

Generation Interconnection Feasibility Study Report for

Queue Project AG1-341
SUMMER SHADE 161 KV
63.6 MW Capacity / 106 MW Energy

Table of Contents

1	In	troduction	4
2	Pr	reface	4
3	Ge	eneral	5
4	Po	oint of Interconnection	6
5	Co	ost Summary	6
6	Tr	ransmission Owner Scope of Work	7
6	.1	Attachment Facilities	7
6	.2	Direct Connection Cost Estimate	7
6	.3	Non-Direct Connection Cost Estimate	7
7	In	nterconnection Customer Requirements	8
8	Re	evenue Metering and SCADA Requirements	9
8	.1	PJM Requirements	9
8	.2	Meteorological Data Reporting Requirements	9
8	.3	Interconnected Transmission Owner Requirements	9
9	Su	ummer Peak - Load Flow Analysis - Primary POI	10
9	.1	Generation Deliverability	11
9	.2	Multiple Facility Contingency	11
9	.3	Contribution to Previously Identified Overloads	11
9	.4	Potential Congestion due to Local Energy Deliverability	11
9	.5	System Reinforcements - Summer Peak Load Flow - Primary POI	13
9	.6	Flow Gate Details - Primary POI	14
	9.	6.1 Index 1	15
	9.	6.2 Index 2	17
9	.7	Queue Dependencies - Primary POI	19
9	.8	Contingency Descriptions - Primary POI	20
10		Short Circuit Analysis - Primary POI	22
11		Summer Peak - Load Flow Analysis - Secondary POI	23
1	1.1	Generation Deliverability	24
1	1.2	2 Multiple Facility Contingency	24
1	1.3	Contribution to Previously Identified Overloads	24
1	1.4	Potential Congestion due to Local Energy Deliverability	25

11.5 F	low Gate Details - Secondary POI	26
11.5.1		
11.5.2	Index 2	28
11.5.3	Index 3	29
11.5.4	Index 4	30
11.5.5	Index 5	31
11.5.6		
11.5.7	' Index 7	33
11.5.8		
11.6 C	ontingency Descriptions - Secondary POI	37
12 Affe	ected Systems	40
12.1 T	VA	40
12.2 D	Duke Energy Progress	40
12.3 M	11SO	40
12.4 L	G&E	40

1 Introduction

This Feasibility Study has been prepared in accordance with the PJM Open Access Transmission Tariff, 36.2, as well as the Feasibility Study Agreement between the Interconnection Customer (IC), and PJM Interconnection, LLC (PJM), Transmission Provider (TP). The Interconnected Transmission Owner (ITO) is EKPC.

2 Preface

The intent of the feasibility study is to determine a plan, with ballpark cost and construction time estimates, to connect the subject generation to the PJM network at a location specified by the Interconnection Customer. The Interconnection Customer may request the interconnection of generation as a capacity resource or as an energy-only resource. As a requirement for interconnection, the Interconnection Customer may be responsible for the cost of constructing: (1) Direct Connections, which are new facilities and/or facilities upgrades needed to connect the generator to the PJM network, and (2) Network Upgrades, which are facility additions, or upgrades to existing facilities, that are needed to maintain the reliability of the PJM system.

In some instances a generator interconnection may not be responsible for 100% of the identified network upgrade cost because other transmission network uses, e.g. another generation interconnection, may also contribute to the need for the same network reinforcement. Cost allocation rules for network upgrades can be found in PJM Manual 14A, Attachment B. The possibility of sharing the reinforcement costs with other projects may be identified in the feasibility study, but the actual allocation will be deferred until the impact study is performed.

The Interconnection Customer seeking to interconnect a wind or solar generation facility shall maintain meteorological data facilities as well as provide that meteorological data which is required per Schedule H to the Interconnection Service Agreement and Section 8 of Manual 14D.

An Interconnection Customer with a proposed new Customer Facility that has a Maximum Facility Output equal to or greater than 100 MW shall install and maintain, at its expense, phasor measurement units (PMUs). See Section 8.5.3 of Appendix 2 to the Interconnection Service Agreement as well as section 4.3 of PJM Manual 14D for additional information.

The Feasibility Study estimates do not include the feasibility, cost, or time required to obtain property rights and permits for construction of the required facilities. The project developer is responsible for the right of way, real estate, and construction permit issues. For properties currently owned by Transmission Owners, the costs may be included in the study.

3 General

The Interconnection Customer (IC), has proposed a Solar; Storage generating facility located in Metcalfe County, Kentucky. The installed facilities will have a total capability of 106 MW with 63.6 MW of this output being recognized by PJM as Capacity.

The proposed in-service date for this project is June 15, 2023. This study does not imply a TO commitment to this in-service date.

Queue Number	AG1-341						
Project Name	SUMMER SHADE 161 KV						
State	Kentucky						
County	Metcalfe						
Transmission Owner	EKPC						
MFO	106						
MWE	106						
MWC	63.6						
Fuel	Solar; Storage						
Basecase Study Year	2024						

Any new service customers who can feasibly be commercially operable prior to June 1st of the basecase study year are required to request interim deliverability analysis.

4 Point of Interconnection

AG1-341 will interconnect with the EKPC transmission system along one of the following Points of Interconnection:

Primary POI: Summer Shade 161 kV substation.

Secondary POI: Summer Shade 69 kV substation.

5 Cost Summary

The AG1-341 project will be responsible for the following costs:

Description	Total Cost
Total Physical Interconnection Costs	
Total System Network Upgrade Costs	
Total Costs	

This cost excludes a Federal Income Tax Gross Up charges. This tax may or may not be charged based on whether this project meets the eligibility requirements of IRS Notice 2016-36, 2016-25 I.R.B. (6/20/2016). If at a future date it is determined that the Federal Income Tax Gross charge is required, the Transmission Owner shall be reimbursed by the Interconnection Customer for such taxes.

Cost allocations for any System Upgrades will be provided in the System Impact Study Report.

6 Transmission Owner Scope of Work

The total physical interconnection costs is given in the table below:

6.1 Attachment Facilities

The total preliminary cost estimate for the Attachment work is given in the table below. The costs do not included CIAC Tax Gross-up.

Description	Total Cost
Install necessary equipment (a 161 kV isolation switch	
structure and associated switch, plus interconnection	
metering, fiber-optic connection and telecommunications	
equipment, circuit breaker and associated switches, and	
relay panel) at the existing Summer Shade substation, to	
accept the IC generator lead line/bus (Estimated time to	
implement is 12 months)	
Total Attachment Facility Costs	

6.2 Direct Connection Cost Estimate

The total preliminary cost estimate for the Direct Connection work is given in the table below. The costs do not included CIAC Tax Gross-up.

Description	Total Cost
None.	
Total Direct Connection Facility Costs	

6.3 Non-Direct Connection Cost Estimate

The total preliminary cost estimate for the Non-Direct Connection work is given in the table below. The costs do not included CIAC Tax Gross-up.

Description	Total Cost
None.	
Total Non-Direct Connection Facility Costs	

7 Interconnection Customer Requirements

It is understood that the Interconnection Customer (IC) is responsible for all costs associated with this interconnection. The costs above are reimbursable to the Transmission Owner. The cost of the IC's generating plant and the costs for the line connecting the generating plant to the Point of Interconnection are not included in this report; these are assumed to be the IC's responsibility.

The Generation Interconnection Agreement does not in or by itself establish a requirement for the Transmission Owner to provide power for consumption at the developer's facilities. A separate agreement may be reached with the local utility that provides service in the area to ensure that infrastructure is in place to meet this demand and proper metering equipment is installed. It is the responsibility of the developer to contact the local service provider to determine if a local service agreement is required.

- An Interconnection Customer entering the New Services Queue on or after October 1, 2012 with a
 proposed new Customer Facility that has a Maximum Facility Output equal to or greater than 100 MW
 shall install and maintain, at its expense, phasor measurement units (PMUs). See Section 8.5.3 of
 Appendix 2 to the Interconnection Service Agreement as well as section 4.3 of PJM Manual 14D for
 additional information.
- 2. The Interconnection Customer may be required to install and/or pay for metering as necessary to properly track real time output of the facility as well as installing metering which shall be used for billing purposes. See Section 8 of Appendix 2 to the Interconnection Service Agreement as well as Section 4 of PJM Manual 14D for additional information.

8 Revenue Metering and SCADA Requirements

8.1 PJM Requirements

The Interconnection Customer will be required to install equipment necessary to provide Revenue Metering (KWH, KVARH) and real time data (KW, KVAR) for IC's generating Resource. See PJM Manuals M-01 and M-14D, and PJM Tariff Section 8 of Attachment O.

