COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

ELECTRONIC APPLICATION OF DUKE ENERGY)	
KENTUCKY, INC. FOR A CERTIFICATE OF)	
PUBLIC CONVENIENCE AND NECESSITY TO)	
CONVERT ITS WET FLUE GAS)	
DESULFURIZATION SYSTEM FROM A)	CASE NO.
QUICKLIME REAGENT PROCESS TO A)	2025-00002
LIMESTONE REAGENT HANDLING SYSTEM AT)	
ITS EAST BEND GENERATING STATION AND)	
FOR APPROVAL TO AMEND ITS)	
ENVIRONMENTAL COMPLIANCE PLAN FOR)	
RECOVERY BY ENVIRONMENTAL SURCHARGE)	
MECHANISM)	

APPLICATION OF DUKE ENERGY KENTUCKY, INC. AND REQUEST FOR DECISION BY JUNE 30, 2025

Now comes Duke Energy Kentucky, Inc. (Duke Energy Kentucky or the Company), by and through counsel, pursuant to KRS 278.020(1), KRS 278.183, and 807 KAR 5:001 Sections 14 and 15, and hereby respectfully requests the Kentucky Public Service Commission (Commission) to issue an Order approving: (1) a Certificate of Public Convenience and Necessity (CPCN) for the construction and conversion of its existing Wet Flue Gas Desulfurization (WFGD) from a quicklime handling process to a limestone handling process to continue to meet existing environmental regulations (Limestone Conversion Project); (2) amendment of the Company's Environmental Compliance Plan (ECP) to include the Limestone Conversion Project construction and operation, and reagents; (3) recovery of the Limestone Conversion Project costs through the Company' Environmental Surcharge Mechanism (ESM); and (4) any other necessary relief and approvals. In order to meet compliance deadlines for the United States Environmental Protection Agency (U.S. EPA) under the Clean Air Act (CAA), including the recently effective updates to the Mercury and Air Toxics Standard (MATS Rule). In order to meet the April 2027 MATs Rule revision compliance deadline, the Company requests, to the extent possible, a decision in this matter by June 30, 2025, to ensure there is sufficient time to complete the necessary upgrades if the Application is approved or an alternative compliance strategy can be pursued.

This Application is an update to, and refiling of, the Company's Application in Case No. 2024-00152 (Initial CPCN),¹ consistent with the Commission's January 6, 2025, Order in that Initial CPCN.

In support of this Application, Duke Energy Kentucky states as follows:

I. <u>INTRODUCTION</u>

1. Duke Energy Kentucky is a Kentucky corporation with its principal office and principal place of business at 139 East Fourth Street, Cincinnati, Ohio 45202. The Company's local office in Kentucky is Duke Energy Erlanger Operations Center, 1262 Cox Road, Erlanger, Kentucky 41018. The Company further states that its electronic mail address for purposes of this matter is <u>KYfilings@duke-energy.com</u>.

Duke Energy Kentucky is a utility engaged in the gas and electric business.
Duke Energy Kentucky purchases, sells, stores, and transports natural gas in the Boone,
Bracken, Campbell, Gallatin, Grant, Kenton, and Pendleton Counties. Duke Energy

¹ In re: The Electronic Application of Duke Energy Kentucky, Inc. for a Certificate of Public Convenience and Necessity to Convert its Wet Flue Gas Desulfurization System from a Quicklime Reagent Process to a Limestone Reagent Handling System at its East Bend Generating Station and for Approval to Amend its Environmental Compliance Plan for Recovery by Environmental Surcharge Mechanism, Case No. 2024-00152, Application (June 25, 2024) (Initial CPCN).

Kentucky also generates electricity, which it distributes and sells, in the Boone, Campbell, Grant, Kenton, and Pendleton Counties.

3. Pursuant to 807 KAR 5:001, Section 14(2), Duke Energy Kentucky states that it was originally incorporated in the Commonwealth of Kentucky on March 20, 1901, and attests that it is currently in good standing in said Commonwealth. A copy of a certificate of good standing is included as Exhibit 1 to this Application.

4. Pursuant to KRS 278.380, Duke Energy Kentucky waives any right to service of Commission orders by mail for purposes of this proceeding only. Copies of all orders, pleadings, and other communications related to this proceeding should be directed to:

Rocco O. D'Ascenzo Deputy General Counsel Duke Energy Kentucky, Inc. 139 East Fourth Street Cincinnati, OH 45202 rocco.d'ascenzo@duke-energy.com

Larisa M. Vaysman Associate General Counsel Duke Energy Kentucky, Inc. 139 East Fourth Street Cincinnati, OH 45202 larisa.vaysman@duke-energy.com

and

Sarah E. Lawler Vice President, Rates and Regulatory Strategy Ohio/Kentucky Duke Energy Kentucky, Inc. 139 East Fourth Street Cincinnati, OH 45202 sarah.lawler@duke-energy.com

II. <u>BACKGROUND</u>

5. On or about December 5, 2003, in Case No. 2003-00252, the Commission approved Duke Energy Kentucky's acquisition of three generating stations from Duke Energy Ohio; East Bend Unit 2 (East Bend), Miami Fort Unit 6 and Woodsdale. Effective January 1, 2006, Duke Energy Kentucky completed the acquisition of these three generating stations. Effective December 31, 2014, Duke Energy Kentucky became the sole owner of East Bend, having completed the purchase of The Dayton Power and Light Company's 31 percent interest in the station as authorized by the Commission in Case No. 2014-00201.²

6. East Bend is a 600-megawatt (MW) (net summer rating) coal-fired steam unit located along the Ohio River in Boone County, Kentucky, which was commissioned in 1981. East Bend is the Company's only baseload and coal-fired generator, providing the majority of the capacity to serve the Company's Northern Kentucky load.

7. There are several environmental programs promulgated by the United States Environmental Protection Agency (U.S. EPA) under the Clean Air Act (CAA) as well as the Commonwealth of Kentucky, that impact all of the Company's generating stations, and particularly East Bend. The U.S. EPA regulations are the primary drivers of Duke Energy Kentucky's environmental compliance strategies for its plants. These CAA regulations are as follows: the Mercury and Air Toxics Standard (MATS Rule) and the Cross State Air Pollution Rule (CSAPR) including the U.S. EPA's September 2016 final

² In the Matter of the Application of Duke Energy Kentucky, Inc., for (1) A Certificate of Public Convenience and Necessity Authorizing the Acquisition of the Dayton Power & Light Company's 31% Interest in the East Bend Generating Station; (2) Approval of Duke Energy Kentucky, Inc.'s Assumption of Certain Liabilities in Connection with the Acquisition; (3) Deferral of Costs Incurred as Part of the Acquisition; and (4) All Other Necessary Waivers, Approvals, and Relief, Case No. 2014-00201 (Dec. 4, 2014).

CSAPR Update Rule. The regulations that most directly impact the Company's ash handling strategy as it pertains to East Bend are the CAA, MATS, and the CCR Final Rule and ELG Final Rule.

8. The MATS Rule regulates mercury and other toxic air pollutant emissions from new and existing coal- and oil-fired steam electric generating units (EGUs) that are greater than 25 MWs in capacity. On April 25, 2024, the U.S. EPA finalized the MATS rule for coal-fired power plants. Among other things, the revision requires the use of continuous emissions monitoring systems to show how much pollution is coming from power plants and includes stricter pollution limits for mercury and particulate matter. The compliance deadline for this new revision is July 6, 2027.

9. The major pollution control features at East Bend include a high-efficiency hot side electrostatic precipitator, a selective catalytic reduction control (SCR) system designed to reduce nitrogen oxide (NO_x) emissions by 85 percent, and a WFGD system designed to remove sulfur dioxide (SO₂) emissions to an average of 97 percent. The WFGD currently utilizes a magnesium enhanced lime (MEL) technology to control the station's SO₂ emissions. This MEL technology is unique to the 1980's vintage WFGD and is the only one of its kind within the Duke Energy fleet of coal-fired generation.

10. The MEL technology relies on pebble quicklime containing a small fraction of dolomite as the reagent. Dolomite is comprised of about 50% magnesium oxide which, when added to the absorber with the lime reagent, dissolves and promotes elevated concentrations of sulfite. Sulfite is an effective source of liquid-phase alkalinity, which facilitates high SO₂ removal efficiency for boilers firing high sulfur coal. The primary benefit of scrubbing with MEL is that the required absorber recycle slurry pumping

5

capacity is lower than limestone-based FGD systems – typically in the range of 40 to 50 gallons per 1,000 cubic feet of treated flue gas – and results in smaller pumps with lower power requirements

11. Despite some process advantages, MEL scrubbing has several disadvantages including the production of calcium sulfite (CaSO₃) solids that are typically difficult to dewater. As a result, significant quantities of fly ash and lime must be added to the filtered solids to produce a stable product, called poz-o-tec, that is suitable for disposal in an onsite landfill. Another disadvantage of the MEL scrubbing process is the reliance on an expensive lime reagent – quicklime, and stabilization additives which in recent years, has detrimentally impacted East Bend's competitiveness in the power generation markets. While the current East Bend MEL scrubbing process meets the MATs requirements prior to the April 2024 revision, the existing process is not sufficient to comply with the new standards for particulate matter. Accordingly, action is necessary for East Bend to meet the new MATs standard.

12. At the time of its construction, and in years past, the cost of the quicklime was reasonable and was a popular choice for SO₂ removal in the Ohio River Valley. In the early 1980s, when the system at East Bend was designed, the cost of lime was modest; delivered prices were about \$40 per ton. Since then, the price for delivered quicklime has risen dramatically to well over \$100 per ton. The approximate cost at East Bend in 2022 was \$133 per ton. However, with many Midwest power plants retiring or converting to lower cost reagents such as limestone, the availability of supply, number of suppliers, and quality of MEL has been adversely impacted creating exponential increasing costs and risks to the future availability of supply. A request for proposal (RFP) issued in mid-2023

produced a lime cost per ton that is more than double that paid in 2022. East Bend has experienced a 247 percent increase in the mag-lime reagent cost over the last 10 years and a 125 percent increase in in the last two years. Due to the energy intensity to produce the MEL reagent product, the Company expects the reagent to continually escalate at a rate double that of limestone.

13. Duke Energy Kentucky has experienced additional limitations to MEL supply leading to material cost increases and a risk in availability of supply alternatives creating future availability concerns.

14. If Duke Energy Kentucky is unable to procure the reagents necessary to operate its WFGD, the Company will not be able to comply with the aforementioned environmental regulations or continue operating East Bend in compliance and would likely be forced to retire the plant prematurely. The reagent supply scarcity and associated price risks for Duke Energy Kentucky must be addressed to continue providing cost-effective, safe, and reliable service to our Kentucky customers.

15. The increase in current lime-based reagent costs negatively impacts the dispatch costs for East Bend. As the cost for the existing lime process continues to escalate, the value of the unit in the wholesale market continues to diminish and its capacity factor decreases. This results in Duke Energy Kentucky purchasing more economy power from the market and not generating itself.

16. To address the rising cost of the quicklime reagent, and the risk of an inability to operate the unit absent a viable reagent replacement, Duke Energy Kentucky's fuel sourcing organization has explored several alternatives, including 1) the Lime Stone Conversion project; 2) conducting requests for proposals (RFP) to explore alternative

7

sources for the existing MEL product with the correct chemical composition to operate the WFGD system; and 3) system renovations for onsite mixing of magnesium hydroxide with hi-calcium quicklime to create a replacement mag-lime product that possesses similar chemical composition to operate the existing WFGD system.

17. An RFP alternative is not a viable solution going forward as in its most recent solicitation, the Company did not receive competitive offers, which resulted in significant cost increases.

18. The onsite mixing of chemicals with high-calcium quicklime was a more expensive alternative as it would require the Company to purchase significant amounts of magnesium hydroxide to meet the correct chemical content specifications to operate the WFGD increasing the Company's reagent costs and further eroding the unit's economics in the competitive markets. Moreover, this strategy did not alleviate the scarcity risk with obtaining a lime-based reagent product. Because this solution does not sufficiently mitigate the risk of a lack of certainty of reagent supplies it was not a reasonable and viable solution.

19. The conversion of the WFGD to a limestone inhibited oxidation process (LSIO) is the most economic and most reasonable solution. The LSIO chemistry will improve the dewatering properties of the calcium sulfite solids by creating larger, more regular, and symmetric crystals and provide a lower cost alternative for reagents going forward. This proposed Limestone Conversion Project process should result in lower reagent costs than the current mag-lime-based process, which in turn should provide downward pressure on East Bend's total dispatch cost in the wholesale energy markets and should result in an increased capacity factor.

20. The Limestone Conversion Project scope includes modifications to existing equipment and is based on a turnkey delivery, including engineering, procurement, and construction. The conversion of the East Bend WFGD system to LSIO operation involves several process, equipment, and system changes including:

- a. Minor modifications to reagent receiving, conveying, and storage systems;
- b. Installation of new reagent feeders and conveying equipment;
- c. Installation of new limestone grinding mills;
- d. Upgraded absorber recycle pumps;
- e. Installation of new absorber recycle slurry piping, cross-tie piping, spray headers, and spray nozzles;
- f. Operation of all absorber recycle slurry pumps to enhance SO₂ removal performance;
- g. Modification of the absorber trays to enhance SO₂ removal performance;
- h. Installation of a buffer additive storage and feed system to enhance SO₂ removal performance;
- i. Replacement of existing emulsified sulfur storage tank and feed system to improve system reliability and inhibit sulfite oxidation;
- j. Upgrade of mist eliminator wash water supply system;
- k. Replacement of waste slurry storage tank, thickener underflow sludge tank and lime slurry tank agitators.
- 1. Installation of a filtrate purge system to control process chloride levels.

Modeling shows that conversion to a LSIO- limestone reagent process is economic in most future scenarios and produces a reduced variable operational cost and lower dispatch cost reducing the Company's reliance upon market purchases for power. Although the Limestone Conversion Project will likely result in a higher overall reagent expenditure due to the anticipated increased economic dispatch of the plant necessitating a greater need and consumption of the limestone reagent, the cost per ton of reagent is anticipated to be significantly lower due to the Limestone Conversion Project. Moreover, the Limestone Convergent Project, which includes and necessitates upgrades to the absorber recycle pumps, installation of new absorber recycle slurry piping, cross-tie piping, spray headers and nozzles, operation of all absorber recycle slurry pumps, and modifications to absorber trays, and upgrade of mist eliminator wash water supply system, among other upgrades to the WFGD, provides the added benefit of providing a path for compliance with the new MATS standards for fine particulate matter, thereby obviating the need for s separate environmental project solely to address the new MATs standards. The current class 4 estimated capital cost for the project, including those portions that provide the added benefit of meeting the new MATS standards, is approximately \$125.8 million. As explained in accompanying testimony, the conversion would reduce total variable operating and maintenance and produce estimated benefits to customers in terms of fuel cost savings and additional off system sales revenues as compared to continuing the existing processes. This increased economics of East Bend is a benefit to customers as it will likely reduce the need for replacement power from the market.

21. In September 2024, East Bend's existing MEL supplier approached the Company demonstrating a new willingness to enter into a slightly longer-term contract that it was previously willing to consider, and at a slightly lower price with defined annual escalations. While this new supply offer provides somewhat better economics for the

10

existing supply risks previously identified, it does not provide a long-term solution for East Bend and still exposed customers to price escalation and supply uncertainty for the majority of the projected remaining operational life of East Bend. This new price structure would only be available if the Company maintained the status quo as a MEL-based scrubbing system. Moreover, this "status quo" would require the Company to pursue a new and separate environmental compliance strategy to meet the new MATs rule standards for fine particulate matter. The Company continues to believe that the Limestone Conversion Project is in the best interests of customers and provides the least-cost, most reasonable solution to continue to meet applicable environmental regulations.

III. <u>REQUEST FOR CERTIFICATE OF PUBLIC CONVENIENCE AND</u> <u>NECESSITY</u>

22. Duke Energy Kentucky requests Commission authorization through a CPCN to construct the Limestone Conversion Project.

23. In accordance with KRS 278.020, No utility may construct or acquire any facility to be used in providing utility service to the public until it has obtained a CPCN from the Kentucky Public Service Commission.³ To obtain a CPCN, the utility must demonstrate a need for such facilities and an absence of wasteful duplication.⁴ "Need" requires:

[A] showing of a substantial inadequacy of existing service, involving a consumer market sufficiently large to make it economically feasible for the new system or facility to be constructed or operated. [T]he inadequacy must be due either to a

³ KRS 278.020(1)(a).

⁴ Kentucky Utilities Co. v. Pub. Serv. Comm 'n, 252 S.W.2d 885 (Ky. 1952).

substantial deficiency of service facilities, beyond what could be supplied by normal improvements in the ordinary course of business; or to indifference, poor management or disregard of the rights of consumers, persisting over such a period of time as to establish an inability or unwillingness to render adequate service.⁵

"Wasteful duplication" is defined as "an excess of capacity over need" and "an excessive investment in relation to productivity or efficiency, and an unnecessary multiplicity of physical properties."⁶ To demonstrate that a proposed facility does not result in wasteful duplication, Duke Energy Kentucky must demonstrate that a thorough review of all reasonable alternatives has been performed. Although cost is a factor, selection of a proposal that ultimately costs more than an alternative does not necessarily result in wasteful duplication.⁷ All relevant factors must be balanced.⁸

24. As supported in the testimony accompanying this Application, the Company respectfully submits that the existing WFGD system at East Bend is not capable of processing the new limestone-based reagent, thus necessitating upgrades and conversion. Moreover, the Limestone Conversion Project will also provide a compliance path to meet the new MATs standard, which the existing WFGD lime-based handling is incapable of achieving. Therefore, the upgrades described herein are necessary and do not result in wasteful duplication.

⁵ *Id.* at 890.

⁶ Id.

⁷ See, Kentucky Utilities Co. v. Pub. Serv. Comm'n, 390 S.W.2d 168, 175 (Ky. 1965). See also, Application of East Kentucky Power Cooperative, Inc. for a Certificate of Public Convenience and Necessity for the Construction of a 138 kV Electric Transmission Line in Rowan County, Kentucky, Case No. 2005-00089, Final Order (Aug. 19, 2005).

⁸ Joint Application of Louisville Gas and Electric Company and Kentucky Utilities Company for a Certificate of Public Convenience and Necessity for the Construction of Transmission Facilities in Jefferson, Bullitt, Meade, and Hardin Counties, Kentucky, Case No. 2005-00142 (Sept. 8, 2005).

25. In accordance with 807 KAR 5:001 Section 12(2)(a)-(i), Duke Energy Kentucky is filing the following financial information in Exhibit 2, which is incorporated herein and made a part of this Application filed in this proceeding:

Exhibit 2	Description	807 KAR 5:001
Page		Section Reference
	Financial Exhibit	12(2)
1	Amount and kinds of stock authorized	12(2)(a)
1	Amount and kinds of stock issued and outstanding	12(2)(b)
1	Terms of preference or preferred stock	12(2)(c)
1	Brief description of each mortgage on proper of Duke Energy Kentucky	rty 12(2)(d)
1-2	Amount of bonds authorized and issued and related information	12(2)(e)
2	Notes outstanding and related information	12(2)(f)
2-3	Other indebtedness and related information	12(2)(g)
3	Dividend information	12(2)(h)
3-5	Detailed Income Statement and Balance She	et 12(2)(i)

26. Additionally, requirements for Applications requesting a CPCN related to a

new construction or extension are set forth in 807 KAR 5:001 § 14 and 15(2) et seq., and

include the following requirements:

Section 14:

- (1) Each application shall state the full name, mailing address, and electronic mail address of the applicant, and shall contain fully the facts on which the application is based, with a request for the order, authorization, permission, or certificate desired and a reference to the particular law requiring or providing for the information.
- (2) If a corporation, the applicant shall identify in the application the state in which it is incorporated and the date of its incorporation, attest that it is currently in good standing in the state in which it is incorporated, and, if it is not a Kentucky corporation, state if it is authorized to transact business in Kentucky.⁹

 $^{^9}$ 807 KAR 1:005 14; Sub sections 2 and 4 are inapplicable as Duke Energy Kentucky is a Kentucky Corporation.

Section 15(2):

- (a) The facts relied upon to show that the proposed construction or extension is or will be required by public convenience or necessity;
- (b) Copies of franchises or permits, if any, from the proper public authority for the proposed construction or extension, if not previously filed with the commission;
- (c) A full description of the proposed location, route, or routes of the proposed construction or extension, including a description of the manner of the construction and the names of all public utilities, corporations, or persons with whom the proposed construction or extension is likely to compete;
- (d) One (1) copy in portable document format on electronic storage medium and two (2) copies in paper medium of:

1. Maps to suitable scale showing the location or route of the proposed construction or extension, as well as the location to scale of like facilities owned by others located anywhere within the map area with adequate identification as to the ownership of the other facilities; and

2. Plans and specifications and drawings of the proposed plant, equipment, and facilities;

- (e) The manner in detail in which the applicant proposes to finance the proposed construction or extension; and
- (f) An estimated annual cost of operation after the proposed facilities are placed into service.
- 27. Section 14- Name, Address, electronic mail address of Applicant, facts

upon which the Application is based, and reference to the particular law: See paragraphs 1 through 26 above, which are incorporated by reference as if fully restated herein.

28. Section 15(2)(a)- Statement of Need: The facts relied upon to demonstrate

the Limestone Conversion Project is required by public convenience and necessity are set forth within this Application and in the Testimony submitted in support thereof. In summary, the existing reagent process needed to operate the Company's East Bend WFGD is insufficient to continue its operation due to unreasonable and uncontrollable increases in reagent prices, a lack of competitive RFP responses, scarcity of supply and an overall risk of an inability to comply and continue operating the station if a suitable replacement is not timely implemented. The Limestone Conversion has the added benefit of allowing East Bend to meet the new MATs standards for fine particulate matter without have a separate environmental project. Exhibit 3 to this Application depicts the daily historic fine particulate matter emissions for East Bend from July 1, 2021, through June 29, 2024, that demonstrates that although unit complied with the current MATs fine particulate standard, had the new standard been in place during that time, the unit would have exceeded the new MATS standard on a thirty-day rolling average numerous times over the past three years. Duke Energy Kentucky has explored several alternative strategies and has determined that the Limestone Conversion Project is the least-cost and most reasonable solution to continue complying with Federal environmental regulations, including the CAA and new MATs standards.

29. <u>Section 15(2)(b)- Copies of Franchises and Permits:</u> The Company has previously filed with the Commission the applicable franchises from the proper public authorities. In addition, because much of the existing equipment will be used as part of the Limestone Conversion, only minor air source permit modifications will be necessary to construct the Limestone Conversion Project. A copy of the minor air source permit application, submitted on July 11, 2024, is attached as Exhibit 4.

30. Section 15(2)(c)- <u>Description of the Proposed Location, Manner of</u> <u>Construction, and Competing Utilities, Companies, or Persons</u>: Exhibit 5 contains maps of the East Bend facility and depicts the approximate location of the Limestone Conversion construction. Exhibit 5 further contains a description of how the construction will occur. Additionally, the direct testimony accompanying this Application further describes the manner of construction. This project will be constructed on the existing East Bend site, which is owned by Duke Energy Kentucky and will be used by the Company to continue to meet environmental regulations impacting the operation of the East Bend station. Consequently, there are no other utilities, persons or corporations competing with the proposed facilities to be constructed.

31. <u>Section 15(2)(d)- Maps and Specifications</u>: Exhibit 4 includes overhead maps of the site showing the location of the East Landfill and closure construction. Exhibit 5 also includes the design plans, specifications, and drawings of the East Landfill closure.

32. <u>Section 15(2)(e)- Manner of Proposed Financing</u>: the Company states that the total, fully loaded projected costs for Limestone Conversion Project is \$125.8million, including contingency and escalation. Duke Energy Kentucky seeks to recover these costs through its ESM as part of its ECP. Duke Energy Kentucky expects to finance the costs of construction with a combination of new debt and equity and through ongoing operations. The mix of debt and equity used to finance the project will be determined so as to allow Duke Energy Kentucky to maintain its investment-grade credit rating.

33. <u>Section 15(2)(f)- Ongoing Cost of Operation</u>: The estimated incremental ongoing costs of operation, will be minimal (<\$10,000 per year, excluding the reagent commodity.

IV. REQUEST FOR RECOVERY BY ENVIRONMENTAL SURCHARGE AND TO AMEND DUKE ENERGY KENTUCKY'S ENVIRONMENTAL COMPLIANCE PLAN

34. Duke Energy Kentucky is seeking Commission authorization to amend its Environmental Compliance Plan, (ECP) to include the construction, operation and maintenance of the Limestone Conversion Project as well as the associated reagents. This conversion will enable Duke Energy Kentucky to continue operation of East Bend in compliance with applicable environmental regulations, including but not limited to, the U.S. EPA CAA, MATS, and CSAPR, as well as other environmental regulations.

35. Duke Kentucky's ESM and ECP are governed by KRS 278.183 which provides in relevant part:

(1) . . . [A] utility shall be entitled to the current recovery of its costs of complying with the Federal Clean Air Act as amended and those federal, state, or local environmental requirements which apply to coal combustion wastes and by-products from facilities utilized for production of energy from coal in accordance with the utility's compliance plan . . .

(2) Recovery of costs pursuant to subsection (1) of this section that are not already included in existing rates shall be by environmental surcharge to existing rates imposed as a positive or negative adjustment to customer bills in the second month following the month in which costs are incurred. Each utility, before initially imposing an environmental surcharge pursuant to this subsection, shall thirty (30) days in advance file a notice of intent to file said plan and subsequently submit to the commission a plan, including any application required by KRS 278.020(1), for complying with the applicable environmental requirements set forth in subsection (1) of this section. The plan shall include the utility's testimony concerning a reasonable return on compliance-related capital expenditures and a tariff addition containing the terms and conditions of a proposed surcharge as applied to individual rate classes. Within six (6) months of submittal, the commission shall conduct a hearing upon the request of a party, and shall, regardless of whether or not a hearing is requested:

(a) Consider and approve the plan and rate surcharge if the commission finds the plan and rate surcharge reasonable and cost-effective for compliance with the applicable environmental requirements set forth in subsection (1) of this section;

(b) Establish a reasonable return on compliance-related capital expenditures; and

(c) Approve the application of the surcharge.

Duke Energy Kentucky submits that the CPCN is necessary to comply with existing environmental regulations affecting its coal-fired generation. The Company is entitled to amend its ECP and ESM because: 1) the need for this Limestone Conversion Project CPCN arises from the need to continue complying with environmental regulations applicable to coal combustion generating facilities and the current method is experiencing and will continue to experience significant price increases and there is a serious risk that the existing reagent process will no longer be able to function due to resource scarcity; 2) the costs of construction and operation of this Limestone Conversion Project CPCN are not already included in existing rates; and 3) the ECP and ESM are reasonable and costeffective as it results in a lower cost for customers and avoids the risk of not having access to necessary reagents and premature plant closure.

36. This Application and supporting testimony and exhibits are available for public inspection at Duke Energy Kentucky's local Kentucky office located at Duke Energy Erlanger Operations Center, 1262 Cox Road, Erlanger, Kentucky 41018. The

18

Company is giving notice to the public of the proposal to recover the Limestone Conversion Project through its existing environmental surcharge by newspaper publication. The Company is also posting this Application on its website at www.dukeenergy.com. An initial Certificate of Notice and Publication is filed with this Application as Exhibit 6. A Certification of Completed Notice and Publication will be filed with the Commission upon completion of same pursuant to 807 KAR 5:001, Section 17(3)(b).

37. Pursuant to KRS 278.183(1), Duke Energy Kentucky is "entitled to the current recovery of its costs of complying with the Federal Clean Air Act as amended and those federal, state, or local environmental requirements which apply to coal combustion wastes and byproducts from facilities utilized for production of energy from coal in accordance with the utility's compliance plan."

38. A detailed summary of the facts and compliance requirements supporting this Application is set forth in the direct testimony and exhibits of the Company's witnesses:

39. The testimony of John A. Verderame, Vice President of Fuels and Systems Optimization, who discusses the need and justification of the Limestone Conversion Project, alternatives considered, and why the Limestone Conversion Project is the least cost and most reasonable solution;

40. The testimony of Chad M. Donner, Project Manager, describes the engineering and construction aspects of the Limestone Conversion Project and the estimated costs;

41. The testimony of Nathan Gagnon, Managing Director, Integrated Resource Planning & Analytics, discusses the need for the project and how this project fits within the Company's resource planning analysis;

42. The testimony of J. Michael Geers, P.E., Manager Environmental Services, discusses the environmental regulations that necessitate the Limestone Conversion Project; and

43. The testimony of Sarah E. Lawler, Vice President, Rates and Regulatory Strategy for Ohio/ Kentucky provides an overview of the estimated impact of the Limestone Conversion on Rider ESM, the recovery of the cost of construction and ongoing operation and maintenance, the requested ROE as authorized by the Commission in the Company's most recent electric base rate case proceeding and the estimated monthly bill impact for residential and non-residential customers.

44. Duke Energy Kentucky proposed Environmental Surcharge Mechanism tariff sheet, K.Y.P.S.C. No. 19, Sheet No. 76 is attached as Exhibit 7 to this Application and reflects changes the issue and effective dates and to include the Limestone Conversion Project and the new limestone reagent. In accordance with KRS 278.183(2), the ESM tariff has an issue date of January 27, 2025, and is proposed to be effective on February 26, 2025, to begin recovery of construction activities following Commission approval of the requested CPCN. The Company projects that bills issued following Commission approval will reflect the revised environmental surcharge.

