\$17,756		1,130	\$67,039	\$42,591		\$85,517	\$127,385 <i>\$0.00</i>

08 Reaction Basin Weirs Opt 2A METALS								
Demo Existing Weirs and Lintels Instal Existing 4 x 4 x 3/8" Angle Stainless Steel Install Existing V Notch Weir	Unit Costs> 2,340.00 LF Unit Costs> 22,932.00 LB Unit Costs> 2,340.00 LF	1.00 \$2,340	E3 61.41 E3 61.41 E3 61.41	0.080 187 0.030 688 0.070 164	4.91 \$11,496 1.84 \$42,248 4.30 \$10.059	0.30 \$696 0.11 \$2,557 0.26 \$609	5.21 \$12,192 1.95 \$44,805 5.56 \$13,008	7.76 \$18,161 2.91 \$66,741 8.28 \$19,376
Subtotal Markups using GC-MK		\$2,340 \$1,146			\$63,803 \$31,238	\$3,861 \$1,891	\$70,005	\$34,274
TOTAL 05000 METALS 1.00 LS <i>1.00 LS</i>		\$3,486		1,039	\$95,041	\$5,752	\$70,005	\$104,279 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	<u>CRE</u> RATE	<u>W</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
08 Reaction Basin Weirs Opt 2A FINISHES									
039206000150 Patching concrete at Weir , small area, epoxy grout Coating, Concrete	Unit Costs> 4,632.00 LF Unit Costs> 1,567.80 SF	2.10 \$9,727	CEFI 42.43	0.030 139	1.27 \$5,896		1.50 \$2,352	3.37 \$15,624 1.50 \$2,352	5.02 <b>\$23,273</b> 2.23 <b>\$3,503</b>
Subtotal Markups using GC-MK		\$9,727 \$4,762			\$5,896 \$2,887		\$2,352 \$1,151	\$17,975	\$8,801
TOTAL 09000 FINISHES 1.00 LS <i>1.00 LS</i>		\$14,490		139	\$8,783		\$3,503	\$17,975	\$26,776 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRE RATE	EW MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
09 Coag. Basin 2B & 3B Sluice Gates CONCRETE									
022203600820 Saw cutting, concrete walls, rod reinforcing, 2"inch of depth	Unit Costs> 120.00 L.F.	0.47 \$56	B89B 39.55	0.210 25	8.31 \$997	6.09 \$731		14.87 \$1,784	22.15 <b>\$2,658</b>
022203101450 Cutout demo, conc walls, bar reinf 039206000150 Patching conc 1/4" thick, small area, epoxy grout	Unit Costs> 87.75 C.F. Unit Costs> 70.20 S.F.	6.20 \$435	B9C 36.53 CEFI 42.43	0.571 50 0.080 6	20.86 \$1,830 3.40 \$238	2.10 \$184		22.96 \$2,015 9.60 \$674	34.20 <b>\$3,001</b> 14.29 <b>\$1,003</b>
Subtotal Markups using GC-MK		\$492 \$241			\$3,065 \$1,501	\$915 \$448		\$4,472	\$2,190
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$732		81	\$4,566	\$1,364		\$4,472	\$6,662 <i>\$0.00</i>

09 Coag. Basin 2B & 3B Sluice Gates EQUIPMENT	al a							
112852800106060 Sluice Gate, Cast-Iron, 304 SST Stem, 12" Wall Thimble, 60" x 60" w/Manual Oper	Unit Costs> 1.00 EA	18021.84 \$18,022	L5 59.09	85.200 85	5034.72 \$5,035	850.78 \$851	23907.34 \$23,907	\$35,612
Subtotal Markups using GC-MK		\$18,022 \$8,823			\$5,035 \$2,465	\$851 \$417	\$23,907	\$11,705
TOTAL 11000 EQUIPMENT 1.00 LS <i>1.00 LS</i>		\$26,845		85	\$7,500	\$1,267	\$23,907	\$35,612 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRE RATE	EW MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
10 Mixing Basin 2B & 3B Sluice Gates CONCRETE									
022203600820 Saw cutting, concrete walls, rod reinforcing, 2"inch of depth 022203101450 Cutout demo, conc walls, bar reinf 039206000150 Patching conc 1/4" thick, small area, epoxy grout	Unit Costs> 120.00 L.F. Unit Costs> 84.24 C.F. Unit Costs> 70.20 S.F.	0.47 \$56 6.20 \$435	B89B 39.55 B9C 36.53 CEFI 42.43	0.210 25 0.571 48 0.080 6	8.31 \$997 20.86 \$1,757 3.40 \$238	6.09 \$731 2.10 \$177		14.87 \$1,784 22.96 \$1,934 9.60 \$674	22.15 <b>\$2,658</b> 34.20 <b>\$2,881</b> 14.29 <b>\$1,003</b>
Subtotal Markups using GC-MK		\$492 \$24	2		\$2,992 \$1,465	\$908 \$445		\$4,392	\$2,150
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$732	2	79	\$4,457	\$1,353		\$4,392	\$6,542 <i>\$0.00</i>

10 Mixing Basin 2B & 3B Sluice Gates EQUIPMENT	4							
112852800106666 Sluice Gate, Cast-Iron, 304 SST Stern, 12" Wall Thimble, 48" x 72" w/Manual Oper	Unit Costs> 1.00 EA	20725.11 \$20,725	L5 59.09	96.100 96	5678.83 \$5,679	959.63 \$960	27363.57 \$27,364	\$40,761
Subtotal Markups using GC-MK		\$20,725 \$10,147			\$5,679 \$2,780	\$960 \$470	\$27,364	\$13,397
TOTAL 11000 EQUIPMENT 1.00 LS 1.00 LS		\$30,872		96	\$8,459	\$1,429	\$27,364	\$40,761 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRE RATE	EW MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
11 Floc Basin 2B & 3B Sluice Gates CONCRETE									
022203600820 Saw cutting, concrete walls, rod reinforcing, 2"inch of depth 022203101450 Cutout demo, conc walls, bar reinf 039206000150 Patching conc 1/4" thick, small area, epoxy grout	Unit Costs> 120.00 L.F. Unit Costs> 84.24 C.F. Unit Costs> 70.20 S.F.	0.47 \$56 6.20 \$435	B89B 39.55 B9C 36.53 CEFI 42.43	0.210 25 0.571 48 0.080 6	8.31 \$997 20.86 \$1,757 3.40 \$238	6.09 \$731 2.10 \$177		14.87 \$1,784 \$1,934 \$1,934 9.60 \$674	22.15 <b>\$2,658</b> 34.20 <b>\$2,881</b> 14.29 <b>\$1,003</b>
Subtotal Markups using GC-MK		\$492 \$241			\$2,992 \$1,465	\$908 \$445		\$4,392	\$2,150
TOTAL 03000 CONCRETE 1.00 LS <i>1.00 LS</i>		\$732		79	\$4,457	\$1,353		\$4,392	\$6,542 <i>\$0.00</i>

11 Floc Basin 2B & 3B Sluice Gates EQUIPMENT							
112852800106666         Unit Costs>           Sluice Gate, Cast-Iron, 304 SST Stem, 12" Wall         1.00 EA           Thimble, 48" x 72" w/Manual Oper         1.00 EA	20725.11 \$20,725	L5 59.09	96.100 96	5678.83 \$5,679	. 959.63 \$960	27363.57 \$27,364	\$40,761
Subtotal Markups using GC-MK	\$20,725 \$10,147			\$5,679 \$2,780	\$960 \$470	\$27,364	\$13,397
TOTAL 11000 EQUIPMENT 1.00 LS <i>1.00 LS</i>	\$30,872		96	\$8,459	\$1,429	\$27,364	\$40,761 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRE RATE	<u>ЕW</u> МН	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
12 Recarb Basin Infl Wall Opening 2A CONCRETE									
022203600820 Saw cutting, concrete walls, rod reinforcing, 2"inch of depth 022203101450 Cutout demo, conc walls, bar reinf 039206000150 Patching conc 1/4" thick, small area, epoxy grout	Unit Costs> 108.00 L.F. Unit Costs> 70.20 C.F. Unit Costs> 63.18 S.F.	0.47 \$51 6.20 \$392	B89B 39.55 B9C 36.53 CEFI 42.44	0.210 23 0.571 40 0.080 5	8.31 \$897 20.86 \$1,464 3.40 \$214	6.09 \$658 2.10 \$148		14.87 \$1,606 \$1,612 9.60 \$606	22.15 <b>\$2,392</b> 34.20 <b>\$2,401</b> 14.29 <b>\$903</b>
Subtotal Markups using GC-MK		\$44 \$21	2		\$2,576 \$1,261	\$805 \$394		\$3,824	\$1,872
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$65	9	68	\$3,837	\$1,200		\$3,824	\$5,696 <i>\$0.00</i>

Facility Notes: Three Wall Openings 60" x 48"

12 Recarb Basin Infl Wall Opening 2A FINISHES				
Unit Costs Coating, Concrete 63.18 SF	>	1.50 \$95	1.50 \$95	2.23 <b>\$141</b>
Subtotal Markups using GC-MK		\$95 \$46	\$95	\$46
TOTAL 09000 FINISHES 1.00 LS <i>1.00 LS</i>		\$141	\$95	\$141 <i>\$0.00</i>

Facility Notes: Three Wall Openings 60" x 48"

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004


ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALO	CRI	EW	14505	FOURDARENT		TOTAL	TOTAL
DESCRIPTION		MATERIALS	RAIE	MH	LABOR	EQUIPMENT	INSTLS/C	DIRECT	W/MRKUPS
13 Recarb Basin Infl Wall Opening 2B CONCRETE									
022203600820 Saw cutting, concrete walls, rod reinforcing, 2"inch of depth	Unit Costs> 126.00 L.F.	0.47 \$59	B89B 39.55	0.210 26	8.31 \$1,047	6.09 \$768		14.87 \$1,873	22.15 <b>\$2,791</b>
022203101450 Cutout demo, conc walls, bar reinf 039206000150 Patching conc 1/4" thick, small area, epoxy grout	Unit Costs> 94.77 C.F. Unit Costs> 73.71 S.F.	6.20 \$457	B9C 36.53 CEFI 42.43	0.571 54 0.080 6	20.86 \$1,977 3.40 \$250	2.10 \$199		22.96 \$2,176 9.60 \$707	34.20 <b>\$3,241</b> 14.29 <b>\$1,053</b>
Subtotal Markups using GC-MK		\$51 \$25	6 3		\$3,273 \$1,603	\$967 \$473		\$4,756	\$2,329
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$769	9	86	\$4,876	\$1,440		\$4,756	\$7,085 <i>\$0.00</i>

Facility Notes: Three Wall Openings 72" x 54"

13 Recarb Basin Infl Wall Opening 2B FINISHES				
Unit Coating, Concrete 73	Costs> .17 SF	1.50 \$110	1.50 <b>\$11</b> 0	2.23 <b>\$163</b>
Subtotal Markups using GC-MK		\$110 \$54	\$110	\$54
TOTAL 09000 FINISHES 1.00 LS <i>1.00 LS</i>		\$163	\$110	\$163 <i>\$0.00</i>

Facility Notes: Three Wall Openings 72" x 54"

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	RATE	EW MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
14 Recarb Basin Infl Wall Opening 2C CONCRETE									
022203600820 Saw cutting, concrete walls, rod reinforcing, 2"inch of depth 022203101450 Cutout demo, conc walls, bar reinf 039206000150 Patching conc 1/4" thick, small area, epoxy grout	Unit Costs> 120.00 L.F. Unit Costs> 84.24 C.F. Unit Costs> 70.20 S.F.	0.47 \$56 6.20 \$435	B89B 39.55 B9C 36.53 CEFI 42.43	0.210 25 0.571 48 0.080 6	8.31 \$997 20.86 \$1,757 3.40 \$238	6.09 \$731 2.10 \$177		14.87 \$1,784 22.96 \$1,934 9.60 \$674	22.15 <b>\$2,658</b> 34.20 <b>\$2,881</b> 14.29 <b>\$1,003</b>
Subtotal Markups using GC-MK		\$49 \$24	2		\$2,992 \$1,465	\$908 \$445		\$4,392	\$2,150
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$73	2	79	\$4,457	\$1,353		\$4,392	\$6,542 <i>\$0.00</i>

Facility Notes: Three Wall Openings 72" x 48"

14 Recarb Basin Infl Wall Opening 2C FINISHES				
Coating, Concrete	Unit Costs> 70.20 SF	1.50 \$105	1.50 \$105	2.23 <b>\$157</b>
Subtotal Markups using GC-MK		\$105	\$105	\$52
TOTAL 09000 FINISHES		\$157	\$105	\$157
1.00 LS				\$0.00

Facility Notes: Three Wall Openings 72" x 48"

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRE RATE	W MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
15 Coag Wtr Channel Covers 1A & 2B CONCRETE									
022203600820 Saw cutting, concrete, rod reinforcing, 2"inch of depth 039206000150 Patching conc 1/4" thick, small area, epoxy grout 022202505500 Site dml, conc7" to 24" thick, rod reinforced 022201304250 Concrete demo, add for disposal, to five miles	Unit Costs> 1,280.00 L.F. Unit Costs> 428.80 S.F. Unit Costs> 76.93 C.Y. Unit Costs> 76.93 C.Y.	0.47 \$602 6.20 \$2,659	B89B 39.55 CEFI 42.43 B38 39.89 B30 39.47	0.210 269 0.080 34 1.667 128 0.109 8	8.31 \$10,631 \$1,456 66.49 \$5,115 4.30 \$331	6.09 \$7,798 34.84 \$2,680 7.61 \$586		14.87 \$19,031 9.60 \$4,114 101.32 \$7,795 11.91 \$917	22.15 <b>\$28,348</b> 14.29 <b>\$6,128</b> 150.93 <b>\$11,611</b> 17.75 <b>\$1,365</b>
Subtotal Markups using GC-MK		\$3,260 \$1,596			\$17,533 \$8,584	\$11,063 \$5,417		\$31,856	\$15,597
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$4,856		440	\$26,117	\$16,480		\$31,856	\$47,453 <i>\$0.00</i>

Facility Notes: Three Wall Openings 72" x 48"

15 Coag Wtr Channel Covers 1A & 2B FINISHES				
Coating, Concrete	Unit Costs> 428.80 SF	1.50 \$643	1.50 \$643	2.23 <b>\$958</b>
Subtotal Markups using GC-MK		\$643 \$315	\$643	\$315
TOTAL 09000 FINISHES 1.00 LS 1.00 LS		\$958	\$643	\$958 <i>\$0.00</i>

Facility Notes: Three Wall Openings 72" x 48"

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CREW RATE MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
15 Coag Wtr Channel Covers 1A & 2B ELECTRICAL								
Demolish and Replace Conduit and Conductors	Unit Costs> 1.00 LS					40000.00 \$40,000	40000.00 \$40,000	\$59,584
Subtotal Markups using GC-MK						\$40,000 \$19,584	\$40,000	\$19,584
TOTAL 16000 ELECTRICAL 1.00 LS						\$59,584	\$40,000	\$59,584
1.00 LS				100				\$0.00

Facility Notes: Three Wall Openings 72" x 48"

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

	[		CRE	W				TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	MH	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
16 Mix Basin Channel Covers 1A & 2B CONCRETE									
022203600820 Saw cutting, concrete, rod reinforcing, 2"inch of depth	Unit Costs> 1,280.00 L.F.	0.47 \$602	B89B 39.55	0.210 269	8.31 \$10,631	6.09 \$7,798		14.87 \$19,031	22.15 <b>\$28,348</b>
039206000150 Patching conc 1/4" thick, small area, epoxy grout 022202505500 Site dml, conc7" to 24" thick, rod reinforced 022201304250	Unit Costs> 428.80 S.F. Unit Costs> 76.93 C.Y. Unit Costs>	6.20 \$2,659	CEFI 42.43 B38 39.89 B30	0.080 34 1.667 128 0.109	3.40 \$1,456 66.49 \$5,115 4.30	34.84 \$2,680 7.61		9.60 \$4,114 101.32 \$7,795 11.91	14.29 <b>\$6,128</b> 150.93 <b>\$11,611</b> 17 75
Concrete demo, add for disposal, to five miles	76.93 C.Y.		39.47	8	\$331	\$586		\$917	\$1,365
Subtotal Markups using GC-MK		\$3,260 \$1,596			\$17,533 \$8,584	\$11,063 \$5,417		\$31,856	\$15,597
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$4,856		440	\$26,117	\$16,480		\$31,856	\$47,453 <i>\$0.00</i>

Facility Notes: Three Wall Openings 72" x 48"

16 Mix Basin Channel Covers 1A & 2B FINISHES				
Coating, Concrete	Unit Costs> 428.80 SF	1.50 \$643	1.50 \$643	2.23 <b>\$958</b>
Subtotal Markups using GC-MK		\$643 \$315	\$643	\$315
TOTAL 09000 FINISHES 1.00 LS 1.00 LS		\$958	\$643	\$958 <i>\$0.00</i>

Facility Notes: Three Wall Openings 72" x 48"

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CREW RATE MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
16 Mix Basin Channel Covers 1A & 2B ELECTRICAL								
Demolish and Replace Conduit and Conductors	Unit Costs> 1.00 LS			de la constante de la constante Telepoche de la constante		40000.00 \$40,000	40000.00 \$40,000	\$59,584
Subtotal Markups using GC-MK						\$40,000 \$19,584	\$40,000	\$19,584
TOTAL 16000 ELECTRICAL						\$59,584	\$40,000	\$59,584
1.00 LS		Sec. 19						\$0.00

Facility Notes: Three Wall Openings 72" x 48"

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9 PROJECT: BE Paynes WTP Modifications

DESIGN STAGE: Conceptual PROJECT No.: 346133.01.A1

ESTIMATOR: D. Jones / GNV ESTIMATE No .: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRE RATE	MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
17 Raise Coag Wtr Channel Covers CONCRETE									
050903400400 Drilling, layout,, 4" deep, 5/8" dia, conc, for Dowels 090601200700 Concrete, scarify skin 033100203050812 Concrete Cap Cast-in-Place, 4,000psi, 14" Wide x 12" Deep	Unit Costs> 1,280.00 Ea. Unit Costs> 748.80 S.F. Unit Costs> 14.56 CY	0.16 \$205 288.53 \$4,201	CARP 46.87 A1A 47.32 CONC06 43.23	0.167 214 0.036 27 24.743 360	7.83 \$10,020 1.70 \$1,276 1069.66 \$15,574	1.40 \$1,050 528.59 \$7,696		7.99 \$10,224 3.11 \$2,326 1886.78 \$27,472	11.90 <b>\$15,230</b> 4.63 <b>\$3,464</b> 2810.55 <b>\$40,922</b>
Subtotal Markups using GC-MK		\$4,406 \$2,157			\$26,869 \$13,155	\$8,746 \$4,282		\$40,021	\$19,594
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$6,563		601	\$40,025	\$13,028		\$40,021	\$59,616 <i>\$0.00</i>

