COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF)	
CELLCO PARTNERSHIP D/B/A VERIZON WIRELESS)	
FOR ISSUANCE OF A CERTIFICATE OF PUBLIC) CAS	E NO. 2023-00139
CONVENIENCE AND NECESSITY TO CONSTRUCT)	
A WIRELESS COMMUNICATIONS FACILITY)	
IN THE COMMONWEALTH OF KENTUCKY)	
IN THE COUNTY OF GRAYSON)	

SITE NAME: SHREWSBURY

* * * * * * *

APPLICATION FOR CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY FOR CONSTRUCTION OF A WIRELESS COMMUNICATIONS FACILITY

Cellco Partnership, d/b/a Verizon Wireless ("Applicant"), by counsel, pursuant to (i) KRS §§278.020, 278.040, 278.650, 278.665, and other statutory authority, and the rules and regulations applicable thereto, and (ii) the Telecommunications Act of 1996, respectfully submits this Application requesting issuance of a Certificate of Public Convenience and Necessity ("CPCN") from the Kentucky Public Service Commission ("PSC") to construct, maintain, and operate a Wireless Communications Facility ("WCF") to serve the customers of the Applicant with wireless communications services.

In support of this Application, Applicant respectfully provides and states the following information:

1. The complete name and address of the Applicant: Cellco Partnership, d/b/a Verizon Wireless, having a local address of 2902 Ring Road, Elizabethtown, KY, 42701.

- 2. Applicant is a Delaware general partnership and a copy of the Statement of Good Standing from Delaware, and the Certificate of Assumed Name is on file with the Secretary of State of Commonwealth of Kentucky and included as part of **Exhibit A**.
- 3. Applicant proposes construction of an antenna tower for communications services, which is to be located in an area outside the jurisdiction of a planning commission, and Applicant submits this application to the PSC for a certificate of public convenience and necessity pursuant to KRS §§ 278.020(1), 278.040, 278.650, 278.665, and other statutory authority.
- 4. The Applicant operates on frequencies licensed by the Federal Communications Commission ("FCC") pursuant to applicable FCC requirements. A copy of the Co-Applicant's FCC Registration and Licenses with Authorization to provide wireless services are attached to this Application or described as part of **Exhibit B**, and the facility will be constructed and operated in accordance with applicable FCC regulations.
- 5. The public convenience and necessity require the construction of the proposed WCF. The construction of the WCF will bring or improve the Applicant's services to an area currently not served or not adequately served by the Applicant by increasing coverage or capacity and thereby enhancing the public's access to innovative and competitive wireless communications services. A statement from Applicant's RF Design Engineer outlining said need is attached as **Exhibit R** along with Propagation Maps attached as **Exhibit Ra**. The WCF is an integral link in the Applicant's network design that must be in place to provide adequate coverage to the service area.
- 6. To address the above-described service needs, Applicant proposes to construct a WCF on Gray Road, Leitchfield, KY 40701 (37° 22' 03.84" North latitude, 86° 22' 25.86" West longitude), on a parcel of land located entirely within the county referenced in the caption of this

application. The property on which the WCF will be located is owned by Darrell and Sandy Roof pursuant to a Deed recorded at Deed Book 482, Page 291 in the office of the County Clerk. The proposed WCF will consist of a 230-foot tall tower, with an approximately 5-foot tall lightning arrestor attached at the top, for a total height of 235-feet. The WCF will also include concrete foundations and a shelter or cabinets to accommodate the placement of the Applicant's radio electronics equipment and appurtenant equipment. The Applicant's equipment cabinet or shelter will be approved for use in the Commonwealth of Kentucky by the relevant building inspector. The WCF compound will be fenced and all access gate(s) will be secured. A description of the manner in which the proposed WCF will be constructed is attached as **Exhibit C** and **Exhibit D**.

- 7. A list of utilities, corporations, or persons with whom the proposed WCF is likely to compete along with a map showing the proposed location as well as the identified like facilities is attached as **Exhibit E**.
- 8. The site development plan and a vertical profile sketch of the WCF signed and sealed by a professional engineer registered in Kentucky depicting the tower height, as well as a proposed configuration for the antennas of the Applicant has also been included as part of **Exhibit** C.
- 9. Foundation design plans signed and sealed by a professional engineer registered in Kentucky and a description of the standards according to which the tower was designed are included as part of **Exhibit D**.
- 10. Applicant has considered the likely effects of the installation of the proposed WCF on nearby land uses and values and has concluded that there is no more suitable location reasonably available from which adequate services can be provided, and that there are no reasonably available opportunities to co-locate Applicant's antennas on an existing structure. When suitable towers or

structures exist, Applicant attempts to co-locate on existing structures such as communications towers or other structures capable of supporting Applicant's facilities; however, no other suitable or available co-location site was found to be located in the vicinity of the site. A statement from Applicant, Cellco Partnership, d/b/a Verizon Wireless's RF Design Engineer outlining exploration of co-location opportunities is attached as **Exhibit R**.

- 11. A copy of the Application for Federal Aviation Administration's ("FAA") and the FAA Determination of No Hazard to Air Navigation is attached as **Exhibit F**.
- 12. A copy of the Kentucky Airport Zoning Commission ("KAZC") Application to construct the tower is attached as **Exhibit G**. The Approval will be submitted when received.
- 13. A geotechnical engineering report was performed at the WCF site by Power of Design, 11490 Bluegrass Parkway, Louisville, KY 40299, dated May 20. 2022, and is attached as **Exhibit H**. The name and address of the geotechnical engineering firm and the professional engineer registered in Kentucky who prepared the report are included as part of **Exhibit H and Exhibit S**.
- 14. Clear directions to the proposed WCF site from the County seat are attached as **Exhibit I**. The name and telephone number of the preparer of **Exhibit I** are included as part of this exhibit.
- 15. Applicant, pursuant to a written agreement, has acquired the right to use the WCF site and associated property rights. A copy of the agreement or an abbreviated agreement recorded with the County Clerk is attached as **Exhibit J**.
- 16. Personnel directly responsible for the design and construction of the proposed WCF are well qualified and experienced. The tower and foundation drawings for the proposed tower submitted as part of **Exhibit D** bear the signature and stamp of a professional engineer registered

in the Commonwealth of Kentucky. All tower designs meet or exceed the minimum requirements of applicable laws and regulations. The identity and qualifications of each person directly responsible for design and construction of the proposed tower are contained in **Exhibit S**.

- 17. The Construction Manager for the proposed facility is Vince Caprino and the identity and qualifications of each person directly responsible for design and construction of the proposed tower are contained in **Exhibit S**.
- 18. As noted on the Survey attached as part of **Exhibit C**, the surveyor has determined that the tower site and access easement are not within any flood hazard area per Flood Hazard Boundary Map, Community Panel Number 21085C0375C, Dated September 19, 2012.
- 19. **Exhibit K** includes a map drawn to an appropriate scale that shows the location of the proposed tower and identifies every owner of real estate within 500 feet of the proposed tower (according to the records maintained by the County Property Valuation Administrator). This map and the associated Notice List is accompanied by a certificate signed and stamped by the registered surveyor that said information is from the PVA records, dated March 2, 23022. In addition, our office verified and updated the notification list with the Grayson County PVA on May 22, 2023 at https://graysoncountypva.com/, attached as **Exhibit L**. **Exhibit K** also identifies every structure and every easement within 500 feet of the proposed tower or within 200 feet of the access road including intersection with the public street system.
- 20. Applicant has sent certified notices every person who, according to the records of the County Property Valuation Administrator, owns property which is within 500 feet of the proposed tower or contiguous to the site property, by certified mail, return receipt requested, of the proposed construction. Each notified property owner has been provided with a map of the location of the proposed construction, the PSC docket number for this application, the address of

the PSC, and will be informed of his or her right to request intervention. A list of the notified property owners, verified on May 22, 2023, using the Grayson County Kentucky Property Valuation Administration records and a copy of the form of the notice to be sent by certified mail to each landowner are attached as **Exhibit L** and **Exhibit M**, respectively. Nine (9) notices were sent to surrounding property owners; to date six (6) notice green cards have been returned. USPS tracking indicates that 2 of the 3 notices are still moving through the system and one is being returned. Copies of the mailed envelopes, returned green cards and USPS tracking are included in **Exhibit M**.

- 21. Applicant has notified the applicable County Judge/Executive by certified mail, return receipt requested, of the proposed construction. This notice included the PSC docket number under which the application will be processed and informed the County Judge/Executive of his/her right to request intervention. A copy of this notice is attached as **Exhibit N**.
- 22. Notice signs meeting the requirements prescribed by 807 KAR 5:063, Section 1(2) that measure at least 2 feet in height and 4 feet in width and that contain all required language in letters of required height, have been posted, one in a visible location on the proposed site and one on the nearest public road. Such signs shall remain posted for at least two weeks after filing of the Application, and a copy of the posted text is attached as **Exhibit O**.
- 23. A legal notice advertisement regarding the location of the proposed facility has been published in a newspaper of general circulation in the county in which the WCF is proposed to be located. A copy of the newspaper legal notice advertisement is attached as **Exhibit P**.
- 24. The area of the proposed facility is in the unincorporated area of Grayson County, Kentucky. The site is approximately 7.8 miles southwest of Leitchfield, KY. The area is largely agricultural with a scattering of residential properties. The terrain in this area is relatively flat.

There is no zoning or Plan Commission in Grayson County. The general area where the proposed facility is to be located is in a tilled field and, removed a significant distance from any residential structures. The nearest residential structure is 345 feet from the proposed tower site.

- the site for the proposed WCF was consistent with the general process used for selecting all other existing and proposed WCF facilities within the proposed network design area. Applicant's radio frequency engineers have conducted studies and tests in order to develop a highly efficient network that is designed to handle voice and data traffic in the service area. The engineers determined an optimum area for the placement of the proposed facility in terms of elevation and location to provide the best quality service to customers in the service area. A radio frequency design search area prepared in reference to these radio frequency studies was considered by the Applicant when searching for sites for its antennas that would provide the coverage deemed necessary by the Applicant. A map of the area in which the tower is proposed to be located which is drawn to scale and clearly depicts the necessary search area within which the site should be located pursuant to radio frequency requirements is attached as **Exhibit Q**.
- 26. The tower must be located at the proposed location and proposed height to provide necessary service to wireless communications users in the subject area, as set out and documented in the RF Design Engineer's Statement of Need and Propagation Maps attached as **Exhibit R** and **Exhibit Ra**, respectively. The proposed tower will expand and improve voice and data service for Verizon Wireless customers.
- 27. Attached hereto as **Exhibit T** please find an Affidavit of Certification for all information contained in this application.

28. All Exhibits to this Application are hereby incorporated by reference as if fully set out as part of the Application.

29. All responses and requests associated with this Application may be directed to:

Russell L. Brown Clark, Quinn, Moses, Scott & Grahn, LLP 320 North Meridian Street, Suite 1100 Indianapolis, IN 46204

Phone: (317) 637-1321 FAX: (317) 687-2344

Email: rbrown@clarkquinnlaw.com

WHEREFORE, Applicant respectfully request that the PSC accept the foregoing Application for filing, and having met the requirements of KRS §§278.020(1), 278.650, and 278 .665 and all applicable rules and regulations of the PSC, grant a Certificate of Public Convenience and Necessity to construct and operate the WCF at the location set forth herein.

Respectfully submitted,

Russell L. Brown

Clark, Quinn, Moses, Scott & Grahn, LLP 320 North Meridian Street, Suite 1100

Indianapolis, IN 46204

Phone: (317) 637-1321 / FAX: (317) 687-2344

Email: rbrown@clarkquinnlaw.com

Attorney for Cellco Partnership d/b/a Verizon Wireless

LIST OF EXHIBITS

A	Applicant Entity
В	FCC Registration and License Documentation
C	Site Development Plan:
	500' Vicinity Map Legal Descriptions Flood Plain Certification Site Plan Vertical Tower Profile
D	Tower and Foundation Design
Е	Competing Utilities, Corporations, or Persons List And Map of Like Facilities in Vicinity
F	FAA Application and Determination of No Hazard
G	KAZC Application
Н	Geotechnical Report
I	Directions to WCF Site
J	Copy of Real Estate Agreement
K	500' Radius and Abutters Map with Surveyor Certification
L	Notification Listing
M	Copy of Property Owner Notification
N	Copy of County Judge/Executive notice
O	Copy of Posted Notices
P	Copy of Newspaper Legal Notice Advertisement
Q	Copy of Radio Frequency Design Search Area
R Ra	Copy of RF Design Engineer State of Need Propagation Maps
S	List of Qualified Professionals
т	Affidavit of Certification

Michael G. Adams Secretary of State

Certificate

I, Michael G. Adams, Secretary of State for the Commonwealth of Kentucky, do hereby certify that the foregoing writing has been carefully compared by me with the original thereof, now in my official custody as Secretary of State and remaining on file in my office, and found to be a true and correct copy of

CERTIFICATE OF ASSUMED NAME OF VERIZON WIRELESS ADOPTED BY GENERAL PARTNERS OF CELLCO PARTNERSHIP FILED JUNE 21, 2006.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my Official Seal at Frankfort, Kentucky, this 10th day of May, 2023.

CONTRACTOR OF SHARE O

Michael G. Adams Secretary of State

Commonwealth of Kentucky

kdcoleman/0641227 - Certificate ID: 290787

COMMONWEALTH OF KENTUCKY TREY GRAYSON SECRETARY OF STATE

0641227.07

cornish

Trey Grayson
Secretary of State
Received and Filed
06/21/2006 12:06:09 PM
Fee Receipt: \$20.00

CERTIFICATE OF ASSUMED NAME

This certifies that the assumed name of	•		
Verizon Wireless			
Name under which the but	shoos will be conducted)		
has been adopted by See Addendum			
Red name - KR	13 365,015(1)		
which is the "real name" of YOU MUST CHECK ONE a Domestic General Partnership	a Foreign General Partr	•	
a Domestic Registered Limited Liability Partnership	a Foreign Registered Li	mited Liabili	ty Partnership
a Domestic Limited Partnership	a Foreign Limited Partn	ership	
a Domestic Business Trust	a Foreign Business Tru	st	
a Domestic Corporation	a Foreign Corporation		
a Domestic Limited Liability Company	a Foreign Limited Liabi	lity Compan	у
a Joint Venture			
organized and existing in the state or country of		, and v	whose address is
One Verizon Way	Basking Ridge	NJ	07920
Street address, II ony	City	Stale	Zlp Code
The certificate of assumed name is executed by : NYNEX PCS Inc.			
- and Ochapher			
Jane A. Schapker-Assistant Secretary	Opedari	•	
Path or lagar reason and Tale	Print or type so ree and the		
June 15, 2006	Deb		

Addendum

The full name of the Partnership is Cellco Partnership; a Delaware general partnership with its headquarters located One Verizon Way, Basking Ridge NJ 07920-1097.

·	
General Partners of Cellco Partnership	Address
Bell Atlantic Cellular Holdings, L.P.	One Verizon Way Basking Ridge, NJ 07920
NYNEX PCS Inc.	One Verizon Way Basking Ridge, NJ 07920
PCSCO Partnership	One Verizon Way Basking Ridge, NJ 07920
GTE Wireless Incorporated	One Verizon Way Basking Ridge, NJ 07920
GTE Wireless of Ohio Incorporated	One Verizon Way Basking Ridge, NJ 07920
PCS Nucleus, L.P.	2999 Oak Road, 7th Floor Walnut Creek, CA 94597
JV PartnerCo, LLC	2999 Oak Road, 7th Floor Walnut Creek, CA 94597

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF

DELAWARE, DO HEREBY CERTIFY "CELLCO PARTNERSHIP" IS DULY FORMED

UNDER THE LAWS OF THE STATE OF DELAWARE AND IS IN GOOD STANDING AND

HAS A LEGAL EXISTENCE SO FAR AS THE RECORDS OF THIS OFFICE SHOW, AS

OF THE TWENTY-SEVENTH DAY OF APRIL, A.D. 2023.

AND I DO HEREBY FURTHER CERTIFY THAT THE ANNUAL TAXES HAVE BEEN PAID TO DATE.

Authentication: 203227418

Date: 04-27-23

FCC Home | Search | Updates | E-Filing | Initiatives | For Consumers | Find People

Antenna Structure Registration

FCC > WTB > ASR > Online Systems > ASR Search

FCC Site Map

ASR Registration Search

Registration 1323679

? HELP

New Search Return to Results Printable Page Reference Copy

Map Registration

Registration Detail

Reg Number

1323679

Status

Granted

File Number

A1206646

Constructed

EMI No Dismantled

NEPA

Antenna Structure

Structure Type

LTOWER - Lattice Tower

Location (in NAD83 Coordinates - Convert to NAD27)

Lat/Long

37-22-03.8 N 086-22-25.8 W

Address

Near 369 Gray Road

City, State

Leitchfield, KY

42574 Zip

County

GRAYSON

Center of

Position of Tower

AM Array

in Array

Heights (meters)

Elevation of Site Above Mean Sea Level

Overall Height Above Ground (AGL)

213.1

71.7

Overall Height Above Mean Sea Level

Overall Height Above Ground w/o Appurtenances

284.8

70.1

Painting and Lighting Specifications

FAA Chapters 4, 8, 15

Paint and Light in Accordance with FAA Circular Number 70/7460-1M

FAA Notification

FAA Study

2021-ASO-50778-OE

FAA Issue Date 11/29/2022

Owner & Contact Information

FRN

0003290673

Owner Entity

General Partnership

Type

Owner

Cellco Partnership

P: (770)797-1070

Attention To: Network Regulatory

5055 North Point Pkwy

F:

NP2NE Network Engineering

E: Network.Regulatory@verizonwireless.com

Alpharetta, GA 30022

Contact

Attention To: Network Regulatory

P: (770)797-1070

5055 North Point Pkwy

E: Network.Regulatory@verizonwireless.com

NP2NE Network Engineering Alpharetta , GA 30022

Last Action Status

Status Granted Received 01/03/2023 Purpose Amendment Entered 01/03/2023

Mode Interactive

Related Applications

01/03/2023 <u>A1206646</u> - Amendment (AM)

Comments

Comments

None

History

Date Event

None

Pleadings

Pleading Type Filer Name Description Date Entered

None

Automated Letters

None

ASR Help

ASR License Glossary - FAQ - Online Help - Documentation - Technical Support

ASR Online Systems

TOWAIR- CORES - ASR Online Filing - Application Search - Registration Search

About ASR Privacy Statement - About ASR - ASR Home

Registration Search By Registration Number ➤

FCC | Wireless | ULS | CORES

Federal Communications Commission 45 L Street NE Washington, DC 20554 Help | Tech Support

TTY: 1-717-338-2824 Submit Help Request

Phone: 1-877-480-3201

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

ATTN: REGULATORY CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE ENGINEERING ALPHARETTA, GA 30022

Call Sign KNKN867	File Number 0009262184
Radio CL - C	Service ellular
Market Numer CMA445	Channel Block B
Sub-Market	Designator

FCC Registration Number (FRN): 0003290673

Market Name Kentucky 3 - Meade

Grant Date	Effective Date 01-13-2021	Expiration Date 10-01-2030	Five Yr Build-Out Date	Print Date
09-01-2020	01-13-2021	10-01-2030		

Site Information:

LocationLatitudeLongitudeGround Elevation (meters)Structure Hgt to Tip (meters)Antenna Structure Registration No.136-50-41.0 N086-51-27.0 W243.882.31043225

Address: 1.3 KM EAST OF SR-100 & JEFF DAVIS HIGHWAY

City: RUSSELLVILLE County: LOGAN State: KY Construction Deadline:

					·			
Antenna: 1								
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	133.200	104.800	100.900	107.400	123.200	117.300	105.900	123,700
Transmitting ERP (watts) Antenna: 2	153.310	72.160	9.790	0.510	0.420	0.540	11.230	75.590
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	133.200	104.800	100.900	107.400	123.200	117.300	105.900	123.700
Transmitting ERP (watts) Antenna: 3	0.870	21.280	113.650	147.250	38.070	3.570	0.330	0.410
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	133.200	104.800	100.900	107.400	123,200	117.300	105.900	123,700
Transmitting ERP (watts)	1.480	0.400	0.430	2.930	40.950	143.640	111.910	19.230

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Location Latitude	Longitude	(m	ound Elev eters)	(m	ructure Hg eters)	t to Tip	Antenna St Registratio	
2 36-58-11.0 N	086-31-15.0 W		5.4	11	7.3		1043045	
Address: Bowling Green Ma	ain, 3.4 KM southwe	est of						
City: BOWLING GREEN	County: WARREN	N State:	KY Cor	struction 1	Deadline:			
Antenna: 2 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters Transmitting ERP (watts) Antenna: 3 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters) 0 108.200 186.450 in Watts: 140.820 0	45 135.100 83.280 45 74.100	90 135.400 10.010 90 74.500	135 118.600 0.510 135 57.600	180 102.700 0.420 180 41.800	225 103.000 0.490 225 42.100	270 111.100 10.730 270 50.200	315 110.800 87.210 315 49.900
Transmitting ERP (watts) Antenna: 4	0.270	2.540	54.390	78.620	9.450	0.350	0.270	0.270
Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters Transmitting ERP (watts) Location Latitude	0		90 135.400 0.310	135 118.600 2.130	180 102.700 24.000 ructure Hg	225 103.000 70.020 t to Tip	270 111.100 56.310	315 110.800 11.460
	_	(m	eters)	(m	eters)		Registratio	n No.
3 37-08-47.0 N	086-39-02.0 W	18	9.0	12	8.0		1043044	
Address: 9.7 KM SOUTH S	OUTHEAST OF							
City: MORGANTOWN C	County: BUTLER	State: KY	Constr	uction Dea	idline:			
Antenna: 1 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters Transmitting ERP (watts) Antenna: 2) 0 126.200 0.330	45 118.800 0.690	90 110.000 16.910	135 116.600 90.270	180 100.700 116.960	225 122.200 30.240	270 119.800 2.840	315 131.300 0.260
Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters Transmitting ERP (watts) Antenna: 3 Maximum Transmitting ERP) 0 126.200 2.100 in Watts: 140.820	45 118.800 0.260	90 110.000 0.330	135 116.600 1.050	180 100.700 21.320	225 122.200 101.470	270 119.800 108.950	315 131.300 23.430
Azimuth(from true north Antenna Height AAT (meters Transmitting ERP (watts)		45 118.800 14.390	90 110.000 1.070	135 116.600 0.260	180 100.700 0.340	225 122.200 2.530	270 119.800 33.930	315 131.300 116.960

Location Latitude 4 37-47-53.0 N	Longitude 086-19-51.0 W		ound Elev eters) 7.3	(n	tructure Hgt neters) 25.0	to Tip	Antenna St Registratio 1043043	
Address: WITHIN THE CIT		G4 4 T	7W G		D 111			
City: GARFIELD County	: BRECKINRIDGE	State: I	KY Cons	struction	Deadline:			
Antenna: 1 Maximum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	0	45 145.800 46.830	90 148.800 5.630	135 118.100 0.290	180 136.500 0.240	225 132.100 0.280	270 154.800 6.030	315 164.500 49.040
Antenna: 2 Maximum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3	0	45 145.800 13.820	90 148.800 74.230	135 118.100 95.620	180 136.500 25.740	225 132.100 2.460	270 154.800 0.240	315 164.500 0.270
Maximum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	0	45 145.800 0.240	90 148.800 0.280	135 118.100 2.040	180 136.500 27.580	225 132.100 95.620	270 154.800 74.230	315 164.500 12.320
Location Latitude	Longitude	(m	ound Elev eters)	(n	tructure Hgt neters)	to Tip	Antenna St Registratio	
6 36-46-32.1 N	086-33-56.0 W	20	6.3	93	1.1		1043041	
Address: 2.4 KM NORTH C								
City: FRANKLIN County	: SIMPSON Stat	e: KY C	onstructio	n Deadlir	ne:			
Antenna: 1 Maximum Transmitting ERP	in Watts: 140.820							
Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2		45 81.100 63.540	90 68.500 7.340	135 56.000 0.360	180 56.400 0.300	225 56.600 0.380	270 64.300 8.420	315 64.200 66.540
Maximum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3	0	45 81.100 17.400	90 68.500 93.440	135 56.000 120.380	180 56.400 32.400	225 56.600 3.090	270 64.300 0.300	315 64.200 0.340
Maximum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	0	45 81.100	90 68.500	135 56,000	180 56.400	225 56.600	270 64.300	315 64.200

Location Latitude 7 37-03-33.7 N	Longitude 087-01-50.4 W	(m	round Eleva neters) 00.0		ructure Hgt neters) 7.7	to Tip	Antenna St Registratio 1266950	
Address: Lake Malone, 1038	Heltsley Road							
City: Lewisburg County: I	LOGAN State: K	Y Cons	truction De	eadline:				
Antenna: 1	-							
Maximum Transmitting ERP in		1						
Azimuth(from true north) Antenna Height AAT (meters)	0 120.200	45	90	135	180	225	270	315
Transmitting ERP (watts)	102.840	116.000 191.490	119.100 71.150	120.900 7.980	103.100 0.430	89.400 0.450	78.300 0.570	104.000 14.860
Antenna: 2		171.470	71.130	7.700	0.430	0.450	0.570	14.000
Maximum Transmitting ERP in Azimuth(from true north)		45	90	135	100	225	270	315
Antenna Height AAT (meters)	0 120.200	45 116.000	90 119.100	120.900	180 103.100	89.400	270 78.300	315 104.000
Transmitting ERP (watts)	0.570	14.860	102.840	191.490	71.150	7.980	0.430	0.450
Antenna: 3 Maximum Transmitting ERP in	n Watte: 140 820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	120.200	116.000	119.100	120.900	103.100	89.400	78.300	104.000
Transmitting ERP (watts)	3.330	0.430	0.500	1.560	31.780	148.650	162.990	36.490
Logotion Lotitude	Lancituda	C	cound Flow	ation St	ructura Hat	to Tin	Antonno St	muotumo
Location Latitude	Longitude		round Eleva		ructure Hgt	to Tip	Antenna St	
	G	(m	eters)	(n	neters)	to Tip	Registratio	
8 36-47-11.0 N	086-08-35.3 W	(m			neters)	to Tip		
8 36-47-11.0 N Address: 4.8 KM NORTHEA	086-08-35.3 W AST OF	(m 25	neters) 33.3	(m 91	neters)	to Tip	Registratio	
8 36-47-11.0 N Address: 4.8 KM NORTHEA	086-08-35.3 W AST OF	(m 25	eters)	(m 91	neters)	to Tip	Registratio	
8 36-47-11.0 N Address: 4.8 KM NORTHEA City: SCOTTSVILLE Cou	086-08-35.3 W AST OF	(m 25	neters) 33.3	(m 91	neters)	to Tip	Registratio	
8 36-47-11.0 N Address: 4.8 KM NORTHEA City: SCOTTSVILLE Cou	086-08-35.3 W AST OF inty: ALLEN Sta	(m 25	neters) 33.3	(m 91	neters)	to Tip	Registratio	
8 36-47-11.0 N Address: 4.8 KM NORTHEA City: SCOTTSVILLE Cou	086-08-35.3 W AST OF inty: ALLEN Sta	(m 25 ate: KY	neters) 33.3 Construction	(n 91 on Deadli	neters) 1.1 ine:		Registratio 1043039	n No.
8 36-47-11.0 N Address: 4.8 KM NORTHEA City: SCOTTSVILLE Cou Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters)	086-08-35.3 W AST OF inty: ALLEN Sta	(m 25	neters) 33.3	(m 91	neters)	225 108.300	Registratio	
8 36-47-11.0 N Address: 4.8 KM NORTHEA City: SCOTTSVILLE Cou Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	086-08-35.3 W AST OF inty: ALLEN Sta n Watts: 140.820	(m 25 ate: KY	etters) 33.3 Construction 90	(n 91 on Deadli	neters) 1.1 ine:	225	Registratio 1043039 270	315
8 36-47-11.0 N Address: 4.8 KM NORTHEA City: SCOTTSVILLE Cou Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters)	086-08-35.3 W AST OF inty: ALLEN Sta n Watts: 140.820 0 151.400 117.640	(m 25 ate: KY 45 124.900	90 113.700	(n 91 on Deadli 135 118.200	1.1 ine:	225 108.300	Registratio 1043039 270 128.800	315 139.000
8 36-47-11.0 N Address: 4.8 KM NORTHEA City: SCOTTSVILLE Cou Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP in Azimuth(from true north)	086-08-35.3 W AST OF Inty: ALLEN Sta n Watts: 140.820 0 151.400 117.640 n Watts: 140.820 0	(m 25 ate: KY 45 124.900 52.550	90 113.700	(n 91 on Deadli 135 118.200	1.1 ine:	225 108.300	Registratio 1043039 270 128.800	315 139.000
8 36-47-11.0 N Address: 4.8 KM NORTHEA City: SCOTTSVILLE Cou Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters)	086-08-35.3 W AST OF Inty: ALLEN Sta n Watts: 140.820 0 151.400 117.640 n Watts: 140.820 0 151.400	(m 25 ate: KY 45 124.900 52.550 45 124.900	90 113.700 6.320 90 113.700	(m 91 on Deadli 135 118.200 0.320	180 77.200 0.260 180 77.200	225 108.300 0.310 225 108.300	270 128.800 6.770 270 128.800	315 139.000 55.020 315 139.000
8 36-47-11.0 N Address: 4.8 KM NORTHEA City: SCOTTSVILLE Cou Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP in Azimuth(from true north)	086-08-35.3 W AST OF Inty: ALLEN Sta n Watts: 140.820 0 151.400 117.640 n Watts: 140.820 0	(m 25 ate: KY 45 124.900 52.550	90 113.700 6.320	(m 91 on Deadli 135 118.200 0.320	180 77.200 0.260	225 108.300 0.310	270 128.800 6.770	315 139.000 55.020
8 36-47-11.0 N Address: 4.8 KM NORTHEA City: SCOTTSVILLE Cou Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3 Maximum Transmitting ERP in	086-08-35.3 W AST OF Inty: ALLEN Sta n Watts: 140.820 0 151.400 117.640 n Watts: 140.820 0 151.400 0.630 n Watts: 140.820	(m 25 45 124.900 52.550 45 124.900 15.510	90 113.700 6.320 90 113.700 83.280	(m 91 on Deadli 135 118.200 0.320 135 118.200 107.290	180 77.200 0.260 180 77.200 28.880	225 108.300 0.310 225 108.300 2.760	270 128.800 6.770 270 128.800 0.260	315 139.000 55.020 315 139.000 0.300
8 36-47-11.0 N Address: 4.8 KM NORTHEA City: SCOTTSVILLE Cou Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3 Maximum Transmitting ERP in Azimuth(from true north)	086-08-35.3 W AST OF Inty: ALLEN Sta In Watts: 140.820 0 151.400 117.640 In Watts: 140.820 0 151.400 0.630 In Watts: 140.820 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(m 25 45 124.900 52.550 45 124.900 15.510	90 113.700 6.320 90 113.700 83.280	(m 91 on Deadli 135 118.200 0.320 135 118.200 107.290	180 77.200 0.260 180 77.200 28.880	225 108.300 0.310 225 108.300 2.760	270 128.800 6.770 270 128.800 0.260 270	315 139.000 55.020 315 139.000 0.300
8 36-47-11.0 N Address: 4.8 KM NORTHEA City: SCOTTSVILLE Cou Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3 Maximum Transmitting ERP in	086-08-35.3 W AST OF Inty: ALLEN Sta n Watts: 140.820 0 151.400 117.640 n Watts: 140.820 0 151.400 0.630 n Watts: 140.820	(m 25 45 124.900 52.550 45 124.900 15.510	90 113.700 6.320 90 113.700 83.280	(m 91 on Deadli 135 118.200 0.320 135 118.200 107.290	180 77.200 0.260 180 77.200 28.880	225 108.300 0.310 225 108.300 2.760	270 128.800 6.770 270 128.800 0.260	315 139.000 55.020 315 139.000 0.300

Location Latitude 9 37-53-45.0 N	Longitude 086-49-51.0 W	(m	round Elev leters) 4.5	(Structure Hgt (meters) 55.6	to Tip	Antenna St Registratio 1043711	
Address: OLD LEWISPOR					33.0		10.3711	
	inty: HANCOCK	State: KY			eadline:			
0.03.11111122 0.0								
Antenna: 1								
Maximum Transmitting ERP	in Watts: 140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters) Transmitting ERP (watts)	01.000	79.800	95.100	59.500	72.200	82.700	89.400	93.100
Antenna: 2	7.600	61.740	131.990	58.960	7.090	0.360	0.300	0.350
Maximum Transmitting ERP	in Watts: 140.820							
Azimuth(from true north	· · · · · · · · · · · · · · · · · · ·	45	90	135	180	225	270	315
Antenna Height AAT (meters) Transmitting ERP (watts)	01.000	79.800	95.100	59.500	72.200	82.700	89.400	93.100
Antenna: 3	0.300	0.340	0.710	17.400	93.440	120.380	32.400	3.090
Maximum Transmitting ERP								
Azimuth(from true north) Antenna Height AAT (meters)		45	90	135	180	225	270	315
Transmitting ERP (watts)	93.440	79.800 15.510	95.100 1.180	59.500 0.300	72.200 0.350	82.700 2.570	89.400 34.720	93.100 120.380
	73.440	13.310	1.100	0.300	0.550	2.370	34.720	120.360
Location Latitude	Longitude	Gr	ound Elev	ation S	Structure Hgt	to Tip	Antenna St	tructure
Location Latitude	Longitude		ound Elev eters)		Structure Hgt (meters)	to Tip	Antenna St Registratio	
Location Latitude 10 37-16-52.0 N	Longitude 087-06-06.0 W	(m		(O	to Tip		
10 37-16-52.0 N	087-06-06.0 W	(m 15	eters) 0.0	((meters) 128.0	to Tip	Registratio	
10 37-16-52.0 N Address: 0.4 MI. EAST OF	087-06-06.0 W INTERCHANGE O	(m 15 F 58 & W.	eters) 0,0 KY PKW	(1 Y; IMME	(meters) 128.0 ED. ESE OF	•	Registratio	
10 37-16-52.0 N Address: 0.4 MI. EAST OF	087-06-06.0 W	(m 15 F 58 & W.	eters) 0,0 KY PKW	(1 Y; IMME	(meters) 128.0	•	Registratio	
10 37-16-52.0 N Address: 0.4 MI. EAST OF City: CENTRAL CITY C	087-06-06.0 W INTERCHANGE O	(m 15 F 58 & W.	eters) 0,0 KY PKW	(1 Y; IMME	(meters) 128.0 ED. ESE OF	•	Registratio	
10 37-16-52.0 N Address: 0.4 MI. EAST OF City: CENTRAL CITY C Antenna: 1	087-06-06.0 W INTERCHANGE O ounty: MUHLENBI	(m 15 F 58 & W.	eters) 0,0 KY PKW	(1 Y; IMME	(meters) 128.0 ED. ESE OF	•	Registratio	
10 37-16-52.0 N Address: 0.4 MI. EAST OF City: CENTRAL CITY C Antenna: 1 Maximum Transmitting ERP Azimuth(from true north	087-06-06.0 W INTERCHANGE O ounty: MUHLENBI in Watts: 140.820	(m 15 F 58 & W.	eters) 0,0 KY PKW	(1 Y; IMME	(meters) 128.0 ED. ESE OF	•	Registratio	
10 37-16-52.0 N Address: 0.4 MI. EAST OF City: CENTRAL CITY C Antenna: 1 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters)	087-06-06.0 W INTERCHANGE O ounty: MUHLENBI in Watts: 140.820	(m 15 F 58 & W. ERG St a	eters) 0.0 KY PKW ate: KY	(1 Y; IMME Construc	(meters) 128.0 ED. ESE OF ction Deadline	e:	Registratio 1043038	n No.
10 37-16-52.0 N Address: 0.4 MI. EAST OF City: CENTRAL CITY C Antenna: 1 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters) Transmitting ERP (watts)	087-06-06.0 W INTERCHANGE O ounty: MUHLENBI in Watts: 140.820	(m 15 F 58 & W. ERG Sta	oters) 0.0 KY PKW ate: KY	() Y; IMME Construct	(meters) 128.0 ED. ESE OF ction Deadline	225	Registratio 1043038	315
10 37-16-52.0 N Address: 0.4 MI. EAST OF City: CENTRAL CITY C Antenna: 1 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters)	087-06-06.0 W INTERCHANGE O ounty: MUHLENBI in Watts: 140.820) 0 126.500 50.380	(m 15 F 58 & W. ERG Sta 45 101.500	90 105.400	() 135 104.300	(meters) 128.0 ED. ESE OF ction Deadline 180 100.200	225 87.900	Registratio 1043038 270 94.300	315 112.900
10 37-16-52.0 N Address: 0.4 MI. EAST OF City: CENTRAL CITY C Antenna: 1 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP Azimuth(from true north)	087-06-06.0 W INTERCHANGE O ounty: MUHLENBI in Watts: 140.820)	(m 15 F 58 & W. ERG Sta 45 101.500 128.750	90 105.400	() 135 104.300	(meters) 128.0 ED. ESE OF ction Deadline 180 100.200	225 87.900	Registratio 1043038 270 94.300	315 112.900
10 37-16-52.0 N Address: 0.4 MI. EAST OF City: CENTRAL CITY C Antenna: 1 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters)	087-06-06.0 W INTERCHANGE O ounty: MUHLENBI in Watts: 140.820)	(m 15 F 58 & W. ERG Sta 101.500 128.750 45 101.500	90 105.400 66.660	135 104.300 8.640	(meters) 128.0 ED. ESE OF etion Deadline 180 0.500 180 100.200 0.500	225 87.900 0.260 225 87.900	270 94.300 0.330 270 94.300	315 112.900 5.430 315 112.900
10 37-16-52.0 N Address: 0.4 MI. EAST OF City: CENTRAL CITY C Antenna: 1 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP Azimuth(from true north)	087-06-06.0 W INTERCHANGE O ounty: MUHLENBI in Watts: 140.820)	(m 15 F 58 & W. ERG Sta 45 101.500 128.750	90 105.400 66.660	135 104.300 8.640	(meters) 128.0 ED. ESE OF ction Deadline 180 0.500 180	225 87.900 0.260	270 94.300 0.330 270	315 112.900 5.430
Address: 0.4 MI. EAST OF City: CENTRAL CITY C Antenna: 1 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3 Maximum Transmitting ERP	087-06-06.0 W INTERCHANGE O ounty: MUHLENBI in Watts: 140.820)	(m 15 F 58 & W. ERG Sta 45 101.500 128.750 45 101.500 0.480	90 105.400 66.660 90 13.100	135 104.300 8.640 135 104.300 80.300	(meters) 128.0 ED. ESE OF ction Deadline 180 0 100.200 0.500 180 100.200 122.700	225 87.900 0.260 225 87.900 38.140	270 94.300 0.330 270 94.300 3.840	315 112.900 5.430 315 112.900 0.260
Antenna: 1 Maximum Transmitting ERP Azimuth(from true north) Antenna: 2 Maximum Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP Azimuth(from true north) Antenna: 1 Maximum Transmitting ERP Azimuth(from true north) Antenna: 3 Maximum Transmitting ERP Azimuth(from true north) Antenna: 3 Maximum Transmitting ERP Azimuth(from true north)	087-06-06.0 W INTERCHANGE O ounty: MUHLENBI in Watts: 140.820)	(m 15 F 58 & W. ERG Sta 45 101.500 128.750 45 101.500 0.480	90 105.400 66.660 90 105.400 13.100	135 104.300 8.640 135 104.300 80.300	(meters) 128.0 ED. ESE OF ction Deadline 180 100.200 0.500 180 100.200 122.700	225 87.900 0.260 225 87.900 38.140	270 94.300 0.330 270 94.300 3.840 270	315 112.900 5.430 315 112.900 0.260 315
Address: 0.4 MI. EAST OF City: CENTRAL CITY C Antenna: 1 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters) Transmitting ERP (watts) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3 Maximum Transmitting ERP	087-06-06.0 W INTERCHANGE O ounty: MUHLENBI in Watts: 140.820 0 126.500 50.380 in Watts: 140.820 0 126.500 0.300 in Watts: 140.820	(m 15 F 58 & W. ERG Sta 45 101.500 128.750 45 101.500 0.480	90 105.400 66.660 90 13.100	135 104.300 8.640 135 104.300 80.300	(meters) 128.0 ED. ESE OF ction Deadline 180 100.200 0.500 180 100.200 122.700	225 87.900 0.260 225 87.900 38.140	270 94.300 0.330 270 94.300 3.840	315 112.900 5.430 315 112.900 0.260

	-33.0 N 1 SSE OF INT	Longitude 086-17-41.0 W COF W KY PKW ty: GRAYSON	(m e 220	9		Structure Hg (meters) 128.0 Deadline:	to Tip	Antenna St Registratio 1043037	
Antenna: 1 Maximum Transn Azimuth(fro Antenna Height A Transmitting ERF Antenna: 2	om true north) AT (meters)	Watts: 140.820 0 136.500 92.370	45 139.400 12.750	90 136.800 0.300	135 139.500 0.450	180 0 172.500 0.200	225 127.300 0.420	270 136.600 3.510	315 156.800 48.480
Antenna Height A Transmitting ERI Antenna: 3	om true north) AT (meters) P (watts)	0 136.500 3.700	45 139.400 26.630	90 136.800 74.790	135 139.500 73.070		225 127.300 3.610	270 136.600 0.490	315 156.800 0.490
Maximum Transn Azimuth(fro Antenna Height A Transmitting ERF	om true north) AT (meters)	Watts: 140.820 0 136.500 2.080	45 139.400 0.820	90 136.800 0.770	135 139.500 7.520	180 0 172.500 42.060	225 127.300 84.790	270 136.600 55.750	315 156.800 12.610
Location Latitu	ıde	Longitude	Gr	ound Elev	ation	Structure Hg	to Tip	Antenna St	ructure
12 37-59-	-17.0 N	086-08-53.0 W	(m 20)	eters) 2.4		(meters) 61.0		Registratio 1043036	n No.
Address: 1.6 km						01.0		10.0000	
City: BRANDEN	BURG Co	unty: MEADE	State: KY	Constru	iction D	eadline:			
Antenna: 1 Maximum Transn Azimuth(fro									
Transmitting ERI Antenna: 2 Maximum Transm	AT (meters) P (watts) mitting ERP in om true north) AT (meters)	0 82.800 0.480 Watts: 140.820 0 82.800 5.570	45 58.900 12.480 45 58.900 0.500	90 109.700 87.870 90 109.700 0.330	135 63.200 162.090 135 63.200 0.330	0 56.190 180 40.600 4.740	225 55.600 6.380 225 55.600 24.940	270 61.600 0.330 270 61.600 42.710	315 100.400 0.360 315 100.400 26.730
Transmitting ERF Antenna: 2 Maximum Transm Azimuth(fro Antenna Height A	AT (meters) P (watts) mitting ERP in om true north) AT (meters) P (watts)	82.800 0.480 Watts: 140.820 0 82.800	58.900 12.480 45 58.900 0.500 Gr	109.700 87.870 90 109.700	63.200 162.090 135 63.200 0.330	40.600 56.190 180 40.600	55.600 6.380 225 55.600 24.940	61.600 0.330 270 61.600	100.400 0.360 315 100.400 26.730
Transmitting ERF Antenna: 2 Maximum Transm Azimuth(fro Antenna Height A Transmitting ERF Location Latitu	AT (meters) P (watts) mitting ERP in om true north) AT (meters) P (watts)	82.800 0.480 Watts: 140.820 0 82.800 5.570	58.900 12.480 45 58.900 0.500 Gr	109.700 87.870 90 109.700 0.330 ound Eleveters)	63.200 162.090 135 63.200 0.330	40.600 56.190 180 40.600 4.740 Structure Hg l	55.600 6.380 225 55.600 24.940	61.600 0.330 270 61.600 42.710 Antenna St	100.400 0.360 315 100.400 26.730
Transmitting ERF Antenna: 2 Maximum Transm Azimuth(fro Antenna Height A Transmitting ERF Location Latitu	AT (meters) P (watts) mitting ERP in om true north) AT (meters) P (watts) ide 41.0 N I WEST SOU	82.800 0.480 Watts: 140.820 0 82.800 5.570 Longitude 086-32-12.0 W THWEST OF	58.900 12.480 45 58.900 0.500 Gr	109.700 87.870 90 109.700 0.330 ound Eleveters)	63.200 162.090 135 63.200 0.330	40.600 56.190 180 40.600 4.740 Structure Hgt (meters)	55.600 6.380 225 55.600 24.940	61.600 0.330 270 61.600 42.710 Antenna St Registratio	100.400 0.360 315 100.400 26.730
Transmitting EREAntenna: 2 Maximum Transman Azimuth(fro Antenna Height A Transmitting ERE Location Latitutian 37-24-	AT (meters) P (watts) mitting ERP in om true north) AT (meters) P (watts) ide 41.0 N I WEST SOU	82.800 0.480 Watts: 140.820 0 82.800 5.570 Longitude 086-32-12.0 W THWEST OF	58.900 12.480 45 58.900 0.500 Gr	109.700 87.870 90 109.700 0.330 ound Eleveters) 3.5	63,200 162.090 135 63,200 0,330 ation	40.600 56.190 180 40.600 4.740 Structure Hgt (meters)	55.600 6.380 225 55.600 24.940	61.600 0.330 270 61.600 42.710 Antenna St Registratio	100.400 0.360 315 100.400 26.730

13	Latitude 37-24-41.0 N 3.2 KM WEST SOU	Longitude 086-32-12.0 W JTHWEST OF	_	ound Eleveters)		Structure Hgt (meters) 128.0	to Tip	Antenna St Registratio 1043035	
	NEYVILLE Cour		State: KY	Constru	uction D	eadline:			
Azin Antenna H Transmitt Antenna: A Maximum	Transmitting ERP in muth(from true north) Height AAT (meters) ing ERP (watts)	0 136.900 20.040	45 135.600 101.220 45 135.600	90 147.900 204.390 90 147.900	135 125.10 162.46	0 34.720 180	225 161.200 3.620 225 161.200	270 146.000 0.410 270 146.000	315 164.600 2.990 315 164.600
	ing ERP (watts)	4.910	0.410	2.960	125.10 14.520		204.810	176.590	43.820
14	Latitude 36-55-48.0 N	Longitude 086-56-27.0 W		ound Eleveters)		Structure Hgt (meters) 60.7	to Tip	Antenna St Registratio	
	6.4 KM SOUTH OI VISBURG Count		e: KY C	onstructio	n Dood	lino.			
City: LEV	WISBURG Couli	y: LOGAN State	e: KI C	onstructio	on Deau	ille:			
Azin Antenna H Transmitt Antenna: Azin Antenna H Transmitt Antenna: Azin	Transmitting ERP is muth(from true north) Height AAT (meters) ing ERP (watts) Transmitting ERP is muth(from true north) Height AAT (meters) ing ERP (watts)	0 116.400 113.650 n Watts: 140.820 0 116.400 0.430	45 93.400 147.250 45 93.400 3.180	90 82.400 38.070 90 82.400 42.710	135 74.500 3.570 135 74.500 147.25	0.330 180 68.800	225 70.800 0.410 225 70.800 18.120	270 79.200 0.870 270 79.200 1.350	315 98.300 21.280 315 98.300 0.330
Aziı Antenna H	muth(from true north) Height AAT (meters) ing ERP (watts)	0 116.400 8.230	45 93.400 0.410	90 82.400 0.330	135 74.500 0.420	180 68.800 9.450	225 70.800 74.650	270 79.200 162.390	315 98.300 71.290
Location	Latitude	Longitude		ound Elev eters)		Structure Hgt (meters)	to Tip	Antenna St Registratio	
15	36-59-27.0 N	086-26-29.0 W	160).9		79.3		1201033	
	537 10th Street at C								
City: BO	WLING GREEN	County: WARREN	State:	KY Con	structio	n Deadline:			
Aziı Antenna H	1 Transmitting ERP in muth(from true north) Height AAT (meters) ing ERP (watts)	n Watts: 140.820 0 60.100 162.390	45 54.500 71.290	90 67.300 8.230	135 54.300 0.410	180 51.400 0.330	225 51.700 0.420	270 45.400 9.450	315 61.600 74.650