8.2 Meteorological Data Reporting Requirements

The solar generation facility shall provide the Transmission Provider with site-specific meteorological data including:

- Back Panel temperature (Fahrenheit) (Required for plants with Maximum Facility Output of 3 MW or higher)
- Irradiance (Watts/meter2) (Required for plants with Maximum Facility Output of 3 MW or higher)
- Ambient air temperature (Fahrenheit) (Accepted, not required)
- Wind speed (meters/second) (Accepted, not required)
- Wind direction (decimal degrees from true north) (Accepted, not required)

8.3 Interconnected Transmission Owner Requirements

The IC will be required to comply with all Interconnected Transmission Owner's revenue metering requirements for generation interconnection customers located at the following link:

http://www.pjm.com/planning/design-engineering/to-tech-standards/

9 Summer Peak - Load Flow Analysis - Primary POI

The Queue Project AG1-341 was evaluated as a 106.0 MW (Capacity 63.6 MW) injection at the Summer Shade 161 kV substation in the EKPC area. Project AG1-341 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AG1-341 was studied with a commercial probability of 53.0 %. Potential network impacts were as follows:

9.1 Generation Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

None

9.2 Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

None

9.3 Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

ID	FROM BUS#	FROM BUS	kV	FRO M BUS AREA	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJECT LOADIN G %	POST PROJECT LOADIN G %	AC D C	MW IMPAC T
16535546 3	34228 7	2SOMERSE T KU	69.0	EKPC	32453 1	2FERGUSO N SO	69.0	LGEE	1	EKPC_P7 -1_COOP 161 DBL 2	towe r	105.0	107.61	111.23	DC	8.43
16535521 2	34271 8	5COOPER2	161. 0	EKPC	32414 1	5ELIHU	161. 0	LGEE	1	EKPC_P2 - 2_LAURE L CO 161	bus	277.0	110.21	114.65	DC	12.31
16535547 8	34271 8	5COOPER2	161. 0	EKPC	32414 1	5ELIHU	161. 0	LGEE	1	EKPC_P7 - 1_LAURL 161 DBL	towe r	277.0	110.47	114.91	DC	12.29

9.4 Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

	ID	FROM BUS#	FROM BUS	kV	FRO M BUS AREA	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAME	Type	Ratin g MVA	PRE PROJEC T LOADIN G %	POST PROJEC T LOADIN G %	AC D C	MW IMPAC T
164	54440 2	32401 0	7TRIMBL REAC	345. 0	LGEE	24800 0	06CLIFT Y	345. 0	OVE C	1	AEP_P1- 2_#363_16 82	operatio n	1451. 0	114.47	115.56	DC	15.71

ID	FROM BUS#	FROM BUS	kV	FRO M BUS AREA	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJEC T LOADIN G %	POST PROJEC T LOADIN G %	AC D C	MW IMPAC T
16942564 6	34271 8	5COOPER 2	161. 0	EKPC	32414 1	5ELIHU	161. 0	LGEE	1	EKPC_P2- 1_5LAUREL CO 161.00 TO 5LAUREL DAM 161.00	operatio n	277.0	110.16	114.61	DC	12.33
16942559 1	34273 3	5GREEN CO	161. 0	EKPC	34156 3	2GREEN CO	69.0	EKP C	1	EKPC_P1- 2_GRE-TAY- MAR161-C	operatio n	90.0	99.49	102.4	DC	5.81
16942576 1	34275 7	5LAUREL DAM	161. 0	EKPC	34275 4	5LAURE L CO	161. 0	EKP C	1	EXT_B-69- 25	operatio n	200.0	99.52	100.99	DC	6.49

9.5 System Reinforcements - Summer Peak Load Flow - Primary POI

ID	ldx	Facility	Upgrade Description	Cost
165355463	1	2SOMERSET KU 69.0 kV - 2FERGUSON SO 69.0 kV Ckt 1	EKPC r0077 (2242): LGEE violation (non PJM area). EKPC emergency rating is 152 MVA. Project Type: FAC Cost: \$0 Time Estimate: 0.0 Months LGEE NonPJMArea (2250): The external (i.e. Non-PJM) Transmission Owner, LGEE, will not evaluate this violation until the impact study phase. Project Type: FAC Cost: \$0 Time Estimate: 0.0 Months	\$0
165355478,165 355212	2	5COOPER2 161.0 kV - 5ELIHU 161.0 kV Ckt 1	EKPC r0076 (2241): Increase the maximum operating temperature of the 795 MCM ACSR conductor in the Cooper-Elihu 161 kV line section to 275 degrees F (6.7 miles) Project Type: FAC Cost: \$660,000 Time Estimate: 9.0 Months LGEE NonPJMArea (2250): The external (i.e. Non-PJM) Transmission Owner, LGEE, will not evaluate this violation until the impact study phase. Project Type: FAC Cost: \$0 Time Estimate: 0.0 Months	\$660,000
			TOTAL COST	\$660,000

9.6 Flow Gate Details - Primary POI

The following indices contain additional information about each facility presented in the body of the report. For each index, a description of the flowgate and its contingency was included for convenience. The intent of the indices is to provide more details on which projects/generators have contributions to the flowgate in question. All New Service Queue Requests, through the end of the Queue under study, that are contributors to a flowgate will be listed in the indices. Please note that there may be contributors that are subsequently queued after the queue under study that are not listed in the indices. Although this information is not used "as is" for cost allocation purposes, it can be used to gage the impact of other projects/generators. It should be noted the project/generator MW contributions presented in the body of the report are Full MW Impact contributions which are also noted in the indices column named "Full MW Impact", whereas the loading percentages reported in the body of the report, take into consideration the PJM Generator Deliverability Test rules such as commercial probability of each project as well as the ramping impact of "Adder" contributions. The MW Impact found and used in the analysis is shown in the indices column named "Gendeliv MW Impact".

9.6.1 Index 1

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
165355463	342287	2SOMERSET KU	EKPC	324531	2FERGUSON SO	LGEE	1	EKPC_P7- 1_COOP 161 DBL 2	tower	105.0	107.61	111.23	DC	8.43

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
342900	1COOPER1 G	4.9218	50/50	4.9218
342903	1COOPER2 G	9.5458	50/50	9.5458
939131	AE1-143 C	5.4221	Adder	6.38
939132	AE1-143 E	2.6857	Adder	3.16
940045	AE1-246 C	5.4632	Adder	6.43
940046	AE1-246 E	2.6305	Adder	3.09
940831	AE2-071 C	1.6233	Adder	1.91
940832	AE2-071 E	1.0822	Adder	1.27
943701	AF1-038 C	8.3977	50/50	8.3977
943702	AF1-038 E	5.5985	50/50	5.5985
943821	AF1-050 C	2.5575	Adder	3.01
943822	AF1-050 E	1.7050	Adder	2.01
944151	AF1-083 C O1	2.5256	Adder	2.97
944152	AF1-083 E O1	1.6837	Adder	1.98
944511	AF1-116 C	6.0808	Adder	7.15
944512	AF1-116 E	4.0539	Adder	4.77
945381	AF1-203 C	0.9276	Adder	1.09
945382	AF1-203 E	0.6184	Adder	0.73
960741	AF2-365 C O1	1.5231	Adder	1.79
960742	AF2-365 E O1	1.0154	Adder	1.19
962221	AG1-067 C O1	0.9274	Adder	2.06
962222	AG1-067 E O1	0.4936	Adder	1.1
962241	AG1-070 C O1	1.2361	Adder	2.74
962242	AG1-070 E O1	0.2472	Adder	0.55
962251	AG1-071 C O1	1.4833	Adder	3.29
962252	AG1-071 E O1	0.3296	Adder	0.73
964781	AG1-341 C O1	2.2790	Adder	5.06
964782	AG1-341 E O1	1.5193	Adder	3.37
964891	AG1-353 C	2.3239	Adder	5.16
964892	AG1-353 E	1.5493	Adder	3.44
964901	AG1-354 C	3.2939	Adder	7.31
964902	AG1-354 E	2.1959	Adder	4.87
965401	AG1-405 C	10.6088	50/50	10.6088
965402	AG1-405 E	7.0726	50/50	7.0726
965411	AG1-406	6.8244	50/50	6.8244
966021	AG1-471 C O1	5.1635	50/50	5.1635
966022	AG1-471 E O1	3.4423	50/50	3.4423
966031	AG1-472 C	1.5310	Adder	3.4
966032	AG1-472 E	1.0207	Adder	2.27
966191	AG1-488 C O1	1.8353	Adder	4.07
966192	AG1-488 E O1	1.2236	Adder	2.72

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
WEC	WEC	0.0652	Confirmed LTF	0.0652
CPLE	CPLE	0.0628	Confirmed LTF	0.0628
LGE-0012019	LGE-0012019	5.0017	LTF	5.0017
CBM-W2	CBM-W2	5.1878	Confirmed LTF	5.1878
NY	NY	0.0426	Confirmed LTF	0.0426
TVA	TVA	1.3454	Confirmed LTF	1.3454
O-066	O-066	0.5048	Confirmed LTF	0.5048
SIGE	SIGE	0.0489	Confirmed LTF	0.0489
CBM-S2	CBM-S2	1.7957	Confirmed LTF	1.7957
CBM-S1	CBM-S1	0.2983	Confirmed LTF	0.2983
G-007	G-007	0.0788	Confirmed LTF	0.0788
MEC	MEC	0.5848	Confirmed LTF	0.5848
LAGN	LAGN	1.2705	Confirmed LTF	1.2705
CBM-W1	CBM-W1	2.5797	Confirmed LTF	2.5797

9.6.2 Index 2

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
165355478	342718	5COOPER2	EKPC	324141	5ELIHU	LGEE	1	EKPC_P7- 1_LAURL 161 DBL	tower	277.0	110.47	114.91	DC	12.29

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
342442	2W GLASGOW	0.0165	50/50	0.0165
342900	1COOPER1 G	10.1486	50/50	10.1486
342903	1COOPER2 G	19.7433	50/50	19.7433
342945	1LAUREL 1G	6.1423	50/50	6.1423
939131	AE1-143 C	9.9773	50/50	9.9773
939132	AE1-143 E	4.9420	50/50	4.9420
940045	AE1-246 C	9.3685	50/50	9.3685
940046	AE1-246 E	4.5107	50/50	4.5107
940831	AE2-071 C	2.5509	50/50	2.5509
940832	AE2-071 E	1.7006	50/50	1.7006
942411	AE2-254 C O1	1.3451	Adder	1.58
942412	AE2-254 E O1	0.8967	Adder	1.05
943701	AF1-038 C	6.6586	50/50	6.6586
943702	AF1-038 E	4.4390	50/50	4.4390
943821	AF1-050 C	4.5025	50/50	4.5025
943822	AF1-050 E	3.0017	50/50	3.0017
944151	AF1-083 C O1	4.5583	50/50	4.5583
944152	AF1-083 E O1	3.0389	50/50	3.0389
944511	AF1-116 C	11.1895	50/50	11.1895
944512	AF1-116 E	7.4597	50/50	7.4597
945381	AF1-203 C	1.4576	50/50	1.4576
945382	AF1-203 E	0.9718	50/50	0.9718
960741	AF2-365 C O1	2.2040	Adder	2.59
960742	AF2-365 E O1	1.4693	Adder	1.73
962221	AG1-067 C O1	2.8138	50/50	2.8138
962222	AG1-067 E O1	1.4977	50/50	1.4977
962241	AG1-070 C O1	3.8850	50/50	3.8850
962242	AG1-070 E O1	0.7770	50/50	0.7770
962251	AG1-071 C O1	4.6620	50/50	4.6620
962252	AG1-071 E O1	1.0360	50/50	1.0360
964781	AG1-341 C O1	7.3763	50/50	7.3763
964782	AG1-341 E O1	4.9176	50/50	4.9176
964891	AG1-353 C	7.8586	50/50	7.8586
964892	AG1-353 E	5.2391	50/50	5.2391
964901	AG1-354 C	10.7820	50/50	10.7820
964902	AG1-354 E	7.1880	50/50	7.1880
965401	AG1-405 C	3.9234	50/50	3.9234
965402	AG1-405 E	2.6156	50/50	2.6156
965411	AG1-406	2.5238	50/50	2.5238
966021	AG1-471 C O1	7.2990	50/50	7.2990
966022	AG1-471 E O1	4.8660	50/50	4.8660

