

Fig. 31.

Photographs of the inspection locations on the Cold Reheat piping system.

Fig. 32. Photographs of the inspection locations on the Cold Reheat piping system.

Fig. 33.

Photographs of the inspection locations on the Cold Reheat piping system.

Fig. 34.

Photographs of the inspection locations on the Cold Reheat piping system.

Fig. 36. Photographs of the inspection locations on the Boiler Feedwater Discharge piping system.

Fig. 37.

Photographs of the inspection locations on the Boiler Feedwater Discharge piping system.

Fig. 38.

Photographs of the undercut location on the Boiler Feedwater Discharge piping system.

Fig. 40. Photographs of the inspection locations on the Condensate piping system.

Fig. 42.

Photographs of the inspection locations on the deaerator heater.

Fig. 43.

Photographs of the inspection locations on the deaerator heater.

Thielsch, Inc.

Fig. 44.

Photographs of the inspection locations on the deaerator heater.

Fig. 45.

Fig. 46.

Fig. 47.

Fig. 48.

Fig. 49.

Fig. 50.

Fig. 51.

Fig. 53. Photographs of the inspection locations on the deaerator storage tank.

Fig. 54. Photographs of the inspection locations on the deaerator storage tank.

Fig. 55. Photographs of the inspection locations on the deaerator storage tank.

Fig. 56. Photographs of the inspection locations on the deaerator storage tank.

Fig. 57. Photographs of the inspection locations on the deaerator storage tank.

Fig. 58. Photographs of the inspection locations on the deaerator storage tank.

Fig. 59. Photographs of the inspection locations on the deaerator storage tank.

Fig. 60. Photographs of the inspection locations on the deaerator storage tank.

Fig. 61. Photographs of the indication at penetration No. P-4 on the deaerator storage tank.

APPENDIX A

NONDESTRUCTIVE EXAMINATION REPORTS MAIN STEAM PIPING SYSTEM

Power Piping Minimum Wall Calculation Eastern Kentucky Power Cooperative J.S. Cooper Generating Station - Unit No. 2 Main Steam Piping System - 8.625" OD

The minimum wall thickness requirements were calculated for the Main Steam piping system based on the 2018 ASME Code for Power Piping, B31.1.

ASTM Material Specifications for:

A-335, Grade P22

Where:

i - Design remperature	1 -	- Design	I emperature
------------------------	-----	----------	--------------

- P Maximum Allowable Pressure
- D Outside Diameter
- SE Maximum Stress Value
- y Temperature Coefficient
- A Additional Thickness

	-
1010	°F
2,000	psig
8.625	inches
7,540	psi
0.70	
0.000	inches

The following equation applies per B31.1 Section 104.1.2

 $t_m = (PD/(2(SE+PY))+A)$

0.965 inches

Power Piping Minimum Wall Calculation Eastern Kentucky Power Cooperative J.S. Cooper Generating Station - Unit No. 2 Main Steam Piping System - 12.000" OD

The minimum wall thickness requirements were calculated for the Main Steam piping system based on the 2018 ASME Code for Power Piping, B31.1.

ASTM Material Specifications for:

A-335, Grade P22

Where:

T- Design Temperature P- Maximum Allowable Pressure D- Outside Diameter SE- Maximum Stress Value y-Temperature Coefficient A- Addition Thickness

1010	°F
2,000	psig
12.000	inches
7,540	psi
0.70	
0.000	inches

The following equation applies per B31.1 Section 104.1.2

$t_m = (PD/(2(SE+PY))+A)$

1.342 inches

Power Piping Minimum Wall Calculation Eastern Kentucky Power Cooperative J.S. Cooper Generating Station - Unit No. 2 Main Steam Piping System - 16.250" OD

The minimum wall thickness requirements were calculated for the Main Steam piping system based on the 2018 ASME Code for Power Piping, B31.1.

ASTM Material Specifications for:

A-335, Grade P22

Where:

T- Design Temperature P- Maximum Allowable Pressure D- Outside Diameter SE- Maximum Stress Value y-Temperature Coefficient A- Addition Thickness

1010	°F
2,000	psig
16.250	inches
7,540	psi
0.70	
0.000	inches

The following equation applies per B31.1 Section 104.1.2

t _m =(PD/(2(SE+PY))+A)	1 818	inches								
	1.010	incric3								
THIELSCH, INC.										
------------------------------------	--------------------	-------------	----------------------	-----------------	------------	----	--	--	--	--
	195 Frances Avenu	e - Cranst	ton, RI 02910 - ((401) 467-6454						
	MAGNETIC F	PARTICLE	EXAMINATION R	EPORT						
Job Name: EKPC - J.S Unit No. 2	. Cooper Station -	Job Date:	March 2024	Job Number: 4	3-24-0331a					
Component: Main Stea	m Piping System	Material: A	-335, Grade P22	T-21FS, Rev. 11						
EXAMINATION METH	OD		TECHNIQUE							
Continuous	Circular		✓ Yoke	Headshot	Coil					
Residual	✓ Longitudinal		Prods	Central Cond.	✓ Oth	er				
CURRENT			WET	DRY						
✓ AC	AMP Turns		14AM	Red						
	Amperage		✓ 20B	Gray						
L	_ Other		Other	Black						
IDENTIFICATION	INDICATION SIZE	cc	MMENTS ON RE	ACCEPT	REJECT					
Girth Welds										
GW-1	-	No r	ecordable indication	ons (NRI)	Х					
GW-2	-		NRI	Х						
GW-3	-		NRI	Х						
GW-4	-		NRI	Х						
GW-5	-		NRI	Х						
GW-6	-		NRI	Х						
GW-7	-		NRI	Х						
GW-8	-		NRI		Х					
RT Plugs										
RT-GW-1	-		NRI		Х					
RT-GW-3	-		NRI		Х					
RT-GW-4	-		NRI		Х					
RT-GW-8	-		NRI		Х					
Penetrations										
P-1	-		NRI		Х					
P-2	-		NRI		Х					
P-3	-		NRI		Х					
P-4	-		NRI		Х					
P-5	-		NRI		Х					
P-6	-		NRI		Х					
P-6A	-		NRI		Х					
P-7	-		NRI		Х					
P-7A	-		NRI		Х					
INSPECTOR: A. Giulitt	o, D. Drennen		LEVEL: II	DATE: 03/16/20	024					

Job Name: EKPC - J.S. (Unit No. 2 Component: Main Steam	MAGNETIC F Cooper Station -		on PL 02010 /	101) 167-6164			
Job Name: EKPC - J.S. (Jnit No. 2 Component: Main Steam EXAMINATION METHO	Cooper Station -		EXAMINATION R	401) 407-0434			
Unit No. 2 Component: Main Steam	oooper olulion	Job Date: I	March 2024	Job Number: 4	3-24-0331a		
Component: Main Steam		JUD Date.				5-24-055Ta	
EXAMINATION METHO	n Piping System	Material: A	-335, Grade P22	Procedure: ND	T-21FS, Re	v. 11	
	D		TECHNIQUE				
Continuous	Circular		✓ Yoke	Headshot	Coil		
Residual	✓ Longitudinal		Prods	Central Cond.	✓ Oth	er	
CURRENT			WET	DRY			
AC	AMP Turns		14AM	Red			
	Amperage		✓ 20B	Gray			
	Other		Other	Black			
	INDICATION SIZE	cc	MMENTS ON RE	ACCEPT	REJEC		
Penetrations (continued)							
P-4B	-	No r	ecordable indication	ons (NRI)	Х		
P-5B	-		NRI	Х			
P-6B	-		NRI		Х		
P-7B	-		NRI	Х			
P-8B	-		NRI	Х			
P-9B	-		NRI	Х			
P-10B	-		NRI		Х		
P-11B	-		NRI		Х		
P-12B	-		NRI		Х		
Hanger Lugs							
MSH-3	-		NRI		Х		
Hanger Attachment							
Hangel Allachinent	<i>л</i> " I Т	Linear fati	gue-type indication (Removed at 1/	Х			

	THIELSCH, INC.										
	19	5 Frances Av	enue - Cranston, RI 02	2910 - (401)) 467-6454						
	UL	TRASONIC	THICKNESS EXAM	INATION	REPORT	•					
Job Name: EKPC -	J.S. C	ooper	Job Date: March 2024	Job Numbe	er: 43-24-0	331a					
Station - Unit No. 2			Motorial	Nominal W		Colo Minin	ours Walls				
Component: Main Steam Piping	Syster	n	Material: A-335 Grade P22		aii: 5" OD						
inan otoan riping	Cyclor			1.500" x 12		1.342"					
				2.000" x 16	6.250" OD	1.818"					
EQUIPMENT USED:			KEY:	All values	recorded in	inches.					
✓ D-Meter ✓ Pi-Tape		Other	US - Upstre	US - Upstream T - Top							
Micrometer	🗌 Cali	pers		DS - Down	stream	B - Bottom					
	<u> </u>										
	CONF	GURATION	DIAMETER MEASUREMENTS	ТНІС	KNESS M	EASUREME	ENTS				
			ΡΙ ΤΑΡΕ	12:00	3:00	6:00	9:00				
GW/-1	US	Boiler Conn.	Not Accessible	-	-	-	-				
600-1	DS	Pipe	16.422	2.219	2.239	2.162	2.181				
CW/ 2	US	Pipe	16.422	2.181	2.277	2.271	2.172				
DS Pipe		16.406	2.045	2.104	2.309	2.095					
CW/ 2	US	Pipe	16.375	2.249	2.232	2.147	2.277				
D:		Pipe	16.359	2.344	2.262	2.247	2.308				
US Pipe		Pipe	16.328	2.295	2.286	2.290	2.066				
600-4	DS	Pipe	16.328	2.306	2.237	2.219	2.330				
0.11	US	Pipe	16.328	2.296	2.245	2.133	2.185				
Gw-5	DS	Wye	16.328	2.159	2.168	2.146	2.189				
0.11.0	US	Wye	12.063	1.710	1.719	1.728	1.724				
GW-0	DS	Pipe	12.063	1.724	1.715	1.661	1.702				
CW 7	US	Valve	Not Accessible	-	-	-	-				
Gw-7	DS	Pipe	8.813	1.185	1.090	1.115	1.205				
0141.0	US	Wye	12.016	1.727	1.722	1.709	1.712				
Gw-o	DS	Pipe	12.078	1.717	1.703	1.729	1.738				
				OD	8.625"	12.000"	16.250"				
				Min.:	1.090	1.661	2.045				
				Max.:	1.205	1.738	2.344				
				Avg.:	1.149	1.715	2.219				
INSPECTOR: A. C	Giulitto,	W. Fountain	LEVEL: II	•	DATE: 03/	16/2024					