17 Raise Coag Wtr Channel Covers FINISHES				
Coating, Concrete Cap	Unit Costs> 1,388.80 SF	1.50 \$2,083	1.50 \$2,083	2.23 <b>\$3,103</b>
Subtotal Markups using GC-MK		\$2,083 \$1,020	\$2,083	\$1,020
TOTAL 09000 FINISHES 1.00 LS 1.00 LS		\$3,103	\$2,083	\$3,103 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION	QTY UNIT	MATERIALS	CRE BATE	W MH	LABOR	FOUIPMENT	INSTL S/C	TOTAL	
18 Raise Floc Basin Walls 1A & 3B CONCRETE									
050903400400 Drilling, layout,, 4" deep, 5/8" dia, conc, for Dowels 090601200700 Concrete, scarify skin 033100203050812 Concrete Cap Cast-in-Place, 4,000psi, 14" Wide x 12" Deep	Unit Costs> 1,520.00 Ea. Unit Costs> 889.20 S.F. Unit Costs> 17.29 CY	0.16 \$243 288.53 \$4,989	CARP 46.87 A1A 47.32 CONC06 43.23	0.167 254 0.036 32 24.743 428	7.83 \$11,898 1.70 \$1,515 1069.66 \$18,494	1.40 \$1,247 528.59 \$9,139		7.99 \$12,141 \$2,762 1886.78 \$32,622	11.90 <b>\$18,086</b> 4.63 <b>\$4,114</b> 2810.55 <b>\$48,594</b>
Subtotal Markups using GC-MK		\$5,232 \$2,562			\$31,907 \$15,622	\$10,386 \$5,085		\$47,525	\$23,268
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$7,793		714	\$47,529	\$15,471		\$47,525	\$70,794 <i>\$0.00</i>

18 Raise Floc Basin Walls 1A & 3B FINISHES				
Coating, Concrete Cap	Unit Costs> 1,649.20 SF	1.50 \$2,474	1.50 \$2,474	2.23 <b>\$3,685</b>
Subtotal Markups using GC-MK		\$2,474 \$1,211	\$2,474	\$1,211
TOTAL 09000 FINISHES 1.00 LS 1.00 LS		\$3,685	\$2,474	\$3,685 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004

## CH2MHILL Estimating Services

HILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

STAGE: Conceptual

ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

IPTION		MATERIALS	CRE RATE	W MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
Raise Floc Basin Walls 2B CONCRETE									
0-0400 U mayout,, 4" deep, 5/8" dia, conc, for 1,	Init Costs> 520.00 Ea.	0.16 \$243	CARP 46.87	0.167 254	7.83 \$11,898			7.99 \$12,141	11.90 <b>\$18,086</b>
Cap Cast-in-Place, 4,000psi, 14" Wide x	Init Costs> 889.20 S.F. Init Costs> 34.58 CY	288.53 \$9,977	A1A 47.32 CONC06 43.23	0.036 32 24.743 856	1.70 \$1,515 1069.66 \$36,989	1.40 \$1,247 528.59 \$18,279		3.11 \$2,762 1886.78 \$65,245	4.63 <b>\$4,114</b> 2810.55 <b>\$97,189</b>
using GC-MK		\$10,221 \$5,004			\$50,402 \$24,677	\$19,525 \$9,560		\$80,148	\$39,240
03000 CONCRETE 1.00 LS 1.00 LS		\$15,225		1,141	\$75,079	\$29,085		\$80,148	\$119,388 <i>\$0.00</i>

Raise Floc Basin Walls 2B FINISHES	26 10			
Concrete Cap 2	Unit Costs> 2,409.20 SF	1.50 \$3,614	1.50 \$3,614	2.23 <b>\$5,383</b>
using GC-MK		\$3,614 \$1,769	\$3,614	\$1,769
09000 FINISHES 1.00 LS 1.00 LS		\$5,383	\$3,614	\$5,383 <i>\$0.00</i>

L. Inc. wity of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRE RATE	<u>MH</u>	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
20 Raise Mixing Basin Walls 1A & 3B CONCRETE									
050903400400 Drilling, layout,, 4" deep, 5/8" dia, conc, for Dowels 090601200700 Concrete, scarify skin 033100203050812 Concrete Cap Cast-in-Place, 4,000psi, 14" Wide x 12" Deep	Unit Costs> 1,520.00 Ea. Unit Costs> 889.20 S.F. Unit Costs> 17.29 CY	0.16 \$243 288.53 \$4,989	CARP 46.87 A1A 47.32 CONC06 43.23	0.167 254 0.036 32 24.743 428	7.83 \$11,898 1.70 \$1,515 1069.66 \$18,494	1.40 \$1,247 528.59 \$9,139		7.99 \$12,141 \$2,762 1886.78 \$32,622	11.90 <b>\$18,086</b> <b>\$4,114</b> 2810.55 <b>\$48,594</b>
Subtotal Markups using GC-MK		\$5,232 \$2,562			\$31,907 \$15,622	\$10,386 \$5,085		\$47,525	\$23,268
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$7,793		714	\$47,529	\$15,471		\$47,525	\$70,794 <i>\$0.00</i>

20 Raise Mixing Basin Walls 1A & 3B FINISHES				
Coating, Concrete Cap 1	Jnit Costs> ,649.20 SF	1.50 \$2,474	1.50 \$2,474	2.23 <b>\$3,685</b>
Subtotal Markups using GC-MK		\$2,474 \$1,211	\$2,474	\$1,211
TOTAL 09000 FINISHES 1.00 LS 1.00 LS		\$3,685	\$2,474	\$3,685 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9 PROJECT: BE Paynes WTP Modifications

DESIGN STAGE: Conceptual

PROJECT No.: 346133.01.A1

ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRE RATE	EW MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
21 Raise Mixing Basin Walls 2B CONCRETE									
050903400400 Drilling, layout,, 4" deep, 5/8" dia, conc, for Dowels 090601200700 Concrete, scarify skin 033100203050812 Concrete Cap Cast-in-Place, 4,000psi, 14" Wide x 12" Deep	Unit Costs> 1,520.00 Ea. Unit Costs> 889.20 S.F. Unit Costs> 34.58 CY	0.16 \$243 288.53 \$9,977	CARP 46.87 A1A 47.32 CONC06 43.23	0.167 254 0.036 32 24.743 856	7.83 \$11,898 1.70 \$1,515 1069.66 \$36,989	1.40 \$1,247 528.59 \$18,279		7.99 \$12,141 3.11 \$2,762 1886.78 \$65,245	11.90 <b>\$18,086</b> 4.63 <b>\$4,114</b> 2810.55 <b>\$97,189</b>
Subtotal Markups using GC-MK		\$10,221 \$5,004			\$50,402 \$24,677	\$19,525 \$9,560		\$80,148	\$39,240
TOTAL 03000 CONCRETE		\$15,225		1,141	\$75,079	\$29,085		\$80,148	\$119,388
1.00 LS							le sur la compañía de		\$0.00

21 Raise Mixing Basin Walls 2B FINISHES				
Coating, Concrete Cap 2,409.20 SF	2	1.50 \$3,614	1.50 \$3,614	2.23 <b>\$5,383</b>
Subtotal Markups using GC-MK		\$3,614 \$1,769	\$3,614	\$1,769
TOTAL 09000 FINISHES 1.00 LS <i>1.00 LS</i>		\$5,383	\$3,614	\$5,383 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CREW RATE MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
22 Coag B Tube Settlers 1A,2A & 3A EQUIPMENT								
Instl 4' Deep ⊺ube Settlers with Integral Weir and Launders	Unit Costs> 20,832.00 SF					91.60 \$1,908,211	91.60 \$1,908,211	136.45 <b>\$2,842,470</b>
Subtotal Markups using GC-MK						\$1,908,211 \$934,259	\$1,908,211	\$934,259
TOTAL 11000 EQUIPMENT						\$2,842,470	\$1,908,211	\$2,842,470
1.00 LS								\$0.00

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CREV RATE	<u>/</u> мн	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
23 Soften B Tube Settlers 1A,2A&3A EQUIPMENT					10. 11. 11.				
Insti 4' Deep Tube Settlers with Integral Weir and 20 Launders	Unit Costs> 0,832.00 SF						91.60 \$1,908,211	91.60 \$1,908,211	136.45 <b>\$2,842,470</b>
Subtotal Markups using GC-MK							\$1,908,211 \$934,259	\$1,908,211	\$934,259
TOTAL 11000 EQUIPMENT 1.00 LS 1.00 LS							\$2,842,470	\$1,908,211	\$2,842,470 <i>\$0.00</i>

21 Soften B Tube Settlers 1A,2A&3A Coag Basins Tube Settlers 2B&3B EQUIPMENT			
Instl 4' Deep Tube Settlers with Integral Weir and 27,776.00 SF	91.60 \$2,544,282	91.60 \$2,544,282	136.45 <b>\$3,789,960</b>
Subtotal Markups using GC-MK	\$2,544,282 \$1,245,679	\$2,544,282	\$1,245,679
TOTAL 11000 EQUIPMENT 1.00 LS 1.00 LS	\$3,789,960	\$2,544,282	\$3,789,960 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION QTY UNIT	MATERIALS	CREW RATE M	H LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
24 Coag Basins Tube Settlers 2B&3B EQUIPMENT							
Instl 4' Deep Tube Settlers with Integral Weir and 27,776.00 SF					91.60 \$2,544,282	91.60 \$2,544,282	136.45 <b>\$3,789,960</b>
Subtotal Markups using GC-MK					\$2,544,282 \$1,245,679	\$2,544,282	\$1,245,679
TOTAL 11000 EQUIPMENT 1.00 LS					\$3,789,960	\$2,544,282	\$3,789,960
1.00 LS							\$0.00

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION QTY UNI	MATERIALS	CREW RATE MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
25 Softening B Tube Settlers 2B&3B EQUIPMENT							
Instl 4' Deep Tube Settlers with Integral Weir and 27,776.00 SF Launders	>				91.60 \$2,544,282	91.60 \$2,544,282	136.45 <b>\$3,789,960</b>
Subtotal Markups using GC-MK					\$2,544,282 \$1,245,679	\$2,544,282	\$1,245,679
TOTAL 11000 EQUIPMENT 1.00 LS			1		\$3,789,960	\$2,544,282	\$3,789,960
1.00 LS							\$0.00

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CREW RATE	IH LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
26 Clear Well Expan. 1A,2A &3A CONCRETE								
Clearwell Expansion 7.5 MG	Unit Costs> 7.50 MG					1200000.00 \$9,000,000	1200000.00 \$9,000,000	1787519.20 <b>\$13,406,394</b>
Subtotal Markups using GC-MK						\$9,000,000 \$4,406,394	\$9,000,000	\$4,406,394
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS						\$13,406,394	\$9,000,000	\$13,406,394 <i>\$0.00</i>

Facility Notes: Expand below grade clear well capacity by providing cast-in-place concrete, independent compartment interconnected to existing clear well using same elevations.

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION QTY		RATE	IH LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
27 Clear Well Expan. 2B & 3B CONCRETE							
Clearwell Expansion 12 MG Unit Cos	3> G				1200000.00 \$*,***,***	1200000.00 \$*,***,***	1787519.20 <b>\$21,450,230</b>
Subtotal Markups using GC-MK					\$14,400,000 \$7,050,230	\$14,400,000	\$7,050,230
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS					\$21,450,230	\$14,400,000	\$21,450,230 <i>\$0.00</i>

Facility Notes: Expand below grade clear well capacity by providing cast-in-place concrete, independent compartment interconnected to existing clear well using same elevations.

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION QT	TY UNIT	MATERIALS	CREV RATE	мн	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
28 H S Pumps & Bldg 1A,2A&3A CONCRETE									
New Building SpaceUnit C2,250.0	Costs> 00 SF						200.00 \$450,000	200.00 \$450,000	297.92 <b>\$670,320</b>
Subtotal Markups using GC-MK							\$450,000 \$220,320	\$450,000	\$220,320
TOTAL 03000 CONCRETE 1.00 LS							\$670,320	\$450,000	\$670,320
1.00 LS									\$0.00

28 H S Pumps & Bidg 1A,2A&3A EQUIPMENT							
11200101120017 Unit Costs> Vertical Turbine Pump, 15.2 MGD, 450TDH, 1500 HP 2.00 EA Notes: Max Efficiency 79, Motor Variable Speed, Suction 14", Discharge 12", Column 12", Can Dia 24", Min Base to Suction Bell 84" Johnson Pump Company Quote 3/2003	200000.00 \$400,000	EQUIP01 47.99	350.000 700	16796.12 \$33,592	13358.33 \$26,717	230154.45 \$460,309	342837.92 <b>\$685,676</b>
11200101120017 Unit Costs> Vertical Turbine Pump, 13.5 MGD, 450TDH, 1250 HP 1.00 EA Notes: Max Efficiency 79, Motor Variable Speed, Suction 14", Discharge 12", Column 12", Can Dia 24", Min Base to Suction Bell 84" Johnson Pump Company Quote 3/2003	150000.00 \$150,000	EQUIP01 47.99	300.000 300	14396.67 \$14,397	11450.00 \$11,450	175846.67 \$175,847	\$261,941
Subtotal Markups using GC-MK	\$550,000 \$269,280			\$47,989 \$23,495	\$38,167 \$18,686	\$636,156	\$311,461
TOTAL 11000 EQUIPMENT 1.00 LS 1.00 LS	\$819,280		1,000	\$71,484	\$56,853	\$636,156	\$947,617 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

			CRE	W				TOTAL	TOTAL
DESCRIPTION	QTY UNIT	MATERIALS	RATE	MH	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS
28 H S Pumps & Bidg 1A,2A&3A MECHANICAL									
151000210601020 Valves, Historical Costs, Check Valve V600, Flanged, 20" Dia	Unit Costs> 3.00 EA-	5328.00 \$15,984	PIPE06 52.53	13.660 41	717.50 \$2,153	72.85 \$219		6118.36 \$18,355	9113.90 <b>\$27,342</b>
151000210101020 Valves, Historical Costs, Gate Valve V100, Flanged, 20" Dia	Unit Costs> 3.00 EA	4680.00 \$14,040	PIPE06 52.53	21.150 63	1110.92 \$3,333	112.80 \$338		5903.72 \$17,711	8794.18 <b>\$26,383</b>
150600130406685 CLDI, Flanged, C110, Reducing Tee, 60" x 36" Dia 150600110301408 CLDI Pipe, Class 53, Flg x Flg,60" dia, 8' Spool Piece	Unit Costs> 3.00 EA Unit Costs> 3.00 EA	21567.74 \$64,703 13525.34 \$40,576	PIPE08 52.26 PIPE08 52.26	87.245 262 49.340 148	4559.35 \$13,678 2578.47 \$7,735	1607.05 \$4,821 908.84 \$2,727		27734.14 \$83,202 17012.65 \$51,038	41312.76 <b>\$123,938</b> 25342.03 <b>\$76,026</b>
150600110301419 CLDI Pipe, Class 53, Flg x Flg,60" dia, 19' Spool Piece	Unit Costs> 3.00 EA	18909.24 \$56,728	PIPE08 52.26	84.960 255	4439.94 \$13,320	1564.96 \$4,695		24914.14 \$74,742	37112.09 <b>\$111,336</b>
150600130409364 CLDI, Flanged, C110, Reducer, 36" x 20" Dia 150600110301262 CLDI Pipe, Class 53, Flg x Flg,20" dia, 2' Spool Piece	Unit Costs> 3.00 EA Unit Costs> 3.00 EA	4106.40 \$12,319 912.16 \$2,736	PIPE06 52.53 PIPE06 52.53	14.280 43 9.769 29	750.07 \$2,250 513.12 \$1,539	76.16 \$228 52.10 \$156		4932.63 \$14,798 1477.38 \$4,432	7347.65 <b>\$22,043</b> 2200.71 <b>\$6,602</b>
150600110301264 CLDI Pipe, Class 53, Flg x Flg,20" dia, 4' Spool Piece	Unit Costs> 3.00 EA	1050.66 \$3,152	PIPE06 52.53	12.048 36	632.83 \$1,898	64.26 \$193		1747.75 \$5,243	2603.45 <b>\$7,810</b>
150600110301270 CLDI Pipe, Class 53, Flg x Flg,20" dia, 10' Spool Piece	Unit Costs> 3.00 EA	1475.68 \$4,427	PIPE06 52.53	18.868 57	991.05 \$2,973	100.63 \$302		2567.37 \$7,702	3824.35 <b>\$11,473</b>
150600110301279 CLDI Pipe, Class 53, Flg x Flg,20" dia, 19' Spool Piece	Unit Costs> 3.00 EA	2165.35 \$6,496	PIPE06 52.53	29.470 88	1547.94 \$4,644	157.17 \$472		3870.46 \$11,611	5765.43 <b>\$17,296</b>
150600130402020 CLDI Fitting, Flanged, C110-SR, 45 Deg Elbow, 250psi, 20" Dia	Unit Costs> 3.00 EA	1263.39 \$3,790	PIPE06 52.53	16.650 50	874.55 \$2,624	88.80 \$266		2226.74 \$6,680	3316.95 <b>\$9,951</b>
150600130406206 CLDI, Flanged, C110, Reducing Tee, 20" x 6" Dia 150600130410020 CLDI Fitting, Flanged, C110, Blind Flange, 250psi, Flat, 20" Dia	Unit Costs> 3.00 EA Unit Costs> 3.00 EA	1872.79 \$5,618 969.83 \$2,910	PIPE06 52.53 PIPE05 52.86	19.150 57 8.330 25	1005.87 \$3,018 440.32 \$1,321	102.13 \$306 20.82 \$62		2980.79 \$8,942 1430.97 \$4,293	4440.18 <b>\$13,321</b> 2131.58 <b>\$6,395</b>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CREW RATE MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
28 H S Pumps & Bldg 1A,2A&3A MECHANICAL								
ARV Assembly	nit Costs> 3.00 EA					1000.00 \$3,000	1000.00 \$3,000	1489.60 <b>\$4,469</b>
Subtotal Markups using GC-MK		\$233,480 \$114,312		\$60,486 \$29,614	\$14,786 \$7,239	\$3,000 \$1,469	\$311,751	\$152,633
TOTAL 15000 MECHANICAL		\$347,791	1,155	\$90,100	\$22,025	\$4,469	\$311,751	\$464,385
1.00 LS								\$0.00

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CREW RATE	MH LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
29 H S Pumps & Bldg ,2B&3B CONCRETE				ta una contra da la contra da la La contra da la contr				
New Building Space	Unit Costs> 3,750.00 SF					220.00 \$825,000	220.00 \$825,000	327.71 <b>\$1,228,919</b>
Subtotal Markups using GC-MK						\$825,000 \$403,919	\$825,000	\$403,919
TOTAL 03000 CONCRETE						\$1,228,919	\$825,000	\$1,228,919
1.00 LS								\$0.00

