Exhibit A

ſ

,

ï

ţ

5 11	Lake VIIIage Water . LVWA - Ison Lane S	Association Inc Standpipe Rehabilitation Project		
Project Number:	WX21167038	View Map	Submitted By:	BGADD
Funding Status:	Partially Funded		Primary County:	Mercer
Project Status:	Approved		Planning Unit:	Unit 4
Project Schedule:	0-2 Years		Multi-County:	No
E-Clearinghouse SAI:	KY202411211616		ECH Status;	Approved
Applicant Entity Type:	Water Association	A	DD WMC Contact:	Casey Cash
Date Approved (AWMPC):	04-19-2024			

Project Description:

Recent inspection revealed that corrosion is beginning to occur along the seams of the glass lined standpipe. The boits at the seams will be replaced and new mastic covering will be placed on the seams.

Need for Project:

Briefly describe how this project promotes public health or achieves and/or maintains compliance with the Clean Water Act or Safe Drinking Water Act: Project is necessary in order to maintain current infrastructure.

Project Alternatives:			
Alternate A:			
Construct a new tank.			
Alternate B;			

Legal Applicant:

Entity Type: Water Association	P	SC Group ID: 34800	
Entity Name: Lake Village Water A	ssociation Inc		
Web URL:			
Office EMail:			
Office Phone: 859-748-5642	Toll Free:	Fax: 859-748-9114	
Mail Address Line 1: PO Box 303		Phys Address Line 1: 801 Pleasant Hill D	r
Mail Address Line 2:		Phys Address Line 2:	
Mail City, State Zip: Burgin, KY 40310		Phys City, State Zip: Burgin, KY 40310	
Contact: Mike Sanford	Financial Contact:	Auth Officia	il: James Boyd
Contact Title: Manager	Financial Contact Title:	Auth Official Title	e: President
Contact EMail:	Financial Contact EMail:	Auth Official EMa	il: mlke@lakevillagewater.org
Contacl Phone: 859-748-5642	Financial Contact Phone:	Auth Official Phone	e: 859-748-5642
Data Source; Kentucky Infrastructure A	uthority		Date Last Modified: 06.06.2022
Project Administrator (PA) Information		Applicant Contact (AC) Information	L
Name: Mike D Sanford		Name: Mike D Sanford	
Title: Manager		Title: Manager	
Organization: Mercer County Sanitation	n District	Organization; Mercer County Sanit	ation District
Address Line 1: PO Box 303		Address Line 1: PO Box 303	
Address Line 2:		Address Line 2:	
City: BurgIn State: KY Zip: 40	310	City: Burgin State: KY Zip	o: 40310
Phone: 859-748-5642 Fax: 859-74	48-9114	Phone: 859-748-5642 Fax: 8	59-748-9114

Project Engineer (PE) Information:

V This project	This project requires a licensed Professional Engineer.			
🗸 A Professi	onal Engineer has be	en procured for this pro	oject.	
Project Engl	neer Information:			
License No:	PE 27052			
PE Name:	Elizabeth Ann Dien	st		
Phone:	608-251-4843	Fax: 608-251-8655		
E-Mail:	liz.dienst@strand.d	om		
Firm Name:				
Addr Line 1:	Ste 100			
Addr Line 2:	1525 Bull Lea Rd			
Addr Line 3:				
City:	Lexington	State: KY	Zip: 40511	
Status:	Current	Disciplinary Actions:	NO	
Issued:	01-12-2010	Expires:	06-30-2027	
103000.	01-12-2010	Explies.	00-30-2021	

Estimated Budget

Project Cost Categories:		Construction Cost Categories:	
Cost Category	Cost	Cost Category	Cost
Administrative Expenses:		Treatment:	
Legal Expenses:	1	Transmission & Distribution:	
Land, Appraisals, Easements:		Lead Remediation:	
Relocation Expenses & Repayments:		Source:	
Planning:		Storage:	\$ 100,000
Engineering Fees - Design:	-	Purchase of Systems:	-
Engineering Fees - Construction:		Restructuring:	
Engineering Fees - Inspection:		Land Acquisition:	
Engineering Fees - Other:		Non-Categorized:	:
Construction:	\$ 100,000	Total ConstructionCost:	\$ 100,000
Equipment:			
Miscellaneous;	i.	Total Sustainable Infrastructure Costs:	reach a
Contingencies;		Note: Total Sustainability Infrastructure Costs	
Total Project Cost:	\$ 100,000	within construction and other costs reported in This breakout is provided for SRF review purp	
Project Funding Sources:		Estimated Project Schedule:	
Total Project Cost: \$100,000		Est. Environmental Review Submittal Date	e;

Funding Gap: \$ 27,411 Estimated Construction Start Date: Estimated Construction Completeion Date: 02-01-2025

\$ 72,589

O This project will be requesting SRF funding for fiscal year 2026.