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Re	ev 4	Component: Weld Number: Weld Configure: Thickness:		Main Stear MS-GW-1 Circumfere 2.0"	n ential
Model #	Serial #	Software Ver	sion	Calibration	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angle	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	7.00 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter
Compression	35	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	1	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Re	ev 4	Component: Weld Number: Weld Configure: Thickness:		Main Stear MS-GW-2 Circumfere 2.0"	n ential
Model #	Serial #	Software Ver	sion	Calibration	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Frequ	ency	Wedge Angle	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	7.00 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter
Compression	35	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Elemen	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	I	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Re	ev 4	Component: Weld Number: Weld Configure: Thickness:		Main Stear MS-GW-3 Circumfere 2.5"	n ential
Model #	Serial #	Software Ver	sion	Calibration)ue	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Frequ	ency	Wedge Angle	9	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ath)	Acq Rate		Туре
9.8	0.000 in	7.00 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter
Compression	35	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Elemen	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	I	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Re	ev 4	Component: Weld Number: Weld Configure: Thickness:		Main Stear MS-GW-4 Circumfere 2.5"	n ential
Model #	Serial #	Software Ver	rsion	Calibration	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angle	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ath)	Acq Rate		Туре
9.8	0.000 in	7.00 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter
Compression	35	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	I	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Re	ev 4	Component: Weld Number: Weld Configure: Thickness:		Main Stear MS-GW-5 Circumfere 2.5"	n ential
Model #	Serial #	Software Ver	rsion	Calibration	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angle	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ath)	Acq Rate		Туре
9.8	0.000 in	7.00 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter
Compression	35	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	I	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Re	ev 4	Component: Weld Number: Weld Configure: Thickness:		Main Stear MS-GW-6 Circumfere 2.0"	n ntial
Model #	Serial #	Software Ver	sion	Calibration)ue	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Frequ	ency	Wedge Angle	Э	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	7.00 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter
Compression	35	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Elemen	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	I	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Re	ev 4	Component: Weld Number: Weld Configure: Thickness:		Main Stear MS-GW-7 Circumfere 1.5"	n ential
Model #	Serial #	Software Ver	sion	Calibration	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angle	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	7.00 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter
Compression	35	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	1	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Re	ev 4	Component: Weld Number: Weld Configure: Thickness:		Main Stear MS-GW-8 Circumfere 2.0"	n ential
Model #	Serial #	Software Ver	sion	Calibration)ue	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angle	9	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ath)	Acq Rate		Туре
9.8	0.000 in	7.00 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter
Compression	35	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	I	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

	THIELSCH, INC.										
	195 Frar	nces Ave	nue - C	ranston,	RI 02910	- (401) 4	67-6454				
		HAR	DNESS N	IEASURE	EMENT SH	IEET					
Job Name: EKPC - J.S Unit No. 2	. Cooper	Station -	Job Date	: March 2	024	Job Num	ber: 43-24-	0331a			
Component: Main Stea	m Piping	System	Material:	A-335, G	rade P22	Hardnes	s Scale: Brir	nell (BHN)			
			H	lardness I	Measurem	ents		Corresponding			
Location:		1	2	3	4	5	Average	Tensile Strength			
N/0 5/	Weld	164	162	176	166	171	168	81,000			
MS-R1 GW 1 1:00 DS	HAZ	158	161	155	155	163	158	76,000			
GW-1, 1.00 D3	Base	138	141	148	138	132	139	67,000			
	Weld	178	171	175	178	172	175	84,000			
MS-R2 GW-2, 12:30 DS	HAZ	168	159	161	163	163	163	78,000			
GW-2, 12.30 D3	Base	149	148	136	151	153	147	70,000			
	Weld	155	164	160	164	157	160	77,000			
MS-R3 GW-3 2:30 US	HAZ	160	154	148	144	146	150	72,000			
011-3, 2.30 00	Base	144	144	153	156	148	149	71,000			
	Weld	198	193	192	203	199	197	93,000			
MS-R4 GW-4 3:00 US	HAZ	164	161	166	160	165	163	78,000			
011 4, 3.00 00	Base	155	151	150	154	151	152	73,000			
	Weld	180	185	183	184	184	183	87,000			
GW-5 11:00 DS	HAZ	163	160	151	159	160	159	76,000			
	Base	151	158	165	158	161	159	76,000			
	Weld	201	193	196	200	190	196	92,000			
GW-6, 11:00 US	HAZ	149	151	146	153	155	151	72,000			
	Base	142	140	143	141	149	143	69,000			
MS-P7	Weld	191	196	186	179	193	189	90,000			
GW-7, 9:00 US	HAZ	192	184	191	185	198	190	90,000			
	Base	191	187	179	189	191	187	89,000			
MS-R8	Weld	157	163	165	160	155	160	77,000			
GW-8, 11:00 US	HAZ	151	149	155	151	150	151	72,000			
,	Base	146	141	139	141	143	142	68,000			
Inspector: K. Veon						Date: 03	/16/2024				
						Paie. 00	10/2027				

APPENDIX B

NONDESTRUCTIVE EXAMINATION REPORTS HOT REHEAT PIPING SYSTEM

Power Piping Minimum Wall Calculation Eastern Kentucky Power Cooperative J.S. Cooper Generating Station - Unit No. 2 Hot Reheat Piping System

The minimum wall thickness requirements were calculated for the Hot Reheat piping system based on the 2018 ASME Code for Power Piping, B31.1.

ASTM Material Specifications for:

A-335, Grade P22

Where:

I - Design Temperature	Design Tempe	erature
------------------------	--------------	---------

- P Maximum Allowable Pressure
- D Outside Diameter
- SE Maximum Stress Value
- y Temperature Coefficient
- A Additional Thickness

	-
1010	°F
575	psig
18.000	inches
7,540	psi
0.70	
0.000	inches
7,540 0.70 0.000	psi inches

The following equation applies per B31.1 Section 104.1.2

 $t_m = (PD/(2(SE+PY))+A)$

0.652 inches

Power Piping Minimum Wall Calculation Eastern Kentucky Power Cooperative J.S. Cooper Generating Station - Unit No. 2 Hot Reheat Piping System

The minimum wall thickness requirements were calculated for the Hot Reheat piping system based on the 2018 ASME Code for Power Piping, B31.1.

ASTM Material Specifications for:

A-335, Grade P22

Where:

i - Design remperature	1 -	- Design	I emperature
------------------------	-----	----------	--------------

- P Maximum Allowable Pressure
- D Outside Diameter
- SE Maximum Stress Value
- y Temperature Coefficient
- A Additional Thickness

	-
1010	°F
575	psig
24.000	inches
7,540	psi
0.70	
0.000	inches
24.000 7,540 0.70 0.000	inches psi inches

The following equation applies per B31.1 Section 104.1.2

 $t_m = (PD/(2(SE+PY))+A)$

0.869 inches

THIELSCH, INC.								
195 Frances Avenue - Cranston, RI 02910 - (401) 467-6454								
MAGNETIC PARTICLE EXAMINATION REPORT								
Job Name: EKPC - J.S Unit No. 2	. Cooper Station -	Job Date: I	March 2024	Job Number: 43	3-24-0331a			
Component: Hot Rehea	at Piping System	Material: A	-335, Grade P22	Procedure: ND	T-21FS, Re	v. 11		
EXAMINATION METH	OD		TECHNIQUE					
Continuous	Circular		✓ Yoke	✓ Headshot	Coil			
Residual	✓ Longitudinal		Prods	Central Cond.	Oth	er		
CURRENT			WET	DRY				
I AC □	AMP Turns		14AM	Red				
	Amperage		✓ 20B	Gray				
	Other		Other	Black				
IDENTIFICATION	INDICATION SIZE	co	OMMENTS ON RE	ACCEPT	REJECT			
Girth Welds								
GW-1	-	No r	ecordable indication	ons (NRI)	Х			
GW-2	-		NRI		Х			
GW-3	-		NRI	Х				
GW-4	-		NRI	Х				
GW-5	-		NRI	Х				
GW-6	-		NRI	Х				
GW-7	-		NRI	Х				
RT Plugs								
RT-GW-1	-		NRI		Х			
RT-GW-2	-		NRI		Х			
RT-GW-5	-		NRI	Х				
RT-GW-6	-		NRI		Х			
RT-GW-7	-		NRI		Х			
Penetrations								
P-1	-		NRI		Х			
P-2	-		NRI		Х			
	1/2" TW	Tra (Re	ansverse indicatior emoved with light g	Х				
P-3	3" LT (x2)	Linear fatigue-type indications in toe of weld (Removed with light grinding)			Х			
P-4	-		NRI		Х			
P-4A	-		NRI		Х			
Hanger Lugs								
HRH-2	-		NRI		Х			
INSPECTOR: A. Giulitt	o, D. Drennen		LEVEL: II	DATE: 03/16/20	024			

THIELSCH, INC.									
195 Frances Avenue - Cranston, RI 02910 - (401) 467-6454									
ULTRASONIC THICKNESS EXAMINATION REPORT									
Job Name: EKPC - Station - Unit No. 2	- J.S. (2	Cooper	Job Date: March 2024	ate: March 2024 Job Number: 43-24-0331a					
Component: Hot Reheat Piping	Syster	n	Material: A-335, Grade P22	Nominal W 0.938" x 18 1.219" x 24	all: Calc. Minimum W .000" OD 0.652"		num Wall:		
EQUIPMENT USE	D:			All values i	recorded in	inches.			
D-Meter	√ Pi-1	ape	Other	US - Upstro	eam	Т - Тор			
 Micrometer	Cali	pers		DS - Down	stream	B - Bottom			
	CONF	IGURATION	DIAMETER MEASUREMENTS	ТНІС	KNESS ME	EASUREME	ENTS		
			ΡΙ ΤΑΡΕ	12:00	3:00	6:00	9:00		
C) \\ 1	US	Boiler Conn.	24.109	1.645	1.630	1.655	1.548		
Gw-1	DS	Pipe	24.078	1.269	1.255	1.232	1.214		
GW/ 2	US	Pipe	24.094	1.276	1.239	1.249	1.235		
Gw-2	DS	Pipe	24.203	1.185	1.230	1.195	1.237		
GW/ 3	US	Pipe	24.109	1.250	1.219	1.189	1.277		
Gw-3	DS	Pipe	24.078	1.286	1.274	1.310	1.309		
	US	Pipe	24.078	1.311	1.309	1.276	1.328		
Gvv-4	DS	Wye	Not Accessible	-	-	-	-		
	US	Wye	18.719	1.608	1.366	1.436	1.417		
DS Pipe		18.063	1.144	1.172	1.140	1.132			
CW 6	US	Pipe	18.094	1.013	0.997	0.996	0.993		
Gw-0	DS	Turbine Conn.	Not Accessible	-	-	-	-		
	US	Wye	18.719	1.504	1.384	1.430	1.419		
Gvv-7	DS	Pipe	18.078	1.091	0.903	0.878	1.043		
				OD:	18.000"	24.000"			
				Min.:	0.878	1.185			
				Max.:	1.608	1.655			
				Avg.:	1.203	1.308			
INSPECTOR: A. C	NSPECTOR: A. Giulitto, W. Fountain LEVEL: II DATE: 03/16/2024								

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA R	ev 4	Compone Weld Nur Weld Cor Thicknes	ent: nber: nfigure: s:	Hot Rehea HRH-GW- Circumfere 1.5"	t 1 ntial
Model #	Serial #	Software Ver	sion	Calibration	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angl	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	5.25 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification	I	Band Pass Filter
Compression	26	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	1	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Re	ev 4	Compone Weld Nur Weld Cor Thicknes	ent: nber: nfigure: s:	Hot Rehea HRH-GW- Circumfere 1.25"	t 2 ential
Model #	Serial #	Software Ver	sion	Calibration	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angl	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	5.25 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter
Compression	26	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	1	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Re	ev 4	Compone Weld Nur Weld Cor Thicknes	ent: nber: nfigure: s:	Hot Rehea HRH-GW- Circumfere 1.25"	t 3 ential
Model #	Serial #	Software Ver	sion	Calibration	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angl	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	5.25 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification	1	Band Pass Filter
Compression	26	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	1	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Re	ev 4	Compone Weld Nur Weld Cor Thicknes	ent: nber: nfigure: s:	Hot Rehea HRH-GW- Circumfere 1.5"	t 4 ential
Model #	Serial #	Software Ver	sion	Calibration	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angl	9	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	5.25 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter
Compression	26	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	1	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected. One sided scan due to geometry of wye block.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Re	ev 4	Compone Weld Nun Weld Cor Thicknes	ent: nber: nfigure: s:	Hot Rehea HRH-GW- Circumfere 1.25"	t 5 ential
Model #	Serial #	Software Ver	sion	Calibration [Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angl	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	5.25 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification	1	Band Pass Filter
Compression	26	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	ı	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Re	ev 4	Compone Weld Nun Weld Cor Thicknes	ent: nber: ifigure: s:	Hot Rehea HRH-GW- Circumfere 1.25"	t 6 ential
Model #	Serial #	Software Ver	sion	Calibration	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angle	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	5.25 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter
Compression	26	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	1	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Rev 4		Component: Weld Number: Weld Configure: Thickness:		Hot Reheat HRH-GW-7 Circumferential 1.25"	
Model #	Serial #	Software Ver	sion	Calibration	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angl	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	5.25 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification	1	Band Pass Filter
Compression	26	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	1	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

An original defect from manufacturing which appears to be an inclusion type indication was found transverse at the 11:30 o'clock position. Example on the following sheet.