29 H S Pumps & Bldg ,2B&3B EQUIPMENT							
11200101120017 Vertical Turbine Pump, 15.2 MGD, 450TDH, 1500 HP Notes: Max Efficiency 79, Motor Variable Speed, Suction 14", Discharge 12", Column 12", Can Dia 24", Min Base to Suction Bell 84" Johnson Pump Company Quote 3/2003	> 200000.00 \$800,000	EQUIP01 47.99	350.000 1,400	16796.12 \$67,184	13358.33 \$53,433	230154.45 \$920,618	342837.92 <b>\$1,371,352</b>
11200101120017       Unit Costs         Vertical Turbine Pump, 13.5 MGD, 450TDH, 1250 HP       1.00 EA         Notes:       Max Efficiency 79, Motor Variable Speed, Suction 14", Discharge 12", Column 12", Can Dia 24", Min Base to Suction Bell 84" Johnson Pump Company Quote 3/2003	> 150000.00 \$150,000	EQUIP01 47.99	300.000 300	14396.67 \$14,397	11450.00 \$11,450	175846.67 \$175,847	\$261,941
Subtotal Markups using GC-MK	\$950,000 \$465,119			\$81,581 \$39,942	\$64,883 \$31,767	\$1,096,464	\$536,828
TOTAL 11000 EQUIPMENT 1.00 LS 1.00 LS	\$1,415,119		1,700	\$121,523	\$96,650	\$1,096,464	\$1,633,293 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION	<b>ΩΤΥ UNIT</b>	MATERIALS	CRE RATE	EW MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
29 H S Pumps & Bldg ,2B&3B MECHANICAL									
151000210601020 Valves, Historical Costs, Check Valve V600, Flanged, 20" Dia	Unit Costs> 5.00 EA-	5328.00 \$26,640	PIPE06 52.53	13.660 68	717.50 \$3,588	72.85 \$364		6118.36 \$30,592	9113.90 <b>\$45,569</b>
151000210101020 Valves, Historical Costs, Gate Valve V100, Flanged, 20" Dia	Unit Costs> 5.00 EA	4680.00 \$23,400	PIPE06 52.53	21.150 106	1110.92 \$5,555	112.80 \$564		5903.72 \$29,519	8794.18 <b>\$43,971</b>
150600130406685 CLDI, Flanged, C110, Reducing Tee, 60" x 36" Dia 150600110301408 CLDI Pipe, Class 53, Flg x Flg,60" dia, 8' Spool	Unit Costs> 5.00 EA Unit Costs> 5.00 EA	21567.74 \$107,839 13525.34 \$67,627	PIPE08 52.26 PIPE08 52.26	87.245 436 49.340 247	4559.35 \$22,797 2578.47 \$12,892	1607.05 \$8,035 908.84 \$4,544		27734.14 \$138,671 17012.65 \$85,063	41312.76 <b>\$206,564</b> 25342.03 <b>\$126,710</b>
Piece 150600110301419 CLDI Pipe, Class 53, Flg x Flg,60" dia, 19' Spool Piece	Unit Costs> 5.00 EA	18909.24 \$94,546	PIPE08 52.26	84.960 425	4439.94 \$22,200	1564.96 \$7,825		24914.14 \$124,571	37112.09 <b>\$185,560</b>
150600130409364 CLDI, Flanged, C110, Reducer, 36" x 20" Dia 150600110301262 CLDI Pipe, Class 53, Flg x Flg,20" dia, 2' Spool	Unit Costs> 5.00 EA Unit Costs> 5.00 EA	4106.40 \$20,532 912.16 \$4,561	PIPE06 52.53 PIPE06 52.53	14.280 71 9.769 49	750.07 \$3,750 513.12 \$2,566	76.16 \$381 52.10 \$261		4932.63 \$24,663 1477.38 \$7,387	7347.65 <b>\$36,738</b> 2200.71 <b>\$11,004</b>
150600110301264 CLDI Pipe, Class 53, Flg x Flg,20" dia, 4' Spool Piece	Unit Costs> 5.00 EA	1050.66 \$5,253	PIPE06 52.53	12.048 60	632.83 \$3,164	64.26 \$321		1747.75 \$8,739	2603.45 <b>\$13,017</b>
150600110301270 CLDI Pipe, Class 53, Flg x Flg,20" dia, 10' Spool Piece	Unit Costs> 5.00 EA	1475.68 \$7,378	PIPE06 52.53	18.868 94	991.05 \$4,955	100.63 \$503		2567.36 \$12,837	3824.34 <b>\$19,122</b>
150600110301279 CLDI Pipe, Class 53, Flg x Flg,20" dia, 19' Spool Piece	Unit Costs> 5.00 EA	2165.35 \$10,827	PIPE06 52.53	29.470 147	1547.94 \$7,740	157.17 \$786		3870.46 \$19,352	5765.43 <b>\$28,827</b>
150600130402020 CLDI Fitting, Flanged, C110-SR, 45 Deg Elbow, 250psi, 20" Dia	Unit Costs> 5.00 EA	1263.39 \$6,317	PIPE06 52.53	16.650 83	874.55 \$4,373	88.80 \$444		2226.74 \$11,134	3316.95 <b>\$16,585</b>
150600130406206 CLDI, Flanged, C110, Reducing Tee, 20" x 6" Dia 150600130410020 CLDI Fitting, Flanged, C110, Blind Flange, 250psi, Flat, 20" Dia	Unit Costs> 5.00 EA Unit Costs> 5.00 EA	1872.79 \$9,364 969.83 \$4,849	PIPE06 52.53 PIPE05 52.86	19.150 96 8.330 42	1005.87 \$5,029 440.32 \$2,202	102.13 \$511 20.83 \$104		2980.79 \$14,904 1430.97 \$7,155	4440.18 <b>\$22,201</b> 2131.58 <b>\$10,658</b>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION QTY UNIT	MATERIALS	CREW RATE MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
29 H S Pumps & Bldg ,2B&3B MECHANICAL							
ARV Assembly 5.00 EA	>				1000.00 \$5,000	1000.00 \$5,000	1489.60 <b>\$7,448</b>
Subtotal Markups using GC-MK	\$389,133 \$190,519		\$100,810 \$49,356	\$24,643 \$12,065	\$5,000 \$2,448	\$519,586	\$254,389
TOTAL 15000 MECHANICAL 1.00 LS <i>1.00 LS</i>	\$579,652	1,925	\$150,166	\$36,708	\$7,448	\$519,586	\$773,974 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CREV RATE	<u>v</u> мн	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
30 Coag Aid Polymer Metering Pumps CONCRETE									
033100201010012 Concrete Metering Pump Fnds, Cast-in-Place, 4,000psi	Unit Costs> 1.00 CY	102.60 \$103	CONC01 43.26	3.724 4	161.11 \$161	39.47 \$39		303.18 \$303	\$452
Subtotal Markups using GC-MK		\$103 \$50			\$161 \$79	\$39 \$19		\$303	\$148
TOTAL 03000 CONCRETE		\$153		4	\$240	\$59		\$303	\$452
1.00 LS	L							in the second	\$0.00

30 Coag Aid Polymer Metering Pumps MECHANICAL								
112 Milton Roy Metering Pump, Type Simplex, 24 gal per hr	Unit Costs> 3.00 EA	5000.00 \$15,000	PPEQ1 30.75	7.000 21	215.24 \$646		5215.24 \$15,646	7768.62 <b>\$23,306</b>
Piping and Valves at Meterimng Pump	Unit Costs> 3.00 LS					4000.00 \$12,000	4000.00 \$12,000	5958.40 <b>\$17,875</b>
Subtotal Markups using GC-MK		\$15,000 \$7,344			\$646 \$316	\$12,000 \$5,875	\$27,646	\$13,535
TOTAL 15000 MECHANICAL 1.00 LS 1.00 LS		\$22,344		21	\$962	\$17,875	\$27,646	\$41,181 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9 PROJECT: BE Paynes WTP Modifications

**DESIGN STAGE: Conceptual** 

PROJECT No.: 346133.01.A1

ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION QTY UNIT	MATERIALS	CRE RATE	MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
31 Coag Aid Polymer Storage CONCRETE								
033100201010012 Unit Costs> Concrete TankFnd, Cast-in-Place, 4,000psi 1.00 CY	102.60 \$103	CONC01 43.26	3.724 4	161.11 \$161	39.47 \$39		303.18 \$303	\$452
Subtotal Markups using GC-MK	\$103 \$50			\$161 \$79	\$39 \$19		\$303	\$148
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS	\$153		4	\$240	\$59		\$303	\$452 \$0.00

31 Coag Aid Polymer Storage EQUIPMENT					
1,000 Gal Storage Tank	Unit Costs> 1.00 EA	2500.00 \$2,500	400.00 \$400	2900.00 \$2,900	\$4,320
Subtotal Markups using GC-MK		\$2,500 \$1,224	\$400 \$196	\$2,900	\$1,420
TOTAL 11000 EQUIPMENT 1.00 LS <i>1.00 LS</i>		\$3,724	\$596	\$2,900	\$4,320 <i>\$0.00</i>

31 Coag Aid Polymer Storage MECHANICAL					
Piping and Valves at Tank	Unit Costs> 1.00 LS		800.00 \$800	800.00 \$800	\$1,192
CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004				12/12/ Page I	2006 11:07:31 No. 42



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION	MATERIALS	CREW RATE	мн	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
31 Coag Aid Polymer Storage MECHANICAL								
Subtotal Markups using GC-MK	r					\$800 \$392	\$800	\$392
TOTAL 15000 MECHANICAL 1.00 LS 1.00 LS						\$1,192	\$800	\$1,192 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRE RATE	<u>w</u> MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
32 Ammonia Metering Pumps CONCRETE									
033100201010012 Concrete Metering Pump Fnds, Cast-in-Place, 4,000psi	Unit Costs> 1.00 CY	102.60 \$103	CONC01 43.26	3.724 4	161.11 \$161	39.47 \$39		303.18 \$303	\$452
Subtotal Markups using GC-MK		\$103 \$50			\$161 \$79	\$39 \$19		\$303	\$148
TOTAL 03000 CONCRETE 1.00 LS		\$153		4	\$240	\$59		\$303	\$452
1.00 LS		and a strange with		Contraction of the	and the state			Second	\$0.00

32 Ammonia Metering Pumps MECHANICAL									
112 Milton Roy Metering Pump, Type Simplex, 31 gal per hr	Unit Costs> 3.00 EA	5400.00 \$16,200	PPEQ1 30.75	7.000 21	215.24 \$646			5615.24 \$16,846	8364.46 <b>\$25,093</b>
Piping and Valves at Meterimng Pump	Unit Costs> 3.00 LS					4( \$	000.00 12,000	4000.00 \$12,000	5958.40 <b>\$17,875</b>
Subtotal Markups using GC-MK		\$16,200 \$7,932			\$646 \$316		\$12,000 \$5,875	\$28,846	\$14,123
TOTAL 15000 MECHANICAL 1.00 LS <i>1.00 LS</i>		\$24,132		21	\$962		\$17,875	\$28,846	\$42,969 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION	<b>QTY UNIT</b>	MATERIALS	CRE RATE	MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
33 Fluoride Metering Pumps CONCRETE									
033100201010012 Un Concrete Metering Pump Fnds, Cast-in-Place, 4,000psi	it Costs> 0.50 CY	102.60 \$51	CONC01 43.26	3.724 2	161.10 \$81	39.48 \$20		303.18 \$152	451.62 <b>\$226</b>
Subtotal Markups using GC-MK		\$51 \$25			\$81 \$39	\$20 \$10		\$152	\$74
TOTAL 03000 CONCRETE		\$76		2	\$120	\$29		\$152	\$226
1.00 LS									\$0.00

33 Fluoride Metering Pumps MECHANICAL							
112     Unit Costs       Metering Pump, Type Simplex     1.00 EA       Unit Costs     Unit Costs       Piping and Valves at Meterimng Pump     1.00 LS	> 5000.00 \$5,000	PPEQ1 30.75	7.000 7	215.24 \$215	4000.00 \$4,000	5215.24 \$5,215 4000.00 \$4,000	\$7,769 \$5,958
Subtotal Markups using GC-MK	\$5,000 \$2,448			\$215 \$105	\$4,000 \$1,958	\$9,215	\$4,512
TOTAL 15000 MECHANICAL 1.00 LS 1.00 LS	\$7,448		7	\$321	\$5,958	\$9,215	\$13,727 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CREW RATE MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
34 Carbon Dioxide Feed Panel EQUIPMENT								1 
Carbon Dioxide Feed Panel	Unit Costs> 1.00 EA					10000.00 \$10,000	10000.00 \$10,000	\$14,896
Subtotal Markups using GC-MK		*				\$10,000 \$4,896	\$10,000	\$4,896
TOTAL 11000 EQUIPMENT						\$14,896	\$10,000	\$14,896
1.00 LS								\$0.00

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CREW RATE	мн	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
35 Convert CL Sys to Liquid Extraction CONCRETE									
Expand Existing Chlorine Storage Room by 250 SF	Unit Costs> 250.00 SF						200.00 \$50,000	200.00 \$50,000	297.92 <b>\$74,480</b>
Subtotal Markups using GC-MK							\$50,000 \$24,480	\$50,000	\$24,480
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS							\$74,480	\$50,000	\$74,480 <i>\$0.00</i>

35 Convert CL Sys to Liquid Extraction EQUIPMENT					
2 Evporators @ 2,800 lbs/day ea, Replace three 1.00 Chorinators with 2,800 ppd	usts> LS		20000.00 \$20,000	20000.00 \$20,000	\$29,792
Subtotal Markups using GC-MK			\$20,000 \$9,792	\$20,000	\$9,792
TOTAL 11000 EQUIPMENT 1.00 LS <i>1.00 LS</i>			\$29,792	\$20,000	\$29,792 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION		MATERIALS	CRE RATE	<u>w</u> мн	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
36 Ferric Chloride Metering Pumps CONCRETE									
033100201010012 Concrete Metering Pump Fnds, Cast-in-Place, 4,000psi	Unit Costs> 1.00 CY	102.60 \$103	CONC01 43.26	3.724 4	161.11 \$161	39.47 \$39		303.18 \$303	\$452
Subtotal Markups using GC-MK		\$103 \$50			\$161 \$79	\$39 \$19		\$303	\$148
TOTAL 03000 CONCRETE 1.00 LS		\$153		4	\$240	\$59		\$303	\$452
1.00 LS	L								\$0.00

36 Ferric Chloride Metering Pumps MECHANICAL								
112 Milton Roy Metering Pump, Type Simplex, 24 gal per hr	Unit Costs> 2.00 EA	12500.00 \$25,000	PPEQ1 30.75	16.000 32	491.98 \$984		12991.98 \$25,984	19352.84 <b>\$38,706</b>
Piping and Valves at Meterimng Pump	Unit Costs> 2.00 LS					5000.00 \$10,000	5000.00 \$10,000	7448.00 <b>\$14,896</b>
Subtotal Markups using GC-MK		\$25,000 \$12,240			\$984 \$482	\$10,000 \$4,896	\$35,984	\$17,618
TOTAL 15000 MECHANICAL		\$37,240		32	\$1,466	\$14,896	\$35,984	\$53,602
1.00 LS								\$0.00

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9 PROJECT: BE Paynes WTP Modifications DESIGN STAGE: Conceptual

PROJECT No.: 346133.01.A1

ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION	άτη υνιτ	MATERIALS	CRE RATE	MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
37 Ferric Chloride Storage CONCRETE									
033100201010012 Concrete Tank Fnds, Cast-in-Place, 4,000psi 033100201010012 Concrete Slab on Grade, Cast-in-Place, 4,000psi, 12" Thick 033100202030012 Concrete Walls, Straigt, Cast-in-Place, 4,000psi,	Unit Costs> 6.00 CY Unit Costs> 26.67 CY Unit Costs> 9.00 CY	102.60 \$616 102.59 \$2,736 162.79 \$1.465	CONC01 43.26 CONC01 43.26 CONC04 43.10	3.724 22 3.724 99 5.554 50	161.11 \$967 161.09 \$4,296 239.37 \$2 154	39.48 \$237 39.47 \$1,053 44.08 \$397		303.19 \$1,819 303.15 \$8,085 446.24 \$4.016	451.63 \$2,710 451.57 \$12,043 664.72 \$5 983
12" Thick Subtotal	0.00 01	\$4,817			\$7,417	\$1,686		\$4,010	\$0,900
Markups using GC-MK TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$2,358 <b>\$7,175</b>		172	\$3,631 <b>\$11,049</b>	\$826 <b>\$2,512</b>		\$13,920	\$6,815 <b>\$20,736</b> <i>\$0.00</i>

37 Ferric Chloride Storage EQUIPMENT	*				
12,000 Gal Storage Tank	Unit Costs> 3.00 EA	32500.00 \$97,500	3400.00 \$10,200	35900.00 \$107,700	53476.62 <b>\$160,430</b>
Subtotal Markups using GC-MK		\$97,500 \$47,736	\$10,200 \$4,994	\$107,700	\$52,730
TOTAL 11000 EQUIPMENT 1.00 LS <i>1.00 LS</i>		\$145,236	\$15,194	\$107,700	\$160,430 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 12/12/06

DESCRIPTION QTY		RATE M	H LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
37 Ferric Chloride Storage MECHANICAL			2. 				
Piping and Valves at Tank Unit Cos 3.00	s> S				2000.00 \$6,000	2000.00 \$6,000	2979.20 <b>\$8,938</b>
Subtotal Markups using GC-MK					\$6,000 \$2,938	\$6,000	\$2,938
TOTAL 15000 MECHANICAL					\$8,938	\$6,000	\$8,938
1.00 LS							\$0.00

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004

## Appendix D CHWTP Construction Cost Estimates



## ESTIMATE MATRIX SUMMARY Ver 3.9

 PROJECT:
 Cresent Hill WTP Modifications

 CLIENT NAME:
 Louisville Water Co.

 LOCATION:
 Louisville, KY

 DESIGN STAGE:
 Conceptual

 PROJECT MGR:
 Jerry Anderson/LOU

 ESTIMATOR:
 D. Jones / GNV

 CHECKED BY:
 Checked By:

 PROJECT No.:
 346133.01.A!

 CONTRACT No.:
 ESTIMATE No.:

 BID DATE:
 CCI INDEX:

 CCI INDEX:
 10/9/06 - 7882.53

 REV No.:
 Rev. 1 10/9/06

 TEMPLATE No.:
 4.1

#	FACILITIES %'s	01000 GENERAL	02000 SITEWORK	03000 CONCRETE	04000 MASONRY	05000 METALS	06000 WOOD	07000 MOISTURE	08000 DOORS	09000 FINISHES	10000 SPECIALS	11000 EQUIP	12000 FURNISH	13000 I &C	14000 CONVEY	15000 MECH	16000 ELECT	TOTAL
01	Softening Basin Weirs Opt 1	3.00% \$18,169				\$560,932				\$26,522								\$605,622
02	Softening Basin Weirs Opt 2A	3.00% \$25,955		\$239,494		\$560,932				\$38,798								\$865,179
03	Softening Basin Weirs Opt 2B	3.00% \$25,955		\$239,494		\$560,932				\$38,798								\$865,179
04	Reaction Basin Weirs Opt 1 & 2B	3.00% \$10,590				\$326,847				\$15,571								\$353,008
05	Reaction Basin Weirs Opt 2A	3.00% \$22,864		\$139,556		\$560.932	e.			\$38,798								\$762,149
06	Softening Basin 1 Sluice Gate	3.00% \$1,446		\$2,221								\$44,544						\$48,211
07	Slow Mix Basin Conc Cap	3.00% \$7,657	and the second second	\$234,930						\$12,638								\$255,225
08	Low Pressure 60" PCCP	3.00% \$109,306	\$3,524,690	\$9,533														\$3,643,529
09	60" CLDI Pipe	3.00% \$11,930	\$385,728															\$397,657
10	Basins Tube Settlers Opt1	3.00% \$205,127										\$6,632,430						\$6,837,557
11	Basins Tube Settlers Opt 2A & 2B	3.00% \$234,431										\$7,579,920		4				\$7,814,351
12	Clear Well Expan. Opt 1	3.00% \$386,989		\$*,***,***														\$12,899,623
13	Clear Well Expan. Opt 2A & 2B	3.00% \$608,125		\$*,***,***														\$20,270,836
			1.1															

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004 Report Date: 10/10/2006 16:56:28



## ESTIMATE MATRIX SUMMARY Ver 3.9

 PROJECT:
 Cresent Hill WTP Modifications

 CLIENT NAME:
 Louisville Water Co.