V. <u>REQUEST FOR EXPEDITED REVIEW</u>

45. In Case No. 2024-00152, Duke Energy Kentucky filed its Initial CPCN for the Limestone Conversion Project and recovery through its ESM. An evidentiary hearing

20

was scheduled to occur on January 14, 2025, only days before the statutory deadline under KRS 278.183. Following discussions among the intervening parties and Commission Staff, on December 17, 2024, Duke Energy Kentucky filed a Motion for Leave to Withdraw its Application Without Prejudice (Withdrawal).¹⁰ The reason for the withdrawal was due to the rapidly approaching statutory deadline for the Commission to issue a decision in that case, a concern with an insufficient time for briefing of issues and interested parties having adequate time to prepare for the hearing given the holidays. By Order dated January 6, 2025, the Commission granted the Company's Withdrawal, finding among other things:

- a. The Company's Application was dismissed without prejudice;
- b. The Company is responsible for any unsubmitted invoices sent to the Commission for review and payment in accordance with the Commission's August 9, 2024, Order;
- c. If the Company files a new application relating back to this case, it shall reference Case No. 2025-00152 and the Commission's January 6, 2025, Order in the new Application;
- d. If Duke Energy Kentucky files a new application relating back to the Initial CPCN, the Attorney General and Sierra Club shall be granted Intervention and shall serve all parties with a copy of the Application;
- e. Case No. 2024-00197 shall be incorporated into the record of the new case as of September 27, 2024;
- f. The record of the Initial CPCN shall be incorporated into the new proceeding;

¹⁰ Initial CPCN, Order (Jan. 6, 2025).

- g. Sierra Club attorneys shall be granted re-admittance to the extent possible;
- h. If Duke Energy Kentucky files a new application relating back to the Initial CPCN, it shall be processed with a statutory date within six months of submittal pursuant to KRS 278.183(2).

46. Through this Application, Duke Energy Kentucky seeks to re-institute its request for the Limestone Conversion and recovery through the ESM, in accordance with the Commission's January 6, 2025, Order in the Initial CPCN proceeding.

47. In Order to meet the statutory deadline under KRS 278.183(2), and to allow the Company to have sufficient time to complete construction on the Limestone Conversion if approved or pursue an alternative MATs compliance path if the Limestone Conversion is not approved, Duke Energy Kentucky respectfully requests that the Commission hold a hearing, following reasonable opportunity for due process by interested parties, no later than April 2025.

48. Notwithstanding the six-month deadline in KRS 278.183, Duke Energy Kentucky respectfully requests that the Commission, to the greatest extent possible, issue a decision by June 30, 2025. This would allow the Company, if the Application is approved, sufficient time to begin procurement of long-lead-time equipment so to complete the Limestone Conversion Project in time to meet the MATs compliance deadline.

49. Given the statutory deadline for applications under KRS 278.183, and in the interests of affording parties and the Commission with adequate time to evaluate the Company's Application, the Company has examined the Commission's current hearing calendar and respectfully suggests that if an evidentiary hearing is determined to be necessary, that such a hearing be scheduled to occur either the weeks of March 31, 2025

through April 4, 2025 or, in the alternative, April 28, 2025 through May 2, 2025. The Company's witnesses are available to appear those weeks, and it appears the Commission's hearing calendar is open at the time of this filing.

VI. <u>CONCLUSION</u>

WHEREFORE, Duke Energy Kentucky respectfully requests the Kentucky Public Service Commission to enter an order: 1) granting Duke Energy Kentucky a Certificate of Public Convenience and Necessity to construct, operate and maintain its Limestone Conversion Project; 2) approving the amendment to Duke Energy Kentucky's ECP to include the construction and operation of the Limestone Conversion Project and associated reagents; 3) approving the proposed ESM tariff for recovery of the costs of for bills rendered following Commission approval; 4) recovery of the overall ROE requested herein; and 5) granting such other relief as Duke Energy Kentucky may be entitled under the law.

Respectfully submitted,

DUKE ENERGY KENTUCKY, INC.

/s/ Rocco D'Ascenzo

Rocco O. D'Ascenzo (92796) Deputy General Counsel Larisa M. Vaysman (98944) Associate General Counsel Duke Energy Business Services LLC 139 East Fourth Street, 1303-Main Cincinnati, Ohio 45201-0960 (513) 287-4320 (513) 370-5720 (f) rocco.d'ascenzo@duke-energy.com larisa.vaysman@duke-energy.com

CERTIFICATE OF SERVICE

This is to certify that the foregoing electronic filing is a true and accurate copy of the document being filed in paper medium; that the electronic filing was transmitted to the Commission on January 28, 2025; and that there are currently no parties that the Commission has excused from participation by electronic means in this proceeding.

John G. Horne, II The Office of the Attorney General Utility Intervention and Rate Division 700 Capital Avenue, Ste 118 Frankfort, Kentucky 40601 John.Horne@ky.gov

Joe F. Childers, Esq. Childers & Baxter, PLLC The Lexington Building 201 West Short Street, Suite 300 Lexington, KY 40507 (859) 253-9824 joe@jchilderslaw.com

Of counsel (not licensed in Kentucky)

Kristin A. Henry Sierra Club 2101 Webster Street, Suite 1300 Oakland, CA 94612 <u>kristin.henry@sierraclub.org</u>

Nathaniel T. Shoaff Sierra Club 2101 Webster Street, Suite 1300 Oakland, CA 94612 nathaniel.shoaff@sierraclub.org

Cassandra McCrae Earthjustice 1617 JFK Blvd., Ste. 2020 Philadelphia, PA 19103 cmccrae@earthjustice.org

> /s/Rocco D'Ascenzo Counsel for Duke Energy Kentucky, Inc.

Commonwealth of Kentucky Michael G. Adams, Secretary of State

Michael G. Adams Secretary of State P. O. Box 718 Frankfort, KY 40602-0718 (502) 564-3490 http://www.sos.ky.gov

Certificate of Existence

Authentication number: 327114

Visit https://web.sos.ky.gov/ftshow/certvalidate.aspx to authenticate this certificate.

I, Michael G. Adams, Secretary of State of the Commonwealth of Kentucky, do hereby certify that according to the records in the Office of the Secretary of State,

DUKE ENERGY KENTUCKY, INC.

DUKE ENERGY KENTUCKY, INC. is a corporation duly incorporated and existing under KRS Chapter 14A and KRS Chapter 271B, whose date of incorporation is March 20, 1901 and whose period of duration is perpetual.

I further certify that all fees and penalties owed to the Secretary of State have been paid; that Articles of Dissolution have not been filed; and that the most recent annual report required by KRS 14A.6-010 has been delivered to the Secretary of State.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my Official Seal at Frankfort, Kentucky, this 24th day of January, 2025, in the 233rd year of the Commonwealth.

nichael & aldam

Michael G. Adams Secretary of State Commonwealth of Kentucky 327114/0052929

FINANCIAL EXHIBIT

(1) <u>Section 12(2)(a) Amount and kinds of stock authorized.</u>

1,000,000 shares of Capital Stock \$15 par value amounting to \$15,000,000 par value.

(2) <u>Section 12(2)(b)</u> Amount and kinds of stock issued and outstanding.

585,333 shares of Capital Stock \$15 par value amounting to \$8,779,995 total par value. Total Capital Stock and Additional Paid-in Capital as of November 30, 2024:

Capital Stock and Additional Paid-in Capital As of November 30, 2024 (\$ per 1,000)

Capital Stock	\$8,780
Premiums thereon	18,839
Total Capital Contributions from Parent (since 2006)	334,311
Contribution from Parent Company for Purchase of Generation Assets	140,061
Total Capital Stock and Additional Paid-in-Capital	<u>\$501,991</u>

(3) <u>Section 12(2)(c) Terms of preference or preferred stock, cumulative or</u> participating, or on dividends or assets or otherwise.

There is no preferred stock authorized, issued or outstanding.

(4) <u>Section 12(2)(d) Brief description of each mortgage on property of applicant,</u> giving date of execution, name of mortgagor, name or mortgagee, or trustee, amount of indebtedness authorized to be secured, and the amount of indebtedness actually secured, together with any sinking fund provision.

Duke Energy Kentucky does not have any liabilities secured by a mortgage.

(5) <u>Section 12(2)(e) Amount of bonds authorized, and amount issued, giving the name</u> of the public utility which issued the same, describing each class separately, and giving the date of issue, face value, rate of interest, date of maturity and how secured, together with the amount of interest paid thereon during the last fiscal year.

The Company has sixteen outstanding issues of unsecured senior debentures issued under an Indenture dated December 1, 2004, between itself and Deutsche Bank Trust Company Americas, as Trustee, as supplemented by nine Supplemental Indentures. The Indenture allows

Supplemental Indenture	Date of Issue	Principal Amount Authorized and Issued	Principal Amount Outstanding	Rate of Interest	Date of Maturity	Interest Paid Year 2023
1 st Supplemental	3/7/2006	65,000,000	65,000,000	6.20%	3/10/2036	4,030,000
3 rd Supplemental	1/5/2016	45,000,000	45,000,000	3.42%	1/15/2026	1,539,000
3 rd Supplemental	1/5/2016	50,000,000	50,000,000	4.45%	1/15/2046	2,225,000
4 th Supplemental	9/7/2017	30,000,000	30,000,000	3.35%	9/15/2029	1,005,000
4 th Supplemental	9/7/2017	30,000,000	30,000,000	4.11%	9/15/2047	1,233,000
4 th Supplemental	9/7/2017	30,000,000	30,000,000	4.26%	9/15/2057	1,278,000
5 th Supplemental	10/3/2018	40,000,000	40,000,000	4.18%	10/15/2028	1,672,000
5 th Supplemental	12/12/2018	35,000,000	35,000,000	4.62%	12/15/2048	1,617,000
6 th Supplemental	7/17/2019	40,000,000	40,000,000	4.32%	7/15/2049	1,728,000
7 th Supplemental	9/15/2019	95,000,000	95,000,000	3.23%	10/1/2025	3,068,500
7 th Supplemental	9/15/2019	75,000,000	75,000,000	3.56%	10/1/2029	2,670,000
8 th Supplemental	9/15/2020	35,000,000	35,000,000	2.65%	9/15/2030	927,500
8 th Supplemental	9/15/2020	35,000,000	35,000,000	3.66%	9/15/2050	1,281,000
9th Supplemental	6/28/2024	80,000,000	80,000,000	5.90%	7/15/2031	
9th Supplemental	6/28/2024	95,000,000	95,000,000	6.00%	7/15/2034	
9th Supplemental	6/28/2024	50,000,000	50,000,000	6.17%	7/15/2039	
			880,000,000			24,274,000

the Company to issue debt securities in an unlimited amount from time to time. The Debentures issued and outstanding under the Indenture are the following:

(6) <u>Section 12(2)(f) Each note outstanding, giving date of issue, amount, date of maturity, rate of interest, in whose favor, together with amount of interest paid thereon during the last fiscal year.</u>

Duke Energy Kentucky does not have any outstanding notes as of 11/30/2024.

(7) <u>Section 12(2)(g) Other indebtedness, giving same by classes and describing</u> security, if any, with a brief statement of the devolution or assumption of any portion of such indebtedness upon or by person or corporation if the original liability has been transferred, together with amount of interest paid thereon during the last fiscal year.

The Company has two series of Pollution Control Revenue Refunding Bonds issued under a Trust Indenture dated as of August 1, 2006 and a Trust Indenture dated as of December 1, 2008, between the County of Boone, Kentucky and Deutsche Bank National Trust Company

as Trustee. The Company's obligation to make payments equal to debt service on the Bonds is evidenced by a Loan Agreement dated as of August 1, 2006 and December 1, 2008 between the County of Boone, Kentucky and Duke Energy Kentucky. The Bonds issued under the Indentures are below. On Nov 1, 2021, the Company bought in the Series 2008A bond, and remarketed the bond in June 2022.

		Principal				
		Amount	Principal			Interest
	Date of	Authorized	Amount	Rate of	Date of	Paid
Indenture	Issue	and Issued	Outstanding	Interest	Maturity	Year 2023
Series 2010	11/24/2010	26,720,000	26,720,000	3.86% (1)	8/1/2027	1,031,392
Series 2008A	12/01/2011	50,000,000	50,000,000	3.70% (2)	8/1/2027	<u>1,850,000</u>
			76,720,000			2,881,392

- ⁽¹⁾ The bonds were issued at a variable-rate and were swapped to a fixed rate of 3.86% for the life of the debt.
- ⁽²⁾ Bonds were remarketed in June 2022 under a fixed-to-maturity interest rate mode (3.70% coupon).

The Company has no outstanding financing leases as of November 30, 2024.

The Company also has \$25,000,000 of money pool borrowings outstanding as of November 30, 2024, all of which is classified as Long-Term Debt payable to affiliated companies. This obligation, which is short-term by nature, is classified as long-term due to Duke Energy Kentucky's intent and ability to utilize such borrowings as long-term financing.

(8) Section 12(2)(h) Rate and amount of dividends paid during the last five (5) previous fiscal years, and the amount of capital stock on which dividends were paid each year.

Year Ending	Per Share	Total	No. of Shares	Par Value of Stock
31-Dec-19	0	0	585,333	8,779,995
31-Dec-20	0	0	585,333	8,779,995
31-Dec-21	0	0	585,333	8,779,995
31-Dec-22	0	0	585,333	8,779,995
31-Dec-23	0	0	585,333	8,779,995

DIVIDENDS PER SHARE

(9) <u>Section 12(2)(i) Detailed Income Statement and Balance Sheet.</u>

See the attached pages for a detailed Income Statement for the eleven months ended November 30, 2024 and a detailed Balance Sheet as of November 30, 2024.

DUKE ENERGY KENTUCKY, INC. CONDENSED STATEMENTS OF OPERATIONS

(Unaudited) (In thousands)

	Eleven Months Ended	
	November 30, 2024	
Operating Revenues	2024	
Electric	462,636	
Gas	107,663	
Total operating revenues	570,299	
Operating Expenses		
Fuel used in electric generation and purchased power	147,477	
Natural gas purchased	37,025	
Operation, maintenance and other	140,865	
Depreciation and amortization	99,870	
Property and other taxes	18,557	
Goodwill and other impairment charges	-	
Total operating expenses	443,794	
Gains on Sales of Other Assets and Other, net	391	
Operating Income	126,896	
Other Income and Expenses, net	9,825	
Interest Expense	31,948	
Income Before Income Taxes	104,773	
Income Tax Expense	20,105	
Income From Continuing Operations	84,668	
Income From Discontinued Operations, net of tax	-	
Net Income	84,668	

DUKE ENERGY KENTUCKY, INC. Condensed Balance Sheets (Unaudited)

(in thousands, except share amounts)	November 30, 2024
ASSETS	
Current Assets	
Cash and Cash Equivalents	631
Receivables (net of allowance for doubtful accounts)	76,816
Receivables from affiliated companies	143
Notes Receivables from affiliated companies	32,717
Inventory	55,619
Regulatory Assets	16,300
Other	10,019
Total Current Assets	192,245
Property, Plant and Equipment	
Cost	3,569,101
Less Accumulated Depreciation and Amortization	(1,187,514)
Generation Facilities To Be Retired	
Net Property Plant and Equipment	2,381,587
Other Noncurrent Assets	
Regulatory Assets	105,138
Operating Lease Right-of-Use assets	3,978
Other	22,858
Total Other Noncurrent Assets	131,974
Total Assets	2,705,806
LIABILITIES AND COMMON STOCKHOLDERS' EQUITY Current Liabilities	
	E2 200
Accounts Payable	52,390
Accounts payable to affiliated companies Notes payable to affiliated companies	17,814
Taxes Accrued	- 26,249
Interest Accrued	12,901
Current Maturities of Long-Term Debt	94,942
Asset Retirement Obligations	7,331
Regulatory Liabilities	8,543
Other	15,123
Total Current Liabilities	235,293
Long-Term Debt	
Notes payable to affiliated companies	808,945 25,000
Other Noncurrent Liabilities	25,000
Deferred Income Taxes	215 810
	315,819
Asset Retirement Obligations	79,962
Regulatory Liabilities	94,409 3,871
Operating Lease Liabilities Accrued Pension and Other Post-Retirement Benefit Costs	29,113
Other	29,113
Total Other Noncurrent Liabilities	545,839
	545,655
Commitments and Contingencies	
Equity Common Stock, \$15.00 par value, 1,000,000 shares authorized and 585,333	
shares outstanding	8,780
Additional Paid in Capital	493,211
Retained Earnings	588,737
Total Duke Energy Corporation Stockholders' Equity	1,090,728
Noncontrolling Interests	
Total Liabilities and Equity	2,705,805

East Bend Unit 2 Data -2024-00197 IRP Request SIERRA-PHDR-01-005

	UNIT2 PM#/MM
Date	(LB/MMBTU)
07/01/2021	Value 0.0116
07/02/2021	0.0114
07/03/2021	0.0113
07/04/2021	0.0111
07/05/2021	0.0109
07/06/2021	0.0107
07/07/2021	0.0104
07/08/2021	0.0102
07/09/2021	0.0099
07/10/2021	0.0099
07/11/2021	0.01
07/12/2021	0.0101
07/13/2021	0.0102
07/14/2021	0.0102
07/15/2021	0.0102
07/16/2021	0.0103
07/17/2021	0.0105
07/18/2021	0.0105
07/19/2021	0.0105
07/20/2021	0.0105
07/21/2021	0.0105
07/22/2021	0.0105
07/23/2021	0.0105
07/24/2021	0.0105
07/25/2021	0.0104
07/26/2021	0.0103
07/27/2021	0.0104
07/28/2021	0.0104
07/29/2021	0.0104
07/30/2021	0.0104
07/31/2021	0.0105
08/01/2021	0.0108
08/02/2021	0.010
08/02/2021	0.011
08/04/2021	0.011
08/05/2021	0.0111
08/06/2021	0.0111
08/07/2021	0.0111
08/08/2021	0.0111
08/09/2021	0.0111
08/10/2021	0.0112
08/10/2021	0.0112
08/11/2021	0.0111
08/12/2021	0.0108
08/14/2021	0.0105
08/15/2021	0.0103
08/16/2021	0.01
08/17/2021	0.0099
08/18/2021	0.0099
08/19/2021	0.0098

	UNIT2 PM#/MM
Date	(LB/MMBTU)
07/01/2022	Value 0.007
07/01/2022	
	0.007
07/03/2022	0.0071
07/04/2022	0.0072
	0.0073
07/06/2022	
07/07/2022	0.0074
07/08/2022	0.0075
07/10/2022	0.0081
07/11/2022	0.0085
07/12/2022	0.0087
07/13/2022	0.0089
07/14/2022	0.0092
07/15/2022	0.0093
07/16/2022	0.0094
07/17/2022	0.0095
07/18/2022	0.0097
07/19/2022	0.0097
07/20/2022	0.0096
07/21/2022	0.0095
07/22/2022	0.0094
07/23/2022	0.0094
07/24/2022	0.0093
07/25/2022	0.0093
07/26/2022	0.0093
07/27/2022	0.0092
07/28/2022	0.0092
07/29/2022	0.0092
07/30/2022	0.0092
07/31/2022	0.0092
08/01/2022	0.0095
08/02/2022	0.0097
08/03/2022	0.0097
08/04/2022	0.0096
08/05/2022	0.0096
08/06/2022	0.0097
08/07/2022	0.0098
08/08/2022	0.0101
08/09/2022	0.0102
08/10/2022	0.0103
08/11/2022	0.01
08/12/2022	0.01
08/13/2022	0.01
08/14/2022	0.01
08/15/2022	0.01
08/16/2022	0.01
08/17/2022	0.01
08/18/2022	0.01
08/19/2022	0.01
	-

Date	UNIT2 PM#/MM (LB/MMBTU)
Duic	Value
07/01/2023	0.0086
07/02/2023	0.0086
07/03/2023	0.0086
07/04/2023	0.0085
07/05/2023	0.0085
07/06/2023	0.0084
07/07/2023	0.0084
07/08/2023	0.0084
07/09/2023	0.0082
07/10/2023	0.008
07/11/2023	0.008
07/12/2023	0.0081
07/13/2023	0.0081
07/14/2023	0.0078
07/15/2023	0.0078
07/16/2023	0.0077
07/17/2023	0.0076
07/18/2023	0.0075
07/19/2023	0.0075
07/20/2023	0.0074
07/21/2023	0.0073
07/22/2023	0.0072
07/23/2023	0.0071
07/24/2023	0.0072
07/25/2023	0.0073
07/26/2023	0.0075
07/27/2023	0.0076
07/28/2023	0.0078
07/29/2023	0.0079
07/30/2023	0.008
07/31/2023	0.008
08/01/2023	0.0081
08/02/2023	0.0081
08/03/2023	0.0083
08/04/2023	0.0084
08/05/2023	0.0085
08/06/2023	0.0086
08/07/2023	0.0087
08/08/2023	0.0087
08/09/2023	0.0087
08/10/2023	0.0087
08/11/2023	0.0086
08/12/2023	0.0086
08/13/2023	0.0086
08/14/2023	0.0085
08/15/2023	0.0085
08/16/2023	0.0085
08/17/2023	0.0085
08/18/2023	0.0085
08/19/2023	0.0085
00/13/2023	0.0003

Top of bin (lb/mmBtu) 0.0010 0.0020 0.0030 0.0040 0.0050 0.0060 0.0070 0.0080 0.0090 0.0100 0.0110 0.0120 0.0130 0.0140 0.0150 0.0160 0.0170 0.0180 0.0190 0.0200 0.0210 0.0220 0.0230 0.0240 0.0250 0.0260 0.0270 0.0280 0.0290 0.0300

Total days Days above 0.010 LE

Fr

Frequency Dist	ribution Anal	ysis		
	3Q2021-	3Q2022-	3Q2023-	
	2Q2022	2Q2023	2Q2024	
	0	0	0	
10	0	0	0	
20	0	0	0	
30	0	0	0	
40	0	0	0	
50	13	0	0	
50	22	2	18	
70	20	7	88	
30	151	44	72	
90	43	74	75	
00	80	80	18	
10	36	14	5	
20	0	10	5	
30	0	11	5	
40	0	21	52	
50	0	29	10	
50	0	13	17	
70	0	50	0	
30	0	10	0	
90	0	0	0	
00	0	0	0	
10	0	0	0	
20	0	0	0	
30	0	0	0	
40	0	0	0	
50	0	0	0	
50	0	0	0	
70	0	0	0	
30	0	0	0	
90	0	0	0	
00	0	0	0	
				Total
	365	365	365	1095
lb/MMBTU	36	158	94	288
	10%	43%	26%	26%
	10%	43%	26%	26%

08/20/2021	0.0097
08/21/2021	0.0096
08/22/2021	0.0095
08/23/2021	0.0094
08/24/2021	0.0097
08/25/2021	0.0099
08/26/2021	0.0102
08/27/2021	0.0101
08/28/2021	0.0099
08/29/2021	0.0099
08/30/2021	0.0099
08/31/2021	0.0099
09/01/2021	0.0099
09/02/2021	0.0099
09/02/2021	0.0099
09/03/2021	
	0.0099
09/05/2021	0.0097
09/06/2021	0.0097
09/07/2021	0.0097
09/08/2021	0.0094
09/09/2021	0.0092
09/10/2021	0.0089
09/11/2021	0.0089
09/12/2021	0.0089
09/13/2021	0.0089
09/14/2021	0.0089
09/15/2021	0.0089
09/16/2021	0.0089
09/17/2021	0.0089
09/18/2021	0.0089
09/19/2021	0.0089
09/20/2021	0.0089
09/21/2021	0.0089
09/22/2021	0.0089
09/23/2021	0.0089
09/24/2021	0.0089
09/25/2021	0.0089
09/26/2021	0.0089
09/27/2021	0.0089
09/28/2021	0.0089
09/29/2021	0.0089
09/30/2021	0.0089
10/01/2021	0.0089
10/02/2021	0.0089
10/03/2021	0.0089
10/04/2021	0.0089
10/05/2021	0.0089
10/06/2021	0.0089
10/07/2021	0.0089
10/08/2021	0.0089
10/09/2021	0.0089
10/10/2021	0.0089
10/11/2021	0.0089
10/12/2021	0.0089
10/13/2021	0.0089
10/14/2021	0.0089
10/15/2021	0.0089
10/16/2021	0.0089
	0.0000

08/20/2022	0.01
08/21/2022	0.01
08/22/2022	0.01
08/23/2022	0.01
08/24/2022	0.01
08/25/2022	0.01
08/26/2022	0.01
08/27/2022	0.01
08/28/2022	0.01
08/29/2022	0.01
08/30/2022	0.01
08/31/2022	0.01
09/01/2022	0.01
09/02/2022	0.01
09/03/2022	0.01
09/04/2022	0.01
09/05/2022	0.01
09/06/2022	0.0097
09/07/2022	0.0097
09/08/2022	0.0095
09/09/2022	0.0092
09/10/2022	0.0091
09/11/2022	0.009
09/12/2022	0.0089
09/13/2022	0.0088
09/14/2022	0.0091
09/15/2022	0.0096
09/16/2022	0.0101
09/17/2022	0.0104
09/18/2022	0.0105
09/19/2022	0.0105
09/20/2022	0.0105
09/21/2022	0.0105
09/22/2022	0.0106
	0.0100
	0.0106
09/24/2022	0.0106
09/24/2022 09/25/2022	0.0106
09/24/2022 09/25/2022 09/26/2022	0.0106 0.0106
09/24/2022 09/25/2022 09/26/2022 09/27/2022	0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/26/2022 09/27/2022 09/28/2022	0.0106 0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/26/2022 09/27/2022 09/28/2022 09/29/2022	0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/26/2022 09/27/2022 09/28/2022	0.0106 0.0106 0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/26/2022 09/27/2022 09/28/2022 09/29/2022 09/30/2022	0.0106 0.0106 0.0106 0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/26/2022 09/27/2022 09/28/2022 09/29/2022 09/30/2022 10/01/2022	0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/26/2022 09/28/2022 09/29/2022 09/30/2022 10/01/2022	0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/26/2022 09/27/2022 09/28/2022 09/29/2022 10/01/2022 10/01/2022 10/02/2022	0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/26/2022 09/27/2022 09/29/2022 09/30/2022 10/01/2022 10/02/2022 10/03/2022 10/03/2022	0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/26/2022 09/28/2022 09/29/2022 10/01/2022 10/01/2022 10/03/2022 10/03/2022 10/04/2022	0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/27/2022 09/28/2022 09/29/2022 10/01/2022 10/01/2022 10/03/2022 10/03/2022 10/04/2022 10/05/2022	0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/27/2022 09/28/2022 09/29/2022 10/01/2022 10/02/2022 10/03/2022 10/04/2022 10/05/2022 10/06/2022 10/06/2022	0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/27/2022 09/28/2022 09/29/2022 10/01/2022 10/01/2022 10/03/2022 10/03/2022 10/05/2022 10/05/2022 10/06/2022 10/07/2022	0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/27/2022 09/28/2022 09/29/2022 10/01/2022 10/01/2022 10/03/2022 10/04/2022 10/05/2022 10/06/2022 10/06/2022 10/08/2022 10/08/2022	0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/27/2022 09/28/2022 09/29/2022 10/01/2022 10/01/2022 10/03/2022 10/03/2022 10/05/2022 10/06/2022 10/06/2022 10/08/2022 10/09/2022	0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/27/2022 09/28/2022 09/28/2022 09/30/2022 10/01/2022 10/01/2022 10/03/2022 10/05/2022 10/05/2022 10/06/2022 10/06/2022 10/08/2022 10/08/2022 10/09/2022	0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/27/2022 09/29/2022 09/29/2022 10/01/2022 10/01/2022 10/03/2022 10/04/2022 10/05/2022 10/05/2022 10/06/2022 10/08/2022 10/09/2022 10/10/2022 10/11/2022	0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/27/2022 09/28/2022 09/29/2022 10/01/2022 10/01/2022 10/03/2022 10/03/2022 10/05/2022 10/05/2022 10/06/2022 10/08/2022 10/09/2022 10/10/2022 10/11/2022 10/12/2022	0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106 0.0106
09/24/2022 09/25/2022 09/27/2022 09/28/2022 09/29/2022 10/01/2022 10/01/2022 10/03/2022 10/03/2022 10/05/2022 10/05/2022 10/06/2022 10/08/2022 10/08/2022 10/09/2022 10/10/2022 10/11/2022 10/11/2022 10/13/2022	0.0106 0.0106

08/20/2023	0.0087
08/21/2023	0.0088
08/22/2023	0.0088
08/23/2023	0.0088
08/24/2023	0.0087
08/25/2023	0.0085
08/26/2023	0.0083
08/27/2023	0.0083
08/28/2023	0.0083
08/29/2023	0.0083
08/30/2023	0.0082
08/31/2023	0.0081
09/01/2023	0.008
09/02/2023	0.0082
09/03/2023	0.0083
09/04/2023	0.0084
09/05/2023	0.0084
09/06/2023	0.0086
09/07/2023	0.0086
09/08/2023	0.0086
09/09/2023	0.0086
09/10/2023	0.0087
09/11/2023	0.0088
09/12/2023	0.0089
09/13/2023	0.0091
09/14/2023	0.0093
09/15/2023	0.0095
09/16/2023	0.0095
09/17/2023	0.0095
09/18/2023	0.0095
09/19/2023	0.0095
09/20/2023	0.0095
09/21/2023	0.0095
09/22/2023	0.0095
09/23/2023	0.0095
09/24/2023	0.0095
09/25/2023	0.0095
09/26/2023	0.0095
09/27/2023	0.0095
09/28/2023	0.0095
09/29/2023	0.0095
09/30/2023	0.0095
10/01/2023	0.0095
10/02/2023	0.0095
10/03/2023	
10/04/2023	0.0095
10/05/2023	0.0095
10/06/2023	0.0095
	0.0095
10/08/2023	0.0095
10/09/2023	0.0095
10/11/2023	0.0095
	0.0095
10/13/2023	
10/14/2023	0.0095
10/15/2023	
10/16/2023	0.0095