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
966031	AG1-472 C	4.8624	50/50	4.8624
966032	AG1-472 E	3.2416	50/50	3.2416
966191	AG1-488 C O1	6.3433	50/50	6.3433
966192	AG1-488 E O1	4.2288	50/50	4.2288
WEC	WEC	0.0787	Confirmed LTF	0.0787
CPLE	CPLE	0.0874	Confirmed LTF	0.0874
LGE-0012019	LGE-0012019	7.7561	LTF	7.7561
CBM-W2	CBM-W2	7.4368	Confirmed LTF	7.4368
NY	NY	0.0868	Confirmed LTF	0.0868
TVA	TVA	2.0090	Confirmed LTF	2.0090
O-066	O-066	1.0364	Confirmed LTF	1.0364
SIGE	SIGE	0.0700	Confirmed LTF	0.0700
CBM-S2	CBM-S2	2.6726	Confirmed LTF	2.6726
CBM-S1	CBM-S1	0.4378	Confirmed LTF	0.4378
G-007	G-007	0.1617	Confirmed LTF	0.1617
MEC	MEC	0.7945	Confirmed LTF	0.7945
LAGN	LAGN	1.8725	Confirmed LTF	1.8725
CBM-W1	CBM-W1	3.0283	Confirmed LTF	3.0283

9.7 Queue Dependencies – Primary POI

The Queue Projects below are listed in one or more indices for the overloads identified in your report. These projects contribute to the loading of the overloaded facilities identified in your report. The percent overload of a facility and cost allocation you may have towards a particular reinforcement could vary depending on the action of these earlier projects. The status of each project at the time of the analysis is presented in the table. This list may change as earlier projects withdraw or modify their requests.

Queue Number	Project Name	Status
AE1-143	Marion County 161 kV	Engineering and Procurement
AE1-246	Barren County-Summer Shade 161 kV	Active
AE2-071	Patton Rd-Summer Shade 69 kV	Active
AE2-254	Garrard County-Tommy-Gooch 69 kV	Active
AF1-038	Sewellton Jct-Webbs Crossroads 69 kV	Active
AF1-050	Summer Shade - Green County 161 kV	Active
AF1-083	Green County-Saloma 161 kV	Active
AF1-116	Marion County 161 kV	Active
AF1-203	Patton Rd-Summer Shade 69 kV	Active
AF2-365	Munfordville KU Tap-Horse Cave Jct. 69 kV	Active
AG1-067	Temple Hill 69 kV	Active
AG1-070	Bon Ayr 69 kV	Active
AG1-071	Bon Ayr 69 kV	Active
AG1-341	Summer Shade 161 kV	Active
AG1-353	Greene County-Marion County 161 kV	Active
AG1-354	Summershade-Green County 161 kV	Active
AG1-405	Walnut Grove-Asahi 69 kV	Active
AG1-406	Walnut Grove-Asahi 69 kV	Active
AG1-471	Up Church-Wayne County 69 kV	Active
AG1-472	Seymour-Cave City 69 kV	Active
AG1-488	Marion IP 161 kV	Active

9.8 Contingency Descriptions - Primary POI

Contingency Name	Contingency Definition	
EKPC_P2-2_LAUREL CO 161	CONTINGENCY 'EKPC_P2-2_LAUREL CO 161' OPEN BUS 342754 /* 5LAUREL END	/* LAUREL 161 BUS CO
AEP_P1-2_#363_1682	CONTINGENCY 'AEP_P1-2_#363_1682' OPEN BRANCH FROM BUS 243208 TO BUS 243209 CKT 1 243209 05ROCKPT 765 1 END	/ 243208 05JEFRSO 765
EXT_B-69-25	CONTINGENCY 'EXT_B-69-25' / 2360 OPEN BRANCH FROM BUS 324130 TO BUS 324141 CKT 1 324141 5ELIHU 161 1 OPEN BRANCH FROM BUS 324141 TO BUS 342718 CKT 1 342718 5COOPER2 161 1 OPEN BRANCH FROM BUS 324141 TO BUS 324514 CKT 1 324514 2ELIHU 69.0 1 OPEN BRANCH FROM BUS 324141 TO BUS 324514 CKT 2 324514 2ELIHU 69.0 2 END	/ 324130 5ALCALDE 161 / 324141 5ELIHU 161 / 324141 5ELIHU 161
EKPC_P7-1_COOP 161 DBL 2	CONTINGENCY 'EKPC_P7-1_COOP 161 DBL 2' COOPER - LAUREL DAM 161 OPEN BRANCH FROM BUS 324141 TO BUS 342718 CKT 1 342718 5COOPER2 161.00 OPEN BRANCH FROM BUS 342718 TO BUS 342757 CKT 1 161.00 342757 5LAUREL DAM 161.00 END	
EKPC_P7-1_LAURL 161 DBL	CONTINGENCY 'EKPC_P7-1_LAURL 161 DBL' & LAUREL CO - TYNER 161 OPEN BRANCH FROM BUS 342754 TO BUS 342757 CKT 1 161.00 342757 5LAUREL DAM 161.00 OPEN BRANCH FROM BUS 342754 TO BUS 342781 CKT 1 161.00 342781 5PITTSBURG 161.00 OPEN BRANCH FROM BUS 342781 TO BUS 342820 CKT 1 161.00 342820 5TYNER 161.00 END	
EKPC_P1-2_GRE-TAY-MAR161-C	CONTINGENCY 'EKPC_P1-2_GRE-TAY-MAR161-C' - MARION CO OPEN BRANCH FROM BUS 964890 TO BUS 342817 CKT 1 161.00 342817 5TAYLOR CO J161.00 OPEN BRANCH FROM BUS 944150 TO BUS 342817 CKT 1 161.00 342817 5TAYLOR CO J161.00 END	/* GREEN CO - KU TAYLOR CO /* 964890 AG1-353 TAP /* 944150 AF1-083 TAP

Contingency Name	Contingency Definition	
EKPC_P2-1_5LAUREL CO 161.00 TO 5LAUREL DAM 161.00	CONTINGENCY 'EKPC_P2-1_5LAUREL CO 161.00 TO 5LAUREL DOPEN BRANCH FROM BUS 342754 TO BUS 342757 CKT 1 161.005LAUREL DAM 161.00 END	PAM 161.00' /*5LAUREL CO

10 Short Circuit Analysis - Primary POI

The following Breakers are overdutied:

None.

11 Summer Peak - Load Flow Analysis - Secondary POI

The Queue Project AG1-341 was evaluated as a 106.0 MW (Capacity 63.6 MW) injection at the Summer Shade 69 kV substation in the EKPC area. Project AG1-341 was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Project AG1-341 was studied with a commercial probability of 53.0 %. Potential network impacts were as follows:

11.1 Generation Deliverability

(Single or N-1 contingencies for the Capacity portion only of the interconnection)

ID	FROM BUS#	FROM BUS	kV	FROM BUS AREA	TO BUS#	TO BUS	kV	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
169425890	342322	2SUMM SHADE	69.0	EKPC	341431	2EDM- JBGAL J	69.0	EKPC	1	EKPC_P2- 1_5GREEN CO 161.00 TO 5SUMM SHADE 161.00-C	single	46.0	88.04	101.79	DC	6.32

11.2 Multiple Facility Contingency

(Double Circuit Tower Line, Fault with a Stuck Breaker, and Bus Fault contingencies for the full energy output)

ID	FROM BUS#	FROM BUS	kV	FRO M BUS AREA	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJEC T LOADIN G %	POST PROJEC T LOADIN G %	AC D C	MW IMPAC T
16677539 6	34143 1	2EDM- JBGAL J	69. 0	EKPC	34172 8	2KNOB LICK	69. 0	EKP C	1	EKPC_P2- 2_SUMMSHA DE 161 #2	bus	46.0	83.08	126.74	DC	20.08
17387389 8	34143 1	2EDM- JBGAL J	69. 0	EKPC	34172 8	2KNOB LICK	69. 0	EKP C	1	EKPC_P2- 3_GREEN W45-1014	breake r	46.0	95.3	103.91	DC	8.79
17232017 4	34172 8	2KNOB LICK	69. 0	EKPC	34185 4	2MCKINN Y T	69. 0	EKP C	1	EKPC_P2- 2_SUMMSHA DE 161 #2	bus	46.0	72.86	116.52	DC	20.08
17232021 7	34216 1	2ROSEVILL E T	69. 0	EKPC	34204 9	2PATTON RD J	69. 0	EKP C	1	EKPC_P2- 2_SUMMSHA DE 161 #1	bus	43.0	46.62	103.07	DC	24.27
16677533 8	34232 2	2SUMM SHADE	69. 0	EKPC	34143 1	2EDM- JBGAL J	69. 0	EKP C	1	EKPC_P2- 2_SUMMSHA DE 161 #2	bus	46.0	98.94	142.61	DC	20.08
16677533 9	34232 2	2SUMM SHADE	69. 0	EKPC	34143 1	2EDM- JBGAL J	69. 0	EKP C	1	EKPC_P2- 2_GREEN CO 161	bus	46.0	98.27	107.48	DC	9.4
17232022 0	96222 0	AG1-067 TAP	69. 0	EKPC	34233 4	2TEMPLE HILL	69. 0	EKP C	1	EKPC_P2- 2_SUMMSHA DE 161 #1	bus	54.0	57.49	102.45	DC	24.27