 LOCATION:
 Louisville, KY

 DESIGN STAGE:
 Conceptual

 PROJECT MGR:
 Jerry Anderson/ LOU

 ESTIMATOR:
 D. Jones / GNV

 CHECKED BY:
 Checked By:

 PROJECT No.:
 346133.01.A!

 CONTRACT No.:
 ESTIMATE No.:

 BID DATE:
 COLINDEX:

 CCI INDEX:
 10/9/06 - 7882.53

 REV No.:
 Rev. 1 10/9/06

 TEMPLATE No.:
 4.1

#	FACILITIES %'s	01000 GENERAL	02000 SITEWORK	03000 CONCRETE	04000 MASONRY	05000 METALS	06000 WOOD	07000 MOISTURE	08000 DOORS	09000 FINISHES	10000 SPECIALS	11000 EQUIP	12000 FURNISH	13000 I &C	14000 CONVEY	15000 MECH	16000 ELECT	TOTAL
14	High Service Pump Opt 1	3.00% \$100,353	\$819,945	\$248,763	\$214,502							\$835,731		5.00% \$167,255		\$557,137	12.00% \$401,412	\$3,345,098
Γ	TOTAL	\$1,768,897	\$4,730,363	\$33,289,337	\$214,502	\$2,570,574	\$0	\$0	\$0	\$171,123	\$0	\$15,092,626	\$0	\$167,255	\$0	\$557,137	\$401,412	\$58,963,22
Γ	PERCENT OF TOTAL	3.00%	8.02%	56.46%	0.36%	4.36%	0.00%	0.00%	0.00%	0.29%	0.00%	25.60%	0.00%	0.28%	0.00%	0.94%	0.68%	

PROJECT	PARAMETER PF	RICING	
Project Size	>	1.00	LS
Cost Per LS	>	\$58,963,225	S/LS

Project Notes: The cost estimates have been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final cost of the project will depend upon the actual labor and material costs, competitive market conditions, final project costs, implementation schedule and other variable factors. As a result, the final project costs will vary from the estimates presented herein. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific financial decisions to help ensure proper project evaluation and adequate funding. A contingency has been included for a provision of unforeseeable elements of cost, within the defined project scope.

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004 Report Date: 10/10/2006 16:56:28


ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

## MARKUPS SETS USED

RESOURCE	DESCRIPTION	MARKUP COMPO	NENT ITEM	PERCENT	TO-MAT'L	TO-LABOR	TO-EQUIP	TO-INSTALL S/C
GC-MK	CH2M HILL Standard	Markup Set	Success PWS Bra	unch assigned to: C	H2M Hill Nati	onal Average Te	emplate	
		1. Overhead		10.00%	Yes	Yes	Yes	Yes
		2. Profit		5.00%	Yes	Yes	Yes	Yes
		3. Mob/ Demob		3.00%	Yes	Yes	Yes	Yes
		4. Preformance I	Bond	1.20%	Yes	Yes	Yes	Yes
		5. Insurance		1.50%	Yes	Yes	Yes	Yes
		6. Contingency		15.00%	Yes	Yes	Yes	Yes
		7. Escalation		6.00%	Yes	Yes	Yes	Yes

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004 Report Date: 10/10/2006 16:56:55 Page No. 1



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		MATERIALS	CRI RATE	EW MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
01 Softening Basin Weirs Opt 1 METALS									
Demo Existing Weirs and Lintels	Unit Costs> 4,632.00 LF Unit Costs>	3.10 \$140.720	E3 61.41 E3 61.41	0.080 371 0.030	4.91 \$22,756 1.84 \$83,630	0.30 \$1,377 0.11 \$5.061		5.21 \$24,134 5.05 \$229.411	7.76 <b>\$35,949</b> 7.53 \$341 731
FRP V Notch Weir	Unit Costs> 4,632.00 LF	22.00 \$101,904	E3 61.41	0.070 324	4.30 \$19,912	0.26 \$1,205		\$223,411 26.56 \$123,021	39.56 \$183,252
Subtotal Markups using GC-MK		\$242,624 \$118,789			\$126,298 \$61,835	\$7,644 \$3,742		\$376,566	\$184,366
TOTAL 05000 METALS 1.00 LS 1.00 LS		\$361,413		2,057	\$188,133	\$11,386		\$376,566	\$560,932 <i>\$0.00</i>

01 Softening Basin Weirs Opt 1 FINISHES								
039206000150 Patching concrete at Weir , small area, epoxy grout Coating Concrete At Weir	Unit Costs> 4,632.00 LF Unit Costs> 1,454.00 SF	2.10 \$9,727	CEFI 42.43	0.030 139	1.27 \$5,896	1.50 \$2,181	3.37 \$15,624 1.50 \$2,181	5.02 <b>\$23,273</b> 2.23 <b>\$3,249</b>
Subtotal Markups using GC-MK		\$9,727 \$4,762			\$5,896 \$2,887	\$2,181 \$1,068	\$17,805	\$8,717
TOTAL 09000 FINISHES 1.00 LS 1.00 LS		\$14,490		139	\$8,783	\$3,249	\$17,805	\$26,522 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9 PROJECT: Cresent Hill WTP Modifications DESIGN STAGE: Conceptual

PROJECT No.: 346133.01.A!

ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		MATERIALS	CRE RATE	EW MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
02 Softening Basin Weirs Opt 2A CONCRETE									
050903400400 Drilling, layout,, 4" deep, 5/8" dia, conc, for Dowels 090601200700 Concrete, scarify skin 033100203050812 Concrete Cap Cast-in-Place, 4,000psi, 8" Wide x 5" Deep	Unit Costs> 6,948.00 Ea. Unit Costs> 3,103.44 S.F. Unit Costs> 50.69 CY	0.16 \$1,112 288.53 \$14,625	CARP 46.87 A1A 47.32 CONC06 43.23	0.167 1,160 0.036 112 24.743 1,254	7.83 \$54,387 1.70 \$5,287 1069.65 \$54,221	1.40 \$4,352 528.58 \$26,794		7.99 \$55,499 3.11 \$9,639 1886.76 \$95,640	11.90 <b>\$82,671</b> 4.63 <b>\$14,358</b> 2810.52 <b>\$142,465</b>
Subtotal Markups using GC-MK		\$15,737 \$7,705			\$113,895 \$55,763	\$31,146 \$15,249		\$160,778	\$78,717
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$23,442		2,526	\$169,658	\$46,394		\$160,778	\$239,494 <i>\$0.00</i>

02 Softening Basin Weirs Opt 2A METALS									
Demo Existing Weirs and Lintels Instal New 4 x 4 x 3/8" Angle Stainless Steel	Unit Costs> 4,632.00 LF Unit Costs> 45,393.60 LB	3.10 \$140,720	E3 61.41 E3 61.41	0.080 371 0.030 1,362	4.91 \$22,756 1.84 \$83,630	0.30 \$1,377 0.11 \$5,061		5.21 \$24,134 5.05 \$229,411	7.76 <b>\$35,949</b> 7.53 <b>\$341,731</b>
FRP V Notch Weir	4,632.00 LF	22.00 \$101,904	E3 61.41	0.070 324	4.30 \$19,912	0.26	6	26.56 \$123,021	39.56 <b>\$183,252</b>
Subtotal Markups using GC-MK		\$242,624 \$118,789			\$126,298 \$61,835	\$7,644 \$3,742		\$376,566	\$184,366
TOTAL 05000 METALS 1.00 LS 1.00 LS		\$361,413		2,057	\$188,133	\$11,386		\$376,566	\$560,932 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Cresent Hill WTP Modifications DESIGN STAGE: Conceptual PROJECT No.: 346133.01.A!

ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		MATERIALS	CRE RATE	мн	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
02 Softening Basin Weirs Opt 2A FINISHES									
039206000150 Patching concrete at Weir , small area, epoxy grout Coating, Concrete Cap	Unit Costs> 4,632.00 LF Unit Costs> 6,948.00 SF	2.10 \$9,727	CEFI 42.43	0.030 139	1.27 \$5,896		1.50 \$10,422	3.37 \$15,624 1.50 \$10,422	5.02 <b>\$23,273</b> 2.23 <b>\$15,525</b>
Subtotal Markups using GC-MK		\$9,727 \$4,762			\$5,896 \$2,887		\$10,422 \$5,103	\$26,046	\$12,752
TOTAL 09000 FINISHES 1.00 LS <i>1.00 LS</i>		\$14,490		139	\$8,783		\$15,525	\$26,046	\$38,798 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Cresent Hill WTP Modifications DESIGN STAGE: Conceptual PROJECT No.: 346133.01.A!

ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		MATERIALS	<u>CRE</u> RATE	EW MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
03 Softening Basin Weirs Opt 2B CONCRETE									
050903400400 Drilling, Iayout,, 4" deep, 5/8" dia, conc, for Dowels 090601200700 Concrete, scarify skin 033100203050812 Concrete Cap Cast-in-Place, 4,000psi, 8" Wide x 5" Deep	Unit Costs> 6,948.00 Ea. Unit Costs> 3,103.44 S.F. Unit Costs> 50.69 CY	0.16 \$1,112 288.53 \$14,625	CARP 46.87 A1A 47.32 CONC06 43.23	0.167 1,160 0.036 112 24.743 1,254	7.83 \$54,387 1.70 \$5,287 1069.65 \$54,221	1.40 \$4,352 528.58 \$26,794		7.99 \$55,499 3.11 \$9,639 1886.76 \$95,640	11.90 \$82,671 4.63 \$14,358 2810.52 \$142,465
Subtotal Markups using GC-MK		\$15,737 \$7,705			\$113,895 \$55,763	\$31,146 \$15,249		\$160,778	\$78,717
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$23,442		2,526	\$169,658	\$46,394		\$160,778	\$239,494 \$0.00

03 Softening Basin Weirs Opt 2B METALS	*							
Demo Existing Weirs and Lintels Instal New 4 x 4 x 3/8" Angle Stainless Steel	Unit Costs> 4,632.00 LF Unit Costs> 45,393.60 LB Unit Costs>	3.10 \$140,720 22.00	E3 61.41 E3 61.41 E3	0.080 371 0.030 1,362 0.070	4.91 \$22,756 1.84 \$83,630 4.30	0.30 \$1,377 0.11 \$5,061 0.26	5.21 \$24,134 5.05 \$229,411 26.56	7.76 <b>\$35,949</b> 7.53 <b>\$341,731</b> 39.56
FRP V Notch Weir	4,632.00 LF	\$101,904	61.41	324	\$19,912	\$1,205	\$123,021	\$183,252
Subtotal Markups using GC-MK		\$242,624 \$118,789			\$126,298 \$61,835	\$7,644 \$3,742	\$376,566	\$184,366
TOTAL 05000 METALS		\$361,413		2,057	\$188,133	\$11,386	\$376,566	\$560,932
1.00 LS <i>1.00 LS</i>								\$0.00

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		MATERIALS	CRE RATE	<u>w</u> мн	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
03 Softening Basin Weirs Opt 2B FINISHES				1994 - 1994 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997					
039206000150 Patching concrete at Weir , small area, epoxy grout Coating, Concrete Cap	Unit Costs> 4,632.00 LF Unit Costs> 6,948.00 SF	2.10 \$9,727	CEFI 42.43	0.030 139	1.27 \$5,896		1.50 \$10,422	3.37 \$15,624 1.50 \$10,422	5.02 <b>\$23,273</b> 2.23 <b>\$15,525</b>
Subtotal Markups using GC-MK		\$9,727 \$4,762			\$5,896 \$2,887		\$10,422 \$5,103	\$26,046	\$12,752
TOTAL 09000 FINISHES 1.00 LS <i>1.00 LS</i>		\$14,490	Ga	139	\$8,783		\$15,525	\$26,046	\$38,798 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		MATERIALS	CRI RATE	EW MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
04 Reaction Basin Weirs Opt 1 & 2B METALS									
Demo Existing Weirs and Lintels	Unit Costs> 2,699.00 LF Unit Costs>	3.10	E3 61.41 E3	0.080 216 0.030	4.91 \$13,260 1.84	0.30 \$803 0.11		5.21 \$14,062 5.05	7.76 <b>\$20,947</b> 7.53
Instal New 4 x 4 x 3/8" Angle Stainless Steel FRP V Notch Weir	26,450.20 LB Unit Costs> 2,699.00 LF	\$81,996 22.00 \$59,378	61.41 E3 61.41	794 0.070 189	\$48,730 4.30 \$11,602	\$2,949 0.26 \$702		\$133,675 26.56 \$71,683	\$1 <b>99,121</b> 39.56 \$1 <b>06,778</b>
Subtotal Markups using GC-MK		\$141,374 \$69,216			\$73,592 \$36,031	\$4,454 \$2,181		\$219,419	\$107,428
TOTAL 05000 METALS 1.00 LS <i>1.00 LS</i>		\$210,590		1,198	\$109,622	\$6,635		\$219,419	\$326,847 <i>\$0.00</i>

04 Reaction Basin Weirs Opt 1 & 2B FINISHES								
039206000150 Patching concrete at Weir , small area, epoxy grout Coating Concrete At Weir	Unit Costs> 2,699.00 LF Unit Costs> 899.67 SF	2.10 \$5,668	CEFI 42.43	0.030 81	1.27 \$3,436	1.50 \$1,350	3.37 \$9,104 1.50 \$1,350	5.02 <b>\$13,561</b> 2.23 <b>\$2,010</b>
Subtotal Markups using GC-MK		\$5,668 \$2,775			\$3,436 \$1,682	\$1,350 \$661	\$10,453	\$5,118
TOTAL 09000 FINISHES 1.00 LS 1.00 LS		\$8,443		81	\$5,118	\$2,010	\$10,453	\$15,571 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		MATERIALS	CRE RATE	MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
05 Reaction Basin Weirs Opt 2A CONCRETE									
050903400400 Drilling, Iayout,, 4" deep, 5/8" dia, conc, for Dowels 090601200700 Concrete, scarify skin 033100203050812 Concrete Cap Cast-in-Place, 4,000psi, 8" Wide x 5" Deep	Unit Costs> 4,049.00 Ea. Unit Costs> 1,808.33 S.F. Unit Costs> 29.54 CY	0.16 \$648 288.49 \$8,522	CARP 46.87 A1A 47.32 CONC06 43.23	0.167 676 0.036 65 24.740 731	7.83 \$31,695 1.70 \$3,081 1069.52 \$31,594	1.40 \$2,536 528.52 \$15,612		7.99 \$32,342 3.11 \$5,616 1886.53 \$55,728	11.90 \$48,177 4.63 \$8,366 2810.17 \$83,013
Subtotal Markups using GC-MK		\$9,170 \$4,490			\$66,369 \$32,494	\$18,148 \$8,885		\$93,687	\$45,869
TOTAL 03000 CONCRETE 1.00 LS <i>1.00 LS</i>		\$13,659		1,472	\$98,863	\$27,033		\$93,687	\$139,556 <i>\$0.00</i>

05 Reaction Basin Weirs Opt 2A METALS								
Demo Existing Weirs and Lintels Instal New 4 x 4 x 3/8" Angle Stainless Steel FBP V Notch Weir	Unit Costs> 4,632.00 LF Unit Costs> 45,393.60 LB Unit Costs> 4.632.00 LF	3.10 \$140,720 22.00 \$101.904	E3 61.41 E3 61.41 E3 61.41	0.080 371 0.030 1,362 0.070 324	4.91 \$22,756 1.84 \$83,630 4.30 \$19,912	0.30 \$1,377 0.11 \$5,061 0.26 \$1,205	5.21 \$24,134 5.05 \$229,411 26.56 \$120,01	7.76 \$35,949 7.53 \$341,731 39.56 \$192,252
Subtotal Markups using CC MK	7,002.00 LI	\$242,624	01.41	524	\$126,298	\$7,644	\$123,021	\$103,232
		\$118,789			\$61,835	\$3,742		\$184,366
1.00 LS 1.00 LS		\$361,413		2,057	\$188,133	\$11,386	\$376,566	\$560,932 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		MATERIALS	CRE RATE	MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
05 Reaction Basin Weirs Opt 2A FINISHES									
039206000150 Patching concrete at Weir , small area, epoxy grout Coating, Concrete Cap	Unit Costs> 4,632.00 LF Unit Costs> 6,948.00 SF	2.10 \$9,727	CEFI 42.43	0.030 139	1.27 \$5,896		1.50 \$10,422	3.37 \$15,624 1.50 \$10,422	5.02 <b>\$23,273</b> 2.23 <b>\$15,525</b>
Subtotal Markups using GC-MK		\$9,727 \$4,762			\$5,896 \$2,887		\$10,422 \$5,103	\$26,046	\$12,752
TOTAL 09000 FINISHES 1.00 LS 1.00 LS		\$14,490		139	\$8,783		\$15,525	\$26,046	\$38,798 <i>\$0.00</i>

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		MATERIALS	CRE RATE	MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
06 Softening Basin 1 Sluice Gate CONCRETE									
022203600820 Saw cutting, concrete walls, rod reinforcing, 2"inch of depth	Unit Costs> 40.00 L.F.	0.47 \$19	B89B 39.55	0.210 8	8.31 \$332	6.09 \$244		14.87 \$595	22.15 <b>\$886</b>
022203101450 Cutout demo, conc walls, bar reinf 039206000150 Patching conc 1/4" thick, small area, epoxy grout	Unit Costs> 29.25 C.F. Unit Costs> 23.40 S.F.	6.20 \$145	B9C 36.53 CEFI 42.43	0.571 17 0.080 2	20.86 \$610 3.39 \$79	2.10 \$61		22.96 \$672 9.59 \$225	34.20 <b>\$1,000</b> 14.29 <b>\$334</b>
Subtotal Markups using GC-MK		\$164 \$80			\$1,022 \$500	\$305 \$149		\$1,491	\$730
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$244		27	\$1,522	\$455		\$1,491	\$2,221 <i>\$0.00</i>

06 Softening Basin 1 Sluice Gate EQUIPMENT								
112852800206060 Sluice Gate, Cast-Iron, 304 SST Stem, 12" Wall Thimble, 60" x 60" w/Elect Oper	Unit Costs> 1.00 EA	23299.66 \$23,300	L5 59.09	95.600 96	5649.29 \$5,649	954.63 \$955	29903.58 \$29,904	\$44,544
Subtotal Markups using GC-MK		\$23,300 \$11,407			\$5,649 \$2,766	\$955 \$467	\$29,904	\$14,641
TOTAL 11000 EQUIPMENT 1.00 LS <i>1.00 LS</i>		\$34,707		96	\$8,415	\$1,422	\$29,904	\$44,544 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Cresent Hill WTP Modifications DESIGN STAGE: Conceptual PROJECT No.: 346133.01.A!

ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		MATERIALS	CRE RATE	MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
07 Slow Mix Basin Conc Cap CONCRETE									
050903400400 Drilling, layout,, 4" deep, 5/8" dia, conc, for Dowels 090601200700 Concrete, scarify skin 033100203050812 Concrete Cap Cast-in-Place, 4,000psi, 8" Wide x 5" Deep	Unit Costs> 5,656.00 Ea. Unit Costs> 2,828.00 S.F. Unit Costs> 54.99 CY	0.16 \$905 288.52 \$15,866	CARP 46.87 A1A 47.32 CONC06 43.23	0.167 945 0.036 102 24.742 1,361	7.83 \$44,274 1.70 \$4,818 1069.64 \$58,820	1.40 \$3,965 528.58 \$29,066		7.99 \$45,179 3.11 \$8,783 1886.74 \$103,752	11.90 <b>\$67,298</b> 4.63 <b>\$13,083</b> 2810.49 <b>\$154,549</b>
Subtotal Markups using GC-MK		\$16,771 \$8,211			\$107,911 \$52,833	\$33,032 \$16,172		\$157,714	\$77,217
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$24,982		2,407	\$160,744	\$49,204		\$157,714	\$234,930 <i>\$0.00</i>

07 Slow Mix Basin Conc Cap FINISHES				
Unit Costs> oating, Concrete Cap 5,656.00 SF	it Costs> 56.00 SF	1.50 \$8,484	1.50 \$8,484	2.23 <b>\$12,638</b>
Subtotal Markups using GC-MK		\$8,484 \$4,154	\$8,484	\$4,154
TOTAL 09000 FINISHES 1.00 LS 1.00 LS		\$12,638	\$8,484	\$12,638 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		MATERIALS	CREW RATE		BOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
08 Low Pressure 60" PCCP SITEWORK									
60" Dia PCCP lincluding Restraints, Excavation and Backfill	Unit Costs> 2,150.00 LF						1000.00 \$2,150,000	1000.00 \$2,150,000	1489.60 <b>\$3,202,639</b>
60" Dia PCCP 90 Deg Ell lincluding Restraints, Excavation and Backfill	Unit Costs> 7.00 EA						11600.00 \$81,200	11600.00 \$81,200	17279.35 <b>\$120,955</b>
60" Gate Valve with Actuator Including, Vault, Excavation and Backfill	Unit Costs> 1.00 EA			- Halan - Jacobian - Ja			135000.00 \$135,000	135000.00 \$135,000	\$201,096
Subtotal Markups using GC-MK							\$2,366,200 \$1,158,490	\$2,366,200	\$1,158,490
TOTAL 02000 SITEWORK 1.00 LS							\$3,524,690	\$2,366,200	\$3,524,690
1.00 LS									\$0.00

08 Low Pressure 60" PCCP CONCRETE				
Wall Penetrations for 60" Dia Pipe Including 4.00 EA Patching		1600.00 \$6,400	1600.00 \$6,400	2383.36 <b>\$9,533</b>
Subtotal Markups using GC-MK		\$6,400 \$3,133	\$6,400	\$3,133
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$9,533	\$6,400	\$9,533 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	EW MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
0200060" CLDI Pipe SITEWORK 60" RJDIP Water Main									
023154162200 Drilling & blasting, trenches, up to 1500 CY 023154626130 Excavating. Up to 20' Deep 3-1/2 CY Hyd Cat 345 Excavator Clay, Hard Pan, Rock	Unit Costs> 192.62 CY Unit Costs> 192.62 CY	5.92 \$1,140	B47 39.28 HVCW3 41.66	1.091 210 0.123 24	42.86 \$8,255 5.12 \$987	49.37 \$9,510 15.55 \$2,996		98.15 \$18,905 20.68 \$3,983	146.20 <b>\$28,161</b> 30.80 <b>\$5,932</b>
022405001000A Sock Dewatering 023159013010210 Bedding, crushed stone 3/4" to 1/2" 023152005000 Backfill, select granular fill, shovel, 1 CY bucket 023159003020 Backfill tranch. Common Earth EE leader, whi mtd, 1	Unit Costs> 30.00 LF Unit Costs> 22.01 CY Unit Costs> 27.22 CY Unit Costs> 142.20 CY	17.10 \$376 4.51 \$123	B101 42.34 B6 38.62 B6 38.62 B10R	0.126 4 1.735 38 1.736 47 0.067	5.34 \$160 67.02 \$1,475 67.02 \$1,824 2.83 \$1,824	0.87 \$26 12.54 \$276 12.54 \$341 1.08		6.21 \$186 96.66 \$2,127 84.07 \$2,288 3.91	9.25 <b>\$277</b> 143.98 <b>\$3,169</b> 125.23 <b>\$3,409</b> 5.82
CY bit, min haul 023153108200 Compaction, rammer tamper, 8" lifts, 2 passes Notes: Assume 15% Swell 022257303080 Haul Excess, loading & trucking, machine load truck	Unit Costs> 192.62 CY Unit Costs> 56.62 CY		42.33 A1F 36.13 B17 38.08	0.041 8 0.145 8	\$405 1.49 \$288 5.54 \$314	\$155 0.19 \$37 2.51 \$142		\$560 1.68 \$324 8.05 \$456	\$835 2.51 \$483 11.99 \$679
1506001105003060 CLDI, Lok-Ring Joint Pipe, CL-250, 60" Dia 150000000000060 Bag Pipe & Tape Joints 020807900500 Underground Marking Tape, Detectable 023705501000 Erosion control, silt fence, polypropylene, 3' high, ideal conditions	Unit Costs> 30.00 LF Unit Costs> 30.00 LF Unit Costs> 0.30 CLF Unit Costs> 30.00 LF	381.07 \$11,432 6.20 \$2 0.29 \$9	PIPE04 50.42 LABR 17.65 CLAB 36.13	0.602 18 0.057 0.010	30.33 \$910 1.00 0.36 \$11	13.83 \$415	11.25 \$338	425.24 \$12,757 11.25 \$338 7.20 \$2 0.65 \$20	633.43 \$19,003 16.76 \$503 10.74 \$3 0.97 \$29
Subtotal Markups using GC-MK		\$13,082 \$6,405			\$14,629 \$7,162	\$13,898 \$6,805	\$338 \$165	\$41,947	\$20,537
1.00 LS		\$19,487		367	\$21,792	\$20,703	\$503	\$41,947	\$62,484 <i>\$0.00</i>

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9 PROJECT: Cresent Hill WTP Modifications

DESIGN STAGE: Conceptual PROJECT No.: 346133.01.A! ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION QTY UN		CRI RATE	EW MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
0200060" CLDI Pipe SITEWORK 60" Fittings and Gate Valve								
150600130610401   Unit Costs-     60" CLDI 90 Deg Elbow, Lock Ring Joint, C153   3.00 EA     150600140102060   Unit Costs-     60" Meg-a-Lug Series 1100 Kit For DIP   6.00 EA     Unit Costs-   6.00 EA	> 13733.78 \$41,201 > 4289.92 \$25,739	PIPE04 50.42 PIPE01 50.29	18.998 57 31.600 190	957.83 \$2,873 1589.26 \$9,536	436.76 \$1,310 223.37 \$1,340	135000.00	15128.37 \$45,385 6102.55 \$36,615 135000.00	22535.21 <b>\$67,606</b> 9090.36 <b>\$54,542</b>
60" Gate Valve with Actuator Including, Vault, 1.00 EA Excavation and Backfill						\$135,000	\$135,000	\$201,096
Subtotal Markups using GC-MK	\$66,941 \$32,774			\$12,409 \$6,075	\$2,651 \$1,298	\$135,000 \$66,096	\$217,000	\$106,243
TOTAL 60" Fittings and Gate Valve 1.00 LS	\$99,715		247	\$18,485	\$3,948	\$201,096	\$217,000	\$323,244 \$0.00

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		CREW RATE MH LABOR	EQUIPMENT	S/C DIRECT	TOTAL W/MRKUPS
10 Basins Tube Settlers Opt1 EQUIPMENT					
Instl 4' Deep Tube Settlers with Integral Weir and 48,608 Launders	Costs> 8.00 SF		\$4,45	91.60 91.60 2,493 \$4,452,493	136.45 <b>\$6,632,430</b>
Subtotal Markups using GC-MK			\$4, \$2,	452,493 \$4,452,493 179,938	\$2,179,938
TOTAL 11000 EQUIPMENT			\$6,0	\$32,430 \$4,452,493	\$6,632,430
1.00 LS					\$0.00

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		MATERIALS	CREW RATE	<u>/</u> мн	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
11 Basins Tube Settlers Opt 2A & 2B EQUIPMENT									
Instl 4' Deep Tube Settlers with Integral Weir and Launders	Unit Costs> 55,552.00 SF	at.					91.60 \$5,088,563	91.60 \$5,088,563	136.45 <b>\$7,579,920</b>
Subtotal Markups using GC-MK							\$5,088,563 \$2,491,357	\$5,088,563	\$2,491,357
TOTAL 11000 EQUIPMENT 1.00 LS							\$7,579,920	\$5,088,563	\$7,579,920
1.00 LS	L			1.50					\$0.00

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9 PROJECT: Cresent Hill WTP Modifications DESIGN STAGE: Conceptual

PROJECT No.: 346133.01.A!

ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION QTY UN	T MATERIALS	CREW RATE MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
12 Clear Well Expan. Opt 1 CONCRETE							
Clearwell Expansion 7 MG 7.00 MG	->				1200000.00 \$8,400,000	1200000.00 \$8,400,000	1787519.20 <b>\$12,512,634</b>
Subtotal Markups using GC-MK	-				\$8,400,000 \$4,112,634	\$8,400,000	\$4,112,634
TOTAL 03000 CONCRETE					\$12,512,634	\$8,400,000	\$12,512,634
1.00 LS							\$0.00

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		MATERIALS	CREW RATE MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
13 Clear Well Expan. Opt 2A & 2B CONCRETE								
Clearwell Expansion 11 MG	Unit Costs> 11.00 MG					1200000.00 \$*,***,***	1200000.00 \$*,***,***	1787519.20 <b>\$19,662,711</b>
Subtotal Markups using GC-MK						\$13,200,000 \$6,462,711	\$13,200,000	\$6,462,711
TOTAL 03000 CONCRETE						\$19,662,711	\$13,200,000	\$19,662,711
1.00 LS								\$0.00

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION QTY UNIT	MATERIALS	CREW RATE MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
02000High Service Pump Opt 1 SITEWORK Building Sitework							
Excavation, Backfill, Dewatering and Sitework 1.00 LS	>				42000.00 \$42,000	42000.00 \$42,000	\$62,563
Subtotal Markups using GC-MK					\$42,000 \$20,563	\$42,000	\$20,563
TOTAL Building Sitework 1.00 LS					\$62,563	\$42,000	\$62,563 <i>\$0.00</i>

02000High Service Pump Opt 1 SITEWORK 42" DIP Class 150 RJ Water Main								
023159000610	Unit Costs>		B12B	0.027	1.13	1.22	2.34	3.49
Excavate trench, common earth 6'-10' deep, 1-1/2 CY hyd backhoe	201.00 CY		41.66	5	\$226	\$245	\$471	\$702
022405001000A	Unit Costs>		B101	0.126	5.34	0.87	6.21	9.25
Dewatering Sock Method	120.00 LF		42.34	15	\$640	\$105	\$745	\$1,110
023159013010210	Unit Costs>	17.05	B6	0.160	6.18	1.16	24.39	36.33
Bedding, crushed stone 3/4" to 1/2"	59.80 CY	\$1,020	38.61	10	\$370	\$69	\$1,458	\$2,172
023152005000	Unit Costs>	4.50	B12N	0.017	0.74	1.00	6.24	9.30
Backfill, select granular fill, shovel, 1 CY bucket	70.58 CY	\$318	43.68	1	\$52	\$70	\$440	\$656
023159003020	Unit Costs>		B10R	0.030	1.27	0.49	1.76	2.62
Backfill trench, Common Earth, FE loader, whl mtd, 1 CY bkt, min haul	49.60 CY		42.35	1	\$63	\$24	\$87	\$130
023153007500	Unit Costs>		B10A	0.029	1.23	0.30	1.53	2.28
Compaction, walk behind, vibrating roller 24" W, 6" lifts, 2 passes 15% Swell	207.00 CY		42.34	6	\$254	\$63	\$317	\$472
022257303080	Unit Costs>		B17	0.800	30.46	13.82	44.28	65.97
Haul Excess, loading & trucking, machine load truck	151.20 CY		38.08	121	\$4,606	\$2,090	\$6,696	\$9,974
150600110103042	Unit Costs>	115.99	PIPE03	0.315	15.77	5.69	137.45	204.75
CLDI Pipe, Fastite Joint, Pressure Class 250, 42" dia	120.00 LF	\$13,919	50.07	38	\$1,893	\$683	\$16,494	\$24,570

#### CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9 PROJECT: Cresent Hill WTP Modifications DESIGN STAGE: Conceptual

PROJECT No.: 346133.01.A!

ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		MATERIALS	CR RATE	EW MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
02000 High Service Pump Opt 1 SITEWORK 42" DIP Class 150 RJ Water Main									
150600120202042 DIP, Lok-Ring Bell Adder Per LF, 42" dia 1599001000022 Bag Pipe & Tape Joints 020807900500 Underground Marking Tape, Detectable 023705501000 Erosion control, silt fence, polypropylene, 3' high,	Unit Costs> 120.00 LF Unit Costs> 120.00 LF Unit Costs> 1.20 CLF Unit Costs> 120.00 LF	54.32 \$6,519 9.25 \$11 0.29 \$35	PIPE03 50.07 LABR 17.94 CLAB 36.13	0.158 19 0.057 0.010 1	7.91 \$949 1.02 \$1 0.36 \$43	2.86 \$343	2.25 \$270	65.09 \$7,811 2.25 \$270 10.27 \$12 0.65 \$78	96.96 \$11,635 3.35 \$402 15.29 \$18 0.97 \$116
150600130205048 Tie-In To Existing 48" Main	Unit Costs> 2.00 LS	75029.96 \$150,060	PIPE04 50.42	200.000 400	10083.46 \$20,167	4598.00 \$9,196		89711.42 \$179,423	133634.07 <b>\$267,268</b>
Subtotal Markups using GC-MK		\$171,881 \$84,153			\$29,265 \$14,328	\$12,888 \$6,310	\$270 \$132	\$214,304	\$104,923
TOTAL 13 42" DIP Class 150 RJ Water Main 1.00 LS		\$256,033		618	\$43,593	\$19,198	\$402	\$214,304	\$319,226 <i>\$0.00</i>

Division Notes: DIP Corisive Soil Placement with Dewatering Required.

Unit Costs>		HVCW3	0.049	2.04	6.21	8.25	12.29
4,034.42 CY		41.66	198	\$8,251	\$25,043	\$33,293	\$49,594
Unit Costs>	4.00	B10I	0.100	4.23	0.69	8.93	13.30
260.00 LF Hdr	\$1,040	42.34	26	\$1,101	\$180	\$2,321	\$3,458
Unit Costs>	17.05	B6	0.425	16.43	3.07	36.55	54.45
122.63 CY	\$2,091	38.62	52	\$2,015	\$377	\$4,482	\$6,677
Unit Costs>	4.50	B6	0.342	13.20	2.47	20.17	30.04
151.67 CY	\$683	38.62	52	\$2,002	\$374	\$3,059	\$4,556
	Unit Costs> 4,034.42 CY Unit Costs> 260.00 LF Hdr Unit Costs> 122.63 CY Unit Costs> 151.67 CY	Unit Costs> 4,034.42 CY Unit Costs> 4.00 260.00 LF Hdr \$1,040 Unit Costs> 17.05 122.63 CY \$2,091 Unit Costs> 4.50 151.67 CY \$683	Unit Costs> 4,034.42 CY   HVCW3 41.66     Unit Costs> 260.00 LF Hdr Unit Costs> 122.63 CY   4.00   B10l 42.34     Unit Costs> 122.63 CY   \$1,040   42.34     Unit Costs> 122.63 CY   \$2,091   38.62     Unit Costs> 151.67 CY   \$683   38.62	Unit Costs> 4,034.42 CY   HVCW3   0.049     Unit Costs> 260.00 LF Hdr   4.00   B10I   0.100     Unit Costs> 122.63 CY   \$1,040   42.34   26     Unit Costs> 122.63 CY   \$2,091   38.62   52     Unit Costs> 151.67 CY   \$683   38.62   52	Unit Costs> 4,034.42 CY   HVCW3   0.049   2.04     Unit Costs> 260.00 LF Hdr   4.00   B10I   0.100   4.23     Unit Costs> 122.63 CY   4.00   B10I   0.100   4.23     Unit Costs> 122.63 CY   17.05   B6   0.425   16.43     122.63 CY   \$2,091   38.62   52   \$2,015     Unit Costs> 151.67 CY   \$683   38.62   52   \$2,002	Unit Costs> 4,034.42 CY   HVCW3   0.049   2.04   6.21     Unit Costs> 260.00 LF Hdr   4.00   B10I   0.100   4.23   0.69     260.00 LF Hdr   \$1,040   42.34   26   \$1,101   \$180     Unit Costs> 122.63 CY   17.05   B6   0.425   16.43   3.07     Unit Costs> 151.67 CY   \$683   38.62   52   \$2,015   \$377	Unit Costs> 4,034.42 CY   HVCW3 41.66   0.049 198   2.04 \$8,251   6.21 \$25,043   8.25 \$33,293     Unit Costs> 260.00 LF Hdr Unit Costs> 122.63 CY   4.00   B101   0.100   4.23 42.34   0.69   8.93     Unit Costs> 122.63 CY   \$1,040   42.34   26   \$1,101   \$180   \$2,321     Unit Costs> 122.63 CY   17.05   B6   0.425   16.43   3.07   36.55     Unit Costs> 122.63 CY   \$2,091   38.62   52   \$2,015   \$3777   \$4,482     Unit Costs> 151.67 CY   \$683   38.62   52   \$2,002   \$374   \$3,059

CH2M HILL, Inc.

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9 PROJECT: Cresent Hill WTP Modifications DESIGN STAGE: Conceptual

PROJECT No.: 346133.01.A!

ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

	ſ		CR	EW	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			TOTAL	TOTAL	
DESCRIPTION	QTY UNIT	MATERIALS	RATE	МН	LABOR	EQUIPMENT	INSTL S/C	DIRECT	W/MRKUPS	
02000High Service Pump Opt 1 SITEWORK 72" PCCP Pipe										
023159003020 Backfill trench, Common Earth, FE loader, whi mtd, 1 CY bkt, min haul	Unit Costs> 3,760.12 CY	1000 1000 1000	B10R 42.34	0.060 226	2.55 \$9,588	0.98 \$3,672		3.53 \$13,260	5.25 <b>\$19,753</b>	
023153108200 Compaction, rammer tamper, 8" lifts, 2 passes Notes: Assume 15% Swell	Unit Costs> 4,034.42 CY		A1F 36.13	0.025 99	0.89 \$3,578	0.11 \$458		1.00 \$4,036	1.49 <b>\$6,012</b>	
022257303080 Haul Excess, loading & trucking, machine load truck Notes: Assume 15% Swell	Unit Costs> 315.44 CY		B17 38.08	0.219 69	8.36 \$2,636	3.79 \$1,196		12.15 \$3,831	18.09 <b>\$5,707</b>	
025107203070 Piping, water dist, PCCP, 150 PSI, 20' L, 72' dia 15000000000000 Bag Pipe & Tape Joints	Unit Costs> 130.00 L.F. Unit Costs> 130.00 LF	239.00 \$31,070	B13B 38.57	0.933 121	35.99 \$4,679	15.86 \$2,061	19.80 \$2.574	290.84 \$37,810 19.80 \$2.574	433.24 <b>\$56,321</b> 29.49 <b>\$3,834</b>	
020807900500 Underground Marking Tape, Detectable 023705501000	Unit Costs> 1.30 CLF Unit Costs>	9.25 \$12 0.29	LABR 17.84 CLAB	0.057 0.010	1.01 \$1 0.36		φ2,074	10.27 \$13 0.65	15.30 <b>\$20</b> 0.97	
Erosion control, silt fence, polypropylene, 3' high, ideal conditions	130.00 LF	\$38	36.12	1	\$47			\$85	\$126	
Sheet piling, steel, no wales, 25' excav., 38 psf, left in place	0,500.00 S.F.	20.00 \$130,000	840 46.55	0.064 416	2.98 \$19,367	2.76 \$17,922		25.74 \$167,288	38.34 <b>\$249,193</b>	
024559001100 Mobilization, rule of thumb: complete pile driving set up, small	Unit Costs> 1.00 Ea.		B19 46.55	142.000 142	6610.74 \$6,611	3479.44 \$3,479		10090.18 \$10,090	\$15,030	
Subtotal Markups using GC-MK		\$164,933 \$80,751			\$59,874 \$29,314	\$54,762 \$26,812	\$2,574 \$1,260	\$282,143	\$138,137	
TOTAL 16 72" PCCP Pipe 1.00 LS		\$245,684		1,403	\$89,188	\$81,574	\$3,834	\$282,143	\$420,280 <i>\$0.00</i>	

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		MATERIALS	CREW RATE M	LABOR	EQUIPMENT	INSTL S/C	TOTAL	TOTAL W/MRKUPS
02000 High Service Pump Opt 1 SITEWORK Retaining Wall Penetration								
Retaining Wall Penetration for 72" Dia Pipe	Unit Costs> 1.00 Ea	1				12000.00 \$12,000	12000.00 \$12,000	\$17,875
Subtotal Markups using GC-MK						\$12,000 \$5,875	\$12,000	\$5,875
TOTAL Retaining Wall Penetration 1.00 LS						\$17,875	\$12,000	\$17,875 <i>\$0.00</i>

14 High Service Pump Opt 1 CONCRETE				
Unit Costs>     Structural Concrete for pumps and Build. Foundation,   1.00 LS     Cast-in-Place, 4,000psi   1.00 LS		167000.00 \$167,000	167000.00 \$167,000	\$248,763
Subtotal Markups using GC-MK		\$167,000 \$81,763	\$167,000	\$81,763
TOTAL 03000 CONCRETE 1.00 LS 1.00 LS		\$248,763	\$167,000	\$248,763 <i>\$0.00</i>

14 High Service Pump Opt 1 MASONRY							
24' x 24' Vertical Turbune Pump Building, CMU with Brick Veneer	Unit Costs> 576.00 SF				250.00 \$144,000	250.00 \$144,000	372.40 <b>\$214,502</b>
CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004	I	1	1	2 2		10/10 Page	//2006 16:57:26 No. 21



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		ALS RATE N	IH LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
14 High Service Pump Opt 1 MASONRY	5						
Subtotal Markups using GC-MK					\$144,000 \$70,502	\$144,000	\$70,502
TOTAL 04000 MASONRY 1.00 LS <i>1.00 LS</i>					\$214,502	\$144,000	\$214,502 <i>\$0.00</i>

14 High Service Pump Opt 1 EQUIPMENT						
11200101100001 Unit Costs> Vertical Turbine Pump, 32 MGD, 165'TDH,1200 HP 2.00 EA Notes: Hudson quote 3/20/02. 8x6-17L 3404 (8100) ITT A-C Pump. Includes inverter duty TEFC motor.	250000.00 \$500,000	WELLPMP 500.000 50.44 1,000	25222.01 \$50,444	5300.00 \$10,600	280522.01 \$561,044	417865.39 <b>\$835,731</b>
Subtotal Markups using GC-MK	\$500,000 \$244,800		\$50,444 \$24,697	\$10,600 \$5,190	\$561,044	\$274,687
TOTAL 11000 EQUIPMENT 1.00 LS <i>1.00 LS</i>	\$744,800	1,000	\$75,141	\$15,790	\$561,044	\$835,731 <i>\$0.00</i>

14 High Service Pump Opt 1 MECHANICAL								
151000011110342 Valves, Gate Valve, Resilent Seated V100, Flanged, 42" Dia	Unit Costs> 2.00 EA	56325.68 \$112,651	PIPE07 52.36	35.760 72	1872.37 \$3,745	321.84 \$644	58519.89 \$117,040	87171.19 <b>\$174,342</b>
151000210301036 Valves, Historical Costs, Ball Valve V100, Flanged, 42" Dia	Unit Costs> 2.00 EA	31000.00 \$62,000	PIPE07 52.36	24.000 48	1256.62 \$2,513	216.00 \$432	32472.62 \$64,945	48371.19 <b>\$96,742</b>
CH2M HILL. Inc.			4		Г. с. с.	1	10/10	/2006 16:57:26

Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

14   High Service Pump Opt 1 MECHANICAL   3150.00   PIPE07   8.500   445.05   76.50   3671.55     150000220200042   Unit Costs> (105000130/102   Unit Costs> (200 EA   3150.00   PIPE07   8.500   445.05   76.50   3671.55   \$14,886     CLD Fitting, Flanged, C110, Blind Flange, 250psi, Flat, 127 Dia   Unit Costs> (2.00 EA   2.00 EA   \$52.86   8   \$422   \$20   \$1000     1506001103011301   Unit Costs> (2.00 EA   2.00 EA   \$766.94   PIPE07   40.460   2118.45   364.14   9133.69     CLD Pipe, Class 53, Flg x Flg.42" dia, 10" Spool   Unit Costs> 2.00 EA   \$766.94   PIPE07   40.460   218.45   \$364.14   9133.69     Floce   150600110301346   Unit Costs> 2.00 EA   \$766.94   \$11.534   \$52.36   62   \$3.232   \$555   \$618.20     150600110301346   Unit Costs> 2.00 EA   \$2.00 EA   \$11.638   \$11.638   \$21.260   1113.16   191.34   \$62.08.23   \$22.26   \$383   \$12.442   \$12.442   \$12.442   \$13.861 </th <th>Unit Costs&gt; 4.00 EA   3150.00 \$12,600   PIPE07 52.36   8.500 34   445.05 \$1,780   76.50 \$306   3671.55 \$14,686   5469.14     Unit Costs&gt; 2.00 EA   278.81   PIPE05   4.000   211.44   10.00   500.24   745.16     Unit Costs&gt; 2.00 EA   6651.10   PIPE07   40.460   2118.45   364.14   9133.69   13605.54     Unit Costs&gt; 2.00 EA   \$11,534   52.36   62   \$3.322   \$555   \$15,221   \$22,822     Unit Costs&gt; 2.00 EA   \$11,634   52.36   62   \$3.322   \$555   \$15,321   \$22,822     Unit Costs&gt; 2.00 EA   \$11,634   52.36   52   \$2,729   \$469   \$13,881   \$20,678     Unit Costs&gt; 2.00 EA   \$10,683   52.36   52   \$2,729   \$469   \$13,881   \$20,678     Unit Costs&gt; 2.00 EA   \$17,431   52.36   101   \$5,509   \$913   \$22,062,61   \$138,63   \$22,472   \$469,00   \$1826,55   \$35,524     Unit Costs&gt; 2.00 EA   \$17,431   52.36</th> <th>DESCRIPTION</th> <th>QTY UNIT</th> <th>MATERIALS</th> <th>CRE RATE</th> <th>EW MH</th> <th>LABOR</th> <th>EQUIPMENT</th> <th>INSTL S/C</th> <th>TOTAL DIRECT</th> <th>TOTAL W/MRKUPS</th>	Unit Costs> 4.00 EA   3150.00 \$12,600   PIPE07 52.36   8.500 34   445.05 \$1,780   76.50 \$306   3671.55 \$14,686   5469.14     Unit Costs> 2.00 EA   278.81   PIPE05   4.000   211.44   10.00   500.24   745.16     Unit Costs> 2.00 EA   6651.10   PIPE07   40.460   2118.45   364.14   9133.69   13605.54     Unit Costs> 2.00 EA   \$11,534   52.36   62   \$3.322   \$555   \$15,221   \$22,822     Unit Costs> 2.00 EA   \$11,634   52.36   62   \$3.322   \$555   \$15,321   \$22,822     Unit Costs> 2.00 EA   \$11,634   52.36   52   \$2,729   \$469   \$13,881   \$20,678     Unit Costs> 2.00 EA   \$10,683   52.36   52   \$2,729   \$469   \$13,881   \$20,678     Unit Costs> 2.00 EA   \$17,431   52.36   101   \$5,509   \$913   \$22,062,61   \$138,63   \$22,472   \$469,00   \$1826,55   \$35,524     Unit Costs> 2.00 EA   \$17,431   52.36	DESCRIPTION	QTY UNIT	MATERIALS	CRE RATE	EW MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
151000220200042 Unit Costs	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14 High Service Pump Opt 1 MECHANICAL									
Valves, Historical Costs, Electric Actuator, 42" Dia 4.00 EA 512,800 52.36 34 \$1,780 \$306 \$14,866   Dispon 1304 10012 Unit Costs> 278,81 PIPE05 4.000 21144 10.00 5006   CLDI Fitting, Flanged, C110, Blind Flange, 250psl, 2.00 EA \$558 \$52.86 8 \$423 \$20 \$1,000 \$13,69   CLDI Ppe, Class 53, Fig x Fig,42" dia, 10 Spool 2.00 EA \$13,302 \$2.36 81 \$4,237 \$728 \$18,267   Piece 150600110301346 Unit Costs> \$766.94 PIPE07 30.860 1615.81 277.74 7660.48 \$15.321   Piece 2.00 EA \$11.534 \$2.36 \$2 \$2.729 \$469 \$13,881   Piece 2.00 EA \$10.683 \$22.66 \$2 \$2,729 \$469 \$13,881   Piece 2.00 EA \$10.683 \$19.267 \$2.060 1364.48 234.54 \$6940.67   CLDI Pipe, Class 53, Fig x Fig,42" dia, 4' Spool 2.00 EA \$9,833 \$22.36 43 \$22.729 \$469 \$13,881   Piece	4.00 EA \$12,600 \$2.36 34 \$1,700 \$306 \$14,666 \$21,877   Unit Costs> 278,81 PIPE05 4.000 211,44 10.00 \$50.24 745.16   Unit Costs> 2558 \$558 \$22.36 8 \$423 \$20 \$1,900 \$1,400   Unit Costs> 6651.10 PIPE07 40,460 2118,45 364,14 \$18,267 \$27,211   Unit Costs> 5766.94 PIPE07 30,860 1615,81 277,74 \$7660,48 11411.05   2.00 EA \$11,504 \$22.36 62 \$3,322 \$555 \$15,321 \$22,822   Unit Costs> \$341,65 PIPE07 26,060 1364,48 234,54 6940,67 10338,82   2.00 EA \$10,083 \$22,36 52 \$2,729 \$469 \$13,881 \$20,678   Unit Costs> \$39,833 \$23.66 1113,16 191,34 6220,88 \$266,61   2.00 EA \$17,431 \$23.66 101 \$5,309 \$913 \$23,653 \$23,653 \$23,653 \$23,653	151000220200042	Unit Costs>	3150.00	PIPE07	8.500	445.05	76.50		3671.55	5469.14
150600130410012 Unit Costs> 278.81 PIPE05 4.000 211.44 10.00 500.24   Flat, 12' Dia 2.00 EA \$558 52.86 8 \$423 \$20 \$1,000   Flat, 12' Dia Unit Costs> 6651.10 PIPE07 40.460 211.845 364.14 9133.69   150600110301346 Unit Costs> 5766.94 PIPE07 30.860 1615.81 277.74 7660.48   Flee 2.00 EA \$11,534 52.36 62 \$3.232 \$555 \$15.521   150600110301344 Unit Costs> 5341.65 PIPE07 20.606 1364.48 224.54 6940.67   CLDI Pipe, Class 53, Flg x Flg, 42' dia, 4' Spool 2.00 EA \$10,683 52.36 52 \$2.729 \$469 \$13,881   Piece 2.00 EA \$10,683 52.36 1184.48 234.54 6920.88 \$13,881   Piece 2.00 EA \$10,683 52.36 52 \$2.729 \$469 \$13,881   Flexe 2.00 EA \$10,683 52.36 132.46 \$23,553 \$12,442 \$13,8	Unit Costs> 278.81 PIPE05 4.000 211.44 10.00 500.24 745.16   2.00 EA \$558 52.86 8 \$423 \$20 \$1,000 \$1,000 \$1,000   Unit Costs> 6651.10 PIPE07 40.460 2118.45 364.14 9133.69 \$13605.54   2.00 EA \$13,302 52.36 81 \$4,237 \$77.74 \$7660.48 \$11411.05   2.00 EA \$11,534 52.36 62 \$33,232 \$555 \$15,321 \$22,822   Unit Costs> 5341.65 PIPE07 26.060 1364.48 \$234.54 6940.67 10338.82   2.00 EA \$10,683 52.36 52 \$2,729 \$469 \$13,881 \$20,678   Unit Costs> \$39,833 52.36 52 \$2,729 \$469 \$138,81 \$20,678   Unit Costs> \$39,833 52.36 113.16 191.34 6220.88 \$12,442 \$18,533   Unit Costs> \$17,431 52.36 101 \$5,309 \$913 \$23,653 \$352,534 \$166.33 <	Valves, Historical Costs, Electric Actuator, 42" Dia	4.00 EA	\$12,600	52.36	34	\$1,780	\$306	-	\$14,686	\$21,877
CLD   Filting, Flanged, C110, Blind Flange, 250psi, 2.00 EA \$558 52.86 8 \$423 \$20 \$1,000   150600110301350 Unit Costs> 6651.10 PIPE07 40.460 2118.45 364.14 9133.69   150600110301360 Unit Costs> 5766.94 PIPE07 30.860 1615.81 27.74 5760.48   150600110301346 Unit Costs> 5766.94 PIPE07 20.060 1364.48 234.54 6940.67   CLDI Pipe, Class 53, Fig x Fig, 42" dia, 4' Spool 2.00 EA \$311.683 52.36 52 \$2,729 \$469 \$13.881   Piece 150600110301342 Unit Costs> 5341.65 PIPE07 26.060 1364.48 234.54 6940.67   CLDI Pipe, Class 53, Fig x Fig, 42" dia, 2' Spool 2.00 EA \$916.38 52.36 43 \$2,226 \$383 \$13,881   Piece 2.00 EA \$916.38 PIPE07 50.700 2654.61 456.30 \$11826.56   Sto600130402042 Unit Costs> 2.00 EA \$21,412 \$23.66 43 \$2,226 \$3833 \$23.653   CLDI	2.00 EA \$558 52.86 8 \$423 \$20 \$1,000 \$1,490   Unit Costs> 6651.10 \$13,302 \$22,36 81 \$4,237 \$726 \$18,267 \$27,211   Unit Costs> 5766.94 \$11,534 \$23,66 62 \$33,232 \$555 \$18,267 \$27,211   Unit Costs> 5766.94 \$11,534 \$23,66 62 \$33,232 \$555 \$15,321 \$22,822   Unit Costs> \$541,65 \$11,65 \$2,266 \$2,279 \$469 \$13,881 \$20,678   Unit Costs> \$10,683 \$11,65 \$2,266 \$2,226 \$383 \$12,442 \$13,881 \$20,678   Unit Costs> 4916.38 \$11,907 \$21,260 1113,16 191,34 6220,88 \$22,66,61 \$33,33   Unit Costs> \$7,431 \$2,266 \$10,11 \$5,309 \$913 \$23,653 \$23,653 \$23,653 \$23,653 \$23,653 \$23,653 \$23,653 \$23,653 \$23,653 \$23,653 \$23,653 \$23,653 \$23,653 \$23,653 \$23,653 \$23,524	150600130410012	Unit Costs>	278.81	PIPE05	4.000	211.44	10.00		500.24	745.16
150600110301350 Unit Costs> 6651.10 PIPE07 40.460 2118.45 364.14 9133.69   CLDI Pipe, Class 53, Fig x Fig,42" dia, 10 Spool 2.00 EA \$13,302 \$2.36 81 \$4,237 \$726 \$118,267   150600110301346 Unit Costs> 5766.94 PIPE07 30.860 1615.81 277.74 7660.48   CLDI Pipe, Class 53, Fig x Fig,42" dia, 6 Spool 2.00 EA \$11,534 \$2.36 62 \$33,232 \$555 \$15,321   Piece 100010301344 Unit Costs> \$341.65 PIPE07 26.060 1364.48 224.54 6940.67   CLDI Pipe, Class 53, Fig x Fig,42" dia, 4' Spool 2.00 EA \$10,683 \$52.36 \$2 \$2,729 \$469 \$13,881   Piece Unit Costs> \$9,833 \$2.36 43 \$2,226 \$383 \$12,442   Piece Unit Costs> \$715.65 PIPE07 \$0.700 2654.61 456.30 \$11826.56   CLDI Fitting, Flanged, C110-SR, 45 Deg Elbow, 2.00 EA \$17,431 \$2.36 101 \$5,309 \$931 \$23,653   150600130406377 </td <td>Unit Costs&gt; 2.00 EA 6651.10 \$13,302 PIPE07 52.36 40.460 81 2118.45 \$4,237 364.14 \$728 9133.69 \$728 13605.54 \$27,211   Unit Costs&gt; 2.00 EA 5766.94 \$11,534 PIPE07 \$2.36 30.860 62 1615.81 \$3,232 277.74 \$5555 766.048 \$15,321 11411.05 \$22,822   Unit Costs&gt; 2.00 EA 5341.65 \$10,683 PIPE07 \$2.36 26.060 \$22 1364.48 \$22,729 234.54 \$469 6940.67 \$13,881 10338.82 \$22,678   Unit Costs&gt; 2.00 EA 4916.38 \$9,833 PIPE07 \$2.36 21.260 \$101 1113.16 \$2,206 191.34 \$2,226 6220.88 \$383 9266.61 \$13,881   Unit Costs&gt; 2.00 EA 8715.65 \$17,431 PIPE07 \$2.36 50.00 \$101 2879.76 \$5,309 495.00 \$9913 11826.56 \$23,653 17616.83 \$23,653   Unit Costs&gt; 2.00 EA 10609.63 \$21,219 PIPE07 \$2.36 55.000 \$28,760 2879.76 \$9990 495.00 \$9900 13984.38 \$20,000 20831.12 \$23,0653   Unit Costs&gt; 2.00 EA 8784.27 \$17,569 PIPE03 \$43,100 2158.04 \$4,316 778.82 \$1,558 1000.00 \$20,000 1489.60 \$20,000</td> <td>CLDI Fitting, Flanged, C110, Blind Flange, 250psi, Flat, 12" Dia</td> <td>2.00 EA</td> <td>\$558</td> <td>52.86</td> <td>8</td> <td>\$423</td> <td>\$20</td> <td></td> <td>\$1,000</td> <td>\$1,490</td>	Unit Costs> 2.00 EA 6651.10 \$13,302 PIPE07 52.36 40.460 81 2118.45 \$4,237 364.14 \$728 9133.69 \$728 13605.54 \$27,211   Unit Costs> 2.00 EA 5766.94 \$11,534 PIPE07 \$2.36 30.860 62 1615.81 \$3,232 277.74 \$5555 766.048 \$15,321 11411.05 \$22,822   Unit Costs> 2.00 EA 5341.65 \$10,683 PIPE07 \$2.36 26.060 \$22 1364.48 \$22,729 234.54 \$469 6940.67 \$13,881 10338.82 \$22,678   Unit Costs> 2.00 EA 4916.38 \$9,833 PIPE07 \$2.36 21.260 \$101 1113.16 \$2,206 191.34 \$2,226 6220.88 \$383 9266.61 \$13,881   Unit Costs> 2.00 EA 8715.65 \$17,431 PIPE07 \$2.36 50.00 \$101 2879.76 \$5,309 495.00 \$9913 11826.56 \$23,653 17616.83 \$23,653   Unit Costs> 2.00 EA 10609.63 \$21,219 PIPE07 \$2.36 55.000 \$28,760 2879.76 \$9990 495.00 \$9900 13984.38 \$20,000 20831.12 \$23,0653   Unit Costs> 2.00 EA 8784.27 \$17,569 PIPE03 \$43,100 2158.04 \$4,316 778.82 \$1,558 1000.00 \$20,000 1489.60 \$20,000	CLDI Fitting, Flanged, C110, Blind Flange, 250psi, Flat, 12" Dia	2.00 EA	\$558	52.86	8	\$423	\$20		\$1,000	\$1,490
CLDI Pipe, Class 53, Fig x Fig.42° dia, 10 Spool 2.00 EA \$13,302 52.36 81 \$4,237 \$728 \$160   150600110301346 Unit Costs> 5766.94 PIPE07 30.860 1615.81 277.74 7660.48   CLDI Pipe, Class 53, Fig x Fig.42° dia, 6 Spool 2.00 EA \$11,534 52.36 62 \$3,232 \$555 \$15,321   150600110301344 Unit Costs> 5341.65 PIPE07 26.060 1364.48 234.54 6940.67   CLDI Pipe, Class 53, Fig x Fig.42° dia, 4' Spool 2.00 EA \$10.683 52.36 52 \$2,729 \$469 \$13,881   150600110301342 Unit Costs> 4916.38 PIPE07 21.260 1113.16 191.34 6220.88   CLDI Pipe, Class 53, Fig x Fig.42° dia, 2' Spool Unit Costs> 8715.65 PIPE07 50.700 2654.61 456.30 \$11826.56   CLDI Pipe, Class 53, Fig x Fig.42° dia, 2' Spool Unit Costs> 8715.65 PIPE07 50.700 2654.61 456.30 \$1826.56   CLDI Pipe, Lianged, C110-SR, 45 Deg Elbow, 2.00 EA \$17,431 52.36 101 \$5,309 \$993<	2.00 EA \$13,302 52.36 81 \$4,237 \$728 \$18,267 \$27,211   Unit Costs> 5766.94 PIPE07 30.860 1615.81 277.74 7660.48 11411.05   2.00 EA \$11,534 52.36 62 \$3,232 \$555 \$694.67 10338.82   Unit Costs> 5341.65 PIPE07 26.060 1364.48 234.54 \$6940.67 10338.82   Unit Costs> 4916.38 PIPE07 21.260 1113.16 191.34 \$6220.88 9266.61   Unit Costs> 8715.65 PIPE07 50.700 2654.61 456.30 \$1826.56 \$17616.83   Unit Costs> 8715.65 PIPE07 50.000 2879.76 \$990 \$1896.563 \$22,000 \$22,083 \$35,224   Unit Costs> 2.00 EA \$10609.63 \$21,210 \$5,360 \$990 \$990 \$1000.00 \$18984.38 20831.12   Unit Costs> 2.00 EA \$21,219 \$5,360 \$10 \$5,760 \$990 \$1000.00 \$1000.00 \$22,000 \$22,000 \$27,969 \$41,	150600110301350	Unit Costs>	6651.10	PIPE07	40.460	2118.45	364.14		9133.69	13605.54
150600110301346 Unit Costs> 2.00 EA 5766.94 PIPE07 30.860 1615.81 277.74 7660.48   CLDI Pipe, Class 53, Fig x Fig,42" dia, 4' Spool Unit Costs> 5341.65 PIPE07 26.060 1364.48 234.54 6940.67   CLDI Pipe, Class 53, Fig x Fig,42" dia, 4' Spool 2.00 EA \$10,683 52.36 52 \$2,729 \$469 \$13,881   Piece 150600110301342 Unit Costs> 4916.38 PIPE07 21.260 1113.16 191.34 6220.88   CLDI Pipe, Class 53, Fig x Fig,42" dia, 2' Spool 2.00 EA \$9,933 52.36 43 \$2,226 \$383 \$12,442   15060011300130402042 Unit Costs> 8715.65 PIPE07 50.700 2654.61 456.30 \$11826.56   150600130406377 Unit Costs> 8715.65 PIPE07 50.00 2879.76 495.00 \$27.969   ARV Assembly 2.00 EA \$2.1,219 52.36 110 \$5,760 \$990 \$27.969   Pipe Supports 2.00 EA \$2.00 EA \$2.1,219 52.36 110 \$5,760 \$990 \$22.000	Unit Costs> 2.00 EA 5766.94 \$11,534 PIPE07 52.36 30.860 62 1615.81 \$3,232 277.74 \$5555 7660.48 \$15,321 11411.05 \$22,822   Unit Costs> 2.00 EA 5341.65 \$10,683 PIPE07 \$2.36 26.060 \$52.36 1364.48 \$22,729 234.54 \$469 6940.67 \$13,881 10338.82 \$20,678   Unit Costs> 2.00 EA 4916.38 \$9,833 PIPE07 \$2.36 21.260 \$101 1113.16 \$5,309 191.34 \$383 622.088 \$383 9266.61 \$12,442 \$18,533   Unit Costs> 2.00 EA 8715.65 \$17,431 PIPE07 \$2.36 50.700 \$101 2654.61 \$5,309 456.30 \$913 11826.56 \$23,653 17616.83 \$23,653   Unit Costs> 2.00 EA 10609.63 \$21,219 PIPE07 \$2.36 55.000 \$2,36 2879.76 \$990 495.00 \$990 13984.38 \$22,000 \$2,0000 20831.12 \$2,000   2.00 EA \$21,219 52.36 110 \$5,760 \$990 1000.00 \$2,0000 14895.99 \$2,0000 \$2,0000 \$2,0000 \$2,0000 \$2,0000 \$2,0000 \$2,0000 \$2,0000 \$2,0000 \$2,0000 \$2,0000 \$2,0000 \$2,0000 \$2,0000 \$2,0000 \$2,0000 \$2,0000 \$2,0000 \$2,0000 <td< td=""><td>CLDI Pipe, Class 53, Flg x Flg,42" dia, 10' Spool Piece</td><td>2.00 EA</td><td>\$13,302</td><td>52.36</td><td>81</td><td>\$4,237</td><td>\$728</td><td></td><td>\$18,267</td><td>\$27,211</td></td<>	CLDI Pipe, Class 53, Flg x Flg,42" dia, 10' Spool Piece	2.00 EA	\$13,302	52.36	81	\$4,237	\$728		\$18,267	\$27,211
CLDI Pipe, Class 53, Fig x Fig, 42" dia, 6 'Spool 2.00 EA \$11,534 52.36 62 \$3,232 \$555 \$15,321   Piece 150600110301344 Unit Costs> 5341.65 PIPE07 26.060 1364.48 234.54 \$6940.67   CLDI Pipe, Class 53, Fig x Fig,42" dia, 4' Spool 2.00 EA \$10,683 52.36 52 \$2,729 \$469 \$13,881   Diso600110301342 Unit Costs> 4916.38 PIPE07 21.260 1113.16 191.34 6220.88   CLDI Pipe, Class 53, Fig x Fig,42" dia, 2' Spool 2.00 EA \$9,833 52.36 43 \$2,226 \$3833 \$11,2442   Pieco 2.00 EA \$9,833 52.36 101 \$5,309 \$913 \$236,53   150600130402042 Unit Costs> 8715.65 PIPE07 50.700 2654.61 456.30 \$23,653   250psi, 42" Dia 2.00 EA \$17,431 52.36 101 \$5,309 \$913 \$23,653   150600130406377 Unit Costs> 10069.63 PIPE07 55.000 2879.76 495.00 \$2,000 \$2,7969   ARV Assembly <td>2.00 EA \$11,534 52.36 62 \$3,232 \$555 \$15,321 \$22,822   Unit Costs&gt; 5341.65 PIPE07 26.060 1364.48 234.54 6940.67 \$10338.82   2.00 EA \$10,683 PIPE07 21.260 1113.16 191.34 \$20.068 9266.61   2.00 EA \$9,833 \$2.36 43 \$2,226 \$383 \$12,442 \$18,533   Unit Costs&gt; 8715.65 PIPE07 50.700 2654.61 456.30 11826.56 17616.83   2.00 EA \$17,431 \$2.36 101 \$5,309 \$913 \$22,653 \$23,653 \$35,234   Unit Costs&gt; 2.00 EA 10609.63 PIPE07 55.000 2879.76 495.00 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000&lt;</td> <td>150600110301346</td> <td>Unit Costs&gt;</td> <td>5766.94</td> <td>PIPE07</td> <td>30.860</td> <td>1615.81</td> <td>277.74</td> <td></td> <td>7660.48</td> <td>11411.05</td>	2.00 EA \$11,534 52.36 62 \$3,232 \$555 \$15,321 \$22,822   Unit Costs> 5341.65 PIPE07 26.060 1364.48 234.54 6940.67 \$10338.82   2.00 EA \$10,683 PIPE07 21.260 1113.16 191.34 \$20.068 9266.61   2.00 EA \$9,833 \$2.36 43 \$2,226 \$383 \$12,442 \$18,533   Unit Costs> 8715.65 PIPE07 50.700 2654.61 456.30 11826.56 17616.83   2.00 EA \$17,431 \$2.36 101 \$5,309 \$913 \$22,653 \$23,653 \$35,234   Unit Costs> 2.00 EA 10609.63 PIPE07 55.000 2879.76 495.00 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000<	150600110301346	Unit Costs>	5766.94	PIPE07	30.860	1615.81	277.74		7660.48	11411.05
150600110301344 Unit Costs> 5341.65 PIPE07 26.060 1364.48 234.54 6940.67   CLDI Pipe, Class 53, Fig x Fig.42" dia, 4' Spool 2.00 EA \$10,683 52.36 52 \$2,729 \$469 \$13,881   Discoorti10301342 Unit Costs> 4916.38 PIPE07 21.260 1113.16 191.34 6220.88   CLDI Pipe, Class 53, Fig x Fig.42" dia, 2' Spool 2.00 EA \$9,833 52.36 43 \$2,226 \$383 \$12,442   Piece Unit Costs> 8715.65 PIPE07 50.700 2654.61 456.30 11826.56   CLDI Pitting, Flanged, C110-SR, 45 Deg Elbow, 2.00 EA \$17,431 52.36 101 \$5,309 \$913 \$23,653   150600130406377 Unit Costs> 10609.63 PIPE07 55.000 2879.76 495.00 \$2,7969   ARV Assembly 2.00 EA \$21,219 52.36 110 \$5,760 \$990 \$2,000 \$2,000   Pipe Supports 2.00 LS Unit Costs> 2.00 EA \$21,219 \$2.36 110 \$5,760 \$990 \$2,000 \$2,000 <td>Unit Costs&gt; 2.00 EA 5341.65 \$10,683 PIPE07 \$2.36 26.060 \$52.36 1364.48 \$2,729 234.54 \$469 6940.67 \$13,881 10338.82 \$20,678   Unit Costs&gt; 2.00 EA 4916.38 \$9,833 PIPE07 \$2.36 21.260 \$43 1113.16 \$2.36 191.34 \$383 6220.88 \$12,442 9266.61 \$13,533   Unit Costs&gt; 2.00 EA 8715.65 \$17,431 PIPE07 \$2.36 50.700 \$101 2654.61 \$5,309 456.30 \$913 11826.56 \$23,653 17616.83 \$23,653   Unit Costs&gt; 2.00 EA 10609.63 \$21,219 PIPE07 \$2.36 55.000 \$110 2879.76 \$5,760 495.00 \$990 13984.38 \$22,000 20831.12 \$27,969   Unit Costs&gt; 2.00 EA \$77,822 10000.00 \$20,000 1489.60 \$20,000 \$29,792 \$20,000   Unit Costs&gt; 2.00 EA 8784.27 \$17,569 PIPE03 \$43.100 2158.04 \$4,316 778.82 \$1,558 11020.00 \$20,000 11489.59 \$23,442</td> <td>CLDI Pipe, Class 53, Flg x Flg,42" dia, 6' Spool Piece</td> <td>2.00 EA</td> <td>\$11,534</td> <td>52.36</td> <td>62</td> <td>\$3,232</td> <td>\$555</td> <td></td> <td>\$15,321</td> <td>\$22,822</td>	Unit Costs> 2.00 EA 5341.65 \$10,683 PIPE07 \$2.36 26.060 \$52.36 1364.48 \$2,729 234.54 \$469 6940.67 \$13,881 10338.82 \$20,678   Unit Costs> 2.00 EA 4916.38 \$9,833 PIPE07 \$2.36 21.260 \$43 1113.16 \$2.36 191.34 \$383 6220.88 \$12,442 9266.61 \$13,533   Unit Costs> 2.00 EA 8715.65 \$17,431 PIPE07 \$2.36 50.700 \$101 2654.61 \$5,309 456.30 \$913 11826.56 \$23,653 17616.83 \$23,653   Unit Costs> 2.00 EA 10609.63 \$21,219 PIPE07 \$2.36 55.000 \$110 2879.76 \$5,760 495.00 \$990 13984.38 \$22,000 20831.12 \$27,969   Unit Costs> 2.00 EA \$77,822 10000.00 \$20,000 1489.60 \$20,000 \$29,792 \$20,000   Unit Costs> 2.00 EA 8784.27 \$17,569 PIPE03 \$43.100 2158.04 \$4,316 778.82 \$1,558 11020.00 \$20,000 11489.59 \$23,442	CLDI Pipe, Class 53, Flg x Flg,42" dia, 6' Spool Piece	2.00 EA	\$11,534	52.36	62	\$3,232	\$555		\$15,321	\$22,822
CLDI Pipe, Class 53, Fig x Fig,42" dia, 4' Spool 2.00 EA \$10,683 52.36 52 \$2,729 \$469 \$13,881   Piece 150600110301342 Unit Costs> 4916.38 PIPE07 21.260 1113.16 191.34 6220.88   CLDI Pipe, Class 53, Fig x Fig,42" dia, 2' Spool 2.00 EA \$9,833 52.36 43 \$2,226 \$383 \$12,442   Piece 150600130402042 Unit Costs> 8715.65 PIPE07 50.700 2654.61 456.30 11826.56   CLDI Piting, Flanged, C110-SR, 45 Deg Elbow, 2.00 EA \$17,431 52.36 101 \$5,309 \$913 \$23,653   150600130406377 Unit Costs> 10609.63 PIPE07 55.000 2879.76 495.00 13984.38   CLDI, Flanged, C110, Reducing Tee, 42" x 12" Dia 2.00 EA \$21,219 52.36 110 \$5,760 \$990 \$20,000 \$27,969   ARV Assembly 2.00 EA \$20,0EA \$21,219 52.36 110 \$5,760 \$990 \$20,000 \$20,000   Pipe Supports 2.00 LS 2.00 LS 8784.27 PIPE03 431,00<	2.00 EA \$10,683 52.36 52 \$2,729 \$469 \$13,881 \$20,678   Unit Costs> 4916.38 PIPE07 21.260 1113.16 191.34 \$20.016 \$13,881 \$20,678   Unit Costs> \$9,833 \$2.36 43 \$2,226 \$383 \$12,442 \$18,533   Unit Costs> 8715.65 PIPE07 50.700 2654.61 456.30 \$23,653 \$23,653 \$35,234   Unit Costs> 2.00 EA \$10609.63 PIPE07 55.000 2879.76 495.00 \$27,969 \$41,662   Unit Costs> 2.00 EA \$21,219 52.36 110 \$5,760 \$990 1000.00 1000.00 1489.60   2.00 EA \$21,219 52.36 110 \$5,760 \$990 1000.00 \$20,000 \$2,979   Unit Costs> 2.00 EA \$76,82 \$10000.00 \$20,000 \$2,979 \$20,000 \$2,979   Unit Costs> 8784.27 PIPE03 43.100 2158.04 778.82 \$20,000 \$23,442 \$34,920   Unit Costs>	150600110301344	Unit Costs>	5341.65	PIPE07	26.060	1364.48	234.54		6940.67	10338.82
150600110301342 Unit Costs> 4916.38 PIPE07 21.260 1113.16 191.34 6220.88   CLDI Pipe, Class 53, Flg x Flg,42" dia, 2' Spool 2.00 EA \$9,833 52.36 43 \$2,226 \$383 \$12,442   Pioco Unit Costs> 8715.65 PIPE07 50.700 2654.61 456.30 11826.56   CLDI Fitting, Flanged, C110-SR, 45 Deg Elbow, 2.00 EA \$17,431 52.36 101 \$5,309 \$913 \$23,653   150600130406377 Unit Costs> 10609.63 PIPE07 55.000 2879.76 495.00 \$27,969   ARV Assembly 2.00 EA 2.00 EA \$21,219 52.36 110 \$5,760 \$990 \$20,000 \$22,000   Pipe Supports 2.00 LS 2.00 EA \$21,219 \$2.36 110 \$5,760 \$990 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,0	Unit Costs> 4916.38 PIPE07 21.260 1113.16 191.34 \$6220.88 9266.61   2.00 EA \$9,833 52.36 43 \$2,226 \$383 \$12,442 \$18,533   Unit Costs> 8715.65 PIPE07 50.700 2654.61 456.30 \$23,653 \$23,653 \$355,234   Unit Costs> 10609.63 PIPE07 55.000 2879.76 495.00 \$27,969 \$44,622   Unit Costs> 2.00 EA \$21,219 52.36 110 \$5,760 \$990 \$20,000 \$27,969 \$44,622   Unit Costs> 2.00 EA \$21,219 52.36 110 \$5,760 \$990 \$1000.00 \$2,000 \$2,979   Unit Costs> \$2.00 EA \$77,862 \$1000.00 \$20,000 \$20,000 \$29,792   Unit Costs> \$17,569 50.07 86 \$4,316 \$778.82 \$11721.13 \$17459.78   2.00 EA \$17,569 50.07 86 \$4,316 \$1,558 \$23,442 \$34,920	CLDI Pipe, Class 53, Flg x Flg,42" dia, 4' Spool Piece	2.00 EA	\$10,683	52.36	52	\$2,729	\$469		\$13,881	\$20,678
CLDI Pipe, Class 53, Flg x Flg, 42" dia, 2' Spool 2.00 EA \$9,833 52.36 43 \$2,226 \$383 \$12,442   Pioce Unit Costs> 8715.65 PIPE07 50.700 2654.61 456.30 11826.56   CLDI Fitting, Flanged, C110-SR, 45 Deg Elbow, 2.00 EA \$17,431 52.36 101 \$5,309 \$913 \$23,653   150600130406377 Unit Costs> 10609.63 PIPE07 55.000 2879.76 495.00 \$27,969   CLDI, Flanged, C110, Reducing Tee, 42" x 12" Dia 2.00 EA \$21,219 52.36 110 \$5,760 \$990 \$22,000 \$27,969   ARV Assembly 2.00 EA 2.00 EA \$20,0EA \$21,219 \$2.36 110 \$5,760 \$990 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$22,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$	2.00 EA \$9,833 52.36 43 \$2,226 \$383 \$12,442 \$18,533   Unit Costs> 2.00 EA 8715.65 \$17,431 PIPE07 50.700 2654.61 456.30 11826.56 17616.83   Unit Costs> 2.00 EA 10609.63 PIPE07 55.000 2879.76 495.00 \$22,969 \$41,662   Unit Costs> 2.00 EA \$21,219 PIPE07 55.000 2879.76 495.00 \$27,969 \$41,662   Unit Costs> 2.00 EA \$21,219 PIPE07 55.000 2879.76 \$990 1000.00 1000.00 1489.60   Unit Costs> 2.00 EA \$72,000 EA \$778.82 10000.00 \$20,000 \$29,792   Unit Costs> 2.00 EA \$77,569 \$43.100 2158.04 778.82 11721.13 17459.78   Unit Costs> 2.00 EA \$17,569 \$43.100 2158.04 \$1,558 \$23,442 \$34,920	150600110301342	Unit Costs>	4916.38	PIPE07	21.260	1113.16	191.34		6220.88	9266.61
150600130402042 Unit Costs> 8715.65 PIPE07 50.700 2654.61 456.30 \$11826.56   CLDI Fitting, Flanged, C110-SR, 45 Deg Elbow, 2.00 EA \$17,431 52.36 101 \$5,309 \$913 \$13984.38   250psi, 42° Dia Unit Costs> 10609.63 PIPE07 55.000 2879.76 495.00 \$13984.38   CLDI, Flanged, C110, Reducing Tee, 42" x 12" Dia 0.0 EA \$21,219 52.36 110 \$5,760 \$990 \$27,969   ARV Assembly 2.00 EA Unit Costs> 2.00 EA 1000.00 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000	Unit Costs> 8715.65 PIPE07 50.700 2654.61 456.30 11826.56 17616.83   2.00 EA \$17,431 52.36 101 \$5,309 \$913 \$1826.56 \$23,653 \$35,234   Unit Costs> 10609.63 \$21,219 55.000 2879.76 495.00 \$27,969 \$41,662   Unit Costs> \$2.00 EA \$21,219 52.36 110 \$5,760 \$990 1000.00 1000.00 1489.60   2.00 EA \$21,219 52.36 110 \$5,760 \$990 1000.00 1000.00 1489.60   2.00 EA Unit Costs> \$8784.27 PIPE03 43.100 2158.04 778.82 \$20,000 \$20,000 \$29,792   Unit Costs> \$17,569 \$43.100 2158.04 \$778.82 11721.13 17459.78   2.00 EA \$17,569 \$43.100 2158.04 \$1,558 \$23,442 \$34,920	CLDI Pipe, Class 53, Flg x Flg,42" dia, 2' Spool Piece	2.00 EA	\$9,833	52.36	43	\$2,226	\$383		\$12,442	\$18,533
CLDI Fitting, Flanged, C110-SR, 45 Deg Elbow, 2.00 EA \$17,431 52.36 101 \$5,309 \$913 \$23,653   250psi, 42" Dia Unit Costs> 10609.63 PIPE07 55.000 2879.76 495.00 13984.38   CLDI, Flanged, C110, Reducing Tee, 42" x 12" Dia 0.00 EA \$21,219 52.36 110 \$5,760 \$990 \$27,969   ARV Assembly 2.00 EA Unit Costs> 2.00 EA 1000.00 \$2,000 \$2,000 \$2,000 \$2,000 \$2,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000	2.00 EA \$17,431 52.36 101 \$5,309 \$913 \$23,653 \$35,234   Unit Costs> 2.00 EA 10609.63 \$21,219 PIPE07 55.000 2879.76 495.00 13984.38 20831.12   Unit Costs> 2.00 EA \$21,219 52.36 110 \$5,760 \$990 1000.00 1000.00 1489.60   Unit Costs> 2.00 LS 400 LS 1000.00 1000.00 1489.60 \$2,979 1000.00 14895.99   Unit Costs> 2.00 LS 8784.27 PIPE03 43.100 2158.04 778.82 11721.13 17459.78   Unit Costs> 2.00 EA \$17,569 50.07 86 \$4,316 \$1,558 \$23,442 \$34,920	150600130402042	Unit Costs>	8715.65	PIPE07	50.700	2654.61	456.30		11826.56	17616.83
150600130406377 Unit Costs> 10609.63 PIPE07 55.00 2879.76 495.00 \$27,969   CLDI, Flanged, C110, Reducing Tee, 42" x 12" Dia 2.00 EA \$21,219 52.36 110 \$5,760 \$990 \$27,969   ARV Assembly 2.00 EA Unit Costs> 2.00 EA 1000.00 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 <td>Unit Costs&gt; 10609.63 PIPE07 55.000 2879.76 495.00 13984.38 20831.12   2.00 EA \$21,219 \$2.36 110 \$5,760 \$990 \$20,000 \$27,969 \$41,662   Unit Costs&gt; 2.00 EA \$21,219 \$2.36 110 \$5,760 \$990 1000.00 1000.00 1489.60   2.00 EA 2.00 LS Unit Costs&gt; 2.00 LS 10000.00 10000.00 14895.99   Unit Costs&gt; 2.00 LS 8784.27 PIPE03 43.100 2158.04 778.82 11721.13 17459.78   2.00 EA \$17,569 \$0.07 86 \$4,316 \$1,558 \$23,442 \$34,920</td> <td>CLDI Fitting, Flanged, C110-SR, 45 Deg Elbow, 250psi, 42" Dia</td> <td>2.00 EA</td> <td>\$17,431</td> <td>52.36</td> <td>101</td> <td>\$5,309</td> <td>\$913</td> <td></td> <td>\$23,653</td> <td>\$35,234</td>	Unit Costs> 10609.63 PIPE07 55.000 2879.76 495.00 13984.38 20831.12   2.00 EA \$21,219 \$2.36 110 \$5,760 \$990 \$20,000 \$27,969 \$41,662   Unit Costs> 2.00 EA \$21,219 \$2.36 110 \$5,760 \$990 1000.00 1000.00 1489.60   2.00 EA 2.00 LS Unit Costs> 2.00 LS 10000.00 10000.00 14895.99   Unit Costs> 2.00 LS 8784.27 PIPE03 43.100 2158.04 778.82 11721.13 17459.78   2.00 EA \$17,569 \$0.07 86 \$4,316 \$1,558 \$23,442 \$34,920	CLDI Fitting, Flanged, C110-SR, 45 Deg Elbow, 250psi, 42" Dia	2.00 EA	\$17,431	52.36	101	\$5,309	\$913		\$23,653	\$35,234
CLDI, Flanged, C110, Reducing Tee, 42" x 12" Dia 2.00 EA \$21,219 52.36 110 \$5,760 \$990 \$27,969   ARV Assembly 2.00 EA 1000.00 1000.00 \$2,000 \$2,000 \$2,000 \$2,000 \$2,000 \$2,000 \$2,000 \$2,000 \$2,000 \$2,000 \$2,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000 \$20,000	2.00 EA \$21,219 52.36 110 \$5,760 \$990 \$27,969 \$41,662   Unit Costs> 2.00 EA 1000.00 1000.00 1000.00 1489.60   Unit Costs> 2.00 LS 10000.00 10000.00 14895.99   Unit Costs> 2.00 LS 8784.27 PIPE03 43.100 2158.04 778.82 11721.13 17459.78   Unit Costs> 8784.27 50.07 86 \$4,316 \$1,558 \$23,442 \$34,920	150600130406377	Unit Costs>	10609.63	PIPE07	55.000	2879.76	495.00		13984.38	20831.12
ARV Assembly Unit Costs> 1000.00 1000.00   2.00 EA Unit Costs> 1000.00 \$2,000   Unit Costs> 2.00 LS 10000.00 10000.00   150600130202042 Unit Costs> 8784.27 PIPE03 43.100 2158.04 778.82 11721.13	Unit Costs> 2.00 EA 1000.00 1000.00 1489.60   Unit Costs> 2.00 EA \$2,000 \$2,000 \$2,979   Unit Costs> 2.00 LS 1000.00 1000.00 1489.599   Unit Costs> 2.00 EA \$778.82 \$20,000 \$20,000 \$29,792   Unit Costs> 8784.27 PIPE03 43.100 2158.04 778.82 11721.13 17459.78   2.00 EA \$17,569 50.07 86 \$4,316 \$1,558 \$23,442 \$34,920	CLDI, Flanged, C110, Reducing Tee, 42" x 12" Dia	2.00 EA	\$21,219	52.36	110	\$5,760	\$990		\$27.969	\$41.662
ARV Assembly   2.00 EA   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000   \$2,000	2.00 EA Vinit Costs> \$2,000 \$2,000 \$2,000 \$2,979   10000.00 10000.00 10000.00 14895.99   2.00 LS \$20,000 \$20,000 \$20,000 \$20,000 \$29,792   Unit Costs> 8784.27 PIPE03 43.100 2158.04 778.82 11721.13 17459.78   2.00 EA \$17,569 50.07 86 \$4,316 \$1,558 \$23,442 \$34,920		Unit Costs>						1000.00	1000.00	1489.60
Unit Costs> 2.00 LS   Unit Costs> 2.00 LS   10000.00 \$20,000   10000.00 \$20,000     150600130202042   Unit Costs> Unit Costs>   8784.27   PIPE03   43.100   2158.04   778.82   11721.13	Unit Costs> 2.00 LS 8784.27 PIPE03 43.100 2158.04 778.82 10000.00 \$20,000 \$20,000 \$20,000 \$20,792   Unit Costs> 2.00 EA \$17,569 50.07 86 \$4,316 \$1,558 11721.13 117459.78	ARV Assembly	2.00 EA						\$2,000	\$2,000	\$2,979
Pipe Supports   2.00 LS   \$20,000   \$20,000     150600130202042   Unit Costs>   8784.27   PIPE03   43.100   2158.04   778.82   11721.13	2.00 LS \$20,000 \$20,000 \$20,000 \$20,792   Unit Costs> 8784.27 PIPE03 43.100 2158.04 778.82 11721.13 17459.78   2.00 EA \$17,569 50.07 86 \$4,316 \$1,558 \$23,442 \$34,920		Unit Costs>						10000.00	10000.00	14895.99
150600130202042 Unit Costs> 8784.27 PIPE03 43.100 2158.04 778.82 11721.13	Unit Costs>   8784.27   PIPE03   43.100   2158.04   778.82   11721.13   17459.78     2.00 EA   \$17,569   50.07   86   \$4,316   \$1,558   \$23,442   \$34,920	Pipe Supports	2.00 LS						\$20,000	\$20,000	\$29,792
	2.00 EA \$17,569 50.07 86 \$4,316 \$1,558 \$23,442 \$ <b>34,920</b>	150600130202042	Unit Costs>	8784.27	PIPE03	43.100	2158.04	778.82		11721.13	17459.78
42" CLDI 45 Deg Elbow, Mech Jnt, C110 2.00 EA \$17,569 50.07 86 \$4,316 \$1,558 \$23,442		42" CLDI 45 Deg Elbow, Mech Jnt, C110	2.00 EA	\$17,569	50.07	86	\$4,316	\$1,558		\$23,442	\$34,920