15 Address:	Latitude 36-59-27.0 N 537 10th Street at Cl WLING GREEN	Longitude 086-26-29.0 W hestnut Street County: WARREN	(m 16	round Elev neters) 0.9 KY Con		Structure Hgt (meters) 79.3 on Deadline:	to Tip	Antenna St Registratio 1201033	
Antenna: Antenna Azin Antenna E Transmitt Antenna: Maximum Azin Antenna E	Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts)	Watts: 140.820 0 60.100 0.310	45 54.500 2.780 45 54.500 0.310	90 67.300 58.870 90 67.300 0.310	135 54.300 89.730 135 54.300 0.460	180 51.400 12.030 180 51.400 21.160	225 51.700 0.400 225 51.700 106.060	270 45.400 0.310 270 45.400 35.940	315 61.600 0.310 315 61.600 1.760
16	Latitude 36-50-40.2 N 5.8 KM NW OF	Longitude 087-12-42.0 W	(m	round Elev leters) 6.6	(Structure Hgt (meters) 60.7	to Tip	Antenna St Registratio	
City: ELk		ODD State: KY	Constru	uction Dea	dline:				
Azin Antenna F Transmitt Antenna: A Maximum Azin Antenna F Transmitt Antenna: A Maximum Azin Antenna F Transmitt	Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts) 2 Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts) 3 Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts) ing ERP in muth(from true north) leight AAT (meters) ing ERP (watts)	0 102.100 112.350 1 Watts: 140.820 0 102.100 0.940 1 Watts: 140.820 0 102.100 4.170	45 95.500 104.850 45 95.500 15.530 45 95.500 0.300	90 91.800 19.980 90 91.800 144.900 90 91.800 0.320	135 117.800 1.660 135 117.800 372.460 135 117.800 0.500	0.300 180 119.100 200.020 180	225 128.800 0.350 225 128.800 26.370 225 128.800 83.280	270 118.300 1.660 270 118.300 1.550 270 118.300 126.050	315 103.200 27.580 315 103.200 0.840 315 103.200 39.860
17 Address:	235 WEST KY 136	Longitude 087-16-05.4 W	(m 14	eters) 0.2		(meters) 93.0	. to 1тр	Antenna St Registratio 1244911	
Aziı Antenna H	`		45 91.000 106.670	90 88.000 82.330	135 100.800 13.120	180 0 95.300	225 104.000 0.240	270 105.400 0.310	315 89.700 2.310

Location Latitude 17 37-32-55.4 N Address: 235 WEST KY 13	Longitude 087-16-05.4 W	Ground Ele (meters) 140.2	(n	ructure Hg neters) 3.0	t to Tip	Antenna St Registratio 1244911	
	: MCLEAN State:	KY Construction	on Deadlin	e:			
Antenna: 2 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters Transmitting ERP (watts) Antenna: 3 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters)	0 81.300 0.240 in Watts: 140.820 0	45 90 91.000 88.000 0.310 6.850 90 91.000 88.000	135 100.800 54.080 135 100.800	180 95.300 117.640 180 95.300	225 104.000 51.650 225 104.000	270 105.400 5.960 270 105.400	315 89.700 0.290 315 89.700
Transmitting ERP (watts)	27.580	2.590 0.240	0.300	0.630	15.420	82.330	106.670
Location Latitude 18 37-38-33 2 N	Longitude	Ground Ele (meters)	(n	ructure Hgt neters)	t to Tip	Antenna St Registratio	
Address: 6 KM EAST OF	086-42-46.0 W nty: OHIO State: I	210.3 XY Construction).7 •			
- Court of the Cou	m, om but. I	. Construction	. Deadine	•			
Antenna: 1 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP	0 84.000 144.730	45 90 65.700 96.800 7.340	135 89.400 0.360	180 105.200 0.300	225 118.300 0.380	270 113.200 8.420	315 109.900 66.540
Azimuth(from true north Antenna Height AAT (meters Transmitting ERP (watts) Antenna: 3) 0 84.000	45 90 65.700 96.800 18.970 101.290	135 89.400 131.240	180 105.200 33.930	225 118.300 3.180	270 113.200 0.300	315 109.900 0.370
Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters Transmitting ERP (watts)) 0 84.000	45 90 65.700 96.800 0.300 0.390	135 89.400 2.840	180 105.200 38.070	225 118.300 131.240	270 113.200 101.290	315 109.900 16.150
Location Latitude	Longitude	Ground Ele (meters)		ructure Hg neters)	t to Tip	Antenna St Registratio	
19 38-00-08.4 N Address: 1.2 km Northwest		237.4)3.9		1049227	
City: PAYNEVILLE Cou	inty: MEADE State	e: KY Construc	tion Deadli	ne:			
Antenna: 1 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters Transmitting ERP (watts)) 0 115.700	45 90 125.400 135.500 19.640	135 103.300 1.990	180 111.300 0.530	225 123.300 4.460	270 141.900 28.140	315 137.900 120.910

Call Sign: KNKN867 **Print Date: File Number:** 0009262184

Location Latitude 19 38-00-08.4 N Address: 1.2 km Northwes	Longitude 086-19-20.3 W	Ground E (meters) 237.4	levation Struc (mete 103.9	,	Antenna Structure Registration No. 1049227
City: PAYNEVILLE Co		te: KY Constru	ction Deadline:		
enjviiiii z vieze o	7	00111			
Antenna: 2 Maximum Transmitting ERI Azimuth(from true nort Antenna Height AAT (meter Transmitting ERP (watts) Antenna: 3	h) 0 115.700 8.740	45 90 125.400 135.500 48.710 165.560	0 103.300	180 225 111.300 123.300 70.320 9.950	270 315 141.900 137.900 0.770 1.160
Maximum Transmitting ERI Azimuth(from true nort Antenna Height AAT (meter Transmitting ERP (watts)	h) 0	45 90 125.400 135.500 0.370 2.670	0 103.300	180 225 111.300 123.300 79.440 184.650	270 315 141.900 137.900 159.200 39.500
Location Latitude	Longitude	Ground E (meters)	levation Struc (mete	eture Hgt to Tip	Antenna Structure Registration No.
20 37-11-25.0 N	087-11-51.0 W	182.9	66.4	·••)	1065886
Address: 701 BASS LANE			00.1		
City: GREENVILLE Co	unty: MUHLENBER	G State: KY	Construction D	eadline:	
Antenna: 1 Maximum Transmitting ERI Azimuth(from true nort Antenna Height AAT (meter Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERI	h) 0 103.800 155.980	45 90 96.500 95.100 120.380 19.190	84.500	180 225 77.800 98.000 0.350 0.460	270 315 117.300 91.200 3.370 45.240
Azimuth(from true nort Antenna Height AAT (meter Transmitting ERP (watts) Antenna: 3	s) 103.800 0.510	45 90 96.500 95.100 13.220 93.080	84.500	180 225 77.800 98.000 62.700 6.760	270 315 117.300 91.200 0.350 0.380
Azimum Transmitting ERI Azimuth(from true nort Antenna Height AAT (meter Transmitting ERP (watts)	h) 0	45 90 96.500 95.100 0.350 0.450		180 225 77.800 98.000 28.440 135.320	270 315 117.300 91.200 145.300 31.240
Location Latitude	Longitude	Ground E (meters)	levation Struc (mete	eture Hgt to Tip	Antenna Structure Registration No.
21 37-11-39.2 N	086-15-53.9 W	213.4	52.0		9
Address: WATER TOWER City: BROWNSVILLE	R ROAD C <mark>ounty:</mark> EDMONSON	N State: KY	Construction De	eadline:	
Antenna: 1 Maximum Transmitting ERI Azimuth(from true nort Antenna Height AAT (meter Transmitting ERP (watts)	h) 0	45 90 44.100 63.000 148.280 17.830	60.300	180 225 76.600 76.200 0.740 0.870	270 93.300 19.100 97.400 155.270

Azimuth(from true north)

Antenna Height AAT (meters)

Transmitting ERP (watts)

Call Sign: KNKN867 File Number: 0009262184 Print Date:

Ground Elevation Structure Hgt to Tip **Location Latitude** Longitude **Antenna Structure** (meters) (meters) Registration No. 21 37-11-39.2 N 086-15-53.9 W 213.4 52.0 **Address:** WATER TOWER ROAD City: BROWNSVILLE **County: EDMONSON** State: KY **Construction Deadline:** Antenna: 2 **Maximum Transmitting ERP in Watts:** 140.820 Azimuth(from true north)
Antenna Height AAT (meters) 90 135 180 225 270 315 45 69.000 44.100 63.000 60.300 76.600 76.200 93.300 97.400 Transmitting ERP (watts) 1.780 43.760 235.010 302.750 81.490 7.780 0.740 0.850 Antenna: 3 **Maximum Transmitting ERP in Watts: 140.820** Azimuth(from true north)
Antenna Height AAT (meters) 45 90 180 225 270 315 135 69.000 44.100 63.000 60.300 76.600 76.200 93.300 97.400 Transmitting ERP (watts) 2.960 0.740 235.010 0.870 6.470 87.310 302.750 39.000 **Ground Elevation** Structure Hgt to Tip **Location Latitude** Longitude **Antenna Structure** (meters) (meters) Registration No. 22 086-51-30.0 W 192.9 36-40-28.0 N 38.1 Address: WITHIN THE TOWN OF **State: KY Construction Deadline:** City: ADAIRVILLE County: LOGAN Antenna: 1 **Maximum Transmitting ERP in Watts:** 140.820 Azimuth(from true north) 45 180 225 270 315 135 35.900 Antenna Height AAT (meters) 37.000 40.700 48.700 29.900 34.100 29.900 57.000 Transmitting ERP (watts) 148.100 65,400 7.600 0.390 0.300 0.430 70.070 8.720 Antenna: 2 **Maximum Transmitting ERP in Watts: 140.820** Azimuth(from true north) 45 90 135 180 225 270 315 Antenna Height AAT (meters) 35.900 37.000 29.900 34.100 29.900 40.700 57.000 48.700 Transmitting ERP (watts) 1.830 30.180 122.250 20.840 0.380 111.260 1.700 0.300 Antenna: 3 **Maximum Transmitting ERP in Watts: 140.820** Azimuth(from true north) 90 135 180 225 270 315 45 35.900 Antenna Height AAT (meters) 37.000 29.900 34.100 29.900 40.700 57.000 48.700 **Transmitting ERP (watts)** 23.930 2.360 0.300 0.370 1.180 113.860 122.250 26.290 **Ground Elevation Structure Hgt to Tip Location Latitude** Longitude Antenna Structure (meters) (meters) Registration No. 23 086-42-02.0 W 190.8 37-13-17.0 N 57.9 Address: Morgantown Downtown, Approx 1.5 KM (1.0 MI) ENE OF City: MORGANTOWN **County: BUTLER** State: KY **Construction Deadline:** Antenna: 1 **Maximum Transmitting ERP in Watts:** 140.820

315

102.700

3.180

270

0.430

111.800

90

81.900

113.650

135

88.300

18.120

180

85.600

1.350

225

94.300

0.330

45

72.100

147.250

102.300

42.710

Can Sign. Kivikivoo7	File	Number:	00092021	54		ini Dau	•	
Location Latitude	Longitude		ound Elev		tructure Hg neters)	t to Tip	Antenna St Registratio	
23 37-13-17.0 N	086-42-02.0 W	19	0.8	57	7.9		Ü	
Address: Morgantown Dow	ntown, Approx 1.5	KM (1.0 M	II) ENE OF	7				
City: MORGANTOWN (County: BUTLER	State: KY	Constr	uction De	eadline:			
Antenna: 2	4							
Maximum Transmitting ERP Azimuth(from true north		45	90	135	180	225	270	315
Antenna Height AAT (meters		72 .100	81.900	88.300	85.600	94.300	111.800	102.700
Transmitting ERP (watts) Antenna: 3	0.330	0.420	9.450	74.650	162.390	71.290	8.230	0.410
Maximum Transmitting ERP	in Watts: 140.820							
Azimuth(from true north	0	45	90	135	180	225	270	315
Antenna Height AAT (meters) Transmitting ERP (watts)	102.300 38.070	72.100 3.570	81.900 0.330	88.300 0.410	85.600 0.870	94.300 21.280	111.800 113.650	102.700 147.250
	38.070	3.370	0.330	0.410	0.870	21.200	113.030	147.230
Location Latitude	Longitude		ound Elev		tructure Hg neters)	t to Tip	Antenna St Registratio	
24 37-38-30.2 N	086-28-14.9 W		2.7	`	0.2		Registratio	11 110.
Address: Rough River, 9.5K			47	50				
•	nty: BRECKINRIE		e: KY C	onstruction	on Deadline	:		
Antenna: 1								
Maximum Transmitting ERP	in Watts: 140.820							
Azimuth(from true north Antenna Height AAT (meters		45	90	135	180	225	270	315
Transmitting ERP (watts)	43.600 264.330	58.600 116.050	57.500 13.400	57.700 0.660	60.100 0.540	89.000 0.690	70.700 15.390	65.400 121.520
Antenna: 2		110.030	13.400	0.000	0.540	0.090	13.390	121.320
Maximum Transmitting ERP Azimuth(from true north		45	90	135	180	225	270	315
Antenna Height AAT (meters)	43.600	58.600	57.500	57.700	60.100	89.000	70.700	65.400
Transmitting ERP (watts) Antenna: 3	1.420	34.650	184.990	239.690	61.970	5.820	0.540	0.670
Maximum Transmitting ERP	in Watts: 140.820				W			
Azimuth(from true north	0	45	90	135	180	225	270	315
Antenna Height AAT (meters) Transmitting ERP (watts)		58.600	57.500	57.700	60.100	89.000	70.700	65.400
Transmitting EXT (watts)	2.200	0.540	0.700	5.180	69.530	239.690	184.990	29.490
Location Latitude	Longitude		ound Elev		tructure Hg neters)	t to Tip	Antenna St Registratio	
25 36-51-02.0 N	086-42-26.0 W	`	8.1	`	9.4		Acgisti atio	11 1 1 1 0 0
Address: JCT. SR-103 & SF				3;	/.T			
City: AUBURN County:	*		truction D	eadline:				
	200mi State. I		ucudii D					
Antenna: 1								
Maximum Transmitting ERP	in Watts: 140.820							
Azimuth(from true north	0	45	90	135	180	225	270	315
Antenna Height AAT (meters) Transmitting ERP (watts)	61.200 124.760	65.800 162.210	54.700 90.940	38.200 14.810	54.400 1.300	60.300 0.640	51.100 5.680	56.100 30.740
(11466)	124.700	102.210	70.7 4 0	14.010	1.300	0.040	5.000	30.740

Call Sign: KNKN867 File Number: 0009262184 Print I
--

Sun Signiv III (III (80)	The	rumber.	00072021	<i>3</i> 1				
Location Latitude	Longitude		round Elev neters)		Structure Hg meters)	t to Tip	ip Antenna Structure Registration No.	
25 36-51-02.0 N	086-42-26.0 W	19	98.1	5	59.4			
Address: JCT. SR-103 & SR-	603, APPROX. 3.2	2 KM SW	OF					
City: AUBURN County: L	OGAN State: K	Y Cons	struction D	eadline:				
Antenna: 2	-							
Maximum Transmitting ERP in		45	00	125	100	225	250	21.5
Azimuth(from true north) Antenna Height AAT (meters)	0 61.200	45 65.800	90 54.700	135 38.200	180 54.400	225 60.300	270 51.100	315 56.100
Transmitting ERP (watts)	1.480	8.260	53.490	159.390		53.380	6.730	0.530
Antenna: 3 Maximum Transmitting ERP in	Watte: 140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	61.200	65.800	54.700	38.200	54.400	30.300	51.100	56.100
Transmitting ERP (watts)	41.260	4.310	0.490	3.550	23.820	120.300	242.920	193.090
Location Latitude	Longitude	G	round Elev	ation S	Structure Hg	to Tin	Antenna St	ructure
Location Latitude	Longitude		neters)		meters)	то 1-1	Registratio	
26 37-23-00.0 N	086-52-28.0 W		53.4	ì	125.3		1043042	
Address: 1.6 KM SSE								
City: BEAVER DAM Cour	nty: OHIO State	e: KY C	onstruction	n Deadli	ne:			
	.,							
Antenna: 1								
Maximum Transmitting ERP in	Watts: 140.820	•						
Azimuth(from true north) Antenna Height AAT (meters)	0	45	90	135	180	225	270	315
Transmitting ERP (watts)	127.600 3.020	102.300 33.930	92.500 100.130	117.700 64.650	113.600 9.650	112.400 0.650	112.300 0.240	132.200 0.270
Antenna: 2		33.930	100.130	04.030	9.030	0.030	0.240	0.270
Maximum Transmitting ERP in Azimuth(from true north)	u Watts: 140.820 0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	127.600	102.300	92.500	117.700		112.400	112.300	132.200
Transmitting ERP (watts)	0.240	0.250	0.310	8.140	56.310	104.850	38.950	4.370
Antenna: 3 Maximum Transmitting ERP in	Watts: 140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters) Transmitting ERP (watts)	127.600	102.300	92.500	117.700		112.400	112.300	132.200
Transmitting EXT (watts)	100.130	31.660	3.320	0.240	0.260	0.400	10.730	66.150
Location Latitude	Longitude		round Elev		Structure Hg	to Tip	Antenna St	
27 37-02-39.4 N	086-10-59.9 W	•	neters) 12.8	,	meters) 106.4		Registratio 1213318	n No.
Address: 470 Hayes Road								
City: Smiths Grove County	: WARREN Sta	ate: KY	Constructi	on Dead	line:			
•								
Antenna: 1								
Maximum Transmitting ERP in	Watts: 140.820							
Azimuth(from true north) Antenna Height AAT (meters)	0 101.300	45	90	135	180	225	270	315
Transmitting ERP (watts)	96.880	97.700 58.040	91.800 4.690	90.100 0.270	117.500 0.190	131.500 0.360	124.400 4.280	116.400 56.720
	70.000	20.040	7.070	0.270	0.170	0.500	7.200	30.720
						_		

Location Latitude 27 37-02-39.4 N Address: 470 Hayes Road	Longitude 086-10-59.9 W	Grou (mete 212.8	,	Structure Hgt (meters) 106.4	to Tip	Antenna St Registration 1213318	
	: WARREN State	e: KY Co	onstruction De	adline:			
Antenna: 2 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters)	0		90 135 91.800 90.10	180 0 117.500	225 131.500	270 124.400	315 116.400
Transmitting ERP (watts)	0.970		17.640 131.2		2.250	0.300	0.270
Antenna: 3 Maximum Transmitting ERP in	Watts: 140.820						
Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	0 101.600	97.700 9	90 135 91.800 90.10 9.210 1.560		225 131.500 92.910	270 124.400 81.390	315 116.400 12.800
Location Latitude	Longitude	Grou (met	ınd Elevation ers)	Structure Hgt (meters)	to Tip	Antenna St Registration	
28 36-44-52.5 N	086-11-51.7 W	219.4	4	77.7		1219613	
Address: Downtown							
City: Scottsville County: A	LLEN State: KY	Constru	ction Deadline	:			
Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP in	0 85.000 148.300	66.900 6	00 135 51.300 43.40 6.850 1.700		225 63.100 3.820	270 73.600 24.140	315 85.500 103.720
Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3 Maximum Transmitting ERP in	85.000 7.500	66.900 6	135 51.300 43.40 42.020 156.5		225 63.100 8.540	270 73.600 0.660	315 85.500 0.990
Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	0 85.000	66.900 6	90 135 51.300 43.40 2.290 11.23		225 63.100 158.400	270 73.600 136.570	315 85.500 33.890
Location Latitude	Longitude	Grou (met	ınd Elevation ers)	Structure Hgt (meters)	to Tip	Antenna St Registration	
29 37-52-14.6 N	086-16-43.1 W	243.8	8	39.6		-	
Address: Irvington WT, 1.0 k							
City: Irvington County: BF	RECKINRIDGE S	tate: KY	Construction	Deadline:			
Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	0 72.800	71.900 5	00 135 16.800 59.60 27.520 20.33		225 80.000 0.370	270 110.200 0.480	315 67.900 3.570
							7

	Latitude 37-52-14.6 N Irvington WT, 1.0 k	Longitude 086-16-43.1 W m ESE of		ound Eleveters)	vation	Structure Hgt (meters) 39.6	to Tip	Antenna St Registratio	
City: Irvin	gton County: BF	RECKINRIDGE	State: KY	Constr	uction I	Deadline:			
Azin Antenna H Transmitti Antenna: 3 Maximum Azin	Transmitting ERP in nuth(from true north) (eight AAT (meters) ng ERP (watts)	72.800 0.370	45 71.900 0.480 45 71.900	90 56.800 10.610 90 56.800	135 59.600 83.760 135 59.600	182.210 180	225 80.000 79.990 225 80.000	270 110.200 9.240 270 110.200	315 67.900 0.460 315 67.900
Transmitti	ng ERP (watts)	42.710	4.010	0.370	0.460	0.980	23.880	127.520	165.220
Location	Latitude	Longitude	(m	ound Elev eters)	vation	Structure Hgt (meters)	to Tip	Antenna St Registratio	
	37-56-31.2 N	086-03-37.8 W	19	3.5		77.7		1221515	
	0.8 km North North								
City: Lick	skillet County: N	MEADE State: K	Y Cons	truction I	Deadline	:			
Azin Antenna H Transmitti Antenna: 2 Maximum Azin Antenna H Transmitti Antenna: 3 Maximum Azin Antenna H	Transmitting ERP in muth(from true north) leight AAT (meters) mg ERP (watts) transmitting ERP in muth(from true north) leight AAT (meters) mg ERP (watts)	0 63.900 61.740 a Watts: 140.820 0 63.900 0.380	45 127.200 82.330 45 127.200 3.220 45 127.200 1.430	90 65.800 23.470 90 65.800 20.310 90 65.800 0.380	135 54.400 2.370 135 54.400 87.270 135 54.400 3.220	0.260 180 36.100 124.780	225 30.500 0.260 225 30.500 83.940 225 30.500 87.270	270 59.300 0.510 270 59.300 14.180 270 59.300 124.780	315 102.600 11.360 315 102.600 1.430 315 102.600 83.940
	36-57-06.0 N	Longitude 086-26-12.0 W		ound Elev eters) 6.1	vation	Structure Hgr (meters) 16.8	to Tip	Antenna St Registratio	
	Downtown	4 WADDEN G	toto. VV	Commen	otion D	adlina.			
Azin Antenna H		•	45 29.900 83.940	90 29.900 14.180	135 29.900 1.430	180	225 29.900 3.220	270 29.900 20.310	315 29.900 87.270

Call Sign: KNKN867	File Number: 0009262184	Print Date:
--------------------	--------------------------------	-------------

Location Latitude 31 36-57-06.0 N	Longitude 086-26-12.0 W	(m	round Elev leters) 6.1	ation	Structure Hgt (meters) 16.8	to Tip	Antenna Se Registratio	
Address: Downtown City: Bowling Green Coun	nty: WARREN St	ate: KY	Construc	tion Do	adlina:			
City: Bowling Green Coun	ity: WARKEN St	ate: K1	Construc	uon De	aume:			
Antenna: 2 Maximum Transmitting ERP i Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3	29.900 6.310	45 29.900 35.160	90 29.900 119.490	135 29.900 131.75		225 29.900 7.180	270 29.900 0.550	315 29.900 0.830
Maximum Transmitting ERP i Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	n Watts: 140.820 0 29.900 3.200	45 29.900 0.270	90 29.900 1.930	135 29.900 9.450	180 29.900 57.340	225 29.900 133.270	270 29.900 114.910	315 29.900 28.510
Location Latitude	Longitude		round Elev eters)	ation	Structure Hgt (meters)	to Tip	Antenna St Registratio	
32 37-59-31.1 N	086-11-44.3 W	18	7.7		77.7		1232593	
Address: 1.6 km West of								
City: Brandenburg County	: MEADE State:	KY Co	nstruction	Deadli	ne:			
Antenna: 1 Maximum Transmitting ERP i Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP i	0 58.400 9.710	45 56.600 60.570	90 82.400 96.350	135 34.400 32.270		225 41.000 0.300	270 40.100 0.300	315 67.700 0.420
Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 4 Maximum Transmitting ERP i	0 58.400 0.300	45 56.600 0.380	90 82.400 8.420	135 34.400 66.540		225 41.000 63.540	270 40.100 7.340	315 67.700 0.360
Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	0 58.400 28.390	45 56.600 3.310	90 82.400 0.300	135 34.400 0.380	180 36.100 0.830	225 41.000 17.510	270 40.100 70.860	315 67.700 87.550
Location Latitude	Longitude		ound Elev eters)	ation	Structure Hgt (meters)	to Tip	Antenna St Registratio	
33 37-56-46.1 N	085-59-38.4 W	22	2.8		57.3		1200354	
Address: 115 Timber Ct.								
City: Muldraugh County:	MEADE State: K	Y Con	struction D	eadline	e :			
Antenna: 1 Maximum Transmitting ERP i Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	n Watts: 140.820 0 84.500 57.050	45 85.900 54.960	90 93.700	135 56.800	180 54.600	225 40.300	270 67.400	315 81.700

Location	Latitude	Longitude		Structure Hgt to Tip (meters)	Antenna Structure
			(meters)	(meters)	Registration No.
33	37-56-46.1 N	085-59-38.4 W	222.8	57.3	1200354

File Number: 0009262184

Print Date:

Address: 115 Timber Ct.

Call Sign: KNKN867

City: Muldraugh County: MEADE State: KY Construction Deadline:

Antenna: 2	140.920							
Maximum Transmitting ERP in Watts:								
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	84.500	85.900	93.700	56.800	54.600	40.300	67.400	81.700
Transmitting ERP (watts) Antenna: 3	0.380	0.800	19.520	104.850	135.070	36.350	3.470	0.330
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	84.500	85,900	93.700	56.800	54.600	40.300	67.400	81.700
Transmitting ERP (watts)	2.570	0.330	0.390	1.200	24.580	114.960	156.050	28.220

Locatio	n Latitude	Longitude			Antenna Structure
			(meters)	(meters)	Registration No.
34	37-46-03.7 N	086-26-10.4 W	219.5	45.7	
	TT 1' 1 TTT .	T 1 2 0 1 CF C			

Address: Hardinsburg Water Tank, 3.0 km SE of

State: KY Construction Deadline: City: Hardinsburg County: BRECKINRIDGE

Antenna: 1								
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north) Antenna Height AAT (meters)	0 77.900	45 54.500	90 36.600	135 52.000	180 74.200	225 60,600	270 78.300	315 83.900
Transmitting ERP (watts) Antenna: 2	182.210	79.990	9.240	0.460	0.370	0.480	10.610	83.760
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north) Antenna Height AAT (meters)	0 77.900	45 54.500	90 36.600	135 52,000	180 74.200	225 60.600	270 78.300	315 83.900
Transmitting ERP (watts) Antenna: 3	0.980	23.880	127.520	165.220	42.710	4.010	0.370	0.460
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	77.900	54.500	36.600	52.000	74.200	60.600	78.300	83.900
Transmitting ERP (watts)	1.520	0.370	0.480	3.570	47.930	165.220	127.520	20.330

Location	1 Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
35	36-42-08.6 N	086-33-19.0 W	217.0	114.3	1200032

Address: Franklin South, Turners Ford Road

City: Franklin County: SIMPSON State: KY **Construction Deadline:**

Antenna: 1 Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	0 75.500 8.520	45 67.800 69.270	90 58.900 148.100	135 47.700 66.150	180 34.900 7.950	225 56.000 0.410	270 62.700 0.330	315 57.000 0.390

Call Sign: KNKN867	File Number: 0009262184	Print Date:
--------------------	-------------------------	-------------

Location Latitude 35 36-42-08.6 N Address: Franklin South, T	Longitude 086-33-19.0 W Jurners Ford Road	(r	Fround Eleveneters)	(Structure Hg (meters) 114.3	t to Tip	Antenna St Registratio 1200032	
City: Franklin County: S	SIMPSON State: 1	KY Con	struction D	eadline:				
Antenna: 2 Maximum Transmitting ERI Azimuth(from true nort) Antenna Height AAT (meter) Transmitting ERP (watts) Antenna: 3	h) 0 75.500 0.620	45 67.800 0.330	90 58.900 0.370	135 47.700 6.170	180 34.900 57.620	225 56.000 148.100	270 62.700 79.530	315 57.000 10.480
Azimuth (from true north Antenna Height AAT (meter Transmitting ERP (watts)	h) 0	45 67.800 28.220	90 58.900 2.570	135 47.700 0.330	180 34.900 0.390	225 56.000 1.200	270 62.700 24.580	315 57.000 114.960
Location Latitude	Longitude		round Elevneters)		Structure Hg (meters)	t to Tip	Antenna St Registratio	
36 36-44-58.7 N	087-01-10.9 W	1	79.8	3	37.5		8	
Address: Russellville South	nwest, 0.8 km SW of		Y .					
City: Olmstead County:	LOGAN State: K	Y Cons	truction D	eadline:				
Antenna: 1 Maximum Transmitting ERI Azimuth(from true north Antenna Height AAT (meter Transmitting ERP (watts) Antenna: 2	h) 0 29.900 124.780	45 29.900 83.940	90 31.500 14.180	135 45.900 1.430	180 38.200 0.380	225 39.100 3.220	270 29.900 20.310	315 29.900 87.270
Maximum Transmitting ERI Azimuth(from true north Antenna Height AAT (meter Transmitting ERP (watts) Antenna: 3 Maximum Transmitting ERI	h) 0 29.900 6.310	45 29.900 35.160	90 31.500 119.490	135 45.900 131.750	180 38.200 50.750	225 39.100 7.180	270 29.900 0.550	315 29.900 0.830
Azimuth (from true north Antenna Height AAT (meter Transmitting ERP (watts)	h) 0	45 29.900 0.270	90 31.500 1.930	135 45.900 9.450	180 38.200 57.340	225 39.100 133.270	270 29.900 114.910	315 29.900 28.510
Location Latitude 37 36-49-37 9 N	Longitude	(r	round Eleveneters)	(Structure Hg (meters)	t to Tip	Antenna St Registratio	
37 36-49-37.9 N Address: Allen Northwest	086-18-51.3 W		92.0	7,	77.7		1232590	
	: ALLEN State: F		struction D	eadline•				
Antenna: 1 Maximum Transmitting ERI Azimuth(from true north Antenna Height AAT (meter Transmitting ERP (watts)	P in Watts: 140.820	45 102.800 4.010	90 60.100 53.770	135 49.200 185.380	180 58.900 143.070	225 71.000 22.810	270 89.900 1.700	315 100.000 0.420

Call Sign: KNKN867 File Number: 0009262184 Print I
--

Location Latitude 37 36-49-37.9 N Address: Allen Northwes	Longitude 086-18-51.3 W	Ground Ele (meters) 192.0	(Structure Hg (meters) 77.7	t to Tip	Antenna St Registration 1232590	
	y: ALLEN State: K		Deadline:				
Antenna: 2 Maximum Transmitting El Azimuth(from true no Antenna Height AAT (mete Transmitting ERP (watts) Antenna: 3	rth) 0	45 90 102.800 60.100 0.290 0.290	135 49.200 0.290	180 58.900 5.380	225 71.000 93.450	270 89.900 104.850	315 100.000 10.250
Maximum Transmitting El Azimuth(from true no Antenna Height AAT (mete Transmitting ERP (watts)	rth) 0	45 90 102.800 60.100 60.790 7.140	135 49.200 0.540	180 58.900 2.800	225 71.000 11.880	270 89.900 85.700	315 100.000 226.550
Location Latitude	Longitude	Ground Ele (meters)		Structure Hg (meters)	t to Tip	Antenna St Registratio	
38 36-55-15.1 N	086-25-38.5 W	171.0		62.5		1210120	22 1 101
Address: 1140 Three Spri	ngs Road						
City: Bowling Green C	ounty: WARREN S	State: KY Constr	action Dea	adline:			
Antenna: 1 Maximum Transmitting El Azimuth(from true no Antenna Height AAT (mete Transmitting ERP (watts) Antenna: 2	rth) 0 62.400 41.740	45 90 67.900 45.500 24.340 4.420	135 40.600 0.400	180 40.900 0.330	225 36.000 0.330	270 40.900 3.510	315 56.100 21.690
Azimum Transmitting El Azimuth(from true no Antenna Height AAT (meta Transmitting ERP (watts) Antenna: 3	rth) 0 62.400 0.870	45 90 67.900 45.500 21.280 113.650	135 40.600 147.250	180 40,900 38.070	225 36.000 3.570	270 40.900 0.330	315 56.100 0.410
Azimum Transmitting El Azimuth(from true no Antenna Height AAT (mete Transmitting ERP (watts)	rth) 0	45 90 67.900 45.500 0.260 0.370	135 40.600 2.600	180 40.900 30.680	225 36.000 93.270	270 40.900 73.680	315 56.100 13.650
Location Latitude	Longitude	Ground Ele (meters)		Structure Hg (meters)	t to Tip	Antenna St Registratio	
39 36-49-54.5 N	086-29-39.3 W	192.6		66.1		1202759	
Address: Warren South, 3		1 0					
City: Woodburn Count	y: WARREN State	: KY Construction	n Deadlin	ie:			
Antenna: 1 Maximum Transmitting El Azimuth(from true no Antenna Height AAT (mete Transmitting ERP (watts)	rth) 0	45 90 58.500 57.100 103.520 17.130	135 39.300 1.570	180 32.800 0.350	225 33.900 3.440	270 35.000 23.000	315 49.400 104.220

Call Sign: KNKN867	File Number: 0009262184	Print Date:
--------------------	--------------------------------	-------------

Location Latitude 39 36-49-54.5 N Address: Warren South, 3 City: Woodburn County	Longitude 086-29-39.3 W 184 Woodburn-Allen S v: WARREN State:	(n 19 Springs R	round Elev neters) 92.6 oad onstruction	(Structure Hg meters) 66.1 e:	to Tip	Antenna St Registratio 1202759	
Antenna: 2								
Maximum Transmitting ER Azimuth(from true nor		45	90	135	180	225	270	315
Antenna Height AAT (meter		58.500	57.100	39.300	32.800	33.900	35.000	49.400
Transmitting ERP (watts) Antenna: 3	6.890	41.510	144.360	164.760	61.880	8.540	0.570	0.780
Maximum Transmitting ER	P in Watts: 140.820							
Azimuth(from true nor Antenna Height AAT (meter		45	90	135	180	225	270	315
Transmitting ERP (watts)	rs) 58.500 0.610	58.500 0.310	57.100 0.310	39.300 0.310	32.800 2.120	33.900 58.290	35.000 121.780	49.400 19.300
	0.010	0.310	0.510	0.310	2.120	30.270	121.700	17.500
Location Latitude	Longitude		round Elev		Structure Hgt	to Tip	Antenna St	
40			neters)	,	meters)		Registratio	n No.
40 37-03-19.5 N	086-35-24.6 W		84.4	(57.1		1219414	
Address: Warren Northwe	•							
City: Bowling Green Co	ounty: WARREN S	tate: KY	Construc	tion Dea	dline:			
Antenna: 1 Maximum Transmitting ER Azimuth(from true nor Antenna Height AAT (meter	th) 0	45 71.100	90	135	180 57.900	225 67.700	270 67.900	315 70.300
Transmitting ERP (watts)	0.430	11.130	64.500 78.320	67.200 144.460		5.690	0.300	0.320
Antenna: 2 Maximum Transmitting ER	P in Watts: 140 820							
Azimuth(from true nor	th) 0	45	90	135	180	225	270	315
Antenna Height AAT (meter		71.100	64.500	67.200	57.900	67.700	67.900	70.300
Transmitting ERP (watts) Antenna: 3	0.560	0.300	0.370	6.090	56.530	144.460	74.790	9.690
Maximum Transmitting ER	4 .							
Azimuth(from true nor Antenna Height AAT (meter		45 71.100	90	135	180 57.900	225 67.700	270 67.900	315 70.300
Transmitting ERP (watts)	101.290	16.150	64.500 1.200	67.200 0.300	0.390	2.840	38.070	131.240
Location Latitude	Longitude	(n	round Elev neters)	(Structure Hgt meters)	to Tip	Antenna St Registratio	
41 37-08-05.9 N	087-01-05.2 W		87.8	7	77.7		1278320	
Address: Muhlenberg Sou								
City: Belton County: M	UHLENBERG Sta	te: KY	Construction	on Deadl	line:			
Antenna: 1 Maximum Transmitting ER Azimuth(from true nor		45	90	135	180	225	270	315
Antenna Height AAT (meter Transmitting ERP (watts)	rs) 110.500	126.100	111.400	114.500		73.900	100.200	112.200

Call Sign: KNKN867	File Number: 0009262184	Print Date:
--------------------	--------------------------------	-------------

			Ground Elevation (meters) 187.8			Structure Hgt to Tip (meters) 77.7		Antenna Structure Registration No. 1278320	
	ounty: MUHLENB			Constructio	n Dead	lline:			
Azimuth(from Antenna Height Azimuthing ERP Antenna: 3	AT (meters)	0 48 110.500 12 6.310 35	5 26.100 5.160	90 111.400 119.490	135 114.50 131.75		225 73.900 7.180	270 100.200 0.550	315 112.200 0.830
Azimuth(from Antenna Height Az Transmitting ERP	n true north) AT (meters)	0 110.500 12	5 26.100 270	90 111.400 1.930	135 114.50 9.450	180 0 86.400 57.340	225 73.900 133.270	270 100.200 114.910	315 112.200 28.510
Location Latitude Longitude		gitude	Ground Elevation (meters)			Structure Hgt to Tip (meters)		Antenna Structure Registration No.	
42 37-00-0		19-52.5 W		1.2		77.4		1207196	
•	g Green Corvette si		ond Roa	d					
City: Bowling Gre	een County: WA	ARREN State	e: KY	Construc	tion De	adline:			
Azimuth(from Antenna Height Az Transmitting ERP Antenna: 2	AT (meters) (watts)	0 48.300 48 149.820 65	5 3.300 5.780	90 47.300 7.600	135 66.500 0.370	180 54.700 0.310	225 68.100 0.390	270 79.200 8.720	315 59.700 68.880
Azimuth(from Antenna Height Az Transmitting ERP Antenna: 3	AT (meters)	0 48.300 0.850 48	5 3.300 3.620	90 47.300 85.580	135 66.500 108.34		225 68.100 3.380	270 79.200 0.310	315 59.700 0.410
Azimuth (from Antenna Height Az Transmitting ERP	n true north) AT (meters)	0 45 48.300 48	5 3.300 310	90 47.300 0.430	135 66.500 3.020	180 54.700 35.640	225 68.100 108.340	270 79.200 85.580	315 59.700 15.850
Location Latitue	tion Latitude Longitude		Ground Elevation (meters)			Structure Hgt to Tip (meters)		Antenna Structure Registration No.	
	37 30 10.111		225.6			77.7		1242951	
	ridge West, 1.6 km								
City: Cloverport	County: BRECK	INRIDGE S	tate: K	Y Consti	cuction	Deadline:			
Antenna: 1 Maximum Transm Azimuth(fror Antenna Height Az Transmitting ERP	AT (meters)	0 45 138.300 12	5 28.300 17.640	90 120.400 43.710	135 132.90 4.900	180 0 123.200 0.260	225 133.200 0.280	270 139.400 0.350	315 156.600 9.130

43 Address: 1	ation Latitude Longitude 37-50-10.4 N 086-35-44 lress: Breckinridge West, 1.6 km ENE : Cloverport County: BRECKINRI		(meters) 5-44.7 W 225.6 ENE of			tructure Hg neters) 7.7 Deadline:	to Tip	Antenna Structure Registration No. 1242951		
Azim Antenna H Transmitti Antenna: 3	Transmitting ERP in nuth(from true north) eight AAT (meters) ng ERP (watts)	0 138.300 0.310	45 128.300 2.290	90 120.400 30.940	135 132.900 107.290	180 123.200 83.280	225 133.200 13.820	270 139.400 1.050	315 156.600 0.260	
Azim Antenna H	nuth(from true north) eight AAT (meters) ng ERP (watts)	140.820 0 138.300 4.400	45 128.300 0.370	90 120.400 0.370	135 132.900 0.530	180 123.200 12.230	225 133.200 76.250	270 139.400 121.300	315 156.600 40.630	
Location	Latitude	Longitude		round Elev neters)		tructure Hg neters)	to Tip	Antenna St Registratio		
44	37-51-15.4 N	086-06-03.2 W		03.9	•	7.4		1042711	11 110.	
	Garrett, State Road				Ü	/ • T		1072/11		
City: FOR		,		Construction	n Deadlir	ne:				
		<i>y</i> • • • • • • • • • • • • • • • • • • •		011307 40070						
	Transmitting ERP in the country of t	n Watts: 140.820	45	90	135	180	225	270	315	
Antenna H	eight AAT (meters) ng ERP (watts)	153.600 79.530	154.600 54.370	149.600 13.580	132,900 1.630	121.400 0.410	131.200 3.580	143.100 18.240	146.300 54.730	
Maximum	Transmitting ERP in the true north)	n Watts: 140.820	45	90	135	180	225	270	315	
Antenna H	eight AAT (meters) ng ERP (watts)	153.600 5.460	154.600 32.920	149.600 114.480	132.900 130.660	121.400 49.070	131.200 6.770	143.100 0.450	146.300 0.620	
Maximum Azim Antenna H	Transmitting ERP in nuth(from true north) eight AAT (meters) ng ERP (watts)	n Watts: 140.820 0 153.600 2.950	45 154.600 0.270	90 149.600 1.500	135 132.900 8.200	180 121.400 53.810	225 131.200 130.660	270 143.100 112.910	315 146.300 27.380	
Location	Latitude	Longitude		round Elev neters)		tructure Hg	to Tip	Antenna St Registratio		
45	37-52-54.4 N	086-12-42.9 W	27	74.3	29	9.0		, -		
Address: 1	Meade South, 1.4 ki	m southeast of								
City: Gust	on County: MEA	ADE State: KY	Constru	iction Dead	lline:					
Antenna: 1	Transmitting ERP in	n Watts: 140.820								

Call Sign: KNKN867 **Print Date: File Number:** 0009262184 **Ground Elevation** Structure Hgt to Tip **Location Latitude** Longitude **Antenna Structure** (meters) (meters) Registration No. 45 37-52-54.4 N 086-12-42.9 W 274.3 29.0 Address: Meade South, 1.4 km southeast of City: Guston County: MEADE State: KY **Construction Deadline:** Antenna: 2 **Maximum Transmitting ERP in Watts:** 140.820 Azimuth(from true north)
Antenna Height AAT (meters) 90 135 180 225 270 315 45 109.800 103.800 105.900 82.400 63.100 79.200 114.800 76.100 Transmitting ERP (watts) 1.870 0.260 0.280 0.860 17.310 81.910 91.780 21.270 Antenna: 3 **Maximum Transmitting ERP in Watts: 140.820** Azimuth(from true north)
Antenna Height AAT (meters) 45 90 180 270 315 135 225 109.800 103.800 82.400 63.100 79.200 105.900 114.800 76.100 Transmitting ERP (watts) 67.960 31.280 4.680 0.260 0.300 0.380 7.690 41.430 **Location Latitude** Longitude Ground Elevation **Structure Hgt to Tip Antenna Structure** (meters) (meters) Registration No. 46 36-54-15.9 N 086-36-29.1 W 1200363 202.7 83.8 Address: Warren-Logan cell, 11372 Russellville Road City: Rockfield **Construction Deadline: County:** WARREN State: KY Antenna: 1 **Maximum Transmitting ERP in Watts:** 140.820 Azimuth(from true north) 45 180 225 270 315 135 Antenna Height AAT (meters) 105.100 84.600 84.000 77.200 66.700 61.500 67.700 81.100 Transmitting ERP (watts) 19.380 98.240 108.110 44.550 0.270 0.230 1.010 2.720 Antenna: 2 **Maximum Transmitting ERP in Watts:** 140.820 Azimuth(from true north) 45 90 135 180 225 270 315 Antenna Height AAT (meters) 105.100 84.600 84.000 77.200 66.700 61.500 67.700 81.100 Transmitting ERP (watts) 0.270 0.270 90.270 100.820 5.300 9.580 0.400 0.270 Antenna: 3 **Maximum Transmitting ERP in Watts:** 140.820

Location	Latitude	Longitude	Ground Elevation (meters)	Structure Hgt to Tip (meters)	Antenna Structure Registration No.
47	37-24-19.0 N	086-42-17.0 W	199.9	94.5	1213965
Address.	Ohio West 3893 Sta	ite Route 505 South			

90

84.000

0.310

45

84.600

0.230

180

66.700

42.550

135

77.200

2.530

225

61.500

110.630

270

67.700

96.000

315

81.100

20.290

Azimuth(from true north)

Antenna Height AAT (meters)

Transmitting ERP (watts)

County: OHIO State: KY **Construction Deadline: City:** Horse Branch

105.100

0.880

Antenna: 1								
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	112.900	104.700	91.700	117.300	127.400	134.600	135.400	100.900
Transmitting ERP (watts)	117.640	63.170	8.330	0.490	0.260	0.300	4.900	45.770

Location Latitude 47 37-24-19.0 N Address: Ohio West, 389	Longitude 086-42-17.0 W 3 State Route 505 Sout	(m 19	round Elev neters) 19.9	ation	Structure Hgt (meters) 94.5	to Tip	Antenna St Registratio 1213965	
	unty: OHIO State:		struction D	eadlin	e:			
Antenna: 2	DD: Wotter 140 920							
Maximum Transmitting El Azimuth(from true no		45	90	135	180	225	270	315
Antenna Height AAT (mete		104.700	91.700	117.30		134.600	135.400	100.900
Fransmitting ERP (watts) Antenna: 3	1.260	33.960	209.410	316.96	50 100.230	10.500	0.740	0.810
Maximum Transmitting El								
Azimuth(from true no Antenna Height AAT (meto		45 104.700	90 91.700	135	180 00 127.400	225 134.600	270 135.400	315 100.900
Γransmitting ERP (watts)	1.480	0.260	0.310	117.30 1.480	24.580	100.120	93.440	17.800
T 10 T 10		0	1.151	4.	C4	4 - TP!	A 4 G	
Location Latitude	Longitude		round Eleva eters)	ation	Structure Hgt (meters)	to 11p	Antenna St Registratio	
48 36-57-24.8 N	086-28-42.2 W		57.0		84.1		1056469	11 110.
Address: 3090 Fitzgerald			,,,,,		04.1		1030407	
•		State: KY	Construc	tion De	eadline:			
<u>, </u>								
Antenna: 1								
Maximum Transmitting El	RP in Watts: 140.820							
Azimuth(from true no Antenna Height AAT (mete		45	90	135	180	225	270	315
Fransmitting ERP (watts)	61.180	63.700 69.730	65.900 7.330	62.600 0.310	0.310 0.310	41.900 0.310	36.500 0.310	59.500 3.930
Antenna: 2		07.730	7.330	0.510	0.510	0.510	0.510	3.730
Maximum Transmitting El Azimuth(from true no		45	90	135	180	225	270	315
Antenna Height AAT (mete		63.700	65.900	62.600		41.900	36.500	59.500
Transmitting ERP (watts) Antenna: 3	0.310	2.460	45.980	65.510	8.220	0.390	0.310	0.310
Maximum Transmitting El	RP in Watts: 140.820							
Azimuth(from true no Antenna Height AAT (mete		45	90	135	180	225	270	315
Fransmitting ERP (watts)	ers) 71.400 1.080	63.700 0.260	65.900 0.280	62.600 1.840) 44.100 17.800	41.900 47.490	36.500 39.840	59.500 10.320
· · · · · · · · · · · · · · · · · · ·	1.000	0.200	0.200	1.040	17.000	47.470	37.040	10.520
Location Latitude	Longitude		round Elev	ation	Structure Hgt	to Tip	Antenna St	
40	004 - : - : -	•	eters)		(meters)		Registratio	n No.
49 36-49-53.1 N	086-54-51.9 W		3.9		78.6	1	1043422	
Address: RUSSELLVILI	LE WEST, 0.64 KM N	ORTH OF	HWY 79, 0	0.16 KM	1 WEST OF HV	VY 68		
SYPASS	ounty: LOGAN Stat	to. VV	onatmatic	n Daa-	llino.			
City: LEWISBURG Co	bunty: LOGAN Stat	te: KY C	Construction	п реад	e:			
Antenna: 1							7	
Antenna. 1 Maximum Transmitting El	RP in Watts: 140.820							
Azimuth(from true no	orth) 0	45	90	135	180	225	270	315
Antenna Height AAT (meto Fransmitting ERP (watts)	ers) 107.500 151.070	100.000 101.210	79.700 20.030	100.10 2.250	00 113.000 0.630	110.200 5.060	90.700 28.690	106.900 105.230
	131.0/0	101.210	20.030	2.230	0.030	5.000	20.090	103.230