HRH-GW-7

An inclusion type indication found transverse at the 11:30 o'clock position on the downstream side of the weld. Approximately 1.125" at depth with a through wall height of 0.125".

Inspector:

Tyler Walker

Level:

II

THIELSCH, INC.									
195 Frances Avenue - Cranston, RI 02910 - (401) 467-6454									
HARDNESS MEASUREMENT SHEET									
Job Name: EKPC - J.S. Unit No. 2	Cooper S	Station -	Job Date: March 2024			Job Num	ber: 43-24-	0331a	
Component: Hot Reheat	t Piping S	system	Material:	A-335, G	rade P22	Hardnes	s Scale: Bri	nell (BHN)	
Location:			H	ardness N	/leasurem	ents Corresponding			
Location.		1	2	3	4	5	Average	Tensile Strength	
HRH-R1	Weld	176	179	175	174	183	177	85,000	
GW-1 11:00 DS	HAZ	193	189	186	184	193	189	90,000	
	Base	183	187	178	181	185	183	87,000	
	Weld	189	198	196	201	189	195	92,000	
GW-2 2.00 DS	HAZ	191	178	186	186	188	186	88,000	
0.11 2, 2.00 20	Base	182	182	183	188	180	183	87,000	
	Weld	210	206	207	208	209	208	98,000	
GW-3 9:30 DS	HAZ	193	187	197	192	186	191	90,000	
011 0, 0.00 20	Base	171	184	169	175	179	176	84,000	
	Weld	168	174	162	188	183	175	84,000	
GW-4, 2:30 US	HAZ	189	176	169	179	179	178	85,000	
	Base	175	176	181	171	181	177	85,000	
HRH-R5 GW-5, 9:30 US	Weld	182	179	178	178	182	180	86,000	
	HAZ	183	188	179	185	203	188	89,000	
	Base	179	170	176	180	179	177	85,000	
HRH-R6 GW-6, 10:30 DS	Weld	211	201	213	215	205	209	99,000	
	HAZ	186	194	191	185	190	189	90,000	
	Base	176	184	185	181	186	182	87,000	
HRH-R7 GW-7, 2:00 US	Weld	194	192	194	187	199	193	91,000	
	HAZ	176	182	179	177	169	177	85,000	
	Base	169	168	165	154	165	164	79,000	
Increator: K. Maan						Data: 02	/16/2024		
inspector. k. veon		Inspector: K. Veon Date: 03/16/2024							

APPENDIX C

NONDESTRUCTIVE EXAMINATION REPORTS COLD REHEAT PIPING SYSTEM

Power Piping Minimum Wall Calculation Eastern Kentucky Power Cooperative J.S. Cooper Generating Station - Unit No. 2 Cold Reheat Piping System - 18.000" OD

The minimum wall thickness requirements were calculated for the Cold Reheat piping system based on the 2018 ASME Code for Power Piping, B31.1.

ASTM Material Specifications for:

A-106, Grade B

Where:

|--|

- P Maximum Allowable Pressure
- D Outside Diameter
- SE Maximum Stress Value
- y Temperature Coefficient
- A Additional Thickness

670	°F
620	psig
18.000	inches
16,500	psi
0.40	
0.000	inches

The following equation applies per B31.1 Section 104.1.2

 $t_m = (PD/(2(SE+PY))+A)$

0.333 inches

Power Piping Minimum Wall Calculation Eastern Kentucky Power Cooperative J.S. Cooper Generating Station - Unit No. 2 Cold Reheat Piping System - 24.000" OD

The minimum wall thickness requirements were calculated for the Cold Reheat piping system based on the 2018 ASME Code for Power Piping, B31.1.

ASTM Material Specifications for:

A-106, Grade B

Where:

|--|

- P Maximum Allowable Pressure
- D Outside Diameter
- SE Maximum Stress Value
- y Temperature Coefficient
- A Additional Thickness

670	°F
620	psig
24.000	inches
16,500	psi
0.40	
0.000	inches
	-

The following equation applies per B31.1 Section 104.1.2

 $t_m = (PD/(2(SE+PY))+A)$

0.444 inches

THIELSCH, INC.								
195 Frances Avenue - Cranston, RI 02910 - (401) 467-6454								
	MAGNETIC P	ARTICLE E	XAMINATION R	EPORT				
Job Name: EKPC - J.S. Cooper Station - Unit Job Date: March 2024 J No. 2			Job Number: 4	3-24-0331a				
Component: Cold Reheat	t Piping System	Material: A	-106, Grade B	Procedure: ND	T-21FS, Re	v. 11		
EXAMINATION METHOD	ס		TECHNIQUE					
Continuous	Circular		✓ Yoke	Headshot	Coil			
Residual	✓ Longitudinal		Prods	Central Cond.	🗌 Oth	er		
CURRENT			WET	DRY				
✓ AC	AMP Turns		14AM	Red				
	Amperage		✓ 20B	Gray				
	Other	 	Other	Black				
IDENTIFICATION	INDICATION SIZE	со	MMENTS ON R	ESULTS	ACCEPT	REJECT		
Girth Welds								
GW-1	-	No re	ecordable indicat	tions (NRI)	Х			
GW-2	-		NRI		Х			
GW-3	-		NRI	Х				
GW-4	-		NRI	Х				
GW-5	-		NRI	Х				
GW-6	-		NRI	Х				
GW-7	-	NRI			Х			
RT Plug								
RT-GW-1	-		NRI		Х			
Penetrations								
P-1	-		NRI		Х			
P-2	-		NRI		Х			
P-3	-		NRI	Х				
P-4	-	NRI			Х			
P-4A	-		NRI	Х				
P-5	-		NRI	Х				
P-5A	-	NRI X						
P-6	-	NRI X						
P-6A	-		NRI		Х			
Hanger Luge								
			NRI		Y			
					<u>^</u> 024			
THE LOTOR. A. GIUIIIIO,				UNIE. 03/10/2	024			

THIELSCH, INC.									
195 Frances Avenue - Cranston, RI 02910 - (401) 467-6454									
	ULTRASONIC THICKNESS EXAMINATION REPORT								
Job Name: EKPC - J.S. Cooper Job Date: March 2024 Station - Unit No. 2				Job Numbe	er: 43-24-03	31a			
Component:			Material:	Nominal W	all:	Calc. Minim	um Wall:		
Cold Reheat Piping	g Syste	m	A-106, Grade B	0.500" x 18	.000" OD	0.333"			
	<u>D.</u>			0.688" x 24		0.444"	a haa		
	ט:			NET:	All values i		iches.		
✓ D-Meter		ape			etroom	B - Bottom			
		pers			Silean	D - Dollom			
IDENTIFICATION	CONF	GURATION	MEASUREMENTS	THIC	CKNESS MI	EASUREME	ENTS		
			PI TAPE	12:00	3:00	6:00	9:00		
GW-1	US	Turbine Conn.	Not Accessible	-	-	-	-		
	DS	Pipe	18.063	0.510	0.490	0.493	0.502		
GW-2	US	Pipe	18.078	0.513	0.500	0.524	0.545		
000-2	DS	Elbow	18.141	0.555	0.597	0.616	0.600		
GW-3 US Elbow DS Reducer		18.125	0.549	0.627	0.594	0.597			
		18.375	0.813	0.844	0.841	0.818			
GW-4	US	Pipe	18.063	0.541	0.528	0.557	0.478		
	DS	Pipe	18.063	0.519	0.508	0.545	0.550		
GW-5 US Pipe		Pipe	24.094	0.723	0.707	0.688	0.716		
000-5	DS	Pipe	24.094	0.748	0.739	0.726	0.717		
CW 6 US Pipe		24.109	0.696	0.696	0.700	0.688			
000-0	DS	Pipe	23.984	0.704	0.711	0.738	0.713		
GW-7	US	Pipe	24.063	0.686	0.685	0.697	0.696		
000-7	DS	Pipe	24.016	0.699	0.700	0.691	0.695		
				OD:	18.000"	24.000"			
				Min.:	0.478	0.685			
				Max.:	0.844	0.748			
				Avg.:	0.584	0.707			
			ļ						
INSPECTOR: A. Giulitto, W. Fountain LEVEL: II DATE: 03/16/2024									

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Rev 4		Component: Weld Number: Weld Configure: Thickness:		Cold Reheat CRH-GW-1 Circumferential 0.75"	
Model #	Serial #	Software Ver	sion	Calibration	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angl	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	3.25 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification	l	Band Pass Filter
Compression	17	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	1	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected. Only one side was scannable due to geometry of turnine connection.

Inspector:

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Re	ooper 331a Г-55 FS-PA Rev 4		Component: Weld Number: Weld Configure: Thickness:		at 2 ential
Model #	Serial #	Software Ver	sion	Calibration	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angle	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	3.25 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter
Compression	17	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	I	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Rev 4		Component: Weld Number: Weld Configure: Thickness:		Cold Reheat CRH-GW-3 Circumferential 0.70"	
Model #	Serial #	Software Ver	sion	Calibration	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angl	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	3.25 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification	I	Band Pass Filter
Compression	17	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	1	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Re	r FS-PA Rev 4		Component: Weld Number: Weld Configure: Thickness:		at 4 ential
Model #	Serial #	Software Ver	sion	Calibration	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angle	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	3.25 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter
Compression	17	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	I	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Rev 4		Component: Weld Number: Weld Configure: Thickness:		Cold Reheat CRH-GW-5 Circumferential 0.70"	
Model #	Serial #	Software Ver	sion	Calibration	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Frequency		Wedge Angle		Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	3.25 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter
Compression	17	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolution		Focus Depth		Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Re	ev 4	Compone Weld Nur Weld Cor Thicknes	ent: nber: nfigure: s:	Cold Rehe CRH-GW- Circumfere 0.85"	at 6 ential
Model #	Serial #	Software Ver	rsion	Calibration I	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Frequ	ency	Wedge Angl	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ath)	Acq Rate		Туре
9.8	0.000 in	3.25 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification	1	Band Pass Filter
Compression	17	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Elemen	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	ı	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Only one side was scannable due to asbestos insulation on downstream side of weld.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Re	ev 4	Compone Weld Nun Weld Cor Thicknes	ent: nber: nfigure: s:	Cold Rehe CRH-GW- Circumfere 0.85"	at 7 ential
Model #	Serial #	Software Ver	sion	Calibration	Due	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angl	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	3.25 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification	1	Band Pass Filter
Compression	17	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element	1	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	1	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected. Limited scan due to insulation of adjacent pipe (2:30 to 12:30 was not accessible).

Inspector:

APPENDIX D

NONDESTRUCTIVE EXAMINATION REPORTS BOILER FEEDWATER DISCHARGE PIPING SYSTEM

Power Piping Minimum Wall Calculation Eastern Kentucky Power Cooperative J.S. Cooper Generating Station - Unit No. 2 Boiler Feedwater Discharge Piping System - 12.750" OD

The minimum wall thickness requirements were calculated for the Boiler Feedwater Discharge piping system based on the 2018 ASME Code for Power Piping, B31.1.