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004



CH2MHILL ESTIMATE DETAIL REPORT No.1 Ver 3.9

PROJECT: Cresent Hill WTP Modifications DESIGN STAGE: Conceptual PROJECT No.: 346133.01.A!

ESTIMATOR: D. Jones / GNV ESTIMATE No.: REV No./DATE: Rev. 1 10/9/06

DESCRIPTION		MATERIALS	CRE RATE	MH	LABOR	EQUIPMENT	INSTL S/C	TOTAL DIRECT	TOTAL W/MRKUPS
14 High Service Pump Opt 1 MECHANICAL									
150600140102042 42" Meg-a-Lug Series 1100 Kit For DIP	Unit Costs> 4.00 EA	3385.69 \$13,543	PIPE01 50.29	25.400 102	1277.45 \$5,110	179.54 \$718		4842.69 \$19,371	7213.66 <b>\$28,855</b>
Subtotal Markups using GC-MK		\$302,923 \$148,311			\$41,379 \$20,259	\$7,716 \$3,778	\$22,000 \$10,771	\$374,018	\$183,119
TOTAL 15000 MECHANICAL 1.00 LS		\$451,234		798	\$61,639	\$11,493	\$32,771	\$374,018	\$557,137
1.00 LS	L								\$0.00

CH2M HILL, Inc. Property of CH2M HILL, Inc. All Rights Reserved - Copyright 2004

# Appendix E Sanitary Surveys

Drinking Water Data Revision Code: #041205 (To be changed by Central Office Staff only) SANITARY SURVEY CODE: 83 **INSPECTOR EMPLOYEE CODE:** PWSID: #0560258A Plant Name:Cresent Hill WTP Plant Contact:Jack Wang Plant Type: C (community) Plant Class: IV (>3 MGD) Distribution Class: IVD-Pop. >50.000 County: Jefferson Phone Number: 502/569-3600 Fax Number:502-569-0813 E- Mail Address:jwang@lwcky.com Service Connections: 269,488 System Population Served: 889,310 Total No. Purchasers:9 Total Population Served:953,066 Treatment Primary Source: Ohio River Secondary Source: Maximum Pumping Rate: 166.666gpm Plant Capacity MGD:240 MGD Filter Design Rate: 3gal/min/ft2 Total Storage Capacity (gallons):90 MG Pre-sedimentation Size: 110 MG Aeration Code: Sedimentation (Primary) Code:B-Conventional/Baffled Basin Sedimentation 2 (if 2 different processes) Type: Filter (Primary) Code:M-High Rate/Mixed (sand/gamite/anthracite) Filter 2 (if 2 different filter types) Type: Clear well Size (gallons):25 MG (14 chambers) Chemicals Pre-Disinfection/Treatment Code: G-Chlorine Gas Post-Disinfection Code: A-Chloramines Primary Coagulant Code:F-Ferric/Lime Secondary Coagulant (Name): P-Polymer Filter Aid Name:Polydyne Corrosion Control Code:L-pH adjustment/Lime Taste and Odor Code:C-Activated Carbon/Powdered Softening Code: Iron (and Manganese) Removal Code: Fluoride Supplement Code: A-Hydrofluosilicic Acid Other Code: Other Name:KMnO4 for Zebra Mussel control Legend - NA - Not Applicable NI - Not Inspected

#### . Administrative Requirements

#### omments:

ompliance Status - No violations observed

I. Operator Certification/Accreditation Requirements

#### (Check with Certification Section or in TEMPO)

Plant Class	Plant Capacity (MGD)	Hours operated (annual average)	Shifts Operated (per day)	Operator Class Required Plant Distribution
IVA Plant A (Cresent Hill)	240 MGD	24 hours a day		IVA IVD
IVA Plant B (Payne)	60 MGD	24 hours a day		

Does the plant have operators with the appropriate class certificate? Yes 🛛 No 🗌 Are the certifications up-to-date? Yes 🖾 No 🗍 Does the system appear well operated and maintained? Yes 🖾 No 🗍

Operator Name	Plant Certification #	<b>Distribution Certification #</b>
Charles Snider	IVA 712	
David Austin	IVA 983	
Derrick Carr	TVA 1601	······································
Jack Wang	IVA 82	IVD 1903
John Fitzgerald	IVA 1174	
Joseph Horrell	IVA 406	
Jeremy Nicheols	IVA 1020	IVD 2917
Richard Smith	IVA 1720	

List Operators and certification numbers:

Comments: Robert Blume IVA 755; Robert Calloway IVA 909/IVD 2788; Shawn Goodlett IVA 575; Tammy Lentz IVA 1045; Timothy Meyer IVA 250; Troy Hainline IVA 1043; William Lannan IVA 1187; Harold Hurt IVD 2679; Mark Campbell IVA 433; Morris Manley IVD 2479; Paul Barker IVA 581; Susan Dougherty IVD 3135; Bradley McBride IVD 12642; Brenda Lucas IIID 9619; Rengao Song IVA 1826; Richard Wheeler IVA 120; Rhonda Thorne IVA 613; Monica Ottens-Settles IVA 161; Roger Tucker IVA 446; Billy Meeks IVD 2642; Eric Ayers IVD 3056; Tom Metcalf IID 3071; Vincent Ilari IVA 961/IVD 2647; Phillip Scott IVA 1168/IVD 3083; Ruth Lancaster IVA 12808; Cynthia Crawford IVA 12691; Dale Hall IVD 13201; Gary Mason IVA 10218; Clifford Buechell IVA 1722/IVD 3709; Donna Harrett IIID 13754; Michael Magee IVD 13635; Angelita Schaftlein IVA 9881

Compliance Status - No violations observed

III. Record Keeping Requirements

	Drinking Water Data (To be changed by Central Office Staff only)	Revision Code: #041205
SANITARY SURVEY INSPECTOR EMPLO	CODE: 83 YEE CODE:	
PWSID: #0560258E	B Plant Name:BE Payne WTP Plant Contact:Jack t Class:IV (>3 MGD)	Wang Plant Type:
Distribution Class: Number: E-	IVD-Pop. >50,000 County: Jefferson Phone Nun Mail Address:	nber:502/569-3600 Fax
Service Connection Total No. Purchase	s:269,488 System Population Served:889,310 rs:9 Total Population Served:953,066	
Treatment Primary Source:Ob Rate:41,666 gpm Plant Capacity MG	io River Secondary Source:Riverbank Infiltration D:60 MGD Filter Design Rate: 5gal/min/ft2 Tota	Well Maximum Pumping al Storage Capacity (gallons):90
Pre-sedimentation : Sedimentation (Print processes) Type:	Size: Aeration Code: mary) Code:B-Conventional/Baffled Basin Sedime	entation 2 (if 2 different
Filter (Primary) Co Type: Clear well Size (gal	ode:M-High Rate/Mixed (sand/garnite/anthracite) Fi	ilter 2 (if 2 different filter types)
Chemicals Pre-Disinfection/Tr Primary Coagulant Name:	eatment Code:G-Chlorine Gas Post-Disinfection ( Code:L-Ferric/Lime/Polymer Secondary Coagula	Code: A-Chloramines nt (Name): Filter Aid
Corrosion Control Softening Code:L-L	Code:L-pH adjustment/Lime Taste and Odor Cod	e:C-Activated Carbon/Powdered
Iron (and Mangane Other Code: Other	se) Removal Code: Fluoride Supplement Code:/ : Name:	A-Hydrolluosuicic Acid

-----

# I. Administrative Requirements

## Comments:

Compliance Status - No violations observed

II. Operator Certification/Accreditation Requirements



### (Check with Certification Section or in TEMPO)

Plant Class	Plant Capacity (MGD)	Hours operated (annual average)	Shifts Operated (per day)	Operator Class Required Plant Distribution
IVA Plant A (Cresent Hill)	240 MGD	24 hours a day	•	IVA IVD
IVA Plant B (Payne)	60 MGD	24 hours a day		IVA IVD

Does the plant have operators with the appropriate class certificate? Yes 🖾 No 🗌 Are the certifications up-to-date? Yes 🖾 No 🗍 Does the system appear well operated and maintained? Yes 🖾 No 🗍

List Operators and certification numbers:

Operator Name	Plant Certification #	<b>Distribution Certification #</b>
See Plant A		

**Comments:** See Plant A

Compliance Status - No violations observed

III. Record Keeping Requirements