2.5. 2.5. 2.2 111 (00)	THE	(dilloci)	000720210	<i>.</i>				
Location Latitude	Longitude		round Elev neters)		Structure Hgt (meters)	to Tip	Antenna St Registratio	
49 36-49-53.1 N	086-54-51.9 W		53.9		78.6		1043422	
Address: RUSSELLVILLE W BYPASS	EST, 0.64 KM NO	RTH OF	HWY 79, 0).16 KM	WEST OF HV	VY 68		
City: LEWISBURG County	y: LOGAN State	: KY (Constructio	n Deadl	line:			
	1/40							
Antenna: 2								
Maximum Transmitting ERP in Azimuth(from true north)	Watts: 140.820	45	90	135	180	225	270	315
Antenna Height AAT (meters)		100.000	79.700	100.100		110.200	90.700	106.900
Transmitting ERP (watts) Antenna: 3	9.170	55.270	192.200	219.36	0 82.390	11.370	0.760	1.030
Maximum Transmitting ERP in	Watts: 140.820							
Azimuth(from true north) Antenna Height AAT (meters)	0 107.500	45 100.000	90	135	180	225	270	315
Transmitting ERP (watts)	4.520	0.380	79.700 2.720	100.100 13.340		110.200 188.260	90.700 162.320	106.900 40.280
Location Latitude	Longitude		round Elev		Structure Hgt	to Tip	Antenna St	
50 25 25 20 2 3	006 05 40 5 111		ieters)		(meters)		Registratio	n No.
50 37-05-38.9 N	086-25-49.5 W	21	7.6		103.6		1232131	
Address: Richardsville, 604 S		An IVV	Compt	4 D	. Jli			
City: Bowling Green Count	ty: WARREN Sta	ate: KY	Construc	tion Dea	aume:			
Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2	0 108.300 144.730	45 97.200 63.540	90 74.500 7.340	135 103.30 0.360	180 0 110.500 0.300	225 127.000 0.380	270 127.000 8.420	315 111.000 66.540
Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3	0	45 97.200 18.970	90 74.500 101.290	135 103.300 131.240		225 100.500 3.180	270 127.000 0.300	315 111.000 0.370
Maximum Transmitting ERP in	Watts: 140.820							
Azimuth(from true north) Antenna Height AAT (meters)	0 108.300	45	90	135	180	225	270	315
Transmitting ERP (watts)	1.200	97.200 0.300	74.500 0.390	103.300 2.840	0 110.500 38.070	100.500 131.240	127.000 101.290	111.000 16.150
Location Latitude	Longitude	,	round Elev neters)		Structure Hgt (meters)	to Tip	Antenna St Registratio	
51 37-31-30.4 N	086-55-04.2 W	19	5.7		97.8		1214609	
Address: Beda, 729 Sherwood								
City: Hartford County: OH	IO State: KY	Construc	tion Deadl	ine:				
Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters) Transmitting ERP (watts)	107.800 38.070	100.300 131.240	110.100 101.290	108.400 16.150		117.000 0.300	103.100 0.390	107.200 2.840
Θ ()	30.070	131.470	101.270	10.150	1.200	0.500	0.570	2.040

File Number: 0009262184	Print Date:
	File Number: 0009262184

	7-31-30.4 N	Longitude 086-55-04.2 W	(m	round Elev neters) 95.7	ation	Structure Hgt (meters) 97.8	to Tip	Antenna Structure Registration No. 1214609		
City: Hartfor	eda, 729 Sherwoo rd County: OF		Construc	tion Deadl	ine:					
Azimut Antenna Heig Transmitting Antenna: 3 Maximum Tr Azimut	ransmitting ERP in th(from true north)	0 107.800 0.340	45 100.300 0.540	90 110.100 14.700	135 108.40 90.110		225 117.000 42.790	270 103.100 4.300	315 107.200 0.300	
Antenna Heig Transmitting	ght AAT (meters) ERP (watts)	107.800 52.750	100.300 5.690	110.100 0.300	108.40 0.320	00 122.200 0.430	117.000 11.130	103.100 78.320	107.200 144.460	
Location L	atitude	Longitude	Gı (m	round Elev neters)		Structure Hgt (meters)		Antenna St Registratio	ructure	
	7-29-36.0 N	086-11-16.5 W	22	21.9		83.8		1217206		
Address: Bracket City: Clarks		RAYSON State:	VV Co	nstruction	Daadii					
City. Clarks	on County: GF	CATSON State.	K1 Co	ilstruction	Deaum					
Azimut Antenna Heig Transmitting Antenna: 2		0 80.100 23.930	45 57.600 113.860	90 68.100 122.250	135 71.000 26.290		225 101.700 0.300	270 77.300 0.370	315 93.100 1.180	
Azimut Antenna Heig Transmitting Antenna: 3		0 80.100 2.360	45 57.600 0.300	90 68.100 0.370	135 71.000 1.180		225 101.700 113.860	270 77.300 122.250	315 93.100 26.290	
Azimut	ransmitting ERP in th(from true north) ght AAT (meters) gERP (watts)	140.820 0 80.100 103.640	45 57.600 9.240	90 68.100 0.340	135 71.000 0.270	180 82.900 0.270	225 101.700 0.270	270 77.300 5.700	315 93.100 92.370	
Location L 53	atitude 7-31-11.9 N	Longitude 087-09-13.7 W	(m	round Elev neters) 11.7	ation	Structure Hgt (meters) 95.4	to Tip	Antenna St Registratio 1018270		
	0 SCHNEIDER 7	TANNER ROAD	ate: KY	Construct	ion Dea					
Azimut	ransmitting ERP in the the from true north) ght AAT (meters) are ERP (watts)	n Watts: 140.820 0 86.400 73.900	45 69.100 149.230	90 70.300 118.620	135 81.600 25.350		225 93.900 0.300	270 102.600 2.180	315 85.400 14.630	

_	Latitude 37-31-11.9 N 50 SCHNEIDER T	Longitude 087-09-13.7 W ANNER ROAD	(1	Ground Elev meters) 141.7		Structure Hgt to Tip (meters) 95.4		Antenna Structure Registration No. 1018270	
City: LIVE	RMORE Count	y: MCLEAN Sta	ate: KY	Construc	tion Dea	dline:			
Azimu Antenna Hei Transmittin Antenna: 3	Transmitting ERP in uth(from true north) ight AAT (meters) g ERP (watts)	86.400 0.570	45 69.100 5.060	90 70.300 27.400	135 81.600 111.19		225 93.900 81.050	270 102.600 13.200	315 85.400 1.160
Azimı Antenna He	Transmitting ERP in uth(from true north) eight AAT (meters) ag ERP (watts)	Watts: 140.820 0 86.400 47.570	45 69.100 6.000	90 70.300 0.480	135 81.600 1.320	180 92.100 7.360	225 93.900 47.670	270 102.600 142.060	315 85.400 144.070
Location 1	Latitude	Longitude		Ground Elev meters)		Structure Hgt (meters)	to Tip	Antenna St Registratio	
54 3	37-19-05.4 N	086-12-12.3 W		231.6		83.8		1235514	
Address: N	Jolin Lake North, 1	900 Dickey's Mill I	Road						
City: Mamr	moth Cave Cour	ty: EDMONSON	State:	KY Cons	struction	n Deadline:			
Azimu Antenna He	Transmitting ERP in uth(from true north) ight AAT (meters) g ERP (watts)	Watts: 140.820 0 93.200 117.640	45 91.500 54.390	90 87.800 6.620	135 91.400 0.360	180 103.800 0.300	225 115.800 0.330	270 129.600 6.460	315 104.400 54.390
Azimu Antenna He Transmittin Antenna: 3	Transmitting ERP in uth(from true north) eight AAT (meters) og ERP (watts) Transmitting ERP in	93.200 3.300	45 91.500 11.570	90 87.800 54.260	135 91.400 67.250		225 115.800 3.340	270 129.600 0.340	315 104.400 0.490
Azimu Antenna He	uth(from true north) ight AAT (meters) ig ERP (watts)	93.200 1.110	45 91.500 0.300	90 87.800 0.320	135 91.400 2.200	180 103.800 30.710	225 115.800 107.710	270 129.600 83.920	315 104.400 14.420
Location 1	Latitude	Longitude		Ground Elev meters)		Structure Hgt (meters)	to Tip	Antenna St Registratio	
55 3	36-40-20.5 N	086-15-11.1 W	2	239.6		60.7		,	
Address: A City: Adolp	Allen South, 371 Anohus County: Al	_	•	struction De	adline:				
Antenna: 1 Maximum T Azimu Antenna He	Transmitting ERP in uth(from true north) ight AAT (meters) g ERP (watts)		45 70.200 63.170	90 64.700 8.330	135 57.200 0.490	180 44.500 0.260	225 66.500 0.300	270 82.700 4.900	315 88.700 45.770

55	36-40-20.5 N Allen South, 371 Anolphus County: A		(r 2 way	cround Eleveneters) 39.6 truction De	Structure Hgt (meters) 60.7	to Tip	Antenna Structure Registration No.		
Antenna Azi	n Transmitting ERP in imuth(from true north) Height AAT (meters) ting ERP (watts)	0	45 70.200 8.150	90 64.700 38.780	135 57.200 44.150	180 44.500 11.680	225 66.500 1.200	270 82.700 0.260	315 88.700 0.260
Maximun Azi Antenna	n Transmitting ERP in imuth(from true north) Height AAT (meters) ting ERP (watts)	0 87.000	45 70.200 0.260	90 64.700 0.280	135 57.200 0.350	180 44.500 9.130	225 66.500 63.170	270 82.700 117.640	315 88.700 43.710
Location	1 Latitude	Longitude		round Elev		Structure Hgt (meters)	to Tip	Antenna St Registratio	
56	36-42-03.8 N	086-23-15.8 W		26.2		77.7		1263047	11100
Address	: Alonzo, 4651 Perry	town Road							
City: Fra	nklin County: AL	LEN State: KY	Constr	ruction Dea	dline:				
Azi Antenna I Transmit Antenna: Maximun Azi Antenna I	n Transmitting ERP in imuth(from true north) Height AAT (meters) ting ERP (watts) 2 n Transmitting ERP in imuth(from true north) Height AAT (meters) ting ERP (watts)	0 114.500 111.060 n Watts: 140.820 0	45 97.300 68.480 45 97.300 24.580	90 87.900 3.430 90 87.900 100.120	135 75.000 0.250 135 75.000 93.440	180 66.000 0.370 180 66.000 17.800	225 77.000 0.250 225 77.000 1.480	270 88.300 1.220 270 88.300 0.260	315 100.400 16.430 315 100.400 0.310
Antenna l	n Transmitting ERP in imuth(from true north) Height AAT (meters) ting ERP (watts)	0	45 97.300 0.730	90 87.900 0.260	135 75.000 0.300	180 66.000 3.390	225 77.000 38.070	270 88.300 112.340	315 100.400 72.530
Location 57	Latitude	Longitude	(r	Fround Elev neters)		Structure Hgt (meters)	to Tip	Antenna St Registratio	
	36-53-20.1 N	086-12-48.7 W	2	03.9		77.7		1264536	
City: Sco	: Allen North, 173 Ra ottsville County: A	•	Cons	struction De	adline.				
Antenna: Maximun Azi Antenna		n Watts: 140.820	45 87.800 74.220	90 105.100 112.340	135 69.200 35.530	180 68.400 3.720	225 92.400 0.260	270 105.300 0.290	315 118.000 0.450

Location Latitude 57 36-53-20.1 N Address: Allen North, 173 Ra	Longitude 086-12-48.7 W	(m	ound Elev eters) 3.9	evation Structure Hgt to (meters) 77.7		to Tip Antenna Structu Registration No. 1264536		
City: Scottsville County: A		Y Const	ruction De	adline:				
etty: Beottsville Country: 1	EEE State: IX	Const	ruction De					
Antenna: 2 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	n Watts: 140.820 0 94.400 0.260	45 87.800 0.310	90 105.100 1.480	135 69.200 24.580		225 92.400 93.440	270 105.300 17.800	315 118.000 1.480
Antenna: 3		0.510	1.400	24.500	100.120	73.440	17.000	1.400
Azimum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	n Watts: 140.820 0 94.400 63.170	45 87.800 8.330	90 105.100 0.490	135 69.200 0.260	180 68.400 0.300	225 92.400 4.900	270 105.300 45.770	315 118.000 117.640
Location Latitude	Longitude		ound Elev eters)	ation	Structure Hgt (meters)	to Tip	Antenna St Registratio	
58 37-07-58.9 N	086-13-12.8 W	19	7.8		77.7		1263384	
Address: Edmonson South, 40	66 Rhea Road							
City: Smiths Grove County	y: EDMONSON	State: KY	Constru	iction I	Deadline:			
Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP in Azimuth(from true north)	0 70.900 128.990	45 74.500 56.630 45	90 47.600 6.540	135 73.500 0.320	180 83.900 0.260	225 88.000 0.340	270 89.200 7.510	315 76.800 59.300
Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3 Marieum Transmitting ERP in E	70.900 0.690	74.500 16.910	47.600 90.270	73.500 116.96	83.900	88.000 2.840	89.200 0.260	76.800 0.330
Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	0 70.900 1.070	45 74.500 0.260	90 47.600 0.340	135 73.500 2.530	180 83.900 33.930	225 88.000 116.960	270 89.200 90.270	315 76.800 14.390
Location Latitude	Longitude		ound Elev eters)	ation	Structure Hgt (meters)	to Tip	Antenna St Registratio	
59 37-13-31.0 N	086-07-40.6 W	26	2.1		58.0		, -	
Address: Near entrance to Ma	ammoth Cave Park							
City: Mammoth Cave Cour	nty: EDMONSON	State: K	Y Cons	truction	n Deadline:			
Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	n Watts: 140.820 0 122.200 170.670	45 91.300 78.910	90 119.200 9.600	135 86.600 0.520	180 117.300 0.430	225 116.700 0.480	270 135.200 9.380	315 124.600 78.910

Call Sign: KNKN867	File Number: 0009262184	Print Date:

C									
Location	n Latitude	Longitude		round Elev neters)		ructure Hg eters)	to Tip	Antenna St Registratio	
59	37-13-31.0 N	086-07-40.6 W	20	62.1	58.	.0			
Address	: Near entrance to l	Mammoth Cave Park							
City: Ma	ammoth Cave Co	ounty: EDMONSON	State:	KY Cons	truction D	eadline:			
Antenna:	: 2	LV40							
		in Watts: 140.820							
	imuth(from true north Height AAT (meter		45 91.300	90	135	180	225	270	315
	tting ERP (watts)	0.920	21.900	119.200 118.970	86.600 156.260	117.300 43.540	116.700 4.210	135.200 0.430	124.600 0.450
Antenna:			21.500	110.570	100.200		10	00	00
	m Transmitting ERI cimuth(from true nort		45	90	135	180	225	270	315
	Height AAT (meter		91.300	119.200	86.600	117.300	116.700	135.200	124.600
Transmit	tting ERP (watts)	1.600	0.430	0.470	3.190	44.550	156.260	121.750	20.910
Location	n Latitude	Longitude		round Elev		ructure Hg	to Tip	Antenna St	
<i>c</i> 0				neters)	,	eters)		Registratio	n No.
60	37-23-49.1 N	087-08-43.7 W	1.	35.0	94.	.2		1244765	
	: Bremen, 12849 K								
City: CE	ENTRAL CITY (County: MUHLENB	ERG St	ate: KY	Constructi	on Deadlin	e:		
Antenna:	: 1								
	m Transmitting ERI								
	cimuth(from true north Height AAT (meter		45 93.400	90	135	180	225	270	315
	tting ERP (watts)	122.700	78.480	74.900 11.150	83.100 0.740	73.300 0.260	66.600 0.340	87.200 3.750	92.000 40.860
Antenna:	: 2		70.400	11.130	0.740	0.200	0.540	3.730	40.000
	m Transmitting ERI		4.5	00	125	100	225	250	215
	cimuth(from true north Height AAT (meter		45 93.400	90 74.900	135 83.100	180 73.300	225 66.600	270 87.200	315 92.000
Transmit	tting ERP (watts)	0.330	5.430	50.380	128.750	66.660	8.640	0.500	0.260
Antenna:									
	m Transmitting ERI cimuth(from true nort		45	90	135	180	225	270	315
Antenna	Height AAT (meter		93.400	74.900	83.100	73.300	66.600	87.200	92.000
Transmit	tting ERP (watts)	3.840	0.260	0.300	0.480	13.100	80.300	122.700	38.140
Location	n Latitude	Longitude		round Elev		ructure Hg	to Tip	Antenna St	
<i>6</i> 1	OH ## 0 - 1 3 -	006 04 00 0	`	neters)	`	eters)		Registratio	n No.
61	37-57-06.1 N	086-24-38.3 W		60.0	96.	.3		1043429	
		M (3 MILES) EAST							
City: UN	NION STAR Co	ınty: BRECKINRID	GE Stat	te: KY C	onstruction	n Deadline:			
Antenna:									
	T	D in Wetter 140 920							
	m Transmitting ERI								
Az	cimuth(from true nort)	h) 0	45	90	135	180	225	270	315
Antenna		h) 0	45 133.800 64.650	90 120.800 9.560	135 135.100 0.650	180 151.300 0.240	225 176.200 0.270	270 170.600 3.020	315 164.100 33.930

Call Sign: KNKN867 File Number: 0009262184 Print I
--

61 Address:	Latitude 37-57-06.1 N HWY 144, 4.8 KM (,	(m 26 OF	round Elev neters) 50.0	(Structure Hgt meters) 96.3	to Tip	Antenna St Registratio 1043429	
City: UNI	ON STAR Count	y: BRECKINRIDO	GE Stat	e: KY C	onstructi	on Deadline:			
Azir Antenna H Transmitti Antenna: 3	Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts)	0 155.100 0.310	45 133.800 8.140	90 120.800 56.310	135 135.100 104.850		225 176.200 4.370	270 170.600 0.240	315 164.100 0.250
Azir Antenna H	nuth(from true north) leight AAT (meters) ling ERP (watts)	0 155.100 1.820	45 133.800 0.240	90 120.800 0.280	135 135.100 0.850	180 151.300 17.400	225 176.200 81.390	270 170.600 89.240	315 164.100 19.980
Location	Latitude	Longitude		round Elev neters)		Structure Hgt meters)	to Tip	Antenna St Registratio	
62	37-32-44.1 N	086-18-58.4 W	20	00.9	7	7.7		1258451	
Address:	2408 Hanging Rock	Road							
City: Leite	chfield County: G	RAYSON State	e: KY C	Constructio	n Deadli	ne:			
Azir Antenna H Transmitti Antenna: 2	Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts)	0 75.500 97.150	45 84.400 35.730	90 70.100 4.550	135 67.400 0.310	180 67.900 0.380	225 86.700 0.580	270 82.300 13.630	315 95.400 68.070
Azir Antenna H Transmitti Antenna: 3	nuth(from true north) leight AAT (meters) ing ERP (watts)	0 75.500 0.630	45 84.400 15.510	90 70.100 83.280	135 67.400 107.290	180 67.900 28.880	225 86.700 2.760	270 82.300 0.260	315 95.400 0.300
Azir Antenna H	nuth(from true north) leight AAT (meters) ing ERP (watts)	0 75.500 1.050	45 84.400 0.260	90 70.100 0.310	135 67.400 2.290	180 67.900 30.940	225 86.700 107.290	270 82.300 83.280	315 95.400 13.820
Location		Longitude	(m	round Elev neters)	(Structure Hgt meters)	to Tip	Antenna St Registratio	
	36-41-48.4 N	087-07-44.2 W	17	6.5	6	50.7		1274279	
	4799 Russellville Ro				***				
City: Alle	nsville County: T	ODD State: KY	Const	ruction De	adline:				
Azir Antenna H	Transmitting ERP in nuth(from true north) leight AAT (meters) ing ERP (watts)	Watts: 140.820 0 39.500 19.520	45 56.100 91.310	90 59.000 100.120	135 64.900 22.420	180 64.800 2.040	225 67.600 0.260	270 57.500 0.310	315 49.800 0.960

	-41-48.4 N 9 Russellville Ro		(n 17	round Elev neters) 76.5 ruction De	(Structure Hgt (meters) 60.7	to Tip	Antenna St Registratio 1274279	
	The Country 1	SEE State III		- ucuon be					
Azimuth Antenna Heigh Transmitting I Antenna: 3		39.500 0.260	45 56.100 0.290	90 59.000 0.450	135 64.900 12.040	180 64.800 74.220	225 67.600 112.340	270 57.500 35.530	315 49.800 3.720
Azimuth	nnsmitting ERP in n(from true north) ht AAT (meters) ERP (watts)	Watts: 140.820 0 39.500 72.530	45 56.100 10.730	90 59.000 0.730	135 64.900 0.260	180 64.800 0.300	225 67.600 3.390	270 57.500 38.070	315 49.800 112.340
Location La	titude	Longitude		round Elev		Structure Hgt	to Tip	Antenna St	
C4				neters)	`	(meters)		Registratio	n No.
	-14-00.7 N	086-28-02.1 W	18	33.2	1	103.6		1231934	
	Peach Road Nor		VV Com	struction I)oodline:				
City: Roundh	ill County: BU	UTLER State: K	Y Con	struction 1	eadine:				
Azimuth Antenna Heigl Transmitting I Antenna: 2 Maximum Tra Azimuth Antenna Heigl Transmitting I Antenna: 3 Maximum Tra Azimuth	ansmitting ERP in a (from true north) that AAT (meters) ERP (watts) ansmitting ERP in a (from true north)	0 64.400 363.980 Watts: 140.820 0 64.400 1.950 Watts: 140.820 0	45 90.500 159.800 45 90.500 47.700	90 87.200 18.450 90 87.200 254.680	135 101,000 0.910 135 101,000 329,990	0.740 180 93,800 85,310 180	225 118.600 0.950 225 118.600 8.010	270 91.600 21.190 270 91.600 0.740	315 91.500 167.330 315 91.500 0.920
Transmitting	ht AAT (meters) ERP (watts)	64.400 3.030	90.500 0.740	87.200 0.970	101.000 7.140	93.800 95.740	118.600 330.050	91.600 254.730	91.500 40.610
Location La	titude	Longitude		round Elev neters)		Structure Hgt (meters)	to Tip	Antenna St Registratio	
65 37-	-52-03.2 N	086-41-39.8 W	14	19.0	(50.7			
Address: Har	ncock South, 458	6 Midway Lane							
City: Hawesv	rille County: H	HANCOCK Stat	te: KY	Construction	on Deadl	ine:			
Azimuth	ansmitting ERP in a(from true north) ht AAT (meters) ERP (watts)	Watts: 140.820 0 42.800 115.500	45 44.700 73.040	90 66.200 10.410	135 57,400 0.540	180 29.900 0.280	225 51.200 0.490	270 52.700 4.480	315 89.200 36.360

Location Latitude	Longitude	G	round Elev	vation	Structure Hgt	to Tip	Antenna St	ructure
		`	neters)		(meters)		Registratio	n No.
65 37-52-03.2 N	086-41-39.8 W	14	49.0		60.7			
Address: Hancock South, 4				_				
City: Hawesville County	: HANCOCK State	e: KY (Constructi	on Dead	lline:			
Antenna: 2 Maximum Transmitting ERF Azimuth(from true north Antenna Height AAT (meters Transmitting ERP (watts) Antenna: 3 Maximum Transmitting ERF	0 42.800 3.060	45 44.700 20.470	90 66.200 92.740	135 57.400 139.82		225 51.200 15.240	270 52.700 1.400	315 89.200 0.310
Azimuth/from true north Antenna Height AAT (meters Transmitting ERP (watts)	1) 0	45 44.700 1.320	90 66.200 0.300	135 57.400 2.890	180 29.900 19.320	225 51.200 87.550	270 52.700 132.000	315 89.200 86.970
Location Latitude	Longitude	G	round Elev	vation	Structure Hgt	to Tin	Antenna St	ructure
Losanon Lantuut	Longitude V		neters)		(meters)	P	Registratio	
66 37-48-20.2 N	086-28-22.4 W		13.7		98.8		1215268	. • •
Address: Hardinsburg Nort	h, West side of Finley						-	
	y: BRECKINRIDGE	State:		structio	on Deadline:			
	<u>- </u>							
Antenna: 1 Maximum Transmitting ERF Azimuth(from true north Antenna Height AAT (meters Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERF Azimuth(from true north Antenna Height AAT (meters Transmitting ERP (watts) Antenna: 3 Maximum Transmitting ERF Azimuth(from true north Antenna Height AAT (meters Transmitting ERP (watts) Location Latitude 67 37-31-51.2 N	1) 0 117.700 65.140 2 in Watts: 140.820 0) 17.700 0.260 2 in Watts: 140.820 1) 0 117.700 5.250 Longitude 086-28-23.9 W	(n	90 92.100 23.840 90 92.100 24.390 90 92.100 0.240 round Elemeters)	135 83.000 2.300 135 83.000 85.560 135 83.000 0.260	0.240 180 91.500 66.660	225 112.900 0.240 225 112.900 11.450 225 112.900 43.210	270 146.900 0.510 270 146.900 0.880 270 146.900 93.440 Antenna St Registratio 1244902	
Address: 3690 FALLS OF		Ctoto, IV	V Come	a 4: a	Dec dline.			
City: SHORT CREEK C	ounty: GRAYSON	State: K	i Const	ruction	Deadline:			
Antenna: 1 Maximum Transmitting ERF Azimuth(from true north Antenna Height AAT (meters Transmitting ERP (watts)	0	45 72.500 107.290	90 68.000 83.280	135 60.600 13.820		225 82.500 0.260	270 104.300 0.310	315 89.800 2.290

_	37-31-51.2 N 690 FALLS OF RO	Longitude 086-28-23.9 W OUGH ROAD nty: GRAYSON	(m	round Elevaters) 92.0 Y Const	(r	tructure Hg neters) 23.4 eadline:	to Tip	Antenna St Registratio 1244902	
Azimu Antenna Hei Transmittin Antenna: 3	Cransmitting ERP in ath (from true north) ight AAT (meters) g ERP (watts)	81.800 0.260	45 72.500 0.310	90 68.000 6.770	135 60.600 55.020	180 85.600 117.640	225 82.500 52.550	270 104.300 6.320	315 89.800 0.320
Antenna He	ath(from true north) ight AAT (meters) g ERP (watts)	0 81.800 28.880	45 72.500 2.760	90 68.000 0.260	135 60.600 0.300	180 85.600 0.630	225 82.500 15.510	270 104.300 83.280	315 89.800 107.290
Location I	Latitude	Longitude		round Elev leters)		tructure Hgt neters)	to Tip	Antenna St Registratio	
Address: W City: Beave	87-19-34.6 N Vestern KY Parkwa er Dam County:	•	Church Ro	57.0 ad truction D		3.8		1217201	
Azimu Antenna He	Cransmitting ERP in ath(from true north) ight AAT (meters) g ERP (watts)	Watts: 140.820 0 94.000 33.930	45 93.500 116.960	90 89.600 90.270	135 96.400 14.390	180 94.000 1.070	225 100.700 0.260	270 102.100 0.340	315 97.600 2.530
Maximum T Azimu Antenna Hei Transmittin Antenna: 3	Cransmitting ERP in ath(from true north) ight AAT (meters) g ERP (watts)	0 94.000 3.840	45 93.500 0.260	90 89.600 0.300	135 96.400 0.480	180 94.000 13.100	225 100.700 80.300	270 102.100 122.700	315 97.600 38.140
Azimu Antenna Hei	Transmitting ERP in ath(from true north) ight AAT (meters) g ERP (watts)	Watts: 140.820 0 94.000 88.210	45 93.500 8.620	90 89.600 0.340	135 96.400 0.240	180 94.000 0.240	225 100.700 0.240	270 102.100 4.520	315 97.600 78.620
Location I	L atitude 87-16-08.2 N	Longitude 086-40-27.4 W	(m	round Elev neters) 75.0	(r	tructure Hgt neters) 7.7	to Tip	Antenna St Registratio 1268018	
	Velcome, 224 Cook		e: KY C	onstructio					
Azimu Antenna He	Transmitting ERP in ath(from true north) ight AAT (meters) g ERP (watts)	Watts: 140.820 0 94.800 117.640	45 67.500 52.550	90 90.400 6.320	135 96.600 0.320	180 102.900 0.260	225 98.300 0.310	270 116.100 6.770	315 103.600 55.020

Location Latitude 69 37-16-08.2 N Address: Welcome, 224 City: Morgantown Co	Longitude 086-40-27 Cook Road unty: BUTLER		Ground El (meters) 175.0		Structure Hg (meters) 77.7	gt to Tip	Antenna St Registration 1268018	
City: Morganiown Co	unty: BUTLER	State: K1	Construct	ion Deau				
Antenna: 2 Maximum Transmitting E	orth) 0 (ders) 94 0.0 (CRP in Watts: 140	.800 45 .800 67.500 .630 15.510	70.700	135 96.600 107.29		225 98.300 2.760	270 116.100 0.260	315 103.600 0.300
Antenna Height AAT (me	ters) 94	.800 67. 500		96.600		98.300	116.100	103.600
Transmitting ERP (watts)	1.0	050 0.260	70.100	2.290	30.940	107.290	83.280	13.820
Location Latitude	Longitude		Ground El (meters)	levation	Structure Hg (meters)	gt to Tip	Antenna Sa Registratio	
70 37-12-05.9 N	087-02-26	0.4 W	153.0		111.3		1231935	
Address: 1317 US HWY								
City: DRAKESBORO	County: MUHL	ENBERG	State: KY	Constru	ction Deadlin	e:		
Antenna: 1 Maximum Transmitting E Azimuth(from true n Antenna Height AAT (met Transmitting ERP (watts) Antenna: 2 Maximum Transmitting E	orth) 0 ters) 10	45 6.300 109.40 02.460 44.990	70.200	135 89.900 0.260	180 81.000 0.210	225 80.100 0.270	270 89.600 5.960	315 94.400 47.110
Azimuth(from true n Antenna Height AAT (met Transmitting ERP (watts) Antenna: 3 Maximum Transmitting E	orth) 0 ters) 10	6.300 45 109.40 550 13.430	70.200	135 89.900 92.910		225 80.100 2.250	270 89.600 0.210	315 94.400 0.260
Azimuth(from true n Antenna Height AAT (met Transmitting ERP (watts)	orth) 0 ters) 10		70.200	135 89.900 2.010	180 81.000 26.950	225 80.100 92.910	270 89.600 71.710	315 94.400 11.430
Location Latitude	Longitude	e	Ground El (meters)	levation	Structure Hg (meters)	gt to Tip	Antenna St Registratio	
71 36-58-34.3 N	086-57-59	0.8 W	190.2		93.0		1246006	
Address: Lewinsburg Do	owntown, Spa Ro ounty: LOGAN	ad State: KY	Construc	tion Dead	lline:			
Antenna: 1 Maximum Transmitting E	RP in Watts: 140							
Azimuth(from true no Antenna Height AAT (met Transmitting ERP (watts)	ters) 10	7.500 45 103.30 0.120 93.44		135 90.700 1.480		225 85.300 0.310	270 84.200 1.480	315 89.200 24.580

Location Latitude 71 36-58-34.3 N	Longitude 086-57-59.8 W	(n	round Elev neters) 90.2	(Structure Hgt (meters) 93.0	to Tip	Antenna St Registratio 1246006	
Address: Lewinsburg Down City: LEWISBURG Cour		e: KY (Constructio	n Deadli	ine:			
City: EE Wisborto Cour	ic). Ecority state			T Dodding				
Antenna: 2 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters Transmitting ERP (watts) Antenna: 3	0	45 103.300 4.900	90 93.900 45.770	135 90.700 117.640	180 82.900 63.170	225 85.300 8.330	270 84.200 0.490	315 89.200 0.260
Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters Transmitting ERP (watts)	0	45 103.300 0.260	90 93.900 0.310	135 90.700 0.960	180 82.900 19.520	225 85.300 91.310	270 84.200 100.120	315 89.200 22.420
Location Latitude	Longitude		round Elev neters)		Structure Hg meters)	to Tip	Antenna St Registratio	
72 37-02-45.0 N	086-21-53.0 W		67.6		102.7		1046177	11 110.
Address: Bristow, KY Hwy				•			10.0177	
City: BOWLING GREEN	County: WARREN		KY Cor	structio	n Deadline:			
Antenna: 1								
Maximum Transmitting ERP								
Azimuth(from true north Antenna Height AAT (meters		45 42.800	90	135	180	225	270	315 55,000
Transmitting ERP (watts)	144.730	63.540	42.800 7.340	67.000 0.360	66.800 0.300	77.800 0.380	53.600 8.420	55.000 66.540
Antenna: 2	in Watter 140 920							
Maximum Transmitting ERP Azimuth(from true north		45	90	135	180	225	270	315
Antenna Height AAT (meters	9 48.600	42.800	42.800	67.000	66.800	77.800	53.600	55.000
Transmitting ERP (watts) Antenna: 3	0.640	15.100	82.010	107.710	30.010	2.900	0.300	0.310
Maximum Transmitting ERP	in Watts: 140.820							
Azimuth(from true north Antenna Height AAT (meters		45	90	135	180	225	270	315
Transmitting ERP (watts)	1.180	42.800 0.300	42.800 0.350	67.000 2.570	66.800 34.720	77.800 120.380	53.600 93.440	55.000 15.510
Location Latitude	Longitude	G	round Elev	ation S	Structure Hgt		Antenna St Registratio	ructure
73 36-48-17.7 N	087-09-29.0 W	,	95.1	3	37.0			-
Address: Elkton Downtown				_				
City: Elkton County: TO			ion Deadli	ne:				
Antenna: 2 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters	0	45 29.900	90 36.400	135 49.400	180 47.700	225 51.300	270 46.600	315 29.900
Transmitting ERP (watts)	0.330	0.390	2.890	38.950	135.070	104.850	17.400	1.320

Call Sign: KNKN867	File Number: 0009262184	Print Date:
--------------------	--------------------------------	-------------

Can Sign. KiviKivoo/	FIIC	Nullibei.	000920210) '1		imi Dau	•	
Location Latitude	Longitude		round Elev neters)		Structure Hg meters)	t to Tip	Antenna St Registratio	
73 36-48-17.7 N	087-09-29.0 W	19	95.1	3	37.0			
Address: Elkton Downtown	n, Water Tank within	the Town	of					
City: Elkton County: TO	DD State: KY	Construct	ion Deadlir	ne:				
Antenna: 3	1							
Maximum Transmitting ERP		4.5	00	405	400	225	2=0	215
Azimuth(from true north Antenna Height AAT (meters		45 29.900	90 36.400	135 49.400	180 47.700	225 51.300	270 46.600	315 29.900
Transmitting ERP (watts)	186.670	22.440	1.150	0.940	1.100	24.050	195.470	417.910
Antenna: 4 Maximum Transmitting ERP	o in Watts: 140.820							
Azimuth(from true north	1) 0	45	90	135	180	225	270	315
Antenna Height AAT (meters Transmitting ERP (watts)		29.900	36.400	49.400	47.700	51.300	46.600	29.900
Transmitting EXF (watts)	69.360	324.400	355.700	79.630	7.260	0.940	1.100	3.400
Location Latitude	Longitude		round Elev 1eters)		Structure Hg meters)	t to Tip	Antenna St Registratio	
74 36-45-37.5 N	086-43-02.9 W		97.2	7	77.7		1268208	
Address: Middleton, 2514 N	Neely Road							
City: Franklin County: S	IMPSON State: k	Y Cons	struction D	eadline:				
Antenna: 1								
Maximum Transmitting ERP		*						
Azimuth(from true north Antenna Height AAT (meters		45 67.700	90 65.900	135	180 73.500	225 89.900	270 84.400	315 76.100
Transmitting ERP (watts)	108.950	99.160	18.570	61.000 1.520	0.260	0.340	84.400 1.630	26.900
Antenna: 2 Maximum Transmitting ERP	in Watte: 140 820							
Azimuth(from true north	1) 0	45	90	135	180	225	270	315
Antenna Height AAT (meters		67.700	65.900	61.000	73.500	89.900	84.400	76.100
Transmitting ERP (watts) Antenna: 3	0.340	7.510	59.300	128.990	56.630	6.540	0.320	0.260
Maximum Transmitting ERP								
Azimuth(from true north Antenna Height AAT (meters		45 67.700	90	135 61.000	180 73.500	225 89.900	270 84.400	315 76.100
Transmitting ERP (watts)	6.540	0.320	65.900 0.260	0.340	7.510	59.300	128.990	56.630
Location Latitude	Longitude	(n	round Elev neters)	(Structure Hg meters)	t to Tip	Antenna St Registratio	
75 36-44-33.6 N	086-30-05.7 W	20	09.4	7	74.7		1057217	
Address: Simpson I-65, 680	•	W 0		111				
City: Franklin County: S	IMPSON State: K	Y Cons	struction D	eadline:				
Antenna: 1 Maximum Transmitting EPP	in Wetter 140 920						7	
Maximum Transmitting ERP Azimuth(from true north		45	90	135	180	225	270	315
Antenna Height AAT (meters	s) 74.500	60.400	58.100	45.300	43.900	54.700	56.900	65.000
Transmitting ERP (watts)	113.860	122.250	26.290	2.360	0.300	0.370	1.180	23.930
								7

Call Sign: KNKN867	File Number: 0009262184	Print Date:
--------------------	--------------------------------	-------------

Location Latitude 75 36-44-33.6 N Address: Simpson I-65, 680	Longitude 086-30-05.7 W Phillips Lane	(m	round Elev neters) 19.4		Structure Hgt (meters) 74.7	to Tip	Antenna St Registratio 1057217	
City: Franklin County: SII	MPSON State: K	Y Cons	truction D	eadline	•			
Antenna: 2 Maximum Transmitting ERP i Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3 Maximum Transmitting ERP i Azimuth(from true north)	74.500 0.430	45 60.400 11.130	90 58.100 78.320	135 45.300 144.46		225 54.700 5.690	270 56.900 0.300	315 65.000 0.320
Antenna Height AAT (meters)	74.500	60.400	58.100	45.300	43.900	54.700	56.900	65.000
Transmitting ERP (watts)	0.830	0.300	0.380	4.210	45.850	137.670	88.060	12.510
Location Latitude	Longitude		round Elev leters)		Structure Hgt (meters)	to Tip	Antenna St Registratio	
76 36-41-45.2 N	086-08-55.9 W	29	99.9		42.7			
Address: Allen Southeast, 7.0								
City: Scottsville County: A	ALLEN State: K	Y Cons	truction D	eadline:				
Antenna: 1 Maximum Transmitting ERP i Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP i	0 108.900 156.880	45 124.900 103.360	90 127.700 17.100	135 96.400 1.570	180 75.800 0.350	225 97.900 3.430	270 122.100 22.970	315 116.000 104.060
Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3	0 108.900 6.870	45 124.900 41.440	90 127.700 144.130	135 96.400 164.50		225 97.900 8.520	270 122.100 0.570	315 116.000 0.770
Maximum Transmitting ERP i Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	108.900 1.120	45 124.900 0.240	90 127.700 0.870	135 96.400 3.340	180 75.800 18.280	225 97.900 65.860	270 122.100 50.650	315 116.000 9.530
Location Latitude	Longitude	(m	round Elev neters)		Structure Hgt (meters)	to Tip	Antenna St Registratio	
77 37-41-44.8 N	086-25-06.2 W	21	0.6		77.7		1262107	
Address: Kingswood, 1065 S			<i>a</i> ,	B	111			
Antenna: 1 Maximum Transmitting ERP i Azimuth(from true north)	n Watts: 140.820	tate: KY	Construc	135	180	225	270	315
Antenna Height AAT (meters) Transmitting ERP (watts)	78.900 6.770	76.900 55.020	78.500 117.640	81.600 52.550	105.100	108.200 0.320	91.500 0.260	108.400 0.310

77	Latitude 37-41-44.8 N	Longitude 086-25-06.2 W	(m	round Elev neters) 0.6	ation	Structure Hgt (meters) 77.7	to Tip	Antenna St Registratio 1262107	
Address: City: Har	Kingswood, 1065 St ned County: BRE		tate: KY	Construc	tion De	eadline:			
Azii Antenna H Transmitt Antenna:	Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts)	78.900 0.260	45 76.900 0.300	90 78.500 3.390	135 81.600 38.070		225 108.200 72.530	270 91.500 10.730	315 108.400 0.730
Antenna H	muth(from true north) leight AAT (meters) ing ERP (watts)	0 78.900 112.340	45 76.900 35.530	90 78.500 3.720	135 81.600 0.260	180 105.100 0.290	225 108.200 0.450	270 91.500 12.040	315 108.400 74.220
Location	Latitude	Longitude		round Elev ieters)	ation	Structure Hgt (meters)	to Tip	Antenna St Registratio	
	36-54-24.5 N Claypool, 2818 Alva vling Green Count			72.8 Construc	tion De	77.7		1275463	
		•							
Azin Antenna H Transmitt Antenna:	Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts) 2	0 82.200 18.240	45 76.200 82.650	90 79.200 124.610	135 52.800 82.100		225 78.000 1.250	270 69.500 0.280	315 86.500 2.730
Azin Antenna H Transmitt Antenna:		0 82.200 0.450	45 76.200 0.620	90 79.200 5.460	135 52.800 32.920		225 78.000 130.660	270 69.500 49.070	315 86.500 6.770
Aziı Antenna H	Transmitting ERP in nuth(from true north) Ieight AAT (meters) ing ERP (watts)	0 82.200 112.910	45 76.200 27.380	90 79.200 2.950	135 52.800 0.270	180 60.600 1.500	225 78.000 8.200	270 69.500 53.810	315 86.500 130.660
	Latitude	Longitude	(m	round Elev neters)	ation	Structure Hgt (meters)	to Tip	Antenna St Registratio	
79 Address:	37-54-07.2 N 1.0 km SSW of	086-31-56.1 W	18	35.9		30.3			
City: Step	phensports County	: BRECKINRIDG	E State	: KY Co	nstruct	ion Deadline:			
Aziı Antenna H	Transmitting ERP in muth(from true north) Height AAT (meters) ing ERP (watts)	Watts: 140.820 0 69.900 20.210	45 29.900 136.640	90 49.700 63.910	135 43.700 3.510	180 40.700 0.310	225 48.900 0.310	270 79.700 0.310	315 37.400 0.340

79 Address:	(met 37-54-07.2 N 086-31-56.1 W 185.9 s: 1.0 km SSW of			;	Structure Hgt (meters) 30.3	to Tip	ructure n No.		
City: Step	phensports County	y: BRECKINRIDG	E State	e: KY Co	nstructi	on Deadline:			
Azii Antenna F Transmitt Antenna: 3 Maximum	Transmitting ERP in muth(from true north) Height AAT (meters) ing ERP (watts) Transmitting ERP in	69.900 0.310 1 Watts: 140.820	45 29.900 0.310	90 49.700 3.510	135 43.700 82.330	180 40.700 124.620	225 48.900 15.330	270 79.700 0.570	315 37.400 0.310
	muth(from true north) Height AAT (meters)	0 69.900	45 29.900	90 49.700	135 43.700	180 40.700	225 48.900	270 79.700	315 37.400
Transmitt	ing ERP (watts)	5.190	0.310	0.310	0.310	0.310	13.660	127.520	78.630
Location 80	Latitude	Longitude	(r	round Elev neters)	(Structure Hgt (meters)	to Tip	Antenna St Registratio	
	37-42-39.3 N	086-31-34.6 W	2	18.5		77.7		1272916	
	245 Dejarnette Lane		States V	V Constr	nation I	Deadline:			
City: Mc	Quady County: B	RECKINRIDGE	State: K	Y Constr	uction 1	Jeaunne:			
Azin Antenna H Transmitt Antenna: Maximum Azin Antenna H Transmitt Antenna:	Transmitting ERP in muth(from true north) Height AAT (meters) ing ERP (watts) 2 Transmitting ERP in muth(from true north) Height AAT (meters) ing ERP (watts)	0 122.000 128.360 1 Watts: 140.820 0 122.000 4.860	45 93.600 93.210 45 93.600 26.750	90 90.700 17.180 90 90.700 105.570	135 109.100 1.520 135 109.100 130.690	0.270 180 120.100	225 106.500 1.720 225 106.500 9.030	270 93.000 14.250 270 93.000 0.640	315 113.900 71.470 315 113.900 0.460
Aziı Antenna H	muth(from true north) Height AAT (meters) ing ERP (watts)	0 122.000 3.780	45 93.600 0.270	90 90.700 1.280	135 109.100 5.690	180 120.100 46.750	225 106.500 127.920	270 93.000 120.460	315 113.900 33.780
	Latitude	Longitude	(r	round Elev neters)	(Structure Hgt (meters)	to Tip	Antenna St Registratio	
81	37-29-16.7 N	086-16-14.7 W	2	31.6		44.2			
	Leitchfield WT, 1.5		1237	- · ·	D 11				
City: Leit	chfield County: C	GRAYSON State	e: KY (Constructio	n Deadl	ine:			
Azii Antenna H	1 n Transmitting ERP in muth(from true north) Height AAT (meters) ing ERP (watts)	1 Watts: 140.820 0 84.200 127.520	45 71.900 78.630	90 49.000 5.190	135 65.200 0.310	180 69.200 0.310	225 59.900 0.310	270 55.400 0.310	315 68.100 13.660

Location Latitude 81 37-29-16.7 N Address: Leitchfield WT, 1.	Longitude 086-16-14.7 W 5 km East of	(n	round Elev neters) 31.6	ation	Structure Hgt (meters) 44.2	to Tip	Antenna St Registratio	
City: Leitchfield County:	GRAYSON State	: KY (Constructio	n Dead	line:			
Antenna: 2 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters)	0 84.200 0.310 in Watts: 140.820 0	45 71.900 0.790 45 71.900	90 49.000 40.320 90 49.000	135 65.200 146.41 135 65.200	180	225 59.900 1.570 225 59.900	270 55.400 0.310 270 55.400	315 68.100 0.310 315 68.100
Transmitting ERP (watts)	0.570	0.310	0.310	0.310	3.510	82.330	124.620	15.330
Location Latitude 82 37-12-13.0 N Address: 354 New Cut Road	Longitude 086-52-35.7 W	(n	round Elev neters) 51.2	ation	Structure Hgt (meters) 77.7	to Tip	Antenna St Registratio 1263383	
City: Rochester County: 1		V Con	struction I	loodling				
City: Rochester County:	BUILER State: K	1 Con	Sir uction 1	<i>Jeaumne</i>	֥			
Antenna: 1 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters) Transmitting ERP (watts)	0 92.200 63.170 in Watts: 140.820 0 92.200 0.310 in Watts: 140.820 0 92.200 10.730	45 104.300 117.640 45 104.300 0.960 45 104.300 0.730	90 79.800 43.710 90 79.800 19.520 90 79.800 0.260	135 74.100 4.900 135 74.100 91.310 135 74.100 0.300	0.260 180 80.300 100.120 180 80.300 3.390	225 95.900 0.280 225 95.900 22.420 225 95.900 38.070	270 89.700 0.350 270 89.700 2.040 270 89.700 112.340	315 112.900 9.130 315 112.900 0.260 315 112.900 72.530
Location Latitude	Longitude		round Elev	ation	Structure Hgt	to Tip	Antenna St	
92	006 51 51 533	`	neters)		(meters)		Registratio	n No.
83 36-45-39.5 N	086-51-51.6 W	18	36.6		77.7		1256442	
Address: Logan South, 75 H				.				
City: Russellville County	: LOGAN State: K	CO1	nstruction 1	Deadlin	e:			
Antenna: 1 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters) Transmitting ERP (watts)	0	45 51.300 56.630	90 69.000 6.540	135 75.700 0.320	180 80.000 0.260	225 87.100 0.340	270 81.800 7.510	315 59,200 59,300

Call Sign: KNKN867	File Number: 0009262184	Print Date:

Location Latitude 83 36-45-39.5 N Address: Logan South, 75 Ha		(m 18	round Elev neters) 36.6		Structure Hg (meters) 77.7	to Tip	Antenna St Registratio 1256442	
City: Russellville County:	LOGAN State:	KY Cor	struction	Deadlin	e:			
Antenna: 2 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters)	n Watts: 140.820 0 70.500	45 51.300	90 69,000	135 75.700	180 80.000	225 87.100	270 81.800	315 59.200
Transmitting ERP (watts)	0.340	2.530	33.930	116.96		14.390	1.070	0.260
Antenna: 3	w. Wotter 140 820							
Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	n Watts: 140.820 0 70.500 3.840	45 51.300 0.260	90 69.000 0.300	135 75.700 0.480	180 80.000 13.100	225 87.100 80.300	270 81.800 122.700	315 59.200 38.140
Location Latitude	Longitude		round Elev leters)	ation	Structure Hg (meters)	to Tip	Antenna St Registratio	
84 36-58-47.9 N	086-23-20.0 W	15	55.1		56.4		1241356	
Address: Bowling Green Cen	netery Road, 3700 (Cumberlan	d Trace Ce	:11				
_	•	tate: KY	Constru		adline:			
Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERP in	0 29.900 129.890	45 35.000 61.320	90 33.800 3.430	135 29.900 0.310	180 39.200 0.310	225 29.900 0.310	270 29.900 0.450	315 54.700 18.690
Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3	0 29.900 0.310	45 35.000 3.260	90 33.800 77.190	135 29.900 119.56		225 29.900 0.420	270 29.900 0.310	315 54.700 0.310
Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	n Watts: 140.820 0 29.900 0.310	45 35.000 0.310	90 33.800 0.310	135 29.900 0.570	180 39.200 26.700	225 29.900 136.640	270 29.900 48.150	315 54.700 2.270
Location Latitude	Longitude	(m	round Elev neters)	ation	Structure Hg (meters)	to Tip	Antenna St Registratio	
85 36-53-34.0 N	086-24-38.0 W	18	34.4		46.7		7	
Address: Plano Water Tank,	9.0 SSE of							
City: Bowling Green Coun	ty: WARREN S	tate: KY	Construc	ction De	adline:			
Antenna: 1 Maximum Transmitting ERP in Azimuth(from true north)		45	90	125	100	225	270	315
Antenna Height AAT (meters) Transmitting ERP (watts)	0 61.200 1.340	45 49.800 39.400	90 45.800 76.830	135 33.400 11.900		33.600 0.240	34.800 0.240	315 46.200 0.240

85	Latitude 36-53-34.0 N Plano Water Tank, 9	Longitude 086-24-38.0 W	(m	ound Elev eters) 4.4	ation	Structure Hgt (meters) 46.7	to Tip	Antenna Se Registration	
	ling Green Coun		e: KY	Construc	tion De	adline:			
Azir Antenna H	Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts)	0 45 61.200 49	5 0.800 240	90 45.800 0.240	135 33.400 5.320	180 35.100 66.920	225 33.600 53.150	270 34.800 4.220	315 46.200 0.240
Azir Antenna H	Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts)	0 61.200 49	5 2.800 400	90 45.800 0.240	135 33.400 0.240	180 35.100 0.240	225 33.600 0.370	270 34.800 16.810	315 46.200 84.240
Location	Latitude	Longitude		ound Elev	ation	Structure Hgt	to Tip	Antenna S	
86	36-53-16.1 N	086-30-48.3 W		eters) 3.8		(meters) 60.6		Registratio	n No.
	30-33-10.1 N Richpond, 608 Skee		10	3.0		00.0			
	-		e: KY	Construc	tion De	adline:			
	8	3,7							
Azir Antenna H Transmitti Antenna: 2	Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts)	0 45 69.900 78 87.200 42	5 3.100 2.220	90 67.600 5.380	135 58.700 0.310	180 47.300 0.260	225 43.600 0.260	270 56.900 4.790	315 73.400 40.320
Azir Antenna H Fransmitti Antenna: 3	Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts) Transmitting ERP in	0 45 69.900 78 1.480 24	5 3.100 4.580	90 67.600 100.120	135 58.700 93.440		225 43.600 1.480	270 56.900 0.260	315 73.400 0.310
Azir Antenna H	nuth(from true north) leight AAT (meters) ling ERP (watts)	0 45 69.900 78	5 3.100 260	90 67.600 0.300	135 58.700 4.900	180 47.300 45.770	225 43.600 117.640	270 56.900 63.170	315 73.400 8.330
Location	Latitude	Longitude		ound Elev eters)	ation	Structure Hgt (meters)	to Tip	Antenna St Registratio	
87	36-44-23.3 N	086-34-22.4 W	21	1.2		93.6		1007990	
		, Ogles Road (Franklin		*					
C ity: Fran	klin County: SIN	MPSON State: KY	Cons	truction D	eadline	<u>: </u>			
Azir Antenna H	Transmitting ERP in muth(from true north) leight AAT (meters) ang ERP (watts)	0 45 82.400 91	5 .500 9.640	90 77.000 119.000	135 60.200	180 57.000	225 65.400	270 75.500	315 64.400

Location Latitude 87 36-44-23.3 N Address: Franklin Downton City: Franklin County: S	Longitude 086-34-22.4 W wn, Ogles Road (Franklimpson State: F	(n 2 nklin #914	round Elev neters) 11.2 2) struction D	(1 9	Structure Hgt meters) 93.6	to Tip	Antenna St Registratio 1007990	
Antenna: 2 Maximum Transmitting ERI	Pin Watte: 140 820							
Azimuth(from true north	n) 0	45	90	135	180	225	270	315
Antenna Height AAT (meter Transmitting ERP (watts)		91.500	77.000	60.200	57.000	65.400	75.500	64.400
Antenna: 3	0.270	0.270	0.270	8.050	101.290	84.250	6.540	0.310
Maximum Transmitting ERI			0.0	125	100	225	2=0	21.
Azimuth(from true north Antenna Height AAT (meter		45 91.500	90 77.000	135 60.200	180 57.000	225 65.400	270 75.500	315 64.400
Transmitting ERP (watts)	44.210	2.120	0.270	0.270	0.270	0.400	25.440	127.510
Location Latitude	Longitude	(n	round Elev neters)		Structure Hgt meters)	to Tip	Antenna St Registratio	
88 36-50-51.7 N	086-46-11.1 W	19	98.4	8	32.3		1237175	
Address: Rockcastle, 1365	•							
City: Auburn County: L	OGAN State: KY	Constr	uction Dea	dline:				
Antenna: 1 Maximum Transmitting ERI Azimuth(from true north Antenna Height AAT (meter Transmitting ERP (watts) Antenna: 2 Maximum Transmitting ERI Azimuth(from true north Antenna Height AAT (meter	0 64.000 122.700 P in Watts: 140.820	45 66.400 78.480 45 66.400	90 63.200 11.150 90 63.200	135 58.100 0.740 135 58,100	180 74.800 0.260 180 74.800	225 70.400 0.340 225 70.400	270 71.300 3.750 270 71.300	315 75.200 40.860 315 75.200
Transmitting ERP (watts) Antenna: 3	0.380	9.920	69.800	128.750		5.070	0.260	0.280
Azimuth (from true north Antenna Height AAT (meter Transmitting ERP (watts)	n) 0	45 66.400 0.260	90 63.200 0.330	135 58.100 1.050	180 74.800 21.320	225 70.400 101.470	270 71.300 108.950	315 75.200 23.430
Location Latitude	Longitude	(n	round Elev neters)	(1	Structure Hgt meters)	to Tip	Antenna St Registratio	
89 37-25-24.5 N	086-24-14.9 W	19	97.8	8	33.8		1217214	
Address: Millwood, 1006 F								
City: Millwood County:	GRAYSON State	:KY C	onstruction	n Deadlin	e:			
Antenna: 1 Maximum Transmitting ERI Azimuth(from true north Antenna Height AAT (meter Transmitting ERP (watts)	n) 0	45 41.800 122.420	90 60.100 126.750	135 71.500 40.620	180 58.400 4.930	225 67.600 0.330	270 87.100 0.900	315 76.500 5.470

Call Sign: KNKN867	File Number: 0009262184	Print Date:
--------------------	--------------------------------	-------------

89	The Latitude Longitude 37-25-24.5 N 086-24-14.9 W 2 Millwood, 1006 Pleasant View Road		(1	Ground Elev meters) 97.8		Structure Hgt (meters) 83.8	to Tip	Antenna Structure Registration No. 1217214	
City: Mill	wood County: G	RAYSON State:	KY C	Construction	Deadli	ne:			
Azir Antenna H Transmitti Antenna: 3 Maximum	Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts) 3 Transmitting ERP in	0 62.400 0.890 n Watts: 140.820	45 41.800 0.350	90 60.100 3.940	135 71.500 22.290	180 58.400 94.500	225 67.600 128.360	270 87.100 70.660	315 76.500 11.140
Antenna H	nuth(from true north) leight AAT (meters)	0 62.400	45 41.800	90 60.100	135 71.500	180 58.400	225 67.600	270 87.100	315 76.500
Transmitti	ing ERP (watts)	103.880	21.640	2.140	0.270	1.490	11.530	61.810	130.990
	Latitude	Longitude		Ground Elev meters)		Structure Hgt (meters)	to Tip	Antenna St Registratio	
90	37-17-38.2 N	086-44-29.7 W	1	29.8		83.8		1217204	
	Natcher Parkway, 1								
City: Mor	gantown County	: BUTLER State	: KY	Construction	ı Deadli	ne:			
Azir	Transmitting ERP in muth(from true north)	0	45	90	135	180	225	270	315
Transmitti	leight AAT (meters) ing ERP (watts)	37.600 7.510	36.200 59.300	41.100 128.990	50.200 56.630	36.800 6.540	52.200 0.320	53.300 0.260	52.700 0.340
	z Transmitting ERP in muth(from true north)	n Watts: 140.820	45	90	135	180	225	270	315
Transmitti	leight AAT (meters) ing ERP (watts)	37.600 0.260	36.200 0.340	41.100 3.750	50.200 40.860	36.800	52.200 78.480	53.300 11.150	52.700 0.740
Antenna: 3 Maximum	5 . Transmitting ERP in	n Watts: 140.820							
Antenna H	nuth(from true north) leight AAT (meters) ing ERP (watts)	0 37.600 122.700	45 36.200 38.140	90 41.100 3.840	135 50.200 0.260	180 36.800 0.300	225 52.200 0.480	270 53.300 13.100	315 52.700 30.300
Location		Longitude	(1	Ground Elev meters)		Structure Hgt (meters)	to Tip	Antenna St Registratio	
91	37-10-17.8 N	086-46-48.7 W	1	57.3		90.0		1273826	
Address: City: Mor	South Hill, 231 Free gantown County	eman Staples Road : BUTLER State	: KY (Construction	ı Deadli	ne:			
Azir Antenna H	Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts)	n Watts: 140.820 0 114.500 71.470	45 84.600 128.360	90 81.200 93.210	135 73.600 17.180	180 93.700 1.520	225 70.900 0.270	270 96.300 1.720	315 102.200 14.250

91	Latitude 37-10-17.8 N	Longitude 086-46-48.7 W	(Ground Elev meters) 157.3	ation	Structure Hgt (meters) 90.0	to Tip	Antenna St Registratio 1273826	
Address: City: Mor	South Hill, 231 Free gantown County:	BUTLER State	: KY	Construction	n Deadl	ine:			
Azir Antenna H Transmitti Antenna: 3	Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts)	0 114.500 0.620	45 84.600 5.460	90 81.200 32.920	135 73.600 114.48		225 70.900 49.070	270 96.300 6.770	315 102.200 0.450
Antenna H	nuth(from true north) leight AAT (meters) ing ERP (watts)	0 114.500 21.640	45 84.600 2.140	90 81.200 0.270	135 73.600 1.490	180 93.700 11.530	225 70.900 61.810	270 96.300 130.990	315 102.200 103.880
Location	Latitude	Longitude		Ground Elev meters)	ation	Structure Hgt (meters)	to Tip	Antenna St Registratio	
92	36-57-07.6 N	086-47-36.4 W		210.0		77.7		1261473	
	Chandler, 8773 Mor	•		V .					
City: Russ	sellville County:	LOGAN State: I	XY Co	onstruction l	Deadlin	e:			
Azir Antenna H Transmitti Antenna: 2	Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts)	0 122.500 122.700	45 88.200 78.480	90 98.600 11.150	135 86.200 0.740	180 75.500 0.260	225 96.400 0.340	270 126.200 3.750	315 114.800 40.860
Azir Antenna H	muth(from true north) leight AAT (meters) ing ERP (watts)	0 122.500 0.480	45 88.200 13.100	90 98.600 80.300	135 86.200 122.70		225 96.400 3.840	270 126.200 0.260	315 114.800 0.300
Azir Antenna H	Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts)	Watts: 140.820 0 122.500 0.500	45 88.200 0.260	90 98.600 0.330	135 86.200 5.430	180 75.500 50.380	225 96.400 128.750	270 126.200 66.660	315 114.800 8.640
Location	Latitude	Longitude	(Ground Elev meters)	ation	Structure Hgt (meters)	to Tip	Antenna St Registratio	
	37-03-12.4 N Davis Crossroads, 6.			184.4	ъ п	77.7		1273825	
City: Mor	gantown County:	BUTLER State	: KY	Construction	n Deadl	ine:			
Azir Antenna H	Transmitting ERP in muth(from true north) leight AAT (meters) ing ERP (watts)	Watts: 140.820 0 90.300 94.500	45 104.500 128.360	00.100	135 79.900 11.140		225 85.300 0.350	270 105.100 3.940	315 96.800 22.290

Call Sign: KNKN867	File Number: 0009262184	Print Date:

	Latitude 37-03-12.4 N Davis Crossroads, 6	(meters) 3-12.4 N 086-44-45.3 W 184.4		,		ructure Hg neters) 7.7	to Tip	P Antenna Structure Registration No. 1273825		
City: Mor	· · · · · · · · · · · · · · · · · · ·	BUTLER State	:KY C	onstruction	n Deadline	: :				
	ganto wii County .	De REER State			- Demanne					
Azin Antenna H	Transmitting ERP in nuth(from true north) (eight AAT (meters) ng ERP (watts)	Watts: 140.820 0 90.300 0.350	45 104.500 3.940	90 88.100 22.290	135 79.900 94.500	180 67.600 128.360	225 85.300 70.660	270 105.100 11.140	315 96.800 0.890	
Azin Antenna H	Transmitting ERP in nuth(from true north) (eight AAT (meters) ng ERP (watts)	90.300 17.180	45 104.500 1.520	90 88.100 0.270	135 79.900 1.720	180 67.600 14.250	225 85.300 71.470	270 105.100 128.360	315 96.800 93.210	
Location	Latitude	Longitude		round Elev ieters)		ructure Hg neters)	to Tip	Antenna St Registratio		
94	36-49-14.6 N	087-02-42.8 W		98.7	77	ŕ		1261471	1,5•	
Address: 1	Daysville, 1270 Day	sville Road		7						
City: Russ	sellville County:	LOGAN State: I	XY Cor	struction 1	Deadline:					
Azin Antenna H Transmitti Antenna: 2 Maximum	Transmitting ERP in nuth(from true north) (eight AAT (meters) ing ERP (watts) Transmitting ERP in	0 80.600 2.290 a Watts: 140.820	45 79.200 30.940	90 75.600 107.290	135 95.700 83.280	180 90.500 13.820	225 86.800 1.050	270 61.000 0.260	315 55.000 0.310	
Antenna H Transmitti Antenna: 3	nuth(from true north) ieight AAT (meters) ng ERP (watts) Transmitting ERP in	0 80.600 0.490 • Watts: 140.820	45 79.200 0.260	90 75.600 0.300	95.700 4.900	90.500 45.770	225 86.800 117.640	270 61.000 63.170	315 55.000 8.330	
Azin Antenna H	nuth(from true north) leight AAT (meters) ng ERP (watts)	0 80.600 112.340	45 79.200 35.530	90 75.600 3.720	135 95.700 0.260	180 90.500 0.290	225 86.800 0.450	270 61.000 12.040	315 55.000 74.220	
Location		Longitude	(n	round Elev neters)	(n	ructure Hg neters)	to Tip	Antenna St Registratio		
	36-41-25.9 N	086-04-02.1 W	23	37.1	77	7.7		1278967		
Address: City: Scot	Holland, 359 Lafayetsville County: A		V Core	truction D	adlina					
Antenna: 1	·		. Cons	i ucuon De	aumit.					

Location Latitude 95 36-41-25.9 N Address: Holland, 359 Lafay	Longitude 086-04-02.1 W	Grou (met 237.	,	Structure Hgt to (meters) 77.7	Tip Antenna Structure Registration No. 1278967
City: Scottsville County:		7 Constru	ction Deadline	:	
				-	
Antenna: 2 Maximum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3	0 114.100 0.230	88.200	90 135 00.700 73.60 1.900 40.25		25 270 315 2400 81.800 87.800 3.720 29.080 3.250
Azimum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	0	88.200 1	00 135 00.700 73.600 520 0.270		25 270 315 .400 81.800 87.800 .250 71.470 128.360
Location Latitude	Longitude	Grou (met	ınd Elevation ers)	Structure Hgt to (meters)	Tip Antenna Structure Registration No.
96 36-59-23.5 N	086-28-21.6 W	146.0	6	76.2	1277050
Address: Lampkin Park, Bel	nind Dept of Hwys D	ist. Office or	n Old Morganto	wn Rd. off Hwy 23	1
City: Bowling Green Cou	nty: WARREN St	ate: KY	Construction D	eadline:	
Antenna: 1 Maximum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 2	0 30.300 111.310	29.900	00 135 07.300 29.90 0.180 0.240		25 270 315 1.900 29.900 29.900 240 0.710 29.750
Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 3 Maximum Transmitting ERP	0 30.300 0.240	29.900 3	135 37.300 29.900 11.180 79.74		25 270 315 .900 29.900 29.900 320 0.240 0.240
Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)	0	29.900 3	00 135 37.300 29.90 0.240 0.280		25 270 315 1.900 29.900 29.900 1.730 60.750 3.910
Location Latitude 97 37-25-27.1 N	Longitude 086-13-46.7 W	Grov (met 252.		Structure Hgt to (meters) 41.1	Tip Antenna Structure Registration No. 1280487
Address: Johnson Crossroad			1	41.1	120040/
City: Clarkson County: G	_		ruction Deadli	ne:	
Antenna: 1 Maximum Transmitting ERP Azimuth(from true north Antenna Height AAT (meters) Transmitting ERP (watts)	in Watts: 140.820	45 9 73.900 7	90 135 18.500 96.70 7.850 1.800	180 22 0 106.000 10	25 270 315 8.500 99.600 95.600 050 25.570 109.870

Call Sign: KNKN867 File Number: 0009262184 Print Date:

LocationLatitudeLongitudeGround Elevation (meters)Structure Hgt to Tip (meters)Antenna Structure Registration No.9737-25-27.1 N086-13-46.7 W252.141.11280487

Address: Johnson Crossroads, 2601 St. Augustine Road

City: Clarkson County: GRAYSON State: KY Construction Deadline:

Antenna: 2 Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north) Antenna Height AAT (meters)	0	45	90	135	180	225	270	315
Transmitting ERP (watts)	97.900	73.900	78.500	96.700	106.000	108.500	99.600	95.600
Antenna: 3	7.940	44.270	150.440	165.870	63.900	9.040	0.700	1.050
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north)	0	45	90	135	180	225	270	315
Antenna Height AAT (meters)	97.900	73.900	78.500	96.700	106.000	108.500	99.600	95.600
Transmitting ERP (watts)	4.030	0.340	2.430	11.890	72.190	167.790	144.670	35.900

Location LatitudeLongitudeGround Elevation (meters)Structure Hgt to Tip (meters)Antenna Structure Registration No.9837-54-31.9 N085-59-25.9 W236.235.0

Address: Fort Knox IV, 5800 Block of Adams Street

City: Fort Knox County: MEADE State: KY Construction Deadline:

Antenna: 1								
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north) Antenna Height AAT (meters)	0 94.000	45 74.300	90 90.800	135 60.900	180 57.100	225 53.800	270 55.700	315 114.300
Transmitting ERP (watts) Antenna: 2	36.310	138.730	165.910	77.210	12.030	0.950	0.820	6.980
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north) Antenna Height AAT (meters)	0 94.000	45 74.300	90 90.800	135 60.900	180 57.100	225 53.800	270 55.700	315 114.300
Transmitting ERP (watts) Antenna: 3	1.300	0.640	5.680	30.740	124.760	162.210	90.940	14.810
Maximum Transmitting ERP in Watts:	140.820							
Azimuth(from true north) Antenna Height AAT (meters)	0 94.000	45 74.300	90 90.800	135 60.900	180 57.100	225 53.800	270 55.700	315 114.300
Transmitting ERP (watts)	117.350	21.640	1.920	0.340	2.170	17.950	89.980	161.610

Control Points:

Control Pt. No. 1

Address: 216 W LINCOLN TRAIL

City: RADCLIFF County: State: KY Telephone Number:

Waivers/Conditions:

NONE

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

ATTN: REGULATORY CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022

Call Sign WQCS429	File Number 0010160221
Radio	Service
CW - PCS	Broadband

FCC Registration Number (FRN): 0003290673

•						
Grant Date 04-23-2015	Effective Date 09-23-2022 Expiration Date 05-13-2025		Print Date 02-15-2023			
Market Number BTA263		hannel Block C Sub-Market Designator 5				
	Market Name Louisville, KY					
1st Build-out Date 05-13-2010	2nd Build-out Date	3rd Build-out Date	4th Build-out Date			

Waivers/Conditions:

NONE

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

700 MHz Relicensed Area Information:

Market Name Buildout Deadline Buildout Notification Status

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022

Call Sign WQGA718	File Number 0009793647
Radio AW - AWS (171	Service 0-1755 MHz and
2110-215	

FCC Registration Number (FRN): 0003290673

Grant Date 02-22-2022	Effective Date 02-22-2022	Expiration Date 11-29-2036	Print Date 02-23-2022
Market Number REA004		nel Block F	Sub-Market Designator 15
	Market Mississip		
1st Build-out Date	2nd Build-out Date	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

This authorization is conditioned upon the licensee, prior to initiating operations from any base or fixed station, making reasonable efforts to coordinate frequency usage with known co-channel and adjacent channel incumbent federal users operating in the 1710-1755 MHz band whose facilities could be affected by the proposed operations. See, e.g., FCC and NTIA Coordination Procedures in the 1710-1755 MHz Band, Public Notice, FCC 06-50, WTB Docket No. 02-353, rel. April 20, 2006.

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Call Sign: WQGA718 **File Number:** 0009793647 **Print Date:** 02-23-2022

700 MHz Relicensed Area Information:

Market Name Buildout Deadline Buildout Notification Status

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022

Call Sign WQGA958	File Number 0009775568			
Radio Service				
AW - AWS (1710-1755 MHz and				
2110-2155 MHz)				

FCC Registration Number (FRN): 0003290673

•					
Grant Date 01-03-2022	Effective Date 01-03-2022	Expiration Date 11-29-2036	Print Date 01-05-2022		
Market Number BEA070		Channel Block B Sub-Market Designator 0			
Market Name Louisville, KY-IN					
1st Build-out Date	2nd Build-out Date	3rd Build-out Date	4th Build-out Date		

Waivers/Conditions:

This authorization is conditioned upon the licensee, prior to initiating operations from any base or fixed station, making reasonable efforts to coordinate frequency usage with known co-channel and adjacent channel incumbent federal users operating in the 1710-1755 MHz band whose facilities could be affected by the proposed operations. See, e.g., FCC and NTIA Coordination Procedures in the 1710-1755 MHz Band, Public Notice, FCC 06-50, WTB Docket No. 02-353, rel. April 20, 2006.

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

700 MHz Relicensed Area Information:

Market Name Buildout Deadline Buildout Notification Status

REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

ATTN: REGULATORY CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE ENGINEERING ALPHARETTA, GA 30022

Call Sign WQGD757	File Number 0010160394			
Radio Service				
AW - AWS (1710-1755 MHz and				
2110-2155 MHz)				

FCC Registration Number (FRN): 0003290673

Grant Date 01-10-2022	Effective Date 09-23-2022	Expiration Date 12-18-2036	Print Date 02-10-2023			
Market Number BEA070	511111112 210011					
	Market Name Louisville, KY-IN					
1st Build-out Date	2nd Build-out Date	3rd Build-out Date	4th Build-out Date			

Waivers/Conditions:

This authorization is conditioned upon the licensee, prior to initiating operations from any base or fixed station, making reasonable efforts to coordinate frequency usage with known co-channel and adjacent channel incumbent federal users operating in the 1710-1755 MHz band whose facilities could be affected by the proposed operations. See, e.g., FCC and NTIA Coordination Procedures in the 1710-1755 MHz Band, Public Notice, FCC 06-50, WTB Docket No. 02-353, rel. April 20, 2006.

Special Condition for AU/name change (6/4/2016): Grant of the request to update licensee name is conditioned on it not reflecting an assignment or transfer of control (see Rule 1.948); if an assignment or transfer occurred without proper notification or FCC approval, the grant is void and the station is licensed under the prior name.

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Call Sign: WQGD757 **File Number:** 0010160394 **Print Date:** 02-10-2023

700 MHz Relicensed Area Information:

Market Name Buildout Deadline Buildout Notification Status

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

ATTN: REGULATORY CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022

Call Sign WQJQ692	File Number
Radio	Service
WU - 700 MHz Up	per Band (Block C)

FCC Registration Number (FRN): 0003290673

,				
Grant Date 01-10-2020	Effective Date 02-11-2021	Expiration Date 06-13-2029	Print Date	
Market Number REA004		Channel Block C Sub-Market Designato		
Market Name Mississippi Valley				
1st Build-out Date 06-13-2013	2nd Build-out Date 06-13-2019	3rd Build-out Date	4th Build-out Date	

Waivers/Conditions:

If the facilities authorized herein are used to provide broadcast operations, whether exclusively or in combination with other services, the licensee must seek renewal of the license either within eight years from the commencement of the broadcast service or within the term of the license had the broadcast service not been provided, whichever period is shorter in length. See 47 CFR §27.13(b).

This authorization is conditioned upon compliance with section 27.16 of the Commission's rules

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Call Sign: WQJQ692 File Number: Print Date:

700 MHz Relicensed Area Information:

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

ATTN: REGULATORY CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE ENGINEERING ALPHARETTA, GA 30022

Call Sign WRAM748	File Number 0009262187
Radio	Service
WT - 600 I	MHz Band

FCC Registration Number (FRN): 0003290673

Grant Date 01-09-2018	Effective Date 01-13-2021	Expiration Date 01-09-2030	Print Date 03-11-2021	
Market Number PEA162 Channel Block G Sub-Market Designator 0				
Market Name Elizabethtown, KY				
1st Build-out Date 01-09-2024	2nd Build-out Date	3rd Build-out Date	4th Build-out Date	

Waivers/Conditions:

NONE

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Call Sign: WRAM748 **File Number:** 0009262187 **Print Date:** 03-11-2021

700 MHz Relicensed Area Information:

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

ATTN: REGULATORY CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE ENGINEERING ALPHARETTA, GA 30022

Call Sign WRAY773	File Number	
Radio Service		
UU - Upper Microwave Flexible Use		
Service		

FCC Registration Number (FRN): 0003290673

Grant Date 07-25-2018	Effective Date 02-27-2019	Expiration Date 06-17-2028	Print Date	
Market Number BTA263		Channel Block L1 Sub-M		
	Market Louisvii			
1st Build-out Date 06-01-2024	2nd Build-out Date	3rd Build-out Date	4th Build-out Date	

Waivers/Conditions:

Special Condition for AU/name change (6/4/2016): Grant of the request to update licensee name is conditioned on it not reflecting an assignment or transfer of control (see Rule 1.948); if an assignment or transfer occurred without proper notification or FCC approval, the grant is void and the station is licensed under the prior name.

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Call Sign: WRAY773 File Number: Print Date:

700 MHz Relicensed Area Information:

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

ATTN: REGULATORY CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE ENGINEERING ALPHARETTA, GA 30022

Call Sign WREV455	File Number 0009262187	
Radio Service		
UU - Upper Microwave Flexible Use		
Service		

FCC Registration Number (FRN): 0003290673

Grant Date 12-11-2019	Effective Date 01-13-2021	Expiration Date 12-11-2029	Print Date 03-11-2021
Market Number PEA162 Channel Block A Sub-Market Designator 0			
Market Name Elizabethtown, KY			
1st Build-out Date	2nd Build-out Date	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

NONE

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Call Sign: WREV455 **File Number:** 0009262187 **Print Date:** 03-11-2021

700 MHz Relicensed Area Information:

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: STRAIGHT PATH SPECTRUM, LLC

ATTN: REGULATORY STRAIGHT PATH SPECTRUM, LLC 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022

Call Sign WRHF800	File Number	
Radio Service		
UU - Upper Microwave Flexible Use		
Service		

FCC Registration Number (FRN): 0012576435

Grant Date 06-04-2020	Effective Date 06-04-2020	Expiration Date 06-04-2030	Print Date
Market Number PEA162		el Block //1	Sub-Market Designator ()
Market Name Elizabethtown, KY			
1st Build-out Date	2nd Build-out Date	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

NONE

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Licensee Name: STRAIGHT PATH SPECTRUM, LLC

Call Sign: WRHF800 File Number: Print Date:

700 MHz Relicensed Area Information:

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

ATTN: REGULATORY CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022

Call Sign WRNG302	File Number
Radio	Service
PM - 3.7 G	Hz Service

FCC Registration Number (FRN): 0003290673

,				
Grant Date 07-23-2021	Effective Date 07-23-2021	Expiration Date 07-23-2036	Print Date	
Market Number PEA162		Channel Block A1		
Market Name Elizabethtown, KY				
1st Build-out Date 07-23-2029	2nd Build-out Date 07-23-2033	3rd Build-out Date	4th Build-out Date	

Waivers/Conditions:

This final license provides authorization during the full 15-year license term. Operation under this final license may begin on the earlier of (1) 12/5/2025 or (2) the date that the certification for accelerated relocation for this PEA is validated by the FCC pursuant to 47 CFR § 27.1412(g).

License is conditioned on compliance with all applicable FCC rules and regulations, including licensee making payments required by 47 C.F.R. §§ 27.1401- 27.1424 as described in FCC 20-22. See FCC 20-22, paras. 178-331.

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Call Sign: WRNG302 File Number: Print Date:

700 MHz Relicensed Area Information:

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

ATTN: REGULATORY CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022

Call Sign WRNG307	File Number
Radio PM - 3.7 G	Service Hz Service

FCC Registration Number (FRN): 0003290673

8			
Grant Date 07-23-2021	Effective Date 07-23-2021	Expiration Date 07-23-2036	Print Date
Market Number PEA162		el Block	Sub-Market Designator
	Market Elizabetht		
1st Build-out Date 07-23-2029	2nd Build-out Date 07-23-2033	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

This final license provides authorization during the full 15-year license term. Operation under this final license may begin on the earlier of (1) 12/5/2025 or (2) the date that the certification for accelerated relocation for this PEA is validated by the FCC pursuant to 47 CFR § 27.1412(g).

License is conditioned on compliance with all applicable FCC rules and regulations, including licensee making payments required by 47 C.F.R. §§ 27.1401- 27.1424 as described in FCC 20-22. See FCC 20-22, paras. 178-331.

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Call Sign: WRNG307 File Number: Print Date:

700 MHz Relicensed Area Information:

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.

Federal Communications Commission

Wireless Telecommunications Bureau

RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

ATTN: REGULATORY CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE ENGINEERING ALPHARETTA, GA 30022

Call Sign WRWD815	File Number
Radio	Service
CW - PCS	Broadband

FCC Registration Number (FRN): 0003290673

Grant Date 09-23-2022	Effective Date 09-23-2022	Expiration Date 09-06-2025	Print Date
Market Number BTA263		nel Block	Sub-Market Designator 8
	Market Louisvil		
1st Build-out Date	2nd Build-out Date	3rd Build-out Date	4th Build-out Date

Waivers/Conditions:

NONE

Conditions:

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Call Sign: WRWD815 File Number: Print Date:

700 MHz Relicensed Area Information:

CELLCO PARTNERSHIP D/B/A

/erizo

-0" LIGHTNING ARRESTOR -TOTAL TOWER HEIGHT 235'-0' NEW 230'-0" SELF SUPPORT TOWER w/5'-

LEITCHFIELD POLICE DEPT. 117 S MAIN ST LEITCHFIELD, KY 42754 PHONE: (270) 259-3850

CK SHREWSBURY FUZE ID: 16505537 LOCATION CODE: 689716

ERVICE RUN TO SITE H-FRAME

BUILDING CODE
STRUCTURAL CODE
MECHANICAL CODE
FULMBING CODE
ELECTRICAL CODE
FINE/LIE SAFETY CODE
GAS CODE
GAS CODE

FIRE
CANEYVILLE VOLUNTEER FIRE DEPT.
210 E MAPLE ST
CANEYVILLE, KY 42721
PHONE: (270) 879-3333

LEITCHFIELD, KY 42574 GRAYSON COUNTY E911 ADDRESS: TBD

LATITUDE: 37° 22' 03.840164" N LONGITUDE: 86° 22' 25.859306" W

ELIZABETHTOWN, KY 42701 CONTACT: JACKIE STRAIGHT PHONE: (290) 750-0023 E-MAIL: JACKIE.STRAIGHT@ VERIZONWIRELESS.COM

2902 RING ROAD

1983 (NAD83) ELEVATION: 699'± AMSL 1988 (NAVD88)

SE ENERATOR LOCATION WITHIN VEW EQUIPMENT FAD.

IL INEW CONDUITS WITH PULL TARES FROM SF CABINET TO ONP H-FBAME LIT FIRER LOCATION

ALEN TO WAY "FREZING MICE." A" X = X = VANAD HOLE COLOSE COMPOUND.

WHEN TO WEW "FREZING MICE." X" = X = X = VANAD HOLE COLOSE COMPOUND.

TO REM "Y SERZON COURT" FIRE OFTI CONDUIT WITH FULL TARE AND TRACES WHER FROM MEW

TO REM "X" = XS" * HAND HOLE OUTSIDE COMPOUND TO NEW "VERLING WITH "S = x S" * SG" HAND

TO SHAND.

PROJECT DESCRIPTION

CONSULTANT TEAM

PHONE: (270) 842-6541 EMAIL: TBD

PREPARED BY: POWER OF DESIGN GROUP, LLC - (502) 437-5252

NAS CODE: NASTALL A NEW TOWNS COURSE CUMPATION SYSTEM
NISTALL A NEW TOWNS COUNDATION SYSTEM
NISTALL A NEW TOWNS COUNDATION SYSTEM
NISTALL A NEW SEC "ASS." OF ENCED GRAVEL COMPOUND
NISTALL A NEW SITE H-FRAME

AND ACKNET ACKNOS DRIVE FOR SERVICES SERVICES SIGNIFICATION OF SERVIC

FILC & EQUIPMENT ENCLOSURE STUB-UP LOCATIONS ENT PAD

NEW "NERDON ONLY" FIRER OPTIC CONDUIT WITH PULL TAPE FROM NEW "VERZON ONLY" 24 NOCE OUTSIDE CONTROL TO A THURE REBES RESERTAL LOCKTION TO A THURE REBES RESERTAL LOCKTION TO A THURE REBES RESERTAL LOCKTION ONLY THE A 1-14" & 11,1" IN WITH ANY PERSON ONLY."

TEMANT RESON.
TE

(4,020 SF) = (0.09 ACRE) (9,386 SF) = (0.22 ACRE) (13,406 SF) = (0.31 ACRE)

PROJECTED TOTAL DISTURBED AREA

223 HUFF ROAD
LETTCHFIELD, KY 42574
CONFOUND:

VERIZON LEASE AREA 60'-0" × 100'-0" (6,000 SF)

DARRELL & SANDI ROOF

ELECTRICAL
WARREN RECC
ADDRESS: 113 S LEE ST
CONTACT: TBD

T-1 8-170 B-1.1 8-2 T0 B-2.1 R-1 SHEET NUMBER ALL WORK AND MATERIALS SHALL BE PERFORMED AND INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUCTED TO PERMIT WORK NOT CONFORMING TO THESE CODES.

TOWER ELEVATION 2018 KENTUCKY BUILDING CODE
TIA/FIGA-222 - REVISION G (RICLUDES ADDENDLIM #2)
2012 INTERNATIONAL MECHANICAL CODE (IMC 2012)
KENTUCKY STATE PLUMBING CODE (B1S KAR CHAP. 20)
2017 NATIONAL ELECTRICAL CODE (NEC) - NFPA 70
2012 INTERNATIONAL RIE CODE (ADZ. 1FC)
2012 INTERNATIONAL RENBOY CODE (COMMERCIAL)
2009 NATIONAL FUEL GAS CODE (COMMERCIAL)

ACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. HANDICAPPED ACCESS REQUIREMENTS ARE NOT REQUIRED IN ACCORDANCE WITH THE 2009 IBC BUILDING CODE

APPLICABLE CODES

POWER OF DESIGN GROUP, LLC 11490 BLUEGRASS PARKWAY LOUISVILLE, KY 40299 PHONE: [502] 437-5252

POWER OF DESIGN GROUP, LLC 11490 BLUEGRASS PARKWAY LOUISVILLE, KY 40299 PHONE: (502) 437-5252

TOWER ELEVATION

OVERALL SITE PLAN W/ AERIAI OVERLAY
OVERALL SITE PLAN W/ DISTANCE TO PROPERTY LINES
DISTANCE TO RESIDENTIAL STRUCTURE
DETALLED SITE PLAN
DIMENSIONED SITE PLAN

11490 BLUEGRASS PARKWAY LOUISVILLE, KY 40299 502-437-5252

CK SHREWSBURY

LEITCHFIELD, KY 42574 **GRAYSON COUNTY**

GRAY ROAD

CELLCO PARTNERSHIP

03/11/2022

verizon

FROM GRAYSON COUNTY JUDGE EXECUTIVE: 130 E MARKET ST, LEITCHFIELD, KY 42754; HEAD WEST ON E MARKET ST TOWARD S HEYSER DR (459 FT). TURN LEFT AT THE 1ST CROSS STREET ONTO W WHITE OAK ST (1.6 MI). CONTINUE ONTO BEAVER DAM RD (0.3 MI). TURN LEFT ONTO KY-187 S/SHREWSBURY RD (7.8 MI). TURN LEFT ONTO GRAY RD (0.5 MI). SITE WILL BE LOCATED ON LEFT (NORTH EAST) SIDE OF ROAD.

SKAR KENNY MARK

DRAWINGS SONING

DESCRIPTION

A 221.22 ISSUED FOR REVIEW 0 3.11.22 ISSUED AS FINAL

CK SHREWSBURY

GRAY ROAD LEITCHFIELD, KY 42574 GRAYSON COUNTY

POD MEP 02.21.22 POD NUMBER: DRAWN BY: CHECKED BY: DATE: INFORMATION, SITE MAPS, SHEET INDEX

SHEET NUMBER.

T-1

AERIAL

VICINITY MAP

SSIONAL ENG EN PERMIT: 3594 SITE INFORMATION: DATE FROM LOUISVILLE MTSO: 2421 HOLLOWAY ROAD LOUISVILLE, KY 40299: HEAD SOUTH ON HOLLOWAY RD TOWARD PLANTSIDE DR (0.1 MI). TURN RIGHT AT THE 1ST CROSS STREET ONTO PLANTSIDE DR (0.3 MI). TURN LEFT ONTO WATTERSON TRAIL (0.7 MI). TURN RIGHT TO STAY ON WATTERSON TRAIL (0.7 MI). TURN LEFT ONTO BILLTOWN RD (3.7 MI). TAKE THE RAMP ONTO 1-26S W/KY-841 W (0.5 MI). TAKE EXIT 108 TO REFECT ONTO ESS TOWARDS NASHVILLE [33.9 MI). TAKE EXIT 3LC-A FOR US-31W TOWARD. ELZABETHTOWN TO WESTERN KENTUCKY PKWY AND MERGE ONTO WESTERN KENTUCKY PKWY (29.2 MI). TAKE EXIT 107 FOR US-25S TOWARD LETCHELD/BROWNSVILLE (0.3 MI). TURN RIGHT ONTO WESTERN KENTUCKY PKWY AND WHITE GOAR STILE MI). CONTINUE ONTO BEAVER DAM RD (0.3 MI). TURN LEFT ONTO W WHITE CASK STILE MI). CONTINUE ONTO BEAVER DAM RD (0.3 MI). TURN LEFT ONTO W CK-187 SIDE OF ROAD. DESCRIPTION
PROJECT INFORMATION, SITE MAPS, SHEET INDEX STE SURVEY
500° RADIUS AND ABUTTERS MAP
REVISION LOG

PROJECT SUMMARY

LEGAL DESCRIPTIONS

FIELD SURVEYED PARENT PARCEL - LEGAL DESCRIPTION - DEED BOOK 482, PAGE 291 (NOT

PROPERTY LOCATED IN GRAYSON COUNTY, KENTUCKY

A CERTAIN TRACT OR PARCEL OF LAND ON THE HEADWATERS OF CLAY LICK CREEK (NEAR SHREWSBURY) IN GRAYSON COUNTY, KENTUCKY, AND BOUNDED AS FOLLOWS:

BEGINNING AT A POINT IN THE EAST RIGHT OF WAY OF KENTUCKY HIGHWAY 187, CORNER TO BILLY ROOF (SEE DEED BOOK 164, PAGE 611); THENCE NORTHEAST 350 FEET TO A POINT IN THE EAST RIGHT OF WAY, SEVERING THE PARENT TRACT AND WITH LAND CONVEYED TO TONY ROOF; THENCE SOUTHEAST, AT A RIGHT ANGLE TO SAID RIGHT OF WAY, SEVERING THE PARENT TRACT AND WITH LAND CONVEYED TO TONY ROOF APPROXIMATELY 3, JODO FEET TO THE ORIGINAL LONDER IN GRAY ROOF. THENCE NORTHWEST WITH THE ORIGINAL LONDER IN GRAY ROAD, THENCE NORTHWEST WITH THE ORIGINAL LINE AND GRAY ROAD TO CORNER OF BILLY ROOF; THENCE CONTINUING NORTHEAST WITH SAID BILLY ROOF LINE TO THE RIGHT OF WAY OF KENTUCKY HIGHWAY 187, THE BEGINNING CORNER.

AND BEING A PORTION OF THE SAME PROPERTY CONVEYED TO DARRELL ROOF AND SANDI ROOF FROM BILLY ROOF (A/K/A BILLY GEAN ROOF)
AND CLYDIA ROOF BY DEED DATED AUGUST 6, 2019 AND RECORDED AUGUST 7, 2019 IN DEED BOOK 482, PAGE 291.

TAX PARCEL NO. 068-00-00-050.0D

THE FOLLOWING IS A DESCRIPTION OF THE PROPOSED LEASE AREA ON THE PROPERTY CONVEYED TO DARRELL ROOF & SANDI ROOF AS RECORDED IN THE OFFICE OF THE CLERK OF GRAYSON COUNTY, KENTUCKY IN DEED BOOK 482, PAGE 291, PARCEL ID: 068-00-050.0H, WHICH IS MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEARING DATUM USED HEREIN IS BASED UPON KENTUCKY STATE PLANE COORDINATE SYSTEM, SINGLE ZONE, NAD 83, FROM A REAL TIME KINEMATIC GLOBAL POSITIONING SYSTEM OBSERVATION USING THE KENTUCKY TRANSPORTATION CABINET REAL TIME GPS NETWORK COMPLETED ON SEPTEMBER 3, 2021.

COMMENCING AT A FOUND 24" BLACK OAK IN THE EAST LINE OF THE PROPERTY CONVEYED TO DARRELL ROOF & SANDI ROOF AS RECORDED IN DEED BOOK 482, PAGE 291, PARCEL ID: 068-00-0450.04, FOR REFERENCE, SAID 24" BLACK OAK BEING N42*42*03" E 299 S8" FROM A FOUND 30" POPLAR ALSO IN THE EAST LINE OF SAID PROPERTY CONVEYED TO ROOF; THENCE ALGO BE EAST LINE OF PROPERTY CONVEYED TO ROOF 542*03" NOT 1.02 TO A POINT; THENCE LEAVING SAID FRAVERSING SAID PROPERTY N41*02*40"W 21.02" TO A SET 1/2" REBAR 18" LONG CAPPED "PATTERSON PLS 3136" HEREAFTER REFERED TO AS A "SET IPC", IN THE SOUTHERNMOST CORNER OF THE PROPOSED LEASE AREA AND BEING THE TRUE POINT OF BEGINNING; THENCE N41*04*40" OF A "SET IPC"; AREA AND BEING THE TRUE POINT OF BEGINNING; THENCE N41*04*40" OF A "SET IPC"; AS PROPOSED LEASE AREA SINCY BY MARK E. PATTERSON, PLS #3136 DATED SEPTEMBER 3, 2021.

THE FOLLOWING IS A DESCRIPTION OF THE PROPOSED 30" ACCESS & UTILITY EASEMENT ON THE PROPERTY CONVEYED TO DARRELL ROOF & SANDI ROOF AS RECORDED IN THE OFFICE OF THE CLERK OF GRAYSON COUNTY, KENTUCKY IN DEED BOOK 482, PAGE 291, PARCEL ID: 068-00-06-050.0H, WHICH IS MORE PARTICULARLY DESCRIBED AS FOLLOWS: PROPOSED 30" ACCESS & UTILITY EASEMENT
THE FOLLOWING IC A DECE

BEARING DATUM USED HEREIN IS BASED UPON KENTUCKY STATE PLANE COORDINATE SYSTEM, SINGLE ZONE, NAD 83, FROM A REAL TIME KINEMATIC GLOBAL POSITIONING SYSTEM OBSERVATION USING THE KENTUCKY TRANSPORTATION CABINET REAL TIME GPS NETWORK COMPLETED ON SEPTEMBER 3, 2021. COMMENCING AT A FOUND 24" BLACK OAK IN THE EAST LINE OF THE PROPERTY CONVEYED TO DARRELL ROOF & SANDI ROOF AS RECORDED IN DEED BOOK 482, PAGE 291, PARCEL ID: 068-00-050.0H, FOR REFERENCE, SAID 24" BLACK OAK BEING N42*42'01" E 209.88" FROM A FOUND 30" POPLAR ALSO IN THE EAST LINE OF SAID PROPERTY CONVEYED TO ROOF THE CAST LINE OF SAID PROPERTY CONVEYED TO ROOF SAID FACTOR SAID EAST LINE OF SAID PROPERTY CONVEYED TO ROOF THE CAST LINE OF SAID FACTOR SAID EAST LINE OF SAID FACTOR THE CAST LINE OF SAID PROPERTY OF THE ROOP SAID SAID SAID SAID SAID SAID PROPERTY NAT 102*40" W 21.02" TO A SET 11,2" REBAR 18" LOOK CAPPED "PATTERSON PIS 3136" HERRAFTER REFERRED TO AS A "SET 1PC", IN THE SOUTHERNMOST CORNER OF THE PROPOSED LEASE AREA AND BEING THE TRUE POINT OF BEGINNING; THENCE SAB'S7"240" W 21.04" THE CADD THE ARC OF A COMPOUND CLURY ET OTHEL LEFT HAVING A RADIUS OF 36.60", ARC LENGTH OF 20.71", THE CHORD OF WHICH BEARS S32" 445"52" W 20.45"; THENCE S07"05'23" W 34.84"; THENCE ALONG THE ARC OF A CURVE TO THE LEFT HAVING A RADIUS OF 66.60", ARC LENGTH OF 37.68", THE CHORD OF WHICH BEARS N32" 44'52" S 31" ESS"; THENCE ALONG THE ARC OF A CURVE TO THE RESTORMENT OF 18.55", THE CHORD OF WHICH BEARS N32" 44'52" W 31.85; THENCE ALONG THE ARC OF A REVERSE CURRE TO THE LEFT HAWING A RADIUS OF 37.68", THE CORNER OF THE PROPOSED LEASE AREA; THENCE S41'02'40" E 60.00" TO THE POINT OF BEGINNING CONTAINING 9,385.973 SQUARE FEET AS CORNER OF THE POINT OF BEGINNING CONTAINING 9,385.973 SQUARE FEET AS

REPORT OF SEARCH

11490 BLUEGRASS PARKWAY LOUISVILLE, KY 40299 502-437-5252

SEARCH DISCLOSED THE FOLLOWING

TAXES TYPE OF TAX: COUNTY

CALENDAR YEAR: 2020 AMOUNT: S19047 ANNUALLY PARCEL ID #: 668-00-05-050.0H (COMBINED WITH AND TAXED UNDER 068-00-050.0D) PAID THROUGH: 2020

ASSESSMENT: \$20,394.00 (TOTAL = LAND AND IMPROVEMENTS, IF ANY) (NOT A LAND SURVEYING MATTER, THEREFORE, POD GROUP, DID NOT EXAMINE OR ADDRESS THIS ITEM.)

RIGHT OF WAY AGREEMENT IN FAVOR OF L.M. OIL & GAS COMPANY, INCORPORATED, A KENTUCKY CORPORATION SET FORTH IN INSTRUMENT RECORDED ON APRIL 27, 1977 IN DEED BOOK 18, PAGE 496. (THE RIGHT OF WAY AGREEMENT AS RECORDED IN BOOK 18, PAGE 496 DOES AFFECT THE PARENT PARCEL BUT COULD NOT BE PLOTTED, AND THEREFORE POD GROUP, LLC COULD NOT DETERMINE ITS AFFECT ON THE PROPOSED LEASE AREA OR THE PROPOSED ACCESS & UTILITY EASEMENT.)