KyPSC Case No. 2025-00002 Exhibit 3 Page 2 of 7

10/17/2021	0.0089
10/18/2021	0.0089
10/19/2021	0.0089
10/20/2021	0.0089
10/21/2021	0.0089
10/22/2021	0.0089
10/23/2021	0.0089
10/24/2021	0.0089
10/25/2021	0.0089
10/26/2021	0.0089
10/27/2021	0.0089
10/28/2021	0.0089
10/29/2021	0.0089
10/30/2021	0.0089
10/31/2021	0.0089
11/01/2021	0.0089
11/02/2021	0.0089
11/03/2021	0.0089
11/04/2021	0.0089
11/05/2021	0.0089
11/06/2021	0.0089
11/07/2021	0.0089
11/08/2021	0.0089
11/09/2021	0.0089
11/10/2021	0.0089
11/11/2021	0.0089
11/12/2021	0.0089
11/13/2021	0.0089
11/14/2021	0.0089
11/15/2021	0.0089
11/16/2021	0.0089
11/17/2021	0.0089
11/18/2021	0.0089
11/19/2021	0.0089
11/20/2021	0.0089
11/21/2021	0.0089
11/22/2021	0.0089
11/23/2021	0.0089
11/24/2021	0.0089
11/25/2021	0.0089
11/26/2021	0.0089
11/27/2021	0.0089
11/28/2021	0.0089
11/29/2021	0.0089
11/30/2021	0.0089
12/01/2021	0.0089
12/02/2021	0.0089
12/03/2021	0.0089
12/04/2021	0.0089
12/05/2021	0.0089
12/06/2021	0.0089
12/07/2021	0.0089
12/08/2021	0.0089
12/09/2021	0.0089
12/10/2021	0.0089
12/11/2021	0.0089
12/12/2021	0.0089
12/13/2021	0.0089

10/17/2022	0.0106
10/18/2022	0.0106
10/19/2022	0.0106
10/20/2022	0.0106
10/21/2022	0.0106
10/22/2022	0.0106
10/23/2022	0.0106
10/24/2022	0.0106
10/25/2022	0.0106
10/26/2022	0.0106
10/27/2022	0.0106
10/28/2022	0.0106
10/29/2022	0.0106
10/30/2022	0.0106
10/31/2022	0.0106
11/01/2022	0.0106
11/02/2022	0.0106
11/03/2022	0.0107
11/04/2022	0.0109
11/05/2022	0.0107
11/06/2022	0.0108
11/07/2022	0.011
11/08/2022	0.0113
11/09/2022	0.0114
11/10/2022	0.0114
11/11/2022	0.0114
11/12/2022	0.0114
11/13/2022	0.0115
11/14/2022	0.0116
11/15/2022	0.0116
11/16/2022	0.0116
11/17/2022	0.0116
11/18/2022	0.0119
11/19/2022	0.0123
11/20/2022	0.0127
11/21/2022	0.0131
11/22/2022	0.0134
11/23/2022	0.0136
11/24/2022	0.0136
11/25/2022	0.0136
11/26/2022	0.0134
11/27/2022	0.0136
11/28/2022	0.0139
11/29/2022	0.0142
11/30/2022 12/01/2022	0.0145
12/02/2022 12/03/2022	0.015 0.0151
12/03/2022	0.0151
12/04/2022	0.015
12/05/2022	0.0152
12/06/2022	0.0152
12/07/2022	0.0153
12/08/2022	0.0154
12/09/2022	0.0155
12/10/2022	0.0155
12/11/2022	0.0155
12/12/2022	0.0155
12/10/2022	0.0155

10/17/2023	0.0095
10/18/2023	0.0095
10/19/2023	0.0095
10/20/2023	0.0095
10/21/2023	0.0095
10/22/2023	0.0095
10/23/2023	0.0095
10/24/2023	0.0095
10/25/2023	0.0095
10/26/2023	0.0095
10/27/2023	0.0095
10/28/2023	0.0095
10/29/2023	0.0095
10/30/2023	0.0095
10/31/2023	0.0095
11/01/2023	0.0095
11/02/2023	0.0095
11/03/2023	0.0095
11/04/2023	0.0095
11/05/2023	0.0095
11/06/2023	0.0096
11/07/2023	0.0098
11/08/2023	0.0097
11/09/2023	0.0098
11/10/2023	0.01
11/11/2023	0.0102
11/12/2023	0.0102
11/13/2023	0.0102
11/14/2023	0.0102
11/15/2022	0.0100
11/15/2023	0.0103
11/16/2023	0.0103
11/16/2023	0.0102
11/16/2023 11/17/2023	0.0102 0.0103
11/16/2023 11/17/2023 11/18/2023	0.0102 0.0103 0.0104
11/16/2023 11/17/2023 11/18/2023 11/19/2023 11/20/2023	0.0102 0.0103 0.0104 0.0103 0.0102
11/16/2023 11/17/2023 11/18/2023 11/19/2023 11/20/2023 11/21/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102
11/16/2023 11/17/2023 11/18/2023 11/19/2023 11/20/2023	0.0102 0.0103 0.0104 0.0103 0.0102
11/16/2023 11/17/2023 11/18/2023 11/19/2023 11/20/2023 11/21/2023 11/22/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0102
11/16/2023 11/17/2023 11/18/2023 11/19/2023 11/20/2023 11/21/2023 11/22/2023 11/23/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0102 0.0099
11/16/2023 11/17/2023 11/18/2023 11/20/2023 11/21/2023 11/22/2023 11/23/2023 11/24/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0102 0.0099 0.0097
11/16/2023 11/17/2023 11/18/2023 11/20/2023 11/21/2023 11/22/2023 11/23/2023 11/24/2023 11/25/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0102 0.0099 0.0097 0.0096
11/16/2023 11/17/2023 11/18/2023 11/20/2023 11/21/2023 11/22/2023 11/23/2023 11/24/2023 11/25/2023 11/25/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0102 0.0099 0.0097 0.0096 0.0095
11/16/2023 11/17/2023 11/18/2023 11/20/2023 11/21/2023 11/22/2023 11/23/2023 11/24/2023 11/25/2023 11/25/2023 11/26/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0102 0.0099 0.0099 0.0097 0.0095 0.0095
11/16/2023 11/17/2023 11/18/2023 11/20/2023 11/21/2023 11/21/2023 11/23/2023 11/24/2023 11/25/2023 11/26/2023 11/26/2023 11/27/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0102 0.0099 0.0097 0.0095 0.0095 0.0095 0.0093
11/16/2023 11/17/2023 11/19/2023 11/20/2023 11/21/2023 11/22/2023 11/23/2023 11/25/2023 11/25/2023 11/26/2023 11/28/2023 11/28/2023 11/29/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0102 0.0099 0.0097 0.0095 0.0095 0.0093 0.0093
11/16/2023 11/17/2023 11/18/2023 11/20/2023 11/21/2023 11/22/2023 11/23/2023 11/24/2023 11/25/2023 11/26/2023 11/26/2023 11/28/2023 11/28/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0099 0.0097 0.0095 0.0095 0.0095 0.0093 0.0093 0.0093
11/16/2023 11/17/2023 11/19/2023 11/20/2023 11/21/2023 11/22/2023 11/23/2023 11/25/2023 11/25/2023 11/26/2023 11/28/2023 11/29/2023 11/29/2023 12/01/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0099 0.0097 0.0095 0.0095 0.0095 0.0095 0.0093 0.0093 0.0093 0.0093 0.0092 0.009 0.0092
11/16/2023 11/17/2023 11/19/2023 11/20/2023 11/21/2023 11/21/2023 11/23/2023 11/24/2023 11/25/2023 11/26/2023 11/28/2023 11/29/2023 11/30/2023 12/01/2023	0.0102 0.0103 0.0104 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 0.0099 0.0097 0.0095 0.0095 0.0093 0.0093 0.0092 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093
11/16/2023 11/17/2023 11/19/2023 11/20/2023 11/21/2023 11/22/2023 11/23/2023 11/24/2023 11/25/2023 11/26/2023 11/28/2023 11/29/2023 12/01/2023 12/01/2023 12/03/2023	0.0102 0.0103 0.0104 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 0.0099 0.0097 0.0095 0.0095 0.0093 0.0093 0.0092 0.009 0.0088 0.0085
11/16/2023 11/17/2023 11/18/2023 11/20/2023 11/21/2023 11/22/2023 11/23/2023 11/24/2023 11/25/2023 11/26/2023 11/26/2023 11/29/2023 11/29/2023 12/01/2023 12/03/2023 12/03/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0092 0.0095 0.0095 0.0095 0.0095 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0092 0.009 0.0088 0.0085 0.0085 0.0083
11/16/2023 11/17/2023 11/19/2023 11/20/2023 11/21/2023 11/21/2023 11/22/2023 11/23/2023 11/24/2023 11/25/2023 11/26/2023 11/29/2023 12/01/2023 12/02/2023 12/03/2023 12/05/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0102 0.0102 0.0099 0.0097 0.0095 0.0095 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0088 0.0085 0.0083 0.0083
11/16/2023 11/17/2023 11/19/2023 11/20/2023 11/21/2023 11/22/2023 11/23/2023 11/24/2023 11/25/2023 11/26/2023 11/28/2023 11/29/2023 12/01/2023 12/01/2023 12/03/2023 12/05/2023 12/05/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0102 0.0102 0.0099 0.0097 0.0095 0.0095 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0088 0.0085 0.0083 0.0079
11/16/2023 11/17/2023 11/19/2023 11/20/2023 11/21/2023 11/21/2023 11/23/2023 11/24/2023 11/25/2023 11/26/2023 11/28/2023 11/29/2023 12/01/2023 12/03/2023 12/03/2023 12/05/2023 12/05/2023 12/05/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0102 0.0099 0.0097 0.0095 0.0095 0.0095 0.0095 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0085 0.0085 0.0083 0.0083 0.0083
11/16/2023 11/17/2023 11/19/2023 11/20/2023 11/21/2023 11/21/2023 11/23/2023 11/24/2023 11/25/2023 11/26/2023 11/28/2023 12/01/2023 12/01/2023 12/02/2023 12/05/2023 12/05/2023 12/06/2023 12/08/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0102 0.0102 0.0099 0.0097 0.0095 0.0095 0.0093 0.0085 0.0085 0.0079 0.0078 0.0077
11/16/2023 11/17/2023 11/19/2023 11/20/2023 11/21/2023 11/22/2023 11/23/2023 11/24/2023 11/26/2023 11/26/2023 11/29/2023 12/01/2023 12/02/2023 12/03/2023 12/05/2023 12/05/2023 12/08/2023 12/08/2023 12/09/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0099 0.0097 0.0095 0.0095 0.0095 0.0095 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0085 0.0085 0.0085 0.0085 0.0083 0.0085 0.0083 0.0085 0.0083 0.0079 0.0078 0.0077 0.0078
11/16/2023 11/17/2023 11/19/2023 11/20/2023 11/21/2023 11/21/2023 11/23/2023 11/24/2023 11/25/2023 11/26/2023 11/28/2023 11/29/2023 12/01/2023 12/03/2023 12/03/2023 12/05/2023 12/05/2023 12/08/2023 12/09/2023 12/09/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0102 0.0099 0.0097 0.0095 0.0095 0.0095 0.0095 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0085 0.0085 0.0085 0.0085 0.0083 0.0085 0.0079 0.0078 0.0077 0.0078
11/16/2023 11/17/2023 11/19/2023 11/20/2023 11/21/2023 11/22/2023 11/23/2023 11/24/2023 11/26/2023 11/26/2023 11/29/2023 12/01/2023 12/02/2023 12/03/2023 12/05/2023 12/05/2023 12/08/2023 12/08/2023 12/09/2023	0.0102 0.0103 0.0104 0.0103 0.0102 0.0102 0.0099 0.0097 0.0095 0.0095 0.0095 0.0095 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0085 0.0085 0.0085 0.0085 0.0083 0.0085 0.0083 0.0085 0.0083 0.0079 0.0078 0.0077 0.0078

KyPSC Case No. 2025-00002 Exhibit 3 Page 3 of 7

10/11/0001	0.0000
12/14/2021	0.0089
12/15/2021	0.0089
12/16/2021	0.0089
12/17/2021	0.0089
12/18/2021	0.0089
12/19/2021	0.0089
12/20/2021	0.0089
12/21/2021	0.0089
12/22/2021	0.0089
12/23/2021	0.0089
12/24/2021	0.0089
12/25/2021	0.0089
12/26/2021	0.0088
12/27/2021	0.0088
12/28/2021	0.0086
12/29/2021	0.0087
12/30/2021	0.0087
12/31/2021	0.0087
01/01/2022	0.0086
01/02/2022	0.0086
01/03/2022	0.0087
01/04/2022	0.0087
01/05/2022	0.0088
01/06/2022	0.009
01/07/2022	0.009
01/08/2022	0.0089
01/09/2022	0.0088
01/10/2022	0.0086
01/11/2022	0.0085
01/12/2022	0.0085
01/13/2022	0.0085
01/14/2022	0.0085
01/15/2022	0.008
01/16/2022	0.0077
01/17/2022	0.0073
01/18/2022	0.0074
01/19/2022	0.0074
01/20/2022	0.0075
01/21/2022	0.0075
01/22/2022	0.0075
01/23/2022	0.0075
01/24/2022	0.0076
01/25/2022	0.0077
01/26/2022	0.0078
01/27/2022	0.0079
01/28/2022	0.008
01/29/2022	0.0082
01/30/2022	0.0082
01/31/2022	0.0082
02/01/2022	0.0082
02/02/2022	0.0082
02/03/2022	0.0082
02/04/2022	0.0083
02/05/2022	0.0084
02/06/2022	0.0085
02/07/2022	0.0084
02/08/2022	0.0084
02/09/2022	0.0084

12/14/2022	0.0155
12/15/2022	0.0155
12/16/2022	0.0155
12/17/2022	0.0154
12/18/2022	0.0155
12/19/2022	0.0153
12/20/2022	0.0151
12/21/2022	0.0149
12/22/2022	0.0147
12/23/2022	0.0147
12/24/2022	0.0148
12/25/2022	0.0148
12/26/2022	0.015
12/27/2022	0.0148
12/28/2022	0.0147
12/29/2022	0.0145
12/30/2022	0.0146
12/31/2022	0.0146
01/01/2023	0.0148
01/02/2023	0.015
01/03/2023	0.0151
01/05/2023	0.0155
01/07/2023	0.0156
01/08/2023	0.0157
01/09/2023	0.0158
01/10/2023	0.0162
01/11/2023	0.0164
01/12/2023	0.0165
01/13/2023	0.0167
01/14/2023	0.0169
01/15/2023	0.0169
01/16/2023	0.0169
01/17/2023	0.0169
01/18/2023	0.0171
01/19/2023	0.0172
01/20/2023	0.0174
01/21/2023	0.0175
01/22/2023	0.0176
01/23/2023	0.0176
01/24/2023	0.0175
01/25/2023	0.0174
01/26/2023	0.0175
01/27/2023	0.0178
01/28/2023	0.018
01/29/2023	0.0181
01/30/2023	0.0182
01/31/2023	0.0183
02/01/2023	0.0182
02/02/2023	0.0183
02/03/2023	0.0182
02/04/2023	0.0183
02/05/2023	0.0182
02/06/2023	0.0181
02/07/2023	0.0181
02/08/2023	0.018
02/09/2023	0.018

12/14/2023	0.0074
12/15/2023	0.0074
12/16/2023	0.0074
12/17/2023	0.0076
12/18/2023	0.0077
12/19/2023	0.0076
12/20/2023	0.0077
12/21/2023	0.0077
12/22/2023	0.0077
12/23/2023	0.0078
12/24/2023	0.0079
12/25/2023	0.008
12/26/2023	0.0081
12/27/2023	0.0082
12/28/2023	0.0082
12/29/2023	0.008
12/30/2023	0.0079
12/31/2023	0.0079
01/01/2024	0.0079
01/02/2024	0.0079
01/03/2024	0.0079
01/04/2024	0.0078
01/05/2024	0.0078
01/06/2024	0.0078
01/07/2024	0.0077
01/08/2024	0.0078
01/09/2024	0.0077
01/10/2024	0.0078
01/11/2024	0.0078
01/12/2024	0.0077
01/13/2024	0.0077
01/14/2024	0.0078
01/15/2024	0.0078
01/16/2024	0.0077
01/17/2024	0.0076
01/18/2024	0.0075
01/19/2024	0.0074
01/20/2024	0.0073
01/21/2024	0.0073
01/22/2024	0.0072
01/23/2024	0.0072
01/24/2024	0.0072
01/25/2024	0.0072
01/26/2024	0.0072
01/27/2024	0.0072
01/28/2024	0.0072
01/29/2024	0.0072
01/30/2024	0.0072
01/31/2024	0.007
02/01/2024	0.0068
02/02/2024	0.0067
02/03/2024	0.0066
02/04/2024	0.0066
02/05/2024	0.0066
02/06/2024	0.0067
02/07/2024	0.0067
02/08/2024	0.0066
02/09/2024	0.0066
52,00,2024	0.0000

KyPSC Case No. 2025-00002 Exhibit 3 Page 4 of 7

02/10/2022	0.0084
02/11/2022	0.0085
02/12/2022	0.0086
02/13/2022	0.0088
02/14/2022	0.0089
02/15/2022	0.009
02/16/2022	0.0091
02/17/2022	0.0092
02/18/2022	0.0091
02/19/2022	0.0092
02/20/2022	0.0094
02/21/2022	0.0096
02/22/2022	0.0098
02/23/2022	0.0099
02/24/2022	0.01
02/25/2022	0.0099
02/26/2022	0.0099
02/27/2022	0.0101
02/28/2022	0.0102
03/01/2022	0.0102
03/02/2022	0.0102
03/03/2022	0.0104
03/04/2022	0.0104
03/05/2022	0.0106
03/06/2022	0.0107
03/07/2022	0.0109
03/08/2022	0.0109
03/09/2022	0.011
03/10/2022	0.011
03/11/2022	0.0111
03/12/2022	0.0111
03/13/2022	0.0111
03/14/2022	0.0112
03/15/2022	0.0112
03/16/2022	0.0112
03/17/2022	0.0113
03/18/2022	0.0114
03/19/2022	0.0115
03/20/2022	0.0116
03/21/2022	0.0117
03/22/2022	0.0117
03/23/2022	0.0117
03/24/2022	0.0115
03/25/2022	0.0115
03/26/2022	0.0115
03/27/2022	0.0115
03/28/2022	0.0116
03/29/2022	0.0115
03/30/2022	0.0114
03/31/2022	0.0114
04/01/2022	0.0113
04/02/2022	0.0112
04/03/2022	0.0111
04/04/2022	0.0111
04/05/2022	0.0109
04/06/2022	0.0107
04/07/2022	0.0108
04/08/2022	0.0108

02/10/2023	0.018
02/11/2023	0.018
02/12/2023	0.018
02/13/2023	0.018
02/14/2023	0.018
02/15/2023	0.018
02/16/2023	0.018
02/17/2023	0.018
02/18/2023	0.018
02/19/2023	0.018
02/20/2023	0.018
02/21/2023	0.018
02/22/2023	0.018
02/23/2023	0.018
02/24/2023	0.018
02/25/2023	0.018
02/26/2023	0.018
02/27/2023	0.018
02/28/2023	0.018
03/01/2023	0.018
03/02/2023	0.018
03/03/2023	0.018
03/04/2023	0.018
03/05/2023	0.018
03/06/2023	0.018
03/07/2023	0.018
03/08/2023	0.018
03/09/2023	0.018
03/10/2023	0.018
03/12/2023	0.018
03/12/2023	0.018
03/14/2023	0.018
03/15/2023	0.0179
03/16/2023	0.0176
03/17/2023	0.0175
03/18/2023	0.0172
03/19/2023	0.0168
03/20/2023	0.0167
03/21/2023	0.0167
03/22/2023	0.0166
03/23/2023	0.0162
03/24/2023	0.016
03/25/2023	0.0159
03/26/2023	0.0157
03/27/2023	0.0155
03/28/2023	0.0153
03/29/2023	0.015
03/30/2023	0.0147
03/31/2023	0.0143
04/01/2023	0.014
04/02/2023	0.0136
04/03/2023	0.0132
04/04/2023	0.0129
04/05/2023	0.0126
04/06/2023	0.0126
04/07/2023	0.0126
04/08/2023	0.0126

02/10/2024	0.0065
02/11/2024	0.0063
02/12/2024	0.0062
02/13/2024	0.0064
02/14/2024	0.0066
02/15/2024	0.0067
02/16/2024	0.0069
02/17/2024	0.007
02/18/2024	0.0071
02/19/2024	0.0071
02/20/2024	0.0072
02/21/2024	0.0072
02/22/2024	0.0074
02/23/2024	0.0076
02/24/2024	0.0079
02/25/2024	0.0081
02/26/2024	0.0085
02/27/2024	0.0088
02/28/2024	0.0091
02/29/2024	0.0093
03/01/2024	0.0096
03/02/2024	0.0099
03/03/2024	0.0103
03/04/2024	0.0108
03/05/2024	0.0113
03/06/2024	0.0117
03/07/2024	0.0122
03/08/2024	0.0127
03/09/2024	0.0132
03/10/2024	0.0137
03/11/2024	0.0142
03/12/2024	0.0148
03/13/2024	0.0153
03/14/2024	0.0157
03/15/2024	0.016
03/16/2024	0.0162
03/17/2024	0.0161
03/18/2024	0.0162
03/19/2024	0.0162
03/20/2024	0.0161
03/21/2024	0.016
03/22/2024	0.016
03/23/2024	0.0161
03/24/2024	0.0162
03/25/2024	0.0162
03/26/2024	0.0163
03/27/2024	0.0163
03/28/2024	0.0162
03/29/2024	0.0161
03/30/2024	0.0161
03/31/2024	0.0161
04/01/2024	0.0161
04/02/2024	0.0162
04/03/2024	0.0161
04/04/2024	0.016
04/05/2024	0.0158
04/06/2024	0.0156
04/07/2024	0.0153

KyPSC Case No. 2025-00002 Exhibit 3 Page 5 of 7

04/09/2022	0.0109
04/10/2022	0.0108
04/11/2022	0.0109
04/12/2022	0.011
04/13/2022	0.011
04/14/2022	0.0109
04/15/2022	0.0108
04/16/2022	0.0107
04/17/2022	0.0105
04/18/2022	0.0103
04/19/2022	0.0103
04/20/2022	0.0103
04/21/2022	0.0103
04/22/2022	0.0103
04/23/2022	0.0103
04/24/2022	0.0103
04/25/2022	0.0103
04/26/2022	0.0103
04/27/2022	0.0103
04/28/2022	0.0103
04/29/2022	0.0103
04/30/2022	0.0103
05/01/2022	0.0103
05/02/2022	0.0103
05/03/2022	0.0103
05/04/2022	0.0103
05/05/2022	0.0103
05/06/2022	0.0103
05/07/2022	
	0.0102
05/08/2022	0.0102
05/09/2022	0.01
05/10/2022	0.0098
05/11/2022	0.0097
05/12/2022	0.0095
05/13/2022	0.0093
05/14/2022	0.0092
05/15/2022	0.009
05/16/2022	0.0088
05/17/2022	0.0086
05/18/2022	0.0084
05/19/2022	0.0083
05/20/2022	0.0081
05/21/2022	0.008
05/22/2022	0.0077
05/23/2022	0.0076
05/24/2022	0.0074
05/25/2022	0.0073
05/26/2022	0.0073
05/20/2022	0.0069
05/28/2022	0.0067
05/29/2022	0.0065
05/30/2022	0.0064
05/31/2022	0.0064
06/01/2022	0.0064
06/02/2022	0.0063
06/03/2022	0.0062
06/04/2022	0.0061
00/04/2022	
06/05/2022	0.006

04/09/2023	0.0126
04/10/2023	0.0126
04/11/2023	0.0123
04/12/2023	0.0119
04/13/2023	0.0116
04/14/2023	0.0112
04/15/2023	0.011
04/16/2023	0.0108
04/17/2023	0.0106
04/18/2023	0.0103
04/19/2023	0.0101
04/20/2023	0.0101
04/21/2023	0.0101
04/22/2023	0.0101
04/23/2023	0.0101
04/24/2023	0.0101
04/25/2023	0.0101
04/26/2023	0.0101
04/27/2023	0.0101
04/28/2023	0.0101
04/29/2023	0.0101
04/30/2023	0.0101
05/01/2023	0.0101
05/02/2023	0.0101
05/03/2023	0.0101
05/04/2023	0.0101
05/05/2023	0.0101
05/06/2023	0.0101
05/07/2023	0.0102
05/08/2023	0.0101
05/09/2023	0.01
05/10/2023	0.0098
05/11/2023	0.0097
05/12/2023	0.0096
05/13/2023	0.0095
05/14/2023	0.0094
05/15/2023	0.0094
05/16/2023	0.0094
05/17/2023	0.0094
05/18/2023	0.0094
05/19/2023	0.0094
05/20/2023	0.0094
05/21/2023	0.0094
05/22/2023	0.0094
05/23/2023	0.0092
05/24/2023	0.0092
05/25/2023	0.0089
05/26/2023	0.0089
05/27/2023	0.0089
05/28/2023	0.0089
05/29/2023	0.0089
05/30/2023	0.0088
05/31/2023	0.0088
06/01/2023	0.0088
06/02/2023	0.0087
06/03/2023	0.0087
06/04/2023	0.0087
06/05/2023	0.0086

04/08/2024	0.0152
04/09/2024	0.015
04/10/2024	0.0149
04/11/2024	0.0148
04/12/2024	0.0147
04/13/2024	0.0144
04/14/2024	0.0144
04/15/2024	0.0144
04/16/2024	0.0144
04/17/2024	0.0144
04/18/2024	0.0144
04/19/2024	0.0144
04/20/2024	0.0144
04/21/2024	0.0144
04/22/2024	0.0144
04/23/2024	0.0144
04/24/2024	0.0144
04/25/2024	0.0144
04/26/2024	0.0144
04/27/2024	0.0144
04/28/2024	0.0144
04/29/2024	0.0144
04/30/2024	0.0144
05/01/2024	0.0144
05/02/2024	0.0144
05/03/2024	0.0144
05/04/2024	0.0144
05/05/2024	0.0144
05/06/2024	0.0143
05/07/2024	0.0144
05/07/2024 05/08/2024	0.0144
05/08/2024	0.0145
05/08/2024 05/09/2024	0.0145 0.0146
05/08/2024 05/09/2024 05/10/2024	0.0145 0.0146 0.0147
05/08/2024 05/09/2024 05/10/2024 05/11/2024	0.0145 0.0146 0.0147 0.0147
05/08/2024 05/09/2024 05/10/2024 05/11/2024 05/12/2024	0.0145 0.0146 0.0147 0.0147 0.0147
05/08/2024 05/09/2024 05/10/2024 05/11/2024 05/12/2024 05/13/2024	0.0145 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147
05/08/2024 05/09/2024 05/10/2024 05/11/2024 05/12/2024 05/13/2024	0.0145 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147
05/08/2024 05/09/2024 05/10/2024 05/11/2024 05/12/2024 05/13/2024 05/14/2024	0.0145 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147
05/08/2024 05/09/2024 05/10/2024 05/11/2024 05/12/2024 05/13/2024 05/15/2024	0.0145 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147
05/08/2024 05/09/2024 05/10/2024 05/12/2024 05/13/2024 05/14/2024 05/15/2024 05/16/2024	0.0145 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147
05/08/2024 05/09/2024 05/10/2024 05/12/2024 05/13/2024 05/13/2024 05/15/2024 05/16/2024 05/17/2024	0.0145 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147
05/08/2024 05/09/2024 05/10/2024 05/12/2024 05/13/2024 05/14/2024 05/15/2024 05/16/2024 05/17/2024 05/18/2024	0.0145 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147
05/08/2024 05/09/2024 05/10/2024 05/12/2024 05/13/2024 05/13/2024 05/15/2024 05/16/2024 05/17/2024 05/18/2024 05/19/2024	0.0145 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147
05/08/2024 05/09/2024 05/10/2024 05/11/2024 05/13/2024 05/13/2024 05/15/2024 05/15/2024 05/18/2024 05/19/2024 05/20/2024	0.0145 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147
05/08/2024 05/09/2024 05/10/2024 05/12/2024 05/13/2024 05/13/2024 05/15/2024 05/16/2024 05/17/2024 05/19/2024 05/20/2024 05/21/2024	0.0145 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147
05/08/2024 05/09/2024 05/10/2024 05/12/2024 05/13/2024 05/13/2024 05/15/2024 05/15/2024 05/18/2024 05/19/2024 05/20/2024 05/21/2024 05/22/2024	0.0145 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147
05/08/2024 05/09/2024 05/10/2024 05/12/2024 05/12/2024 05/13/2024 05/14/2024 05/16/2024 05/17/2024 05/18/2024 05/20/2024 05/21/2024 05/22/2024	0.0145 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147
05/08/2024 05/09/2024 05/11/2024 05/12/2024 05/13/2024 05/13/2024 05/15/2024 05/15/2024 05/17/2024 05/19/2024 05/20/2024 05/21/2024 05/22/2024 05/23/2024	0.0145 0.0146 0.0147 0.0148
05/08/2024 05/09/2024 05/10/2024 05/11/2024 05/13/2024 05/13/2024 05/15/2024 05/15/2024 05/18/2024 05/19/2024 05/20/2024 05/22/2024 05/23/2024 05/23/2024	0.0145 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0149 0.0148 0.0146
05/08/2024 05/09/2024 05/10/2024 05/11/2024 05/12/2024 05/13/2024 05/13/2024 05/16/2024 05/17/2024 05/17/2024 05/20/2024 05/21/2024 05/22/2024 05/23/2024 05/23/2024 05/25/2024	0.0145 0.0145 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0149 0.0148 0.0146 0.0144
05/08/2024 05/09/2024 05/10/2024 05/11/2024 05/12/2024 05/13/2024 05/13/2024 05/14/2024 05/15/2024 05/15/2024 05/16/2024 05/17/2024 05/17/2024 05/20/2024 05/21/2024 05/22/2024 05/23/2024 05/24/2024 05/25/2024 05/26/2024 05/27/2024 05/28/2024	0.0145 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0149 0.0149 0.0148 0.0146 0.0144 0.0141
05/08/2024 05/09/2024 05/10/2024 05/11/2024 05/13/2024 05/13/2024 05/15/2024 05/15/2024 05/15/2024 05/18/2024 05/21/2024 05/22/2024 05/23/2024 05/23/2024 05/25/2024 05/25/2024	0.0145 0.0146 0.0147 0.0148 0.0148 0.0144 0.0141 0.0138
05/08/2024 05/09/2024 05/10/2024 05/11/2024 05/12/2024 05/13/2024 05/13/2024 05/14/2024 05/15/2024 05/15/2024 05/16/2024 05/17/2024 05/19/2024 05/20/2024 05/21/2024 05/23/2024 05/23/2024 05/24/2024 05/25/2024 05/26/2024 05/27/2024 05/27/2024 05/27/2024 05/28/2024 05/29/2024 05/29/2024	0.0145 0.0146 0.0147 0.0148 0.0148 0.0144 0.0141 0.0138 0.0135
05/08/2024 05/09/2024 05/10/2024 05/11/2024 05/12/2024 05/13/2024 05/13/2024 05/14/2024 05/15/2024 05/15/2024 05/15/2024 05/16/2024 05/17/2024 05/19/2024 05/20/2024 05/21/2024 05/23/2024 05/24/2024 05/25/2024 05/26/2024 05/27/2024 05/28/2024 05/28/2024 05/29/2024 05/29/2024 05/29/2024 05/20/2024	0.0145 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0149 0.0149 0.0148 0.0148 0.0146 0.0144 0.0141 0.0138 0.0135 0.0132
05/08/2024 05/09/2024 05/10/2024 05/11/2024 05/12/2024 05/13/2024 05/13/2024 05/13/2024 05/13/2024 05/14/2024 05/15/2024 05/16/2024 05/17/2024 05/18/2024 05/20/2024 05/21/2024 05/22/2024 05/23/2024 05/24/2024 05/25/2024 05/26/2024 05/27/2024 05/28/2024 05/29/2024 05/30/2024 05/30/2024 05/30/2024 05/31/2024 05/31/2024	0.0145 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0149 0.0149 0.0148 0.0148 0.0146 0.0144 0.0141 0.0138 0.0135 0.0132 0.013
05/08/2024 05/09/2024 05/11/2024 05/11/2024 05/11/2024 05/12/2024 05/13/2024 05/14/2024 05/15/2024 05/15/2024 05/16/2024 05/17/2024 05/19/2024 05/20/2024 05/21/2024 05/22/2024 05/23/2024 05/24/2024 05/25/2024 05/26/2024 05/27/2024 05/28/2024 05/28/2024 05/29/2024 05/30/2024 05/30/2024 05/31/2024 05/31/2024 06/01/2024	0.0145 0.0146 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0149 0.0149 0.0149 0.0148 0.0148 0.0146 0.0144 0.0144 0.0141 0.0138 0.0135 0.0132 0.013 0.0127