Funding Source	Loan or Fiscal Grant ID Year	Amount	Status	Applicable Date
22HB001 Cleaner Water Program (FY 2023)	22CWW373 2023	\$ 72,589	Commilled	06-07-2024
	Total Comitted Funding:	\$ 72,589		

Funding Source Notes:

Total Committed Funding:

The following systems are beneficiaries of this project:

✓ KY0840587 Lake Village Water Association

Note: Check mark indicates primary system for this project.

Estimated Bid Date:

12-01-2024

01-02-2025

Drinking Water Project Profile

WX21167038 - Lake Village Water Association Inc. LVWA - Ison Lane Standpipe Rehabilitation Project

Project Ranking by AWMPC:

Regional Ranking(s):

Planning Unit Ranking:

Total Points:

- O Plans and specs have been sent to DOW.
- O Plans and specs have been reviewed by DOW.
- O Plans and specs have been sent to PSC.

Countles

District Name

Congressional 6 Andy Barr

House 055

Senate 12

HUC Code

0510020505

Mercer

O Plans and specs have been reviewed by PSC.

Economic, Demographic and Geographic Impacts

HUC 10 Watersheds

Lower Dix River

Watershed Name

Economic i	mpacts]	
Jobs Create	ed:		
Jobs Relaine	ed:]	
*Demograph	ic Impacts	(GIS Census	Overlay)
Servceable Demographic	Project Area	Included	Included

Demographic	Area	Systems	Utilities
Population:		5,510	5,510
Households:		2,187	2,187
MHI:	_	\$70,476	*\$70,476
MHI MOE		\$9,703	*\$9,703
MOE as Pct:		14.0%	14.0%
**NSRL:		0	0

Population and household counts are based on 2010 census block values from the SF1 (100%) dataset.

MHI Source is from the American Community Survey 2019-2023 5 Yr Estimates (Table B19013 *(for the primary system operated by the above listed beneficiary utilities).

MHI MOE = Med HH Income Margin of Error.

- ** NSRL (Non-Standard Rate Levels):
- 0 = Income above Kentucky MHI (KMHI).
- 1 = Income between 80% KMHI and KMHI,
- 2 = Income less than or equal to 80% KMHI.
- KMHI = \$62,417
- 80% KHMI = \$49,934

New Customers		
New Residential Customers:		
New Commercial Customers:		
New Institutional Customers:		
New Industrial Customers:	-	

New or Improved Service			
Service Demographic	Survey Based	Census Overlay*	
To Unserved Households:	1		
To Underserved Households:			
To Total Households:			
** Cost Per Household:			

GIS Census block overlay figures are estimates of population and households potentially served by systems and projects based on a proximity analysis of relevant service lines to census block boundaries.

** Cost per household is based on surveyed household counts, not GIS overlay values.

Geographic Impacts For Project Area			Geographic Impacts For Included System(s)		
ountles :er			Counties Boyle		
Legislative Districts			Mercer		
trict Name	Legislator	71	Legislative Districts		
se 055	Kim King		District Name	Legislator	
ate 12	Amanda Mays Bledsoe		House 054	Daniel Elliott	
gressional 6	Andy Barr		House 055	Kim King	
Groundwater Sensitivity Zones		7	Senale 12	Amanda Mays Bledsoe	
			Congressional 1	James Comer	
HUC 10 Watersheds			Congressional 6	Andy Barr	

Kentucky Infrastructure Authority

DW Specific Impacts

- O This project will assist a non-compliant system to achieve compliance.
- O This project will assist a compliant system to meet future requirements.
- O This project will provide assistance not compliance related.
- O This project is necessary to achieve full or partial compliance with a court order, agreed order, or a judicial or administrative consent decree.
- Primary system has not received any SDWA Notices of Violation within the previous state fiscal year-July through June, i.e. July 2014 June 2015).

Primary system has had an action level exceedance (lead concentrations exceed an action level of 15 ppb in more than 10% of customer taps sampled) within the last compliance period.

Primary system has received a lead trigger level exceedance (lead concentrations exceed a trigger level of 10 ppb in more than 10% of customer taps sampled) within the last compliance period.

Project Readiness - Lead Inventory and Lead Service Line Replacement:

Lead Service Line Inventory:

O A description of goals to be achieved and products to be created (e.g., electronic or GIS database; customer communication lools) when creating a lead service line inventory procedure, including a proposed timeline for achieving each goal.

Lead Service Line Replacement:

() A strategy for informing customers before a LSLR and a template for an agreement with the private property owner to replace the LSL.

A process for documenting all property owners declining replacement of privately owned portion of LSL.