11.3 Contribution to Previously Identified Overloads

(This project contributes to the following contingency overloads, i.e. "Network Impacts", identified for earlier generation or transmission interconnection projects in the PJM Queue)

ID	FROM BUS#	FROM BUS	kV	FRO M BUS ARE A	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJEC T LOADIN G %	POST PROJEC T LOADIN G %	AC D C	MW IMPAC T
1667752 40	34105 9	2BARREN CO	69.0	EKPC	34165 1	2HORSECA VE J	69.0	EKP C	1	EKPC_P2- 2_SUMMSHA DE 161 #2	bus	90.0	109.96	114.91	DC	9.88
1738738 16	34105 9	2BARREN CO	69.0	EKPC	34165 1	2HORSECA VE J	69.0	EKP C	1	EKPC_P2- 3_SSHAD S11-1044	break er	90.0	112.52	117.6	DC	10.14
1653554 63	34228 7	2SOMERS ET KU	69.0	EKPC	32453 1	2FERGUSO N SO	69.0	LGE E	1	EKPC_P7- 1_COOP 161 DBL 2	tower	105.0	107.6	111.81	DC	9.79

ID	FROM BUS#	FROM BUS	kV	FRO M BUS ARE A	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJEC T LOADIN G %	POST PROJEC T LOADIN G %	AC D C	MW IMPAC T
1738737 99	34232 2	2SUMM SHADE	69.0	EKPC	34143 1	2EDM- JBGAL J	69.0	EKP C	1	EKPC_P2- 3_GREEN W45-1014	break er	46.0	111.17	119.78	DC	8.79
1653552 12	34271 8	5COOPER 2	161. 0	EKPC	32414 1	5ELIHU	161. 0	LGE E	1	EKPC_P2- 2_LAUREL CO 161	bus	277.0	110.2	114.91	DC	13.04
1653554 78	34271 8	5COOPER 2	161. 0	EKPC	32414 1	5ELIHU	161. 0	LGE E	1	EKPC_P7- 1_LAURL 161 DBL	tower	277.0	110.46	115.17	DC	13.02
1740614 01	34271 8	5COOPER 2	161. 0	EKPC	32414 1	5ELIHU	161. 0	LGE E	1	EKPC_P4- 5_LAURL S50- 1024	break er	277.0	110.46	115.17	DC	13.02

11.4 Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting a Merchant Transmission Interconnection request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section. With a Transmission Interconnection Request, a subsequent analysis will be performed which shall study all overload conditions associated with the overloaded element(s) identified.

ID	FROM BUS#	FROM BUS	kV	FRO M BUS AREA	TO BUS#	TO BUS	kV	TO BUS ARE A	CK T ID	CONT NAME	Туре	Ratin g MVA	PRE PROJEC T LOADIN G %	POST PROJEC T LOADIN G %	AC D C	MW IMPAC T
1645444	32401	7TRIMBL	345.	LGEE	24800	06CLIFTY	345.	OVE	1	AEP_P1-	operatio	1451.	114.47	115.53	DC	15.38
02	0	REAC	0		0		0	С		2_#363_16	n	0				
										82						
1694257	34105	2BARREN	69.0	EKPC	34165	2HORSECA	69.0	EKP	1	EKPC_P2-	operatio	90.0	101.53	104.61	DC	6.16
18	9	CO			1	VE J		С		1_5SUMM	n					
										SHADE						
										161.00 TO						
										AE1-246 TAP 161.00						
1694256	34271	5COOPE	161.	EKPC	32414	5ELIHU	161.	LGE	1	EKPC P2-	operatio	277.0	110.15	114.87	DC	13.07
46	8	R2	0	LIKI C	1	SELITO	0	E	-	1_5LAUREL	n	277.0	110.13	114.07	DC	15.07
40		112	Ŭ		_		Ŭ	_		CO 161.00						
										TO						
										5LAUREL						
										DAM						
										161.00						
1694257	34275	5LAUREL	161.	EKPC	34275	5LAUREL	161.	EKP	1	EXT_B-69-	operatio	200.0	99.51	101.12	DC	7.11
61	7	DAM	0		4	CO	0	С		25	n					

11.5 Flow Gate Details - Secondary POI

The following indices contain additional information about each facility presented in the body of the report. For each index, a description of the flowgate and its contingency was included for convenience. The intent of the indices is to provide more details on which projects/generators have contributions to the flowgate in question. All New Service Queue Requests, through the end of the Queue under study, that are contributors to a flowgate will be listed in the indices. Please note that there may be contributors that are subsequently queued after the queue under study that are not listed in the indices. Although this information is not used "as is" for cost allocation purposes, it can be used to gage the impact of other projects/generators. It should be noted the project/generator MW contributions presented in the body of the report are Full MW Impact contributions which are also noted in the indices column named "Full MW Impact", whereas the loading percentages reported in the body of the report, take into consideration the PJM Generator Deliverability Test rules such as commercial probability of each project as well as the ramping impact of "Adder" contributions. The MW Impact found and used in the analysis is shown in the indices column named "Gendeliv MW Impact".

11.5.1 Index 1

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
166775338	342322	2SUMM SHADE	EKPC	341431	2EDM- JBGAL J	EKPC	1	EKPC_P2- 2_SUMMSHADE 161#2	bus	46.0	98.94	142.61	DC	20.08

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
939131	AE1-143 C	-2.9768	Adder	-3.5
940045	AE1-246 C	4.1723	Adder	4.91
940046	AE1-246 E	2.0089	Adder	2.36
940831	AE2-071 C	3.7991	50/50	3.7991
940832	AE2-071 E	2.5327	50/50	2.5327
945381	AF1-203 C	2.1709	50/50	2.1709
945382	AF1-203 E	1.4473	50/50	1.4473
962221	AG1-067 C O2	3.2791	50/50	3.2791
962222	AG1-067 E O2	1.7453	50/50	1.7453
962241	AG1-070 C O2	1.2145	Adder	2.7
962242	AG1-070 E O2	0.2429	Adder	0.54
962251	AG1-071 C O2	1.4574	Adder	3.24
962252	AG1-071 E O2	0.3239	Adder	0.72
964781	AG1-341 C O2	12.0509	50/50	12.0509
964782	AG1-341 E O2	8.0340	50/50	8.0340
WEC	WEC	0.0082	Confirmed LTF	0.0082
CPLE	CPLE	0.0648	Confirmed LTF	0.0648
G-007A	G-007A	0.0192	Confirmed LTF	0.0192
VFT	VFT	0.0516	Confirmed LTF	0.0516
CBM-W2	CBM-W2	1.3619	Confirmed LTF	1.3619
TVA	TVA	0.4424	Confirmed LTF	0.4424
CBM-S2	CBM-S2	1.3154	Confirmed LTF	1.3154
CBM-S1	CBM-S1	0.0840	Confirmed LTF	0.0840
CBM-N	CBM-N	0.0084	Confirmed LTF	0.0084
MEC	MEC	0.1287	Confirmed LTF	0.1287
GIBSON	GIBSON	0.0278	Confirmed LTF	0.0278
BLUEG	BLUEG	0.2396	Confirmed LTF	0.2396
TRIMBLE	TRIMBLE	0.0762	Confirmed LTF	0.0762
LAGN	LAGN	0.4183	Confirmed LTF	0.4183
CBM-W1	CBM-W1	0.3505	Confirmed LTF	0.3505

11.5.2 Index 2

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
166775396	341431	2EDM- JBGAL J	EKPC	341728	2KNOB LICK	EKPC	1	EKPC_P2- 2_SUMMSHADE 161 #2	bus	46.0	83.08	126.74	DC	20.08

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
939131	AE1-143 C	-2.9768	Adder	-3.5
940045	AE1-246 C	4.1723	Adder	4.91
940046	AE1-246 E	2.0089	Adder	2.36
940831	AE2-071 C	3.7991	50/50	3.7991
940832	AE2-071 E	2.5327	50/50	2.5327
945381	AF1-203 C	2.1709	50/50	2.1709
945382	AF1-203 E	1.4473	50/50	1.4473
962221	AG1-067 C O2	3.2791	50/50	3.2791
962222	AG1-067 E O2	1.7453	50/50	1.7453
962241	AG1-070 C O2	1.2145	Adder	2.7
962242	AG1-070 E O2	0.2429	Adder	0.54
962251	AG1-071 C O2	1.4574	Adder	3.24
962252	AG1-071 E O2	0.3239	Adder	0.72
964781	AG1-341 C O2	12.0509	50/50	12.0509
964782	AG1-341 E O2	8.0340	50/50	8.0340
WEC	WEC	0.0082	Confirmed LTF	0.0082
CPLE	CPLE	0.0648	Confirmed LTF	0.0648
G-007A	G-007A	0.0192	Confirmed LTF	0.0192
VFT	VFT	0.0516	Confirmed LTF	0.0516
CBM-W2	CBM-W2	1.3619	Confirmed LTF	1.3619
TVA	TVA	0.4424	Confirmed LTF	0.4424
CBM-S2	CBM-S2	1.3154	Confirmed LTF	1.3154
CBM-S1	CBM-S1	0.0840	Confirmed LTF	0.0840
CBM-N	CBM-N	0.0084	Confirmed LTF	0.0084
MEC	MEC	0.1287	Confirmed LTF	0.1287
GIBSON	GIBSON	0.0278	Confirmed LTF	0.0278
BLUEG	BLUEG	0.2396	Confirmed LTF	0.2396
TRIMBLE	TRIMBLE	0.0762	Confirmed LTF	0.0762
LAGN	LAGN	0.4183	Confirmed LTF	0.4183
CBM-W1	CBM-W1	0.3505	Confirmed LTF	0.3505