TERMS AND CONDITIONS OF OIL AND GAS LEASE DATED DECEMBER 22, 1977 BY AND BETWEEN HERSHEL ROOF AND NADINE ROOF, AND LANGFORD OIL & GAS CO., RECORDED ON DECEMBER 23, 1977 IN DEED BOOK 35, PAGE 315.

ADDENDUM TO OIL & GAS LEASE RECORDED ON DECEMBER 23, 1977 IN DEED BOOK 35, PAGE 315. (OIL AND GAS LEASE RECORDED IN DEED BOO 35, PAGE 315 AND ADDENDUM RECORDED IN DEED BOOK 35, PAGE 315 ARE BLANKET IN NATURE AND AFFECT THE PARENT PARCEL, THE PROPOSED LEASE AREA, AND THE PROPOSED ACCESS & UTILITY EASEMENT.)

COVENANTS, CONDITIONS AND RESTRICTIONS BUT OMITTING ANY COVENANTS OR RESTRICTIONS, IF ANY, INCLUDING BUT NOT LIMITED TO THOSE BASED UPON RACE, COLOR, RELIGION, SEX, SEXUAL ORIENTATION, FAMILIAL STATUS, MARITAL STATUS, DISABILITY, HANDICAP, NATIONAL, ORIGIN, AND STATUS, DISABILITY, HANDICAP, INFORMATION, AS SET FORTH IN APPLICABLE STATE OR FEDERAL LAWS, EXCEPT TO THE EXTENT THAT SAID COVENANT OR RESTRICTION IS PERMITTED BY APPLICABLE UM, AS SET FORTH IN THE DOCUMENT RECORDED ON APRIL 29, 2005, AS DOCUMENT NO. DEED BOOK 354, PAGE 202. [DOCUMENT RECORDED IN DEED BOOK 354, PAGE 202 IS BLANKET IN NATURE AND AFFECTS THE PARENT PARCEL, THE PROPOSED LEASE AREA, AND THE PROPOSED ACCESS & UTILITY EASEMENT.)

CELLCO

E

SITE SURVEY

_	_	_	 _	
DESCRIPTION	PRELIM ISSUE	FINAL		
REV. DATE	10,20,21	0 3.2.22		
REV.	4	0		

CK SHREWSBURY LEITCHFIELD, KY 42574 SITE INFORMATION GRAY ROAD

TAX PARCEL NUMBER: GRAYSON COUNTY

PROPERTY OWNER H0.020-00-00-890

DARRELL & SANDI ROOF LEITCHFIELD, KY 42574 223 HUFF ROAD

DEED BOOK 482, PAGE 291 SOURCE OF TITLE:

21-10288 9.3.21 AW CHECKED BY: SURVEY DATE: PLAT DATE: POD NUMBER: DRAWN BY:

I, MARK E. PATTERSON, HEREBY CERTIFY THAT I AM A LICENSED PROFESSIONAL LAND SURVEYOR LICENSED IN COMPLIANCE WITH THE LAWS

LAND SURVEYOR'S CERTIFICATE

SHEET TITLE:

THIS DOES NOT REPRESENT A BOUNDARY SURVEY OF THE PARENT PARCEL SITE SURVEY

SHEET NUMBER: (2 pages)

B-1

OF THE COMMONWEALTH OF KENTUCKY. I FURTHER CERTIFY THAT THIS PLAT AND THE SURVEY ON THE GROUND WERE PERFORMED BY PERSONS UNDER MEASUREMENTS BEING WITNESSED BY MONUMENTS SHOWN HEREON ARE TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE. THE "RURAL" SURVEY, AND THE PLAT ON WHICH IT IS BASED, MEETS ALL SPECIFICATIONS AS STATED IN KAR 201 18:150. MY DIRECT SUPERVISION, AND THAT THE DIRECTIONAL AND LINEAR MARK PATTERSON, PLS #3136 STATE OF KENTUCKY
MY DIRECT SUPPRISON, AN PORECT SUPPRISON, AN MASSINE AND CORRECT TO THE AND THE SUPPRISON. AN MASSING AND THE PLAT ON WHICH IT IN KAR 201 18:150.

LICENSED
PROPESSIONA

LICENSED

MARR PATTERSON, PLS #313

DATE 03/02/2022

DigiSigner Document ID: 8ba64864-63224492694694694584285364

PARCEL ID: 068-00-00-050.0H ROOF DARRELL & SANDI 223 HUFF RD (F)

PARCEL ID: 068-00-050.0D) ROOF DARRELL & SANDI 223 HUFF RD LETTCHFIELD, KY 42754 LEITCHFIELD, KY 42754 (B1)

PARCEL ID:068-00-00-050.0A CHILDRESS TERESA ROOF 6511 SHREWSBURY RD LEITCHFIELD, KY 42754 (1)

PARCEL ID: 068-00-00-041.08

SEATON FARMS 443 RABBIT FLAT RD LEITCHFIELD, KY 42754 (E)

PARCEL ID: 068-00-00-050.01 MUDD PRISCILLA & JOSH (E)

P O BOX 293 LEITCHFIELD, KY 42754

PARCEL ID: 068-00-051 MERCER EFFIE SUE 515 GRAY RD LEITCHFIELD, KY 42754 E

PARCEL ID: 068-00-052.0C MERCER EFFIE SUE 515 GRAY RD LEITCHFIELD, KY 42754 (19)

PARCEL ID: 068-00-052.0E

WILLIAMS DEREK & CYNTHIA
369 GRAY RD
LETTCHFIELD, KY 42754 E

PARCEL ID: 068-00-00-052 WILLIAMS JOSHUA & MARY ELLEN 273 GRAY RD

LEITCHFIELD, KY 42754 ₪

PARCEL ID: 068-00-00-052.0B WILLIAMS JOSHUA & MARY ELLEN 273 GRAY RD LEITCHFIELD, KY 42754 =

PARCEL ID: 068-00-00-052.0a. WILLIAMS JOSHUA & MARY ELLEN 273 GRAY RD LEITCHFIELD, KY 42754 (Z)

PARCEL ID: 068-00-00-053 ROOF DAVID 629 SHREWSBURY SADLER RD LEITCHFIELD, KY 42754 (E)

ELIZ yo D/B/A **GIHSRBUTRAG** CELLCO

POWER OF DESIGN

PREPARED BY

11490 BLUEGRASS PARKWAY LOUISVILLE, KY 40299 502-437-5252

REPARED FOR

REV. DA		
-	DAILE	DESCRIPTION
	22.72.2	ISSUED FOR REVIEW
0 3.2	3.2.22	FINAL

CK SHREWSBURY GRAY ROAD LEITCHFIELD, KY 42574 SITE INFORMATION:

TAX PARCEL NUMBER: **GRAYSON COUNTY**

D68-00-00-050.0H

DARRELL & SANDI ROOF PROPERTY OWNER:

LEITCHFIELD, KY 42574

223 HUFF ROAD

21-102884 SOURCE OF TITLE: DEED BOOK 482, PAGE 291 POD NUMBER:

MEP 2.17.22 SHEET TITLE: DRAWN BY: CHECKED BY: PLAT DATE:

AIM

500' RADIUS AND **ABUTTERS MAP**

I HEREBY CERTIFY THAT THIS EXHIBIT PERTAINING TO THE ADJOINING PROPERTY OWNERS PER PVA RECORDS WAS PREPARED UNDER MY DIRECT SUPERVISION. NO BOUNDARY SURVEYING OF ANY KIND HAS BEEN PERFORMED FOR THIS EXHIBIT.

STATE OF KENTUCKY
MARK E.
PATTERSON
3136
LICENSED
PROFESSIONA
PERFORMED FOR THIS EXHIBIT.

LICENSED
MARK PATTERSON
MARK E.
PROFESSIONA
MARK PATTERSON DIS # 2136

MARK PATTERSON DIS # 2136

MARK PATTERSON DIS # 2136

SHEET NUMBER: (1 page) B-2.1

DATE

MARK PATTERSON, PLS #3136

03/02/2022

1. ALL INFORMATION SHOWN HEREON WAS OBTAINED FROM THE RECORDS OF THE ADAIR COUNTY KENTUCKY PROPERTY VALUATION ADMINISTRATION OFFICE ON SEPTEMBER 1, 2021 AND RE-VERIFIED ON FEBRUARY 16, 2022. THE PROPERTY VALUATION ADMINISTRATION RECORDS MAY NOT REFLECT THE CURRENT OWNERS AND ADDRESSES DUE TO THE INCCURACLES AND TIME LAPSE IN UPDATING FILES. POD AND THE COUNTY PROPERTY VALUATION ADMINISTRATION EXPRESSLY DISCLAIMS ANY WARRANTY FOR THE CONTENT AND ANY ERRORS CONTAINED IN THEIR FILES THIS MAP IS FOR GENERAL INFORMATIONAL PURPOSES ONLY AND IS NOT A BOUNDARY SURVEY

GENERAL NOTE:

NOT FOR RECORDING OR PROPERTY TRANSFER

m

7

NOTE:
PARCEL NUMBERS ARE OF RECORD IN
THE GRAYSON COUNTY PROPERTY
VALUATION ADMINISTRATOR OFFICE.

DigiSigner Document ID: 8Ba84888-8724-4926-9584694892685384

REVISION LOG

DESCRIPTION OF REVISION	ISSUED FOR REVIEW	ISSUED AS FINAL
SHEET NUMBER	ALL SHEETS	ALL SHEETS
MM/DD/YY	2/21/2022	3/11/2022
REV *	Ą	0

CELLCO PARTNERSHIP

	S	
9	ING	
NO	AW	
Z	DR.	l
		ŀ

	_			
DESCRIPTION	A 2.21.22 ISSUED FOR REVIEW	0 3.11.22 ISSUED AS FINAL		
REV. DATE	2.21.22	3.11.22		
REV.	A	0		

SITE INFORMATION:

CK SHREWSBURY

GRAY ROAD LEITCHFIELD, KY 42574 GRAYSON COUNTY

POD NUMBER:	21-1028
DRAWN 8Y:	POD
CHECKED BY:	MEP

02.21.22 DATE:

REVISION LOG

SHEET NUMBER:

DESCRIPTION

21-102879

POD MEP 02.21.22

SHEET TITLE

22 15 20. ò 230

SEE PAGE 2 FOR APPURTENANCES

TIA-222-G* TOWER DESIGN CRITERIA Design Standard: Design Wind Speeds:

105 mph (3-second gust) basic wind speed per ASCE 7-16 30 mph (0.75" ice) 60 mph (deflection only) II Service Wind Speed:
Risk Category:
Exposure Category:
Topographic Category:
Crest Height:

(antenna pipes) (tower legs min. Fy 50 ksi) (rod dia. <3/4") (3/4" thru 1" dia.) (>1" dia.) A36 A572 Gr.50 A572 Gr.58 A500 Gr.B A500 Gr.B A572 Gr.50 MATERIAL STRENGTHS Solid Rod A36 Angle

Finish: Tower & Hardware are hot dip galvanized

(leg & angle)

A-325/A-449

Bolts

A572 Gr.50

F1554 Grade 105 or A687

AnchorBolt

T12

1. ALL STRUCTURAL HARDWARE IS GALVANIZED IN ACCORDANCE WITH ASTM A-153 (HDG). TOWER SECTIONS & ASSOCIATED STRUCTURAL COMPONENTS ARE GALVANIZED IN ACCORDANCE WITH ASTM A-123 (HDG).

2. ALL BOLTS & NUTS MUST BE IN PLACE BEFORE ADJOINING SECTION(S) ARE INSTALLED.

3. ALL STRUCTURAL BOLTS ARE TO BE TIGHTENED TO A SNUG TIGHT CONDITION AS DEFINED BY AISC & RCSC SPECIFICATION FOR STRUCTURAL JOINTS UNLESS NOTED OTHERWISE.

4. ALL WELDING TO CONFORM TO AWS D1.1 SPECIFICATION. 5/16" MINIMUM WELD SIZE UNLESS NOTED OTHERWISE.

5. MATERIAL LABELED AS ASTM A-572 GR. 58 OR 58 KSI YIELD STRENGTH ALSO CONFORMS TO ASTM A-572 GR. 56.

6. ANALYSIS PERFORMED USING STEEL GRADES LISTED UNDER MATERIALS STRENGTHS SHOWN ON THIS PAGE.

THIS DRAWING DOES NOT INDICATE THE METHOD OF CONSTRUCTION. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND HE SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION MEANS, SEQUENCES AND PROCEDURES.

OCCUR IN STRUCTURES OF ALL TYPES, BECAUSE THEY ARE INFLUENCED BY MANY INTERACTING VARIABLES.

VIENATIONS ARE GENERALLY UNPREDICTABLE. THE USER'S MAINTENANCE PROGRAM SHOULD INCLUDE
OBSERVATION FOR ECCESSIVE VIENATION AND EXAMINATION FOR ANY STRUCTURAL DAMAGE OR BOL'I LOOSENING.
THE VALMONT WARRANTY SPECIFICALLY EXCLUDES FAILURE OR SIMILAR PHENOMENA RESULTING FROM
INDUCED VIBRATION, HARMONIC OSCILLATION OR RESONANCE ASSOCIATED WITH MOVEMENT OF AIR CURRENTS
AROUND THE PRODUCT.

AXIAL 52 K Maximum Base Reactions

MAX. LEG REACTIONS: DOWN: 321 K UPLIFT: -285 K SHEAR: 29 K

TORQUE 16 kip-ft REACTIONS 105 mph WIND (no ice)

Factored Reactions provided per ANSI/TIA-222 Design Criteria & Load Combinations

1067.09 1848.44 2084.28 2402.91 2461.17 3269.55 3276.45 4173.39 458.17 2306.97 2350.71 3162.63 BRACING BOLT QTY & DIA 1×1" 1×1-1x1" 1×1-1×1" 1x1" 1×1" HORIZONAL BRACING SIZE 7/8" ROUND 7/8" ROUND 1-ROUND 3/16" x 2-1/2" x 2-1/2" 3/16" x 2-1/2" x 2-1/2" 3116" x 2-1/2" x 2-1/2" 3/16" x 2-1/2" x 2-1/2" 114" x 2-1/2" x 2-1/2" 1.75" 12BDFH 6x1114" 114"x2-1/2"x2-1/2" 114" x 2-112" x 2-112" DIAGONAL BRACING SIZE 1.75" 12BDFH 6x1114" 3/16"x 3" x 3" 5/16"x 3" x 3" 3/4" ROUND 2×11/4" 3/4" ROUND 7/8" ROUND LEG SIZE LEG STYLE QTY & DIA 1.75" 128DFH 6x11/4" 12BDFH 4×11/4" 2×1-1.50" 128DFH 6×1" 6 x 1" 6×1-6×1" 12BDFH 1,50" 12BDFH 12BDFH 12BDFH SHFAB 1.75" SHFAB SHFAB 1.25 1.50" 2.25 1.50 1.75" PANELS SECTION ELEVATION FACE WIDTH 12.0 16.0' 18.0 10.01 14.0 20.02 8.0 4.0 4.0 4.0' 6.0 T3 180'-200' T4 160'-180' T5 140'-160' 60'-80' 40'-60' 20' - 40' 0. - 20. T1 220'-230" T2 200' - 220' 120' - 140' T7 100'-120' T8 80'-100' 6 T10 111

16

OF KENTULLING

Digitally signed by Date: 2022-08-22 Joseph P Jacobs 08:56-04:00

> DESCRIPTION HV1574 SHREWSBERRY, KY HORVATH TOWERS U 22 X 230' COPYRIGHT 2022 SITE CPD BY DATE

va|mont **₹** 1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR

Tower View Page 1

293562T

DWG. NO.

553967

ENG. FILE NO.

PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALWONT
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING OR DISCLOSURE WITHOUT THE CONSENT OF
INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF

RELEASE DATE 8/22/2022

APPROVED BY JPJ

JOSEPH JOSEPH

APPROVED BY SAN

DRAWN BY SAN

REV

DESCRIPTION OF REVISIONS

1 OF 14

STRUCTURES

DESIGNED APPURTENANCE LOADING	
TYPE	ELEVATION
(1) S/8" X 10' LIGHTNING ROD	230.0000"
1) BEACON	230.0000"
(1) 208 SQ.FT. EPA	225.0000
(1) 130 SQ.FT. EPA	210.0000
(1) 130 SQ.FT. EPA	195.0000"
(3) OB LIGHT	115.0000"

HV1574 SHREWSBERRY, KY HORVATH TOWERS U 22 X 230'

Tower View Page 2

DESCRIPTION

STRUCTURES

1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR DWG. NO.

293562T

553967

ENG. FILE NO.

PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT
INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF
VALMONT INDUSTRIES IS STRICTLY PROHIBITED.

CPD BY DATE

RELEASE DATE 8/22/2022

APPROVED BY JPJ

DESCRIPTION OF REVISIONS
REVISION HISTORY
PROVED BY
AN
JOSEPH

APPROVED BY SAN

DRAWN BY SAN

REV

2 OF 14 PAGE

0.180 NET WT. STRUCTURES 3276.45 lb [1487.54 kg] 4 OF 14 76.230 2.530 0.130 0.150 79.710 0.190 0.030 0.470 0.430 0.070 0.080 Total Wt 1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR 293562T U-20 LOWER DIAGONAL - 3" x 3" x 3/16" ANGLE (A572 U-20 UPPER DIAGONAL - 3" x 3" x 3/16" ANGLE (A572 #12 LEG SECTION - 1-3/4" LEG - 1/2" BRACE - 1" BOL 1-1/4"-7 X 5-1/2" A-325 BOLT WITH 2" THREAD 314"-10 X 3" A-325T BOLT WITH FULL THREAD 1"-8 X 2-1/4" A-325 BOLT WITH 1-3/4" THREAD RING FILL SPACER 1/2" THICK 1,049" HOLE 1-1/4" GALVANIZED FLAT WASHER (F436) 1-1/4"-7 HOT DIPPED GALVANIZED NUT 3/4"-10 HOT DIPPED GALVANIZED NUT DWG. NO. 1"-8 HOT DIPPED GALVANIZED NUT 1-1/4" GALVANIZED LOCKWASHER 314" GALVANIZED LOCKWASHER 1" GALVANIZED LOCKWASHER SECTION U-20.0 (20' - 40' ELEVATION) QTY PART NO. 6 312153 195217 312223 312282 312283 6 279282 104291 312502 160427 312504 172265 279281 222022 553967 24 24 24 40 ITEM DESCRIPTION LCL LCN BOL EC. 9 A.S N MB 9 S SB ENG. FILE NO. PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIDORY
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALIDORY
THE CONSIDERE AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF SEE LEG CONNECTION DETAIL HV1574 SHREWSBERRY, KY HORVATH TOWERS U 22 X 230' (SIDE PLATES NOT SHOWN FOR CLARITY) * NOTE: THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY. THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW. PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS. (CN)(CT)(CE)(CB) COPYRIGHT 2022 SITE 18'-0" [5.486 m] DATE RELEASE DATE 8/22/2022 DIAGONAL DETAIL B
MID SIDE PLATE ANGLE CONNECTION CPD BY APPROVED BY JPJ SN SL SB [m 46.] "8/6 t-'r DESCRIPTION OF REVISIONS
REVISION HISTORY 20.-0" [6.096 m] JOSEPH JOSEPH PLACED BETWEEN ANGLES ** DIAGONAL ANGLES MUST BE INSTALLED
WITH THE NON-BOLTED FACE UP, THIS MAY BE ON THE OPPOSITE SIDE OF THE
SIDE PLATE THAN WHAT IS SHOWN IN THE DETAIL. DETAIL A ANGLE INTERSECTION CONNECTION AS APPROVED BY SAN ORIENT ANGLES WITH STAMPED END TOWARD TOP OF SECTION ORIENT LEGS WITH PIN STAMP TOWARD BOTTOM OF SECTION MN ML MB DRAWN BY SAN REV

475.380 1.920 10.320 2240.130 NET WT. STRUCTURES 3269.55 lb [1484.40 kg] 5 OF 14 PAGE 0.430 75.560 2.530 0.130 0.150 0.070 0.190 0.030 0.470 0.080 0.840 79.230 Total Wt 1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR 293562T U-18 LOWER DIAGONAL - 2 1/2" x 2 1/2" x 1/4" ANGLE #12 LEG SECTION - 1-3/4" LEG - 1/2" BRACE - 1" BOL U-18 UPPER DIAGONAL - 2 1/2" x 2 1/2" x 1/4" ANGLE 3/4"-10 X 3" A-325T BOLT WITH FULL THREAD 1"-8 X 2-114" A-325 BOLT WITH 1-314" THREAD 1-1/4"-7 X 5-1/2" A-325 BOLT WITH 2" THREAD RING FILL SPACER 1/2" THICK 1.049" HOLE 1-1/4" GALVANIZED FLAT WASHER (F436) 1-1/4"-7 HOT DIPPED GALVANIZED NUT 3/4"-10 HOT DIPPED GALVANIZED NUT DWG. NO. 1"-8 HOT DIPPED GALVANIZED NUT 1-1/4" GALVANIZED LOCKWASHER 3/4" GALVANIZED LOCKWASHER 1 GALVANIZED LOCKWASHER SECTION U-18.0 (40' - 60' ELEVATION) 279263 104291 312153 160427 312283 312502 312223 312504 172265 553967 ALD 24 24 24 ITEM DESCRIPTION LCF LC LC N ENG. FILE NO NIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT SIDERED A TRADE SECRET, ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF HV1574 SHREWSBERRY, KY HORVATH TOWERS U 22 X 230' SEE LEG CONNECTION DETAIL (SIDE PLATES NOT SHOWN FOR CLARITY) * NOTE: THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY. THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW. PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS. CONTICT (CF) LCB 16-0" [4.877 m] DATE RELEASE DATE 8/22/2022 DETAIL B MID SIDE PLATE ANGLE CONNECTION DIAGONAL CPD BY APPROVED BY JPJ [m \$E.] "8/E T-'T-SN SL SB .[m 960.8] "0-'0S DESCRIPTION OF REVISIONS
REVISION HISTORY DESIGNED BY JOSEPH PLACED BETWEEN ANGLES DIAGONAL ANGLES MUST BE INSTALLED
WITH THE NON-BOLTED FACE UP,

THIS MAY BE ON THE OPPOSITE SIDE OF THE
SIDE PLATE THAN WHAT IS SHOWN IN THE DETAIL. DETAIL A ANGLE INTERSECTION CONNECTION (AS) APPROVED BY SAN ORIENT ANGLES WITH STAMPED END TOWARD TOP OF SECTION ORIENT LEGS WITH P/N STAMP TOWARD BOTTOM OF SECTION MN ML MB DRAWN BY SAN REV

431,700 1.920 10.320 2219.670 NET WT. STRUCTURES 3162.63 lb [1435.86 kg] 6 OF 14 0.470 0.030 68.430 2.530 0.130 0.150 71.950 0.070 0.190 Total Wt 1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR 293562T U-16 LOWER DIAGONAL - 2 1/2" x 2 1/2" x 1/4" ANGLE U-16 UPPER DIAGONAL - 2 1/2" x 2 1/2" x 1/4" ANGLE #12 LEG SECT - 1-3/4" TO 1-1/2" TRANS LEG - 1/2" B 3147-10 X 3" A-325T BOLT WITH FULL THREAD 1"-8 X 2-1/4" A-325 BOLT WITH 1-3/4" THREAD 1-1/4"-7 X 5-1/2" A-325 BOLT WITH 2" THREAD RING FILL SPACER 1/2" THICK 1.049" HOLE 1-1/4" GALVANIZED FLAT WASHER (F436) 1-1/4"-7 HOT DIPPED GALVANIZED NUT 3/4"-10 HOT DIPPED GALVANIZED NUT DWG. NO 1"-8 HOT DIPPED GALVANIZED NUT 1-114" GALVANIZED LOCKWASHER 314" GALVANIZED LOCKWASHER 1"GALVANIZED LOCKWASHER SECTION U-16.0 (60' - 80' ELEVATION) 312223 312283 279251 104291 312504 172265 279250 312502 312153 160427 553967 QT. 9 24 24 24 00 00 00 ITEM DESCRIPTION LG LG LCB LCF 9 N SN 9 ENG. FILE NO. NIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT SIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF HV1574 SHREWSBERRY, KY HORVATH TOWERS U 22 X 230' SEE LEG (SIDE PLATES NOT SHOWN FOR CLARITY) NOTE: THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY. THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW. PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS. (LCN/LCL)(LCF)(LCB) (3) *(3) COPYRIGHT 2022 SITE 16:-0" [4.877 m] 14'-0" [4.267 m] DATE RELEASE DATE 8/22/2022 DETAIL B MID SIDE PLATE ANGLE CONNECTION DIAGONAL CPD BY APPROVED BY JPJ [m 46.] "8/6 t-'t-SN SL SB .So.-o" [6.096 m] DESCRIPTION OF REVISIONS
REVISION HISTORY JOSEPH JOSEPH PLACED BETWEEN ANGLES ** DIAGONAL ANGLES MUST BE INSTALLED
WITH THE NON-BOLTED FACE UP, THIS MAY BE ON THE OPPOSITE SIDE OF THE
SIDE PLATE THAN WHAT IS SHOWN IN THE DETAIL. ANGLE INTERSECTION CONNECTION (AS) APPROVED BY SAN DETAIL A ORIENT ANGLES WITH STAMPED END TOWARD TOP OF SECTION ORIENT LEGS WITH P/N STAMP TOWARD BOTTOM OF SECTION MN ML MB DRAWN BY SAN REV

0.180 STRUCTURES 2461.17 lb [1117.39 kg] 7 OF 14 0.840 47.000 1.380 0.030 0.470 0.140 0.430 49.530 0.070 0.190 Total Wt 1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR 293562T U-14 LOWER DIAGONAL - 2 1/2" x 2 1/2" x 3/16" ANGL #12 LEG SECTION - 1-1/2" LEG - 1/2" BRACE - 1" BOL U-14 UPPER DIAGONAL - 2 1/2" x 2 1/2" x 3/16" ANGL 314"-10 X 3" A-325T BOLT WITH FULL THREAD 1"-8 X 4-3/4" A-325 BOLT WITH 1-3/4" THREAD 1"-8 X 2-1/4" A-325 BOLT WITH 1-3/4" THREAD RING FILL SPACER 1/2" THICK 1.049" HOLE 314"-10 HOT DIPPED GALVANIZED NUT 1" GALVANIZED FLAT WASHER (F436) DWG. NO. 1"-8 HOT DIPPED GALVANIZED NUT 1"-8 HOT DIPPED GALVANIZED NUT 314" GALVANIZED LOCKWASHER 1" GALVANIZED LOCKWASHER 1" GALVANIZED LOCKWASHER SECTION U-14.0 (80' - 100' ELEVATION) 312502 312153 279225 104291 160427 312223 312504 172265 312223 279224 553967 24 24 24 18 TEM DESCRIPTION LCL LCL LCF 9 ENG. FILE NO. NIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT WISDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF HV1574 SHREWSBERRY, KY HORVATH TOWERS U 22 X 230' (SIDE PLATES NOT SHOWN FOR CLARITY) NOTE: THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY. THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW. PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS. (LCN)(LCL)(LCB) COPYRIGHT 2022 12'-0" [3.657 m] DATE RELEASE DATE 8/22/2022 DETAIL B MID SIDE PLATE ANGLE CONNECTION DIAGONAL CPD BY APPROVED BY [m bE.] "8/E T-'T--20.-0" (6.096 m) JPJ SN SL SB **DESCRIPTION OF REVISIONS** DESIGNED BY JOSEPH PLACED BETWEEN ANGLES ** DIAGONAL ANGLES MUST BE INSTALLED WITH THE NON-BOLTED FACE UP. THIS MAY BE ON THE OPPOSITE SIDE OF THE SIDE PLATE THAN WHAT IS SHOWN IN THE DETAIL. DETAIL A
ANGLE INTERSECTION CONNECTION (AS) APPROVED BY ORIENT ANGLES WITH STAMPED END TOWARD TOP OF SECTION SAN ORIENT LEGS WITH PIN STAMP TOWARD BOTTOM OF SECTION MN ML MB DRAWN BY SAN REV

NET WT. STRUCTURES 2402.91 lb [1090.94 kg] 8 OF 14 PAGE 0.840 42.250 1.380 0.140 44.570 0.070 0.030 0.470 0.080 0.080 0.190 Total Wt 1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR 293562T U-12 LOWER DIAGONAL - 2 1/2" x 2 1/2" x 3/16" ANGL #12 LEG SECTION - 1-1/2" LEG - 1/2" BRACE - 1" BOL U-12 UPPER DIAGONAL - 2 1/2" x 2 1/2" x 3/16" ANGI 3/4"-10 X 3" A-325T BOLT WITH FULL THREAD 1"-8 X 2-1/4" A-325 BOLT WITH 1-3/4" THREAD 1"-8 X 4-3/4" A-325 BOLT WITH 1-3/4" THREAD RING FILL SPACER 1/2" THICK 1.049" HOLE 3/4"-10 HOT DIPPED GALVANIZED NUT 1" GALVANIZED FLAT WASHER (F436) DWG. NO. 1"-8 HOT DIPPED GALVANIZED NUT 1"-8 HOT DIPPED GALVANIZED NUT 314" GALVANIZED LOCKWASHER 1" GALVANIZED LOCKWASHER 1" GALVANIZED LOCKWASHER SECTION U-12.0 (100' - 120' ELEVATION) 126805 104291 312502 312153 160427 312223 172265 312222 312223 312504 194651 126801 553967 VTO 24 24 24 60 ITEM DESCRIPTION LCL LCL LCF MB 9 AS ೱ ENG. FILE NO. INIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT NSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF HV1574 SHREWSBERRY, KY HORVATH TOWERS U 22 X 230' (SIDE PLATES NOT SHOWN FOR CLARITY) NOTE: THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY. THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS. (CONTICT COFFICE COPYRIGHT 2022 10'-0" [3.048 m] DATE RELEASE DATE 8/22/2022 DETAIL B MID SIDE PLATE ANGLE CONNECTION DIAGONAL CPD BY APPROVED BY JPJ -20.·0" [6.096 m] SN SL SB REVISION HISTORY DESCRIPTION OF REVISIONS JOSEPH JOSEPH PLACED BETWEEN ANGLES ** DIAGONAL ANGLES MUST BE INSTALLED
WITH THE NON-BOLTED FACE UP, THIS MAY BE ON THE OPPOSITE SIDE OF THE
SIDE PLATE THAN WHAT IS SHOWN IN THE DETAIL. DETAIL A
ANGLE INTERSECTION CONNECTION (SA) APPROVED BY SAN ORIENT ANGLES WITH STAMPED END TOWARD TOP OF SECTION ORIENT LEGS WITH P/N STAMP TOWARD BOTTOM OF SECTION MN ML MB DRAWN BY SAN REV

1.140 NET WT. STRUCTURES 2350.71 lb [1067.24 kg] 9 OF 14 0.030 0.080 0.840 0.430 0.070 0.190 1.380 0.140 0.080 602.830 40.070 UNIT WT. Total Wt 1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR 293562T U-10 LOWER DIAGONAL - 2 1/2" x 2 1/2" x 3/16" ANGL #12 LEG SECTION - 1-1/2" LEG - 1/2" BRACE - 1" BOL U-10 UPPER DIAGONAL - 2 1/2" x 2 1/2" x 3/16" ANGL PART DESCRIPTION 1"-8 X 4-3/4" A-325 BOLT WITH 1-3/4" THREAD 34"-10 X 3" A-325T BOLT WITH FULL THREAD 1"-8 X 2-1/4" A-325 BOLT WITH 1-3/4" THREAD RING FILL SPACER 1/2" THICK 1.049" HOLE 34"-10 HOT DIPPED GALVANIZED NUT 1" GALVANIZED FLAT WASHER (F436) DWG. NO. 1"-8 HOT DIPPED GALVANIZED NUT 1"-8 HOT DIPPED GALVANIZED NUT 3/4" GALVANIZED LOCKWASHER 1" GALVANIZED LOCKWASHER 1" GALVANIZED LOCKWASHER SECTION U-10.0 (120' - 140' ELEVATION) 126797 104291 312502 312153 312504 222016 312222 312223 312223 126793 18 312504 160427 QT. 553967 24 24 49 18 24 TEM DESCRIPTION LCB LCF LCF CCN BOL AS N MB 9 9 SN SB ENG. FILE NO. PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS OPAWING ARE PROPRIETARY INFORMATION OF VALINONT
INFODATES AND DECENDING THE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF HV1574 SHREWSBERRY, KY HORVATH TOWERS U 22 X 230' (SIDE PLATES NOT SHOWN FOR CLARITY) NOTE: THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY. THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW. PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS. (CN)(CL)(CF)(CB SEE LEG (9) (3) COPYRIGHT 2022 8'-0" [2.438 m] DATE RELEASE DATE 8/22/2022 DIAGONAL DETAIL B MID SIDE PLATE ANGLE CONNECTION CPD BY -20.-0.. [6.096 m] APPROVED BY JPJ SN SL SB DESCRIPTION OF REVISIONS JOSEPH JOSEPH PLACED BETWEEN ANGLES ** DIAGONAL ANGLES MUST BE INSTALLED
WITH THE NON-BOLTED FACE UP,
THIS MAY BE ON THE OPPOSITE SIDE OF THE
SIDE PLATE THAN WHAT IS SHOWN IN THE DETAIL. DETAIL A ANGLE INTERSECTION CONNECTION (SA) APPROVED BY ORIENT ANGLES WITH STAMPED END TOWARD TOP OF SECTION SAN ORIENT LEGS WITH P/N STAMP TOWARD BOTTOM OF SECTION MN ML MB DRAWN BY SAN REV

2.820 NET WT. STRUCTURES 10 OF 14 2306.97 lb [1047.38 kg] 34.610 36.220 0.070 0.190 0.030 0.470 0.080 1.380 0.080 0.840 Total Wt 1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR 293562T U-8 LOWER DIAGONAL - 2 1/2" x 2 1/2" x 3/16" ANGLE U-8 UPPER DIAGONAL - 2 112" x 2 112" x 3/16" ANGLE #12 LEG SECTION - 1-1/2" LEG - 1/2" BRACE - 1" BOL 1"-8 X 2-1/4" A-325 BOLT WITH 1-3/4" THREAD 3/4"-10 X 3" A-325T BOLT WITH FULL THREAD 1"-8 X 4-3/4" A-325 BOLT WITH 1-3/4" THREAD RING FILL SPACER 1/2" THICK 1,049" HOLE 3/4"-10 HOT DIPPED GALVANIZED NUT 1" GALVANIZED FLAT WASHER (F436) DWG. NO. 1"-8 HOT DIPPED GALVANIZED NUT 1"-8 HOT DIPPED GALVANIZED NUT 314" GALVANIZED LOCKWASHER 1" GALVANIZED LOCKWASHER 1" GALVANIZED LOCKWASHER SECTION U-8.0 (140' - 160' ELEVATION) QTY PART NO. 194651 126789 104291 312502 312153 160427 312223 312504 172265 126785 312222 312223 312504 553967 24 24 24 19 ITEM DESCRIPTION LC LC BOL N MB EC. AS 9 ENG. FILE NO. NIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT SIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF HV1574 SHREWSBERRY, KY HORVATH TOWERS U 22 X 230' (SIDE PLATES NOT SHOWN FOR CLARITY) NOTE: THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY. THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW. PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS. CONTICULOR LOS *3 SITE -6'-0" [1.829 m]-DATE RELEASE DATE 8/22/2022 DETAIL B MID SIDE PLATE ANGLE CONNECTION DIAGONAL CPD BY 20.-0" (6.096 m) APPROVED BY JPJ SN SL SB REVISION HISTORY DESCRIPTION OF REVISIONS DESIGNED BY JOSEPH PLACED BETWEEN ANGLES ⇒ DIAGONAL ANGLES MUST BE INSTALLED
WITH THE NON-BOLTED FACE UP.

THIS MAY BE ON THE OPPOSITE SIDE OF THE
SIDE PLATE THAN WHAT IS SHOWN IN THE DETAIL. DETAIL A ANGLE INTERSECTION CONNECTION (SA) APPROVED BY ORIENT ANGLES WITH STAMPED END TOWARD TOP OF SECTION ORIENT LEGS WITH PIN STAMP TOWARD BOTTOM OF SECTION MIN MIL MB DRAWN BY SAN REV

#48 SECT WIFOOTPADS - 2-1/4" TO 1-3/4" TRANS - 20" TRANSITION PLATE (6) 1" BOLTS TO (4) 1" BOLTS PART DESCRIPTION 1"-8 X 4-3/4" A-325 BOLT WITH 1-3/4" THREAD 1"-8 X 4-3/4" A-325 BOLT WITH 1-3/4" THREAD 1" GALVANIZED FLAT WASHER (F436) 1" GALVANIZED FLAT WASHER (F436) 1"-8 HOT DIPPED GALVANIZED NUT 1" GALVANIZED LOCKWASHER
1"-8 HOT DIPPED GALVANIZED NUT 1" GALVANIZED LOCKWASHER 222016 209573 222016 312222 312223 312504 12 312222 312223 312504 QTY 60 60 60 00 12 12 12 ITEM CGB LC LC FBS TPB TPF TPL TPN LOF

ORIENT SECTION WITH P/N STAMP TOWARD BOTTOM OF TOWER

251.340

83.780 1.380 0.140

0.080

1536.200 NET WT.

16.560

0.430 0.140 0.080 0.430

1848.44 lb [839.21 kg]

Total Wt

TPB TPF TPL TPN

(CON) (CC) (CB) Install these / bolts first /

(

HV1574 SHREWSBERRY, KY HORVATH TOWERS U 22 X 230'

SECTION V-4.0 (180' - 200' ELEVATION)

DESCRIPTION

1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR

STRUCTURES

DWG. NO.

293562T

553967

ENG. FILE NO.

12 OF 14 PAGE

QUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT DERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF RELEASE DATE 8/22/2022 APPROVED BY JPJ DESIGNED BY JOSEPH APPROVED BY SAN

COPYRIGHT 2022

CPD BY DATE

DESCRIPTION OF REVISIONS

DRAWN BY SAN

REV

The Transition Plate MUST be attached to the upper section before installing onto lower section LEG TO LEG CONNECTION

(D)

			PARTS LIST			
ITEM	QTY	QTY PART NO.	PART DESCRIPTION		UNIT WT.	NET WT.
FBS	1	246636	#48 SECT W/ FOOTPADS 1 3/4" - 1 1/2" LEG 3/4" BRAC		1045.850	1045.850
TCB	9	2220222	1-1/4"-7 X S-1/2" A-325 BOLT WITH 2" THREAD		2.530	15.180
LCF	9	312282	1-1/4" GALVANIZED FLAT WASHER (F436)		0.130	0.780
רכר	9	312283	1-1/4" GALVANIZED LOCKWASHER		0.150	006'0
ICN	9	312507	1-1/4"-7 HOT DIPPED GALVANIZED NUT		0.730	4.380
				Total Wt	1067.09 lb [484.47 kg]	.47 kg]

ORIENT SECTION WITH P/N STAMP TOWARD BOTTOM OF TOWER

		-	_	
BITE HV1574 SHREWSBERRY, KY HORVATH TOWERS U 22 X 230'	CORE ATTIONOUS	CONTRIBUTIONS	PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STREATLY PROHIBITED.	
	DATE		RELEASE DATE 8/22/2022	
	CPD BY		RELE 8/22	
	CPD		>	
				APPROVED BY JPJ
	DESCRIPTION OF REVISIONS	REVISION HISTORY	DESIGNED BY JOSEPH	
	DESCRIPTION		APPROVED BY SAN	
	REV		DRAWN BY SAN	

SECTION V-4.0 (200' - 220' ELEVATION)

DESCRIPTION

1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR

STRUCTURES

293562T

PAGE 13 OF 14

DWG. NO.

553967

ENG. FILE NO.

	UNIT WT. NET WT.	445.990 445.990	1 380		
PARTS LIST	PART DESCRIPTION	#48 SECT W/ FOOTPADS 1 1/4" LEG 3/4" BRACE 10"-0"	1"-8 X 4-3/4" A-325 BOLT WITH 1-3/4" THREAD	1" GALVANIZED FLAT WASHER (F436)	1" GALVANIZED FLAT WASHER (F436) 1" GALVANIZED LOCKWASHER
	RT NO.		222016 1"-8	312222 1"0	
	QTY PART NO.	1 233466	6 222	6 312	6 312222
	ITEM C				
	T.	FBS	FCB	TCF	TOT TOT

ORIENT SECTION WITH P/N STAMP TOWARD BOTTOM OF TOWER

ı			
п			
I			
н			
н			
н			
н			
н			
н			
н			
н			
п			
	ı		
	ı		
	ı		
	ı		
н	П		
	П		
ı	ı		
	П		
	П		
	ı		
	ı		
	ı		
	П		
н	ı		
	ı		
н	ı		
	ı		
	ı		
н	ı		
	ı		
н	П		
и			
н	П		
н	П		
н	П		
н	ı		
н	П		
п	ı		
Ш	ı		
п	ı		
п	ı		
п	ı		
	ı		
Į.	ı		
-1	1		
	ı		

HV1574 SHREWSBERRY, KY HORVATH TOWERS U 22 X 230'	and Timenand	COPTRIGHT 2022	PROPRIETARY NOTE: THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VINDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSI VALMONT INDUSTRIES IS STRICTLY PROHIBITED.
	DATE		RELEASE DATE 8/22/2022
	CPD BY		REL 8/2
	CPD		34
			APPROVED BY JPJ
	OF REVISIONS	REVISION HISTORY	JOSEPH
	DESCRIPTION		APPROVED BY
	REV		DRAWN BY SAN

SECTION V-4.0 (220' - 230' ELEVATION) DESCRIPTION

STRUCTURES

1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR DWG. NO.

293562T

553967

ENG. FILE NO.

PAGE 14 OF 14

UNIT BASE FOUNDATION SUMMARY

Horvath Towers HV1574 Shrewsberry, KY

U- 22.0 A- 553967

230

Pad width, W:	28.50	ft
Depth, D:	6.75	ft
xt. above grade, E:	0.50	ft
Pier diameter, di:	3.00	ft
Pad thickness, T:	1.50	ft
Depth neglected, N:	6.75	ft
Volume, Va:	49.64	cv

pad rebar qty., m_p:	48	bars *
size, s_j:	6	
pier vertical qty, m_c:	13	verticals/pier
size, s_c:	7	2.5' cage
pier tie qty., m_t	7	ties/pier
size, S t	4	default hook

total of 192 bars
* Use standees to support top rebar above bottom rebar in mat

Soil Information Per:
POWER OF DESIGN GROUP, LLC Project
NO 22-125392, Dated: May 20, 2022

Soil unit weight, γ:	110	pcf
Ultimate Bearing, Bc:	12.000	ksf
Conesion C _b	1.000	JKSI
Friction angle, to	0.0	degrees
Ult. Passive P., Pp:	0.406	pcf
Base sliding, µ:	0.40	
Seismic Design Cat.:	A	
Water at:	none	ft

Anchor Steel Sele	ction	
Part Number, P/N:	109881	Dia = 1 25 Length = 80°

Material Properties	s	
Steel tensile str, Fy:	60000	psi
Conc. Comp. str, F'c:	4500	psi
Conc. Density, δ:	150	pcf
Clear cover, cc:	3.00	in

Backfill Compaction				
Lift thickness:	8	in		
Compaction:	95	%		
Standard Proctor:	ASTM	D698		

Tower design conforms to the following:

- International Building Code (IBC)
- * ANSI TIA-222-G
- * Building Code Requirements for Reinforced Concrete (ACI 318-14)

The centroid of the tower is offset from the centroid of the foundation

	stress rati	io: 97.7%	mark up: 2.4%
Shear (Per Leg), S _i :	29.00 kips	x 1.02 =	29.70 kips
Shear (total), S:	42.00 kips	x 1.02 =	43.01 kips
Moment, M:	5794.00 ft-kips	x 1.02 =	5933.06 ft-kips
Compression/Leg, C:	321.00 kips	x 1.02 =	328.70 kips
Uplift/Leg, U:	285.00 kips	x 1.02 =	291.84 kips
Tower Weight, Wt:	52.00 kips		52.00 kips

Digitally signed by Joseph P Jacobs Date: 2022-08-22 08:54-04:00

Additional Notes:

- * No foundation modifications listed.
- * See attached "Foundation Notes" for further information.

FOUNDATION NOTES

- 1 THE ON-SITE GEOTECHNICAL ENGINEER SHALL CONFIRM THAT THE INSITU SOIL STRENGTHS MEET OR EXCEED THOSE PARAMETERS GIVEN IN THE SOIL REPORT.
- 2 SEE GEOTECHNICAL REPORT FOR ADDITIONAL CONSTRUCTION RECOMMENDATIONS, BACKFILL COMPACTION DETAIL, SUBGRADE PREPARATION, ETC.
- 3 DIFFICULTIES DURING EXCAVATION MAY ARISE DUE TO THE PRESENCE OF BOULDERS, COBBLES, AND/OR SHALLOW BEDROCK. THE BOULDERS, COBBLES, AND/OR ROCK MUST BE REMOVED FROM THE EXCAVATION OR DRILLED THROUGH.