ASTM Material Specifications for:

A-106, Grade B

Where:

T - Design Temperature

- P Maximum Allowable Pressure
- D Outside Diameter
- SE Maximum Stress Value
- y Temperature Coefficient
- A Additional Thickness

650	°F
2,800	psig
12.750	inches
17,100	psi
0.40	
0.000	inches

$t_m = (PD/(2(SE+PY))+A)$	0.980	inches

Power Piping Minimum Wall Calculation Eastern Kentucky Power Cooperative J.S. Cooper Generating Station - Unit No. 2 Boiler Feedwater Discharge Piping System - 8.625" OD

The minimum wall thickness requirements were calculated for the Boiler Feedwater Discharge piping system based on the 2018 ASME Code for Power Piping, B31.1.

ASTM Material Specifications for:

A-106, Grade B

Where:

I - Design Temperature

- P Maximum Allowable Pressure
- D Outside Diameter
- SE Maximum Stress Value
- y Temperature Coefficient
- A Additional Thickness

650	°F
2,800	psig
8.625	inches
17,100	psi
0.40	
0.000	inches

$t_m = (PD/(2(SE+PY))+A)$	0.663	inches

Power Piping Minimum Wall Calculation Eastern Kentucky Power Cooperative J.S. Cooper Generating Station - Unit No. 2 Boiler Feedwater Discharge Piping System - 12.750" OD

The minimum wall thickness requirements were calculated for the Boiler Feedwater Discharge piping system based on the 2018 ASME Code for Power Piping, B31.1.

ASTM Material Specifications for:

A-106, Grade C

Where:

T - Design Temperature

- P Maximum Allowable Pressure
- D Outside Diameter
- SE Maximum Stress Value
- y Temperature Coefficient
- A Additional Thickness

650	°F
2,800	psig
12.750	inches
19,800	psi
0.40	
0.000	inches

$t_m = (PD/(2(SE+PY))+A)$	0.853	inches
	0.000	

Power Piping Minimum Wall Calculation Eastern Kentucky Power Cooperative J.S. Cooper Generating Station - Unit No. 2 Boiler Feedwater Discharge Piping System - 8.625" OD

The minimum wall thickness requirements were calculated for the Boiler Feedwater Discharge piping system based on the 2018 ASME Code for Power Piping, B31.1.

ASTM Material Specifications for:

A-106, Grade C

Where:

T - Design Temperature

- P Maximum Allowable Pressure
- D Outside Diameter
- SE Maximum Stress Value
- y Temperature Coefficient
- A Additional Thickness

	-
650	°F
2,800	psig
8.625	inches
19,800	psi
0.40	-
0.000	inches

$t_m = (PD/(2(SE+PY))+A)$	0.577	inches

THIELSCH, INC.											
	195 Frances Avenue	- Cransto	on, RI 02910 - (401) 467-6454							
	MAGNETIC P	ARTICLE E	XAMINATION RI	EPORT							
Job Name: EKPC - J.S. (No. 2	Cooper Station - Unit	Job Date:	March 2024	Job Number: 4	3-24-0331a						
Component: Boiler Feed	water Discharge	Material: A and C	-106, Grades B	Procedure: ND	T-21FS, Re	v. 11					
EXAMINATION METHO	D		TECHNIQUE								
Continuous	Circular		✓ Yoke	Headshot	Coil						
Residual	✓ Longitudinal		Prods	Central Cond.	Oth	er					
CURRENT			WET	DRY							
✓ AC	AMP Turns		14AM	Red							
	Amperage		✓ 20B	Gray							
	Other		Other	Black							
IDENTIFICATION	INDICATION SIZE	со	MMENTS ON RI	ESULTS	ACCEPT	REJECT					
Girth Welds											
GW-1	-	No re	ecordable indicati	ons (NRI)	Х						
GW-2	-		NRI	Х							
Saddle Welds											
SDL-1	-		NRI		Х						
SDL-2	-		NRI		Х						
Penetrations											
P-1	-		NRI		Х						
P-2	-		NRI		Х						
INSPECTOR: A. Giulitto,	D. Drennen	·	LEVEL: II	DATE: 03/16/2	024						

THIELSCH, INC.											
195 Frances Avenue - Cranston, RI 02910 - (401) 467-6454											
	UL	TRASONIC	THICK	NESS EXAMI	NATION R	EPORT					
Job Name: EKPC Unit No. 2	J.S. Co	oper Station -	Job Date	e: March 2024	Job Numb	er: 43-24-()331a				
Component: Boiler Feedwater Di System	scharg	e Piping	Material: A-106, G	Grades B and C	Nominal W N/A x 12.7 N/A x 8.62	/all: 50" OD 5" OD	Calc. Minimum Wall: 0.980"/0.853" 0.663"/0.577"				
EQUIPMENT USED):				KEY:	KEY: All values recorded in inches.					
✓ D-Meter	✓ Pi-T	ape	Other		US - Upstr	US - Upstream T - Top					
Micrometer	🗌 Cali	pers			DS - Down	stream	B - Bottom	I			
	CONFIGURATION		DIAMETER MEASUREMENTS		THIC	KNESS M	EASUREMI	ENTS			
				PI TAPE	12:00	3:00	6:00	9:00			
GW/ 1	US	Pipe Bend		8.594	0.800	0.853	0.851	0.783			
Gw-1	DS	Pipe		8.500	0.838	0.847	0.823	0.828			
GW/-2	US	Pipe		12.766	1.132	1.116	1.143	1.112			
Gw-2	DS	Pipe		12.734	1.137	1.096	1.101	1.126			
					OD	8.625"	12.750"				
					Min.:	0.783	1.096				
					Max.:	0.853	1.143				
					Avg.:	0.828	1.120				
INSPECTOR: K. Ve	on			LEVEL: II		DATE: 03	/16/2024				

	THIELSCH, INC.													
	195 Frances Avenue - Cranston, RI 02910 - (401) 467-6454													
			ULT	RASO	NIC T	HICKN	IESS	EXAM	INATIO	ON RE	PORT	-		
Job I	Name: E	EKPC -	J.S. Co	oper Sta	ation - L	Jnit No.	2	Job Da 2024	ite: Mar	ch	Job Nu	mber: 4	3-24-03	331a
Com	ponent:	Boiler	Feedwa	ter	Materia	al:	Nominal Wall:				Calc. Minimum Wall:			
Discharge Piping System - A-106, Grad					Grades	B and	3 and 0.812" x 8.625" OD 0.663"/0.577"							
	ation 1)		<u> </u>		C							rdad in	inchoo	
	D-Meter	I USEL): Прі.	Tane			C Othe	۶r	NET:		than N			
	Micromete	er		alipers						Less th	an 70%		al Wall	
										Less th	an Calc	Minim	um Wal	
	Α	В				G	н	1	J	ĸ	L	м		
1	0.822	0.832	0.845	0.858	0.873	0.839	0.823	0.808	0.786	0.791	0.815	0.819	0.800	
2	0.827	0.838	0.850	0.861	0.874	0.835	0.823	0.805	0.790	0.794	0.806	0.813	0.800	
3	0.822	0.840	0.857	0.868	0.871	0.839	0.824	0.810	0.806	0.802	0.808	0.807	0.798	
4	0.817	0.836	0.850	0.870	0.877	0.853	0.842	0.824	0.805	0.808	0.810	0.807	0.799	
5	0.818	0.830	0.839	0.857	0.877	0.850	0.842	0.818	0.805	0.806	0.809	0.809	0.804	
6	0.813	0.824	0.833	0.862	0.877	0.852	0.846	0.829	0.805	0.807	0.802	0.803	0.798	
7	0.799	0.819	0.838	0.883	0.875	0.852	0.855	0.831	0.812	0.807	0.798	0.786	0.782	
8	0.795	0.818	0.846	0.875	0.881	0.856	0.853	0.833	0.813	0.801	0.796	0.774	0.772	
9	0.790	0.814	0.850	0.890	0.884	0.861	0.852	0.826	0.803	0.800	0.790	0.768	0.771	
10	0.796	0.809	0.852	0.888	0.889	0.865	0.860	0.816	0.797	0.796	0.787	0.776	0.771	
11	0.802	0.805	0.850	0.888	0.886	0.871	0.857	0.806	0.794	0.787	0.795	0.770	0.779	
12	0.805	0.809	0.854	0.807	0.877	0.854	0.831	0.805	0.795	0.795	0.785	0.772	0.776	
14	0.803	0.020	0.851	0.880	0.871	0.854	0.843	0.823	0.804	0.800	0.787	0.772	0.775	
15	0.801	0.807	0.850	0.876	0.877	0.861	0.850	0.820	0.805	0.802	0.786	0.774	0.779	
16	0.795	0.803	0.846	0.872	0.875	0.868	0.859	0.817	0.809	0.799	0.783	0.772	0.777	PI
17	0.794	0.806	0.855	0.871	0.873	0.874	0.867	0.820	0.806	0.791	0.774	0.765	0.773	Ē
18	0.799	0.814	0.860	0.871	0.876	0.876	0.882	0.827	0.813	0.794	0.763	0.758	0.766	BE
19	0.799	0.814	0.864	0.875	0.879	0.875	0.869	0.820	0.803	0.787	0.755	0.754	0.770	ND
20	0.793	0.814	0.867	0.881	0.885	0.873	0.866	0.811	0.798	0.783	0.761	0.753	0.769	
21	0.790	0.816	0.865	0.879	0.887	0.883	0.868	0.810	0.793	0.782	0.768	0.763	0.775	
22	0.790	0.813	0.864	0.874	0.876	0.873	0.859	0.812	0.795	0.784	0.765	0.766	0.778	
23	0.796	0.819	0.862	0.862	0.876	0.869	0.868	0.824	0.808	0.789	0.758	0.762	0.777	
24	0.788	0.809	0.853	0.860	0.875	0.871	0.873	0.826	0.817	0.789	0.757	0.760	0.769	
25	0.774	0.805	0.843	0.863	0.881	0.870	0.876	0.829	0.814	0.788	0.762	0.760	0.770	
20	0.774	0.799	0.846	0.867	0.883	0.890	0.883	0.833	0.811	0.788	0.758	0.762	0.773	
21	0.769	0.799	0.040	0.850	0.000	0.090	0.000	0.833	0.014	0.779	0.740	0.750	0.767	
29	0.773	0.809	0.863	0.869	0.000	0.902	0.884	0.821	0.812	0.768	0.733	0.740	0.763	
30	0.774	0.804	0.868	0.879	0.893	0.889	0.868	0.828	0.807	0.764	0.741	0.746	0.765	
31	0.774	0.804	0.869	0.880	0.900	0.903	0.864	0.828	0.806	0.775	0.744	0.754	0.764	l.
32	0.775	0.805	0.864	0.870	0.896	0.899	0.866	0.827	0.810	0.782	0.747	0.755	0.766	
33	0.777	0.807	0.857	0.863	0.891	0.899	0.878	0.833	0.816	0.784	0.750	0.755	0.764	
34	0.774	0.803	0.856	0.862	0.890	0.899	0.881	0.842	0.815	0.784	0.747	0.750	0.767	
INSF	PECTOR	R: K. Ve	on				LEVEL	.:		DATE:	03/16/2	2024		