11.5.3 Index 3

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
172320174	341728	2KNOB LICK	EKPC	341854	2MCKINNY T	EKPC	1	EKPC_P2- 2_SUMMSHADE 161 #2	bus	46.0	72.86	116.52	DC	20.08

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
939131	AE1-143 C	-2.9768	Adder	-3.5
940045	AE1-246 C	4.1723	Adder	4.91
940046	AE1-246 E	2.0089	Adder	2.36
940831	AE2-071 C	3.7991	50/50	3.7991
940832	AE2-071 E	2.5327	50/50	2.5327
945381	AF1-203 C	2.1709	50/50	2.1709
945382	AF1-203 E	1.4473	50/50	1.4473
962221	AG1-067 C O2	3.2791	50/50	3.2791
962222	AG1-067 E O2	1.7453	50/50	1.7453
962241	AG1-070 C O2	1.2145	Adder	2.7
962242	AG1-070 E O2	0.2429	Adder	0.54
962251	AG1-071 C O2	1.4574	Adder	3.24
962252	AG1-071 E O2	0.3239	Adder	0.72
964781	AG1-341 C O2	12.0509	50/50	12.0509
964782	AG1-341 E O2	8.0340	50/50	8.0340
WEC	WEC	0.0082	Confirmed LTF	0.0082
CPLE	CPLE	0.0648	Confirmed LTF	0.0648
G-007A	G-007A	0.0192	Confirmed LTF	0.0192
VFT	VFT	0.0516	Confirmed LTF	0.0516
CBM-W2	CBM-W2	1.3619	Confirmed LTF	1.3619
TVA	TVA	0.4424	Confirmed LTF	0.4424
CBM-S2	CBM-S2	1.3154	Confirmed LTF	1.3154
CBM-S1	CBM-S1	0.0840	Confirmed LTF	0.0840
CBM-N	CBM-N	0.0084	Confirmed LTF	0.0084
MEC	MEC	0.1287	Confirmed LTF	0.1287
GIBSON	GIBSON	0.0278	Confirmed LTF	0.0278
BLUEG	BLUEG	0.2396	Confirmed LTF	0.2396
TRIMBLE	TRIMBLE	0.0762	Confirmed LTF	0.0762
LAGN	LAGN	0.4183	Confirmed LTF	0.4183
CBM-W1	CBM-W1	0.3505	Confirmed LTF	0.3505

11.5.4 Index 4

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Type	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
172320217	342161	2ROSEVILLE T	EKPC	342049	2PATTON RD J	EKPC	1	EKPC_P2- 2_SUMMSHADE 161 #1	bus	43.0	46.62	103.07	DC	24.27

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
940831	AE2-071 C	4.1005	50/50	4.1005
940832	AE2-071 E	2.7336	50/50	2.7336
945381	AF1-203 C	2.3431	50/50	2.3431
945382	AF1-203 E	1.5621	50/50	1.5621
962221	AG1-067 C O2	18.5110	50/50	18.5110
962222	AG1-067 E O2	9.8526	50/50	9.8526
964781	AG1-341 C O2	14.5644	50/50	14.5644
964782	AG1-341 E O2	9.7096	50/50	9.7096
LGEE	LGEE	0.0113	Confirmed LTF	0.0113
G-007A	G-007A	0.0048	Confirmed LTF	0.0048
VFT	VFT	0.0129	Confirmed LTF	0.0129
CALDERWOOD	CALDERWOOD	0.0065	Confirmed LTF	0.0065
PRAIRIE	PRAIRIE	0.2247	Confirmed LTF	0.2247
СНЕОАН	CHEOAH	0.0065	Confirmed LTF	0.0065
CBM-N	CBM-N	0.0024	Confirmed LTF	0.0024
COTTONWOOD	COTTONWOOD	0.2100	Confirmed LTF	0.2100
HAMLET	HAMLET	0.0098	Confirmed LTF	0.0098
GIBSON	GIBSON	0.0251	Confirmed LTF	0.0251
BLUEG	BLUEG	0.0208	Confirmed LTF	0.0208
TRIMBLE	TRIMBLE	0.0028	Confirmed LTF	0.0028
CATAWBA	CATAWBA	0.0067	Confirmed LTF	0.0067

11.5.5 Index 5

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
172320220	962220	AG1- 067 TAP	EKPC	342334	2TEMPLE HILL	EKPC	1	EKPC_P2- 2_SUMMSHADE 161#1	bus	54.0	57.49	102.45	DC	24.27

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
940831	AE2-071 C	4.1005	50/50	4.1005
940832	AE2-071 E	2.7336	50/50	2.7336
945381	AF1-203 C	2.3431	50/50	2.3431
945382	AF1-203 E	1.5621	50/50	1.5621
962221	AG1-067 C O2	18.5110	50/50	18.5110
962222	AG1-067 E O2	9.8526	50/50	9.8526
964781	AG1-341 C O2	14.5644	50/50	14.5644
964782	AG1-341 E O2	9.7096	50/50	9.7096
LGEE	LGEE	0.0113	Confirmed LTF	0.0113
G-007A	G-007A	0.0048	Confirmed LTF	0.0048
VFT	VFT	0.0129	Confirmed LTF	0.0129
CALDERWOOD	CALDERWOOD	0.0065	Confirmed LTF	0.0065
PRAIRIE	PRAIRIE	0.2247	Confirmed LTF	0.2247
СНЕОАН	CHEOAH	0.0065	Confirmed LTF	0.0065
CBM-N	CBM-N	0.0024	Confirmed LTF	0.0024
COTTONWOOD	COTTONWOOD	0.2100	Confirmed LTF	0.2100
HAMLET	HAMLET	0.0098	Confirmed LTF	0.0098
GIBSON	GIBSON	0.0251	Confirmed LTF	0.0251
BLUEG	BLUEG	0.0208	Confirmed LTF	0.0208
TRIMBLE	TRIMBLE	0.0028	Confirmed LTF	0.0028
CATAWBA	CATAWBA	0.0067	Confirmed LTF	0.0067

11.5.6 Index 6

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
173873816	341059	2BARREN CO	EKPC	341651	2HORSECAVE J	EKPC	1	EKPC_P2- 3_SSHAD S11-1044	breaker	90.0	112.52	117.6	DC	10.14

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
342442	2W GLASGOW	0.0277	50/50	0.0277
940045	AE1-246 C	25.9783	50/50	25.9783
940046	AE1-246 E	12.5081	50/50	12.5081
940831	AE2-071 C	2.1015	50/50	2.1015
940832	AE2-071 E	1.4010	50/50	1.4010
945381	AF1-203 C	1.2008	50/50	1.2008
945382	AF1-203 E	0.8006	50/50	0.8006
962221	AG1-067 C O2	3.1057	50/50	3.1057
962222	AG1-067 E O2	1.6530	50/50	1.6530
962241	AG1-070 C O2	8.5838	50/50	8.5838
962242	AG1-070 E O2	1.7168	50/50	1.7168
962251	AG1-071 C O2	10.3005	50/50	10.3005
962252	AG1-071 E O2	2.2890	50/50	2.2890
964781	AG1-341 C O2	2.7405	Adder	6.08
964782	AG1-341 E O2	1.8270	Adder	4.06
CPLE	CPLE	0.1024	Confirmed LTF	0.1024
G-007A	G-007A	0.0408	Confirmed LTF	0.0408
VFT	VFT	0.1096	Confirmed LTF	0.1096
CBM-W2	CBM-W2	1.4426	Confirmed LTF	1.4426
TVA	TVA	0.6272	Confirmed LTF	0.6272
CBM-S2	CBM-S2	2.0358	Confirmed LTF	2.0358
CBM-S1	CBM-S1	0.1174	Confirmed LTF	0.1174
CBM-N	CBM-N	0.0204	Confirmed LTF	0.0204
MEC	MEC	0.1144	Confirmed LTF	0.1144
GIBSON	GIBSON	0.1299	Confirmed LTF	0.1299
BLUEG	BLUEG	0.5243	Confirmed LTF	0.5243
TRIMBLE	TRIMBLE	0.1542	Confirmed LTF	0.1542
LAGN	LAGN	0.5688	Confirmed LTF	0.5688
CBM-W1	CBM-W1	0.0140	Confirmed LTF	0.0140

11.5.7 Index 7

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
165355463	342287	2SOMERSET KU	EKPC	324531	2FERGUSON SO	LGEE	1	EKPC_P7- 1_COOP 161 DBL 2	tower	105.0	107.6	111.81	DC	9.79

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
342900	1COOPER1 G	4.9218	50/50	4.9218
342903	1COOPER2 G	9.5458	50/50	9.5458
939131	AE1-143 C	5.4221	Adder	6.38
939132	AE1-143 E	2.6857	Adder	3.16
940045	AE1-246 C	5.4632	Adder	6.43
940046	AE1-246 E	2.6305	Adder	3.09
940831	AE2-071 C	1.6233	Adder	1.91
940832	AE2-071 E	1.0822	Adder	1.27
943701	AF1-038 C	8.3977	50/50	8.3977
943702	AF1-038 E	5.5985	50/50	5.5985
943821	AF1-050 C	2.5575	Adder	3.01
943822	AF1-050 E	1.7050	Adder	2.01
944151	AF1-083 C O1	2.5256	Adder	2.97
944152	AF1-083 E O1	1.6837	Adder	1.98
944511	AF1-116 C	6.0808	Adder	7.15
944512	AF1-116 E	4.0539	Adder	4.77
945381	AF1-203 C	0.9276	Adder	1.09
945382	AF1-203 E	0.6184	Adder	0.73
960741	AF2-365 C O1	1.5231	Adder	1.79
960742	AF2-365 E O1	1.0154	Adder	1.19
962221	AG1-067 C O2	0.9285	Adder	2.06
962222	AG1-067 E O2	0.4942	Adder	1.1
962241	AG1-070 C O2	1.2324	Adder	2.74
962242	AG1-070 E O2	0.2465	Adder	0.55
962251	AG1-071 C O2	1.4789	Adder	3.28
962252	AG1-071 E O2	0.3286	Adder	0.73
964781	AG1-341 C O2	2.6451	Adder	5.87
964782	AG1-341 E O2	1.7634	Adder	3.91
964891	AG1-353 C	2.3239	Adder	5.16
964892	AG1-353 E	1.5493	Adder	3.44
964901	AG1-354 C	3.2939	Adder	7.31
964902	AG1-354 E	2.1959	Adder	4.87
965401	AG1-405 C	10.6088	50/50	10.6088
965402	AG1-405 E	7.0726	50/50	7.0726
965411	AG1-406	6.8244	50/50	6.8244
966021	AG1-471 C O2	5.2283	50/50	5.2283
966022	AG1-471 E O2	3.4855	50/50	3.4855
966031	AG1-472 C O2	1.4123	Adder	3.13
966032	AG1-472 E O2	0.9415	Adder	2.09
966191	AG1-488 C O2	1.8800	Adder	4.17
966192	AG1-488 E O2	1.2533	Adder	2.78