KyPSC Case No. 2025-00002 Exhibit 3 Page 6 of 7
06/06/2022	0.006
06/07/2022	0.0058
06/08/2022	0.0056
06/09/2022	0.0055
06/10/2022	0.0056
06/11/2022	0.0056
06/12/2022	0.0055
06/13/2022	0.0056
06/14/2022	0.0057
06/15/2022	0.0058
06/16/2022	0.0059
06/17/2022	0.006
06/18/2022	0.0061
06/19/2022	0.0061
06/20/2022	0.0062
06/21/2022	0.0063
06/22/2022	0.0064
06/23/2022	0.0065
06/24/2022	0.0066
06/25/2022	0.0066
06/26/2022	0.0067
06/27/2022	0.0068
06/28/2022	0.0069
06/29/2022	0.0069
06/30/2022	0.007
A	0.0000

06/06/2023	0.0086
06/07/2023	0.0085
06/08/2023	0.0085
06/09/2023	0.0087
06/10/2023	0.0088
06/11/2023	0.0088
06/12/2023	0.0087
06/13/2023	0.0085
06/14/2023	0.0086
06/15/2023	0.0087
06/16/2023	0.0087
06/17/2023	0.0088
06/18/2023	0.0089
06/19/2023	0.0089
06/20/2023	0.0089
06/21/2023	0.0088
06/22/2023	0.0087
06/23/2023	0.0086
06/24/2023	0.0087
06/25/2023	0.0086
06/26/2023	0.0085
06/27/2023	0.0085
06/28/2023	0.0085
06/29/2023	0.0086
06/30/2023	0.0086

06/05/2024	0.0115
06/06/2024	0.0112
06/07/2024	0.0109
06/08/2024	0.0107
06/09/2024	0.0105
06/10/2024	0.0102
06/11/2024	0.0099
06/12/2024	0.0096
06/13/2024	0.0094
06/14/2024	0.0092
06/15/2024	0.0089
06/16/2024	0.0088
06/17/2024	0.0087
06/18/2024	0.0085
06/19/2024	0.0083
06/20/2024	0.0081
06/21/2024	0.0079
06/22/2024	0.008
06/23/2024	0.008
06/24/2024	0.0079
06/25/2024	0.0079
06/26/2024	0.008
06/27/2024	0.008
06/28/2024	0.0081
06/29/2024	0.0081

0.0092 Average.

Max.

0.0117

0.0183

0.0123

0.0163

0.0101

KyPSC Case No. 2025-00002 Exhibit 3 Page 7 of 7

KyPSC Case No. 2025-00002 Exhibit 4 Page 1 of 35

> Duke Energy Kentucky, Inc. 139 E. 4th Street Cincinnati, OH 45202

January 3, 2025

Commonwealth of Kentucky Energy and Environment Cabinet Department for Environmental Protection Division for Air Quality 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

RE: Duke Energy East Bend Station Agency Interest No: 176 Title V Operating Permit: V-12-023 Revision to Minor Permit Modification Application KYEIS I.D. Number: 2101500029; Activity #: APE20240006

Duke Energy Kentucky LLC, East Bend Station is revising the permit application submitted on July 17, 2024, for the conversion of the wet flue gas desulfurization (FGD) system from lime to limestone. Duke Energy has revised the project and is proposing to install redundant system. Each system will have a weight belt feeder, conveyor and ball mill. The ball mills will be used to grind the limestone in place of the vertimill, and pre-crusher. There will be total of six (6) new transfer point identified as 14-27a, 14-27b, 14-28a, 14-28b, 14-29a and 14-29b. The two systems will not run at the same time. With the elimination of the pre-crusher a wet particulate scrubber is no longer needed to control the particulate emissions. The particulate emissions from transfer points are very low and will be control by the building enclosure. Diagram showing the revised limestone handling system is included in **Attachment A.**

Emissions Quantification

The particulate emissions from the following new limestone handling equipment will be controlled by a building enclosure.

- transfer of limestone from the day silo to the weigh belt feeder 1-2, identified as 14-26a,
- transfer of limestone from the day silo to the weigh belt feeder 2-2, identified as 14-26b,
- transfer of limestone from the weigh belt feeder 1-2 to the conveyor 1-2, identified as 14-27a,
- transfer of limestone from the weigh belt feeder 2-2 to the conveyor 2-2, identified as 14-27b,
- transfer of limestone from conveyor 1-2 to the ball mill 1-2, identified as 14-28a
- transfer of limestone from conveyor 2-2 to the ball mill 2-2, identified as 14-28b

The ball mills are a wet process and is not a source of particulate emissions. The ball mills consist of a rotating drum loaded with steel balls that crush the limestone by the action of the tumbling balls as the drum rotates in the presence of water to produce a slurry which gets pumped to mill product tanks. The revised emission calculations are included in **Attachment B**.

Regulatory Review

The following subsection discuss the applicability of regulatory requirements for the conversion of the FGD to limestone.

Duke Energy Kentucky, Inc. 139 E. 4th Street Cincinnati, OH 45202

Prevention of Significant Deterioration (PSD) [401 KAR 51:017 and 40 CFR Part 52.21]

The proposed revision does not change the PSD applicability or applicability of the reasonable possibilities reporting requirement for H2SO4. The particulate matter emissions from will be slightly lower due to the proposed change.

Pollutants	SO2 (tons)	NOx (tons)	CO2 (tons)	VOC (Tons)	PM (tons)	PM2.5 (tons)	PM10 (tons)	PB (tons)	H2SO4 (tons)	CO (tons)
Baseline	1,832.42	1,893.63	3,259,191.59	47.27	171.48	362.03	425.38	0.03	126.77	338.83
Future W - Limestone	1,801.07	1,746.54	3,649,814.70	53.09	43.36	366.53	383.01	0.03	131.00	380.60
Future W/O -Quicklime	1,061.22	991.56	2,150,547.71	31.32	25.58	216.21	225.93	0.02	77.27	224.51
Demand Growth (DG)	0	0	0	0	0	0	0	0	0	0
New Equipment ¹	-	-	-	-	<u>2.21</u> 1.38	0.40 0.03	0.87 0.51	-	-	-
Emissions Increase (EI)	-	-	390,623	6	-	4.54	-	-	4.22	42
EI - DG	-	-	390,623	6	-	4.54	-	-	4.22	42
Significant Emissions Threshold	40	40	75,000	40	25	10	15	0.6	7	100
PSD Applies	No	No	No	No	No	No	No	No	No	No
Reasonable Possibility Reporting	No	No	No	No	No	No	No	No	Yes	No

¹ Emission increase from new equipment is based on the uncontrolled potential to emit.

NSPS for Nonmetallic Mineral Processing Plants, 40 CFR Part 60 Subpart OOO

The proposed change will result in the following change to the applicable requirements under NSPS subpart OOO.

- Pursuant to 40 CFR 60.672(e)(1) the opening in the slaker and limestone prep buildings which houses the six (6) new transfer points identified as 14-26a, 14-26b, 14-27a, 14-27b, 14-28a and 14-28b are subject to an opacity limit of 7%.
- The requirements of 40 CFR Par 60.672(e)(2) are not applicable since the building enclosures are not equipped with mechanical exhausts.
- Pursuant to 60.675(d) an initial compliance demonstration must be conducted using EPA method 9 within 60 days after achieving the maximum production rate at which the affected facility will be operated, but not later than 180 days after initial startup of such facility.
- Pursuant to 40 CFR 60.676(i), notification of the actual date of initial startup of each affected facility shall be submitted to the Administrator. The notification shall be postmarked within 15 days after such date and shall include a description of each affected facility, equipment manufacturer, and serial number of the equipment, if available.

Requested Changes to the Title V Permit

401 KAR 52:020, Section 14(3)(d), specifies that a modified version of the existing Title V permit with new text to reflect the proposed modification should be included with a minor revision application. Duke Energy has attached the revised suggested permit language in **Attachment C** to reflect the changes discussed above.

Duke Energy Kentucky, Inc. 139 E. 4th Street Cincinnati, OH 45202

Qualifications for Treatment as a Minor Permit Revision

The proposed changes do not affect the type of the permit revisions. The revised permit application meets the criteria to be processed as a minor Title V permit revisions permit pursuant to 401 KAR 52:020, Section 14. The revised application forms DEP7007AI, 7007L, 7007N, 7007V and 7007GG are included in Attachment D.

Please contact Patrick Coughlin at (317)-838-2108 or by email at patrick.coughlin@dukeenergy.com, if you should have any questions regarding this minor permit revision application.

I certify that, based on information and belief formed after reasonable inquiry, the statements and information contained in the following documents are true, accurate, and complete.

Sincerely,

Brett Riggins GM III – Regulated Stations

Enclosures

KyPSC Case No. 2025-00002 Exhibit 4 Page 4 of 35

Attachment A Process Flow Diagram

KyPSC Case No. 2025-00002 Exhibit 4 Page 6 of 35

KyPSC Case No. 2025-00002 Exhibit 4 Page 7 of 35

Attachment B Emissions Quantification

Attachement B Emissions Quantification

Table 1- Potential to Emit for existing units being re-purposed to handel Limestone.

					Control	Control				Potential Lime Op								Potential t Limestone C					0	e In Potential t Lime to Lime	
Emission		Control	0. 1 ID	Control	Efficeincy	Efficeincy		PM10 ^(a)		Emission	Thurput	PM	PM10	PM2.5	PM	PM10	PM2.5	Emission	Thurput	PM	PM10	PM2.5	PM	PM10	PM2.5
Unit ID	Description	Description	Stack ID	Device ID	PM	PM10/PM2.5	lbs/ton	lbs/ton	lbs/ton	Factor	ton/hr	tons/yr	tons/yr	tons/yr	lbs/ton	lbs/ton	lbs/ton	Factor	ton/hr	tons/yr	tons/yr	tons/yr	tons/yr	tons/yr	tons/yr
ID: 14-01	Clamshell Unloader Digging from a Barge	Partial Enclosure	S14-01	Fugitive	90	81	2.2	2 1.1	1.1	3-05-016-15	600	578.16	549.25	549.25	0.003	0.0011	0.00007	3-05-020-06	600	0.788	0.734	0.035	-577.37	-548.52	-549.22
ID: 14-02	Clamshell Unloader to Receiving Hopper	Partial Encl & Baghouse	S14-02	C14-04	75	74.6	2.2	2 1.1	1.1	3-05-016-15	600	1445.40	734.26	734.26	0.003	0.0011	0.00007	3-05-020-06	600	1.971	0.043	0.047	-1443.43	-734.26	-734.26
ID: 14-03	Receiving Hopper to Belt Feeder	Baghouse	S14-02	C14-04	99	98.5	2	2 1.1	1.1	3-05-016-15	600	57.82	43.36	43.36	0.003	0.0011	0.00007	3-05-020-06	600	0.079	0.043	0.003	-57.74	-43.36	-43.36
ID: 14-03	Receiving Hopper to Belt Feeder	Вадпоизе	514-02	C14-04	99	98.5	2	2 1.1	1.1	3-03-010-13	600	57.82	45.50	43.30	0.005	0.0011	0.00007	3-03-020-06	600	0.079	0.043	0.003	-57.74	-43.30	-43.30
ID: 14-04	Belt Feeder to Conveyor "1"	Baghouse	S14-02	C14-04	99	98.5	2.2	2 1.1	1.1	3-05-016-15	600	57.82	43.36	43.36	0.003	0.0011	0.00007	3-05-020-06	600	0.079	0.043	0.003	-57.74	-43.36	-43.36
ID: 14-05	Conveyor "1" to Unit 2 Main Silo	Baghouse	S14-03	C14-05	99	98.5	2.2	2 1.1	1.1	3-05-016-15	600	57.82	43.36	43.36	0.003	0.0011	0.00007	3-05-020-06	600	0.079	0.043	0.003	-57.74	-43.36	-43.36
ID: 14-06	Unit 2 Main Silo to Conveyor "3-A"	Baghouse	S14-04	C14-06	99	98.5	2.2	2 1.1	1.1	3-05-016-15	120	11.56	8.67	8.67	0.003	0.0011	0.00007	3-05-020-06	120	0.016	0.009	0.001	-11.55	-8.67	-8.67
ID: 14-07	Conveyor "3-A" to Day Bin (previously transferred to vibrating screen and then to day bin)	Baghouse	S14-05	C14-07	99	98.5	2.3	2 1.1	1.1	3-05-016-15	120	11.56	8.67	8.67	0.003	0.0011	0.00007	3-05-020-06	120	0.016	NA	0.001	-11.55	-8.67	-8.67
	Dump Truck to Dumper House Hopper			C14-08	99	98.5	2.2	2 1.1		3-05-016-15	25	2.41	1.81		0.003	0.0011		3-05-020-06		0.003			-2.41		-1.81
	Hopper to Belt Feeder			C14-08	99	98.5	2.3	2 1.1	1.1	3-05-016-15	25	2.41	1.81	1.81	0.003	0.0011	0.00007	3-05-020-06	25	0.003	0.002	0.000	-2.41		-1.81
ID: 14-15	Belt Feeder to Conveyor "3"	Baghouse	S14-06	C14-08	99	98.5	2.2	2 1.1	1.1	3-05-016-15	25	2.41	1.81	1.81	0.003	0.0011	0.00007	3-05-020-06	25	0.003	0.002	0.000	-2.41	-1.80	-1.81
	Conveyor "3" to Conveyor "3-A"			C14-06	99	98.5	2.2	2 1.1		3-05-016-15	25	2.41	1.81		0.003	0.0011	0.00007			0.003			-2.41		-1.81

page 1 of 3

Attachement B Emissions Quantification

 Table 2 - Potential to Emit for new emission units for the conversion to Limestone.

								Emissi	on Factors			Un	controlled P	ГЕ		Controlled PT	Έ
Unit ID- Process ID	Description	Control Description	Stack ID	Control Device ID	Control Efficeincy PM ⁽¹⁾	Control Efficeincy PM10/PM2.5 ⁽¹⁾	PM lbs/ton	PM10 lbs/ton	PM2.5 lbs/ton	Emission Factor SCC#	Thurput ton/hr	PM tons/yr	PM10 tons/yr	PM2.5 tons/yr	PM tons/yr	PM10 tons/yr	PM2.5 tons/yr
ID: 14-26a	Transfer from day bin to wiegh belt feeders 1-2	Enclosure	-	-	50	50	0.003	0.0011	0.00007	3-05-020-06	35	0.460	0.169	0.011	0.2300	0.0843	0.0054
	Transfer from wiegh belt feeders 1-2 to belt conveyor 1-2	Enclosure	-	-	50	50	0.003	0.0011	0.00007	3-05-020-06	35	0.460	0.169	0.011	0.2300	0.0843	0.0054
	Transfer from conveyor 1-2 to horizontal ball mill 1-2	Enclosure	-	-	50	50	0.003	0.0011	0.00007	3-05-020-06	35	0.460	0.169	0.011	0.2300	0.0843	0.0054
ID: 14-26b	Transfer from day bin to wiegh belt feeders 2-2	Enclosure	-	-	50	50	0.003	0.0011	0.00007	3-05-020-06	35	0.460	0.169	0.011	0.2300	0.0843	0.0054
	Transfer from wiegh belt feeders to belt conveyor 2-2	Enclosure	-	-	50	50	0.003	0.0011	0.00007	3-05-020-06	35	0.460	0.169	0.011	0.2300	0.0843	0.0054
	Transfer from conveyor 1-2 to horizontal ball mill 2-2	Enclosure	-	-	50	50	0.003	0.0011	0.00007	3-05-020-06	35	0.460	0.169	0.011	0.2300	0.0843	0.0054

Total emissions accounts for not having the ball mills in operation at the same time.

 Total Emissions Increase, tons/yr
 1.38
 0.51
 0.03
 0.69

page 2 of 3

0.02

0.25

Attachement B Emissions Quantification

Table 3 - Potential to Emit for existing units to be removed and no longer in service.

									Potential to E	Emit				
Emission Unit ID	Description	Control Description	Control Device ID	Control Efficeincy PM	Control Efficeincy PM10/PM2. 5	PM lbs/ton	PM10 ^(a) lbs/ton	PM2.5 ^(b) lbs/ton	Emission Factor SCC#	Thurput ton/hr	PM tons/yr	PM10 tons/yr	PM2.5 tons/yr	Status
ID: 14-08	Lime Screening	Baghouse	C14-07	99	98.5	1.30E-04	0.000065	0.000065	3-05-016-25	120	0.00	0.00	0.00	Removed after startup of new equpment.
ID: 14-09	Vibrating Screen to Unit 2 Day Bin	Baghouse	C14-07	99	98.5	2.2	1.1	1.1	3-05-016-15	120	11.56	8.67	8.67	Removed after startup of new equpment.
ID: 14-10	Unit 2 Day Bin to Screw Conveyor	Baghouse	C14-07	99	98.5	2.2	1.1	1.1	3-05-016-15	32	3.08	2.31	2.31	Removed after startup of new equpment.
ID: 14-11	Screw Conveyor to Verti-mill	Baghouse	C14-07	99	98.5	2.2	1.1	1.1	3-05-016-15	32	3.08	2.31	2.31	Removed after startup of new equpment.
ID: 14-12	Lime Crushing	Baghouse	C14-07	99	98.5	0.62	0.31	0.31	3-05-016-02	32	0.87	0.65	0.65	Removed after startup of new equpment.
ID: 14-17	Unit 2 Lime Silo to Dump Truck	Baghouse	C14-06	99	98.5	1.5	0.75	0.75	3-05-016-27	25	1.64	1.23	1.23	No longer in service
ID: 14-18	**	Baghouse	C14-09	99	98.5	2.2	1.1	1.1	3-05-016-15	25	2.41	1.81	1.81	No longer in service
ID: 14-19	Sludge Fixing Plant Hopper to Lime Crusher	Baghouse	C14-09	99	98.5	2.2	1.1	1.1	3-05-016-15	25	2.41	1.81	1.81	No longer in service
ID: 14-20	Lime Crushing		C14-09	99	98.5	0.62	0.31	0.31	3-05-016-02	25	0.68	0.51	0.51	No longer in service
ID: 14-21	Lime Crusher to Belt Feeder		Fugitive	99	98.5	2.2	1.1	1.1	3-05-016-15	25	2.41	1.81	1.81	No longer in service
ID: 14-22	Lime Conveyor	Full Enclosure	Fugitive	99	98.5	2.2	1.1	1.1	3-05-016-15	25	2.41	1.81	1.81	No longer in service
ID: 14-23	Sludge Fixing Plant Lime Conveyor to Lime Silo	Baghouse	C14-09	99	98.5	2.2	1.1	1.1	3-05-016-15	25	2.41	1.81	1.81	No longer in service

page 3 of 3

KyPSC Case No. 2025-00002 Exhibit 4 Page 11 of 35

Attachment C Suggested Permit Conditions

Permit V-12-023 R1

Page 1 of 71

SECTION B - EMISSION POINTS, EMISSION UNITS, APPLICABLE REGULATIONS, AND OPERATING CONDITIONS (CONTINUED)

Emissions unit: 14 (01-2528) - Lime Handling Operations (Fugitive Emissions)

Description:

T ·	
Equipment	includee
Lyuphon	menuues.
1 1	

Emission	Description:	Process	Control Method:
Unit:		Rate	
		(tons/h	
14-01	Lime-Barge Loader	our): 600	Short Drop Heights
14-01	Lime-Barge Unloader Hopper	600	Part Encl & Baghouse
14-02	Lime-Hopper to belt Feeder	600	Total Encl & Baghouse
			ų –
14-04	Belt Feeder to Conveyer 1	600	Total Encl & Baghouse
14-05	Conveyer 1 to Main Lime Silo	600	Total Encl & Baghouse
14-06	Main Lime-Silo to Conveyer 3-A	120	Total Encl & Baghouse
14-07	Prior to conversion of FGD to	120	Total Encl & Baghouse
	limestone, conveyer 3-A to vibrating screen, after conversion of FGD to		
14-08	limestone conveyer 3-A to Day bin. Vibrating Screen	120	Total Encl & Baghouse
14-08	Vibrating Screen to day Bin	120	Total Encl & Baghouse
14-09	Day bin to screw Conveyer	32	Total Encl & Baghouse
14-10	Screw Conveyer to vert-Mill	32	Ű,
14-11	Lime Crushers (4)	32	Total Encl & Baghouse Total Encl & Baghouse
			e
14-13	Dump Crush Lime to Dumper House Hopper	25	Part Encl & Baghouse
14-14	Dumper House Hopper to belt Feed	25	Total Encl & Baghouse
14-15	Belt Feed to Conveyer 3	25	Total Encl & Baghouse
14-16	Conveyer 3 to Conveyer 3-A	25	Total Encl & Baghouse
14-17	Main Lime Silo to truck Loading	25	Total Enclosed
14-18	FGD Sludge Fix Plant Truck Dump	25	Part Encl & Baghouse
14-19	Sludge Fix Plant to Lime crusher	25	Total Encl & Baghouse
14-20	Lime Crusher (4)	25	Total Encl & Baghouse
14-21	Lime Crusher to Belt Feeder	25	Total Encl & Baghouse
14-22	Belt Feeder to Sludge Fix Plant Lime	25	Total Encl & Baghouse
	Conveyer		
14-23	Sludge Fix Plant Lime Conveyer to	25	Total Encl & Baghouse
	Lime Silo		
14-24	FGD Plant Lime Tanker Unload	75	Total Encl & Baghouse
14-25	FGD Plant Lime Silo	75	Total Encl & Baghouse
14-26a	Day Bin to Weigh Feeder 2-1	35	Building Enclosure
14-27a	Weigh Feeder 2-1 to Conveyer 2-1	35	Building Enclosure
14-28a	Conveyer 2-1 to ball mill 2-1	35	Building Enclosure
14-26b	Day Bin to Weigh Feeder 2-2	35	Building Enclosure
14-27b	Weigh Feeder 2-2 to Conveyer 2-2	35	Building Enclosure
14-276 14-28b	Conveyer 2-2 to ball mill 2-2	35	Building Enclosure
	conveyer 2-2 to ban min 2-2	55	Bunding Liferosule

Construction commenced: 1976

Transfer Points 14-26a, 14-27a, 14-28a, 14-26b, 14-27b and 14-28b added in 2025

Applicable Regulations:

SECTION B - EMISSION POINTS, EMISSION UNITS, APPLICABLE REGULATIONS, AND OPERATING CONDITIONS (CONTINUED)

401 KAR 63:010, Fugitive emissions

401 KAR 60:005, New Source Performance Standards for Nonmetallic Mineral Processing Plant **401 KAR 51:017**, Prevention of significant deterioration of air quality

1. **Operating Limitations:**

- a) Reasonable precautions shall be taken to prevent particulate matter from becoming airborne. Such reasonable precautions shall include, when applicable, but not be limited to the following **[401 KAR 63:010, Section 3]**:
 - 1. Application and maintenance of asphalt, application of water, or suitable chemicals on roads, material stockpiles, and other surfaces which can create airborne dusts;
 - 2. Installation and use of hoods, fans, and fabric filters to enclose and vent the handling of dusty materials, or the use of water sprays or other measures to suppress the dust emissions during handling.
 - 3. The maintenance of paved roadways in a clean condition;
 - 4. The prompt removal of earth or other material from a paved street which earth or other material has been transported thereto by trucking or other earth moving equipment or erosion by water.
- b) No person shall cause or permit the discharge of visible fugitive dust emissions beyond the lot line of the property on which the emissions originate [401 KAR 63:010, Section 3].
- c) No one shall allow earth or other material being transported by truck or earth moving equipment to be deposited onto a paved street or roadway [401 KAR 63:010, Section 4].
- d) Upon conversion to of FGD to limestone, emissions units 14-08 thru 14-12 will be decommissioned and emission unit 14-07 will transfer limestone from conveyor 3-A directly to the Day bin.

2. Emission Limitations:

Upon completion of the conversion from lime to limestone emissions the following emission limits shall apply.

a) Opacity from openings in the building enclosures for transfer points identified as 14-26a, 14-27a, 14-28a, 14-26b, 14-27b and 14-28b shall be limited to 7% opacity. [40 CFR Part 60.672(e)(1)]

3. Testing Requirements:

The Permittee shall be conducted an initial method 9 performance test to demonstrate compliance with the opacity limit in condition B.2 within 60 days of reaching maximum operating capacity by not longer than 180 days after initial startup. [40 CFR 60.672(a) and 40 CFR 60.675(b)].

4. Specific Monitoring Requirements:

KyPSC Case No. 2025-00002 Exhibit 4 Page 14 of 35

Permit V-12-023 R1

Page 3 of 71

SECTION B - EMISSION POINTS, EMISSION UNITS, APPLICABLE REGULATIONS, AND OPERATING CONDITIONS (CONTINUED)

5. Specific Record Keeping Requirements:

a) Records of the lime and limestone received and processed (tonnages) shall be maintained on a weekly basis for emission inventory purposes [401 KAR 52:020, Section 10].

6. Specific Reporting Requirements:

a) A notification of the actual date of initial startup of each affected facility shall be submitted to the Administrator. The notification shall be postmarked within 15 days after such date and shall include a description of each affected facility, equipment manufacturer, and serial number of the equipment, if available. [40 CFR 60.676(i)]

Refer to Section F, Monitoring, Recordkeeping and Reporting Requirements.

7. Specific Control Equipment Operating Conditions:

- 1. Watering shall be used to maintain compliance with applicable requirements, in accordance with standard operating practices [401 KAR 63:010].
- 2. Records regarding the maintenance and use of the control measures in Subsection 7(a) shall be maintained [401 KAR 52:020, Section 10].
- 3. Refer to Section E, Source Control Equipment Requirements.