	THIELSCH, INC.													
			195	Frances	s Avenu	ue - Cr	anston	i, RI 02	910 - (401) 46	67-6454			
			ULT	RASO	NIC T	HICKN	IESS	EXAM	INATIO	ON RE	PORT	•		
Job I	Name: E	EKPC -	J.S. Co	oper Sta	ation - L	Jnit No.	2	Job Da 2024	ite: Mare	ch	Job Nu	mber: 4	3-24-03	31a
Com Disc	ponent: harge P	Boiler I iping Sy	Feedwa /stem -	ter	Materia A-106,	al: Grades	B and	Nominal Wall: Calc. Minimum B and 0.812" x 8.625" OD 0.663"/0.577"				1inimum 0.577"	Wall:	
									KEY:	All valu	les reco	rded in	inches.	
✓ D-Meter Pi-Tape							Othe	er		Less	s than N	lominal	Wall	
	Micromete	er	🗌 Ca	alipers						Less th	nan 70%	6 Nomin	al Wall	
										Less the	an Calc	. Minimu	um Wal	
	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	
35	0.760	0.796	0.851	0.864	0.895	0.902	0.879	0.842	0.819	0.787	0.750	0.750	0.758	ļ
36	0.760	0.792	0.855	0.868	0.895	0.908	0.879	0.849	0.819	0.787	0.755	0.753	0.754	
37	0.757	0.795	0.860	0.876	0.903	0.906	0.879	0.840	0.810	0.784	0.748	0.749	0.755	
39	0.782	0.815	0.861	0.874	0.892	0.888	0.865	0.841	0.815	0.763	0.753	0.752	0.778	-
40	0.791	0.825	0.870	0.875	0.888	0.871	0.842	0.826	0.810	0.772	0.762	0.768	0.772	PIPI
41	0.791	0.824	0.872	0.876	0.883	0.862	0.835	0.814	0.811	0.786	0.775	0.781	0.776	B
42	0.796	0.823	0.856	0.866	0.877	0.851	0.829	0.817	0.807	0.784	0.788	0.792	0.775	E
43	0.803	0.823	0.842	0.854	0.871	0.853	0.831	0.826	0.805	0.774	0.786	0.794	0.789	U
44	0.797	0.821	0.840	0.849	0.867	0.863	0.839	0.830	0.806	0.791	0.788	0.793	0.785	
45	0.790	0.817	0.837	0.856	0.878	0.860	0.852	0.837	0.835	0.791	0.785	0.793	0.770	
40	0.766	0.815	0.853	0.850	0.870	0.852	0.851	0.834	0.820	0.790	0.772	0.793	0.767	
48	0.838	0.830	0.847	0.825	0.830	0.826	0.823	0.828	0.828	0.828	0.825	0.823	0.827	PIPE
					CO VALS									
	Min.:	0.739	5			- and -	1	1		F. F.	-12		JAL	
	Max.:	0.908		-	- Court	1	2	-	1.0		=			1
	Avg.:	0.822		1	S an	Ka.	244				No. P		en la	4
			1		1		MIL	NO.			TE (-	1. 4	The	121
					1		ILINE	-4. 4	Sel 145			- Jac		
								and the	1.1.1.1111		-		Et.	
					Alexandre a			Commence and		11		17		
				Q Val	12 C	Thillies			-Garage			-		
					N. A. P.			T I-	Con the las	IF My	WERE TANK	R	Tr	~
			570			MARK	Station -	and are	and the second				00	2
			-				ter for	11			(Marie	A B	1 4	1
							12 and						. A	
			1				*		R					
and the second s									5	in a state		And and a state		
									P					
			100						1	17.		The states		1 10 10 10 10 10 10 10 10 10 10 10 10 10
				11. S. 19. 23	. ····	1000					00/100/2		Mark and	
INSF	PECTOR	NSPECTOR: K. Veon LEVEL: II DATE: 03/16/2024												

	THIELSCH, INC.												
			195 Fr	ances A	venue	- Crans	ton, RI	02910 -	• (401) 4	67-6454			
			ULTR	ASON	IC THIC	CKNES	S EXA	MINA	TION R	EPOR	Г		
Job	Name: E	KPC - J	.S. Coop	oer Statio	on - Unit	No. 2	Job Dat	te: March	2024 ו	Job Nur	nber: 43	-24-033	1a
Com	ponent:	Boiler F	eedwate	r	Materia	l:	Nomina	l Wall:		Calc. Minimum Wall:			
Disc	harge Pi	ping Sys	stem - (L	ocation	A-106, 0	Grades	1.000" >	x 12.750	" OD	0.980"/0).853"		
2)					B and C	;		1					
EQU	IPMENT	USED:						KEY:	All value	es record	ded in in	ches.	
	D-Meter	_	Pi-	Гаре	Other				Les	s than No	ominal V	Vall	
	wicromete	r		ipers					Less th	nan 70%	Nomina	I Wall	
		-							Less the	an Calc.	Minimur	n Wall	1
	A	B	C	D	E	F	G 1 1 2 0	H	1 1 2 2	J	K	L	
	1.147	1.157	1.139	1.130	1.133	1.145	1.139	1.137	1.133	1.140	1.143	1.144	
3	1 143	1 147	1 140	1 135	1 142	1 138	1 1.37	1 141	1 135	1 141	1 1 4 4	1 148	
4	1.139	1.145	1.138	1.133	1.136	1.138	1.138	1.146	1.144	1.146	1.160	1.157	
5	1.131	1.134	1.134	1.127	1.132	1.142	1.144	1.150	1.151	1.153	1.158	1.152	
6	1.117	1.134	1.134	1.129	1.135	1.147	1.151	1.156	1.154	1.157	1.157	1.147	
7	1.118	1.128	1.129	1.131	1.139	1.145	1.152	1.156	1.155	1.160	1.161	1.146	
8	1.123	1.127	1.132	1.129	1.148	1.144	1.155	1.159	1.159	1.165	1.159	1.151	
9	1.123	1.127	1.131	1.131	1.142	1.143	1.150	1.158	1.162	1.165	1.158	1.152	
10	1.111	1.133	1.128	1.132	1.167	1.143	1.152	1.158	1.163	1.173	1.155	1.149	
11	1.121	1.122	1.129	1.133	1.163	1.146	1.156	1.161	1.166	1.170	1.157	1.153	
12	1.102	1.125	1.128	1.139	1.143	1.150	1.152	1.165	1.168	1.158	1.158	1.151	σ
13	1.108	1.128	1.136	1.144	1.146	1.149	1.151	1.159	1.168	1.156	1.148	1.152	
14	1.109	1.126	1.137	1.146	1.150	1.148	1.154	1.162	1.164	1.153	1.151	1.146	
15	1.107	1.126	1.137	1.140	1.144	1.149	1.153	1.160	1.158	1.154	1.146	1.176	
16	1.118	1.130	1.140	1.135	1.139	1.144	1.150	1.162	1.156	1.159	1.152	1.197	
1/	1.120	1.127	1.137	1.130	1.136	1.146	1.152	1.167	1.156	1.158	1.159	1.151	
18	1.115	1.130	1.125	1.127	1.130	1.152	1.105	1.164	1.160	1.161	1.157	1.158	
20	1.120	1.133	1.134	1.132	1.141	1.147	1.102	1.171	1.102	1.104	1.101	1.102	
20	1.113	1 140	1.130	1 1 3 6	1 146	1 1 1 5 9	1.103	1.169	1 160	1.102	1.102	1 164	
22	1.123	1.141	1.131	1.135	1.143	1.155	1.169	1.165	1.162	1.169	1.164	1.169	
23	1.120	1.129	1.127	1.135	1.145	1.158	1.171	1.163	1.164	1.166	1.170	1.167	
24	1.135	1.131	1.132	1.135	1.151	1.162	1.168	1.167	1.163	1.167	1.170	1.179	
25	1.136	1.137	1.135	1.136	1.146	1.161	1.147	1.161	1.161	1.167	1.168	1.182	
$\left - \right $													
									L				
LIN2F			11				11	DATE: 03/16/2024					

	THIELSCH, INC.												
			195 Fr	ances A	venue ·	· Crans	ton, RI	02910 -	(401) 4	67-645	4		
			ULTR	ASON	C THIC	KNES	S EXA	MINAT	ION R	EPOR	Т		
Job N	lame: Eł	(PC - J.(S. Coope	er Statio	n - Unit N	lo. 2	Job Dat	te: March	า 2024	Job Nu	Imber: 4	3-24-033	31a
Comp	onent: E	Boiler Fe	edwater		Materia	:	Nominal Wall:			Calc. Minimum Wall:			
Disch	arge Pip	ing Syst	em - (Lo	cation	A-106, (Grades	1.000" >	x 12.750	" OD	0.980"/0.853"			
2)					B and C	;							
EQUI	PMENT	USED:				_		KEY:	All value	es reco	rded in ir	iches.	
D	-Meter		Pi-1	Гаре		Other			Les	s than N	Iominal V	Nall	
[√] М	Aicrometer Calipers								Less tl	nan 70%	% Nomina	al Wall	
									Less th	an Calc	. Minimu	ım Wall	
	M	N	0	P	Q	R	S	Т	U				
1	1.137	1.127	1.135	1.142	1.132	1.147	1.147	1.123	1.132		Min.:	1.101	
2	1.138	1.123	1.117	1.122	1.130	1.123	1.118	1.110	1.130	•	Max.:	1.197	
3	1.130	1.124	1.120	1.123	1.123	1.125	1.119	1.110	1.142		Avg.:	1.142	
4	1.151	1.120	0.120	1.119 Obstr	1.125 Obstr	0.123	1.119 Obstr	1.119	1.132				
6	1.140	0.134	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	0.121	1.127	•			
7	1.142	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	1.123	•			
8	Ohstr	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Ohstr	•			
9	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.				
10	Obstr.	Obstr.	Obstr.	Obstr	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	r			
11	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	•			
12	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.				
13	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	PIP			
14	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	ш			
15	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.				
16	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.				
17	1.162	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	Obstr.	1.118				
18	1.170	1.151	Obstr.	Obstr.	Obstr.	Obstr.	1.112	1.101	1.108				
19	1.164	1.158	1.134	1.127	1.123	1.112	1.103	1.108	1.112				
20	1.167	1.149	1.130	1.123	1.116	1.119	1.105	1.106	1.110				
21	1.159	1.138	1.134	1.128	1.122	1.120	1.111	1.109	1.109				
22	1.164	1.145	1.130	1.124	1.120	1.120	1.109	1.109	1.119				
23	1.160	1.147	1.133	1.123	1.126	1.122	1.111	1.138	1.114				
24	1.154	1.150	1.133	1.128	1.126	1.114	1.113	1.113	1.122				
25	1.154	1.154	1.132	1.131	1.125	1.109	1.119	1.124	1.120				
									the bar		-		- 1
										W C	AND HE		111 -
									TE		NAME .	Story 1	
										-	and		10 10 10 10 10 10 10 10 10 10 10 10 10 1
									1		and the second		-
INSP	ECTOR:	K. Veor	<u>ו</u>	ı	<u>,</u>	LEVEL:		DATE: 03/16/2024					

Customer:EKPC CooperUnit Number:2Project Number:43-24-0331aProcedure:TEI-NDT-55 FS-PAMachine Information		ev 4	Component: Weld Number: Weld Configure: Thickness:		Boiler Feed BFD-GW-1 Circumfere 0.75"	d Discharge ential
Model #	Serial #	Software Ver	sion	Calibration [)ue	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Frequ	ency	Wedge Angle	e	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре
9.8	0.000 in	5.25 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter
Compression	26	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Elemen	t	Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth	I	Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number: Procedure: Machine Information	EKPC Cooper 2 43-24-0331a TEI-NDT-55 FS-PA Rev 4		Compone Weld Nun Weld Cor Thicknes	ent: nber: ifigure: s:	Boiler Feed Discharge BFD-GW-2 Circumferential 1.125"		
Model #	Serial #	Software Ver	sion	Calibration)ue	Save Mode	
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data	
Probe Characterization							
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angle	e	Probe Aperture	
5L16-A10	XAAB-0184	5MHz		55		0.384	
Setup							
Beam Delay	Start(1/2 path)	Range(1/2 pa	ith)	Acq Rate		Туре	
9.8	0.000 in	5.25 in		60		PA	
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter	
Compression	26	On		FW		None	
Voltage	Gain	Mode		Wave Type		Pulse Width	
40 (low)	35.3 dB	PE		Shear		100.00 ns	
Transducer Calculator							
Element Quantity	First Element	Last Element	1	Resolution		Scan Type	
16	1	16		1.0		Sectoral	
Start Angle	Stop Angle	Angle Resolu	ution	Focus Depth		Sound Velocity	
30	80	1		Unfocused		0.128	