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
WEC	WEC	0.0652	Confirmed LTF	0.0652
CPLE	CPLE	0.0628	Confirmed LTF	0.0628
LGE-0012019	LGE-0012019	5.0017	LTF	5.0017
CBM-W2	CBM-W2	5.1878	Confirmed LTF	5.1878
NY	NY	0.0426	Confirmed LTF	0.0426
TVA	TVA	1.3454	Confirmed LTF	1.3454
O-066	O-066	0.5048	Confirmed LTF	0.5048
SIGE	SIGE	0.0489	Confirmed LTF	0.0489
CBM-S2	CBM-S2	1.7957	Confirmed LTF	1.7957
CBM-S1	CBM-S1	0.2983	Confirmed LTF	0.2983
G-007	G-007	0.0788	Confirmed LTF	0.0788
MEC	MEC	0.5848	Confirmed LTF	0.5848
LAGN	LAGN	1.2705	Confirmed LTF	1.2705
CBM-W1	CBM-W1	2.5797	Confirmed LTF	2.5797

11.5.8 Index 8

ID	FROM BUS#	FROM BUS	FROM BUS AREA	TO BUS#	TO BUS	TO BUS AREA	CKT ID	CONT NAME	Туре	Rating MVA	PRE PROJECT LOADING %	POST PROJECT LOADING %	AC DC	MW IMPACT
174061401	342718	5COOPER2	EKPC	324141	5ELIHU	LGEE	1	EKPC_P4- 5_LAURL S50-1024	breaker	277.0	110.46	115.17	DC	13.02

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
342442	2W GLASGOW	0.0165	50/50	0.0165
342900	1COOPER1 G	10.1486	50/50	10.1486
342903	1COOPER2 G	19.7433	50/50	19.7433
342945	1LAUREL 1G	6.1423	50/50	6.1423
939131	AE1-143 C	9.9773	50/50	9.9773
939132	AE1-143 E	4.9420	50/50	4.9420
940045	AE1-246 C	9.3685	50/50	9.3685
940046	AE1-246 E	4.5107	50/50	4.5107
940831	AE2-071 C	2.5509	50/50	2.5509
940832	AE2-071 E	1.7006	50/50	1.7006
942411	AE2-254 C O1	1.3451	Adder	1.58
942412	AE2-254 E O1	0.8967	Adder	1.05
943701	AF1-038 C	6.6586	50/50	6.6586
943702	AF1-038 E	4.4390	50/50	4.4390
943821	AF1-050 C	4.5025	50/50	4.5025
943822	AF1-050 E	3.0017	50/50	3.0017
944151	AF1-083 C O1	4.5583	50/50	4.5583
944152	AF1-083 E O1	3.0389	50/50	3.0389
944511	AF1-116 C	11.1895	50/50	11.1895
944512	AF1-116 E	7.4597	50/50	7.4597
945381	AF1-203 C	1.4576	50/50	1.4576
945382	AF1-203 E	0.9718	50/50	0.9718
960741	AF2-365 C O1	2.2040	Adder	2.59
960742	AF2-365 E O1	1.4693	Adder	1.73
962221	AG1-067 C O2	2.8165	50/50	2.8165
962222	AG1-067 E O2	1.4991	50/50	1.4991
962241	AG1-070 C O2	3.8768	50/50	3.8768
962242	AG1-070 E O2	0.7754	50/50	0.7754
962251	AG1-071 C O2	4.6521	50/50	4.6521
962252	AG1-071 E O2	1.0338	50/50	1.0338
964781	AG1-341 C O2	7.8139	50/50	7.8139
964782	AG1-341 E O2	5.2093	50/50	5.2093
964891	AG1-353 C	7.8586	50/50	7.8586
964892	AG1-353 E	5.2391	50/50	5.2391
964901	AG1-354 C	10.7820	50/50	10.7820
964902	AG1-354 E	7.1880	50/50	7.1880
965401	AG1-405 C	3.9234	50/50	3.9234
965402	AG1-405 E	2.6156	50/50	2.6156
965411	AG1-406	2.5238	50/50	2.5238
966021	AG1-471 C O2	7.4002	50/50	7.4002
966022	AG1-471 E O2	4.9334	50/50	4.9334

Bus #	Bus	Gendeliv MW Impact	Туре	Full MW Impact
966031	AG1-472 C O2	2.0318	Adder	4.51
966032	AG1-472 E O2	1.3545	Adder	3.01
966191	AG1-488 C O2	6.5272	50/50	6.5272
966192	AG1-488 E O2	4.3515	50/50	4.3515
WEC	WEC	0.0787	Confirmed LTF	0.0787
CPLE	CPLE	0.0874	Confirmed LTF	0.0874
LGE-0012019	LGE-0012019	7.7561	LTF	7.7561
CBM-W2	CBM-W2	7.4368	Confirmed LTF	7.4368
NY	NY	0.0868	Confirmed LTF	0.0868
TVA	TVA	2.0090	Confirmed LTF	2.0090
O-066	O-066	1.0364	Confirmed LTF	1.0364
SIGE	SIGE	0.0700	Confirmed LTF	0.0700
CBM-S2	CBM-S2	2.6726	Confirmed LTF	2.6726
CBM-S1	CBM-S1	0.4378	Confirmed LTF	0.4378
G-007	G-007	0.1617	Confirmed LTF	0.1617
MEC	MEC	0.7945	Confirmed LTF	0.7945
LAGN	LAGN	1.8725	Confirmed LTF	1.8725
CBM-W1	CBM-W1	3.0283	Confirmed LTF	3.0283

11.6 Contingency Descriptions - Secondary POI

Contingency Name	Contingency Definition
EKPC_P4-5_LAURL S50-1024	CONTINGENCY 'EKPC_P4-5_LAURL S50-1024'
EKPC_P2-2_LAUREL CO 161	CONTINGENCY 'EKPC_P2-2_LAUREL CO 161' /* LAUREL 161 BUS OPEN BUS 342754 /* 5LAUREL CO END
AEP_P1-2_#363_1682	CONTINGENCY 'AEP_P1-2_#363_1682' /873 OPEN BRANCH FROM BUS 243208 TO BUS 243209 CKT 1 /243208 05JEFRSO 765 243209 05ROCKPT 765 1 END
EKPC_P2-1_5SUMM SHADE 161.00 TO AE1-246 TAP 161.00	CONTINGENCY 'EKPC_P2-1_5SUMM SHADE 161.00 TO AE1-246 TAP 161.00' / 68 OPEN BRANCH FROM BUS 342814 TO BUS 940040 CKT 1 / 342814 5SUMM SHADE 161 940040 AE1-246 TAP 161 1 END
EKPC_P2-3_GREEN W45-1014	CONTINGENCY 'EKPC_P2-3_GREEN W45-1014'
EKPC_P7-1_COOP 161 DBL 2	CONTINGENCY 'EKPC_P7-1_COOP 161 DBL 2'

Contingency Name	Contingency Definition
EKPC_P2-1_5LAUREL CO 161.00 TO 5LAUREL DAM 161.00	CONTINGENCY 'EKPC_P2-1_5LAUREL CO 161.00 TO 5LAUREL DAM 161.00' / 563 OPEN BRANCH FROM BUS 342754 TO BUS 342757 CKT 1 / 342754 5LAUREL CO 161 342757 5LAUREL DAM 161 1 END
EKPC_P2-2_GREEN CO 161	CONTINGENCY 'EKPC_P2-2_GREEN CO 161' /* GREEN 161 BUS OPEN BUS 342733 /* 5GREEN CO END
EKPC_P2-1_5GREEN CO 161.00 TO 5SUMM SHADE 161.00-C	CONTINGENCY 'EKPC_P2-1_5GREEN CO 161.00 TO 5SUMM SHADE 161.00-C' / 45 OPEN BRANCH FROM BUS 342814 TO BUS 964900 CKT 1 / 342814 5SUMM SHADE 161 964900 AG1-354 TAP 161 1 END
EXT_B-69-25	CONTINGENCY 'EXT_B-69-25' /536 OPEN BRANCH FROM BUS 324130 TO BUS 324141 CKT 1 /324130 5ALCALDE 161 324141 5ELIHU 161 1 OPEN BRANCH FROM BUS 324141 TO BUS 342718 CKT 1 /324141 5ELIHU 161 342718 5COOPER2 161 1 OPEN BRANCH FROM BUS 324141 TO BUS 324514 CKT 1 /324141 5ELIHU 161 324514 2ELIHU 69.0 1 OPEN BRANCH FROM BUS 324141 TO BUS 324514 CKT 2 /324141 5ELIHU 161 324514 2ELIHU 69.0 2 END
EKPC_P2-2_SUMMSHADE 161 #2	CONTINGENCY 'EKPC_P2-2_SUMMSHADE 161 #2' /* SUMMERSHADE 161 BUS OPEN BRANCH FROM BUS 964900 TO BUS 342814 CKT 1 /* 964900 AG1-354 TAP 161.00 342814 5SUMM SHADE 161.00 OPEN BRANCH FROM BUS 940040 TO BUS 342814 CKT 1 OPEN BUS 342814 END
EKPC_P2-3_SSHAD S11-1044	CONTINGENCY 'EKPC_P2-3_SSHAD S11-1044'