KyPSC Case No. 2025-00002 Exhibit 4 Page 15 of 35

Attachment D Permit Application Forms

KyPSC Case No. 2025-00002 Exhibit 4 Page 16 of 35

DEP7007AI

Division	for Air Q	uali	ty		DEP7()07AI	Γ	Add	litional Docum	entation			
		uan	ly	Admin	istrative	e Information							
300 Sc	ower Bouleva	ırd		Secti	on AI.1: S	ource Information		Additi	onal Documentatio	on attached			
Frank	fort, KY 4060	01		Secti	on AI.2: A	Applicant Information							
(50	2) 564-3999			Secti	on AI.3: C	Owner Information							
				Secti	on AI.4: T								
				Secti	Section AI.5: Other Required Information								
				Secti	Section AI.6: Signature Block								
				Secti	on AI.7: N	lotes, Comments, and E	xplanatio	ons					
Source Name:			Duke Energy K	entucky Inc., East	Bend Stati	on							
KY EIS (AFS) #:		21-	015-00029										
Permit #:			V-12-023										
Agency Interest (AI) ID:		176										
Date:			3-Jan-25										
Section AI.1: S	ource Inf	orn	nation										
Physical Location	Street:		6293 Beaver Roa	ad									
Address:	City: Street or		Union		County:	Boone		Zip Code:	40191				
Mailing Address:	P.O. Box:		6293 Beaver Roa	ad									
	City:		Union		State:	Kentucky		Zip Code:	40191				
				Standard Coord	dinates fo	r Source Physical Loca	ation						
					-	·							
Longitude:		38.	904 (0	decimal degrees)		Latitude:	-84.851		(decimal degrees)				
	4		Electric Power C	Concretion		D NIA ICS #	2211	1					
Primary (NAICS) Ca	ategory:		Electric Power C	Jeneration		Primary NAICS #:	2211	1		-			
μ													

KyPSC Case No. 2025-00002 Exhibit 4

Exhibit 4 Page 17 of 35

						1 age 17
Classification (SIC) C	Category:	Electric Power Generat	ion	Primary SIC #:	4931	
Briefly discuss the typ conducted at this site:		Electric Generating Utility	1			
Description of Area Surrounding Source:	✓ Rural Area☐ Urban Area	Industrial Park Industrial Area	Residential AreaCommercial Area	Is any part of the source located on federal land?	Yes No	Number of Employees: 160 approx
Approximate distance to nearest residence o commercial property:	or	stimated)	Property Area: 17	77 acers	Is this source portable?	Yes VNo
	What othe	er environmental permi	ts or registrations doe	s this source currently hold	or need to obtain in Ker	ntucky?
NPDES/KPDES:	Currently He	old 🗌 Need	N/A			
Solid Waste:	Currently H	old 🗌 Need	N/A			
RCRA:	Currently He	old 🗌 Need	✓ N/A			
UST:	Currently He	old 🗌 Need	✓ N/A			
Type of Regulated	Mixed Wast	e Generator	Generator	Recycler	✓ Other:	_
Waste Activity:	U.S. Importe	er of Hazardous Waste	Transporter	Treatment/Storage/Disposa	1 Facility 🗌 N/2	A

Section AI.2: Ap	plicant Information	1				
Applicant Name:	Duke Energy Kentucky	Inc., East Bend Station				
Title: (if individual)						
Mailing Address:	Street or P.O. Box:	6293 Beaver Road				
Walling Address:	City:	Union	State:	Kentucky	Zip Code:	40191
Email: (if individual)						
Phone:						
Technical Contact						
Name:	Patrick Coughlin					
Title:	Environmental Specialis	st				
Mailing Address:	Street or P.O. Box:	1000 East Main St.				
maning muness.	City:	Plainfield	State:	Indiana	Zip Code:	46168
Email:	patrick.coughlin@duke-	energy.com				
Phone:	317-838-2108					
Air Permit Contact for	Source					
Name:	Patrick Coughlin					
Title:	Environmental Specialis	st				
Mailing Address	Street or P.O. Box:	1000 East Main St.				
Mailing Address:	City:	Plainfield	State:	Indiana	Zip Code:	46168
Email:	patrick.coughlin@duke-	energy.com				
Phone:	317-838-2108					

Section AI.3: Ov	vner Information					
Owner same	as applicant					
Name:						
Title:						
Mailing Address:	Street or P.O. Box:					
Maning Mulless.	City:		State:	Zip	Code:	
Email:						
Phone:						
List names of owners a	nd officers of the company who have an i	terest in the co	mpany of 5% or more	е.		
	Name			Position		

KyPSC Case No. 2025-00002 Exhibit 4 Page 20 of 35

DEP7007AI

Section AI.4: Typ	e of Application									
Current Status:	✓ Title V □ Condit	ional Major	State-Origin	General General	l Permit	Registration In None				
	Name Change	Initial Regis	stration	Significant Revision		Administrative Permit Amendment				
	Renewal Permit	Revised Reg	gistration 🗸	Minor Revision		Initial Source-wide OperatingPermit				
Requested Action: (check all that apply)	502(b)(10)Change	Extension R	Request	Addition of New Facility		Portable Plant Relocation Notice				
(Revision	Off Permit	Change	Landfill Alternate Compl	iance Submittal	Modification of Existing Facilities				
	Ownership Change	Closure								
Requested Status:	✓ Title V □ Condit	ional Major	State-Origin	D PSD	NSR	Other:				
Is the source requestin	g a limitation of potentia	al emissions?		Yes Vo						
Pollutant:	Pollutant:			Pollutant:		Requested Limit:				
Particulate Matter	r			Single I	HAP					
Volatile Organic										
Carbon Monoxide	e			Air Tox	t F)					
Nitrogen Oxides					Dioxide					
Sulfur Dioxide				Greenh	ouse Gases (GHG)					
Lead				Other						
For New Construct	tion:									
Proposed Start Date of Construction: (MM/YYYY)		08	/2025	Proposed Operation Start-Up Date: (MM/YYY		01/2027				
For Modifications:										
Proposed Start Date of Modification: (MM/YYYY)		08	/2025	Proposed Operation Start-Up Date: (<i>MM/YYYY</i>)		01/2027				
Applicant is seeking	Applicant is seeking coverage under a permit shield. Identify any non-applicable requirements for which permit shield is sought on a separate attachment to the application.									

Indicate the documents attached as part of this application:								
DEP7007A Indirect Heat Exchangers and Turbines DEP7007B Manufacturing or Processing Operations DEP7007C Incinerators and Waste Burners DEP7007F Episode Standby Plan DEP7007J Volatile Liquid Storage DEP7007K Surface Coating or Printing Operations ✓ DEP7007L Mineral Processes DEP7007M Metal Cleaning Degreasers	 DEP7007CC Compliance Certification DEP7007DD Insignificant Activities DEP7007EE Internal Combustion Engines DEP7007FF Secondary Aluminum Processing DEP7007GG Control Equipment DEP7007HH Haul Roads Confidentiality Claim Operative Compliance Certification 							
 DEP7007M Metal Cleaning Degreasers DEP7007N Source Emissions Profile DEP7007P Perchloroethylene Dry Cleaning Systems DEP7007R Emission Offset Credit DEP7007S Service Stations DEP7007T Metal Plating and Surface Treatment Operations DEP7007V Applicable Requirements and Compliance Activities DEP7007Y Good Engineering Practice and Stack Height Determination DEP7007AA Compliance Schedule for Non-complying Emission Units DEP7007BB Certified Progress Report 	 Ownership Change Form Secretary of State Certificate Flowcharts or diagrams depicting process Digital Line Graphs (DLG) files of buldings, roads, etc. Site Map Map or drawing depicting location of facility Safety Data Sheet (SDS) Emergency Response Plan Other: 							
the information submitted in this document and all its attachmen	a responsible official*, and that I have personally examined, and am familiar wit ts. Based on my inquiry of those individuals with primary responsibility for owledge and belief, true, accurate, and complete. I am aware that there are on, including the possibility of fine or imprisonment. $\underline{IAB/2025}_{Date}$							
Brett Riggins Type or Printed Name of Signatory	GM III- Reg Stations Title of Signatory							

Section AI.7: Notes, Comments, and Explanations	

KyPSC Case No. 2025-00002 Exhibit 4 Page 23 of 35 DEP7007L

	DEP7007L	Additional Documentation									
Division for Air Quality	Mineral Processes	Complete DEP7007AI, DEP7007N,									
	Section L.1: Source Operating Information	DEP7007V, and DEP7007GG.									
300 Sower Boulevard	Section L.2: Concrete Operations										
Frankfort, KY 40601	Section L.3: Asphalt Operations	Attach flow diagram									
(502) 564-3999	Section L.4: Coal Operations										
	Section L.5: Aggregate Processing Operations										
	Section L.6: Feed, Corn, and Flour Operations										
	Section L.7: Grain Elevators										
	Section L.8: Fertilizer Operations										
	Section L.9: Notes, Comments, and Explanations										
Source Name: Du	uke Energy Kentucky LLC. East Bend Generating Station										
KY EIS (AFS) #: 21- <u>01</u>	5-00029										
Permit #: V-	-12-023 R1										
Agency Interest (AI) ID: <u>17</u>	6										
Date: 3	-Jan-25										
Section L.1: Source Operating	g Information										
Type of Plant:	Asphalt Coal Fertilizer Feed Corn Flour Grain Elevat	ors Aggregate Processing									
Operating Schedule:	24 Hours/Day: 7 Days/Week:	52 Weeks/Year:									
Percent Annual Throughput:	DecFeb.: 25 % MarMay: 25 % JunAug.: 25	% SepNov.: <u>25</u> %									
Maximum Rated Source Capacity:	tons/hourtons/year										

KyPSC Case No. 2025-00002 Exhibit 4 Page 24 of 35

11/2018	
---------	--

	Combustion Equipment:								
Is there a generator located on site? Yes No									
Is it possible for the generator to remain at one site longer than twelv	ve months? Yes No								
Is there a hot water heater located on site? Yes	□ No								
Is there a dryer located on site?	✓ No								
Is there a hot oil heater (asphalt heater) located on site?	Yes No								
Describe briefly the disposal of particulates collected in the baghouse and/or other waste generated at the site:	Existing transfer points will use the same control equipment using in for lime handeling. New transfer points identified as 14-26a, 14-27a, 14-28a 14-26b, 14-27b, and 14-28b will be controlled by a building enclosure.								
Is there additional information attached to support the data required in this form? Brief description of additional information included:diagram of limestone handling system Total number of additional pages, including drawings, maps, and diagrams:									

KyPSC Case No. 2025-00002 Exhibit 4 Page 25 of 35 DEP7007L

Section	Section L.5: Aggregate Processing Operations															
New Sourc	New Source Performance Standard Applicability															
Are any emission units for the operation subject to: Image: NSPS, Subpart OOO Image: None Image: Other: Image: NSPS, Subpart OOO Image: None Image: Other:																
Complete the Table:																
Emission	Affected Facility	Maximum Rated Capacity						Control Method or	Control Efficiency	SCC Code	Pollutant	Emission Factor	Source of	Proposed/Actual Date of	Installation	Is the Unit Subject to
Unit #		(tons/hr)	(tons/yr)	Equipment	(% removal)	SCC Coue	ronutant	(<i>lb/SCC unit</i>)	Emission Factor	Construction Commencement (MM/YYYY)	Date of Each Unit	NSPS? (Yes or No)				
14-26a	Transfer from day bin to wiegh belt feeders 1- 2	35	306600	Building Enclosure	TBD	3-05-020-06	PM PM10 and PM2.5	lbs/ton	AP-42 11.19	8/15/2025		Yes				
	Transfer from wiegh belt feeders 1-2 to belt conveyor 1-2	35	306600	Building Enclosure	TBD	3-05-020-06	PM PM10 and PM2.5	lbs/ton	AP-42 11.19	8/15/2025		Yes				
	Transfer from conveyor 1-2 to horizontal ball mill 1-2	35	306600	Building Enclosure	TBD	3-05-030-03	PM PM10 and PM2.5	lbs/ton	AP-42 11.19	8/15/2025		Yes				
14-26b	Transfer from day bin to wiegh belt feeders 2- 2	35		Building Enclosure	TBD	3-05-020-06	PM PM10 and PM2.5	lbs/ton	AP-42 11.19	8/15/2025		Yes				
	Transfer from wiegh belt feeders 2-2 to belt conveyor 2-2	35	306600	Building Enclosure	TBD	3-05-020-06	PM PM10 and PM2.5	lbs/ton	AP-42 11.19	8/15/2025		Yes				
	Transfer from conveyor 2-2 to horizontal ball mill 2-2	35		Building Enclosure	TBD	3-05-030-03	PM PM10 and PM2.5	lbs/ton	AP-42 11.19	8/15/2025		Yes				

KyPSC Case No. 2025-00002 Exhibit 4 Page 26 of 35 DEP7007N

	Division	for Air	Quality						DEP70 0	7N						
Division for Air Quality							Source Emissions Profile						Additional Documentation			
	300 So	wer Boul	evard					Section N.1: Emission Summary								
	Frankf	ort, KY 4	0601					Sectio	n N.2: Stack	Information			Compl	ete DEP700)7AI	
	(502	2) 564-39	99					Sectio	n N.3: Fugiti	ve Information	L					
										, Comments, ar	nd Explana	tions				
Source N							ntucky LLC E	ast Bend G	enerating Stati	on						
KY EIS (,			21-	015-0002											
Permit #:					V-12-23	R1										
0.	nterest (AI) ID:				176											
Date:	••• 0				3-Jan-25											
N.1: Er	nission Summary			-	-				-							
Emission	Fusiarian Luit Nama	Process	Process	Control Device	Control	Stack	Maximum Design	D-11-44	Uncontrolled Emission	Emission Factor Source	Capture	Control	Hourly E	Hourly Emissions Annual Emissions		missions
Unit #	Emission Unit Name	ID	Name	Name	ID	ID	Capacity (SCC Units/hour)	Pollutant	Factor (lb/SCC Units)	(e.g. AP-42, Stack Test, Mass Balance)	Efficiency (%)	Efficiency (%)	Uncontrolled Potential (<i>lb/hr</i>)	Controlled Potential (<i>lb/hr</i>)	Uncontrolled Potential (tons/yr)	Controlled Potential (tons/yr)
14	Transfer from day bin to wiegh belt feeders 1-2	26a	Limestone Handling	Bulding Enclosure		TBD	35	PM	0.003	AP-42 Section 11.19.2	100%	50%	0.105	0.05250	0.460	0.2300
14	Transfer from day bin to wiegh belt feeders 1-2	26a	Limestone Handling	Bulding Enclosure		TBD	35	PM10	0.0011	AP-42 Section 11.19.2	100%	50%	0.039	0.01925	0.169	0.0843
14	Transfer from day bin to wiegh belt feeders 1-2	26a	Limestone Handling	Bulding Enclosure		TBD	35	PM2.5	0.00007	AP-42 Section 11.19.2	100%	50%	0.002	0.00123	0.011	0.0054
14	Transfer from wiegh belt feeders 1-2 to belt conveyor 1-2	27a	Limestone Handling	Bulding Enclosure		TBD	35	PM	0.003	AP-42 Section 11.19.2	100%	50%	0.105	0.05250	0.460	0.2300
14	Transfer from wiegh belt feeders 1-2 to belt conveyor 1-2	27a	Limestone Handling	Bulding Enclosure		TBD	35	PM10	0.0011	AP-42 Section 11.19.2	100%	50%	0.039	0.01925	0.169	0.0843
14	Transfer from wiegh belt feeders 1-2 to belt conveyor 1-2	27a	Limestone Handling	Bulding Enclosure		TBD	35	PM2.5	0.00007	AP-42 Section 11.19.2	100%	50%	0.002	0.00123	0.011	0.0054
14	Transfer from conveyor 1-2 to horizontal ball mill 1-2	28a	Limestone Handling	Bulding Enclosure		TBD	35	PM	0.003	AP-42 Section 11.19.2	100%	50%	0.105	0.05250	0.460	0.2300
14	Transfer from conveyor 1-2 to horizontal ball mill 1-2	28a	Limestone Handling	Bulding Enclosure		TBD	35	PM10	0.0011	AP-42 Section 11.19.2	100%	50%	0.039	0.01925	0.169	0.0843
14	Transfer from conveyor 1-2 to horizontal ball mill 1-2	28a	Limestone Handling	Bulding Enclosure		TBD	35	PM2.5	0.00007	AP-42 Section 11.19.2	100%	50%	0.002	0.00123	0.011	0.0054

KyPSC Case No. 2025-00002 Exhibit 4 Page 27 of 35 DEP7007V

				DEP7	[Additional Documentation		
Division for	Air Quality	App	plicable I	Requirem	nce			
				Activ		Complete DEP7007AI		
300 Sower	Boulevard		Section	on V.1: Emis	sion and Operating Lim	itation(s)		
Frankfort, I	KY 40601		Section	on V.2: Moni	toring Requirements	L		
(502) 56	4-3999		Section	on V.3: Reco	rdkeeping Requirement			
			Section	on V.4: Repo	rting Requirements			
			Section	on V.5: Testi	ng Requirements			
					s, Comments, and Expla	anations		
Source Name:	Duke E	nergy Kentucky LL			-			
KY EIS (AFS) #:	21- 015-000	29						
Permit #:	V-12-02	3 R1						
Agency Interest (AI) ID:		176						
Date:	3-Jan-2	5						
Section V.1: Emission	and Operating I	Limitation(s)						
Emission Unit #	Emission Unit Description	Applicable Regulation or Requirement	Pollutant	Emission Limit (if applicable)	Voluntary Emission Limit or Exemption (if applicable)			Method of Determining Compliance with the Emission and Operating Requirement(s)
14-26a, 14-27a, 14-28a, 14-26b,14- 27b, 14-28b	New Limestone Handling	60.672(e)(1)	Opacity	7%				Method 9

Section V.	2: Monitoring Re	quirements			
Emission Unit #	Emission Unit Description	Pollutant	Applicable Regulation or Requirement	Parameter Monitored	Description of Monitoring

Section V.3: Recordkeeping Requirements										
Emission Unit #	Emission Unit Description	Pollutant	Applicable Regulation or Requirement	Parameter Recorded	Description of Recordkeeping					

KyPSC Case No. 2025-00002 Exhibit 4 Page 30 of 35 DEP7007V

Section V.4: Reporting Requirements										
Emission Unit #	Emission Unit Description	Pollutant	Applicable Regulation or Requirement	Parameter Reported	Description of Reporting					
14-26a,14-27a, 14-28a,14- 26b, 14-26b, 14-28b	Limestone Handling	NA	60.676()	Date of iniitial startup	Notification of actual startup					
14-26a,14-27a, 14-28a,14- 26b, 14-26b, 14-28b	Limestone Handling	NA	60.676(f)	initial preformance test	Report results of initial preformance test					
Unit 2	Coal Fired Boiler	H_2SO_4	401 KAR 51:017(16)(5) 40 CFR Part 52.21(r)(6)(v)	Annual emissions of H_2SO_4	Report annual emissions of H ₂ SO ₄ wiithin 60 days after the end of the calendar year for a period of 5 years following resumpsion of normal operation after the change.					

Section V.5: Testing Requirements										
Emission Unit #	Emission Unit Description	Pollutant	Applicable Regulation or Requirement	Parameter Tested	Description of Testing					
14-26a,14-27a, 14- 28a,14-26b, 14-26b, 14-28b	Limestone Handling	РМ	60.675(d)	РМ	To demonstrate compliance with the fugitive emission limits for buildings specified in § 60.672(e)(1) using EPA method 5					

Section V.6: Notes, Comments, and Explanations	

KyPSC Case No. 2025-00002 Exhibit 4 Page 33 of 35 DEP7007GG

Division for Air Quality		DEP7007GG Control Equipment					Additional Documentation Complete Sections GG.1 through GG.12, as applicable									
300 Sower Boulevard				Control Equipment					Attach manufacturer's specifications for each control device							
	Frankfort	, KY 406	601								Con	plete DEP7	007AI			
	(502) 5	64-3999														
Source N						10	14 - 4 •									
			Duke Energy k	centucky LLC	. East Bei	id Generating 8										
KY EIS (21-	015-00029													
Permit #:	:		V-12-023 R1													
Agency I	nterest (Al	I) ID:	176													,
Date:			3-Jan-25													
Section G	G.1: Gene	eral Info	rmation - Co	ntrol Equip	ment											
Control Device ID	Control Control		Cost Manufacturer	Model	Date	Inlet Gas Stream Data For <u>All</u> Control Devices				Inlet Gas Stream Data For Condensers, Adsorbers, Afterburners, Incinerators, Oxidizers <u>Only</u>			Equipment Operational Data For <u>All</u> Control Devices			
#	Name	Cost	manufacturer	Name/ Serial #		Temperature (°F)	Flowrate (scfm @ 68 °F)	Average Particle Diameter (µm)	Particle Density (lb/ft ³) or Specific Gravity	Gas Density (lb/ft ³)	Gas Moisture Content (%)	Gas Composition	Fan Type	Pressure Drop Range (in. H ₂ O)	Pollutants Collected/ Controlled	Pollutant Removal (%)
Building Enclocsure	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Section	GG.11: Other Control Equipmer	nt
Control Device ID #	Identify all Emission Units and Control Devices that Feed to Control Equipment	Type of Control Equipment (provide description and a diagram with dimensions)
Building Enclocsure	14-26a,14-26b,14-27a,14-27b, 14-28a, and 14-28b	

Section GG.12: Notes, Comments, and Explanations	

Duke Energy East Bend Station

Wet FGD Conversion to a Limestone Inhibited-Oxidation Process Preliminary Engineering Report

Duke Energy

Project number: 60724995

January 17, 2024

Quality information

Prepared by

Anthony Pruske, PE Project Engineer

Checked by

Scott Bryan Project Engineer Verified by

Julie Harkin Project Manager Approved by

Sterling Gray Business Development Director

Revision History

Revision	Revision date	Details	Authorized	Name	Position
0	March 25, 2024	lssued for Permitting	Yes	Gray	Business Development Director
1	April 22, 2024	Issued for Permitting	Yes	Gray	Business Development Director
2	April 29, 2024	lssued for Permitting	Yes	Gray	Business Development Director
3	July 12, 2024	Issued for Permitting	Yes	Gray	Business Development Director
4	December 12, 2024	Issued for Permitting	Yes	Gray	Business Development Director
5	January 17, 2025	Issued for Permitting	Yes	Gray	Business Development Director

Distribution List

# Hard Copies	PDF Required	Association / Company Name
0	Yes	Troy Wilhelm / Duke Energy
0	Yes	Chad Donner / Duke Energy

Prepared for:

Duke Energy

Prepared by:

Anthony Pruske Project Engineer T: 512-924-7268 (c) E: anthony.pruske@aecom.com

AECOM 13640 Briarwick Dr. Suite 200 Austin, TX 78729 aecom.com

Copyright © 2024 by AECOM

All rights reserved. No part of this copyrighted work may be reproduced, distributed, or transmitted in any form or by any means without the prior written permission of AECOM.

Table of Contents

1.	Introdu	uction and Project Basis	. 5
	1.1	Project Basis	. 5
	1.2	Project Background	. 5
	1.3	Objectives	. 5
2.	Techn	ology Overview	. 6
3.	Projec	t Scope and Design Information	. 8
	3.1	Design Basis	. 8
	3.2	Scope Overview	. 8
	3.3	System Descriptions and Scope	. 9
	3.3.1	Material Handling System	. 9
	3.3.2	Reagent Prep System	10
	3.3.3	FGD Area	13
	3.3.4	Dewatering Area	15
	3.3.5	Balance of Plant (BOP)	16
4.	Syster	n Operations	17
	4.1	LSIO Operation	17
	4.2	Reagent Prep and Storage	19
	4.3	Chemical Additive and Storage	19
	4.4	Mist Eliminator Wash System	19
5.	Contra	act and Procurement Execution Approach	20
Appen	dix A -	General Arrangement Drawings	22
Appen	dix B -	PFD and Material Balance	29
Appen	dix C -	P&IDs	37
Appen	dix D -	Electrical Load List	63
Appen	dix E -	One Line Diagrams	65
Appen	dix F -	Demolition Drawings	70

Figures

Figure 2-1: Comparison of Crystal Shapes from MEL and LSIO FGD Systems	6
Figure 4-1: Limestone Inhibited Oxidation (LSIO) Process Flow Diagram	17
Figure 4-2: Current Versus Proposed Absorber Recycle Spray Pattern	18

Tables

Table 3-1: Preliminary Design Basis	8
Table 5-1: Procurement and Subcontracting WBS	20
Table 5-2: LSIO Conversion Project Division of Responsibility	

1. Introduction and Project Basis

1.1 **Project Basis**

Duke Energy's East Bend Station currently operates a wet flue gas desulfurization (FGD) process that relies upon magnesium-enhanced lime (MEL) to control SO₂ emissions. However, the expenses associated with lime reagent, stabilization additives and disposal of the waste sludge produced by the process result in very high FGD operating costs which adversely affect the competitiveness of the East Bend Station in today's power markets. Furthermore, recent issues with lime supply, quality, and price escalation pose additional risks to the East Bend Station from a reliability, compliance, and economic perspective.

As a result, Duke Energy approached AECOM to assess the technical feasibility of converting the FGD system to use lower-cost limestone reagent in an inhibited oxidation process (LSIO) while still meeting all environmental and reliability requirements, and whether the required capital investment is economically justified.

1.2 **Project Background**

AECOM completed a Phase 1 Engineering Study (the Study) in 2022 which evaluated the technical and economic feasibility of converting the East Bend FGD system to a LSIO process. The Study identified the required scope items to convert the East Bend FGD system from MEL operation to LSIO operation, which are detailed in Section 3.

The Study report included the design basis, scope, and assumptions for a complete conversion of the existing FGD system to LSIO operation. The following preliminary documents formed the basis for the project scope:

- Process design basis, PRISM modeling, material balances, and process flow diagrams (PFDs),
- P&IDs,
- General arrangements, equipment layouts, and Power Distribution Center (PDC) arrangement,
- Equipment list, load list, one-line diagrams, and net IO summary,
- Contract and procurement approach,
- EPC schedule, and
- Class 3 cost estimate.

1.3 Objectives

The objectives of the Study were to determine the technical requirements, capital investment, and operating cost savings associated with converting the East Bend wet FGD process to LSIO operation. The Study established the following preliminary information:

- Design basis for the FGD conversion from MEL to LSIO,
- Process modifications to existing systems,
- Major equipment and infrastructure for new systems,
- System and equipment arrangements and configurations,
- Project schedule,
- Cost estimate, and
- Contract and procurement approach.

2. Technology Overview

The Wet FGD system at East Bend uses MEL scrubbing technology, which relies on pebble quicklime containing a small fraction of dolomite as the reagent. Dolomite is comprised of about 50% magnesium oxide which, when added to the absorber with the lime reagent, dissolves and promotes elevated concentrations of sulfite. Sulfite is an effective source of liquid-phase alkalinity, which facilitates high SO₂ removal efficiency for boilers firing high sulfur coal. The primary benefit of scrubbing with MEL is that the required absorber recycle slurry pumping capacity is lower than limestone-based FGD systems – typically in the range of 40 to 50 gallons per 1,000 cubic feet of treated flue gas – and results in smaller pumps with lower power requirements.

A key disadvantage of the MEL technology is the production of calcium sulfite (CaSO₃) solids that are typically difficult to dewater. As a result, significant quantities of fly ash and lime must be added to the filtered solids to produce a stable product suitable for disposal in a landfill. Conversion to LSIO chemistry will improve the dewatering properties of the calcium sulfite solids by creating larger, more regular, and symmetric crystals. A comparison of calcium sulfite crystals produced by MEL and LSIO scrubbing is provided in Figure 2-1.

Figure 2-1: Comparison of Crystal Shapes from MEL and LSIO FGD Systems

The FGD waste solid crystals in the left image were collected from an MEL FGD system of similar design and vintage to East Bend; oxidation was approximately 11%. The irregular shape of the crystals causes them to trap water between the solids such that dewatering is not easily achieved. The FGD waste solid crystals in the right image were collected from another utility that converted from MEL to LSIO operation. Due to the sulfite oxidation inhibiting properties of thiosulfate and sodium formate, oxidation in that unit was approximately 5%. The flatter, cubic, and larger LSIO crystals enable more efficient water removal from between the solid crystals in the slurry. As a result of the LSIO conversion at East Bend, a significant improvement in dewatering characteristics of the FGD solids is expected, resulting in much drier filter cake, less water landfilled, and reduced fixation lime requirements.

Another disadvantage of note with MEL scrubber technology is the loss of liquid-phase alkalinity due to oxidation of sulfite to sulfate during periods of low load operation or if an FGD absorber is out of service. Liquid-phase alkalinity must be re-established when load increases or the system is returned to service before the FGD process can achieve required efficiency. The degradation in performance has become a greater concern as more coal-fired units operate at lower capacity factors in the current market while emission limits and compliance requirements become more stringent.

The following process modifications are needed to convert an existing MEL scrubber to LSIO operation:

- Reagent Unloading. Due to differences in their molecular weight, more limestone by mass is required than MEL to scrub the same quantity of SO₂. Further, the bulk density of limestone is roughly double the bulk density of lime. As a result, the existing reagent unloading and material handlings systems, designed for MEL, often require modification to accommodate new operating conditions and higher density material.
- Reagent Preparation. The reagent preparation system for a MEL scrubber consists of a lime slaking device. Generally, slakers cannot be repurposed to grind limestone to the required fineness due to overall mechanical configuration issues or capacity issues. New grinding mills are often required to produce the necessary quantity and quality of reagent slurry sufficient for the FGD process. New equipment enclosures or enclosure additions are also often required to house the new grinding systems.
- Liquid-phase Alkalinity. Liquid-phase alkalinity provides the main driving force for SO₂ removal in MEL scrubber systems. Limestone scrubbers rely predominately on solid-phase alkalinity with dissolution of limestone in the absorber replenishing alkalinity to facilitate SO₂ scrubbing. Due to this fundamental difference, MEL scrubbers require less interaction between the scrubber liquor and flue gas to achieve the required removal efficiency and are designed to operate at lower liquid-to-gas (L/G) ratios. To compensate for this difference while minimizing the capital investment associated with increasing the L/G, a performance additive such as sodium formate (NaFo) is used to provide equivalent alkalinity following an LSIO conversion. However, since performance additives will not degrade in the slurry as the reaction tank sits idle during outages and can also be added directly to the scrubbers following an outage in which the absorber reaction tanks are drained, the FGD system is able to maintain consistent SO₂ removal performance under all operating scenarios.
- Mist Eliminator Wash System. The mist eliminator (ME) wash systems for MEL scrubbers were typically designed as general flush systems to remove slurry carryover from the front surfaces of the ME stages to prevent accumulation of calcium sulfite. However, the slurry carryover in LSIO FGD slurry also contain residual limestone solids that react with SO₂ remaining in the flue gas passing through the ME. As such, the ME wash system for a limestone based FGD system should be more robust in design with respect to wash intensity (gpm/ft2) and wash pressure to provide effective removal of the FGD slurry from the ME surfaces.

3. **Project Scope and Design Information**

AECOM developed a preliminary design and layout for the conversion of the East Bend FGD process to LSIO operation. This section provides a general overview of the design basis and preliminary design for the system. Preliminary drawings are included in the appendices of this report.