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

APPENDIX E

NONDESTRUCTIVE EXAMINATION REPORTS CONDENSATE LINE

THIELSCH, INC.											
1	195 Frances Avenue	- Cransto	on, RI 02910 - (401) 467-6454							
	MAGNETIC P	ARTICLE E	XAMINATION R	EPORT							
Job Name: EKPC - J.S. (No. 2	Cooper Station - Unit	Job Date:	March 2024	Job Number: 4	umber: 43-24-0331a						
Component: Condensate	Line	Material: N	I/A	Procedure: ND	T-21FS, Re	v. 11					
EXAMINATION METHO	D		TECHNIQUE								
Continuous	Circular		✓ Yoke	Headshot	Coil						
Residual	✓ Longitudinal		Prods	Central Cond.	🗌 Oth	er					
CURRENT			WET	DRY							
I AC □	AMP Turns		14AM	Red							
	Amperage		✓ 20B	Gray							
	Other		Other	Black							
IDENTIFICATION	ESULTS	ACCEPT	REJECT								
Girth Welds											
GW-1	Х										
GW-2	-		NRI	Х							
Penetrations											
P-1	-		NRI		Х						
P-2	-		NRI		Х						
INSPECTOR: A. Giulitto,	D. Drennen		LEVEL: II	DATE: 03/16/2	024						

	THIELSCH, INC.												
			195 Fr	ances A	Avenue	- Crans	ston, RI	02910 ·	- (401) 4	467-6454	4		
			ULTR	ASON	IC THI	CKNES	SS EXA	MINA		EPOR	Т		
Job N	lame: Ek	(PC - J.(S. Coope	er Statio	n - Unit N	No. 2	Job Dat	e: March	า 2024	Job Nur	mber: 43	-24-033 ⁻	1a
Comp (Loca	oonent: C tion 1)	Condens	ate Line	-	Materia N/A	l:	Nomina N/A	l Wall:		Calc. Minimum Wall: N/A			
EQUI	PMENT -Meter licrometer	USED:	Pi- Cal	Tape lipers	I	Other	r	KEY:	All value	es record	ded in ind	ches.	
	A	В	С	D	E	F	G	н	I	J	ĸ	L	
1	0.419	0.420	0.399	0.406	0.408	0.401	0.399	0.398	0.389	0.378	0.387	0.383	
2	0.430	0.404	0.399	0.405	0.403	0.416	0.401	0.393	0.394	0.386	0.393	0.378	
3	0.418	0.401	0.396	0.394	0.399	0.403	0.436	0.402	0.389	0.390	0.391	0.377	
4	0.412	0.397	0.396	0.395	0.401	0.403	0.443	0.403	0.391	0.389	0.391	0.377	
5	0.403	0.399	0.393	0.409	0.400	Obstr.	0.412	0.404	0.395	0.402	0.389	0.374	
6	0.404	0.397	0.391	0.400	0.400	Obstr.	0.417	0.409	0.406	0.406	0.391	0.404	
	0.409	0.404	0.401	0.402	0.406	0.424	0.412	0.412	0.403	0.439	0.401	0.365	
8	0.408	0.404	0.408	0.408	0.414	0.424	0.419	0.424	0.407	0.400	0.401	0.364	
9	0.413	0.403	0.405	0.408	0.419	0.424	0.418	0.412	0.408	0.402	0.387	0.360	
10	0.415	0.414	0.411	0.414	0.440	0.420	0.421	0.412	0.404	0.390	0.370	0.300	BO
12	0.410	0.419	0.410	0.413	0.417	0.424	0.415	0.408	0.403	0.394	0.370	0.370	Ř
12	0.423	0.410	0.417	0.411	0.413	0.421	0.417	0.403	0.385	0.300	0.307	0.356	
1/	0.429	0.422	0.410	0.412	0.417	0.420	0.402	0.400	0.386	0.302	0.373	0.354	
15	0.400	0.421	0.421	0.411	0.411	0.420	0.403	0.402	0.384	0.378	0.365	0.357	
16	0.436	0.413	0.425	0.406	0.411	Obstr	0.400	0.388	0.378	0.372	0.366	0.345	
17	0.400	0.422	0.420	0.407	0.410	0 406	0.004	0.392	0.379	0.072	0.387	0.353	
18	0 435	0 422	0.110	0 430	0 404	0.410	0.398	0.385	0.376	0.365	0.366	0.351	
19	0.438	0.419	0.415	0.401	0.405	0.407	0.410	0.388	0.372	0.368	0.363	0.368	
20	0.434	0.417	0.418	0.401	0.412	0.412	0.406	0.392	0.375	0.355	0.357	0.371	
21	0.355	0.339	0.343	0.341	0.385	0.388	0.375	0.380	0.399	0.421	0.457	0.388	
22	0.348	0.334	0.341	0.353	0.381	0.389	0.381	0.377	0.396	0.426	0.441	0.417	PIP
23	0.346	0.337	0.372	0.357	0.389	0.387	0.389	0.380	0.405	0.432	0.418	0.426	ш
					 								
<u> </u>							<u> </u>				<u> </u>		ļ
INSP	NSPECTOR: K. Veon					LEVEL:	II		DATE: 03/16/2024				

	THIELSCH, INC.													
			195 Fr	ances A	Avenue	- Crans	ston, RI	02910 ·	- (401) -	467-645 [,]	4			
			ULTR	ASON	IC THI	CKNES	SS EXA	MINA		EPOR	т			
Job N	lame: Ek	(PC - J.(S. Coope	er Statio	n - Unit N	No. 2	Job Dat	e: March	า 2024	Job Nu	mber: 43	-24-0331	1a	
Component: Condensate Line - M (Location 1) N					Materia N/A	l:	Nomina N/A	l Wall:		Calc. M N/A	linimum '	Wall:		
								KEX .	All valu	es recor	ded in in	ches		
	-Meter	USED.	Pi-1	Tape		Other			/ III Valu			011001		
ПМ	icrometer			ipers										
	м	N	0	Р	Q	R	S	Т						
1	0.387	0.420	0.413	0.414	0.412	0.389	0.397	0.411			Min:	0.334		
2	0.377	0.390	0.415	0.420	0.418	0.399	0.403	0.416			Max:	0.461		
3	0.374	0.389	0.412	0.412	0.412	0.399	0.406	0.413			Avg:	0.399		
4	0.375	0.383	0.406	0.420	0.408	0.396	0.401	0.407						
5	0.379	0.386	0.404	0.409	0.410	0.402	0.400	0.404						
6	0.381	0.388	0.409	0.400	0.411	0.398	0.398	0.404						
7	0.388	0.386	0.401	0.412	0.406	0.395	0.404	0.407						
8	0.384	0.385	0.399	0.405	0.402	0.403	0.395	0.404						
9	0.376	0.406	0.399	0.399	0.402	0.380	0.392	0.410	Ē					
10	0.372	0.380	0.393	0.402	0.405	0.391	0.404	0.412	BO					
12	0.350	0.300	0.397	0.400	0.409	0.393	0.400	0.414	Ň					
12	0.366	0.369	0.390	0.390	0.414	0.400	0.409	0.410						
14	0.363	0.363	0.387	0.402	0.428	0.406	0.410	0.424						
15	0.355	0.358	0.390	0.410	0.419	0.409	0.416	0.430						
16	0.359	0.390	0.391	0.410	0.412	0.407	0.419	0.431						
17	0.364	0.370	0.397	0.418	0.451	0.420	0.430	0.436						
18	0.374	0.384	0.412	0.429	0.461	0.429	0.434	0.441						
19	0.379	0.398	0.423	0.436	0.436	0.436	0.437	0.442						
20	0.373	0.411	0.452	0.445	0.437	0.433	0.441	0.445						
21	0.384	0.397	0.402	0.392	0.359	0.347	0.357	0.375	Р					
22	0.381	0.394	0.412	0.403	0.357	0.352	0.359	0.370	PE					
23	0.385	0.403	0.398	0.408	0.378	0.354	0.372	0.374						
									Ka	6				
<u> </u>								1 m	9	27				
				25				1000		1				
				1	(main			1000	1 pt					
<u> </u>				100		Roles And And		1. N.	1 Can	AN A				
							- R 100	ALC: NO		and the second s				
				1		Pres.	4 all all a			4	1			
							-	Si James	-	1				
				100		20-1	and the second		C. C.	<u> </u>				
				ALC: N	and the	1995 - 19 - 19	(STELLER)	1310 19	State of the second	Con the				
INSP	INSPECTOR: K. Veon LEVEL: II DATE: 03/16/2024													

Customer:EKPC CooperInit Number:2Project Number:43-24-0331aProcedure:TEI-NDT-55 FS-PA Rev 4Iachine Information		ev 4	Component: Weld Number: Weld Configure: Thickness:		Condensate Condensate-GW-1 Circumferential 0.4"		
Model #	Serial #	Software Ver	sion	Calibration D)ue	Save Mode	
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data	
Probe Characterization							
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angle	Э	Probe Aperture	
5L16-A10	XAAB-0184	5MHz		55		0.384	
Setup							
Beam Delay	Start(1/2 path)	Range(1/2 pa	th)	Acq Rate		Туре	
9.8	0.000 in	4.5 in		60		PA	
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter	
Compression	23	On		FW		None	
Voltage	Gain	Mode		Wave Type		Pulse Width	
40 (low)	35.3 dB	PE		Shear		100.00 ns	
Transducer Calculator							
Element Quantity	First Element	Last Element		Resolution		Scan Type	
16	1	16		1.0		Sectoral	
Start Angle	Stop Angle	Angle Resolu	ition	Focus Depth		Sound Velocity	
30	80	1		Unfocused		0.128	

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

Customer: Unit Number: Project Number:	EKPC Cooper 2 43-24-0331a	Compone Weld Nun Weld Cor	ent: nber: nfigure:	Condensate Condensate-GW-2 Circumferential		
Procedure:	TEI-NDT-55 FS-PA R	ev 4	Inicknes	S:	0.4"	
Machine Information						
Model #	Serial #	Software Ver	sion	Calibration E	lue	Save Mode
Omniscan MX2	OMNI2-101475	MXU-4.4R5		7/23/2024		Inspection Data
Probe Characterization						
Probe Model	Probe Serial	Probe Freque	ency	Wedge Angle	9	Probe Aperture
5L16-A10	XAAB-0184	5MHz		55		0.384
Setup						
Beam Delay	Start(1/2 path)	Range(1/2 pa	th)	Acq Rate		Туре
9.8	0.000 in	4.5 in		60		PA
Scale Type	Scale Factor	Video Filter		Rectification		Band Pass Filter
Compression	23	On		FW		None
Voltage	Gain	Mode		Wave Type		Pulse Width
40 (low)	35.3 dB	PE		Shear		100.00 ns
Transducer Calculator						
Element Quantity	First Element	Last Element		Resolution		Scan Type
16	1	16		1.0		Sectoral
Start Angle	Stop Angle	Angle Resolu	ition	Focus Depth		Sound Velocity
30	80	1		Unfocused		0.128

COMMENTS:

Above LPA image is of typical 360° non-relevant root signal/root geometry. No service-related indications detected.