UNIT BASE FOUNDATION (DL - 0.9)

IV1574 Shrewsbe			-	. ^	- 553967				
Reactions	stress ratio 97.7%	mark up:	2.4%	- BOWER	OE DESIGN (POLIB			
Shear (Per Leg), S _i :	29.00 kips x 1.02			Soil per: POWER LLC Proje	ect NO 22-125				
Shear (total), S:	42.00 kips x 1.02 =			Dated: M	ay 20, 2022			_	
	321.00 kips x 1.02 = 321.00 ki	The second level						Leg 1	- 1
	285.00 kips x 1.02	307.00							
Tower weight, W _t	52.00 kips	52.00							_
							Leg	2	Leg 3
Physical Parameters:									
Concrete volume:	V = T * W2	+ 3 * (di² / 4 *	π) * (D + E	- T)		V =	49.6	су	
Concrete weight:	$W_c = V * \delta$					W _c =	201.0	kips	
Soil weight:	$W_s = (D - T)$	* (W2 - 3 * (di	2/4*π))*	γ		W _s =	456.8	kips	
Total weight:	P = Wc + V	Vs + Wt				P =	709.87	kips	
Passive Pressure:									
Pp coefficient:	$K_p = TAN(4)$		lue -			K _p =	1.000		
		*N+2*Co*				P _{pn} =	2.743	ksf	
		(D-T)+2				P _{pt} =	2.578	ksf	
	P _{plop} = Kp ² y P _{plop} = IF(N <	*D+2*Co*				P _{pb} =	2.743	ksf ksf	
	Pp' = (Pptop		pitij			Pp' =	2.743	ksf	
Shear area:	$T_{pp} = (Pptop)$	+ Ppb) / 2				T _{pp} =	0.0	ft	
Gridar area.	A _{pp} = Tpp * \	V				A _{pp} =	0.00	ft ²	
Shear Capacity: or = 0.75	Sactual = (Pp' * /		pr			S _{actual} =	212.962	kips	
φ, = 0.70		Check	S _{actual} =	212.96 kips	>=	S =	43.01	kips	OH
Overturning Moment Res	THE RESERVE AND ADDRESS OF THE PARTY OF THE					141 -	2.0	1000	
Wt of soil wedge:		* TAN(φ)) / 2 *	VV Y			W _{sw} =	0.0	kips	
Dist. from leg to edge: Additional offset of Wt:		866 * w') / 2 (1 / 3 * 0.866	*w'+0\			O =	4.724 3.175	ft	
Resisting moments:	M _{rwt} = P * W		W + O)			M _{rwt} =	9950.59	ft-kips	
resisting moments.		pp * (D - N) /	3			M _{rp} =	0.00	ft-kips	
		(W + D * TAN				M _{rsw} =	0.00	ft-kips	
Total resisting: pr = 0.75		+ Mrp + Mrsw)				M _{rt} =	7462.94	ft-kips	
Total overturning:	M _o = M + S	* (D + E)				M _o =	6244.86	ft-kips	
		Check	M _{rt} =	7462.94 ft-kips	>=	M _o =	6244.86	ft-kips	OF
Bearing Resistance due t						10000		2	
Area of mat:	area = W ²					area =	812.3	ft ²	
Section modulus:	SM = W ³ / 6					SM =	3858.2	ft ³	
Factored total weight:		.2 + Wc + Ws	0.9			P' =	631.1	kip	
Pressure exerted:	P _{pos} = P' / are					P _{max} =	2.396	ksf	
A.	P _{neg} = P' / are					P _{min} =	-0.842	ksf	
	te: The stress resultant is I		e Kern. Be	aring area has been	adjusted bel		9.00	4	
Load eccentricity:	e _c = Mo / P		2			e _c =	9.90	ft	
In Parallel Direction		(3 * W * (W /				P _{adj} =	3.390	ksf	
In Diagonal Direction	P _{adi_diag} see Diago	g >= 0, Ppos,				P _{adi_diag} =	3.756	ksf	
Adj. applied pressure: (faci		y u, rpus,	r auj)			q _a =	0.743	ksf	
φr = 0.75	4obp - D Y	Check	q _a - q _{obp} =	2.648 ksf	<=	B _c * ϕ r =	9.000	ksf	OF
Concrete Shear Strength		Officer	ча чоор	2.040 No.		OC 4.	3.000	Kai	01
One way beam action at d, fro		db = 10				4.7	14.005	t _m	
Effective depth: Distance from edge of pad to	d _c = T - cc					d _c =	14.625	in	
pier face:	d' '= O - di	1 4				d' =	3.224	ft	
Distance from edge of pad to do	d" = d' - dc	. #				d" =	2.005	ft	
Bearing Pressure Slop	q _s = qa / W		- 10 \		40	q _s =	0.2595	kcf	
Required shear	$V_{n1} = [(qa - q) V_{n1} = qs * 2]$		ALL STREET	V - [0.9*(D - T)*Y*d"*V	V]	V _{n1} = V _{c1} =	149.17 503.29	kips	
Available shear:							2013 20	kips	

am action at d , / 2 from towe uare Column (ACI 8.10.1.3 &								40.15		
22.6.4.1.2)							deq =	31.90	in	
Mat effective width in bearing	W _{eff} = Min (W,	3 * (W / 2 - ec))				W _{eff} =	13.063765	ft	
long side to short side of Pier		-	And in case of the last of the				β=	1.00		
Length:	The second second	THE RESERVE TO THE PERSON NAMED IN	and the same of the same of							
		q + W - SIN(6	0) * w\) / 2						-	
Perimeter:		-					b _o =			
Centroid	****		dc + b2 *	dc)			C =		ft	
Eccentricity:		Contract of the Contract of th					-			
Polar MOI	$J_c = [(dc * b1)]$	^3 / 12) + (b1	* dc^3 / 12	2) + (b1 * c	dc * (b1 / 2 - c	c)^2] + (b1	J _c =	8.066E+05	in.	
flexure:	$y_f = 1 / (1 + 2)$	2/3 · 1 (b1/b	2))				$y_t =$	0.63		
eccentricity								0.07		
	The second secon									
Name of the Owner, which was a second			/2							
rce at Section:	THE RESERVE AND ADDRESS OF THE PARTY OF THE							THE RESERVE OF THE PERSON NAMED IN	Table 1	
Slab Moment:	M _{sc} = SI * (D -	T + E) + Vn_c	ier * e				M _{sc} =	359.25	ft-kips	
Required shear $\phi s = 0.75$ [ACI 21 2 1] = (Vn_pier	r / b0 * dc) + (v	v * Msc*	c / Jc)				139.87	psi	
Available shear: [A	C/ 22.6.5.2] = \ps * MI	N(4**√(Fc),	(2+(4/β))*/	A*√(Fc), (2+(as*dc/bo))	*\\(\(\mathbb{F}\c)\)		201.246	psi	
		Check	V _{c2} =	201.25	psi	>=	V _{n2} =	139.87	psi	OK
	Mas = vf * Msc						Mos =	157.755	ft-kips	
			.5 * T . (V	/ - w\ * SIN	V(60) - dea)	(2)				
Could Tright			.5		.(50) - ded)/	-/	-			
			weff1)					2000		
Danish datash	The second secon	and the second second								
			2))							
	Ast_p_ste1 - ASt_p_S	(1 W/Weil)					~st_p_ste1 ~	0.723		
(Pier 2 or 3)	M _{n2} = yf * Msc	(Controlling	Case: Corr	ner.)			$M_{n2} =$	226.179	ft-kips	
e Beam Width:	$W_{eff2} = deq + 1.$.5 * T + MIN(1	.5 * T , (W	/ - w\ - ded	1)/2)		W _{eff2} =	6.829	ft	
	A _{st_p2} ' = Mn2 / (0	1.9 * Fy * dc)					Ast_p2' =	3.437	in ²	
	a _{p2} = Ast_p2'	* Fy / (B * F'c	weff2)				a _{p2} =	0.678	in	
Required steet:	A _{st_p_st2} = Mn2 / (F	y * (dc - ap2 /	2))				A _{st_p_st2} =	3.166	in ²	
el in entire mat:	A _{st_p_ste2} = Ast_p_s	t2 * W / weff2					A _{st_p_ste2} =	13.214	in ²	
							Cor	ntrolling Case		Pier 2: Corne
eam action at d , / 2 from towe	or (ACI 22.6.5)- Uplift									
nforcement Dia	di _T =di -2*cc-;	2*db_t - 1*db_	С				di _T =	28.125	in	
uare Column (ACI 8.10.1.3 &	d -desta	10+-						04.00	1-	
	The second secon							0.0000000000000000000000000000000000000	-	
							-			
	A THE RESERVE AND ADDRESS OF THE PARTY.	SCHOOL STREET				2 . 21				
		* dc / 6)+ (b1	1 4 9 43/	6)+(dc * t	01_1 * 62_1^	2/2)		A CONTRACTOR OF THE PARTY OF TH		
	STATE OF THE PARTY AND PARTY.						V _{n_pier_T} =		kips	
Required shear qs = 0.75	ACI 21.2.1] = (Vn_pie	r_T/b1_T * de	c) + (yv * N	Asc* c_T /	Jc_T)			152.119	psi	
Available shear. [A	CI 22.6.5.2] ' = \ps * M	IN(4°λ*√(Fc) .						201.25	psi	
		Check	V ₁₂ =	201.25	psi	>=	V _{nt2} =	152.12	psi	OK
Compression Capacity:										
ssion reaction:	$P_c = \varphi c * 0.8$	5 * F'c * (di² /	4 * π)				P _c =	2530.7	kips	
φc = 0.65 [ACI 21.2.2.2]		-	-	00000	1000			000 70	Li.	
		Check	Pc=	2530.69	KIPS	>=	C =	328.70	KIPS	OK
forcement:										
sectional area:	$A_0 = di^2 * \pi /$	4					A _g =	1017.88	in ²	
of steel (pier):	A _{sl.c} =Ag * 0.00						A _{st c} =	5.09	in ²	
		17					-84_0			
		cc - db_c - 2 *	db t				d _o =	28.13	in	
[ACI 10.6.1.1] & [ACI 10.3.1.2]		0 00_0 2	00_(d _{b_c} =	0.875	in	20110		
Cage circle:						0.675	in ²			
	s_c = 7				A =					
Cage circle:	s_c = 7 m_c = 13	n c			A _{b_c} =	0.6		7.80	in ²	
Cage circle:	s_c = 7		Δ -	7.00			A _{s_c} =		in ²	Or
Cage circle: Rebar.	s_c = 7 m_c = 13 A _{s_c} = Ab_c * r	Check	A _{s_c} =	7.80	A _{b_c} =	>=	A _{s_c} =	5.09	in ²	OK
Cage circle: Rebar: Actual moment:	$s_{c} = 7$ $m_{c} = 13$ $A_{s_{c}} = Ab_{c} * n$ $M_{max} = (D - T + 1)$	Check E)*S/2		7.80			A _{s_c} = A _{s_c} = M _{max} =	5.09 123.65	in ² ft-kips	ОК
Cage circle: Rebar.	s_c = 7 m_c = 13 A _{s_c} = Ab_c * r	Check E) * S / 2 mnt.xis (see atte	ched)		in ²	>=	A _{s_c} = A _{st_c} = M _{max} = M _{allow} =	5.09 123.65 152.60	in ² ft-kips ft-kips	
Cage circle: Rebar: Actual moment:	$s_{c} = 7$ $m_{c} = 13$ $A_{s_{c}} = Ab_{c} * n$ $M_{max} = (D - T + 1)$	Check E) * S / 2 comnt.xis (see attect		7.80			A _{s_c} = A _{s_c} = M _{max} =	5.09 123.65	in ² ft-kips	OK OK
	Add effective width in bearing ong side to short side of Pier Length: Width: Perimeter: Centroid Eccentricity: Polar MOI flexure: eccentricity of shear: ressure Slope: ring Pressure: ros at Section: Slab Moment: Required shear: qs = 0.75 [Available shear; [Additional shear of transfered: (Pier 1) Beam Width: Required steel: el in entire mat: ent transfered: (Pier 2 or 3) Beam Width: Required steel: el in entire mat: for an action at d i / 2 from tower of the shear of	## And effective width in bearing ### All of the companies of the compan	Mate	Met effective width in bearing Weff = Min (W, 3 * (W / 2 - ec))	Mate effective width in bearing Weff = Min (W, 3* (W / 2 - ec))	### ### ### ### ### ### ### ### ### ##	West = Min (W, 3 * (W / 2 - ec)) Ong side to short side of Pier Length: b₁ = dc / 2 + deq / 2 + (W - W) / 2 Width: b₂ = (dc + deq + W - SIN(60) * W) / 2 Permeter: b₀ = b1 + b2 Certorid: c = (b1 * dc * b1 / 2) / (b1 * dc * b2 * dc) Eccentricity: Peler MOI Becurio: y₁ = 1 / (1 + 2 / 3 * √ (b1 / b2)) accentricity of shear: y₂ = 1 - yf Bessure: q₂ = (deq + dc) / 2 - c Polar MOI Fing Pressure: q₂ = (deq + dc) / 2 - c Polar MOI Resure: y₂ = 1 - yf Bessure: q₂ = (Weff - b1) * qs + qa) / 2 v₂ = 1 - yf Sabu Moment: Required shear: qs = 0.75 / Aci 22 ± 17 = (nn_pier 1 h0 * dc) + (vv * Msc* c / Jc) Available shear: [Aci 22 ± 52] = qs * MIN(4** √(c)_, (2*(4/B))** √(co)_, (2*(a*dc/bo))** √(co)_, (2	## ## ## ## ## ## ## ## ## ## ## ## ##	### effective worth in bearing W _{wf} = Min (W, 3 * (W / 2 - ec)) W _{wf} = 13.063765 8	### and an elective width in bearing W _{eff} = Min (W, 3 * (W / 2 - ec) ### page diet is derivated of Piere ### Langth b ₁ = 1 (fice square or round piers) ### page diet is derivated of Piere ### Langth b ₁ = 60 c/ 2 + dea f/2 + (W - W) / 2 ### page diet is derivated of Piere ### Langth b ₂ = 60 c/ 2 + dea f/2 + (W - W) / 2 ### page diet is dea f/2 + dea f/2 + (W - W) / 2 ### page diet is dea f/2 + dea f/2 + (W - W) / 2 ### page diet is dea f/2 + dea f/2 + (W - W) / 2 ### page diet is dea f/2 + dea f/2 + (W - W) / 2 ### page diet is dea f/2 + dea f/2 + (W - W) / 2 ### page diet is dea f/2 + dea f/2 + (W - W) / 2 ### page diet is dea f/2 + dea f/2 + (W - W) / 2 ### page diet is dea f/2 + dea f/2 + (W - W) / 2 ### page diet is dea f/2 + dea f/2 + (W - W) / 2 ### page diet is dea f/2 + (W - W) / 3 ### page diet is dea f/2 + (W - W) / 3 ### page diet is dea f/2 + (W - W) / 3 ### pag

Vertical Rebar Development Le										
Reinforcement location: [ACI 25.4.2.4]	ψ_{Lc} = if the space	e under the re	bar > 12 in	, use 1.3	, else use 1.0		1/c=	1.3		
Epoxy coating:	ψ_{ec} = if epoxy-co	nated bars are	not used a	ise 1.0:	but if enoxy-co	ated	ψ _{e_c} =	1.0		
[ACI 25.4.2.4]		sed, then if Bs					700			
Mex term:	$\psi_1 \psi_{e,c} = $ the produc					1.2	4140c=	1.3		
[ACI 25.4.2.4]	AIA6'C - nic bioga	it of the to to,	lood flot be	, turveri is	ingor triair 1.7		Y (Y O_C	1.0		
Reinforcement size:	ψ_{s_c} = if the bar s	ize is 6 or less	s, then use	0.8, else	use 1.0		ψ _{s_c} =	1		
[ACI 25.4.2.4]										
Light weight concrete: [ACI 25.4.2.4]	$\lambda_c = \text{if lightwieg}$	ht concrete is	used, 0.75	, else us	e 1.0		λ_c =	1.0		
Spacing/cover: [ACI 25.4.2.4]	c_c the smalle	r of: half the b	ar spacing	or the co	ncrete edge d	istace	c_c =	3.40	in	
Transverse bars: (ACI 25.4.2.3)	$k_{t_{\underline{c}}} = 0 \text{ in } (p$	er simplificatio	n)				k _{tr_c} =	0	in	
Max term: [ACI 25.4.2.3]	c_c' = MIN(2.5	5, (c_c + ktr_c	/ db_c)				c_c' =	2.500		
Excess reinforcement: [ACI 25.4.10.1]	R _c = Mmax /	Mallow					R_c =	0.81		
Development (tensile): [ACI 25.4.2.2]	L _{at} '_c = (3 / 40) *	(Fy / λ_c * √(F'c	c)) * (ψtψe_c	* ws_c *	R_c / c_c') * db	c	L _{dt_c} =	24.73	in	
Minimum length: [ACI 25.4.2.1]	L _{d_min} = 12 inche	s					L _{d_min} =	12.0	in	
Development length:	Lat c = MAX(Lo	d_min, Ldt'_c)					L _{dt_c} =	24.73	in	
Confining Reinforcement: [ACI 25.4.9.3]	$\psi_{r_c} = 1$						$\psi_{t_c} =$	1.00		
Development (comp.): [ACI 25.4.9.2]	L _{dc} '_c = Fy *ψr_6	db_c R_c	: / (50 * λ_c	* √(F'c)			L _{dc} '_c =	12.68	in	
	L _{dc} "_c = 0.0003 *	db_c * Fy * u	r_c*R_c				L _{dc} "_c =	12.76	in	
Development length:	Ldc_c = MAX(8,	Ldc'_c, Ldc"_	c)				Ldc_c =	12.76	in	
Length available in pier:	L _{vc} = D - T + 1	E-cc					L _{vc} =	66.0	in	
		Check	L _{vc} =	66.0	in	>=	L _{dl_c} =	24.7	in	OK
		Check	L _{vc} =	66.0	in	>=	Ldc_c =	12.8	in	OK
Length available in pad:	L _{vp} = T - cc						L _{vp} =	15.0	in	
		Check	L _{vp} =	15.0	in	>=	L _{dt c} =	24.7	in	HOOKS
		Check	L _{vp} =	15.0	in	>=	L _{dc_c} =	12.8	in	ОК
ertical Rebar Hook Ending:				-						
Bar size & clear cover: [ACI 25.4.3.2]	ψ_{t_h} = if the bars	ize <= 11 and	side cc >=	2.5", us	e 0.7, else use	1.0	ψ ₀ ,=	0.7		
Epoxy coating: [ACI 25.4.3.1]	$\psi_{e_h} = \text{if epoxy-co}$	pated bars are	used, use	1.2, else	use 1.0		ψ _{e_h} =	1.0		
Light weight concrete: [ACI 25.4.3.1]	λ _h if lightwieg	ght concrete is	used, 0.75	, else us	e 1.0		y_h =	1.0		
Confining Reinforcement: [ACI 25.4.3.2]	$\psi_{r_h} = 1$						ψ _{r_h} =	1.00		
Development (hook): [ACI 25.4.3.1]	L _{ah} ' = (Fy * ψt	_h * ψe_h * ψr	_h * R_c/	(50 ° λ_h	* √(F'c))) * db	_c	L _{ah} ' =	8.9	in	
Minimum length:	L _{dh_min} the larger	of: 8 * db or 6	in				L _{dh_min} =	7.0	in	
[ACI 25.4.3.1]										
Development length:	L _{dh} = MAX(Lo	dh_min, Ldh')					L _{dh} =	8.9	in	
		Check	L _{vp} =	15.0	in	>=	L _{dh} =	8.9	in	OK
Hook tail length:	Lh_tal 12 * db be	yond the bene	d radius				L _{h_tall} =	14.0	in	
Length available in pad:	1 - 04/	W 10					Lh_pad =	21	in	
Length available in pao.	$L_{h_pad} = (W - w')$	- di) / 2					Lh_pad -	4.1	***	

Minimum size:	S_t_min =IF(s	s_c <= 10.	, 3, 4)					S t min =	3		
[ACI 25.7.2.2]											
	7-05#	f the coice	nie zone is	loce than	2 oleo 1	1		z =	0.5		
z factor:		Tine seisii	nic zone is	less than	z, else 1.		= 0.5	in	0.5		
Tie parameters:	s_t = 4 m_t = 7					d _{b_1}		in ²			
Allowable tie spacing:	D 40									43.	
per vertical rebar [ACI 25.7.2.1] & [ACI 18.4.3.3								B _{s_t_max1} =	14	in	
per tie size [ACI 25.7.2.1] & [ACI 18.4.3.3								B _{s_t_max2} =	24	in	
per pier diameter [ACI 25.7.2.1] & [ACI 18.4.3.3	B _{s_t_max3} = di							B _{s_t_max3} =	36	in	
per seismic zone [ACI 25.7.2.1] & [ACI 18.4.3.3	B _{s_t_max4} = 12	" in active	seismic zo	ones, else	18"			B _{s_t_max4} =	18	in	
	B _{s.t.max} = MII	IN(Bs_t_n	nax1, Bs_t	_max2, Bs	s_t_max3	Bs_t_ma	x4)	B _{s_t_max} =	14	in	
	m_t_min = (D	-T+E)/	Bs t max	+2				m t min =	6.9		
			Check	m_t =	7.0		>=	m_t_min =	6.9		ОК
:hor Steel:											
A/S parameters:	Pas = 109	9881				Las	= 80	in			
	d _{as} = 1.	.25 in				Eas	= 71.50	in			
Development available:	L _{das} per A	Anchor Bolts	(see attache	od)				L _{das} =	61.31	in	
Required development:	L _{das_min} per A							L _{das min} =	24.73	in	
required developments.	-oas_min per y		Check	L _{das} =	61.31	in	>=	-	24.73	in	OK
To belless subscript	E -0.	_		-das -	01.01	41		L _{das_min} =		in	- OK
To bottom rebar grid:	E _{as_max} =D +			-	74.50	t-		Eas_max =	82.5		
			Check	E _{as} =	71.50	in	<=	Eas_max =	82.50	in	OK
To top rebar grid:	rebar @ = D							rebar @	72.00	in	
		C	Check 72	2 + 6 in	>=	Eas	= 71.50	in or	<=	72 in	ОК
Min. cage dia:	do_min per s	ancsteel.xls	(see attached	d)				d _{o_min} =	23.75	in	
								4 -	00 75	la.	ОК
l Reactions:			Check	d _o =	28.13	P ₂	q ₂		23.75 ngth in bearingth not bearing		ft
d Reactions:	^		Check	d _o =	28.13	P ₂	q ₂	Effective le	ngth in bearin	g: 13.06	ft
d Reactions:	^ <i>^</i>		Check	d _o =	28.13	P ₂	q ₂	Effective le	ngth in bearin	g: 13.06	ft
			Check	d _o =	28.13	P ₂	q ₂	Effective len	ngth in bearin	g: 13.06 g: 15.44	ft
Total Beam Length:	B _{L2_1} =W		Check	d _o =	28.13	P ₂	q ₂	Effective len Effective len	ngth in bearingth not bearing	g: 13.06 g: 15.44	ft
Total Beam Length: occation of Left Support:	B _{L2_1} =W S _{L2_1} =O		Check	d ₀ =	28.13	P ₂	q ₂	Effective lense $B_{L_2,1} = S_{L_2,1} = $	ngth in bearingth not bearing 28.5	g: 13.06 g: 15.44 ft	ft
Total Beam Length: ocation of Left Support: blion of Right Support:	B _{L2_1} =W		Check	d ₀ =	28.13	P ₂	q ₂	Effective len Effective len	ngth in bearingth not bearing	g: 13.06 g: 15.44	ft
Total Beam Length: ocation of Left Support: ation of Right Support: Solids Geometry Input (Option 2)	B _{L2_1} =W S _{L2_1} =O S _{R2_1} =W-		Check	d _o =	28.13	P ₂	q ₂	Effective len Effective len B _{12_1} = S _{12_1} = S _{12_1} = S _{R2_1} =	ngth in bearingth not bearing 28.5	g 13.06 g 15.44 ft ft	ft
Total Beam Length: oceation of Left Support: ation of Right Support: Solids Geometry Input (Option 2) Total Beam Length:	$B_{L2_{-1}} = W$ $S_{L2_{-1}} = O$ $S_{R2_{-1}} = W$ $B_{L2_{-2}} = W$		Check	d _o =	28.13	P ₂	q ₂	Effective len Effective len B _{12_1} = S _{12_1} = S _{R2_1} = B _{12_2} =	28.5 4.724 23.78	g: 13.06 g: 15.44 ft ft	ft
Total Beam Length: ocation of Left Support: ation of Right Support Solids Geometry Input (Option 2) Total Beam Length: ocation of Left Support:	B _{L2_1} =W S _{L2_1} =O S _{R2_1} =W-l B _{L2_2} =W S _{L2_2} =(W	-0 (-wi)/2	Check	d _o =	28.13	P ₂	q ₂	Effective len Effective len B _{12_1} = S _{12_1} = S _{12_1} = S _{R2_1} =	28.5 4,724 23.78 28.5 3.25	g 13.06 g 15.44 ft ft	ft
Total Beam Length: ocation of Left Support: ation of Right Support Solids Geometry Input (Option 2) Total Beam Length: ocation of Left Support:	$B_{L2_{-1}} = W$ $S_{L2_{-1}} = O$ $S_{R2_{-1}} = W$ $B_{L2_{-2}} = W$	-0 (-wi)/2	V T	d _o =	28.13	P ₂	q ₂	Effective len Effective len B _{12_1} = S _{12_1} = S _{R2_1} = B _{12_2} =	28.5 4.724 23.78	g: 13.06 g: 15.44 ft ft	ft
Total Beam Length: coation of Left Support: blion of Right Support: Coalids Geometry Input (Option 2) Total Beam Length: coation of Left Support: blion of Right Support:	B _{L2_1} =W S _{L2_1} =O S _{R2_1} =W-l B _{L2_2} =W S _{L2_2} =(W	-0 (-wi)/2	-Moment (ft*	Y1	28.13	P ₂	q ₂	Effective len Effective len B _{12_1} = S _{12_1} = S _{12_1} = S _{R2_1} = B _{12_2} = S _{12_2} =	28.5 4,724 23.78 28.5 3.25	g 13.06 g 15.44 ft ft	ft
Total Beam Length: coation of Left Support: beion of Right Support: Solids Geometry Input (Option 2) Total Beam Length: coation of Left Support: beion of Right Support:	B _{L2_1} =W S _{L2_1} =O S _{R2_1} =W-6 B _{L2_2} =W-6 S _{L2_2} =(W S _{R2_2} =S _{L1}	-0 (-wi)/2	\	Y1		P ₂	q ₂	Effective len Effective len B12_1= S12_1= SR2_1= SR2_1= S12_2= S12_2= SR2_2=	28.5 4,724 23.78 28.5 3.25	g 13.06 g 15.44 ft ft ft	ft
Total Beam Length: ocation of Left Support: ation of Right Support: Solids Geometry Input (Option 2) Total Beam Length: ocation of Left Support: ation of Right Support:	B _{L2_1} =W S _{L2_1} =O S _{R2_1} =W-6 B _{L2_2} =W-6 S _{L2_2} =(W S _{R2_2} =S _{L1}	-0 (-wi)/2	100	Y1	1000	P ₂	q ₂	Effective len Effective len B12_1= S12_1= SR2_1= SR2_1= S12_2= S12_2= SR2_2=	28.5 4,724 23.78 28.5 3.25	g 13.06 g 15.44 ft ft ft	ft ft
Total Beam Length: ocation of Left Support: etion of Right Support: Solids Geometry Input (Option 2) Total Beam Length: ocation of Left Support: ation of Right Support:	B _{L2_1} =W S _{L2_1} =O S _{R2_1} =W-6 B _{L2_2} =W-6 S _{L2_2} =(W S _{R2_2} =S _{L1}	-0 (-wi)/2	100	Y1	1000 800 600	P ₂	q ₂	Effective len Effective len B12_1= S12_1= SR2_1= SR2_1= S12_2= S12_2= SR2_2=	28.5 4,724 23.78 28.5 3.25	g 13.06 g 15.44 ft ft ft	ft ft
Total Beam Length: oceation of Left Support: ation of Right Support: Solids Geometry Input (Option 2) Total Beam Length: oceation of Left Support: ation of Right Support: 00 00 00 00	B _{L2_1} =W S _{L2_1} =O S _{R2_1} =W-6 B _{L2_2} =W-6 S _{L2_2} =(W S _{R2_2} =S _{L1}	-0 (-wi)/2	100	Y1	1000 800 600 400	P ₂	q ₂	Effective len Effective len B12_1= S12_1= SR2_1= SR2_1= S12_2= S12_2= SR2_2=	28.5 4,724 23.78 28.5 3.25	g 13.06 g 15.44 ft ft ft	ft
Total Beam Length: ocation of Left Support: ation of Right Support: Solids Geometry Input (Option 2) Total Beam Length: ocation of Left Support: ation of Right Support:	B _{L2_1} =W S _{L2_1} =O S _{R2_1} =W-6 B _{L2_2} =W-6 S _{L2_2} =(W S _{R2_2} =S _{L1}	-0 (-wi)/2	100	Y1	1000 800 600 400 200	P ₂	q ₂	Effective len Effective len B12_1= S12_1= SR2_1= SR2_1= S12_2= S12_2= SR2_2=	28.5 4,724 23.78 28.5 3.25	g 13.06 g 15.44 ft ft ft	ft ft
Total Beam Length: occation of Left Support: ation of Right Support: Solids Geometry Input (Option 2) Total Beam Length: occation of Left Support: ation of Right Support:	B _{L2_1} =W S _{L2_1} =O S _{R2_1} =W-6 B _{L2_2} =W-6 S _{L2_2} =(W S _{R2_2} =S _{L1}	-0 (-wi)/2	100	Y1	1000 800 600 400 200 0	P ₂	q ₂	Effective len Effective len B12_1= S12_1= SR2_1= SR2_1= S12_2= S12_2= SR2_2=	28.5 4,724 23.78 28.5 3.25	g 13.06 g 15.44 ft ft ft	ft ft
Total Beam Length: ocation of Left Support: ation of Fight Support: colds: Geometry Input (Option 2) Total Beam Length: ocation of Left Support: ation of Right Support: 00 00 00 00 00 00	$B_{L2_{-1}} = W$ $S_{L2_{-1}} = O$ $S_{R2_{-1}} = W-O$ $B_{L2_{-2}} = W-O$ $S_{L2_{-2}} = W-O$ $S_{R2_{-2}} = S_{L1}$ Direction 1	0 (-w)/2 1,2+wl	-Moment (ft	*kips)	1000 800 600 400 200 0		q ₂	Effective len Effective len B _{12_1} = S _{12_1} = S _{12_1} = S _{12_2} = S _{12_2} = S _{12_2} = S _{12_2} = Direction 2	28.5 4.724 23.78 28.5 3.25 25.25	g 13.06 g 15.44 ft ft ft ft ft ft	ft ft
Total Beam Length: occation of Left Support: ation of Right Support Solids Geometry Input (Option 2) Total Beam Length: occation of Left Support: ation of Right Support: 00 00 00 00 00 00 00 00 00 00 00 00 00	$B_{L2_{-1}} = W$ $S_{L2_{-1}} = O$ $S_{R2_{-1}} = W-O$ $B_{L2_{-2}} = W-O$ $S_{L2_{-2}} = W-O$ $S_{R2_{-2}} = S_{L1}$ Direction 1	-0 (-wi)/2	100	Y1	1000 800 600 400 200 0	P ₂	q ₂	Effective len Effective len B _{12_1} = S _{12_1} = S _{12_1} = S _{12_2} = S _{12_2} = S _{12_2} = S _{12_2} = Direction 2	28.5 4,724 23.78 28.5 3.25	g 13.06 g 15.44 ft ft ft	ft ft
Total Beam Length: ocation of Left Support: ation of Right Support: Solids Geometry Input (Option 2) Total Beam Length: ocation of Left Support: ation of Right Support: 000 000 000 000 000 000 000 000 000 0	$\begin{aligned} &B_{1,2,1} = W \\ &S_{12,1} = O \\ &S_{R2,1} = W-1 \\ &B_{12,2} = W \\ &S_{12,2} = (W \\ &S_{R2,2} = S_{L1} \end{aligned}$ Direction 1	-O (- wl) / 2 1_2 + wl	-Moment (ft	*kips)	1000 800 600 400 200 0		q ₂	Effective len Effective len B12_1= S12_1= SR2_1= B12_2= S12_2= SR2_2= Direction 2	28.5 4.724 23.78 28.5 3.25 25.25	g: 13.06 ft	ft ft
Total Beam Length: occation of Left Support: ation of Right Support: Solids Geometry Input (Option 2) Total Beam Length: occation of Left Support: ation of Right Support: 00 00 00 00 00 00 00 00 00 00 00 00 00	$B_{L2_{-1}} = W$ $S_{L2_{-1}} = O$ $S_{R2_{-1}} = W-O$ $B_{L2_{-2}} = W-O$ $S_{L2_{-2}} = W-O$ $S_{R2_{-2}} = S_{L1}$ Direction 1	-O (- wl) / 2 1_2 + wl	-Moment (ft	*kips)	1000 800 600 400 200 0		q ₂	Effective len Effective len B _{12_1} = S _{12_1} = S _{12_1} = S _{12_2} = S _{12_2} = S _{12_2} = S _{12_2} = Direction 2	28.5 4.724 23.78 28.5 3.25 25.25	g 13.06 g 15.44 ft ft ft ft ft ft	ft ft
Total Beam Length: ocetion of Left Support: ation of Right Support: Solids Geometry Input (Option 2) Total Beam Length: ocetion of Left Support: ation of Right Support: 00 00 00 00 00 00 00 00 00 00 00 00 00	B _{12_1} =W S _{12_1} =O S _{R2_1} =W-I B _{12_2} =W S _{12_2} =(W S _{R2_2} =S _{L1} Direction 1	-O /- w\) / 2 /- w\ / 2 /-	-Moment (ft	*kips)	1000 800 600 400 200 0		q ₂	Effective len Effective len Bt2_1= St2_1= St2_1= St2_2= St2_2= St2_2= Direction 2	28.5 4.724 23.78 28.5 3.25 25.25	g: 13.06 g: 15.44 ft	ft ft
Total Beam Length: oceation of Left Support: ation of Right Support: Solids Geometry Input (Option 2) Total Beam Length: oceation of Left Support: ation of Right Support: 000 000 000 000 000 000 000 000 000 0	B _{12_1} =W S _{12_1} =O S _{R2_1} =V	-O /-wl)/2 20.00 20.00	-Moment (ft	*kips)	1000 800 600 400 200 0		q ₂	Effective len Effective len BL2_1= SL2_1= SR2_1= BL2_2= SL2_2= SL2_2= SR2_2= Direction 2	28.5 4.724 23.78 28.5 3.25 25.25	g: 13.06 g: 15.44 ft	ft ft
Total Beam Length: ocation of Left Support: ation of Right Support: Solids Geometry Input (Option 2) Total Beam Length: ocation of Left Support: ation of Right Support: 00 00 00 00 00 00 00 00 00 00 00 00 00	B _{L2_1} =W S _{L2_1} =O S _{R2_1} =V	20.00 mate2_1 mate2_2 mate1_diag	- Moment (ft*	*kips)	1000 800 600 400 200 0		q ₂	Effective len Effective len Bt2_1= St2_1= St2_1= St2_2= St2_2= St2_2= Direction 2 Mmax2_1= Mmax2_1=	28.5 4.724 23.78 28.5 3.25 25.25 20.00 843.21 819.48	g: 13.06 g: 15.44 ft	ft ft
Total Beam Length: oceation of Left Support: ation of Right Support: Solids Geometry Input (Option 2) Total Beam Length: oceation of Left Support: ation of Right Support: 000 000 000 000 000 000 000 000 000 0	B _{L2_1} =W S _{L2_1} =O S _{R2_1} =V	20.00 mate2_1 mate2_2 mate1_diag	-Moment (ft	*kips)	1000 800 600 400 200 0		q ₂	Effective len Effective len BL2_1= SL2_1= SR2_1= BL2_2= SL2_2= SL2_2= SR2_2= Direction 2	28.5 4.724 23.78 28.5 3.25 25.25	g: 13.06 g: 15.44 ft	ft ft

	B = IF(Fc	c= 4000, 0.85, IF(F'c	>= 8000, 0.6	5, 0.85 - (F'c -	4000) * 0.0	5))		β =	0.825		
Effective width:	W _e = W			.,				W _e =	28.500	ft	
Ellouiro Hidir		(0.9 * Fy * dc)						A _{st.p} '=	22.246	in ²	
		o' * Fv / (B * F'c *	\A/a\					a ₀ =	1.05	in	
Required steet:		(Fy*(dc-ap/2)	and the second	0)				-	20.768	in ²	
		>= 60000, 0.00°	,	6)				A _{st_p_st} =	0.0018		
Shrinkaga:			18, 0.002)							in ²	
	A _{st_p_sh} = psh *							A _{st_p_sh} =	5.540	in ²	
		(Ast_p_st, Ast_p	Manager and	_ste1, Ast_				A _{st_p} =	20.768	ın-	
Rebar:	s_p = 6	Equally spaced	The same of the sa		do		0.75	in			
	m_p = 48	bottom, both di	rections.		Ab_D	= 1	0.44	in ²			
	$A_{s_p} = Ab_p$	* m_p						A _{s_p} =	21.12	in ²	
		Check	A _{s_p} =	21.12	in ²		>=	A _{st_0} =	. 20.77	in ²	OF
Bar separation:	B _{8_p} = (W -	2 * cc - db_p) / (r	m_p - 1) - c	q_db				B _{5_0} =	6.38	in	
		Check	17.25	>=	Bep	=	6.38	in	>=	4"	OH
d Development Length:											
Reinforcement location:	V to = if the s	pace under the re	ebar > 12 is	n, use 1.3,	else use 1	1.0		40=	1		
[ACI 25.4.2.4]											
Epoxy coating: IACI 25.4.2.41		y-coated bars are re used, then if B						ψ _{e_p} =	1.0		
100000000000000000000000000000000000000					-		8 1.2	at atomic			
Max term:	$\psi_t \psi_{e_D} = \text{the pro}$	duct of wt & we,	need not b	e taken lar	ger than 1	./		41400 =	1		
[ACI 25.4.2.4] Reinforcement size:	√ = if the h	ar size is 6 or les	e than use	0.8 alsa	ee 1 0			ψ _{s,p} =	0.8		
[ACI 25.4.2.4]	Ψs_p - II tile b	al size is 0 of les	s, trieff use	0.0, else (356 1.0			Vs_p -	0.0		
Light weight concrete:	$\lambda_n = \text{if lightw}$	vieght concrete is	used 0.7	5. else use	1.0			λ ,=	1.0		
[ACI 25.4.2.4]	- Jo in agricio	noght controlete is	0000, 0.71	0, 0.50 050	1.0				11.0		
Spacing/cover:	c p = the sm	aller of: half the b	ar spacing	or the con	crete edg	e dista	ace	= ور٥	3.38	in	
[ACI 25.4.2.4]											
Transverse bars:	$k_{tr_p} = 0$ in	(per simplification	on)					k _{tr_p} =	0	in	
[ACI 25.4.2.3]											
Max term:	cp' = MIN(2.5, (c_p + ktr_p)/db_p)					c_p' =	2.500		
[ACI 25.4.2.3]											
Excess reinforcement:	Rp = Ast_	p/As_p						Rp=	0.98		
[ACI 25.4.10.1]											
Development (tensile):	$L_d = (3 / 4)$	10) * (Fy / _p * √	(F'c)) * ψtų	ye_p * ψs_	p * R_p * 0	db_p /	c_p'_	u L _{dp} ' =	15.8	in	
[ACI 25.4.2.2]											
Minimum length:	$L_{d_{min}} = 12 in$	ches						L _{d_min} =	12.0	in	
[ACI 25.4.2.1]											
Development length:	$L_{dp} = MAX$	(Ld_min, Ldp')						L _{dp} =	15.8	in	
Length available in pad:	L _{pad} = (W /	2 - w' / 2) - cc						L _{pad} =	36.0	in	
		Check	L _{pad} =	36.00	in		>=	L _{dp} =	15.83	in	OK

UNIT BASE FOUNDATION DIAGONAL BEARING CHECK

Horvath Towers HV1574 Shrewsberry, KY U- 22.0 230 A- 553967

		Load Case - DL 1.2	Load Case - DL 0.9	
Moment of Inertia of Mat	MOI	54979.17	54979.17	ft ⁴
Total Factored Weight	P'	841.45	631.09	kips
Load Eccentricity	е	7.42	9.90	ft
Bearing at Corner A	B _{c_a}	3.32	3.07	ksf
Bearing at Corner B	B _{c_b}	1.04	0.78	ksf
Bearing at Corner C	B _{c_c}		-1.51	ksf
Bearing at Corner D	B _{c_d}		0.78	ksf
Initial Location of Neutral Axis from C	NA c_ini		13.31	ft
Calculated Location of Neutral Axis from C	NA_c_cal		19.79	ft
MOI for Effective Bearing Area	MOI	74804.86	29518.14	ft ⁴
Distance to Point Load from NA	L _p .	13.18	10.26	ft
Effective Length in Bearing along AB & AD	W _{eff}	28.50	28.50	ft
Total Vol. Difference	Vol _{tot}	841.45 0.0000 ok	631.09 -0.0008 ok	kips kips
Adjusted Bearing at A	B _{c_a_adj}	3.8433	4.4988	ksf
Adjusted Bearing at B & D	B _{c_bd_adj}	0.85	0.08	ksf
Overburden Pressure	Q _{obp}	0.7425	0.7425	ksf
Maximum Diagonal Bearing Pressure	B _{c_dia_max}	3.1008	3.7563	ksf
Bearing Available	B _c * φr	9.0000	9.0000	ksf
Check		OK	OK	

THIS SPREADSHEET IS SET UP FOR A MAXIMUM OF 56 BARS. MAXIMUM FACTORED MOMENT OF A CIRCULAR SECTION

Found	Foundation								
Concrete									
Pier diameter =	3.00	ft							
Pier area =	1017.9	in^2							
Reinforcement									
Clear cover =	3.00	in							
Cage diameter =	2.34	ft							
Bar size =	7								
Bar diameter =	0.875	in							
Bar area =	0.601	in^2							
Number of bars =	13								

Material Strength	S		
Concrete compressive strength =	4500	psi	
Reinforcement yield strength =	60000	psi	
Modulus of elasticity =	29000	ksi	
Reinforcement yield strain =	0.00207		(per ACI 10.3.5 - OK)
Limiting compressive strain =	0.003		

Seismic	
SDC =	Α
Are hooks required?	no

Minimum Area of Steel

Required area of steel = 5.09 in^2 Actual area of steel = 7.82 in^2 Bar spacing = 6.37 in

Axial Loading

Load factor = 1.00

Reduction factor = 0.65575 (per ACI 9.3.1 & 2) 0.6557471

Factored axial load = 291.84 kips

Neutral Axis

Distance from extreme edge to neutral axis = 3.37 Equivalent compression zone factor = 0.825

(per ACI 10,2,7,3)

OK

Distance from extreme edge to

Equivalent compression zone factor = 2.78 in Distance from centroid to neutral axis = 14.63 in

Compression Zone

Area of steel in compression zone = 0.00

Angle from centroid of pier to intersection of

equivalent compression zone and edge of pier = 32.27 dea Area of concrete in compression = 36.20

36.200389 Force in concrete = 0.85 * fc * (Acc - steel in comp zone) = 138.47 (per ACI 10.3.6.2) kips

> Total reinforcement forces = -430.31 kips Factored axial load = 291.84 kips

Force in concrete = -138.47 kips

Sum of the forces in concrete = 0.00 OK

Maximum Moment

591.51 First moment of the concrete area in compression about the centoid = in^3 Distance between centroid of concrete in compression and centroid of pier = 16.34 in

Moment of concrete in compression = 2262.54 in-kips Total reinforcement moment = 529.98 in-kips

Nominal moment strength of column = 2792.52 in-kips

Factored moment strength of column = 1831.19 152.60 ft-kips

> Maximum allowable moment of the pier = 152.60 ft-kips

Individual Bars

Bar	Angle from first bar	Distance to centroid	Distance to neutral axis	Distance to equivalent comp. zone	Strain	Area of steel in compressi on	Axial force	Moment
#	(deg)	(in)	(in)	(in)		(in^2)	(kips)	(in-kips)
1	0.00	0.00	-14.63	-15.22	-0.01303	0.00	-36.08	0.00
2	27.69	6.54	-8.10	-8.69	-0.00721	0.00	-36.08	-235.78
3	55.38	11.57	-3.06	-3.65	-0.00272	0.00	-36.08	-417.55
4	83.08	13.96	-0.67	-1.26	-0.0006	0.00	-10.42	-145.44
5	110.77	13.15	-1.48	-2.07	-0.00132	0.00	-23.02	-302.64
6	138.46	9.33	-5.31	-5.90	-0.00472	0.00	-36.08	-336.44
7	166.15	3.37	-11.27	-11.86	-0.01003	0.00	-36.08	-121.42
8	193.85	-3.37	-18.00	-18.59	-0.01602	0.00	-36.08	121.42
9	221.54	-9.33	-23.96	-24.55	-0.02133	0.00	-36.08	336.44
10	249.23	-13.15	-27.78	-28.37	-0.02474	0.00	-36.08	474.39
11	276.92	-13.96	-28.59	-29.18	-0.02546	0.00	-36.08	503.66
12	304.62	-11.57	-26.20	-26.79	-0.02333	0.00	-36.08	417.55
13	332.31	-6.54	-21.17	-21.76	-0.01885	0.00	-36.08	235.78

Foundation:	Pier diameter =	3.0	ft	Cover between side of pier and cage =	3.00	in.
	Cage diameter =	2.34	ft	Cover between top of pier and cage =	3.00	in.
	Rebar size =	7		Compressive strength of concrete =	4500	psi
	Number of bars =	13		Rebar yield strength =	60000	psi
	Clear spacing =	5.92	in.			
	Are there hooks?	n				
	Check Compression?	n				
Anchor Steel:	Part number:	109881		Actual Bending Moment =	123.65	ft-kip
	Embedment length =	71.5	in.	Allowable Bending Moment =	152.60	ft-kip
	Bolt Diameter =	1.25		Excess Reinforcement Ratio =	0.810	
Anchor Plate:	Part number:	281259				
	Plate width =	17.75	in.			
Required developm	nent length (compression) =	999.00	in.			
Required dev	elopment length (tension) =	30.52	in.			
Required dev	elopment length (tension) =	24.73	in.	(reduced)		
Ava	ilable development length =	61.313	in.			
		OK				

Foundation:	Pier diameter =	3.0	ft	Cover between side of pier and cage =	3.00 in.
	Cage diameter =	2.34375	ft	Minimum cover between A/S and cage =	3.00 in.
Anchor Steel:	Part number:	109881		Angle of anchor steel in foundation =	0 degrees
	Embedment length =	71.5	in.		
Anchor Plate:	Part number:	281259			
	Largest plate width =	17.75	in.		
	Bolt Diameter =	1.25	in.		
	Minimum cage diameter =	23.75	in.		
	Actual cage diameter =	28.125	in.		
		OK			

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
5/8" x 10" lightning rod	230	130 sq.ft, EPA	195
Beacon	230	OB light	115
208 sq.ft. EPA	225	OB light	115
130 sq.ft, EPA.	210	OB light	115

SYMBOL LIST

MARK	SIZE	MARK	SIZE
A	#12ZG-58 - 1.25" - 1.00" conn. (Pired 194434)	C	#12ZG-58 - 1.75" - 1.00" conn. (Pirod 195217)
В	#12ZG-58 - 1.75" - 1.00" connTR1-(Pirod 195213)	0	#12ZG-58 BASE - 1.75" - 1.00" conn.(Pired
	C. roller		281212)

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A572-58 58 ksi		75 ksi	A572-50	50 ksi	65 ksi

TOWER DESIGN NOTES

Tower is located in Grayson County, Kentucky.

- Tower designed for Exposure C to the TIA-222-G Standard.

 Tower designed for a 105 mph basic wind in accordance with the TIA-222-G Standard.
- Tower is also designed for a 30 mph basic wind with 0.75 in ice. Ice is considered to increase in thickness with height.
- Deflections are based upon a 60 mph wind. Tower Risk Category II.

Topographic Category 1 with Crest Height of 0 00 ft

- A Ka factor of 0.80 has been applied to the Future EPA loading provided for shielding. Ka = 1
- TOWER RATING: 97.7%

ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE DOWN: 321 K SHEAR: 29 K

UPLIFT: 285 K SHEAR: 25 K

AXIAL 137 K SHEAR MOMENT 6 K 966 kip-ft

TORQUE 1 kip-ft 30 mph WIND - 0.7500 in ICE

AXIAL 52 K SHEAR MOMENT 42 K 5794 kip-ft

TORQUE 16 kip-ft REACTIONS - 105 mph WIND Digitally signed by Joseph P Jacobs Date: 2022-08-22 08:56-04:00

valmont ?

STRUCTURES

1545 Pidco Dr Plymouth, IN

Valmont Industries, Inc. Global Telecom Phone: (574)936-4221 FAX: (574) 936-6458

De G		
^{Job} 553967		
Project U-22 x 230' - HV	1574 Shrewsberry,	KY
Client Horvath Towers	Drawn by Joseph	App'd
Code: TIA-222-G	Date: 08/19/22	Scale: NTS
Path:	A CONTRACTOR OF THE PARTY OF TH	Dwg No. E 4

Plot Plan Total Area - 0.07 Acres

TIA-222-G - 105 mph/30 mph 0.7500 in Ice Exposure C

App'd Scale NTS

Dwg No. E-5

App Out Face

Truss-Leg

val	mont	₹F
A CII		
	STRU	CTURES

1545 Pidco Dr STRUCTURES Plymouth, IN Valmont Industries, Inc.- Globel Telecom Phone: (574)936-4221 FAX: (574) 936-6458

553967		
Project U-22 x 230' - HV	1574 Shrewsberry,	KY
Client Horvath Towers	Drawn by Joseph	App'd
Code: TIA-222-G	Dale 08/19/22	Scale: NTS
Chath	~	Dan Ma

Round Flat App In Face App Out Face Truss Leg

1	^{Job:} 553967		
valmont 7 1545 Pidco Dr	Project U-22 x 230' - HV1	574 Shrewsberry, I	(Y
	Client Horvath Towers	Drawn by Joseph	App'd
Valmont Industries, Inc Global Telecom Phone: (574)936-4221	Code: TIA-222-G	Date: 08/19/22	Scale: NTS
FAX (574) 936-6458		n 7gaart 1991774 Steremontel? Tares Calcult) M	Dwg No. E-7

valmont	Јо ь 553967	Page 1 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shi	Date 12:33:09 08/19/22
Plymouth, 1N Phone (574)936-4221 FAX: (574) 936-6458	Client Horvath Towe	Designed by Joseph

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 230.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 4.00 ft at the top and 22.00 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Grayson County, Kentucky.

ASCE 7-10 Wind Data is used.

Basic wind speed of 105 mph.

Risk Category II.