3.1 Design Basis

The FGD process modifications are designed to maintain an SO_2 removal efficiency of at least 98% for the design fuel (5.66 lb SO_2 / MMBtu). Table 3-1 provides key design basis inputs.

Parameter	Unit	Value
Site Elevation	Ft above MSL	515
Number of Generating Units	-	1
Unit Load, Net	MW	600
Unit Heat Rate, Net	Btu/kWh	10,760
Unit Heat Input	MMBtu/hr	6,456
Annual Capacity Factor	%	69
Coal Heating Value	Btu/lb	11,778
Coal Ash Content	wt%	9.02
Fly Ash Portion of Total Ash	% by weight	80
Coal Sulfur Content	%-wet	3.20
SO ₂ Removal Requirement (Design)	%	98
Lime Reagent CaO Purity	%	90.3
Limestone CaCO ₃ Purity	%	92
Limestone size (received)	-	1"x0
Limestone size (product)	-	90% passing 325 mesh

Table 3-1: Preliminary Design Basis

3.2 Scope Overview

The LSIO conversion project scope includes modifications to existing equipment and is based on the turnkey delivery, including engineering, procurement, and construction. The conversion of the East Bend FGD system to LSIO operation involves several process, equipment, and system changes including:

- Minor modifications to reagent receiving, conveying, and storage systems.
- Installation of new reagent feeders and conveying equipment.
- Installation of new ball mills and dust collection system.
- Refurbishment and resheaving of absorber recycle pumps.
- Installation of new absorber recycle slurry piping, cross-tie piping, spray headers, and spray nozzles.
- Operation of all absorber recycle slurry pumps to enhance SO₂ removal performance.
- Modification of the absorber trays to enhance SO₂ removal performance.
- Installation of a buffer additive storage and feed system to enhance SO₂ removal performance.
- Replacement of existing emulsified sulfur storage tank and feed system to improve system reliability and inhibit sulfite oxidation.

- Upgrade of mist eliminator wash water supply system.
- Replacement of waste slurry storage tank, thickener underflow sludge tank, and lime slurry tank agitators.
- Installation of a filtrate purge system to control process chloride levels.

3.3 System Descriptions and Scope

3.3.1 Material Handling System

The material handling system includes infrastructure and equipment required for the receiving, unloading, conveying, processing, and storage of the limestone reagent (currently magnesium-enhanced lime). Limestone will be received by barge at the barge unloading area where it is offloaded and then conveyed to the storage silo area. From here, the limestone will be conveyed to the day bin area where it will be temporarily stored for distribution to the reagent prep system by way of a new belt conveyor system.

- 1. Limestone Flowability Studies will be performed on the Unloading Hopper, Storage Silo, and modified Day Bin. The primary objective of the studies is to confirm the assumption that no geometry modifications are required on the Unloading Hopper or the Storage Silo, and guide the detail design on the Day Bin outlet modifications.
- 2. Barge Unloading Area The existing barge unloader and unloading hopper will be repurposed for limestone service. The following modifications are planned at the barge unloading area:
 - a. Install a new, smaller, barge unloading clamshell bucket to account for the higher density of limestone and stay within the system design parameters.
 - b. Modify existing 30-day storage silo inlet chute to extend below maximum fill level for level control.
- 3. Storage Silo Area The existing lime storage silo will be repurposed for limestone service. The following modifications will be performed at the storage silo:
 - a. Install a profile plate on the tail end of Conveyor 3A to limit the conveyor's limestone tonnage throughput to match the existing lime throughput on the conveyor.
 - b. The high-level alarm(s) setpoint will be lowered so that the weight capacity of the existing silo is not exceeded due to the higher density of the limestone (relative to lime) stored in the silo. The existing level transmitter and cabling will be reused.
 - c. Demolish existing metal detector and install a new magnetic separator at the head end of LH1.
- 4. Day Bin Area The following modifications will be made to convert the existing lime day bin to limestone service:
 - a. A new feed chute on the discharge of Conveyor 3A will be installed down to the day bin. The chute will be equipped with AR liners.
 - b. Bin Outlet Modifications The eight existing day bin outlets will be modified to two discharge points. Outlet slopes will be equipped with AR liners. Design of the modifications to the bottom of the bin to accommodate the new discharge points will take into consideration the need to reduce the allowable storage volume of the bin to prevent exceeding the weight capacity of the equipment.
 - c. Two new weigh belt feeders (WBFs) will be installed at the day bin discharge points. Each WBF will be equipped with a slide gate to isolate the WBF from the day bin material. Each limestone material handling train (two trains total) will be equipped with one 100% WBF.
 - d. Supplemental steel and platform modifications will be designed and provided for new WBF installations.
 - e. The existing lime storage day bin will be modified for limestone storage. Modifications will limit the volume of limestone stored for an equivalent lime mass capacity so that the day bin remains within its original structural design load.
- 5. Limestone Conveying System A new belt conveyor system will be installed to transport limestone from the WBFs to the new reagent preparation system. The conveying system includes:

- a. Two 24" wide belt conveyors (one per train) that collect material from the discharge of the WBFs and feed it into the limestone preparation system. The conveyors will be equipped with a walkway on both sides and have ladder access to the WBF deck.
- b. New AR lined chutes will be installed between the WBFs and the transfer conveyors. New AR lined chutes will be installed at the discharge of the transfer conveyor and feed into the reagent preparation system.
- c. Limestone transfer points at the WBFs and transfer conveyors will have connections to a new dust collection system.
- d. Supplemental steel will be designed and installed to support the limestone conveying and tensioning system.
- e. Foundations will be installed for some conveyor support structures that cannot be supported from building steel.
- 6. Instrumentation and Controls New control devices for the material handling system that will be installed include:
 - a. Conveyor belt control devices will include pullcord switches the full length of the transfer conveyor, belt misalignment switches, and zero speed switches. The weigh belt feeders will include scales, VFDs, other devices to control limestone feed rate and devices to protect the weigh belt feeders.
 - b. New chutes will be equipped with plugged chute switches.
 - c. The new dust collector system will include level switches and automated valves for cleaning the new dust collection system.
- 7. Cabling and Raceways New cables and raceways will be installed to energize and control new equipment.
 - a. Power cabling will be installed from a new 480V lineup in the new limestone grinding building to new conveying system equipment.
 - b. New instrument and control cabling will be installed from material handling equipment to a new RIO cabinet in the new Power Distribution Center (PDC).
 - c. New cable trays will be installed for power, instrument, and control cabling. Metal conduit and flex conduit will be used for final drops to equipment and other end users.
 - d. Supplemental steel for raceway supports will be designed and installed.
 - e. Foundations for raceway support steel will be installed at grade.
- 8. Demolition The existing metal detector at the top of the 30-day lime silo will be removed. The day bin vibrating screen (and associated chute work), day bin bottoms, lime screw feeders, and the day bin outlet gates will be removed to accommodate the new limestone conversion equipment. Penetrations will be made on the existing reagent preparation building for transfer conveyor access. Other equipment no longer used and not interfering with the new equipment will be abandoned in place.

3.3.2 Reagent Prep System

The reagent prep system includes unit operations for grinding limestone received from the material handling system. The limestone received will be sent to ball mills for final slurry product sizing. Final slurry product will be stored in the existing lime transfer storage tank.

- 1. Limestone Grinding System Two 100% limestone grinding trains will be installed to achieve the final slurry product sizing of 90% passing 325 mesh. The grinding system consists of the following equipment.
 - a. Two 100% ball mills rated for 35 TPH will be installed. Each ball mill will be equipped with a motor, gear drive, and lubrication system. The ball mill bearings will be automatically lubricated with a grease pump and accessories. The ball mill gearbox will be lubricated via a forced lubrication skid which includes duplex oil filters, temperature control, and sample valves. A single, 2-ton electric ball charge hoist will be provided for adding grinding media to both mills. The initial ball charge will be provided. Vendor support includes field installation, process commissioning, and operator training.

- b. Each grinding system will include a classification system to perform the final slurry product sizing. Each classification system will include a hydrocyclone feed tank (mill product tank), feed tank agitator, hydrocyclone cluster (limestone classifier), outlet distribution box (for feed tank level control), and two feed pumps. A single, 1-ton electric hoist will be installed for servicing the hydrocyclone clusters. 200' of' 8" diameter HDPE piping is included in the design to transfer slurry from both classifier feed tanks to the classifiers. The hydrocyclone underflow will be routed via gravity drain using 6" HDPE piping to the classifier distribution box. An allowance of 400' of piping is included in the design for both underflow and overflow systems.
- c. Each hydrocyclone overflow will be routed via gravity drain to the existing lime transfer storage tank or returned to the hydrocyclone feed tank via the outlet distribution box using 6" HDPE piping.
- d. The ball mill equipment along with ancillary components will be installed in a steel enclosure with structural steel framing and aluminum-zinc coated steel panels for roofing and siding southeast of the existing slaker building. A 10-ton bridge crane will be provided for servicing the ball mills. The enclosure will be equipped with man-doors to provide sufficient ingress/egress for plant staff, two roll-up doors, lighting, convenience power, insulation, and heating/ventilation equipment. The hydrocyclones and launders will be installed on an elevated concrete deck and a building sump will be provided with two sump pumps and an agitator. Two tempered eye wash stations will be provided. Fire detection hardware will interface with an existing fire detection monitoring panel.
- e. New utility and process piping for the grinding systems will be provided and installed. Service water will be utilized for grinding water and flush water. Approximately 240' of 6" piping and 130' of 4" is included in the design for service water. Service water and service air piping will be carbon steel. One-hundred and fifty feet of copper piping will be used for the eye wash stations. Slurry piping will be equipped for automated flushing slurry from the piping prior to system shutdowns. Slurry isolation valves will be knife gate valves and flush water valves will be butterfly valves. Utility valves will be ball valves or gate valves. Water piping located outdoors will be heat traced and insulated. Pipe supports for process and utility piping will be provided and installed.
- f. Supplemental steel for pipe supports will be designed and installed. An allowance of 17 tons for supplemental steel is included in the design.
- g. Foundations for the mills, tanks, pumps, and enclosure will be designed and installed. Final site grading will be performed. A Geotechnical investigation will be performed.
- h. A new 20 HP agitator will be installed in the existing reagent slurry tank. It is assumed the existing agitator power cables are at least #10 conductors and adequate for the new service. The existing agitator starter will be reused.
- i. The lining system of the reagent slurry tank will be replaced with a flake glass lining.
- 2. FGD Additive System A new FGD additive system will be installed to enhance the liquid phase alkalinity of limestone slurry. The features of the additive system include:
 - a. A new double wall 29,000-gallon shop fabricated stainless steel tank will be provided for storing FGD system additive. The tank will be located indoors in the existing slaker building. The tank will include a heating system and insulation installed to maintain a product temperature of 100 deg F.
 - b. A new pump skid equipped with two 100% capacity 1.2 gpm positive displacement chemical pumps will be installed indoors in the adjacent slaker building. The additive pumps will pump the FGD additive to the existing lime/limestone slurry storage tank. The pumps will be heat traced and equipped with removable blanket insulation.
 - c. New 304 SS tubing from the additive storage tank up to the existing limestone slurry storage tank will be installed. Approximately 100' of new 3/8" SS tubing will be designed and installed. The piping system will include manual valves, check valves, heat tracing, insulation, and pipe supports.
 - d. Foundations for the new additive tanks, pumps, pipe supports, and raceways will be designed and installed.

- e. A truck unloading system will be installed to fill the additive tank. It is assumed the tank will be close enough to the unloading station so that the tank truck pumps can be used for filling the new additive tank. The unloading station will be equipped with an eyewash station and containment system. The containment will be equipped with manual drain valve and HDPE piping to drain storm water into the existing reagent preparation building trench system.
- f. Area lighting and convenience power at the FGD Additive system is included. Local panels for distributing power, lighting, and heat tracing will be installed.
- g. Supplemental steel for pipe and raceway supports will be provided. An allowance of 5 tons of supplemental steel is included in the design.
- 3. Instrumentation and Controls New instrumentation, control devices, and automated valves will be installed for the new reagent preparation systems.
 - a. Instrumentation to monitor, control, and protect the pre-crushing and grinding process equipment will be provided.
 - b. New instrumentation will be provided to monitor the additive tank levels and temperatures. The additive feed pumps will include remote start capabilities.
 - c. Two new remote I/O (RIO) cabinets will be installed in the PDC. The new RIO cabinets will interface with the existing DCS via a fiber optic link. An allowance for 500' of fiber optic cable for interfacing with the existing DCS is included in the design. I/O in existing plant areas will utilize existing RIO hardware.
- Power Supply The power supply to the reagent preparation area will be fed from spare compartments in the existing 4160V lineups (24SR-1 and 24SR-2) to support the new power supply system, the following scope will be performed.
 - a. Electrical studies (load flow, short circuit analysis, relay coordination, and arc flash) will be performed to support detail design and engineering activities. New arc flash labeling will be provided where personnel protection levels are higher than existing labeling.
 - b. Two spare 4160V compartments will be utilized to energize each reagent handling and preparation system. Two compartments will be utilized from 24SR-1 and two spare compartments will be utilized from 24SR-2. One of the compartments on each existing lineup will be utilized to power the ball mill motor and the other compartment will feed a 4160V x 480V transformer that will supply the remaining power distribution requirements in the reagent handling and preparation areas. Each 4160V compartment (four compartments total) will have new 4160 breakers and SEL relays installed (feeder protection or motor protection as required).
 - c. The 480V and under power distribution system will be installed in a prefabricated Power Distribution Center (PDC) to be located adjacent the new ball mill enclosure. The primary lineup will include outdoor 4160V x 480V dry type step down transformers and an open transition tie breaker between each train's 480V equipment. Transformers will be installed per NEC code and applicable regulations. The low voltage power distribution system will include LV MCCs, load centers, and lighting panels. The PDC will be equipped with HVAC, lighting, convenience outlets, and two doors.
 - d. New foundations for the PDC and transformers will be installed.
- 5. Cabling and Raceways New cables and raceways will be installed to energize, monitor, and control new equipment that will be installed. Connections to the existing plant ground grid are included.
 - a. Medium voltage power cabling will be installed overhead from the FGD electrical room to the new PDC. The ball mill motor cables will be routed overhead in the new ball mill enclosure. Bus Duct will be used to connect the transformers to the 480V terminations in the PDC. Power to the limestone preparation enclosure will be routed in overhead cable tray from the PDC to the enclosure. Low voltage power cabling will be installed from the PDC to the new reagent handling equipment, the new reagent preparation area users, and the FGD Additive system. A new ground grid will tie into the existing grid.
 - b. New instrument and control cabling will be installed from reagent preparation area equipment to a new RIO cabinet in the PDC.

- c. New cable trays will be installed for power, instrument, and control cabling. Metal conduit and flex conduit will be used for final drops to equipment and other end users.
- d. Supplemental steel for raceway supports will be designed and installed.
- e. Foundations for raceway support steel will be installed at grade.
- 6. Demolition The existing reagent preparation building will be cleaned of lime dust accumulations. The Lime slurry tank agitator and two tank baffles will be removed. The existing Vertimills, separator tanks, recycle pumps, transfer pumps, mill vent scrubbers, and associated piping, cabling, platforms, and ladders will be demolished for the installation of the emulsified sulfur and sodium formate systems.

3.3.3 FGD Area

The recycle slurry system receives the limestone slurry product from the reagent prep system where it is sprayed into the absorbers for SO_2 removal. Recycle slurry pumps recycle the limestone slurry in a closed loop spray tower. Absorber trays installed in the cross-section of the towers create pressure drop (dP) for enhanced SO2 removal as the limestone slurry collected on these trays passes through the perforations in the tray.

The mist eliminator system installed above the recycle slurry spray nozzles is designed to remove carryover (moisture) from the exiting flue gas. The mist eliminator system includes an integrated wash header system designed to clean the surfaces of the mist eliminators with wash water.

- 1. Recycle Slurry System To achieve the desired SO₂ removal objectives, the following modifications will be made to increase the system L/G ratio and overall absorber slurry spray coverage.
 - a. Absorber recycle pump refurbishments (overhaul) to restore pumps to like-new conditions. Modifications (e.g., resheaving) to recycle pump motors to optimize flow and pressure on the upper and lower spray headers. Automated flush controls will be added for the recycle pumps.
 - Two new 316L spray headers will be installed on each module (six headers total). The main inlet trunk diameter will be 30" and each header will be equipped with 128 silicon carbide slurry nozzles. A new 30" 316L penetration spool will be provided for each header.
 - c. A new 316L internal support truss will be designed and installed to support the lower recycle header trunk. The existing truss will be used to support the upper recycle header trunk. New 316L box beam supports will be designed and installed for the upper and lower header branches.
 - d. The existing 20" external recycle piping will be replaced with 30" FRP piping and a new cross-tie (manifold) to allow four pumps to feed both spray elevations. New pipe supports and cross-tie isolation valves are included.
 - e. Supplemental steel for the new external recycle piping supports will be designed and installed.
 - f. New 316L absorber tray dP taps will be installed on each absorber (six taps total) so that the tray dP can be manually measured during system startup. The taps will be 2" diameter and will include a manual ball valve.
 - g. 316L strips of 11-gauge sheet metal will be welded onto the existing tray to reduce the open area of tray surface. The strips will be installed as evenly/symmetrically as possible across the tray surface to promote even gas/liquid distribution.
 - h. Replace existing emulsified sulfur system as the existing has reached the end of its serviceable life.
- 2. Mist Eliminator (ME) System The ME system will be modified to improve the wash intensity on the MEs by increasing the wash water pressure from 20-30 psi to 40-50 psi.
 - a. A new Lakos filter will be added to improve reliability and availability of the service water filtration system. Associated piping and isolation, flush, and drain valves are included. The additional filters will be installed in the location of the existing ME wash water blend station (adjacent to the two existing Lakos Filters). The new arrangement will have one operating filter and two spare filters.
 - b. The existing ME wash piping will be modified to increase each module's wash zones from four to eight. the approximately 210' of 6" 316L SS piping. New pipe supports are included. New auto wash valves.

- c. Supplemental steel for the new ME wash pipe supports will be designed and installed. An allowance of 5 tons of supplemental steel is included in the design.
- d. Foundations for the new Lakos filters and associated pipe supports will be installed.
- e. All ME wash nozzles will be replaced. The upper "C" module nozzle extensions will be removed. 248 nozzles will be installed. The nozzles will be replaced in kind.
- f. The existing ME wash logic and sequencing will be modified.
- g. Upgrade and replacement of portions of existing Lakos filter blowdown piping due to excessive erosion.
- h. Three new on/off isolation valves will be installed for each wash zone header for improved operational and maintenance flexibility.
- 3. Slurry Bleed and Level Control The control logic for the absorber density and level controls will be modified so that reaction tank density will be controlled by batch operation (on/off) with the existing bleed valves. New automated flush valves, piping, and restriction orifices will be installed. In addition, controls will be modified such that reaction tank liquid level will be maintained by addition of CRW makeup water (see section 3.3.4.3 for more CRW makeup water details).
- 4. Instrumentation and Controls The following instrumentation, devices, and services will be provided for the FGD area.
 - a. The absorber recycle density meters on each module (three meters total) will be removed prior to demolition of external recycle piping. After the new 30" recycle piping is installed, the existing density meters will be reinstalled near the original location using new mounting hardware and new sources will be installed. Existing instrument cabling will be reused. If additional cabling is necessary to access density meter terminations, a junction box and new instrument cabling will be installed (no cable splices).
 - b. New 6" magnetic flow meters (three flow meters total) and 6" ME wash valves (twelve valves total) will be installed in each absorber's new 6" mist eliminator wash piping near their original location. Existing instrument cabling will be reused. If additional cabling is necessary to access flow meter and valve terminations, a junction box and new instrument cabling will be installed (no cable splices).
 - c. New recirculation valves will be installed on each service water pump (two recirculation valves total). It is assumed the existing pipe support system is adequate for the valve addition.
 - d. A new pressure transmitter will be installed in the common service water pump discharge piping for recirculation valve control.
 - e. One portable ship loose differential pressure gauge will be provided for each module (three gauges total). The gauges will be utilized for monitoring absorber tray dP during startup post limestone conversion.
- 5. Cabling and Raceways New cables and raceways will be installed to energize, monitor, and control new equipment that will be installed. Connections to the existing plant ground system are included.
 - a. New cabling will be installed for the service water pump recirculation valves and the pressure transmitter.
 - b. Cabling for the service water pump recirculation (automated valves and pressure transmitter) will be ran in new conduit.
- 6. Demolition The existing 316L recycle headers, penetration nozzles, and internal box beams will be removed from the absorbers. Portions of the external FRP recycle piping (20" diameter sections) will be removed along with associated pipe supports and supplemental steel. The 5" ME wash piping, flow meters, and automated valves will be removed to accommodate the new 6" ME wash piping. All ME wash nozzles on the three modules and the 248 ME wash riser extensions on the "C" module upper wash header will be removed. The existing service water pumps and recirculation restriction orifices will be removed. The existing ME wash water blending station valves and piping will be demolished and the CRW and service water piping reworked to make room for one new Lakos filter.

3.3.4 Dewatering Area

Solids accumulated in the absorber tower sumps are pumped to the dewatering area for removal from the FGD system by means of two-step dewatering. Primary dewatering is achieved by means of a thickener which receives the slurry blowdown from the FGD area. Solids accumulated in the center well of the thickener (thickener underflow) are pumped to the secondary dewatering area and the thickener overflow is collected in the CRW tank.

Secondary dewatering is achieved by means of drum filters. Thickener underflow is first received and stored in the existing WSP surge tank, then pumped to drum filters for dewatering. The filter cake is stabilized in existing pugmills where the filter cake is blended with fly ash, lime, and water from a chloride purge stream. Final blended cake is disposed of consistent with current operations.

- 1. Primary Dewatering The primary dewatering will be modified as below for the conversion to limestone reagent.
 - a. The existing FGD Sludge Tank (thickener underflow tank) mixer will be replaced with a new agitator. The agitator oil pump will be a shaft driven style oil pump to allow for agitator lubrication when the agitator is required to operate on essential power.
 - b. The existing mixer support structure will be reinforced with additional supplemental steel and two baffles will be installed in the tank.
 - c. The thickener underflow pump controls will be modified to facilitate consistent, automatic control of the underflow slurry density at the desired operational setpoint.
 - d. The lining system of the FGD Sludge Tank will be replaced with a flake glass lining.
 - e. Automated flush control valves will be added for flushing the thickener underflow pumps and piping.
- Secondary Dewatering The secondary dewatering system will be modified as below for reagent conversion project.
 - a. The existing WSP Surge Tank mixer will be replaced with a new agitator.
 - b. The existing mixer support structure will be reinforced with additional supplemental steel and two baffles will be installed in the tank.
 - c. New 316L chloride purge piping will be installed on the discharge of each filtrate pump (four pumps total). The piping will be manifolded together and routed to a new chloride purge spray bar at the pug mill for blending with waste disposal product material. Each purge line will be equipped with an automated valve and a downstream block valve. Approximately 140' of 2.5" and 60' of 1.5" piping will be installed.

- 3. Instrumentation and Controls
 - a. The following devices will be installed as part of the chloride purge addition: A new automated valve will be installed in the discharge piping of each of the four existing filtrate pumps (four valves total). A flow meter will be installed to control a modulating valve on the chloride purge header to the pug mill.
 - b. Eight new automated valves and associated piping will be installed as part of the absorber density using CRW.
- 4. Power Supply, Cabling and Raceways New motor starters, cables, and raceways will be installed to energize, monitor, and control new equipment that will be installed.
 - a. Space in existing dewatering area MCCs (thickener and WSP) will be configured for Size 4 MCC buckets to power the new dewatering area agitators. The WSP MCC will not require any loads to be relocated to accommodate a size 4 bucket. The thickener area MCC will require relocating some loads to accommodate a size 4 bucket. New size 4 starters will be provided. New power and control cabling will be installed from the new motor starters to new agitators.
 - b. New instrument and control cables will be installed for the new chloride purge devices and the CRW density control.
 - c. New raceways will be installed for power, instrument, and control cabling. Metal conduit and flex conduit will be used for final drops to end users.
 - d. Supplemental steel will be designed and installed for the new cable trays.
- 5. Demolition The Sludge Tank Mixer and the WSP Surge Tank Mixers will be removed to accommodate the new agitators.

3.3.5 Balance of Plant (BOP)

- 1. A laser scan will be performed of selected project areas to optimize pipe routing and equipment arrangements.
- 2. A geotechnical investigation will be performed in the area of the new ball mill system to identify the foundation design requirements for this area.
- 3. An English Language Control Description (ELCD) for the DCS supplier (Emerson Ovation) to make programming changes to existing systems and programming for new systems.

4. System Operations

The concept AECOM developed for LSIO operation reuses some existing equipment and infrastructure where possible to minimize the capital cost associated with a process retrofit. A process flow diagram (PFD) of the proposed configuration is provided in Figure 4-1. The process lines and equipment in red represent new scope and construction items. All other process lines and equipment in black reflect existing equipment or piping that will be reused or repurposed. The PFD with associated material balance for limestone operation is provided as Appendix B.

4.1 LSIO Operation

LSIO operation will require an increase in L/G to achieve the desired SO₂ removal efficiency of 98% without requiring excessively high sodium formate usage. All four of the existing slurry pumps will operate at an approximate flow of 12,500 gpm each (50,000 gpm total per absorber) to achieve an L/G of 64 gal/kacf. Modifications to pump speed via new belts and sheaves and modifications to the existing recycle piping to reduce system friction losses will be required to allow the existing pumps to achieve these flows.

New spray headers designed with improved spray coverage will be installed to distribute the slurry over the absorber cross section at each of the two existing spray levels. Comparison of the existing spray coverage to the proposed new spray coverage is illustrated in Figure 4-2. The images represent spray coverage at 18-inches below the nozzles. A schematic of the new spray header design is provided in Appendix A. Tray strips will also be added to the existing tray to achieve a pressure drop across the tray of approximately 3.0 IWG at design conditions. Improvements to spray coverage and an increase in tray pressure drop will both provide mass transfer benefits that appropriately balance capital investments with operational expenditures.

Figure 4-2: Current Versus Proposed Absorber Recycle Spray Pattern

Calcium sulfite solids will continue to be produced with LSIO operation. These solids will be purged from the individual reaction tanks based on density feedback control to target 15% suspended solids in the reaction tanks rather than the current control scheme that uses tank level as the control variable. To maintain slurry velocity in the existing bleed piping, the bleed will operate on a batch rather than continuous basis at roughly the same flow rate. The existing bleed valves will open when a high density set point has been reached in the reaction tank and will remain open until a low density setpoint has been achieved. The bleed piping will be flushed with clarified recirculating water (CRW) after the bleed valve has closed. At full load operation, the bleed will operate for approximately 20 minutes of every hour. The existing density meters will be used to control the batch bleed process. Tank level will be used to control the addition of CRW as makeup to the reaction tank.

The solids purged from the reaction tank will be transported in the existing bleed piping to the thickeners for primary dewatering. Consistent with current operations, overflow from the thickener will be collected in the CRW tank along with FGD system makeup water. The thickener will be operated such that the underflow slurry contains nominally 30% suspended solids. The underflow will be collected in the existing thickener underflow (TUF) sludge tanks for subsequent transfer via the waste slurry processing (WSP) sludge tank to the drum filters. The improved dewatering properties of the sodium sulfite solids associated with the LSIO conversion (as described in Section 2.0) will result in improved performance for the drum filters. Based on LSIO conversions at other facilities, AECOM predicts the drum filter cake to contain nominally 65% solids. The existing filtrate pumps that transfer filtrate to the filtrate storage tank appear to have marginal capacity for the increased filtrate production associated with the reduced cake moisture. AECOM will perform an assessment during detailed design, but at this time assumes the filtrate pumps have adequate capacity for the new duty. As such, the only modifications necessary for the secondary dewatering system are replacement agitators in the TUF and WSP Sludge Tanks to keep the more readily dewatered calcium sulfite solids in suspension. Operation with 2 or 3 drums in service will continue, dependent upon cleaning and maintenance schedules.

Stabilization operations will continue with use of the existing pugmill to combine filter cake from the drum filters with fly ash and lime. A chloride purge stream will be added to the pugmill to control chlorides within FGD system metallurgical limits. A slipstream of drum filter filtrate will be diverted to the pugmill and distributed via spray bar to promote mixing with the filter cake, lime, and fly ash. AECOM estimates a chloride purge flow of approximately 75 gpm will be required to maintain FGD system chloride concentration below 7,000 ppm. The blended cake will be collected and disposed consistent with current operations.

4.2 Reagent Prep and Storage

The existing barge unloading system will undergo minor modification to be repurposed for limestone unloading. The existing lime conveyance equipment and storage silos will also undergo modifications to be repurposed for limestone handling and storage.

The existing vertical ball mill slaking system will be repurposed to house chemical additive and storage systems. New feeders and transfer conveyors will transport limestone rock to a new grinding enclosure constructed to the southeast of the existing slaker building. New ball mills will receive limestone and process the limestone into a limestone slurry. The limestone slurry from the ball mills will be discharged to the existing lime slurry storage tank. The lime slurry storage tank will be outfitted with a new agitator to keep the limestone slurry in suspension while stored in the tank. The remainder of the reagent storage and delivery system will be reused as is.

4.3 Chemical Additive and Storage

An FGD buffer additive will be required to meet the desired SO₂ removal efficiency upon converting to use of limestone reagent. For LSIO operation, sodium formate is the most cost-effective performance additive. Approximately 1,000 ppm of sodium formate will be required at design fuel conditions when targeting 98% SO₂ removal with three absorber towers in service.

Addition of sodium formate will require the addition of one new sodium formate tank and two additive feed pumps. The storage tank and pump skid will be installed indoors in the space previously occupied by the existing vertimills. The tank is sized with a nominal capacity of 29,000 gallons equivalent to 14 days of use at full load operation. An alternative location for the storage tank inside the existing slaker building is under evaluation by Duke Energy and AECOM. The existing emulsified sulfur storage and delivery system will be replaced as it has reached end of service.