Contingency Name	Contingency Definition	
EKPC_P2-2_SUMMSHADE 161 #1	CONTINGENCY 'EKPC_P2-2_SUMMSHADE 161 #1' OPEN BRANCH FROM BUS 342814 TO BUS 360334 CKT 1 161.00 360334 5SUMMER SHAD161.00 OPEN BRANCH FROM BUS 342322 TO BUS 342814 CKT 1 69.000 342814 5SUMM SHADE 161.00 END	/* SUMMERSHADE 161 BUS /* 342814 5SUMM SHADE /* 342322 2SUMM SHADE
EKPC_P7-1_LAURL 161 DBL	CONTINGENCY 'EKPC_P7-1_LAURL 161 DBL' & LAUREL CO - TYNER 161 OPEN BRANCH FROM BUS 342754 TO BUS 342757 CKT 1 161.00 342757 5LAUREL DAM 161.00 OPEN BRANCH FROM BUS 342754 TO BUS 342781 CKT 1 161.00 342781 5PITTSBURG 161.00 OPEN BRANCH FROM BUS 342781 TO BUS 342820 CKT 1 161.00 342820 5TYNER 161.00 END	/* LAUREL CO - LAUREL DAM 161 /* 342754 5LAUREL CO /* 342754 5LAUREL CO /* 342781 5PITTSBURG

12 Affected Systems

12.1 TVA

TVA Impacts to be determined during later study phases (as applicable).

12.2 Duke Energy Progress

Duke Energy Progress Impacts to be determined during later study phases (as applicable).

12.3 MISO

MISO Impacts to be determined during later study phases (as applicable).

12.4 LG&E

LG&E Impacts to be determined during later study phases (as applicable).

AG1-341 System Impact Study Report

v2.02 released 2024-10-11 09:33

Summer Shade 161 kV 63.6 MW Capacity / 106.0 MW Energy

Introduction

This project is eligible for the Expedited Study process per PJM Tariff Part VII, Subpart B, section 304 and will follow the Expedited Study Process rules outlined in PJM Manual 14H, Attachment I.3.4.

Projects in the Expedited Process will receive a retooled System Impact Study report with the Transition Cycle #1 projects (AE1-AG1) removed from the base case model used for their study. This System Impact Study (SIS) report has been prepared for the AG1-341 project using the updated case model. PJM performed reliability analysis for the project based on the serial study approach using the legacy Generator Deliverability Study method outlined in Manual 14B, Attachment C.3 (Revision 51 of M14B). Summer peak and light load load flow analysis was performed. Short circuit and dynamic stability impacts were also analyzed.

The interconnected Transmission Owner (TO) for this project is East Kentucky Power Cooperative, Inc.. The TO has provided their updated TO analysis results on the lower voltage system based on their own criteria.

This System Impact Study report summarizes both the PJM and TO analysis results for your project.

Note: This updated SIS report does not include any Physical Interconnection Facilities scope or cost estimates from the TO. As this project is in the Expedited Process, a Facilities Study will be conducted by the TO (and any affected Transmission Owner(s)) for updated Physical Interconnection Facilities and System Reinforcement (Network Upgrade) costs. The Facilities Study will be issued to the Project Developers along with the Generator Interconnection Agreement (GIA) as part of the Expedited Process.

General

The developer has proposed a Solar; Storage generating facility located in the East Kentucky Power Cooperative, Inc. zone — Metcalfe County, Kentucky. The installed facilities will have a total capability of 106.0 MW with 63.6 MW of this output being recognized by PJM as Capacity.

Project Information						
New Service Request Number	AG1-341					
Project Name	Summer Shade 161 kV					
Developer Name	Naturgy Candela DevCo LLC					
State	Kentucky					
County	Metcalfe					
Transmission Owner	East Kentucky Power Cooperative, Inc.					
MFO	106.0 MW					
MWE	106.0 MW					
MWC	63.6 MW					
Fuel Type	Solar; Storage					
Basecase Study Year	2024					

Point of Interconnection

AG1-341 will interconnect on the EKPC transmission system at the Summer Shade 161kV substation.

Transmission Owner Analysis

No violations.

Summer Peak Analysis

		Summer Peak Analysis						
Area	Facility Description	Contingency Name	Contingency Type	DC AC	Initial Loading	Final Loading	Rating (MVA)	Ratii Type
EKPC/LGEE	5COOPER2-5ELIHU 161.0 kV Ckt 1 line	EKPC_P2-1_5LAUREL CO 161.00 TO 5LAUREL DAM 161.00	Single	AC	97.86 %	100.6 %	277.0	В
EKPC/LGEE	5COOPER2-5ELIHU 161.0 kV Ckt 1 line	EKPC_P4-5_LAURL S50-1024	Breaker	AC	111.06 %	115.58 %	277.0	В
EKPC/LGEE	5COOPER2-5ELIHU 161.0 kV Ckt 1 line	EKPC_P4-5_LAURL S50-1014	Breaker	AC	110.75 %	115.27 %	277.0	В
EKPC/LGEE	5COOPER2-5ELIHU 161.0 kV Ckt 1 line	EKPC_P2-2_LAUREL CO 161	Bus	AC	110.79 %	115.31 %	277.0	В
EKPC/LGEE	2SOMERSET KU-2FERGUSON SO 69.0 kV Ckt 1 line	EKPC_P7-1_COOP 161 DBL 2	Tower	AC	114.28 %	121.2 %	105.0	В
EKPC	2SOMERSET-2SOMERSET KU 69.0 kV Ckt 1 line	EKPC_P7-1_COOP 161 DBL 2	Tower	AC	97.67 %	102.56 %	115.0	В
EKPC/LGEE	5COOPER2-5ELIHU 161.0 kV Ckt 1 line	EKPC_P7-1_LAURL 161 DBL	Tower	AC	111.12 %	115.64 %	277.0	В

Summer Potential Congestion due to Local Energy Deliverability

PJM also studied the delivery of the energy portion of this interconnection request. Any problems identified below are likely to result in operational restrictions to the project under study. The developer can proceed with network upgrades to eliminate the operational restriction at their discretion by submitting an Upgrade Request.

Note: Only the most severely overloaded conditions are listed below. There is no guarantee of full delivery of energy for this project by fixing only the conditions listed in this section.

	Summer Potential Congestion due to Local Energy Deliverability									
Area	Facility Description	Contingency Name	Contingency Type	DC AC	Initial Loading	Final Loading	Rating (MVA)	Rating Type	MVA to Mitigate	MW Contribu
EKPC	5LAUREL DAM-5LAUREL CO 161.0 kV Ckt 1 line	EXT_B-69-25	OP	AC	101.8 %	104.62 %	200.0	В	209.24	6.49
EKPC	5GREEN CO-2GREEN CO 161.0/69.0 kV Ckt 1 transformer	EKPC_P1-2_GRE-TAY-MAR161-C	OP	AC	101.16 %	106.64 %	90.0	В	95.98	5.81

Light Load Analysis

The Project was evaluated as a 106.0 MW (Capacity 63.6 MW) injection in the EKPC area. Project was evaluated for compliance with applicable reliability planning criteria (PJM, NERC, NERC Regional Reliability Councils, and Transmission Owners). Potential light load period network impacts were as follows:

(No impacts were found for this analysis)

Light Load Potential Congestion due to Local Energy Deliverability

(No impacts were found for this analysis)

Short Circuit Analysis

PJM Short Circuit Analysis did not identify any new overduty breakers or >3% contribution to previously identified overduty breakers.

Stability Analysis

Executive Summary

Generator Interconnection Request AG1-341 is for a 106 MW Maximum Facility Output (MFO) solar generating facility, which consists of 39 x 3.15 MVA Sungrow SG-3150U-MV solar inverters. The generating facility will be located in Metcalfe County, Kentucky.

This report describes a dynamic simulation analysis of AG1-341 as part of the overall system impact study.

The load flow scenario for the analysis was based on the RTEP 2024 peak load case, modified to include applicable queue projects. In the load flow the AG1-341 generator is set to a maximum power output of 107.3 MW and 1.05 pu voltage at the generator bus to achieve 106 MW (MFO) and near unity power factor at the POI. Generation within the vicinity (within five buses) of AG1-341 will be dispatched online at maximum output (PMAX).

AG1-341 was tested for compliance with NERC, EKPC, PJM, and other applicable criteria. 223 contingencies were studied, each with a 20 second simulation time period. Studied faults included:

- a) Steady-state operation (Category P0);
- b) Three-phase faults with normal clearing time on the intact network (Category P1);
- c) Single-phase to ground bus faults with normal clearing time (Category P2):
- d) Single-phase to ground faults with delayed clearing due to a stuck breaker (Category P4);
- e) Single-phase faults placed at 80% of the line with delayed (Zone 2) clearing at line end remote from the fault due to primary communications/relay failure (Category P5);
- f) Multiple contingency single phase faults (common structure) (Category P7);

For all simulations, the queue project under study along with the rest of the PJM system were required to maintain synchronism and with all states returning to an acceptable new condition following the disturbance.

For all of the fault contingencies tested on the 2024 peak load case, the following conclusions were made:

- a) AG1-341 was able to ride through the faults except for disturbances where protective action trips the generator to clear the fault.
- b) AG1-341 post-contingency oscillations were positively damped with a damping margin of at least 3%.
- c) Following fault clearing, all bus voltages recover to 0.7 pu within 2.5 seconds (except where protective action isolates that bus).
- d) No transmission element tripped, other than those either directly connected or designed to trip as a consequence of that fault.

The system impact study data indicates that the AG1-341 plant would have a +/-59.8 MVAR reactive power capability at the generator terminal, which meets the 0.95 leading and lagging PF requirement at the high side of the main transformer.