Exposure Category C.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 0.7500 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 30 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A Ka factor of 0.80 has been applied to the Future EPA loading provided for shielding. Ka = 1 for top load.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- ✓ Use Code Safety Factors Guys Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
- √ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric
- Distribute Leg Loads As Uniform
- Assume Legs Pinned
- ✓ Assume Rigid Index Plate
 ✓ Use Clear Spans For Wind Area
- V Use Clear Spans For KL/r
- √ Retension Guys To Initial Tension Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt Autocalc Torque Arm Areas Add IBC 6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing
- √ Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg Angle Legs

- Use ASCE 10 X-Brace Ly Rules
- Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression
- √ All Leg Panels Have Same Allowable Offset Girt At Foundation
- V Consider Feed Line Torque
- V Include Angle Block Shear Check
 Use TIA-222-G Bracing Resist Exemption
 Use TIA-222-G Tension Splice Exemption
 Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

valmont	Job 553967	Page 2 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

Tower Section Geometry

Tower Section	Tower Elevation	Assembly Database	Description	Section Width	Number of Sections	Section Length
	ſŧ			ſ		ft
TI	230.00-220.00		#48 SST-58	4 00	1	10.00
			1 25"Lx0 750"D-10'-FP-(2334			
			66)			
T2	220 00-200 00		#48 SST-58	4 00	1	20 00
			1 75"Lx0 750"D-20'-(246636)-			
			TR I-FP			
T3	200 00-180 00		#48 SST-58	4 00	3	20 00
			2.25"Lx0 875"D-20'-(215044)-			
			TR3-FP			
T4	180 00-160 00		PiRod 12BDFH Truss Leg	4 00	9	20 00
T5	160 00-140 00		PiRod 12BDFH Truss Leg	6 00	1	20 00
T6	140 00-120 00		PiRod 12BDFH Truss Leg	8 00	1	20 00
T7	120 00-100.00		PiRod 12BDFH Truss Leg	10.00	1	20 00
T8	100.00-80.00		PiRod 12BDFH Truss Leg	12 00	1	20 00
T9	80 00-60.00		PiRod 12BDFH Truss Leg	14.00	1	20.00
T10	60 00-40 00		PiRod 12BDFH Truss Leg	16 00	1	20 00
TII	40 00-20 00		PiRod 12BDFH Truss Leg	18 00	1	20 00
T12	20.00-0.00		PiRod 12BDFH Truss Leg	20 00	1	20.00

valmont	Job 553967	Page 3 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth. IN Phone (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

Tower Section	Tower Elevation	Diagonal Spacing	Bracing Type	Has K Brace End	Has Horizontals	Top Girt Offset	Bottom Girl Offset
	ſŧ	ſ		Panels		in	in
TI	230.00-220.00	2.35	X Brace	No	Steps	3 5000	3 5000
T2	220.00-200 00	2.43	X Brace	No	Steps	3 5000	3 5000
T3	200.00-180.00	2 43	X Brace	No	Steps	3 5000	3 5000
T4	180.00-160.00	10 00	X Brace	No	No	0.0000	0 0000
T5	160 00-140 00	10.00	X Brace	No	No	0.0000	0.0000
T6	140 00-120 00	10 00	X Brace	No	No	0.0000	0 0000
T7	120 00-100 00	10.00	X Brace	No	No	0 0000	0.0000
T8	100 00-80 00	10.00	X Brace	No	No	0.0000	0 0000
T9	80 00-60 00	10.00	X Brace	No	No	0 0000	0.0000
T10	60 00-40 00	10.00	X Brace	No.	No	0.0000	0.0000
TII	40 00-20 00	10.00	X Brace	No	No	0.0000	0.0000
T12	20.00-0.00	10.00	X Brace	No	No	0.0000	0.0000

Tower Elevation ft	Leg Type	Leg Size	Leg Grade	Diagonal Type	Diagonal Size	Diagonal Grade
T1 230.00-220.00	Solid Round	1 1/4	A572-58	Solid Round	3/4	A572-50
T2 220 00-200 00	Solid Round	1 3/4	(58 ksi) A572-58 (58 ksi)	Solid Round	3/4	(50 ksi) A572-50 (50 ksi)
T3 200.00-180.00	Solid Round	2 1/4	A572-58 (58 ksi)	Solid Round	7/8	A572-50 (50 ksi)
T4 180.00-160 00	Truss Leg	#12ZG-58 - 1 25" - 1 00" conn (Pirod 194434)	A572-58 (58 ksi)	Equal Angle	L2 1/2×2 1/2×1/4	A572-50 (50 ksi)
T5 160 00-140 00	Truss Leg	#12ZG-58 - 1 50" - 1.00" conn. (Pirod 194651)	A572-58 (58 ksi)	Equal Angle	L2 1/2x2 1/2x3/16	A572-50 (50 ksi)
T6 140 00-120 00	Truss Leg	#12ZG-58 - 1 50" - 1.00" conn (Pirod 194651)	A572-58 (58 ksi)	Equal Angle	L2 1/2x2 1/2x3/16	A572-50 (50 ksi)
T7 120 00-100 00	Truss Leg	#12ZG-58 - 1.50" - 1.00" conn. (Pirod 194651)	A572-58 (58 ksi)	Equal Angle	L2 1/2x2 1/2x3/16	A572-50 (50 ksr)
T8 100.00-80 00	Truss Leg	#12ZG-58 - 1 50" - 1 00" conn (Pirod 194651)	A572-58 (58 ksi)	Equal Angle	L2 1/2x2 1/2x3/16	A572-50 (50 ksi)
T9 80 00-60 00	Truss Leg	#12ZG-58 - 1 75" - 1 00" conn -TR1-(Pirod 195213)	A572-58 (58 ksi)	Equal Angle	L2 1/2x2 1/2x1/4	A572-50 (50 ksi)
T10 60.00-40 00	Truss Leg	#12ZG-58 - 1 75" - 1 00" conn (Pirod 195217)	A572-58 (58 ksi)	Equal Angle	L2 1/2x2 1/2x1/4	A572-50 (50 ksi)
T11 40.00-20.00	Truss Leg	#12ZG-58 - 1.75" - 1.00" conn (Pirod 195217)	A572-58 (58 ksi)	Equal Angle	L3x3x3/16	A572-50 (50 ksi)
T12 20 00-0 00	Truss Leg	#12ZG-58 BASE - 1 75" - 1.00" conn (Pirod 281212)	A572-58 (58 ksi)	Equal Angle	L3x3x5/16	A572-50 (50 ksi)

Tower Elevation ft	Top Girt Type	Top Girt Size	Top Girt Grade	Bottom Girt Type	Bottom Girt Size	Bottom Girt Grade
T1 230 00-220 00	Solid Round	7/8	A572-50 (50 ksi)	Solid Round	7/8	A572-50 (50 ksi)
T2 220 00-200 00	Solid Round	7/8	A572-50 (50 ksi)	Solid Round	7/8	A572-50 (50 ksi)

valmont	Job 553967	Page 4 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

Tower Elevation fi	Top Giri Type	Top Giri Size	Top Giri Grade	Bottom Girt Type	Bottom Giri Size	Bottom Girt Grade
T3 200 00-180 00	Solid Round	1	A572-50 (50 ksi)	Solid Round	1	A572-50 (50 ksi)
T4 180.00-160.00	Equal Angle	L3x3x3/16	A572-50 (50 ksi)	Solid Round	1995	A36 (36 ksi)

Tower	Section	Geometry	(cont'd)

Tower Elevation	No. of Mid	Mid Girt Type	Mid Girt Size	Mid Giri Grade	Horizontal Type	Horizontal Size	Horizonial Grade
ſ	Girts						
T1 230 00-220 00	None	Solid Round		A572-50	Solid Round	3/4	A572-50
				(50 ksi)			(50 ksi)
T2 220 00-200 00	1	Solid Round	7/8	A572-50	Solid Round	3/4	A572-50
				(50 ksi)			(50 ksi)
T3 200.00-180.00	1	Solid Round	1	A572-50	Solid Round	3/4	A572-50
				(50 ksi)			(50 ks1)

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust Factor Aj	Adjust Factor A,	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Statch Bola Spacing Horizontals	Double Angle Sutch Bolt Spacing Redundants
JI	JF.	In					in	in	in
TI 230 00-220 00	0.00	0 0000	A36 (36 ksi)	1	1	1.05	36 0000	36.0000	36 0000
T2 220 00-200.00	0.00	0 0000	A36 (36 ksi)	1	1	1.05	36 0000	36.0000	36 0000
T3 200 00-180.00	0.00	0 0000	A36 (36 ksi)	I	1	1.05	36 0000	36 0000	36 0000
T4 180 00-160 00	0 00	0 5000	A36 (36 ksi)	Ī	1	1 05	36 0000	36.0000	36 0000
T5 160.00-140.00	0.00	0 5000	A36 (36 ksi)	Ĩ	1	1 05	36.0000	36 0000	36 0000
T6 140.00-120.00	0 00	0 5000	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36,0000
T7 120 00-100 00	0.00	0 5000	A36 (36 ksi)	1	Í	1.05	36.0000	36.0000	36 0000
T8 100.00-80.00	0.00	0.5000	A36 (36 ksi)	1	1	1.05	36.0000	36.0000	36 0000
T9 80 00-60 00	0.00	0 5000	A36 (36 ksi)	Ĩ	1	1 05	36.0000	36.0000	36 0000
T10 60 00-40 00	0 00	0 5000	A36 (36 ksi)	I	1	1.05	36.0000	36.0000	36 0000
T11 40 00-20.00	0 00	0.5000	A36 (36 ksi)	Ĭ	1	1 05	36.0000	36.0000	36.0000
T12 20.00-0.00	0.00	0.5000	A36 (36 ksi)	li .	1	1.05	36.0000	36.0000	36.0000

valmont	Job	553967	Page 5 of 63
1545 Pidco Dr	Project	I-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

					K Factors ¹					
Tower Elevation	Calc K Single	Calc K Solid	K Bi Solid Di	X Brace Diags	K Brace Diags	Single Diags	Girts	Hortz.	Sec. Horiz	Inner Brace
a.	Angles	Rounds		X	X	X	X	A' Y	X V	X Y
T1	Yes	Yes	1		1	-1	1	- 1	1	1
230.00-220.00		1.63		1	1	i i	1	i	1	1
T2	Yes	Yes	1.	1	i	î	1	1	î	i
220.00-200.00		100		Î	1	- 70	Y	1	1	1
T3	Yes	Yes	1	1	1	- (1	1	1	1
200.00-180.00				1	1	1	1	1	1	1
T4	Yes	Yes	1	1	1	1	1	1	1	1
180.00-160.00				D	4	1	1	1	I	1
T5	Yes	Yes	1	£	1	1	1	1	1	1
160.00-140.00				1	1	1	1	1	1	1
T6	Yes	Yes	1	1	1	1	1	- 1	1	1
140.00-120.00				1	1	T	311	1	1	1
T7	Yes	Yes	1	T	1	1	1	1	1	1
120.00-100.00				1.	(1)	1.	1	1	1	1
T8	Yes	Yes	1	t	1	1	1	1	1	1
100.00-80.00				1	1	10	1	1	T	1
Т9	Yes	Yes	I	1	1	1	1	1	1	1
80 00-60 00				1	1	1	1	1	1.	1
T10	Yes	Yes	- 1	1	1	1	1	1	1	1
60.00-40.00	24.7	-24		D	1	1	1	1	-1	1
Til	Yes	Yes	1	0	1	1	1	- 1	1	4
40.00-20.00	23.5	123.0		1	1	1	1	1	1	1
T12	Yes	Yes	1	1	1	1	1	1	-1-	1
20.00-0.00				1	1	1	I I		1	St.

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

			Truss-Leg	K Factors		
	Trus	s-Legs Used As Leg Me	mbers	Truss	-Legs Used As Inner Me	embers
Tower Elevation ft	Leg Panels	X Brace Diagonals	Z Brace Diagonals	Leg Panels	X Brace Diagonals	Z Brace Diagonals
T4 180.00-160 00	1	0.5	07	1	0.5	0.7
T5 160.00-140.00	1	0.5	0.7	1	0.5	0.7
T6 140.00-120 00	1	0.5	0.7	1	0.5	0.7
T7 120.00-100.00	1	0.5	0.7	1	0.5	0.7
T8 100.00-80 00	1,1	0.5	0.7	1	0.5	07
T9 80.00-60.00	11	0.5	0.7		0.5	0.7
T10 60.00-40.00	1	0.5	0.7	1	0.5	0.7

valmont	Job	553967	Page 6 of 63
1545 Pidco Dr	Project	U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth. IN Phone: (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

T11 40.00-20.00	1	0.5	0.7	1	0.5	0.7
T12 20 00-0 00	- 1	0.5	0.7	Page 1	0.5	0.7

Tower Elevation ft	Leg		Diago	nal	Top G	irt	Botton	i Giri	Mid	Giri	Long Horizontal		Short Horizontal	
	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T1 230 00-220 00	0.0000	1	0.0000	0 75	0 0000	0.75	0 0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T2 220 00-200 00	0.0000	1	0.0000	0 75	0.0000	0 75	0 0000	0 75	0 0000	0 75	0.0000	0 75	0.0000	0.75
T3 200 00-180 00	0 0000	I	0.0000	0.75	0.0000	0.75	0 0000	0 75	0 0000	0 75	0.0000	0 75	0 0000	0 75
T4 180,00-160,00	0.0000	1	0.0000	0.75	0.0000	0.75	0 0000	0 75	0.0000	0 75	0.0000	0.75	0.0000	0 75
T5 160.00-140.00	0.0000	1	0.0000	0.75	0.0000	0.75	0 0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 140 00-120 00	0 0000	1	0.0000	0 75	0.0000	0.75	0 0000	0.75	0 0000	0.75	0.0000	0.75	0 0000	0 75
T7 120 00-100 00	0 0000	1	0.0000	0 75	0 0000	0.75	0 0000	0 75	0.0000	0.75	0 0000	0.75	0 0000	0 75
T8 100.00-80.00	0.0000	Ĵ	0.0000	0.75	0.0000	0 75	0.0000	0 75	0.0000	0.75	0.0000	0 75	0.0000	0 75
T9 80 00-60 00	0.0000	1	0.0000	0.75	0 0000	0.75	0 0000	0.75	0.0000	0.75	0.0000	0.75	0 0000	0.75
T10 60.00-40.00	0.0000	1	0 0000	0 75	0.0000	0 75	0.0000	0.75	0.0000	0.75	0 0000	0.75	0.0000	0.75
T11 40.00-20.00	0.0000	1	0 0000	0 75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0 0000	0.75
T12 20 00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Elevation	Reduna Horizoi		Redund Diago		Redund Sub-Diag		Redui Sub-Hoi		Redundan	t Vertical	Redund	ant Hip	Redund Diag	
Ji	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct	U	Net Width Deduct in	U
T1 230 00-220 00	0 0000	0.75	0 0000	0.75	0 0000	0.75	0 0000	0.75	0 0000	0 75	0.0000	0 75	0.0000	0.75
T2 220 00-200 00	0.0000	0 75	0.0000	0.75	0 0000	0.75	0 0000	0 75	0 0000	0.75	0.0000	0.75	0.0000	0.75
T3 200 00-180 00	0.0000	0.75	0.0000	0 75	0 0000	0.75	0 0000	0 75	0 0000	0 75	0,0000	0.75	0 0000	0.75
T4 180.00-160.00	0.0000	0 75	0.0000	0.75	0.0000	0.75	0 0000	0 75	0.0000	0.75	0.0000	0.75	0 0000	0.75
T5 160.00-140.00	0.0000	0 75	0 0000	0.75	0 0000	0 75	0 0000	0 75	0 0000	0 75	0.0000	0.75	0 0000	0 75
T6 140 00-120 00	0.0000	0.75	0.0000	0.75	0 0000	0.75	0 0000	0 75	0.0000	0.75	0 0000	0.75	0 0000	0.75
T7 120.00-100.00	0.0000	0 75	0 0000	0 75	0.0000	0.75	0.0000	0.75	0.0000	0 75	0.0000	0.75	0 0000	0.75

valmont	Jób	553967	Page 7 of 63
1545 Pideo Dr	Project U-:	22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

Tower Elevation fi	Reduna Horizoi		Reduna Diago		Redund Sub-Diag	Cest West	Redui Sub-Hoi		Redundan	t Vertical	Redund	ant Hip	Redund Diag	
,	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U	Net Width Deduct in	U
T8 100.00-80 00	0 0000	0.75	0 0000	0.75	0 0000	0 75	0 0000	0.75	0 0000	0 75	0.0000	0.75	0 0000	0 75
F9 80.00-60.00	0.0000	0.75	0.0000	0 75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0 0000	0.75
T10 60.00-40.00	0.0000	0 75	0 0000	0 75	0 0000	0.75	0 0000	0.75	0.0000	0 75	0.0000	0.75	0.0000	0.75
T11 40.00-20.00	0.0000	0.75	0.0000	0 75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0 0000	0.75
Г12 20.00-0.00	0 0000	0.75	0.0000	0.75	0.0000	0.75	0 0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower				Connecti	on Offsets			
Elevation		Diag	gonal			K-Br	acing	
	Vert Top	Horr: Top	Vert Bot.	Horiz Bot	Vert Top	Horiz Top	Veri Bot	Horiz Bot
ſŧ	ın	in	ın	in	ın	in	in	in
TI	0.0000	0 0000	0.0000	0.0000	0.0000	0.0000	0.0000	0 0000
230.00-220.00					The second			
T2	0.0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000
220 00-200 00	5.6553	20,03333	3.3.5.5	311011	20000	0 6116		
T3	0 0000	0 0000	0.0000	0.0000	0 0000	0.0000	0.0000	0.0000
200.00-180.00	* 0000	10 7500	* 0000	10 3000	0.0000	0.0000	0.0000	0.0000
T4	5.0000	10.7500	5.0000	10 7500	0 0000	0.0000	0 0000	0.0000
180 00-160 00 T5	5.0000	10 7500	5 0000	10 7500	0.0000	0.0000	0 0000	0 0000
160 00-140 00	3 0000	10 /300	3 0000	10 7300	0.0000	0.0000	0.0000	0.0000
T6	5.0000	10 7500	5 0000	10 7500	0.0000	0.0000	0 0000	0 0000
140.00-120.00	2.0000	10 1000	2 0000	10 1000	0.0000	0.0000	0.0000	0 0000
T7	5.0000	10.7500	5 0000	10 7500	0.0000	0.0000	0.0000	0.0000
120.00-100 00							1111	
T8	5.0000	10.7500	5 0000	10 7500	0.0000	0.0000	0.0000	0.0000
100 00-80.00								
T9 80.00-60.00	5 0000	10 7500	5.0000	10.7500	0 0000	0.0000	0.0000	0 0000
TIO	5 0000	10 7500	5 0000	10.7500	0 0000	0 0000	0.0000	0 0000
60.00-40.00	21212		21116		1.000			
TII	5 0000	10 7500	5.0000	10.7500	0 0000	0 0000	0.0000	0 0000
40 00-20 00	r 0000	10 7500	£ 0000	10 7500	0.0000	0.0000	0.0000	0.0000
T12 20 00-0.00	5.0000	10.7500	5 0000	10.7500	0 0000	0 0000	0.0000	0 0000

valmont	Job 553967	Page 8 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

Tower Elevation ft	Leg Connection Type	Leg		Diago	nal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hor	izontal	Short Hor	izontai
*		Bolt Size	No.	Bolt Size	No	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.
T1 230 00-220 00	Flange	I 0000 A325N	2	0.6250 A325N	0	0.6250 A325N	0	0 6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0
T2 220 00-200 00	Flange	1 2500 A325N	2	0 6250 A325N	0	0 6250 A325N	0	0.6250 A325N	0	0 6250 A325N	0	0 6250 A325N	0	0.6250 A325N	0
T3 200 00-180 00	Flange	1.0000 A325N	4	0.6250 A325N	0	0 6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0	0.6250 A325N	0
T4 180 00-160 00	Flange	1 0000 A325N	6	1 0000 A325N	1	1 0000 A325N	1	1 0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0
T5 160 00-140 00	Flange	1.0000 A325N	6	1.0000 A325N	1	0.0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0	1.0000 A325N	0
T6 140 00-120 00	Flange	1 0000 A325N	6	1 0000 A325N	1	0 0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0
T7 120 00-100 00	Flange	1 0000 A325N	6	1 0000 A325N	1	0 0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0
T8 100 00-80 00	Flange	1 0000 A325N	6	1 0000 A325N	1	0 0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0	1.0000 A325N	0
T9 80 00-60 00	Flange	1 2500 A325N	6	1 0000 A325N	1	0.0000 A325N	0	1.0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0
T10 60 00-40 00	Flange	1 2500 A325N	6	1 0000 A325N	1	0.0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0
T11 40 00-20 00	Flange	1 2500 A325N	6	1.0000 A325N	t-	0.0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0	1 0000 A325N	0
T12 20 00-0 00	Flange	1 2500 F1554-105	4	1 0000 A325N	Ü	0.0000 A325N	0	1.0000 A325N	0	1.0000 A325N	0	1.0000 A325N	0	1 0000 A325N	0

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Face Offset	Lateral Offset	B			Width or Diameter	Perimeter	Weight
to twee v	Leg		Torque Calculation		fì	in	(Frac FW)		Row	in	in	in	plf
Safety Line 3/8	C	No	No	Ar (CaAa)	230 00 - 0 00	3 0000	0	1	-1	0 0000	0.3750		0.22
Lighting	A	No	No	Ar (CaAa)	115 00 - 0.00	0 4900	0.5	2	2	1 6300 0 0000	0 8700		0 15
Lighting	A	No	No	Ar (CaAa)	230 00 - 115 00	0.4900	0.5	1.1	1	1.6300	0 8700		0 15

LDF7-50A (1-5/8 FOAM)	C	No	No	Ar (CaAa)	225 00 - 0.00	3 0000	0.4	2	2	0 5200 1 0000	1.9800		0.82
LDF7-50A 1-5/8 FOAM)	В	No	No	Ar (CaAa)	210.00 -	3 0000	0.4	12	6	0 5200 1 0000	1 9800		0.82
LDF7-50A 1-5/8 FOAM) ***	Α	No	No	Ar (CaAa)	195 00 - 0.00	3 0000	0.4	12	6	0 5200 1 0000	1 9800		0 82
1 75" Rails	C	No	No	Af (CaAa)	225.00 - 0.00	3 0000	0.35	J	1	24 0000 1 0000	1 7500		2 85
1 75" Rails	C	No	No	Af (CaAa)	225.00 - 0.00	3 0000	0.45	1	1	24 0000 1 0000	1.7500		2 85

valmont	Job 553967	Page 9 of 63
1545 Pideo Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

		ree	a Line	Linear	Appurte	enances -	Entered A	s Area	
Description	Face	Allow Shield	Exclude From	Component Type	Placement	Total Number	C_iA_i	Weight	
	Leg	Smeta	Torque Calculation	141.0	ſŧ	Number	fr ² /ft	plf	

		Feed	d Line/I	_inear	Appurter	nances	Section /
Tower Section	Tower Elevation	Face	A_R	A_F	C ₁ A ₁ In Face	C,A, Out Face	Weight
	ft		fr	JP	Jr.	fr	K
TI	230 00-220 00	A	0.000	0 000	0.870	0.000	0 00
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	5.272	0.000	0.04
T2	220 00-200 00	A	0.000	0 000	1.740	0.000	0.00
	The state of the state of the	В	0.000	0 000	23 760	0.000	0.10
		C	0.000	0 000	20 337	0.000	0.15
T3	200 00-180.00	A	0.000	0 000	37 380	0 000	0.15
		В	0.000	0 000	47 520	0.000	0.20
		C	0.000	0 000	20 337	0 000	0.15
T4	180 00-160 00	A	0.000	0 000	49 260	0.000	0 20
		В	0 000	0.000	47.520	0 000	0.20
		C	0.000	0 000	20 337	0 000	0.15
T5	160 00-140 00	A	0.000	0 000	49 260	0 000	0.20
4.00		В	0.000	0.000	47 520	0 000	0.20
		C	0.000	0 000	20 337	0 000	0.15
T6	140 00-120 00	A	0.000	0 000	49 260	0.000	0.20
		В	0.000	0 000	47.520	0 000	0 20
		C	0.000	0.000	20.337	0 000	0.15
T7	120.00-100.00	A	0.000	0.000	50.565	0 000	0 20
	200	В	0 000	0.000	47 520	0 000	0.20
		C	0 000	0.000	20.337	0 000	0 15
T8	100.00-80.00	A	0.000	0 000	51 000	0 000	0 20
	100.00 00 00	В	0.000	0.000	47 520	0 000	0.20
		Č	0 000	0.000	20 337	0 000	0.15
T9	80 00-60.00	Ä	0 000	0 000	51 000	0 000	0 20
	44.44	В	0 000	0 000	47 520	0 000	0 20
		č	0 000	0 000	20 337	0 000	0.15
T10	60 00-40 00	A	0 000	0 000	51 000	0 000	0 20
	00.00 10 00	В	0 000	0 000	47 520	0 000	0 20
		č	0 000	0 000	20.337	0 000	0 15
TII	40.00-20.00	A	0.000	0.000	51 000	0.000	0 20
	.0.00 20.00	В	0.000	0.000	47 520	0.000	0 20
		C	0.000	0 000	20.337	0 000	0 15
T12	20 00-0 00	A	0.000	0.000	51.000	0.000	0.20
	20 00:0 00	В	0 000	0.000	47 520	0.000	0.20
		C	0.000	0 000	20 337	0.000	0 15

Feed Line/Linear Appurtenances Section Areas - With Ice

valmont	Јо ь 553967	Page 10 of 63
1545 Pideo Dr	Project U-22 x 230' - HV1574 Shrews	Date 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

Tower Section	Tower Elevation	Face or	lce Thickness	A_R	A_F	C ₁ A ₁ In Face	C ₁ A ₁ Out Face	Weight
NAME OF STREET	ſ	Leg	in	St.	fr²	st succ	fr	K
TI	230.00-220 00	A	1 817	0.000	0.000	4 505	0.000	0.06
		В		0.000	0.000	0 000	0 000	0.00
		C		0.000	0.000	16 729	0.000	0.25
T2 220	220.00-200.00	A	1 805	0.000	0.000	8 960	0.000	0 12
		В		0.000	0.000	25.021	0.000	0.53
		C		0.000	0 000	58.659	0.000	0.89
T3	200.00-180.00	A	1 787	0.000	0.000	46.330	0.000	0.91
		В		0.000	0 000	49.923	0.000	1.06
		C		0.000	0 000	58 318	0.000	0.88
T4	180.00-160.00	A	1 767	0 000	0 000	58 600	0.000	117
		В		0.000	0.000	49 792	0.000	1 05
		C		0 000	0.000	57 944	0.000	0.87
T5 10	160.00-140.00	A	1.745	0 000	0.000	58 366	0.000	1.16
		В		0 000	0.000	49 645	0.000	1.04
		C		0 000	0.000	57 527	0 000	0.85
T6	140.00-120.00	A	1.720	0 000	0.000	58 102	0 000	1 14
		В		0 000	0 000	49 480	0 000	1.03
		C		0 000	0.000	57.057	0 000	0.84
T7	120 00-100.00	A	1 692	0.000	0.000	66 384	0 000	1 19
		В		0.000	0.000	49.291	0.000	1 02
		C		0 000	0 000	56 517	0.000	0.82
T8	100.00-80.00	A	1 658	0.000	0 000	68.790	0 000	1 19
		В		0.000	0.000	49.068	0.000	1.01
		C		0.000	0.000	55 880	0 000	0.80
T9	80.00-60.00	A	1617	0.000	0 000	68.234	0 000	117
		В		0.000	0 000	48.794	0.000	0.99
		C		0.000	0 000	55 101	0.000	0 78
T10 60.00	60.00-40.00	A	1 564	0.000	0.000	67 510	0.000	1 15
		В		0 000	0 000	48.439	0 000	0.97
		C		0 000	0.000	54.087	0.000	0.75
T11	40 00-20 00	Ā	1.486	0 000	0.000	66.459	0.000	1.11
200		В	-0. 852	0 000	0.000	47 923	0.000	0.95
		C		0 000	0.000	52 613	0.000	0.71
T12	20.00-0 00	A	1.331	0 000	0.000	64 378	0.000	1 03
1121		В	715.811	0.000	0.000	46 902	0.000	0.89
		Č		0.000	0.000	49.687	0.000	0 63

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP _X Ice	CP _z Ice	
	ſì	in	in	in	in	
TI	230 00-220 00	-3 9522	2 1724	-2.1001	1.1296	
T2	220.00-200 00	-1 2995	4 8574	-2.1622	2 9572	
T3	200 00-180 00	0 7108	-1 6651	-1.0847	0.2983	
T4	180.00-160.00	0 2710	-2 7939	-0 9154	-0.3930	
T5	160.00-140.00	0 3619	-3.4569	-1.7468	-0.7170	
T6	140 00-120 00	0.4443	-4 0798	-2.4257	-0.9845	
T7	120.00-100.00	0.5087	-5.1828	-2.8915	-2 3274	
T8	100.00-80.00	0 5728	-5 9696	-3.2422	-3 0464	
T9	80.00-60.00	0.6316	-6 5291	-3 4137	-3 2841	
T10	60.00-40.00	0.6871	-7.0674	-3 6725	-3 6432	
TII	40.00-20.00	0.6893	-7.1604	-3 7665	-3 9326	
T12	20 00-0 00	0 7211	-7.4836	-3 8351	-4 5272	

valmont	Job 553967	Page 11 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone (574)936-4221 FAX (574) 936-6458	Client Horvath Towers	Designed by Joseph

Shielding Factor Ka

K, lce	K _o No Ice	Feed Line Segment Elev	Description	Record No.		
0 449	0.6000	220 00 -	Safety Line 3/8	THE COT WITH	Section T1	
	VII. 200	230.00				
0.449	0 6000	220.00 -	Lighting	3	Tt	
0.449	0 6000	230.00 220.00 -	LDF7-50A (1-5/8 FOAM)	TI 5 LDF7-50A		
0.110		225.00				
0 449	0 6000	220 00 -	1 75" Rails	9	T1.	
0 449	0 6000	225.00 220.00 -	1 75" Rails	10	TI	
0.112	7.400	225.00	0.00			
0 455	0 6000	200 00 -	Safety Line 3/8	.1	T2	
0.455	0.6000	220.00	Lighting	3	T2	
		220 00				
0 455	0 6000	200 00 -	LDF7-50A (1-5/8 FOAM)	5	T2	
0.455	0.6000	220 00 -	LDF7-50A (1-5/8 FOAM)	6	T2	
2.100		210 00				
0 455	0.6000	200 00 -	I 75" Rails	9	T2	
0 455	0.6000	220 00 200 00 -	1 75" Rails	10	T2	
		220,00				
0 440	0.6000	180.00 -	Safety Line 3/8	1	Т3	
0.440	0.6000	200.00 180.00 -	Lighting	3	тз	
2	0.0000	200.00				
0.440	0.6000	180 00 -	LDF7-50A (1-5/8 FOAM)	5	T3	
0.440	0.6000	200.00 180 00 -	LDF7-50A (1-5/8 FOAM)	6	Т3	
		200 00				
0 440	0 6000	180 00 -	LDF7-50A (1-5/8 FOAM)	7	T3	
0 440	0.6000	195.00	1.75" Rails	9	T3	
		200.00			373	
0 440	0 6000	180 00 - 200 00	1 75" Rails	10	T3	
0 327	0 6000	160.00 -	Safety Line 3/8	i i	T4	
		180 00		6		
0 327	0.6000	160 00 - 180 00	Lighting	3	T4	
0 327	0.6000	160 00 -	LDF7-50A (1-5/8 FOAM)	5	T4	
		180.00				
0.327	0.6000	160 00 - 180 00	LDF7-50A (1-5/8 FOAM)	6	T4	
0.327	0.6000	160 00 -	LDF7-50A (1-5/8 FOAM)	7	T4	
	CONTRA	180 00			2004	
0 3274	0.6000	160 00 -	1 75" Rails	9	T4	
0 3274	0.6000	160 00 -	1 75" Rails	10	T4	
		180 00				
0.485	0.6000	140.00 -	Safety Line 3/8	3	T5	
0 485	0.6000	140.00 -	Lighting	3	T5	
	200	160 00				
0 485	0.6000	140.00 - 160.00	LDF7-50A (1-5/8 FOAM)	5	T5	

valmont	Job	553967	Page 12 of 63
1545 Pidco Dr	Project	U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

Tower	Feed Line	Description	Feed Line	Ka No Inc	K. Ice	
ection	Record No.	1 050 404 11 410 50 114	Segment Elev	No Ice		
T5	6	LDF7-50A (1-5/8 FOAM)		0 6000	0 4853	
-	-		160 00	0.0000	0.1040	
T5	7	LDF7-50A (1-5/8 FOAM)		0 6000	0 4853	
-242			160 00	ALO AND	10-10-01	
T5	9	I 75" Rails		0 6000	0 4853	
15.0			160 00	- Care 177		
T5	10	1 75" Rails	140.00 -	0 6000	0 4853	
			160 00			
T6	1	Safety Line 3/8	120 00 -	0.6000	0 5750	
-			140 00			
T6	3	Lighting		0 6000	0.5750	
		Teacher & Milesoft	140 00	7.359		
T6	5	LDF7-50A (1-5/8 FOAM)		0 6000	0.5750	
20.1			140 00	6.00		
T6	6	LDF7-50A (1-5/8 FOAM)		0.6000	0.5750	
100			140.00	20.00		
T6	7	LDF7-50A (1-5/8 FOAM)	120 00 -	0.6000	0.5750	
			140 00			
T6	9	1 75" Rails	120 00 -	0 6000	0 5750	
		and the second second	140.00	20.00		
T6	10	1.75" Rails	120 00 -	0 6000	0 5750	
			140 00			
17	J.	Safety Line 3/8	100.00 -	0 6000	0 6000	
22	- 3		120.00			
T7	2	Lighting	100 00 -	0 6000	0 6000	
			115 00			
T7	3	Lighting	115.00 -	0 6000	0 6000	
			120.00			
T7	5	LDF7-50A (1-5/8 FOAM)	100 00 -	0 6000	0.6000	
102			120 00	7.3.3		
T7	6	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.6000	
			120.00			
T7	7	LDF7-50A (1-5/8 FOAM)	100.00 -	0.6000	0.6000	
		1,020,00	120 00		er sparte-s	
T7	9	1 75" Rails	100.00 -	0 6000	0 6000	
		2 a 5 a 5 a 5	120.00	2 324.5	40 70 44	
T7	10	1 75" Rails	100 00 -	0 6000	0 6000	
		49.5.74	120.00	200000	0.5. 0.000	
T8	1	Safety Line 3/8	80.00 - 100.00	0 6000	0 6000	
T8	2	Lighting	80.00 - 100.00	0.6000	0.6000	
T8	5	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0 6000	0 6000	
T8	6	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0 6000	0 6000	
T8	7	LDF7-50A (1-5/8 FOAM)	80.00 - 100.00	0.6000	0.6000	
T8	9	1 75" Rails		0 6000	0 6000	
T8	10	1 75" Rails	80.00 - 100.00	0 6000	0 6000	
Т9	1	Safety Line 3/8	60.00 - 80.00	0 6000	0.6000	
T9	2	Lighting	60.00 - 80.00	0.6000	0.6000	
T9	5	LDF7-50A (1-5/8 FOAM)	60 00 - 80 00	0 6000	0.6000	
T9	6	LDF7-50A (1-5/8 FOAM)	60.00 - 80.00	0 6000	0 6000	
Т9	7	LDF7-50A (1-5/8 FOAM)	60 00 - 80 00	0 6000	0 6000	
T9	9	I 75" Rails	60.00 - 80 00	0 6000	0.6000	
T9	10	1 75" Rails		0 6000	0.6000	
T10		Safety Line 3/8	40.00 - 60 00	0.6000	0 6000	
T10	2	Lighting	40.00 - 60.00	0 6000	0 6000	
T10	5	LDF7-50A (1-5/8 FOAM)	40 00 - 60 00	0.6000	0 6000	
T10	6	LDF7-50A (1-5/8 FOAM)	40 00 - 60 00	0 6000	0 6000	
T10	7	LDF7-50A (1-5/8 FOAM)	40.00 - 60.00	0 6000	0 6000	
T10	9	1 75" Rails	40.00 - 60.00	0 6000	0 6000	
T10	10	1 75" Rails	40 00 - 60 00	0 6000	0.6000	
T11	1	Safety Line 3/8	20 00 - 40 00	0 6000	0 6000	
T11	2.	Lighting	20 00 - 40 00	0 6000	0 6000	
T11	5	LDF7-50A (1-5/8 FOAM)	20 00 - 40 00	0.6000	0 6000	

valmont	Job 553967	Page 13 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth. IN Phone: (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

Tower Feed Line Section Record No.		Description	Feed Line Segment Elev	K. No Ice	K _a Ice	
TII	6	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0 6000	0 6000	
T11	7	LDF7-50A (1-5/8 FOAM)	20.00 - 40.00	0 6000	0 6000	
TII	9	1 75" Rails	20 00 - 40 00	0 6000	0.6000	
T11	10	1.75" Rails	20 00 - 40 00	0.6000	0 6000	
T12	11	Safety Line 3/8	0.00 - 20.00	0.6000	0 6000	
T12	2	Lighting	0.00 - 20.00	0.6000	0 6000	
T12	5	LDF7-50A (1-5/8 FOAM)	0 00 - 20 00	0 6000	0 6000	
T12	6	LDF7-50A (1-5/8 FOAM)	0.00 - 20.00	0.6000	0 6000	
T12	7	LDF7-50A (1-5/8 FOAM)	0.00 - 20 00	0 6000	0 6000	
T12	9	1 75" Rails	0 00 - 20 00	0 6000	0 6000	
T12	10	1 75" Rails	0 00 - 20 00	0.6000	0 6000	

			Di	screte 1	ower Load	ds		
Description	Face or	Offset Type	Offsels Horz	Azimuth Adjustment	Placement	C,A,t Front	C _v A _A Side	Weight
	Leg		Lateral					

Zessi pilon	or Leg	Туре	Horz Lateral Vert	Adjustment			Front	Side	
			ft ft ft		fi		fr	fi²	K
5/8 x 10' lightning rod	C	From Leg	0.00	0.0000	230 00	No Ice	0 63	0.63	0 02
			0.00			1/2" Ice	1.63	1.63	0 03
Division	n	Frank Law	5.00 0.00	0.0000	230 00	I" Ice No Ice	2 63 2 40	2.63	0 04
Beacon	В	From Leg	0.00	0.0000	230 00	1/2" Ice	2 67	2.67	0 10
			1 00			l" Ice	2 96	2.07	0 12
OB light	C	From Leg	0 00	0.0000	115 00	No Ice	0.50	0.50	0 03
Ob light	-	1 Tolli Leg	0 00	O OUNIO	115.00	1/2" Ice	0 60	0.60	0 04
			0 00			I" Ice	0.70	0.70	0 04
OB light	В	From Leg	0.00	0 0000	115 00	No Ice	0.50	0 50	0.03
			0.00	2,5544	5.50.00	1/2" Ice	0.60	0.60	0.04
			0.00			1º Ice	0.70	0.70	0.04
OB light	A	From Leg	0.00	0 0000	115.00	No Ice	0 50	0.50	0 03
			0.00			1/2" Ice	0.60	0.60	0 04
			0.00			I" lce	0.70	0.70	0.04

208 sq ft EPA	C	None		0.0000	225 00	No Ice	208 00	208 00	4 16
						1/2" lce	260 00	260 00	5 20
241						1" Ice	312 00	312 00	6.24
***	100	188.00			****			100.00	2.00
130 sq ft. EPA	В	None		0.0000	210.00	No Ice	130.00	130.00	2.60
						1/2" lce	162 50	162 50	3.25
***						1" Ice	195 00	195 00	3.90
130 sq ft EPA	A	None		0.0000	195 00	No Ice	130.00	130.00	2.60
130 SQ IL BEA	A	MOHE		U. UUUU	195.00	1/2" Ice	162 50	162.50	3.25
						1" Ice	195.00	195 00	3 90
***						1 Icc	193.00	173.00	270

valmont	Job	553967	Page 14 of 63
1545 Pidco Dr	Project	U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth IN Phone (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

Truss-	Lea	Pro	perties

Section Designation	Area	Area Ice	Self Weight	lce Weight	Equiv Diameter	Equiv Diameter Içe	Leg Area
	in [‡]	in ²	K	A.	in	in	in?
#12ZG-58 - 1.25" - 1 00" conn (Pirod 194434)	1884.8315	5597 5352	0.50	121	6 5446	19 4359	3 6816
#12ZG-58 - 1 50" - 1 00" conn (Pirod 194651)	2010.3106	5655 4560	0 62	1.20	6 9802	19 6370	5 3014
#12ZG-58 - 1 50" 1 00" conn (Pirod 194651)	2010 3106	5641 5205	0 62	1.17	6.9802	19 5886	5 3014
#12ZG-58 - 1 50" - 1 00" conn (Pirod 194651)	2010 3106	5625 5026	0.62	1.14	6 9802	19 5330	5 3014
#12ZG-58 - 1.50" - 1.00" conn (Pirod 194651)	2010 3106	5606 6118	0.62	1 10	6 9802	19 4674	5 3014
#12ZG-58 - 1 75" - 1 00" conn -TR1-(Pirod 195213)	2035 9652	6282 1507	0.79	1 12	7 0693	21 8130	72158
#12ZG-58 - 1 75" - 1 00" conn. (Pirod 195217)	2035 9652	6199 5676	0 79	1 06	7 0693	21 5263	72158
#12ZG-58 - 1 75" - 1.00" conn. (Pirod 195217)	2035 9652	6079,3846	0 79	0 98	7 0693	21 1090	7 2 1 5 8
175" - 1 00" onn.(Pirod 281212)	2139 9906	5497 1099	0.75	0 79	7 4305	19 0872	7,2158

Tower Pressures - No Ice

 $G_H = 0.850$

Section Elevation	2	K _x	qz	Air	Fa	AF	A_R	Alex	Leg %	C ₁ A ₁	C _A A _A Out
ſŧ	fi		psf	ft ^z	c e	ſt ⁾	fi²	ft ²	- 11	Face ft ²	Face It
TI	225.00	1.501	36	41 042	A	0 000	4.912	2.083	42 42	0.870	0.000
230 00-220 00		1,000		100	В	0 000	4 9 1 2		42.42	0 000	0 000
	17.77			200	C	0 000	5 642		36 92	5 272	0.000
T2	210.00	1.48	35	82 917	A	0 000	11 185	5 833	52 16	1 740	0.000
220 00-200.00	Contract		-	1000	В	0 000	11 185	40.00	52 16	23 760	0.000
			5-51		C	0.000	12 630	1	46 19	20 337	0.000
T3	190 00	1 449	35	83.750	A	0 000	13 656	7 500	54 92	37 380	0.000
200 00-180 00	7				В	0 000	13 656	777	54.92	47.520	0.000
ALSO NO. YOU		200			C	0.000	15.085		49.72	20 337	0.000
T4	170 00	1415	34	122 110	A	8 856	21 852	21.852	71 16	49.260	0.000
180.00-160 00					В	8 856	21.852		71 16	47 520	0.000
	1000		1 3.4	22.5	C	8.856	21.852	A	71 16	20.337	0.000
T5	150 00	1 378	33	162 527	A	8.796	23.306	23 306	72.60	49 260	0 000
160 00-140 00		1.74	1 27	1	В	8.796	23.306		72.60	47 520	0 000
C 1 A 1 (1)		0.71	0.9		C	8.796	23 306		72.60	20.337	0.000
T6	130 00	1 337	32	202 527	A	9.726	23.306	23 306	70.56	49 260	0.000

valmont	Job	553967	Page 15 of 63
1545 Pidco Dr	Project U-:	22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone (574)936-4221 FAX (574) 936-6458	Client	Horvath Towers	Designed by Joseph

Section Elevation	10	K ₂ :	q_t	Au	F	A_F	AR	Aire	Leg %	C _I A,	C ₁ A _A Out
fi	ſì		psf	ſl²	c e	ft²	ft²	ft²		Face ft ²	Face fr
140.00-120.00					В	9.726	23 306	11.	70 56	47.520	0 000
	145.7				C	9.726	23 306	1.0.5	70 56	20 337	0.000
T7	110 00	1 291	31	242 527	A	10 834	23 306	23 306	68 27	50.565	0 000
120.00-100.00					В	10.834	23 306		68 27	47 520	0.000
	1 57 d	65.5		* college 4	C	10.834	23 306		68 27	20 337	0 000
T8	90.00	1 238	30	282 527	A	12.071	23 306	23.306	65.88	51 000	0.000
100 00-80 00	49-61	3.34	- 1		В	12.071	23 306		65.88	47.520	0.000
	100	7.1			C	12.071	23 306	1000	65 88	20 337	0.000
T9 80.00-60 00	70.00	1.174	28	322 944	A	13 402	23 604	23 604	63.78	51 000	0 000
		100			В	13 402	23.604		63 78	47 520	0 000
					C	13 402	23.604		63.78	20 337	0 000
T10	50.00	1.094	26	362.944	A	14 801	23.604	23 604	61.46	51,000	0 000
60.00-40.00				100	В	14.801	23 604	-000	61 46	47.520	0 000
	-	33.			C	14 801	23 604		61 46	20 337	0.000
T11	30 00	0 982	24	402 944	A	19 501	23 604	23 604	54 76	51.000	0.000
40.00-20.00				100	В	19 501	23 604		54.76	47 520	0 000
- C. T. J. C.	100	10.3			C	19 501	23 604		54 76	20 337	0 000
T12 20.00-0.00	10 00	0.85	20	442 944	A	21 286	24 810	24 810	53 82	51.000	0 000
	-0.00	4777		20-420	В	21.286	24.810		53 82	47.520	0 000
				000-0000	C	21 286	24 810		53 82	20,337	0 000

Tower Pressure - With Ice

 $G_H = 0.850$

Section Elevation	.2	K2	q_t	b	A_{ij}	F a c	Ar	An	Airg	Leg %	C ₁ A _A In Face	C ₄ A _A Out Face
fi	ft		psf	in	ft ²	e	fr2	ft ²	ft ²		ft2	ft2
Tl	225.00	1 501	3	18174	44.071	A	0 000	24.284	8 141	33.53	4 505	0.000
230.00-220.00		200		-	V-7-4	В	0.000	24 284		33.53	0.000	0.000
				1	200.00	C	0.000	28 555		28.51	16 729	0.000
T2	210 00	148	3	1 8049	88.933	A	0.000	48.394	17 866	36.92	8.960	0.000
220 00-200 00					300100	В	0.000	48 394		36.92	25.021	0.000
7.00				0.000		C	0 000	56.796		31 46	58 659	0.000
Т3	190.00	1.449	3	1 7870	89 707	A	0.000	50 226	19.413	38.65	46.330	0.000
200 00-180 00	2.5			377	200	В	0 000	50 226	50.56	38.65	49.923	0.000
						C	0 000	58 468		33 20	58.318	0.000
T4	170.00	1415	3	1 7672	128 008	A	8 856	77 238	64.894	75 38	58.600	0.000
180 00-160 00				1000		В	8.856	77 238		75 38	49 792	0.000
		0.8			1	C	8.856	77 238		75 38	57 944	0.000
T5	150.00	1.378	3	1 7452	168 352	A	8 796	77 847	65 566	75 67	58.366	0.000
160 00-140 00						В	8 796	77 847	2.000.1	75 67	49 645	0 000
		1			1000	C	8 796	77 847		75.67	57 527	0.000
T6	130.00	1 337	3	1.7204	208 269	A	9 726	78 790	65 404	73 89	58 102	0 000
140 00-120 00	1					В	9 726	78 790		73 89	49 480	0 000
					5 4 3	C	9 726	78 790		73 89	57.057	0 000
T7	110.00	1 291	3	1 6919	248 174	A	10.834	79.883	65.218	71 89	66.384	0.000
120 00-100.00						В	10 834	79 883		71.89	49 291	0 000
		100		0.000		C	10 834	79 883		71 89	56 517	0 000
T8 100 00-80 00	90 00	1 238	2	1 6583	288.062	A	12 071	81.014	64 999	69 83	68 790	0.000
				0.000	4777777	В	12 071	81.014	130.30	69 83	49 068	0 000
C. C. C. C. C. C.		3.5				C	12 071	81 014		69.83	55 880	0.000
T9 80 00-60 00	70 00	1 174	2	16171	328 341	A	13 402	90 170	72.831	70.32	68 234	0.000
						В	13 402	90.170	1000	70 32	48 794	0.000
						C	13 402	90.170		70.32	55 101	0.000

valmont	Job	553967	Page 16 of 63
1545 Pidco Dr	Project	U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