APPENDIX F

NONDESTRUCTIVE EXAMINATION REPORTS DEAERATOR HEATER

<u>Minimum Wall Thickness Calculations</u> Eastern Kentucky Power Cooperative J.S. Cooper Generating Station - Unit No. 2 Deaerator Heater

The minimum wall thickness requirements were calculated for the head and shell sections of the deaerator heater based on the 2015 ASME Boiler and Pressure Vessel Code, Section II. The head and shell material was specified to be produced

Head Thickness:

t= (PD)/(2SE - 0.2P) (Paragraph UG32 for torispherical heads)

THIELSCH, INC.												
195 Frances Avenue - Cranston, RI 02910 - (401) 467-6454												
ULTRASONIC WALL THICKNESS EXAMINATION REPORT												
Job Name: EKPC - Station - Unit No. 2	J.S.	Cooper	Job Date:	: March 202	24	Job Numb	nber: 43-24-0331a					
Component: Deaer	ator I	Heater	Material:	SA-285, GI	ade C	Nominal \ Heads: 0.	Vall: 500"	Calc. Minir 0.184"	num Wall:			
						Shell: 0.3	125"	0.185"				
EQUIPMENT USE	D:	_				KEY:	All values	recorded in	n inches.			
☐ D-Meter	∐ Pi	-Tape	U Other			E - East		I - I OP B Bottom				
Micrometer	[√] Ca	alipers				vv - vvest		D - Dollom	I			
IDENTIFICATION	CON	IFIGURATION	SEAM W MEA	VELD THIC	KNESS NTS	GI	RTH WEL MEASU	D THICKN	ESS			
			East	Middle	West	12:00	3:00	6:00	9:00			
GW-4	E	Shell				0.333	0.334	N/A	0.327			
0114	W	Head				0.524	0.532	N/A	0.528			
1.5-3	Т	Shell	N/A	0.341	0.327							
20 0	В	Shell	N/A	0.317	0.320							
							Head	Shell				
						Min.	0.524	0.317				
						Max.	0.532	0.341				
						Avg.	0.528	0.328				
								<u> </u>				
								<u> </u>				
								╂─────				
								<u> </u>				
								<u> </u>				
								 				
								<u> </u>				
								1				
								<u> </u>				
INSPECTOR: K. V	eon			LEVEL: II			DATE: 03	3/16/2024				

		THIE	LSCH, ING	C.								
195 Frances Avenue - Cranston, RI 02910 - (401) 467-6454												
	MAGNE	TIC PARTI	CLE EXAMINAT	ION REPORT								
Job Name: EKPC - - Unit No. 2	J.S. Cooper Station	Job Date: I	March 2024	Job Number: 43-24-0331a								
Component: Deaera	ator Heater	Material: S	A-285, Grade C	IFS, Rev. 11								
EXAMINATION ME	THOD		TECHNIQUE									
✓ Continuous	Circular		✓ Yoke	🗌 Coi	I							
Residual	✓ Longitudinal		Prods	Central Cond.	Oth	ier						
CURRENT			WET	DRY								
✓ AC	AMP Turns		14AM	Red								
DC	Amperage		✓ 20B	Gray								
	Other —		Other	Black								
IDENTIFICATION	INDICATION SIZE		COMMENTS ON	RESULTS	ACCEPT	REJECT						
Girth Welds												
GW-1	N/A		Not Acces	sible								
GW-2	N/A		Not Acces									
GW-3	N/A		Not Acces	sible								
GW-4	-		NRI		Х							
Seam Welds												
LS-1	N/A		Not Acces	sible								
LS-2	N/A		Not Acces	sible								
LS-3	-	NR	I (Only 24" of Sea	am Accessible)	X							
Penetrations												
P-1	N/A		Not Acces	sible								
P-2	N/A		Not Acces	sible								
P-3	N/A		Not Acces	sible								
P-4	N/A		Not Acces	sible								
P-5	-		NRI		X							
P-6	-		NRI (weld e	roded)	Х							
P-7	-		NRI (weld e	roded)	Х							
P-8	-		NRI		Х							
			1	1								
INSPECTOR: A. Gi	ulitto, D. Drennen		LEVEL: II	DATE: 03/16/2024								

THIELSCH, INC.													
195 Frances Avenue - Cranston, RI 02910 - (401) 467-6454													
ULTRASONIC WALL THICKNESS EXAMINATION REPORT													
Job Name: EKPC - Unit No. 2	J.S. Coo	oper Stat	ion -	Job Dat	te: March 2024 Job Number: 43-24-0331a								
Component: Deaerator Heater				Materia SA-285	l: , Grade (C	Nomina Heads:	minal Wall: Calc. Minimum Wall: ads: 0.500" 0.184"			Wall:		
	<u>).</u>						KEV.			led in inc	chos		
D-Meter	Pi-Tap	be		Other			N - Nort	h	T - Top				
Micrometer	Calipe	ers					S - Sout	th	B - Botte	om			
				тні	CKNES	S MEAS	UREME	NTS					
	1	2	3	4	5	6	7	8					
East Head					Not	t Access	ible						
West Head	0.496	0.499	0.500	0.499	0.502	0.498	0.494	0.509					
					-	L	$\overline{\ }$						
			/	V		2	7	۹ ۱					
				3 4	(р	-8	56						
				· · ·									
				λ	,								
				<u> </u>	<u>8</u>	3	/						
					Not Act	cessible	1						
					<u>WEST</u>	HEAD							
			Heads	East	West								
			Min.	-	0.494								
			Max.	-	0.509								
			Avg.	-	0.500								
INSPECTOR: K. Ve	on				LEVEL:	II		DATE:	03/16/20	24			

APPENDIX G

NONDESTRUCTIVE EXAMINATION REPORTS DEAERATOR STORAGE TANK

<u>Minimum Wall Thickness Calculations</u> Eastern Kentucky Power Cooperative J.S. Cooper Generating Station - Unit No. 2 Deaerator Storage Tank

The minimum wall thickness requirements were calculated for the head and shell sections of the deaerator storage tank based on the 2015 ASME Boiler and Pressure Vessel Code, Section II. The head and shell material was specified to be produced in accordance with:

		THIELSCH, INC.									
195 Frances Avenue - Cranston, RI 02910 - (401) 467-6454											
	MAGNETIC	PARTICLE EXAMINATION	REPORT								
Job Name: EKPC - J.S Unit No. 2	S. Cooper Station -	Job Date: March 2024	Job Number: 43-2	24-0331							
Component: Deaerato	r Storage Tank	Material: SA-285, Grade C	Procedure: NDT-2	21FS, Rev.	11						
EXAMINATION METH	IOD	TECHNIQUE									
✓ Continuous	Circular	✓ Yoke	Coil								
Residual	✓ Longitudinal	Prods	Central Cond.	Oth	ier						
CURRENT		WET	DRY								
✓ AC	AMP Turns	14AM	Red								
	Amperage	20B	Gray								
l	Other	Other	Black								
IDENTIFICATION	INDICATION SIZE	COMMENTS ON	RESULTS	ACCEPT	REJECT						
Girth Welds											
GW-1	-	No recordable indic	ations (NRI)	Х							
GW-2	-	NRI		Х							
GW-3	-	NRI		Х							
GW-4	-	NRI		Х							
GW-5	-	NRI		Х							
GW-6	-	NRI		Х							
GW-7	-	NRI	Х								
Soom Wolds											
		NRI		v							
15-2		NRI		X							
1 5-3		NRI		X							
1 S-4		NRI		X							
18-5	-	NRI		X							
LS-6	_	NRI		X							
Penetrations											
P-1	-	NRI		Х							
P-2	-	NRI		Х							
P-3	-	NRI		Х							
P-4	1/2" LT	Linear fatigue-type indica (Removed with ligh	tion in toe of weld nt grinding)	Х							
P-5	-	NRI	~	Х							
P-6	-	NRI	Х								
P-7	-	NRI	Х								
INSPECTOR: A. Giulit	to, D. Drennen	LEVEL: II	DATE: 03/16/202	4							

	195 Frances Aven	ue - Crans	ston. RI 02910	(401) 467-6454					
	MAGNETIC			REPORT					
Job Name: EKPC - J.	S. Cooper Station -	Job Date: I	March 2024	Job Number: 43-	24-0331				
Unit No. 2									
Component: Deaerato	or Storage Tank	Material: S	A-285, Grade C	Procedure: NDT-21FS, Rev. 11					
EXAMINATION METH	HOD		TECHNIQUE						
✓ Continuous	Circular		✓ Yoke	Coil					
Residual	✓ Longitudinal		Prods	Central Cond.	Other				
CURRENT			WET	DRY					
AC	AMP Turns		14AM	Red					
	Amperage		✓ 20B	Gray					
	Other		Other	Black					
IDENTIFICATION	INDICATION SIZE	C	OMMENTS ON F	RESULTS	ACCEPT	REJECT			
Penetrations continu	led								
P-8	-	No	recordable indica	ations (NRI)	Х				
P-9	-		NRI	Х					
P-10	-		NRI		Х				
P-11	-		NRI		Х				
P-12	-		NRI		Х				
P-13	-		NRI		Х				
P-14	-		NRI		Х				
P-15	-		NRI		Х				
P-16	-		NRI		Х				
P-17	-		NRI		Х				
P-18	-		NRI		Х				
P-19	-		NRI		Х				
P-20	-		NRI		Х				
P-21	-		NRI		Х				
P-22	-		NRI		Х				
P-23	-		NRI		Х				
P-24	-		NRI		Х				
P-25	-		NRI		Х				
INSPECTOR: A Giuli	tto D Drennen			DATE: 03/16/202	24				

THIELSCH, INC.														
ULTRASONIC WALL THICKNESS EXAMINATION REPORT														
Job Name: EKPC -	Job Name: EKPC - J.S. Cooper Station Job Date: March 2024 Job Number: 43-24-0331													
- Unit No. 2														
Component: Deaera	ator S	torage Tank	Material:	SA-285, GI	ade C	Nominal \	Nall:	Calc. Mini	mum Wall:					
						Heads: 0.	.750" 525"	0.326"	0.326"					
	D:				KEY: All values record			s recorded	in inches.					
✓ D-Meter	 Pi-	Таре	Other			E - East		Т - Тор						
 Micrometer	Ca	lipers				W - West		B - Botton	n					
				VELD THIC		Gli	MEASU	D THICKN	ESS					
IDENTIFICATION		IFIGURATION												
		•	East	Middle	West	12:00	3:00	6:00	9:00					
GW-1	E	Head				0.822	0.804	0.843	0.838					
		Shell				0.581	0.572	0.571	0.572					
GW-2		Shell				0.573	0.590	0.590	0.577					
	F	Shell				0.575	0.585	0.595	0.585					
GW-3	W	Shell				0.576	0.575	0.583	0.565					
	E	Shell				0.576	0.570	0.581	0.573					
GW-4	W	Shell				0.595	0.580	0.587	0.581					
CW 5	E	Shell				0.586	0.580	0.588	0.576					
GW-5	W	Shell				0.584	0.579	0.585	0.580					
GW-6	Е	Shell				0.585	0.587	0.592	0.601					
	W	Shell				0.569	0.589	0.582	0.581					
GW-7	E	Shell				0.578	0.583	-	0.581					
	W	Head				0.815	0.813	0.805	0.825					
	Т	Shell	0.572	0.586	0.577									
LS-1	В	Shell	0.580	0.573	0.561									
180	Т	Shell	0.590	0.576	0.582									
L3-2	В	Shell	0.582	0.581	0.580									
LS-3	Т	Shell	0.565	0.579	0.573									
	В	Shell	0.547	0.502	0.583									
LS-4	T	Shell	0.570	0.580	0.580									
	В	Shell	0.580	0.581	0.576									
LS-5		Shell	0.580	0.598	0.601									
	Т	Shell	0.580	0.595	0.510			Heade	Shell					
LS-6	B	Shell	0.579	0.591	0.585	1	Min.	0.804	0.502					
							Max.	0.843	0.601					
							Avg.	0.821	0.579					
INSPECTOR: K. Ve	eon			LEVEL: II			DATE: 03	3/16/2024						