4.4 Mist Eliminator Wash System

The ME wash system will be upgraded to improve the quality of the wash with respect to wash intensity, wash pressure and wash duration. The existing ME wash headers will be reused as is. The design of the headers provides greater than 150% wash coverage across the ME surfaces, which is adequate for LSIO operation. However, the existing service water pump can only provide about 20-30 psig of wash pressure at the mist eliminator elevation. Typically, ME wash is delivered at 40-50 psig to ensure adequate force is applied with the wash water to dislodge solids that accumulate. Operation of the existing East Bend ME wash headers at around 50 psig will provide approximately 1,000 gpm of flow per header and increase wash intensity (gpm/ft2) to nearly 1.5 gpm/ft2 which is consistent the Electric Power Research Institute (EPRI) recommendations.

A new service water pump will be provided to generate at least 40-50 psig and approximately 1,000 gpm at the ME elevation for improved wash pressure and intensity. Piping of larger diameter will be retrofit to the ME wash supply to minimize friction loses with the increased flow. The ME wash sequence will also be modified to achieve a 60 second wash for each ME zone once per hour at full load conditions. These control system modifications are necessary to maintain the FGD system water balance. ME wash system reliability will also be improved with the addition of a new Lakos filter installed in parallel with the existing Lakos filters to create a 1 + 2 arrangement (3 x 100% capacity) filtration system.

5. Contract and Procurement Execution Approach

The project contracting and procurement execution approach assumes one entity providing execution of the scope of work under and EPC contract. The procurement and subcontracting WBS is provided in Table 5-1.

Table 5-1: Procurement and Subcontracting WBS

WBS Area	Package Number	Description
Common	81.112	Site Laser Scan
Common	81.110	Site Survey
Common	81.115	Geotechnical Investigation
Common	81.010	General Construction
Material Handling	63.001	Flowability Study
Material Handling	72.252	Conveyor and Dust Collector System
Material Handling	72.253	LBU Bucket
Limestone Prep	72.116	Cranes and Hoists
Limestone Prep	72.250	Limestone Grinding System
Limestone Prep	73.300	Power Distribution Center (PDC) and Transformers
Limestone Prep	82.061	Fire Detection System
Limestone Prep	74.400	Distributed Control System (DCS)
FGD	72.229	Mist Eliminator Wash Filters (Lakos)
FGD	72.214	Recycle Piping, FRP (External)
FGD	72.202	Recycle Spray Nozzles
FGD	72.212	Alloy Material, Recycle Spray Headers (Internal)
FGD	72.264	Chemical Feed System
Dewatering	72.246	Agitators

The division of responsibilities for the EPC works is outlined in Table 5-2 to establish various stakeholders' roles and responsibilities throughout the project.

Table 5-2: LSIO Conversion Project Division of Responsibility

ltem	Description	Engineering and Design Services	Equipment and Material Supply	Installation and Erection	
1	Site Laser Scan	SUB	N/A	N/A	
2	Site Survey	SUB	N/A	N/A	
3	Geotechnical Investigation	SUB	N/A	N/A	
4	General Construction (GC)	AECOM	AECOM	AECOM	
5	Flowability Study	SUB	N/A	N/A	
6	Conveyor System	CS	AECOM	GC	
7	Limestone Grinding System	ВМ	AECOM	GC	
9	Power Distribution Center	PDC	AECOM	GC	
10	Recycle Piping	AECOM / PIPE	AECOM	GC	
11	Recycle Pumps (Refurbishment)	PUMP	PUMP	Duke	
12	Recycle Pumps (New Sheaves)	AECOM	GC	GC	

Duke Energy East Bend Station

ltem	Description	Engineering and Design Services	Equipment and Material Supply	Installation and Erection	
13	Recycle Spray Nozzles	NZL	AECOM	GC	
14	Recycle Pipe Supports	PIPE	PIPE	GC	
15	Agitators	AGIT	AECOM	GC	
17	Balance of Plant	AECOM	GC	GC	
18	Site Road Improvements	AECOM	AECOM	AECOM	
19	Demolition	AECOM	GC	GC	
20	Commissioning	AECOM	N/A	N/A	
21	Startup	AECOM	N/A	N/A	
22	Performance Testing	Duke	N/A	N/A	

Appendix A - General Arrangement Drawings

KyPSC Case No. 2025-00002 Exhibit 5 Page 23 of 88

PROJECT

East Bend WFGD Limestone Conversion Phase 1 Engineering Study EAST BEND STATION RT 338, 6233 Baever Rd Union, KY 41091-0142

CLIENT

Duke Energy 525 South Tryon Charlotte, NC 28202

http://www.duke-energy.com

CONSULTANT

AECOM Process Technologies 13640 Briarwick Drive, Suite 200 Austin, Tx 78729 512.454.4797 tel www.aecom.com

ISSUE/REVISION

А	2024-03-22	Issue for Permit Application
I/R	DATE	DESCRIPTION

PROJECT NUMBER

60724995

GENERAL ARRANGEMENT SITE PLAN

SHEET NUMBER

60724995-M-SK-200

43'-0" 5'-2 13/16" 6'-6 1/8" 6'-6 1/8" 6'-6 1/8" 6'-6 1/8" 5'-2 13/16" 6'-6" ⊐∎¢-∎¢ -01 Þ ⊒⊫⇔ ≢₽ **-**Þ∎⊅ **⊨**∎⊕ -**d** ⊐⊫¢ ╞╋ € ¢ ∎¢ **₽**₽ - Call -**⊨**¢ ÷ ╘╧╧ Ħ ¢# ╘╪ Ш ╺╋╋┥ ₩ ≢⇔ NEW 30" DIA PENETRATION SPOOL - TRUSS HSS 18"x6"x1/2" TYP. ⊨∎o -0= l∎o ¢∎ Þ ¢∎ ₽ ⊨∎¢ Þ∎⊅ **■** ∎¢ l 🔤 ⊯⇔ -de ⊧≣₽ -01 -¢∎ ⊒₽⊅ -01 Seff. - H Last saved by: RYAN RASMUSSEN(2024-03-21) Last Plotted: 2024-03-21 Filename: C:\USERS\RYAN RASMUSSEN\ONEDRIVE - AECOM\Z1_EXTRA ABSORBER INTERNAL SPRAY HEADER PLAN VIEW Scale 3/8"=1'-0

Printed on Recycled % Post-Co

KyPSC Case No. 2025-00002 Exhibit 5 Page 26 of 88

NOTES: 1. PIPING MATERIAL SPECIFICATION PN01SD1B02 2. QTY 1 SHOWN; 6 REQUIRED

PROJECT

East Bend WFGD Limestone Conversion Phase 1 Engineering Study EAST BEND STATION RT 336, 6293 Beaver Rd Union, KY 41091-0142

CLIENT

Duke Energy

525 South Tryon Charlotte, NC 28202

http://www.duke-energy.com

CONSULTANT

AECOM Process Technologies 13640 Briarwick Drive, Suite 200 Austin, Tx 78729 512.454.4797 tel www.aecom.com

KyPSC Case No. 2025-00002 Exhibit 5 Page 27 of 88

PROJECT

East Bend WFGD Limestone Conversion Phase 1 Engineering Study EAST BEND STATION RT 338, 6293 Beaver Rd Union, KY 41091-0142

CLIENT

Duke Energy 525 South Tryon Charlotte, NC 28202

http://www.duke-energy.com

CONSULTANT

AECOM Process Technologies 13640 Briarwick Drive, Suite 200 Austin, Tx 78729 512.454.4797 tel www.aecom.com

4/29/24

ISSUE/REVISION

в	2024-04-09	Issue for Permit Application
А	2024-03-22	Issue for Permit Application
/R	DATE	DESCRIPTION

KEY PLAN

PROJECT NUMBER

60724995 SHEET TITLE

GENERAL ARRANGEMENT SECONDARY DEWATERING

SHEET NUMBER

60724995-M-SK-230

KyPSC Case No. 2025-00002 Exhibit 5 Page 28 of 88

Appendix B - PFD and Material Balance

Mass Balance Full Load Cumberland

Coal Sulfur Content (wt%): 3.36

Coal Chloride Content (wt%): 0.15

5.2 lb SO2/MMBtu Inlet, 0.114 lb SO2/MMBtu Stack Outlet

Refer to PFD drawing PFD-101

	Stream No.	100	101	102	103	104			
	Description	From Boiler	Booster Fan Outlet	Inlet Flue Gas per Abs.	Outlet Flue Gas per Abs.	Total Gas Out			
Parameter		Unit 2	Unit 2	Unit 2	Unit 2	Unit 2			
Flow, acfm		4,109,313	2,873,520	957,840	750,221	2,259,594			
Flow, lb/hr		6,630,088	8,480,965	2,826,988	2,980,053	8,940,160			
H2O, lb/hr		278,077	290,816	96,939	261,212	783,637			
SO2, lb/hr		33,307	33,307	11,102	244	733			
SO2, ppmd		2,526	1,922	1,922	42	42			
HCl, lb/hr		765	765	255	0	0			
HCl, ppmd		102	78	78	0	0			
Ash, lb/hr		35,720	357	119	24	71			
O2, lb/hr		319,155	752,844	250,948	250,948	752,844			
O2, % dry		5	9	9	9	9			
Temperature, F		1,000	367	367	127	127			
Pressure, IWCG (psig)		-10	9	9	6	4			

	Stream No.	200	201	203	202	301	303	305	306	400	401
-	Description	Dry Reagent	Concentrated Additive	Emulsified Sulfur	Reagent Feed	ME Wash	FGD Makeup Water	Make-up Water To Reagent Prep	Misc Seal Water	Absorber Bleed Stream	Primary Dewatering OF
Parameter		Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2
Flow, gpm			1.2	0.4	326	229	458	276	137	936	752
Flow, lb/hr		63,680	761	283	200,302	114,712	229,194	137,925	68,538	505,267	375,965
Total SS, lb/hr		61,770	0	194	59,927	9	17	6	5	75,790	1,880
Total SS, %		97%	0.0%	69%	30%	0.0%	0.0%	0.0%	0.0%	15%	0.5%
pН			0.00	1.50	7.46	8.10	8.10	8.10	8.10	5.80	6.08
Specific gravity			1.26	1.57	1.23	1.00	1.00	1.00	1.00	1.09	1.01
H2O, lb/hr		1,910	456	89	140,375	114,703	229,176	137,919	68,533	429,477	374,085
CaCO3, lb/hr		54,057	0	0	54,067	9	17	10	5	2,147	53
CaSO4-2H2O, lb/hr		0	0	0	0	0	0	0	0	0	0
CaSO3-1/2H2O, lb/hr		0	0	0	0	0	0	0	0	67,342	1,670
Fly Ash, lb/hr		0	0	0	0	0	0	0	0	293	7
Inerts, lb/hr		5,860	0	0	5,860	0	0	0	0	6,009	149
Cl, lb/hr		0	0	0	4	3	6	4	2	3,016	2,257
Cl, mg/L		0 ppm	0	0	27	27	27	27	27	6,991	6,006
Mg, lb/hr		534	0	0	536	1	3	2	1	2,147	1,607
Mg, mg/L		8649 ppm	0	0	3,829	12	12	12	12	4,978	4,276
Sodium Formate, lb/hr		0	304	0	304	0	0	0	0	431	323
Sodium Formate, mg/L		0 ppm	500,530	0	2,174	0	0	0	0	1,000	859
Thiosulfate, lb/hr		0	0	305	305	0	0	0	0	1,208	903
Thiosulfate, mg/L		0 ppm	0	3,142	2,176	0	0	0	0	2,800	2,404

KyPSC Case No. 2025-00002 Exhibit 5 Page 31 of 88

Mass Balance Full Load Cumberland

Coal Sulfur Content (wt%): 3.36

Coal Chloride Content (wt%): 0.15

5.2 lb SO2/MMBtu Inlet, 0.114 lb SO2/MMBtu Stack Outlet

Refer to PFD drawing PFD-101

	Stream No.	402	501	503	502	511	512	520	308	604	700
	Description	Primary Dewatering UF	Secondary Dewatering Filtrate	Secondary Dewatering Filtrate Purge	Secondary Dewatering Product	Fly Ash to Blending	Lime to Blending	Blended Product	Vacuum Pump Seal Water	Total CRW Tank to Absorbers	Recycle Slurry Flow
Parameter		Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2
Flow, gpm		411	265	171					141	1,207	50,000
Flow, lb/hr		246,540	132,957	86,473	113,583	35,363	7,722	243,141	70,754	605,158	26,983,940
Total SS, lb/hr		73,962	133	86	73,829	35,363	7,722	117,001	5	1,897	4,047,591
Total SS, %		30%	0.1%	0.1%	65%	100%	100%	48.1%	0.0%	0.3%	15%
pН		6.08	6.08	6.08					8.10	6.85	5.80
Specific gravity		1.22	1.01	1.01					1.00	1.01	1.09
H2O, lb/hr		172,578	132,824	86,386	39,754	0	0	126,141	70,749	603,261	22,936,349
CaCO3, lb/hr		2,100	4	2	2,096	0	7,722	9,821	5	71	114,637
CaSO4-2H2O, lb/hr		0	0	0	0	0	0	0	0	0	0
CaSO3-1/2H2O, lb/hr		65,713	118	77	65,595	0	0	65,672	0	1,670	3,596,415
Fly Ash, lb/hr		286	1	0	285	35,363	0	35,649	0	7	15,649
Inerts, lb/hr		5,863	11	7	5,853	0	0	5,860	0	149	320,890
Cl, lb/hr		1,041	801	521	240	0	0	761	2	2,263	159,872
Cl, mg/L		6,006	6,051	6,051	2111 (ppm)	0	0	3130 (ppm)	27	3,763	6,991
Mg, lb/hr		741	570	371	171	0	0	542	1	1,609	113,839
Mg, mg/L		4,276	4,308	4,308	4,308	0	0	4,308	12	2,676	4,978
Sodium Formate, lb/hr		149	115	74	34	0	0	109	0	323	22,867
Sodium Formate, mg/L		859	865	865	865	0	0	865	0	536	1,000
Thiosulfate, lb/hr		417	321	209	96	0	0	305	0	903	64,027
Thiosulfate, mg/L		2,404	2,422	2,422	2,422	0	0	2,422	0	1,502	2,800
Notes:											

Notes:

Firing Cumberland alone will require additional fly ash, lime, lime kiln dust, or cement kiln dust to achieve acceptable landfill product. Lime addition would need to be tuned in the field based on product moisture after addition.

KyPSC Case No. 2025-00002 Exhibit 5 Page 32 of 88

Mass Balance Full Load Expected Blend

Coal Sulfur Content (wt%): 3.20

Coal Chloride Content (wt%): 0.09

5.43 lb SO2/MMBtu Inlet, 0.119 lb SO2/MMBtu Stack Outlet

Refer to PFD drawing PFD-101

	Stream No.	100	101	102	103	104			
	Description	From Boiler	Booster Fan Outlet	Inlet Flue Gas per Abs.	Outlet Flue Gas per Abs.	Total Gas Out			
Parameter		Unit 2	Unit 2	Unit 2	Unit 2	Unit 2			
Flow, acfm		4,115,716	2,911,576	970,525	761,433	2,293,364			
Flow, lb/hr		6,627,186	8,574,146	2,858,049	3,012,186	9,036,557			
H2O, lb/hr		309,518	322,930	107,643	273,385	820,154			
SO2, lb/hr		34,743	34,743	11,581	255	764			
SO2, ppmd		2,653	1,990	1,990	44	44			
HCl, lb/hr		520	520	173	0	0			
HCl, ppmd		70	52	52	0	0			
Ash, lb/hr		39,254	393	131	26	79			
O2, lb/hr		333,633	790,218	263,406	263,406	790,218			
O2, % dry		5	9	9	9	9			
Temperature, F		1,000	367	367	128	128			
Pressure, IWCG (psig)		-10	9	9	6	4			

	Stream No.	200	201	203	202	301	303	305	306	400	401
-	Description	Dry Reagent	Concentrated Additive	Emulsified Sulfur	Reagent Feed	ME Wash	FGD Makeup Water	Make-up Water To Reagent Prep	Misc Seal Water	Absorber Bleed Stream	Primary Dewatering OF
Parameter		Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2
Flow, gpm			1.1	0.2	338	229	377	286	137	979	872
Flow, lb/hr		65,975	696	194	207,433	114,712	188,610	142,894	68,538	528,272	436,031
Total SS, lb/hr		63,995	0	133	62,086	9	14	6	5	79,241	2,180
Total SS, %		97%	0.0%	69%	30%	0.0%	0.0%	0.0%	0.0%	15%	0.5%
pН			0.00	1.50	7.47	8.10	8.10	8.10	8.10	5.80	6.07
Specific gravity			1.26	1.57	1.23	1.00	1.00	1.00	1.00	1.09	1.01
H2O, lb/hr		1,979	418	61	145,347	114,703	188,596	142,889	68,533	449,031	433,850
CaCO3, lb/hr		56,005	0	0	56,016	9	14	11	5	2,235	62
CaSO4-2H2O, lb/hr		0	0	0	0	0	0	0	0	0	0
CaSO3-1/2H2O, lb/hr		0	0	0	0	0	0	0	0	70,441	1,938
Fly Ash, lb/hr		0	0	0	0	0	0	0	0	323	9
Inerts, lb/hr		6,071	0	0	6,071	0	0	0	0	6,242	172
Cl, lb/hr		0	0	0	4	3	5	4	2	3,151	2,631
Cl, mg/L		0 ppm	0	0	27	27	27	27	27	6,986	6,039
Mg, lb/hr		554	0	0	555	1	2	2	1	3,390	2,830
Mg, mg/L		8649 ppm	0	0	3,832	12	12	12	12	7,517	6,495
Sodium Formate, lb/hr		0	278	0	278	0	0	0	0	451	376
Sodium Formate, mg/L		0 ppm	500,530	0	1,921	0	0	0	0	1,000	864
Thiosulfate, lb/hr		0	0	209	209	0	0	0	0	1,263	1,054
Thiosulfate, mg/L		0 ppm	0	3,142	1,441	0	0	0	0	2,800	2,419

KyPSC Case No. 2025-00002 Exhibit 5 Page 33 of 88

Mass Balance Full Load Expected Blend

Coal Sulfur Content (wt%): 3.20

Coal Chloride Content (wt%): 0.09

5.43 lb SO2/MMBtu Inlet, 0.119 lb SO2/MMBtu Stack Outlet

Refer to PFD drawing PFD-101

	Stream No.	402	501	503	502	511	512	520	308	604	700
	Description	Primary Dewatering UF	Secondary Dewatering Filtrate	Secondary Dewatering Filtrate Purge	Secondary Dewatering Product	Fly Ash to Blending	Lime to Blending	Blended Product	Vacuum Pump Seal Water	Total CRW Tank to Absorbers	Recycle Slurry Flow
Parameter		Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2
Flow, gpm		429	276	88					141	1,245	50,000
Flow, lb/hr		257,201	138,706	44,501	118,495	38,861	4,205	206,061	70,754	624,641	26,983,940
Total SS, lb/hr		77,160	139	45	77,021	38,861	4,205	120,132	5	2,194	4,047,591
Total SS, %		30%	0.1%	0.1%	65%	100%	100%	58%	0.0%	0.4%	15%
pН		6.07	6.07	6.07					8.10	6.68	5.80
Specific gravity		1.22	1.01	1.01					1.00	1.01	1.09
H2O, lb/hr		180,040	138,567	44,456	41,473	0	0	85,929	70,749	622,447	22,936,349
CaCO3, lb/hr		2,181	4	1	2,177	0	4,205	6,383	5	76	114,158
CaSO4-2H2O, lb/hr		0	0	0	0	0	0	0	0	0	0
CaSO3-1/2H2O, lb/hr		68,586	123	40	68,463	0	0	68,503	0	1,938	3,598,077
Fly Ash, lb/hr		314	1	0	314	38,861	0	39,175	0	9	16,494
Inerts, lb/hr		6,078	11	4	6,067	0	0	6,071	0	172	318,861
Cl, lb/hr		1,092	840	270	252	0	0	521	2	2,636	159,745
Cl, mg/L		6,039	6,083	6,083	2123 (ppm)	0	0	2529 (ppm)	27	4,248	6,986
Mg, lb/hr		1,174	904	290	271	0	0	561	1	2,832	171,878
Mg, mg/L		6,495	6,543	6,543	6,543	0	0	6,543	12	4,564	7,517
Sodium Formate, lb/hr		156	120	39	36	0	0	75	0	376	22,867
Sodium Formate, mg/L		864	870	870	870	0	0	870	0	607	1,000
Thiosulfate, lb/hr		437	337	108	101	0	0	209	0	1,054	64,027
Thiosulfate, mg/L		2,419	2,437	2,437	2,437	0	0	2,437	0	1,698	2,800

KyPSC Case No. 2025-00002 Exhibit 5 Page 34 of 88

Mass Balance Low Load Lone Eagle

Coal Sulfur Content (wt%): 3.08

Coal Chloride Content (wt%): 0.07

5.49 lb SO2/MMBtu Inlet, 0.121 lb SO2/MMBtu Stack Outlet

Refer to PFD drawing PFD-101

	Stream No.	100	101	102	103	104					
	Description	From Boiler	Booster Fan Outlet	Inlet Flue Gas per Abs.	Outlet Flue Gas per Abs.	Total Gas Out					
Parameter		Unit 2	Unit 2	Unit 2	Unit 2	Unit 2					
Flow, acfm		1,966,535	1,661,224	553,741	461,711	1,390,615					
Flow, lb/hr		3,141,905	5,433,757	1,811,252	1,876,898	5,630,693					
H2O, lb/hr		129,901	145,486	48,495	118,646	355,937					
SO2, lb/hr		13,528	13,528	4,509	99	298					
SO2, ppmd		2,140	1,188	1,188	26	26					
HCl, lb/hr		158	158	53	0	0					
HCl, ppmd		44	24	24	0	0					
Ash, lb/hr		15,827	158	53	11	32					
O2, lb/hr		268,921	799,472	266,491	266,491	799,472					
O2, % dry		9	14	14	14	14					
Temperature, F		1,000	279	279	116	116					
Pressure, IWCG (psig)		-10	10	10	7	5					
	Stream No.	200	201	203	202	301	303	305	306	400	401
	Description	Dry Reagent	Concentrated Additive	Emulsified Sulfur	Reagent Feed	ME Wash	FGD Makeup Water	Make-up Water To Reagent Prep	Misc Seal Water	Absorber Bleed Stream	Primary Dewatering OF
Parameter		Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2
Flow, gpm			0.4	0.1	131	55	125	111	137	381	346
Flow, lb/hr		25,618	257	60	80,532	27,589	62,442	55,485	68,538	205,776	173,104
Total SS, lb/hr		24,849	0.0	41	24,108	2	5	2	5	30,866	866
Total SS, %		97%	0.0%	69%	30%	0.0%	0.0%	0.0%	0.0%	15%	0.5%
pН			0.00	1.50	7.47	8.10	8.10	8.10	8.10	5.80	6.04
Specific gravity			1.26	1.57	1.23	1.00	1.00	1.00	1.00	1.09	1.01
H2O, lb/hr		769	154	19	56,424	27,587	62,437	55,483	68,533	174,909	172,239
CaCO3, lb/hr		21,746	0	0	21,751	2	5	4	5	868	24
CaSO4-2H2O, lb/hr		0	0	0	0	0	0	0	0	0	0
CaSO3-1/2H2O, lb/hr		0	0	0	0	0	0	0	0	27,443	769
Fly Ash, lb/hr		0	0	0	0	0	0	0	0	130	4
Inerts, lb/hr		2,357	0	0	2,357	0	0	0	0	2,425	68
Cl, lb/hr		0	0	0	1	1	2	1	2	1,211	1,052
Cl, mg/L		0 ppm	0	0	27	27	27	27	27	6,895	6,079
Mg, lb/hr		215	0	0	216	0	1	1	1	1,646	1,429
Mg, mg/L		8649 ppm	0	0	3,833	12	12	12	12	9,371	8,259
Sodium Formate, lb/hr		0	103	0	103	0	0	0	0	176	152
Sodium Formate, mg/L		0 ppm	500,530	0	1,824	0	0	0	0	1,000	881
Thiosulfate, lb/hr		0	0	65	65	0	0	0	0	492	427
Thiosulfate, mg/L		0 ppm	0	3,142	1,157	0	0	0	0	2,800	2,467

KyPSC Case No. 2025-00002 Exhibit 5 Page 35 of 88

Mass Balance Low Load Lone Eagle

Coal Sulfur Content (wt%): 3.08

Coal Chloride Content (wt%): 0.07

5.49 lb SO2/MMBtu Inlet, 0.121 lb SO2/MMBtu Stack Outlet

Refer to PFD drawing PFD-101

	Stream No.	402	501	503	502	511	512	520	308	604	700
	Description	Primary Dewatering UF	Secondary Dewatering Filtrate	Secondary Dewatering Filtrate Purge	Secondary Dewatering Product	Fly Ash to Blending	Lime to Blending	Blended Product	Vacuum Pump Seal Water	Total CRW Tank to Absorbers	Recycle Slurry Flow
Parameter		Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2	Unit 2
Flow, gpm		138	79	20					47	469	50,000
Flow, lb/hr		85,806	39,664	10,114	46,142	14,308	1,607	72,171	23,585	235,546	26,983,940
Total SS, lb/hr		30,032	40	10	29,992	14,308	1,607	45,917	2	870	4,047,591
Total SS, %		35%	0.1%	0.1%	65%	100%	100%	64%	0.0%	0.4%	15.0%
pН		6.04	6.04	6.04					8.10	6.58	5.80
Specific gravity		1.26	1.01	1.01					1.00	1.01	1.09
H2O, lb/hr		55,774	39,624	10,104	16,150	0	0	26,253	23,583	234,676	22,936,349
CaCO3, lb/hr		846	1	0	845	0	1,607	2,453	2	29	113,837
CaSO4-2H2O, lb/hr		0	0	0	0	0	0	0	0	0	0
CaSO3-1/2H2O, lb/hr		26,700	35	9	26,664	0	0	26,673	0	769	3,598,645
Fly Ash, lb/hr		127	0	0	127	14,308	0	14,434	0	4	17,083
Inerts, lb/hr		2,360	3	1	2,356	0	0	2,357	0	68	318,026
Cl, lb/hr		341	242	62	99	0	0	160	1	1,053	157,672
Cl, mg/L		6,079	6,124	6,124	2137 (ppm)	0	0	2221 (ppm)	27	4,502	6,895
Mg, lb/hr		463	329	84	134	0	0	218	0	1,430	214,291
Mg, mg/L		8,259	8,321	8,321	8,321	0	0	8,321	12	6,110	9,371
Sodium Formate, lb/hr		49	35	9	14	0	0	23	0	152	22,867
Sodium Formate, mg/L		881	888	888	888	0	0	888	0	652	1,000
Thiosulfate, lb/hr		138	98	25	40	0	0	65	0	427	64,027
Thiosulfate, mg/L		2,467	888	888	888	0	0	888	0	652	1,000