The composite short-circuit ratio (CSCR) assessment was performed for inverter-based renewable generation units which are within one (1) substation away of AG1-341. The assessment resulted in a minimum CSCR of 9.22 and 1.28 at the AG1-341 POI and generator terminal, respectively. The assessment resulted in a maximum CSCR of 11.11 and 2.83 at the AG1-341 POI and generator terminal, respectively. A CSCR below 3 is considered weak. Therefore, AG1-341 is connecting to a weak area in the system.

Reactive Power Analysis

The system impact study data indicates that the AG1-341 plant would have a +/-59.8 MVAR reactive power capability at the generator terminal, which meets the 0.95 leading and lagging PF requirement at the high side of the main transformer.

Steady-State Voltage Analysis

Steady State Voltage analysis is not required for this project at this time.

New Service Request Dependencies

The Projects below are listed in one or more dispatch for the overloads identified in your report. These projects contribute to the loading of the overloaded facilities identified in your report. The percent overload of a facility and cost allocation you may have towards a particular reinforcement could vary depending on the action of these earlier projects. The status of each project at the time of the analysis is presented in the table. This list may change if any earlier projects withdraw. This table is valid for load flow analyses only.

New Service Requests Dependencies				
Project	Project Name	Status		
AE1-143	Marion County 161 kV	Engineering & Procurement		
AE2-071	Patton Rd-Summer Shade 69 kV	In Service		
AE2-254	Garrard County-Tommy-Gooch 69 kV	In Service		
AF1-038	Sewellton Jct-Webbs Crossroads 69 kV	Engineering & Procurement		
AF1-050	Summer Shade - Green County 161 kV	Engineering & Procurement		
AF1-083	Green County-Saloma 161 kV	Engineering & Procurement		
AF1-116	Marion County 161 kV	Active		
AF1-203	Patton Rd-Summer Shade 69 kV	In Service		
AF2-365	Munfordville KU Tap-Horse Cave Jct. 69 kV	Active		
AG1-067	Temple Hill 69 kV	Active		
AG1-070	Bon Ayr 69 kV	Active		
AG1-071	Bon Ayr 69 kV	Active		
AG1-405	Walnut Grove-Asahi 69 kV	Active		
AG1-406	Walnut Grove-Asahi 69 kV	Active		

Note that these MISO results are preliminary and subject to change with future analysis.

New York Independent System Operator (NYISO) Not required

Tennessee Valley Authority (TVA)

Preliminary Results - Impacts

Note that these TVA results are preliminary and subject to change with future analysis.

A TVA affected system study will be required for AG1-341. The AG1-341 customer will be required to sign a TVA affected system study agreement to determine if there are any TVA impacts.

Louisville Gas & Electric (LG&E)

Preliminary Results - Impacts

Note that these LG&E results are preliminary and subject to change with future analysis.

An LG&E affected system study will be required for AG1-341. The AG1-341 customer will be required to sign a LG&E affected system study agreement to determine if there are any LG&E impacts.

Duke Energy Carolinas (DUKE)	Not required
Duke Energy Progress - East (CPLE)	Not required
Duke Energy Progress - West (CPLW)	Not required

System Reinforcements

The AG1-341 project may be responsible for a contribution to the following estimated System Reinforcement (Network Upgrade) costs as shown below. The Network Upgrades listed below are required to alleviate a reliability criteria violation identified in the Network Impact analysis that PJM has performed for this System Impact Study. No physical Interconnection Facilities costs are included in this cost table.

RTEP ID	Title	MW Impact	Percent Allocation	Allocated Cost (\$USD)		
n8368.2	Rebuild the Cooper-Elihu 161 kV line section using 795 MCM ACSS conductor (4.2 miles)	12.3 MW	33.4%			
Grand Tot	Grand Total:					

Note 1: PJM Open Access Transmission Tariff (OATT) Part VI, section 217.3A outlines cost allocation rules for the Expedited Process projects. These rules are further clarified in PJM Manual 14A, Attachment B.

Note 2: To Project Developers with System Reinforcements listed: If your present cost allocation to a System Reinforcement indicates \$0, then please be aware that if a prior project in the Expedited Process withdraws from the cycle, the cost responsibilities can change and a cost allocation may be assigned to your project. In addition, although the cost allocation to a System Reinforcement is presently \$0, your project may need this system reinforcement completed to be deliverable to the PJM system. If your project desires to possibly come into service prior to completion of the system reinforcement, you would need to request an interim deliverability study to determine if all or a portion of your project would be deliverable.

RTEP ID	Title	Total Cost	Time Estimate
n8368.2	Rebuild the Cooper-Elihu 161 kV line section using 795 MCM ACSS conductor (4.2 miles)		24 to 30 Months

Contributor

Description: Rebuild the Cooper-Elihu 161 kV line section using 795 MCM ACSS conductor (4.2 miles)

Flowgates Addressed by this Reinf	forcement
Facility	Contingency
5ELIHU-5COOPER2 161.0 kV Ckt 1 line	(Any)

New Ratings						
Facility	Rating Set	Rating Type	Rating Value			
5ELIHU-5COOPER2 161.0 kV Ckt 1 line	(All)	A	308.0 MVA			
5ELIHU-5COOPER2 161.0 kV Ckt 1 line	(All)	В	373.0 MVA			
5ELIHU-5COOPER2 161.0 kV Ckt 1 line	(All)	С	373.0 MVA			

		Cost Allocation	
Project	MW Impact	Percent Allocation	Allocated Cost (\$USD)
AF1-116	18.9 MW	51.2%	
AG1-071	5.7 MW	15.5%	
AG1-341	12.3 MW	33.4%	

RTEP ID	Title	Total Cost	Time Estimate
(TBD)	EKPC emergency rating is 143 MVA.		TBD

Note: This reinforcement is fictitious and will not be cost allocated to projects. It is listed for information purposes only.

Description: EKPC emergency rating is 143 MVA. LG&E: SE rating is 105 MVA. A LG&E affected system system study will be required to determine if LG&E upgrades are required on this line. Preliminary upgrade, if determined to be required, is to replace terminal equipment at a cost estimate of \$897.613 K.

Flowgates Addressed by this Reinforcement				
Facility	Contingency			
2FERGUSON SO-2SOMERSET KU 69.0 kV Ckt 1 line	(Any)			

New Ratings					
Facility	Rating Set	Rating Type	Rating Value		
2FERGUSON SO-2SOMERSET KU 69.0 kV Ckt 1 line	(All)	A	143.0 MVA		
2FERGUSON SO-2SOMERSET KU 69.0 kV Ckt 1 line	(All)	В	143.0 MVA		
2FERGUSON SO-2SOMERSET KU 69.0 kV Ckt 1 line	(All)	С	143.0 MVA		

System Reinforcement Details

RTEP ID Title Total Cost Time Estimate

(TBD) Invalid - P7 contingency 69kV not monitored by LGEE TBD

Note: This reinforcement is fictitious and will not be cost allocated to projects. It is listed for information purposes only.

Description: Invalid - P7 contingency 69kV not monitored by LGEE

Flowgates Addressed by this Reinforcement				
Facility	Contingency			
2FERGUSON SO-2SOMERSET KU 69.0 kV Ckt 1 line	(Any)			
2SOMERSET-2SOMERSET KU 69.0 kV Ckt 1 line	(Any)			

System Reinforcement Details			
RTEP ID	Title	Total Cost	Time Estimate
n6232	Replace the 500 MCM copper jumpers at the Somerset substation using 750 MCM copper or equivalent		6 Months

Contingent

Note: Based on PJM cost allocation criteria, AG1-341 currently does not receive cost allocation towards this upgrade. As changes to the PJM process occur (such as other projects withdrawing from the cycle or reducing in size) AG1-341 could receive cost allocation. Although AG1-341 may not presently have cost responsibility for this upgrade, AG1-341 may need this upgrade in-service to be deliverable to the PJM system. If AG1-341 desires to come into service prior to completion of the upgrade, the Project Developer will need to request PJM to perform an interim study to determine if they would be deliverable for all or a portion of their output for each delivery year until the upgrade is complete.

Description: Replace the 500 MCM copper jumpers at the Somerset substation using 750 MCM copper or equivalent

Flowgates Addressed by this Rei	nforcement
Facility	Contingency
2SOMERSET-2SOMERSET KU 69.0 kV Ckt 1	line (Any)

New Ratings			
Facility	Rating Set	Rating Type	Rating Value
2SOMERSET-2SOMERSET KU 69.0 kV Ckt 1 line	(All)	A	146.0 MVA
2SOMERSET-2SOMERSET KU 69.0 kV Ckt 1 line	(All)	В	152.0 MVA
2SOMERSET-2SOMERSET KU 69.0 kV Ckt 1 line	(All)	С	154.0 MVA

₽

	System Reinforcement Details		
RTEP ID	Title	Total Cost	Time Estimate
(TBD)	LGE/KU is limiting this facility. EKPC emergency rating is 298 MVA.		TBD

Note: This reinforcement is fictitious and will not be cost allocated to projects. It is listed for information purposes only.

Description: LGE/KU is limiting this facility. EKPC emergency rating is 298 MVA.

Flowgates Addressed by this Reinf	orcement	
Facility	Contingency	
5ELIHU-5COOPER2 161.0 kV Ckt 1 line	(Any)	

New Ratings			
Facility	Rating Set	Rating Type	Rating Value
5ELIHU-5COOPER2 161.0 kV Ckt 1 line	SUM	A	267.0 MVA
5ELIHU-5COOPER2 161.0 kV Ckt 1 line	SUM	В	298.0 MVA
5ELIHU-5COOPER2 161.0 kV Ckt 1 line	SUM	С	298.0 MVA

Attachments

The one line included in this refreshed System Impact Study report was originally developed prior to the Transition Date. Therefore, not all verbiage on the one line may align with the current Tariff definitions. An updated one line diagram will be provided in the Facilities Study report for the Expedited Process projects.

PJM © 2024 All rights reserved.