THIELSCH, INC.													
195 Frances Avenue - Cranston, RI 02910 - (401) 467-6454													
ULTRASONIC WALL THICKNESS EXAMINATION REPORT													
Job Name: EKPC - Station - Unit No. 2	- J.S. Coop	er	Job Date	e: March 2	2024	Job Number: 43-24-0331							
Component:			Material:			Nominal	Wall:	Calc. Mir	nimum W	all:			
Deaerator Storage	Tank		SA-285,	Grade C		Heads: (Heads: 0.750" 0.326"						
	D:	ſ				KEY:	All value	s recorde	ed in inche	es.			
✓ D-Meter	Pi-Tape		Other			N - North	ו	Т - Тор					
Micrometer			S - Souti	ר	B - Botto	m							
				тніскі	NESS ME	ASUREM	ENTS						
	1	2	3	4	5	6	7	8	9				
East Head	0.767	0.770	0.777	0.766	0.761	0.761	0.825	0.780	0.809				
West Head	0.780	0.784	0.794	0.792	0.791	0.783	0.786	0.788	0.792				
		1					7	1	$\overline{\}$				
	2			\sum				2	· · · · ·				
	2 4	_	с л				1	5 6	7				
	3 4	5	6 /					8	'				
	N .	8	۱ ۱			\Box	,	9	/				
		MANWAY											
		9							<u> </u>				
	<u> </u>	AST HEAD	<u> </u>				<u>WE</u>	<u>ST HEAD</u>					
		Heads	East	West									
		Min.	0.761	0.780									
		Max.	0.825	0.794									
		Avg.	0.780	0.788									
INSPECTOR: K. V	eon	I			LEVEL: I			DATE: 0	3/16/2024	4			

APPENDIX H

ARTICLE "PROPER PIPING-SYSTEM EXAMS KEEP MONEY IN THE PLANT"

PUMPS, VALVES, PIPING

Proper piping-system exams keep money in the plant

Many nondestructive exams and metallurgical evaluations confirm that defects often do not affect the life and integrity of piping systems. The lack of understanding of materials used results in the repair of inconsequential defects—or needless and costly replacement

By Helmut Thielsch, PE, Florence Cone, and Peter Kennefick, Thielsch Engineering Inc.

n North America alone, some 50 catastrophic failures or ruptures have occurred in main steam, hot reheat, and cold reheat piping systems since 1950 but only a few occurred in seam-welded, hot reheat piping systems. Operating statistics prove that seam-welded piping operates as reliably as seamless pipe. But damage caused by ruptures in seam-welded pipe makes headlines, because the seams tend to unzip and failures open large pipe areas, releasing great volumes of highpressure, high-temperature steam.

Inspection methodologies have been refined over the past five decades. Current approaches, especially ultrasonic, acousticemission, and fluorescent magnetic particle examinations, can easily detect discontinuities in weld and base materials. These sensitive techniques can trace defects back to raw materials, manufacturing, shop fabrication, field erection, welding, and heattreating. Some defects were not identified by the original manufacturer or after fabrication of the piping system.

1. Failure of this 12-in. OD hot reheat pipe was attributed to microstructural transformation, which occurred during welding

All the tools in the world cannot replace real-world experience, however. Inappropriate interpretations of exam results are costly. Test results attributed to mismatch, counter-boring, and root bead penetrations have been erroneously interpreted to suggest serious defects rather than inconsequential manufacturing or fabrication flaws, or benign surface contour variations. In extreme cases, incorrect evaluations have led to unnecessary repairs and expensive replacements.

Evaluate weld condition

An arsenal of tools exists to evaluate seam-welded pipe. Of special note, volumetric inspections—such as ultrasonic and radiographic examinations—can identify subsurface defects as well as pinpoint their size. Conventional ultrasonic examinations, when performed properly, will identify defects.

Although not the least expensive evaluations, ultrasonic exams are the easiest to apply and are cost-effective. Recent advances in ultrasonic technology have led to specialized approaches—such as timeof-flight diffraction and focus beam array. If defects are identified, they can be further characterized through radiographic exams. Other nondestructive examinations (NDE) available include surface inspections—such

2, 3. Catastrophic failures—such as these ruptures in large-diameter, seam-welded pipe—were initiated at the cusp of the seam weld. Cracks occurred at both sides of the seam welds

www.powermag.com

4. Defects introduced during the pipe manufacturing process are not always apparent at magnifications of 1× or even 10×

as magnetic particle exams—or liquid penetrant exams that identify cracking or linear indications on the accessible weld surface.

In-situ metallographic exams, or replication, are used to evaluate the condition of seam-welded piping. The technique involves intense polishing and etching of the metal surface. An acetate tape is then applied that retains the image of the material microstructure. The image is observed under a microscope and photographically documented. Replication can be used to evaluate the microstructural condition, search for evidence of creep, or characterize surface conditions—such as fissuring—that are undetected by other NDE techniques.

Be aware that replication is restricted to surface testing, and does have limitations. For example, if the surface of a pipe has become decarburized during manufacturing, it may not represent the thickness of the pipe cross-section.

Discontinuities

Seam-welded, low-alloy pipe is used extensively in hot reheat systems because they generally require large-diameter pipe with wall-thickness values ranging betwee 0.75 and 2.50 in. Pipe of this size is no readily available in the seamless versior

Both seamless and seam-welded pipe and related components contain discontinuities. Codes and standards that apply tpiping materials as well as to fabricate and erected pipe systems recognize th presence of discontinuities. Even seam welded pipe that is manufactured accord ing to the American Society for Testing & Materials codes contains base materials and welds with defects that do not affect the operability or integrity of the pipe spool or piping system.

Most seams are formed with a submerged-arc welding process, which generally results in a defect-free product. When defects are found through visual or radiographic exams, repairs are made with the shielded metal-arc welding process, and re-examined. After acceptance, the pipe is finished with a final heat treatment.

During the past 50 years, memorable ruptures took place at several US power stations and these were attributed to several problems with original material selection and fabrication. Most of the piping had been in service for over 15 years, operating at a temperature of 1000F, and pressures ranging between 450 and 1100 psig. In these instances, proper diagnosis was critical to conserving plant resources. For example, an entire hot reheat pipe sec-

tion at a northeastern plant was scrapped following a 1970 clamshell elbow rupture (Fig 1). At the heart of the problem: A microstructural transformation that occurred during welding produced an extremely coarsegrained microstructure—a generic problem of the chromium-nickel-manganese stainless steel alloy used here. In two

proper interpretation of the results of inservice inspection is of paramount importance, and should include laminations, nonmetallic inclusions, surface laps, or slivers attributed to defects in the original plate material; seam-weld incongruities, such as inclusions, slag, fissures, or cracks; and imperfections associated with hot or cold bending, fit-up, welding, heat treating, or pipe erec-

tion. The major problem with performing in-service inspections involves the interpretation of the conditions that are detected and the evaluation of their sigificance with

respect to the operating integrity and life expectancy of the piping system. It's important to recognize manufacturing and fabrication defects, and take creep into consideration. Following

are a few examples of each. **Manufacturing defects.** A routine ultrasonic examination of a hot reheat piping system revealed an area with a particularly severe and extensive defect. Further examination with acoustic emission revealed noise background—indicating the

5. Magnification of 500× clearly shows inconsequential indications in the base metal introduced during the manufacturing process

500x

potential for progressive cracking. A radiographic exam pinpointed the defect in the seam weld. Plate segments cut from the pipe contained a superficial indication in the surface of the inside seam weld. Cross sections cut from the pipe showed inconsequential marks in the base metal and original weld deposit. The

50

defect was hard to see at a magnification of 10 diameters, but was easily viewed by a 500-diameter magnification (Figs 4, 5). This example is typical of the imperfections found in base metals and plates used for seam-welded pipe, and would not result in progressive cracking.

In another instance, a defect was found in the base metal adjacent to the weld in a hot reheat system that had operated for 90,000 hours. Observations of the microstructure at magnifications of 100 and 500 diameters confirmed a lamination defect. Lamination defects were apparent at the same location in six cross-sections cut through the pipe, but indications of progressive cracking were not apparent. This pipe is expected to operate for at least another 200,000 to 300,000 hours.

Fabrication defects. Spider-webtype fissures in the inner arc of a pipe bend were discovered on seam-welded lowalloy steel piping in a hot reheat system during the final stages of erection decades ago. Weld probe samples revealed fissuring that extended about 80% into the pipe wall. Fissures were also apparent on radiographic films (Fig 6).

A metallurgical evaluation established that the fissures occurred when the fabricator removed buckles that had developed on the inside arc of a pipe bend during the bending operation. Apparently this was accomplished by heating the local buckled pipe surface areas with rosebuds, a type of

6. Radiographic films Illustrate surface fissuring on the inside arc of a pipe bend

What about combined-cycle plants?

Issues surrounding seam-welded piping are not relevant to newer combined-cycle stations, because the steam piping is generally smaller in diameter than that of hot and cold reheat piping used in conventional fossil-fired and nuclear plants. Piping materials typically are seamless A-335 Grade 22 and A-106 Grade B or C.

Heat-recovery steam generator (HRSG) evaluations are performed when serious questions of integrity arise because of original fabrication concerns. Quality or serious deficiencies of the original fabrication and/or erection have been questioned on several units. It is difficult to inspect many areas in the HRSGs because space is limited for personnel and inspection equipment in the areas where leaks and ruptures are detected. Service failures have included various superheater header components, tubing, and piping.

oxy-acetylene torch, to temperatures in excess of 2100F, followed by pressing or hammering the buckled surface areas to return the pipe to a smooth contour.

Plant personnel removed the fissures by grinding and followed with repair welding in accordance with American Society of Mechanical Engineers B31.1 code on pressure piping covering powerplants. Reinspections performed in 1985 and 1998 confirmed that the repairs were sound.

Creep develops as elevated temperatures and stresses cause dimensional changes to plant components, and is observed in three stages. The primary stage does not typically represent damage. Secondary creep is evidenced by initial void formation along the grain boundaries. In time, these voids join or link to form macrocracking, or third-stage creep.

The rate of void formation and void linkage is primarily affected by stress, and varies with cross-sectional thickness. To develop meaningful estimates of the remaining life of piping systems and components, metallurgical evaluations should include surface replication, metallurgical sampling, and actual creep testing.

Void formation generally tends to develop after approximately 50% of the life of the pipe material has been consumed, or about 200,000 hours of service. High-temperature piping systems can operate safely and effectively for 400,000 hours or 50 years, with proper care and examination interpretation by experienced personnel. Longer operating periods are possible, and are likely to be achieved as more information, experiences, and data are collected.

Edited by CarolAnn Giovando
THIELSCH, INC., letters, inspection reports, analysis reports and engineering reports apply only to the specific materials, products, or processes tested, examined, surveyed, inspected or calculated; and are not necessarily indicative of the qualities of apparently identical or similar materials, products, or processes. The liability of THIELSCH, INC., with respect to the services rendered, shall be limited to the amount of the consideration paid for such services, and shall not include any consequential damage.

195 Frances Avenue Cranston, Rhode Island 02910 Tel: (401) 467-6454 Fax: (401) 461-6006

May 8, 2024

Mr. David Begley Eastern Kentucky Power Cooperative 7130 South Highway 1247 Somerset, KY 42501

- Via Email: david.begley@ekpc.coop
- SUBJECT: Inspection of High-Energy Piping Systems and Pressure Vessels in Unit No. 2

Dear Mr. Begley:

Attached is a PDF of Report No. 18577 summarizing the inspection of the highenergy piping systems and pressure vessels at the Somerset, Kentucky facility of Eastern Kentucky Power Cooperative.

We appreciated the opportunity to be of service and look forward to working with you again in the future. If you have any questions or would like further assistance, please do not hesitate to contact us.

Very truly yours,

THIELSCH, INC.

Peter Kennefick Vice President Field Engineering Services

Enclosures: Job No. 43-24-0331a