A procedure for customers to flush service lines and premise plumbing of particulate lead.

A proposed plan for conducting LSL replacement utilizing all requested funding.

A funding strategy for conducting LSLRs utilizing all requested funding.

Project Components - Mapped Point Features DOW Existing Proposed Units Permit ID Count Capacity FeatureType Purpose Status Capacity BOLTS TO BE REPLACED AND KY0840587 WATER TANK REHAB MASTIC COVERING ON SEAMS Administrative Components: O Planning O Design Construction Management Audits on Record Associated With Applicant Audlt Entity Relationship Entity Name Year

Regionalization Components and Eliminated Systems/Plants:

Public Water Systems Eliminated:

O This project includes the elimination of public water system(s) through merger or acquisition.

Water Treatment Plants Eliminated:

O This project includes the elimination of water treatment plant(s).

Supplementation of Raw Water Supply:

O This project includes supplementing the existing raw water supply.

Supplementation of Potable Water Supply:

() This project includes supplementing the existing potable water supply.

Drinking Water Project Profile

WX21167038 - Lake Village Water Association Inc LVWA - Ison Lane Standpipe Rehabilitation Project

Supplementation of Emergency Water Supply:

O This project includes supplementing the existing emergency water supply.

Water Source Protection

- This project will preventatively address PFAS or other emerging contaminants of the source water.
- O This project will address current PFAS or other emerging contaminants of the source water.
- O This project rehabilitates a water source dam or reservior.
- O This project includes land acquisition for water source protection.

Water Treatment Components

○ This project includes water treatment components.

Water Distribution and Storage Components:

This project includes water distribution and/or storage components.

Water Line Extensions:

- This project includes water line extension(s).
 - This projects extends service to unserved rural areas.

Redundancy Components:

- O This project includes emergency power generators for distribution and/or storage activities.
- This project includes redundant distribution and/or storage processes.

Finished Water Quality:

O This project includes infrastructure to address inadequate water turnover and disinfection byproducts (DBPs).

Service Line Inventory:

- O This project includes implementation of a service line inventory.
 - Incorporates GIS procedures or methods to record the service line inventory.
 - Service line inventory replacement will be integrated into asset management planning.

Water Line Replacement:

- O This project replaces problem water lines (breaks, leaks, or restrictive flows due to age), water lines consisting of lead and/or asbestos-cement (AC), and/or inadequately sized water lines.
- In-line or in-situ repair medhods will be used in lieu of water line replacement.

Total length of in-place or in-line repair (LF):

O This project replaces lead service lines.

Water Loss in the past 12 Months:

The system has experienced the following water loss over the past 12 months:

Water Loss Volume (MG): 58.755

Water	Loss	Percent	(%):	28.000
-------	------	---------	------	--------

Water Storage and Pressure Components:

- O This project includes the construction of new water tank(s).
- O This project includes the replacement of existing water tank(s).
- This project includes the rehabilitation of existing water tank(s).
 - Number of rehabilitated lanks:
- O This project includes the construction of new pump station(s).
- O This project includes the rehabilitation of existing pump station(s).

Security:

O This project includes securily components for water distribution infrastructure.

1

Sustainable Infrastructure - Green Infrastructure:

Green stormwater infrastructure includes a wide array of practices at multiple scales that manage wet weather and that maintains and restores natural hydrology by infiltrating, evapotranspiring and harvesting and using stormwater. On a regional scale, green infrastructure is the preservation and restoration of natural landscape features, such as forests, floodplains, and wetlands, coupled with policies such as infill and redevelopment that reduce overall imperviousness in a watershed. On the local scale, green infrastructure consists of site and neighborhood-specific practices, such as:

Com	ponent	Cost
Bioretention		\$0
Trees		\$0
Green Roofs		\$0
Permeable Pavement		\$0
Cisterns		\$0
	Total Green Infrastructure Cost:	\$0
There are no Green Infrastructure components s	pecified for this project.	· · · · · · · · · · · · · · · · · · ·

Sustainable Infrastructure - Water Efficiency:

The use of improved technologies and practices to deliver equal or better services with less water. Water efficiency encompasses conservation and reuse efforts, as well as water loss reduction and prevention, to protect water resources for the future. Examples include:

Component	Cost
Installing or retrofitting water efficient devices such as plumbing fixtures and appliances (toilets, showerheads, urinals).	\$0
Installing any type of water meter in previously unmetered areas (can include backflow prevention if in conjunction with meter replacement).	\$0
Replacing existing broken/malfunctioning water meters with AMR or smart meters, meters with leak detection, backflow prevention.	\$0
Retrofitting/adding AMR capabilities or leak equipment to existing meters.	\$0
Conducting water utility audits, leak detection studies, and water use efficiency baseline studies, which are reasonably expected to result in a capital project or in a reduction in demand to alleviate the need for additional capital investment.	\$0
Developing conservation plans/programs reasonable expected to result in a water conserving capital project or in a reduction in demand to alleviate the need for capital investment.	\$0
Recycling and water reuse projects that replace potable sources with non-potable sources (Gray water, condensate, and wastewater effluent reuse systems, extra treatment or distribution costs associated with water reuse).	\$0
Retrofit or replacement of existing landscape irrigation systems to more efficient landscape irrigation systems.	\$0
Water meter replacement with traditional water meters.*	\$0
Distribution pipe replacement or rehabilitation to reduce water loss and prevent water main breaks.*	\$0
Storage tank replacement/rehabilitation to reduce water loss.*	\$0
New water efficient landscape irrigation system, where there currently is not one.*	\$0
Total Water Efficiency Cost:	\$0
* Indicates a business case may be required for this item.	
There are no Water Efficiency components specified for this project	

There are no Water Efficiency components specified for this project.

Sustainable Infrastructure - Energy Efficiency:

Energy efficiency is the use of improved technologies and practices to reduce the energy consumption of water projects, use energy in a more efficient way, and/or produce/utilize renewable energy. Examples include:

 Component	Cost
Renewable energy projects, which are part of a public health project, such as wind, solar, geothermal, and micro-hydroelectric that provides power to a utility.	\$0
Utility-owned or publicly-owned renewable energy projects.	\$0
Utility energy management planning, including energy assessments, energy audits, optimization studies, and sub-metering of individual processes to determine high energy use areas.	\$0
Energy efficient retrofits, upgrades, or new pumping systems and treatment processes (including variable frequency drives (VFDs).*	\$0
Pump refurbishment to optimize pump efficiency.*	\$0
Projects that resull from an energy efficient related assessment,*	\$0
Projects that cost effectively eliminate pumps or pumping stations.*	\$0
Projects that achieve the remaining increments of energy efficiency in a system that is already very efficient.*	\$0
Upgrade of lighting to energy efficient sources.*	\$0
Automated and remote control systems (SCADA) that achieve substantial energy savings.*	\$0
 Total Energy Efficiency Cost:	\$0

* Indicates a business case may be required for this item.

There are no Energy Efficiency components specified for this project.

Sustainable Infrastructure - Environmentally Innovative:

Environmentally innovative projects include those that demonstrate new and/or innovative approaches to delivering services or managing water resources in a more sustainable way. Examples include:

	Component	Cost
Total	integrated water resources management planning, or other planning framework where project life cycle are minimized, which enables communities to adopt more efficient and cost-effective infrastructure ions.	\$0
D Plans	s to improve water quantity and quality associated with water system technical, financial, and managerial city.	\$0
Source	ce water protection planning (delineation, monitoring, modeling).	\$0
🛛 Planr	ning activities to prepare for adaptation to the long-term effects of climate change and/or extreme weather.	\$0
🗋 Utility	y sustainability plan consistent with EPA's sustainability policy.	\$0
	nhouse gas inventory or mitigation plan and submission of a GHG inventory to a registry as long as it is a done for an SRF eligible facility.	\$0
🗋 Cons	struction of US Building Council LEED certified buildings, or renovation of an existing building.	\$0
🛛 Proje	cts that significantly reduce or eliminate the use of chemicals in water treatment.*	\$0
	tment technologies or approaches that significantly reduce the volume of residuals, minimize the ration of residuals, or lower the amount of chemicals in the residuals.*	\$0
🗌 Trend	chless or low impact construction technology.*	\$0
🗌 Using	g recycled materials or re-using materials on-site.*	\$0
🗌 Educ	ational activities and demonstration projects for water or energy efficiency (such as rain gardens).*	\$0
🗌 Proje	ects that achieve the goals/objectives of utility asset management plans.*	\$0
	Total Environmentally Innovative Cost:	\$0

* Indicates a business case may be required for this item.

There are no Environmentally Innovative components specified for this project.

Sustainable Infrastructure - Asset Management:

If a category is selected, the applicant must provide proof to substantiate claims. The documents must be submitted to Anshu Singh (Anshu.Singh@ky.gov) for CW projects

Component

Last Rate Adjustment Date: 10-05-2023 Download Fee Schedule

Rate Adjustment Age: 15 months

System's monthly water bill, based on 4,000 gallons, as a percentage of MHI: 0.92%

The system(s) has an Asset Management Plan (AMP).

The system(s) involved in this project have specifically allocated funds for the rehabilitation and replacement of aging and deteriorating infrastructure.

Project Status:	Approved	Date Approved: 04-19-2024	Date Revised:	