KyPSC Case No. 2025-00002 Exhibit 5 Page 36 of 88
Appendix C - P&IDs

KyPSC Case No. 2025-00002 Exhibit 5 Page 50 of 88

KyPSC Case No. 2025-00002 Exhibit 5 Page 53 of 88

KyPSC Case No. 2025-00002 Exhibit 5 Page 54 of 88

KyPSC Case No. 2025-00002 Exhibit 5 Page 55 of 88

KyPSC Case No. 2025-00002 Exhibit 5 Page 56 of 88

KyPSC Case No. 2025-00002 Exhibit 5 Page 57 of 88

KyPSC Case No. 2025-00002 Exhibit 5 Page 58 of 88

KyPSC Case No. 2025-00002 Exhibit 5 Page 59 of 88

KyPSC Case No. 2025-00002 Exhibit 5 Page 61 of 88

Appendix D - Electrical Load List

Duke East Bend Reagent Conversion Study Preliminary Load List

C	REV NO.	REVISION	DATE	DOC:			ELECTRICA	L LOAD LIST				CONNEC	CTED HP				3725.50						
	A	Review	6/17/2022	CLIENT:			Duke	Energy				CONNEC.					3554.40						
	В	Preliminary	7/18/2022	PROJECT:		Eas		stone Conve	rsion			CONNEC					3198.96						
				JOB NUMBER:			606	80586				OPERATI					1553.43						
												vo					480						
L												OPERATIN	NG AMPS				1868						
					CONT	1						<u> </u>			r				1	CONTROL		1	1
ITENA	INSTALLED	CVCTENA	DESCRIPTION	TYPE (Motor,	CONT.	1 ++ 2 DU	Valtana	CONN.	FULL		DE	STATIC	CONN.	CONN.	DEMAND	OPERATING	VFD	STARTER	BREAKER	CONTROL	DCS	FED FROM	COMMENTS
ITEM	AREA	SYSTEM	DESCRIPTION	Feeder or	LOAD AMPS	1 or 3 PH	Voltage	HP	LOAD AMPS	EFF	PF	KVA	KVA	KW	FACTOR	KVA	(Y or N)	SIZE	SIZE	STATION (HOA, ETC)	(Y or N)	FED FROIVI	COMMENTS
1 R	eagent	Reagent Prep	Vertimill A Drive Motor	Actuator)	AIVIP3	3	4160	1000	121.1	0.95	0.9		871.5	784.3	0.8	697.2	N			EIC	Y	24-SR1	Existing breaker
	leagent	Reagent Prep	Vertimill B Drive Motor			3	4160	1000	121.1	0.95	0.9		871.5	784.3	0.0	0.0	N				Y	24-SR1	Existing breaker
	÷	Reagent Prep	4160V x 480V TFMR1			3	4160	1000	0.0	0.95	0.9		071.5	704.5	0.8	0.0	N				Ŷ	24-SR1	Existing breaker - Feeds LS-MCC1
	-	Reagent Prep	4160V x 480V TFMR2			3	4160		0.0	0.95	0.9				0.8		N				Ŷ	24-SR2	Existing breaker - Feeds LS-MCC2
	leagent	Reagent Prep	A Mill Recycle Pump	FVNR		3	480	25	34.0	0.95	0.9		28.2	25.4	0.8	22.6	N	2	50		Y	LS-MCC1	
	eagent	Reagent Prep	B Mill Recycle Pump	FVNR		3	480	25	34.0	0.95	0.9		28.2	25.4	0.8	22.6	Ν	2	50		Y	LS-MCC2	
7 R	eagent	Reagent Prep	A Mill Product Tank Agitator	FVNR		3	480	15	21.0	0.95	0.9		17.4	15.7	0.8	14.0	Ν	2	40		Y	LS-MCC1	
8 R	leagent	Reagent Prep	B Mill Product Tank Agitator	FVNR		3	480	15	21.0	0.95	0.9		17.4	15.7	0.8	14.0	Ν	2	40		Y	LS-MCC2	
9 R	leagent	Reagent Prep	A1 Classifier Feed Pump	FVNR		3	480	50	65.0	0.95	0.9		54.0	48.6	0.8	43.2	Ν	3	150		Y	LS-MCC1	
10 R	eagent	Reagent Prep	A2 Classifier Feed Pump	FVNR		3	480	50	65.0	0.95	0.9		54.0	48.6	0.0	0.0	Ν	3	150		Y	LS-MCC1	
	leagent	Reagent Prep	B1 Classifier Feed Pump	FVNR		3	480	50	65.0	0.95	0.9		54.0	48.6	0.0	0.0	Ν	3	150		Y	LS-MCC2	
	eagent	Reagent Prep	B2 Classifier Feed Pump	FVNR		3	480	50	65.0	0.95	0.9		54.0	48.6	0.0	0.0	Ν	3	150		Y	LS-MCC2	
	-	Reagent Prep	VTM-1 Lube System	FDR		3	480	3	4.8	0.95	0.9		4.0	3.6	1.0	4.0	N		15		Y	LS-MCC1	
	eagent	Reagent Prep	VTM-2 Lube System	FDR		3	480	3	4.8	0.95	0.9		4.0	3.6	0.0	0.0	N		15		Y	LS-MCC1	
	eagent	Reagent Prep	Pre-Crusher 1	FVNR		3	480	200	240.0	0.95	0.9		199.3	179.4	0.8	159.4	N	5	350	-	Y	LS-MCC1	
	-	Reagent Prep	Pre-Crusher 2	FVNR		3	480	200	240.0	0.95	0.9		199.3	179.4	0.0	0.0	N	5	350		Y	LS-MCC2	71.47.6
	leagent	FGD Additive	FGD Additive Tank Heater	FDR FDR		3	480 480	10	14.0 2.1	0.95	0.9 0.9		11.6 1.7	10.5 1.6	1.0	11.6	N N		30	-	Y Y	LS-MCC1 LS-MCC1	7kW heater
	eagent eagent	FGD Additive FGD Additive	FGD Additive Feed Pump 1 FGD Additive Feed Pump 2	FDR		3	480	1	2.1	0.95	0.9		1.7	1.6	0.8	1.4 0.0	N		15 15	-	Y Y	LS-MCC1 LS-MCC1	Skid control panel Skid control panel
	leagent	Reagent Prep	Reagent Prep Lighting TFMR	FDR		3	480	100	124.0	0.95	0.9		103.0	92.7	0.0	72.1	N		200		N	LS-MCC1	
		Reagent Prep	Reagent Prep Convenience Power	FDR		3	480	100	124.0	0.95	0.9		103.0	92.7	0.5	51.5	N		200		N	LS-MCC2	
	-	Reagent Prep	Bridge Crane	FDR		3	480	20	27.0	0.95	0.9		22.4	20.2	0.5	11.2	N		50		N	LS-MCC2	
	leagent	Reagent Prep	Hydroclone Hoist	FDR		3	480	7.5	11.0	0.95	0.9		9.1	8.2	0.5	4.6	N		20		N	LS-MCC2	
	eagent	Reagent Prep	Ball Charge Hoist	FDR		3	480	7.5	11.0	0.95	0.9		9.1	8.2	0.7	6.4	Ν		20		N	LS-MCC1	
25 R	eagent	Reagent Prep	Misc VTM Auxilaries 1	FDR		3	480	10	14.0	0.95	0.9		11.6	10.5	1.0	11.6	N		30		N	LS-MCC1	
26 R	eagent	Reagent Prep	Misc VTM Auxilaries 2	FDR		3	480	10	14.0	0.95	0.9		11.6	10.5	0.3	2.9	Ν		30		N	LS-MCC2	
27 R	leagent	Matl. Handling	Day Bin MOV1	ACT		3	480	3	4.8	0.95	0.9		4.0	3.6	1.0	4.0	Ν		15		Y	LS-MCC1	
	leagent	Matl. Handling	Day Bin MOV2	ACT		3	480	3	4.8	0.95	0.9		4.0	3.6	0.0	0.0	N		15		Y	LS-MCC1	
	leagent	Matl. Handling	Day Bin MOV3	ACT		3	480	3	4.8	0.95	0.9		4.0	3.6	0.0	0.0	N		15		Y	LS-MCC2	
	0	Matl. Handling	Day Bin MOV4	ACT		3	480	3	4.8	0.95	0.9		4.0	3.6	0.0	0.0	N		15		Y	LS-MCC2	
	ů.	Matl. Handling	Weigh Belt Feeder 1	FDR		3	480	1.5	3.0	0.95	0.9		2.5	2.2	0.8	2.0	N		15	-	Y	LS-MCC1	
	eagent	Matl. Handling	Weigh Belt Feeder 2	FDR FDR		3	480 480	1.5	3.0 3.0	0.95	0.9		2.5	2.2	0.0	0.0	N N		15 15		Y	LS-MCC1 LS-MCC2	
	eagent	Matl. Handling	Weigh Belt Feeder 3	FDR		3	480	1.5	3.0	0.95	0.9		2.5 2.5	2.2					15		Y	LS-MCC2	
	eagent leagent	Matl. Handling Matl. Handling	Weigh Belt Feeder 4 Transfer Conveyor 1	FUR		3	480	1.5	3.0	0.95 0.95	0.9		2.5	15.7	0.0	0.0 14.0	N N	2	40		Y	LS-MCC2 LS-MCC1	1
	leagent	Matl. Handling	Transfer Conveyor 2	FVNR		3	480	15	21.0	0.95	0.9		17.4	15.7	0.0	0.0	N	2	40		Y	LS-MCC1	
	leagent	FGD Additive	Heat Tracing	FDR		1	208		21.0	0.95	0.9		27.4	13.7	0.0	0.0	N	2			N	20 10002	Use existing spares
	leagent	Reagent Prep	Limestone Slurry Tank Agitator	FVNR		3	480	20	27.0	0.95	0.9		22.4	20.2	0.8	17.9	N	2	50		Y	2SR2-3 (B2)	Replacing 10HP agitator
)ewater	Thickener	TUF Sludge Tank Agitator	FVNR		3	480	75	96.0	0.95	0.9		79.7	71.7	0.8	63.8	N	4	200		Y	Existing MCC	Replacing 15HP agitator
	ewater	Filter Feed	WSP Surge Tank Agitator	FVNR		3	480	60	77.0	0.95	0.9		63.9	57.5	0.8	51.2	N	4	200		Y		
24 R	eagent	Reagent Prep	Limestone Slurry Tank Agitator - GB Heater	FDR		3	480	5	7.6	0.95	0.9		6.3	5.7	0.7	4.4	Ν		15		Y	Existing MCC	Reuse existing cabling and breaker
25 D)ewater	Thickener	Sludge Tank Agitator - GB Heater	FDR		3	480	5	7.6	0.95	0.9		6.3	5.7	0.7	4.4	N		15		Y	ų	Reuse existing cabling and breaker
	ewater	Filter Feed	WSP Surge Tank Agitator - GB Heater	FDR		3	480	5	7.6	0.95	0.9		6.3	5.7	0.7	4.4	Ν		15		Y		Reuse existing cabling and breaker
27 R	-	Reagent Prep	Limestone Slurry Tank Agitator - Lube Pump	FVNR		3	480	1.5	3.0	0.95	0.9		2.5	2.2	0.8	2.0	N	0	15		Y		Reuse existing cabling and starter
		Thickener	Sludge Tank Agitator - Lube Pump	FVNR		3	480	1.5	3.0	0.95	0.9		2.5	2.2	0.8	2.0	N	0	15		Y		Reuse existing cabling and starter
		Filter Feed	WSP Surge Tank Agitator - Lube Pump	FVNR		3	480	1.5	3.0	0.95	0.9		2.5	2.2	0.8	2.0	N	0	15		Y	Existing MCC	Reuse existing cabling and starter
	-	Reagent Prep	PDC Auxilaries	FDR		3	480	25	34.0	0.95	0.9	┥ ┥	28.2	25.4	0.7	19.8	N	C	50		N	2004 40	Lighting, HVAC, etc
	ų	ME Wash	Service Water Pump 2-1	FVNR		3	480	250	302.0	0.95	0.9		250.8	225.7	0.8	200.6	N	6	400		Y	2SR1-4B	Upgrade existing 200 HP pump
	Q	ME Wash Reagent Prep	Service Water Pump 2-1	FVNR FVNR		3	480 480	250 10	302.0 14.0	0.95	0.9		250.8 11.6	225.7 10.5	0.0	0.0 5.8	N N	6	400 30		Y Y	2SR2-3C LS-MCC1	Upgrade existing 200 HP pump
	-	Reagent Prep Reagent Prep	Sump Pump A Sump Pump B	FVNR		3	480 480	10	14.0	0.95	0.9	$\left \right $	11.6	10.5	0.5	5.8 0.0	N N	1	30		Y Y	LS-MCC1 LS-MCC2	1
	-	Reagent Prep	Sump Agitator	FVNR		3	480	5	7.6	0.95	0.9		6.3	5.7	0.0	5.0	N	1	30		Y	LS-MCC2	1
55 K	cobent	neugent rep	TOTALS			5	400	3725.50	7.0	0.55	0.5		3554.40		0.0	1553.43	i N	1	15			LJ-IVICCI	
L			101823	1	ļ			00.00	1	ıl		· · · · · ·	5554.45	0100.00		2000.40			ļ		ļ		¥

KyPSC Case No. 2025-00002 Exhibit 5 Page 64 of 88

Appendix E - One Line Diagrams

KyPSC Case No. 2025-00002 Exhibit 5 Page 66 of 88

WIRING DIAG. REFERENCE	E-2293-11	E-2293-12	E2293 13
SCHEMATIC REF.E2240 PAGE			BALOG-A & B
KVA OR MOTOR RATING H.P.		(1000)-48	350
BREAKER FRAME SIZE (AMPS)	1200	1200	1200
SERVICE	TRANSFORMER	MOTOR	SEAL AIR FAN 2-2

= 1	LEWEN
P	31405
10AE	LICENSED
11	SIONALE
	Jor JEL
l	(5) (6A)
	0

L	ΚEΥ	DIAGRAM: E-2247-2
---	-----	-------------------

REV	DATE	JOB NO.	PROJECT TYPE	DES	DFTR	СНКД	ENGR	APPD	DESCRIPTION		SCALE: NONE	DES:
2	12-21-12	EB201348AB-E	AS-BUILT	MSA	GUV	DLM	DRC	DRC	FGD CONTROLS REPLACEMENT		DWG TYPE: WL	DFTR:
_									REVISED BY A&A		JOB NO:	CHKD:
											DATE	ENOD.
3	9-10-13	EBS01343AB-E	AS-BUILT	ЫМ	DLM	DLM	DRC	DRC	REPLACE ABS PUMP BREAKER PH1		DATE:	ENGR:
L V	3-10-13	ED001040AD-E	AG-DOILI		DEN		DITO	DITO		FILENAME: ebs 02 cge sld20b2.dgn		APPD:
4A	3-1-24	60724995	PERMIT APP.		WW		DA		PERMIT APPLICATION	THENAME. 005_02_0ge_5102002.0gh		,
_												

KyPSC Case No. 2025-00002 Exhibit 5 Page 68 of 88

E

S

-INO

PROJECT

Duke Energy East Bend Limestone Conversion East Bend

CLIENT

Duke Energy

CONSULTANT

AECOM Process Technologies 13640 Briarwick Dr Suiet 200, Building A Austin, TX 78728 512.454.4797 tel 512.419,6004 fax www.aecom.com

SK-E-100

KyPSC Case No. 2025-00002 Exhibit 5 Page 69 of 88

NOTES: 1. ALL WORK SHALL BE INSTALLED IN ACCORDANCE WITH PROJECT STANDARDS AND THE LATEST EDITION OF THE NATIONAL ELECTRICAL CODE.

PROJECT

Duke Energy East Bend Limestone Conversion East Bend

CLIENT

Duke Energy

CONSULTANT

AECOM Process Technologies 9400 Ambergien Boulevard Austin, Tx 78729 512,454,4797 tel 512,419,6004 fax www.aecom.com

Appendix F - Demolition Drawings

KyPSC Case No. 2025-00002 Exhibit 5 Page 71 of 88

Level46=entire bdr&taas: Level47=rev blk: Level=48=CG&E: Level49=PSI

KyPSC Case No. 2025-00002 Exhibit 5 Page 72 of 88

KyPSC Case No. 2025-00002 Exhibit 5 Page 74 of 88

KyPSC Case No. 2025-00002 Exhibit 5 Page 76 of 88

KyPSC Case No. 2025-00002 Exhibit 5 Page 80 of 88

KyPSC Case No. 2025-00002 Exhibit 5 Page 83 of 88

KyPSC Case No. 2025-00002 Exhibit 5 Page 84 of 88

KyPSC Case No. 2025-00002 Exhibit 5 Page 85 of 88

1 30X

1	E	
NOTES:		
NTS: SLUDGE		
CODE: API-650 11TH		5
SPECIFIC GRAVITY: 1.2		5
METAL TEMPERATURE: OAD: 90 MPH) F	
I: 1.25		
EXPOSURE: C		
DESIGN:		
SITE CLASS: D		
I = 1.25 USE GROUP: II		
Ss VALUE: 20%		
S1 VALUE: 8%		
SION ALLOWANCE:		
1/16"		
1: 1/16"		4
N/A STRUCTURE: 0		
N: N/A		
TOP ANGLE: 0		
AL PRESSURE: ATMO	SPHERIC	
IAL PRESSURE: ATMO	SPHERIC	
M ROOF LOAD: N/A		
LOAD: N/A		
NAL ROOF LOAD: N/A WELD INSPECTION: SPOT	V_RAY DER ADI	650 SEC 812
EFFICIENCY: 1.0	A-NAI PLN AFT	-030 SLC 0.1.2
G: HYDF	ROSTATIC	
MATERIAL: A36		3
M MATERIAL: A36		Ū
TURAL MATERIAL: A36	MOD	
N: NON		
GIRDER: A36		
-TA	NK SHELL	
 I/ 		
$\frac{1/4}{1/4}$		
TANK BOTTOM		2
		-
DETAIL A		
CORRECTED OVERALL HEIGHT DIMENSION ADDED SUPPORT POST SIZE		
	SCRIPTION	
a de la caractería		
GRAVER T	ANK TM	
ENGINEERS - FABRICATORS	- CONSTRUCTORS	
	DRAWN	JDB No.
HT TANK (NO ROOF)	PG	-X-65053 1
	CHECKED	A-00000
PROJECT	DATE:	SHEET No.4
OLUBOR TALL DEDI	ACEMENT 1/12/2012	
SLUDGE TANK REPL		
SLUDGE TANK REPL TANK # 2		02

Anthony Pruske Project Engineer T: 512-924-7268 (c) E: anthony.pruske@aecom.com

AECOM 13640 Briarwick Dr. Suite 200 Austin, TX 78729 aecom.com

COMMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

ELECTRONIC APPLICATION OF DUKE ENERGY)	
KENTUCKY, INC. FOR A CERTIFICATE OF)	
PUBLIC CONVENIENCE AND NECESSITY TO)	
CONVERT ITS WET FLUE GAS)	
DESULFURIZATION SYSTEM FROM A)	CASE NO.
QUICKLIME REAGENT PROCESS TO A)	2025-00002
LIMESTONE REAGENT HANDLING SYSTEM AT)	
ITS EAST BEND GENERATING STATION AND)	
FOR APPROVAL TO AMEND ITS)	
ENVIRONMENTAL COMPLIANCE PLAN FOR)	
RECOVERY BY ENVIRONMENTAL SURCHARGE)	
MECHANISM)	

CERTIFICATE OF NOTICE AND PUBLICATION

Pursuant to the Kentucky Public Service Commission's Regulation 807 KAR 5:001, Section 16(1)(b)(5), I hereby certify that I am Amy B. Spiller, President of Duke Energy Kentucky, Inc. (Duke Energy Kentucky or Company), a utility furnishing retail electric and gas service within the Commonwealth of Kentucky, which, on the 27th day of January 2025, will file an application with the Kentucky Public Service Commission requesting an order granting Duke Energy Kentucky a Certificate of Public Convenience and Necessity for the construction, and conversion of its existing Wet Flue Gas Desulfurization (WFGD) from a quicklime-based handling process to a limestone -based handling process in order to continue to meet existing environmental regulations (Limestone Conversion Project). The Limestone Conversion Project will be located at the Company's East Bend Generating Station. Additionally, the Company is requesting an order authorizing Duke Energy Kentucky to recover the environmental compliance costs of the construction, conversion and operation of the Limestone Conversion Project through amending its Environmental Compliance Plan and its environmental surcharge through its Rate Schedule ESM as required by KRS 278.183, and as applicable KRS 278.020(1). Duke Energy Kentucky is proposing changes to its Environmental Surcharge Mechanism tariff sheet, K.Y.P.S.C. No. 19, Sheet No. 76 and notice to the public of the filing of the application is being given in all respects as required by 807 KAR 5:001, Section 17 and 807 KAR 5:001, Sections 8(2)(c) and 9(2), as follows:

On the 27th day of January 2025, the notice to the public was delivered for exhibition and public inspection at Duke Energy's Erlanger Ops Center, 1262 Cox Road, Erlanger, Kentucky 41018 and the same will be kept open to public inspection at said office in conformity with the requirements of 807 KAR 5:001, Section 17(1)(a) and 807 KAR 5:011, Section 8(1)(a).

I further certify that more than twenty (20) customers will be affected by said change by way of an increase in their rates or charges, and that on the 7th day of January 2025, there was delivered to the Kentucky Press Association, an agency that acts on behalf of newspapers of general circulation throughout the Commonwealth of Kentucky in which customers affected reside, a notice of the Company's Application, including proposed rates for publication therein once a week for three consecutive weeks beginning on January 20, 2025. A copy of said notice is attached hereto as Exhibit A, and a list of newspapers of general circulation throughout the Commonwealth of Kentucky in which customers affected reside, is being attached hereto as Exhibit B. A certificate of publication of said notice will be furnished to the Kentucky Public Service Commission upon completion of same pursuant to 807 KAR 5:001, Section 17(3)(b).

Also, beginning on January 27, 2025, Duke Energy Kentucky posted on its website a complete copy of the Company's application and a hyperlink to the location on the Kentucky Public Service Commission's website where the case documents and tariff filings are available.

Given under my hand this 27th day of January 2025.

Amy B. Spiller President, Duke Energy Kentucky, Inc. 139 E. 4th Street Cincinnati, Ohio 45202

Subscribed and sworn to before me, a Notary Public, in and before said County and State, this 27th day of January 2025.

enallite Leach

My Commission expires:

Sheena McGee Leach Attorney at Law Notary Public, State of Ohio My Commission Has No Expiration Date Sec 147.03 RC

CERTIFICATE OF SERVICE

This is to certify that the foregoing electronic filing is a true and accurate copy of the document being filed in paper medium; that the electronic filing was transmitted to the Commission on January 27^{th} , 2025; and that there are currently no parties that the Commission has excused from participation by electronic means in this proceeding.

John G. Horne, II The Office of the Attorney General Utility Intervention and Rate Division 700 Capital Avenue, Ste 118 Frankfort, Kentucky 40601 John.Horne@ky.gov

Joe F. Childers, Esq. Childers & Baxter, PLLC The Lexington Building 201 West Short Street, Suite 300 Lexington, KY 40507 (859) 253-9824 joe@jchilderslaw.com

Of counsel (not licensed in Kentucky)

Kristin A. Henry Sierra Club 2101 Webster Street, Suite 1300 Oakland, CA 94612 <u>kristin.henry@sierraclub.org</u>

Nathaniel T. Shoaff Sierra Club 2101 Webster Street, Suite 1300 Oakland, CA 94612 nathaniel.shoaff@sierraclub.org

Cassandra McCrae Earthjustice 1617 JFK Blvd., Ste. 2020 Philadelphia, PA 19103 <u>cmccrae@earthjustice.org</u>

> /s/Rocco D'Ascenzo Counsel for Duke Energy Kentucky, Inc.

Exhibit A

Notice of the Filing

NOTICE TO CUSTOMERS OF DUKE ENERGY KENTUCKY, INC.

RECOVERY BY ENVIRONMENTAL SURCHARGE OF DUKE ENERGY KENTUCKY, INC.'S AMENDMENT TO ITS 2021 AMENDED ENVIRONMENTAL COMPLIANCE PLAN

PLEASE TAKE NOTICE that Duke Energy Kentucky, Inc. (Duke Energy Kentucky or Company) is refiling previously withdrawn Application in Case No. 2024-00152 with the Kentucky Public Service Commission (Commission) on or about January 20, 2025 in Case No. 2025-00002, an Application pursuant to Kentucky Revised Statute 278.183 for approval of the construction of the Limestone Conversion Project (Project) located at its East Bend Generating Station (East Bend) and an amendment of the Company's Environmental Compliance Plan to include the Project for the purpose of recovering the capital and operations and maintenance (O&M) costs associated with the Project through an increase in the environmental surcharge on customers' bills beginning September 1, 2025 under the Company's existing Rider ESM, also known as the environmental surcharge mechanism. The total capital cost of the Limestone Conversion Project in the Company's Amended Environmental Compliance Plan is estimated to be \$125.8 million.

Federal and state environmental regulations require Duke Energy Kentucky to build and upgrade equipment and facilities that produce energy from coal to operate in an environmentally sound manner. Specifically, the Company is seeking Commission approval of a Certificate of Public Convenience and Necessity for the construction and operation of the Project. This construction project requires an amendment of Duke Energy Kentucky's Amended Environmental Compliance Plan that was approved by the Commission in 2022.

Additionally, Duke Energy Kentucky is seeking an order approving the recovery of the costs of the Project through its Environmental Surcharge tariff. The Project is required for the Company to continue to comply with the U.S. Environmental Protection Agency's federal Clean Air Act, and other environmental requirements that apply to Duke Energy Kentucky facilities used in the production of energy from coal. The total capital cost of the Project for which the Company is seeking recovery at this time is estimated to be \$125.8 million. O&M costs related to the Project will be similar to O&M costs incurred today and are not distinguishable.

The impact on Duke Energy Kentucky's customers is estimated to be an increase of 0.32% for residential customers and 0.32% on average for nonresidential customers in 2025, 1.7% for residential customers and 1.6% on average for non-residential customers in 2026, 1.8% for residential customers and 1.8% on average for non-residential customers in 2027, 1.3% for residential customers and 1.3% on average for non-residential customers in 2028, and 1.3% for residential customers and 1.3% on average for non-residential customers in 2029. For a Duke Energy Kentucky residential customer using 1,000 kilowatt hours per month (kWh/mo.), the initial monthly increase is expected to be \$0.41 during 2025, \$2.10 in 2026, \$2.30 in 2027, \$1.64 in 2028, and \$1.71 in 2029.

The rates contained in this notice are the rates proposed by Duke Energy Kentucky; however, the Kentucky Public Service Commission may order rates to be charged that differ from the proposed rates contained in this notice. Such action may result in rates for consumers other than the rates in this notice.

Any corporation, association, body politic or person with a substantial interest in the matter may, by written request within thirty (30) days after publication of this notice of the proposed rate changes, request leave to intervene; intervention may be granted beyond the thirty (30) day period for good cause shown. Such motion shall be submitted to the Kentucky Public Service Commission, P.O. Box 615, 211 Sower Boulevard, Frankfort, Kentucky 40602-0615, and shall set forth the grounds for the request including the status and interest of the party. If the Commission does not receive a written request for intervention within thirty (30) days of the initial publication the Commission may take final action on the application.

Intervenors may obtain copies of the application and other filings made by the Company by requesting same through email at DEKInquiries@dukeenergy.com or by telephone at (513) 287-4366. A copy of the application and other filings made by the Company are available for public inspection through the Commission's website at http://psc.ky.gov, at the Commission's office at 211 Sower Boulevard, Frankfort, Kentucky, Monday through Friday, 8:00 a.m. to 4:30 p.m., and at the following Company office: Erlanger Ops Center, 1262 Cox Road, Erlanger, Kentucky 41018. Comments regarding the application may be submitted to the Public Service Commission through its website, or by mail at the following Commission address.

For further information contact:

PUBLIC SERVICE COMMISSION COMMONWEALTH OF KENTUCKY P.O. BOX 615 211 SOWER BOULEVARD FRANKFORT, KENTUCKY 40602-0615 (502) 564-3940 DUKE ENERGY KENTUCKY 1262 COX ROAD ERLANGER, KENTUCKY 41018 (513) 287-4366

Exhibit B

Listing of Newspapers Publishing Notice

List of Newspapers in Duke Energy Kentucky Territory

Covington Kentucky Enquirer Falmouth Outlook Link NK Warsaw Gallatin County News Williamstown Grant County News

	Exhibit 7 Page 1 of 2	
	KY. P.S.C. Electric No. 2	
	FifthFourth Revised Sheet No. 76	
Duke Energy Kentucky, Inc.	Cancels and Supersedes	
1262 Cox Road	Fourth Third Revised Sheet No. 76	
Erlanger, Kentucky 41018	Page 1 of 2	

ENVIRONMENTAL SURCHARGE MECHANISM RIDER

APPLICABILITY

This rider is applicable to all retail sales in the Company's electric service area beginning with the billing month June 2018. Rate RTP program participants utilize the applicable portions of the Baseline Charge and Program Charge, as those terms are defined in Rate RTP, for this rider.

Standard electric rate schedules subject to this schedule are: Residential: Rate Schedule RS Non-Residential: Rate Schedules DS, EH, SP, DP, DT, GSFL, TT, SL, TL, UOLS, NSU, SC, SE, and LED

RATE

The monthly billing amount under each of the schedules to which this rider is applicable, shall be increased or decreased by a percentage factor according to the following formula:

Environmental Surcharge Billing Factor = Jurisdictional E(m) / R(m)

DEFINITIONS

For all Plans:

E(m) = ROF	RB + OE – EAS
------------	---------------

- RORB = (RB/12)*ROR
- RB = the Environmental Compliance Rate Base, defined as electric plant in service for applicable environmental projects adjusted for accumulated depreciation, accumulated deferred taxes, accumulated investment tax credits, CWIP and emission allowance inventory.
- ROR = the Rate of Return on the Environmental Compliance Rate Base, designated as the cost of debt and pretax cost of equity for environmental compliance plan projects approved by the Commission.
- OE = the Operating Expenses, defined as the monthly depreciation expense, taxes other than income taxes, amortization expense, emission allowance expense and environmental reagent expense.
- EAS = proceeds from Emission Allowance Sales.

Issued by authority of an Order of the Kentucky Public Service Commission dated <u>August 8, 2024</u> in Case No. <u>2025-00002</u>2023-00374. Issued: <u>January 27, 2025August 27, 2024</u>

Effective: February 26, 2025 October 1, 2024

Issued by Amy B. Spiller, President /s/ Amy B. Spiller

(D)

(⊕)

KyPSC Case No. 2025-00002

	I age 2 01 2
	KY. P.S.C. Electric No. 2
	<u>Fifth</u> Fourth Revised Sheet No. 76
Duke Energy Kentucky, Inc.	Cancels and Supersedes
1262 Cox Road	Fourth Third Revised Sheet No. 76
Erlanger, Kentucky 41018	Page 2 of 2

DEFINITIONS (Contd.)

Plans are the environmental surcharge compliance plans submitted to and approved by the Kentucky Public Service Commission.

KyPSC Case No. 2025-00002

Exhibit 7

(D)

(T)

(1) Total E(m), (the environmental compliance plan revenue requirement), is multiplied by the Jurisdictional Allocation Factor. Jurisdictional E(m) is adjusted for any (Over)/Under collection, prior period adjustment, and by the subtraction of the Revenue Collected through Base Rates for the Current Expense month to arrive at Adjusted Net Jurisdictional E(m). Adjusted Net Jurisdictional E(m) is allocated to Residential and Non-Residential on the basis of Revenue as a Percentage of Total Average Revenue for the 12-months ending with the Current Month excluding Environmental Surcharge Revenues.

Prior Period Adjustment is the amount resulting from a directive by the Commission during the sixmonth and two-year reviews and corrections determined by the Company for prior period filings.

(Over) or Under Recovery is a one-month "true-up" adjustment.

- (2) Residential R(m) is the average of total monthly residential revenue for the 12-months ending with the current expense month. Total revenue includes residential revenue, including all riders, but excluding environmental surcharge mechanism revenue.
- (3) Non-Residential R(m) is the average of total monthly non-residential revenue for the 12-months ending with the current expense month. Total revenue includes non-residential revenue, including all riders, but excluding environmental surcharge mechanism revenue, base fuel revenue and FAC revenue.
- (4) The current expense month (m) shall be the second month preceeding the month in which the (T) Environmental Surcharge is billed.

SERVICE REGULATIONS, TERMS AND CONDITIONS

The supplying and billing for service and all conditions applying thereto, are subject to the jurisdiction of the Kentucky Public Service Commission, and to Company's Service Regulations currently in effect, as filed with the Public Service Commission of Kentucky.