Section Elevation ft	z ſi	K.	qı psf	in .	Air ft²	F a c	As fr	A _{ii}	Atex	Leg %	C ₁ A ₁ In Face ft ²	C _A A _A Out Face ft
T10 60 00-40 00	50 00	1.094	2	1,5636	368 163	A	14 801	90 389	71 874	68 33	67 510	0 000
A. A. S.		3.43		10000	2.4/46	В	14 801	90.389		68 33	48.439	0.000
La Proposition of the Control						C	14 801	90.389		68.33	54 087	0.000
T11 40.00-20 00	30.00	0.982	2	1.4858	407 903	A	19 501	89 796	70.480	64.49	66.459	0.000
						B	19 501	89.796		64.49	47 923	0.000
			1			C	19.501	89.796		64.49	52 613	0.000
T12 20.00-0.00	10.00	0.85	2	1.3312	447 387	A	21.286	82 621	63 730	61.33	64 378	0.000
		9		47.33	600.00	В	21 286	82 621	20.75	61.33	46 902	0.000
						C	21 286	82 621		61.33	49 687	0.000

Tower Pressure - Service

 $G_H = 0.850$

Section Elevation	12	K ₂	qı	Aa	F a c	A	$A_{\mathbb{R}}$	Aire	Leg %	C 144 In Face	C ₄ A ₄ Out Face
ſi	ft		psf	ft ²	e	ft ²	ft ²	fr.		fi ²	ft2
TI	225.00	1.501	12	41 042	A	0.000	4 912	2.083	42 42	0 870	0.000
230 00-220 00		1,10,10		2.00	В	0 000	4 912	0.00	42 42	0 000	0.000
2.10, 12.20		100			C	0.000	5.642		36 92	5 272	0.000
T2	210.00	1.48	12	82 917	A	0.000	11.185	5 833	52 16	1.740	0.000
220 00-200.00	2000	2.22			В	0.000	11.185		52 16	23 760	0.000
					C	0.000	12 630		46 19	20 337	0 000
T3	190 00	1 449	(i)	83 750	A	0.000	13.656	7 500	54 92	37 380	0 000
200 00-180.00	2.0	100		22/12/2	В	0.000	13.656	1000	54.92	47.520	0 000
3377.74					C	0.000	15.085		49.72	20.337	0 000
T4	170 00	1415	11	122 110	A	8 856	21 852	21 852	71 16	49 260	0.000
180.00-160.00	11.00	2000		37.17.07	В	8 856	21 852		71 16	47 520	0.000
	1.97.5				C	8 856	21 852		71 16	20 337	0.000
T5	150 00	1 378	11	162 527	A	8 796	23 306	23 306	72.60	49 260	0.000
160.00-140.00		0.0		0.000000	В	8 796	23 306	100	72.60	47 520	0.000
		1.00 L			C	8.796	23 306		72.60	20 337	0.000
T6	130 00	1.337	10	202.527	A	9 726	23 306	23 306	70.56	49.260	0.000
140.00-120.00				0.000	В	9 726	23 306		70.56	47 520	0.000
					C	9 726	23 306		70.56	20 337	0.000
T7	110.00	1 291	10	242 527	A	10.834	23 306	23 306	68.27	50.565	0.000
120 00-100 00		774			В	10.834	23 306		68.27	47.520	0.000
				5333	C	10.834	23 306		68.27	20 337	0.000
T8	90.00	1 238	10	282 527	A	12 071	23 306	23 306	65 88	51 000	0.000
100 00-80 00					В	12.071	23 306	- 1	65.88	47.520	0.000
	1000	1000			C	12 071	23 306	100	65 88	20.337	0.000
T9 80 00-60.00	70 00	1 174	9	322 944	A	13 402	23 604	23.604	63 78	51 000	0 000
					В	13.402	23 604		63 78	47 520	0.000
A				400	C	13.402	23.604	100	63 78	20.337	0 000
T10	50 00	1 094	9	362 944	A	14.801	23 604	23 604	61 46	51.000	0 000
60 00-40 00				7.7	В	14 801	23 604	1 2 . 7 . 7 .	61 46	47 520	0 000
	47.1	100	- 24	1000	C	14 801	23 604	1000	61.46	20 337	0 000
TII	30 00	0 982	8	402 944	A	19.501	23.604	23 604	54 76	51.000	0 000
40 00-20.00	(V 1	0.74			В	19 501	23.604		54 76	47.520	0 000
	1000				C	19.501	23.604		54 76	20 337	0.000
T12 20 00-0.00	10 00	0.85	7	442.944	A	21 286	24.810	24.810	53.82	51 000	0 000
20.0	Multi			100	В	21.286	24 810	100	53 82	47 520	0 000
					C	21 286	24.810		53.82	20 337	0 000

valmont	Job 553967	Page 17 of 63
15-15 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, F	Date 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

Tower Forces - No Ice - Wind Normal To Face

Section Elevation	Add Weight	Self Weight	Fa	e	C	q: psf	D_k	D ₀	Ar	F	ħ.	Ctrl Face
a	K	K	C e			Psj			ft	K	plf	1
TI	0.04	0 38	A	0 12	2 886	36	1	1	2.776	0 38	37.51	C
230 00-220 00	18-52	- VIZ.N	В	0 12	2 886	(3.7)	1	1	2.776	3,00	20.5.53	120
1000			C	0.137	2818		T	1	3 196			
T2	0.25	0.99	A	0.135	2 828	35	T	1.	6.332	1 19	59 47	В
220 00-200 00		200	В	0.135	2 828		1	1	6 3 3 2	200	100	
			C	0.152	2 763		1	1	7.171			
T3	0.50	1 47	A	0.163	2 724	35	1	1	7 770	1.83	91 28	В
200 00-180 00		1970	В	0 163	2 724		1	T	7 770		10,000,00	
		100	C	0.18	2 664		1	1	8 6 1 8			
T4	0.55	2 06	A	0.251	2.433	34	1	1	21 647	2.77	138.59	В
180.00-160.00	100		В	0.251	2 4 3 3		1	1	21 647	100	Cr. Xay	
		and the second	C	0.251	2 4 3 3		1	1.1	21 647			
T5	0.55	2.26	Α	0 198	2 604	33	1	1	22 175	2.84	142.13	В
160.00-140.00	10.00		В	0.198	2.604		1	1	22.175			100
		1.7	C	0 198	2 604	5 P.J	1	1	22 175			
T6	0.55	231	A	0 163	2.724	32	1	1	22 987	2 89	144 55	В
140 00-120 00	27.6	- AC.	В	0 163	2 724		1	1	22 987	199	3400.345	
200	200		C	0 163	2.724		1	1	22 987	200	1.0	
T7	0.55	2.36	A	0.141	2 806	31	1	- 1	24.041	2.94	146.95	В
120 00-100 00	2.63		В	0 141	2 806	91	1	1	24 041			100
			C	0 141	2 806		1	1	24 041	99.0	4.7	
T8	0.55	2 42	A	0.125	2.865	30	1	- 1	25 251	2.95	147 37	В
100 00-80 00			В	0.125	2 865		1.	1	25 251	0.77		
			C	0.125	2 865		1	T	25 251			
Т9	0.55	3 19	A	0.115	2 906	28	1	1.	26 735	2.92	146 19	В
80 00-60 00	100	1000	В	0.115	2 906		1	1	26 735	1,000		
100	5.00	1.0	C	0.115	2 906	1.5	1.	1	26 735		17.5	
T10	0.55	3.27	A	0 106	2 941	26	T	1	28 126	2 84	141 78	В
60 00-40.00	100		В	0 106	2 941		t	1	28 126			
			C	0 106	2 941		1	1	28 126			
T11	0.55	3 28	A	0 107	2 936	24	- 30	- 1	32.827	2 82	141.02	В
40 00-20.00	7777	100	В	0 107	2 936		1	1	32.827	1-7-		
			C	0.107	2 936		1	1	32.827	2000		
T12	0.55	3.89	A	0.104	2 948	20	1	1	35.291	2 57	128.66	В
20 00-0 00	1	2,000	В	0 104	2 948		1	- 1	35.291		CG SCAM	
			C	0 104	2 948		1	1	35.291			
Sum Weight	5 74	27.87					1	OTM	2999.80	28 93		
A			11 4					FF. 11	kip-ft	700.0		

Tower Forces - No Ice - Wind 60 To Face

Section Elevation	Add Weight	Self Weight	Fa	е	Cr	q: psf	$D_{i'}$	D _R	A _E	F K	w plf	Ctrl Face
TI	0.04	0 38	A	0.12	2 886	36	0.8	11	2 776	0.37	36 86	C
230.00-220 00		0,50	В	0.12	2 886		08	1	2 776		30.00	
			C	0.137	2.818		0.8	- 1	3 196			
T2	0.25	0 99	A	0 135	2 828	35	0.8	- 1	6.332	1 25	62 34	C
220 00-200 00			В	0 135	2 828		0.8	1	6 332			

valmont	Job	553967	Page 18 of 63
1545 Pidco Dr	Project	U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth. IN Phone: (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

Section Elevation	Add Weight	Self Weight	F a	е	C _F	q.	D_{t}	D_R	A_k	F	W	Cirl Face
ſi	K	K	e .			psf			ft ²	K	plf	1
			C	0 152	2 763		0.8	1	7 171			
T3	0.50	1 47	A	0 163	2 724	35	0.8	1	7 770	1.88	93 92	C
200.00-180.00	200		В	0.163	2 724	4.4	0.8	1	7 770	2,60	3245	100
			C	0 18	2.664		0.8	t	8.618			
T4	0.55	2 06	A	0.251	2 433	34	0.8	1.	19 876	2.65	132 38	C
180 00-160 00			В	0.251	2 433		0.8	- 11	19 876		1,612,313	1.00
			C	0 251	2.433		0.8	1.	19 876			
T5	0.55	2 26	A	0.198	2.604	33	0.8	1	20.416	2.71	135.69	C
160 00-140 00			В	0 198	2.604	3.00	0.8	1	20 416		3.8.97.83	
			C	0 198	2 604		08	1	20 416			
T6	0.55	2 31	A	0 163	2 724	32	0.8	1	21.042	2 75	137 32	C
140.00-120.00	2.5	2.00	В	0 163	2 724	1	0.8	1	21.042	12,72	2701270	100
S		371	C	0 163	2.724	- 1	0.8	1	21.042	100		
T7	0.55	2.36	A	0 141	2 806	31	0.8	1	21 874	2 78	138.95	C
120.00-100.00	10.00		В	0 141	2 806	100	0.8	11	21.874	2,4		
			C	0.141	2 806		0.8	11	21 874			
T8	0.55	2 42	A	0.125	2 865	30	0.8	1	22 836	2 77	138 64	C
100 00-80 00	1,010,0	81.10	В	0 125	2 865	35	0.8	i i	22 836	200	444.43	
202000000			C	0 125	2 865		0.8	1	22 836		1	
T9	0.55	3 19	A	0 115	2 906	28	0.8	1	24.055	2 74	136.86	C
80.00-60.00		24000	В	0 115	2 906		0.8	1	24 055		11270200	100
Server server	7		C	0 115	2 906		0.8	1	24 055			
T10	0.55	3 27	A	0.106	2 941	26	0.8	1	25 166	2.64	132 08	C
60.00-40.00	0.22	100	В	0.106	2 941		0.8	1	25 166			100
3 140 362 4500	1		C	0.106	2.941		0.8	T.	25 166			
T11	0.55	3.28	A	0.107	2.936	24	0.8	11	28 927	2.59	129 55	C
40 00-20 00	2.55	1.4	В	0.107	2 936	100	0.8	1	28 927			
			c	0.107	2 936		0.8	i	28 927			
TI2	0.55	3.89	A	0.104	2.948	20	0.8	î	31.033	2.36	117.78	C
20.00-0.00	2,2.8	2,37	B	0.104	2.948		0.8	1	31.033		11111	-
34.44			C	0.104	2.948		0.8	1	31.033			
Sum Weight	5 74	27.87	_	9,147	2.2.10		0.0	OTM	2896.08	27.48		
A. A. P. II	207	27.07			444			Service	kip-ft	21.70	1	

Tower Forces - No Ice - Wind 90 To Face

Section Elevation	Add Weight	Self Weight	F a c	е	Cr	q: psf	$D_{\mathbb{P}}$	D_{\aleph}	A_{E}	F	AP.	Ctrl Face
ß	K	K	e			100			ft ²	K	plf	
TI	0.04	0 38	A	0.12	2 886	36	0.85	1	2 776	0.36	36.15	C
230 00-220 00	0.00		В	0.12	2 886	100	0.85	1	2 776		100	11 11
	7.0		C	0 137	2.818		0.85	1	3 196		1.7	
T2	0 25	0.99	A	0 135	2.828	35	0.85	T	6 332	1.16	58 23	C
220.00-200.00		1	В	0 135	2 828		0.85	1	6 332		-	
			C	0.152	2.763		0.85	1	7.171			
T3	0.50	1 47	A	0 163	2.724	35	0.85	11	7 770	1.90	95 17	C
200 00-180 00		-	В	0 163	2 724	100	0.85	1	7 770	10.700	10000	
		100	C	0.18	2 664		0.85	1	8.618			
T4	0.55	2 06	A	0.251	2 433	34	0.85	1	20 319	2 75	137 73	C
180 00-160 00	200	1	В	0.251	2 433		0.85	1	20.319		4.000	
San			C	0.251	2.433		0.85	1	20.319			
T5	0.55	2 26	A	0.198	2 604	33	0.85	1	20.856	2 82	141.00	C
160 00-140 00	12,000	3.22	В	0.198	2 604		0.85	1	20.856	222	Contract	

valmont	Job 553967	Page 19 of 63
1545 Pideo Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

Section Elevation	Add Weight	Self Weight	F a	e	CF	q;	D_F	D_R	AE	F	167	Ctrl Face
ſı	K	K	c e			psf			ft ²	K	plf	
		-	C	0.198	2.604		0.85	1	20 856			
T6	0.55	2.31	A	0 163	2 724	32	0 85	1	21 528	2 85	142 72	C
140.00-120.00	1		В	0 163	2 724	1	0.85	1	21 528	9000		100
A STATE OF THE STA	200		C	0.163	2.724		0.85	T	21.528			
T7	0.55	2 36	A	0.141	2.806	31	0.85	Ť.	22.416	2.89	144 41	C
120.00-100.00	76.74	200	В	0.141	2.806	32	0.85	T	22 416	1,000	3.673	100
22704 4000			C	0 141	2.806		0.85	1	22 416			
T8	0.55	2 42	A	0 125	2.865	30	0.85	11	23 440	2.88	144 14	C
100.00-80.00		2007	В	0 125	2.865	100	0.85	11	23 440		1,000,741	
30.07.10.00.00.00			C	0 125	2 865		0.85	1	23.440			
T9	0.55	3 19	A	0.115	2 906	28	0.85	1	24 725	2.85	142 34	C
80.00-60.00	200	4.70	В	0 115	2.906		0.85	1	24 725		1	1
			C	0.115	2 906		0.85	1	24 725	3-47		
T10	0.55	3 27	A	0 106	2 941	26	0.85	1	25 906	2.75	137.44	C
60.00-40.00	70.50		В	0.106	2 941	1000	0 85	1	25.906	200	112	
			C	0 106	2 941		0.85	1	25 906	1		
TH	0.55	3 28	A	0 107	2 936	24	0.85	1	29 902	2 70	135 06	C
40.00-20.00	100	60	В	0.107	2 936		0.85	1	29.902	12000	35.57.35	
127 4000 1000			C	0 107	2 936		0.85	1	29 902			
T12	0.55	3 89	A	0.104	2 948	20	0.85	1	32 098	2 46	122 78	C
20.00-0.00	10.000	10000	В	0.104	2 948	1	0.85	1	32 098	200	20000000	
	4 3 3 1		C	0.104	2 948	- 1	0 85	1	32 098		1	
Sum Weight	5 74	27.87						ОТМ	2969.41 kip-ft	28 38		

Tower Forces - With Ice - Wind Normal To Face

Section Elevation	Add Weight	Self Weight	F a	e	Cr	q-	D_F	D_R	A_k	F	w	Ctrl. Face
fi	К	K	c e			psf			fr'	K	plf	
TI	0.31	1 43	A	0.551	1 843	3	1	1	17.335	0 12	12 12	C
230.00-220.00			В	0 551	1 843		1	- 1	17 335			
			C	0.648	1 782		1.	1	22 131			
T2	1.54	3.07	A	0.544	1 849	3	- Û	1	34.351	0 28	13.92	C
220 00-200 00			В	0.544	1.849		1	1	34 351	7.00		
			C	0.639	1.785		1	1	43 667			
T3	2 84	3.66	A	0.56	1 834	3	1	1	36.116	0 31	15 64	C
200.00-180.00		200	В	0.56	1.834		1	1	36.116	72.57	3/20/00/2	
4.50			C	0 652	1.781		1	1	45 467			
T4	3 08	7 17	A	0 673	1 777	3	1	1	70 016	0 39	1967	В
180.00-160.00	76.76	***	В	0 673	1.777		1	1	70 016	1.454	36,03	
			C	0 673	1.777		1	1	70 016			
T5	3.05	7.30	A	0.515	1.882	3	1	1	62 746	0 41	20 75	В
160.00-140.00	2	79.2	В	0 515	1.882		1	1	62 746			
302,55,000			C	0 515	1 882		1	1	62 746		1	
T6	3.01	7 38	Α	0.425	2.017	3	T.	1	60 736	0.44	21 86	В
140 00-120 00		1000	B	0 425	2017		1	1	60 736		0.417,0	
			C	0 425	2017	1	1	1	60 736			
T7	3.03	7.47	A	0.366	2 136	3	1	3.1	60 522	0.45	22 53	A
120 00-100 00	7.77	-	В	0 366	2 136		1	3	60 522	17.00		
4.00			C	0 366	2 136		1	1	60 522			
T8	3.00	7 56	A	0.323	2 236	2	1	1	61.203	0.45	22 44	Α
100 00-80 00	200		В	0.323	2 236		1	1	61 203			1

valmont	Job 553967	Page 20 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry,	Date KY 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

Section Elevation	Add Weight	Self Weight	F a	e	C,	q	D_k	$D_{\mathcal{R}}$	Ag	F	w	Ctrl Face
ſı	K	K	c e			psf			ft ⁱ	K	plf	
	100	- A -	C	0.323	2 2 3 6		1	-1	61 203			
T9	2.95	851	A	0.315	2 256	2	1	1	67 853	0.46	22 79	A
80.00-60.00			В	0 315	2.256		1	1	67 853		4000	V
			C	0 315	2 256		1	1	67 853			
T10	2 87	8 54	A	0.286	2 335	2	1	T	68 547	0 44	21.78	A
60 00-40 00	200		В	0.286	2 3 3 5		1	T	68 547		2042	
		100	C	0.286	2 3 3 5		1	1	68 547			
T11	2.76	8.67	A	0.268	2 385	2	1	1	72.446	041	20.47	A
40 00-20 00			В	0.268	2 385		1	1	72 446		60.70	
3770 4742			C	0.268	2 385		1	1	72 446	1		
T12	2 55	8.57	A	0.232	2 492	2	1	1.1	69 278	0.35	17.49	A
20 00-0 00	1900	18.50	В	0.232	2 492		1	11	69 278		1.0.00	
-5/3/2/2/3/3/3/3/			C	0.232	2 492		1	1	69.278			
Sum Weight	31 00	79 33						ОТМ	490 53 kip-ft	4 51		

Tower Forces - With Ice - Wind 60 To Face

Section Elevation	Add Weight	Self Weight	F	e	C_F	q ₌	D _F	D_R	An	F	w	Ctrl Face
ſŧ	K	K	e						ft ²	K	plf	
Ti	0.31	1.43	A	0.551	1 843	3	0.8	1	17 335	0 12	11 98	C
230.00-220.00	877	100	B	0 551	1 843	-	0.8	1	17 335			
			C	0.648	1.782		0.8	1	22 131			
T2	1.54	3.07	A	0.544	1 849	3	0.8	1	34 351	0 28	14 16	C
220 00-200 00		-2.41	В	0.544	1 849	20	0.8	1	34 351	1363	137.404	
4			C	0.639	1 785		0.8	1	43 667			
T3	2 84	3 66	A	0.56	1 834	3	0.8	1	36 116	0.33	16.33	C
200 00-180 00	2.20	-	В	0.56	1 834		0.8	1	36 116	100	2000	
	100		C	0.652	1 781		0.8	1	45 467	100		
T4	3.08	7 17	A	0.673	1 777	3	0.8	1	68 245	0.39	19 30	C
180 00-160 00	4		8	0.673	1 777	100	0.8	1	68 245	20100	50.00	
			C	0.673	1 777	4 0.4	0.8	T	68 245			
T5	3.05	7 30	A	0.515	1 882	3	0.8	1	60 986	0.41	20.37	C
160 00-140 00	12.00		В	0.515	1 882		0.8	1	60 986	1000		
	10000		C	0.515	1 882		0.8	1	60 986		-	
T6	3 01	7.38	A	0.425	2.017	3	08	1	58 791	0 43	21.43	C
140 00-120.00	10,755	37.4.4	В	0.425	2.017		0.8	1	58 791	3, 2,	200	
			C	0.425	2.017		08	1	58 791			
T7	3 03	747	A	0 366	2 136	3	08	1	58 355	0 44	22 04	В
120 00-100.00			В	0 366	2 136	-	0.8	11	58 355	1 2 4 5 4		
2.00.20.00.00.00			C	0.366	2.136		0.8	1	58 355		4.0	
T8	3 00	7.56	A	0.323	2.236	2	0.8	1	58.789	0.44	21.89	В
100 00-80.00	200	1	В	0.323	2.236	-	0.8	1	58 789	200	2000	
2.500.000.000			C	0.323	2.236		0.8	1	58 789			
T9	2 95	8.51	A	0.315	2.256	2	0.8	1	65.173	0 44	22 20	В
80 00-60 00	13/42	1,000	В	0 315	2.256		0.8	1	65.173		24,2,0	
710 20 00 100			C	0 315	2 256	1	0.8	1	65 173			
T10	2 87	8 54	A	0 286	2 335	2	0.8	1	65 586	0.42	21 15	В
60 00-40 00			В	0.286	2.335		0.8	1	65 586	12.4		
			C	0 286	2 335		0.8	1	65.586			
T11	2 76	8.67	Ã	0 268	2 385	2	0.8	1	68 546	0 39	1971	В
40 00-20 00	2.17	-	B	0 268	2.385		0.8	1	68 546		1000	

valmont	Јоb 553967	Page 21 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone (574)936-4221 FAX (574) 936-6458	Client Horvath Towers	Designed by Joseph

Section Elevation	Add Weight	Self Weight K	F a c	4	Cr	q: psf	D_{l}	D_{\aleph}	A ₈	F	w plf	Cirl. Face
-1.	- "	- 15	C	0 268	2 385		0.8	- 1	68.546		PU	
T12	2 55	8 57	A	0 232	2 492	2	0.8	i	65 021	0 33	16.74	В
20 00-0 00	10000	2.57	В	0 232	2 492	2	0.8	1	65 021	100	1,500	
			C	0.232	2 492		0.8	1	65.021			
Sum Weight	31 00	79 33						OTM	486 20 kip-ft	4 43		

Tower Forces - With Ice - Wind 90 To Face

Section Elevation	Add Weight	Self Weight	F a c	e	C_F	q₌ psf	D_F	$D_{\mathcal{S}}$	Ag	F	AP.	Cırl Face
A	K	K	e			psj			ft ²	K	plf	
TI	031	1.43	A	0.551	1 843	3	0.85	1	17 335	0 12	11 94	C
230.00-220.00	100.00	70.5	В	0.551	1 843		0.85	1	17 335	100		-
40,000,000,000,000			C	0.648	1 782		0.85	1	22 131			
T2	1.54	3.07	A	0.544	1 849	3	0.85	I	34 351	0.28	13 90	C
220 00-200 00		2147	В	0 544	1 849		0.85	1	34 351		10 100	0.0
			C	0.639	1.785		0.85	1	43.667			
T3	2.84	3 66	A	0.56	1 834	3	0.85	1	36 116	0.33	16.41	C
200 00-180 00	7/23	-0.50	В	0.56	1 834	12	0.85	1	36 116	0.00	Ne-De-	
5153555574		4 (c	0.652	1 781		0.85	1	45 467			
T4	3.08	717	A	0.673	1 777	3	0.85	I	68 688	0.39	19 56	С
180 00-160 00	3/30	7.7.	В	0.673	1 777		0.85	1	68.688	3.00		7
242 44 7444			C	0.673	1 777		0.85	Î	68 688			
T5	3.05	7 30	A	0.515	1 882	3	0.85	ì	61 426	0.41	20.71	C
160 00-140 00	2.00	,	В	0.515	1 882		0.85	1	61 426	90.	24.10	
100.00			c	0.515	1 882		0.85	1	61 426			
T6	3 01	7 38	Ā	0.425	2.017	3	0.85	1	59 278	0 44	21.82	C
140.00-120.00	200	,,,,	В	0 425	2.017	-	0.85	Ť	59 278		-,,,,,	
110.00 120.00			C	0.425	2.017		0.85	Ť	59.278			
T7	3 03	747	A	0 366	2 136	3	0.85	Ý	58 897	0.45	22.37	C
120 00-100 00	205	1.41	В	0 366	2 136	-	0 85	î	58 897	0.45	20.5.	-
120 00 100.00			č	0.366	2.136	- 4	0.85	i i	58.897			
Т8	3 00	7.56	A	0 323	2.236	2	0.85	11	59 392	0.44	22.20	C
100 00-80.00	3.00	1.50	В	0.323	2.236	-	0.85	- 11	59 392	~		-
100 00 00.00			C	0 323	2.236		0.85	1	59 392			
Т9	2 95	8.51	A	0.315	2.256	2	0.85	1	65.843	0.45	22.52	C
80 00-60 00	- 75	0.01	В	0.315	2.256		0.85	1	65.843	9.0		
00 00 00 00			C	0.315	2,256		0.85	1	65 843			
T10	2 87	8 54	A	0 286	2 335	2	0.85	9	66 327	0.43	21 46	C
60 00-40 00	20,	00.	В	0.286	2.335	-	0.85	1	66 327	0.00	21.10	-
00,00 10 00			C	0.286	2.335		0.85	4	66.327			
TII	2 76	8.67	Ã	0.268	2 385	2	0.85	í	69 521	0 40	20 04	C
40 00-20 00	2,70	0.07	В	0 268	2.385	-	0.85	1	69 521	0.10	2001	
10 00 20 00			C	0.268	2.385		0.85	1	69.521	7.1		
T12	2 55	8.57	A	0 232	2 492	2	0.85	î	66.085	0.34	17.04	C
20 00-0 00	2 33	0.57	B	0 232	2 492		0.85	1	66.085	0.54		
20 00 0 00			C	0 232	2.492		0.85	1	66.085			
Sum Weight	31 00	79 33	~	0 434	4,774		0.03	OTM	490 54	4 48		
Juli Weight	31.00	13.33		11.5				Othi	kip-ft	7.70	100	

valmont	Job	553967	Page 22 of 63
1545 Pidco Dr	Project U-22 x 230'	- HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth. IN Phone: (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

Tower Forces - Service - Wind Normal To Face

Section Elevation	Add Weight	Self H'eight	F a	e	C,	q.	D _F	D _n	AE	F	w	Cirl. Face
ft	K	K	c e			psf			n+	K	16	
<i>Ji</i> Ti			-	0.10	2.004	12		-			plf	C
1 - V200	0.04	0 38	A	0.12	2.886	12	1	1	2.776	0.12	12.25	C
230 00-220.00			В	0.12	2.886	1	1	1,	2.776			
TO	0.25	0.00	C	0 137	2.818 2.828	12	1	1	3 196	0.30	19 42	n
T2	0.25	0 99	A	0 135		1.2	1	1	6 332	0 39	19 42	В
220 00-200.00			В	0 135	2 828		1	1	6 332			
2000	0.50	1.40	C	0 152	2 763		4	1	7 171	0.00	20.01	**
T3	0 50	1 47	A	0 163	2.724	11	1	1	7.770	0.60	29 81	В
200.00-180 00			В	0 163	2.724		1.1	1	7 770			
			C	0 18	2.664	2.7	11	11	8.618	22.	10.62	
T4	0.55	2.06	A	0.251	2.433	11	1	1.0	21 647	0.91	45 26	В
180 00-160 00			В	0 251	2 433	2.00	1	1	21 647			
and a second	Laborate L.	0.00	C	0.251	2 433		1	1	21.647	up 100 pr	20 00	No.
T5	0.55	2 26	A	0.198	2 604	11	1	1	22 175	0.93	46 41	В
160 00-140 00		TOC	В	0 198	2 604	1	1	1	22 175	1		
7.6	W 6%		C	0 198	2 604	1	1	1	22 175	1000	75.0	1.50
T6	0 55	2 31	A	0.163	2 724	10	1	1.	22 987	0 94	47 20	В
140.00-120.00			В	0.163	2 724		1.	1	22 987			
	2.53		C	0 163	2.724		21.	1	22 987	5.44		
T7	0.55	2 36	A	0.141	2.806	10	1	1	24 041	0.96	47.98	В
120.00-100.00		0.00	В	0.141	2.806		1	1	24 041			
	17.50		C	0.141	2.806		1	1	24 041	2.50	100	
T8	0.55	2 42	A	0 125	2 865	10	1	1	25 251	0 96	48 12	В
100 00-80 00			В	0 125	2.865	1.00	1	1	25 251		100	
200		100	C	0.125	2.865	1 (1)	1	1.	25 251	100	1000	
T9	0.55	3 19	A	0.115	2.906	9	1	1	26 735	0.95	47 73	В
80 00-60.00			В	0 115	2.906		1	1	26 735			
	1000		C	0 115	2.906		1	1	26 735			
T10	0.55	3.27	A	0.106	2 941	9	1	1	28.126	0.93	46 30	В
60 00-40 00	100	2.7	В	0.106	2 941		1	1	28.126			
			C	0.106	2 941		1.	1	28 126			
T11	0.55	3.28	A	0 107	2 936	8	1	1	32 827	0 92	46.05	В
40 00-20 00	1.00		В	0.107	2.936		1	1	32 827			
			C	0.107	2.936		1.	1	32 827		100	
T12	0.55	3.89	A	0 104	2 948	7	1	1	35 291	0 84	42 01	В
20 00-0 00	3.00		В	0 104	2 948		4	i	35 291	7.00	200	-
			C	0.104	2 948		1	Î	35 291			
Sum Weight.	5.74	27 87		2022			13.	ОТМ	979 53	9 45		
	27.23			20001	A 4				kip-ft	2.07	1000	

Tower Forces - Service - Wind 60 To Face

Section Elevation	Add Weight K	Self Weight K	F a c e	e	Cr	q. psf	$D_{\tilde{r}}$	D_{R}	A _E	F	ne nlf	Ctrl Face
TI	0.04	0.38	A	0.12	2.886	12	0.8	1	2 776	0.12	12 04	С
230 00-220 00	127		В	0.12	2 886		0.8	1	2 776		100	
	2.5		C	0 137	2.818		0.8	1	3 196			
T2	0 25	0.99	A	0 135	2 828	12	0.8	1	6 332	0.41	20 36	C

valmont	Jop	553967	Page 23 of 63
1545 Pidco Dr	Project	J-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

Section Elevation	Add Weight	Self Weight	F a c	e	C_F	q:	D_F	D_R	A _E	F	w	Ctrl Face
fi	K	K	e			psf			fi	K	plf	
220 00-200 00			В	0 135	2 828		0.8	1	6 3 3 2			
		200	C	0 152	2 763		0.8	11	7 171			
T3	0.50	1.47	A	0.163	2 724	11	08	1	7.770	0.61	30 67	C
200 00-180.00	0.00	0.00	В	0.163	2 724	- 9	0.8	1.	7 770		10000	1000
		The state of	C	0 18	2 664		0.8	1	8 6 1 8	10000		
T4	0.55	2 06	A	0 251	2.433	11	08	t	19 876	0.86	43.22	C
180.00-160.00	12.44		В	0.251	2 433	11111	0.8	1	19 876	175	200	1.0
			C	0.251	2 433		0.8	1	19 876			1.3
T5	0.55	2 26	A	0 198	2.604	11	0.8	1	20 416	0.89	44 31	C
160 00-140 00			В	0 198	2 604	1,000	0.8	1	20 416	137.4.2.		
			C	0.198	2 604		0.8	1	20 416			
T6	0.55	2 31	A	0.163	2 724	10	0.8	1	21 042	0.90	44 84	C
140 00-120.00		100.00	В	0.163	2 724		0.8	1	21 042	300	Mary	1.00
AND DESCRIPTION	1 / 2	4.54	C	0.163	2 724		0.8	1	21 042			
T7	0.55	2 36	A	0.141	2.806	10	0.8	1	21.874	091	45.37	C
120 00-100 00		1.55	В	0.141	2.806		0.8	1	21 874			1
			C	0 141	2.806		0.8	Ť	21 874	4	(4)	
T8	0.55	2 42	A	0 125	2.865	10	0.8	1	22 836	0.91	45 27	C
100 00-80 00	0.000		В	0.125	2.865	100	0.8	1	22 836		24	
			C	0 125	2 865		0.8	1.	22 836			
Т9	0.55	3 19	A	0 115	2 906	9	0.8	1	24.055	0.89	44.69	C
80.00-60.00		1000	В	0.115	2.906		0.8	1	24 055	6.00	100,000	
A STORY			C	0 1 1 5	2 906		0.8	I	24.055			11.3
T10	0.55	3 27	A	0 106	2 941	9	0.8	1	25 166	0.86	43 13	C
60.00-40.00		2.67	В	0.106	2 941		0.8	1	25 166	402	100000	100
1 -02-2			C	0 106	2.941	4	0.8	1	25.166			
TII	0.55	3 28	A	0.107	2 936	8	08	11	28 927	0.85	42.30	C
40.00-20.00	5.00		В	0 107	2 936	-	08	11	28 927	253	100190	
			C	0 107	2 936		08	1	28 927		100	
T12	0.55	3 89	A	0 104	2 948	7	0.8	1	31 033	0.77	38.46	C
20.00-0.00	24.00		В	0.104	2.948		0.8	T	31.033		100	
-1.0.0.00			C	0 104	2 948		0.8	T	31 033			
Sum Weight	5 74	27 87	100	5. (20.3)	2 74 75			OTM	945 66	8 97		
	3.46.47							V. 31	kip-ft			

Tower Forces - Service - Wind 90 To Face

Section Elevation	Add Weight	Self Weight	Fa	e	C,	q: psf	Dı	D _N	A ₊	F	W	Cırl Face
11	K	K	e						ft ²	K	plf	
T1	0.04	0.38	A	0.12	2.886	12	0.85	1	2 776	0.12	11.80	C
230 00-220 00		2 2 2 7	В	0.12	2 886		0.85	1	2 776		1000	1
A. A. S.	10.0	100	C	0 137	2.818		0.85	1	3.196		100	175
T2	0 25	0.99	A	0 135	2.828	12	0.85	1	6 332	0.38	19 02	C
220.00-200.00	1000		В	0 135	2.828		0.85	1	6 332		37.73	1.6
			C	0 152	2.763		0.85	1	7 171			
T3	0.50	1 47	A	0 163	2.724	11	0.85	1	7.770	0 62	31 08	C
200 00-180 00	1,000	-	В	0 163	2.724		0.85	1	7.770	John of I	777	15
2.38.38,173,23	1.0		C	0 18	2 664		0.85	1	8 6 1 8			
T4	0.55	2 06	A	0 251	2 433	- 11	0.85	1	20.319	0 90	44 97	C
180 00-160 00	22.	2.2	8	0.251	2 433	- 35	0.85	1	20.319	2.0	-	4
4			C	0 251	2.433		0.85	1	20 319		70.00	
T5	0.55	2 26	A	0 198	2.604	11	0.85	1	20 856	0 92	46 04	C

valmont	Јоb 553967	Page 24 of 63
1545 Pideo Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

Section Elevation	Add Weight	Self Weight	F a	е	C_F	q:	D_{F}	D_R	A_{L}	F	tv	Ctrl. Face
fi	K	K	c e			psf		100	ft ²	K	plf	
160.00-140.00			В	0 198	2.604		0.85	1	20 856			1
140-65-4-1016			C	0 198	2.604		0.85	T.	20.856			
T6	0.55	2 31	A	0.163	2.724	10	0.85	- il	21.528	0 93	46.60	C
140 00-120 00	10.000		В	0.163	2.724		0.85	11	21 528	5.00	11245,5	
0 10 act 2 1 - 2 ct 2			C	0.163	2.724		0.85	1	21 528	- 1		
T7	0 55	2.36	A	0.141	2.806	10	0.85	1	22 416	0.94	47.16	C
120 00-100.00	600		В	0.141	2,806		0.85	1	22 416	100		
			C	0.141	2.806		0.85	1	22.416	C.A.II		
T8	0.55	2.42	A	0.125	2.865	10	0.85	1	23.440	0 94	47 07	C
100 00-80.00	133		В	0.125	2 865		0.85	1	23 440		1000	
A 10 10 10 10 10 10 10 10 10 10 10 10 10			C	0.125	2 865		0 85	1	23 440			
T9	0.55	3.19	A	0.115	2 906	9	0.85	1	24 725	0.93	46.48	C
80 00-60.00	4,450	-6740	В	0.115	2.906	1 1	0.85	1	24 725	3377		
			C	0.115	2.906		0.85	1.	24.725		100	
T10	0.55	3.27	A	0.106	2.941	9	0.85	1	25 906	0.90	44 88	C
60 00-40 00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.00	В	0.106	2.941		0.85	1	25 906		ALC: COS	
			C	0.106	2 941		0.85	1	25 906			
TII	0.55	3.28	A	0.107	2 936	8	0.85	1	29 902	0 88	44.10	C
40 00-20 00			В	0 107	2.936	9	0.85	1	29 902			
			C	0 107	2.936	1	0.85	1	29 902			
T12	0.55	3.89	A	0.104	2.948	7	0.85	1	32.098	0.80	40 09	C
20.00-0.00	6.66	27-37	В	0 104	2.948		0.85	1	32.098	4.14	March Carlot	
			C	0 104	2.948		0.85	1	32.098	19.0		
Sum Weight	5 74	27 87	100	1 1 1 1 1	- 1		3.75	OTM	969.60	9 27		
4								CV-7	kip-ft	130.0		

Mast Vectors - No Ice

Section No.	Section Elevation	Wind Azımuth	Directionality	F	V,	V.	ОТМ,	OTM:	Torque
	ft	0		K	K	K	kip-fi	kip-fi	kip-fi
TI	230 00-220 00	0	Wind Normal	0 38	0.00	-0 38	-84 34	0.06	-0.12
Y		30	Wind 90	0.38	0.19	-0.32	-73.04	-42 14	-0.06
		60	Wind 60	0.37	0.32	-0.18	-41.42	-71.77	0.01
		90	Wind 90	0 36	0.36	0.00	0.05	-81 27	0.07
		120	Wind Normal	0 34	0.29	0 17	38 10	-65 84	0.12
		150	Wind 90	0 34	0.17	0 30	67 22	-38 72	0.15
		180	Wind 60	0 34	0.00	0 34	77 61	0 06	0.12
		210	Wind 90	0 34	-0.17	0 30	67.22	38 83	0.06
		240	Wind Normal	0 34	-0.29	017	38 10	65 96	-0 01
		270	Wind 90	0 33	-0 33	0 00	0.05	74 54	-0.07
		300	Wind 60	0 34	-0.29	-0 17	-38.00	65 96	-0 12
		330	Wind 90	0 34	-0.17	-0 30	-6711	38 83	-0.15
T2	220.00-200.00	0	Wind Normal	1.11	0.00	-1.11	-232.98	0.02	-0.12
		30	Wind 90	1 22	0.61	-1 06	-221 32	-127.92	0.38
		60	Wind 60	1.25	1.08	-0 62	-130.64	-226 74	0.61
		90	Wind 90	1.16	1.16	0.00	0.27	-244 57	0.47
		120	Wind Normal	1 03	0.89	0.51	108.19	-186.89	0.43
		150	Wind 90	1.00	0.50	0.87	182 03	-104 92	0 44
		180	Wind 60	1.05	0.00	1.05	221 45	0.02	0 12
		210	Wind 90	1.16	-0.58	1.01	21141	121.92	-0 38
		240	Wind Normal	1 19	-1 03	0.59	125.15	216 32	-0.61
		270	Wind 90	1.11	-1.11	0.00	0 27	232.53	-0 47
		300	Wind 60	1.03	-0 89	-0.51	-107.64	186 93	-0.43

valmont	Job	553967	Page 25 of 63
1545 Pidco Dr	Project	U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone (574)936-4221 FAX (574) 936-6458	Client	Horvath Towers	Designed by Joseph

Section No.	Section Elevation	Wind Azımuth	Directionality	F	V _r	15	OTM _c	OTM ₂	Torque
	fi	Ü		K	K	K	kip-fi	kip-fi	kip-fi
	1	330	Wind 90	1.00	-0 50	-0 87	-181 48	104 95	-0 4
T3	200 00-180 00	0	Wind Normal	1 59	0 00	-1.59	-301 52	-0 11	0.0
	A Company of	30	Wind 90	1 72	0.86	-1 49	-282 82	-163 40	0.6
		60	Wind 60	1 88	1 63	-0 94	-178 45	-309 20	0.5
		90	Wind 90	1 90	1.90	0.00	0.01	-361.77	-0 2
		120	Wind Normal	1 75	1.51	0 87	165.92	-287 48	-0.4
		150	Wind 90	1.59	0.79	1.37	261.12	-150 86	0.0
		180	Wind 60	1.53	0 00	1 53	291 49	-0 11	-0.0
		210	Wind 90	1.67	-0 83	1 44	274.13	158 16	-0.6
		240	Wind Normal	1 83	-1 58	0.91	173.44	300 28	-0.5
		270	Wind 90	1 85	-1 85	0 00	0 01	351 51	0.2
1		300	Wind 60	1 75	-1 51	-0 87	-165 91	287 26	0.4
ma.	100.00 100.00	330	Wind 90	1.59	-0.79	-1 37	-261 10	150.64	-0.0
T4	180 00-160 00	0	Wind Normal	2.49	0.00	-2 49	-422 94	-0 10	0.0
		30	Wind 90	2 50	1.25	-2 16	-367 73	-212 34	0.3
		60 90	Wind 60	2 65	2.29	-1 32	-225 16	-389 88	0.5
			Wind 90	2 75 2 77	2.75	0 00	-0 12 235 50	-468 38	-0.6 -0.8
		120	Wind Normal			1 39	233 30	-408 19	
		150	Wind 90	2 50	1.25	2 16	367.49	-212 34	-0 (-0 (
		180	Wind 60 Wind 90	2 36	0.00	2 36	401.56	-0 10	
- 1		210 240	Wind Normal	2.50 2.77	-1 25 -2.40	2 16 1.39	367.49 235.50	212 14 407 99	-0 : -0 :
- [270	Wind 90					468 18	
		300	Wind 60	2.75	-2 75 -2 29	0 00	-0 12 -225 16	389.68	0 0
		The second second			-1 25	-2.16			0.
T5	160 00-140 00	330	Wind 90 Wind Normal	2 50 2 57	0 00	-2.10	-367 73	212 14 -0 14	0
13	100 00-140 00	30	Wind 90	2 57	1 28	-2.22	-384 95 -333 88	-192 82	0
		60	Wind 60	2 71	2 35	-1.36	-203 68		0
		90	Wind 90	2.82	2 82	0 00	-0 15	-352 68 -423 15	-0
		120	Wind Normal	2 84	2.46	1.42	213.05	-369 41	-1
		150	Wind 90	2 57	1 28	2 22	333.59	-192 82	-0
- 1		180	Wind 60	2 44	0 00	2 44	365 34	-0.14	-01
- 1		210	Wind 90	2.57	-1 28	2 22	333 59	192.54	-0
		240	Wind Normal	2 84	-2.46	1 42	213 05	369 13	-0
		270	Wind 90	2 82	-2 82	0 00	-0 15	422 87	0
		300	Wind 60	2.71	-2 35	-1 36	-203.68	352.40	1
		330	Wind 90	2.57	-1.28	-2 22	-333.88	192.54	0
T6	140.00-120.00	0	Wind Normal	2 62	0 00	-2 62	-341 02	-0 18	0
10	140.00-120.00	30	Wind 90	261	1.31	-2 26	-294 11	-169.88	1
		60	Wind 60	2 75	2 38	-1 37	-178.69	-309 38	0.
		90	Wind 90	2.85	2 85	0 00	-0 18	-371 24	-0.5
1		120	Wind Normal	2 89	2 50	1.45	187 74	-325 65	-1
1		150	Wind 90	2 61	1.31	2 26	293 76	-169 88	-0 :
		180	Wind 60	2 48	0.00	2.48	321 88	-0.18	-0
		210	Wind 90	2 61	-1.31	2 26	293 76	169.52	-1
		240	Wind Normal	2 89	-2 50	1 45	187 74	325 29	-0
		270	Wind 90	2 85	-2 85	0 00	-0 18	370 88	0
		300	Wind 60	2 75	-2.38	-1.37	-178.69	309.02	13
		330	Wind 90	2 61	-1.31	-2 26	-294.11	169.52	0.
T7	120 00-100 00	0	Wind Normal	2.68	0.00	-2 68	-294 94	-0 22	0
		30	Wind 90	2.64	1.32	-2 28	-251 50	-145 30	J.
		60	Wind 60	2 78	2.41	-1.39	-153 06	-264 95	.0
		90	Wind 90	2 89	2 89	0 00	-0 22	-317 93	-13
1		120	Wind Normal	2 94	2 55	1.47	161 43	-280 20	-1
		150	Wind 90	2.65	1 33	2 30	252 53	-146 15	-0
		180	Wind 60	2 52	0.00	2.52	276.89	-0 22	-0
		210	Wind 90	2.64	-1 32	2 28	251.06	144 86	-13
		240	Wind Normal	2 94	-2.55	1 47	161 43	279 76	-0
		270	Wind 90	2.89	-2.89	0.00	-0 22	317.49	13
		300	Wind 60	2.78	-2 41	-1.39	-153 06	264 51	1
		330	Wind 90	2 65	-1 33	-2 30	-252 97	145.71	0.3

valmont	Job	553967	Page 26 of 63
1545 Pidco Dr	Project	U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

Section No.	Section Elevation	Wind Asimuth	Directionality	F	V _x	12	OTM _x	OTM:	Torque
	fi	0		K	K	K	kip-ft	kip-ft	kıp-fi
T8	100.00-80.00	0	Wind Normal	2 70	0.00	-2 70	-243 11	-0 26	0 13
		30	Wind 90	2 64	1.32	-2 28	-205.85	-118 96	1.5
		60	Wind 60	2 77	2 40	-1 39	-125.03	-216 37	1.03
		90	Wind 90	2 88	2.88	0 00	-0 26	-259 72	-1 4:
		120	Wind Normal	2 95	2 55	1 47	132 37	-229 98	-2 0.
		150	Wind 90	2 66	1.33	2 30	206 87	-119 85	-0.4
		180	Wind 60	2 52	0.00	2 52	226.88	-0 26	-0.13
		210	Wind 90	2 64	-1 32	2 28	205 33	118 44	-1.5
		240	Wind Normal	2 95	-2.55	1 47	132.37	229 46	-1 02
		270	Wind 90	2 88	-2 88	0 00	-0 26	259 20	1.42
1		300	Wind 60	2 77	-2 40	-1 39	-125 03	215 86	2 0
53.	621107 CAGA	330	Wind 90	2 66	-1 33	-2 30	-207 39	119 33	0.4
T9	80.00-60.00	0	Wind Normal	2.69	0.00	-2 69	-188 42	-0 30	0 14
		30	Wind 90	2.61	1 31	-2 26	-158 78	-91.80	1 65
		60	Wind 60	2 74	2.37	-1 37	-96.09	-166.24	1.13
		90	Wind 90	2 85	2.85	0.00	-0 29	-199 58	-1 55
		120	Wind Normal	2 92	2 53	1.46	102 04	-177.54	-2.21
		150	Wind 90	2.63	1 32	2 28	159 34	-92 46	-0 46
		180	Wind 60	2.50	0 00	2.50	174 78	-0.30	-0.14
		210	Wind 90	2.61	-1.31	2.26	158 20	91 20	-1.65
- 1		240	Wind Normal	2 92	-2 53	1 46	102 04	176 94	-1.13
f		270	Wind 90	2.85	-2 85	0.00	-0 29	198.98	1.55
		300	Wind 60	2.74	-2 37	-1.37	-96 09	165 64	2 21
		330	Wind 90	2 63	-1.32	-2 28	-159 92	91.86	0.46
T10	60 00-40 00	0	Wind Normal	2 62	0.00	-2.62	-131.11	-0 34	0.15
		30	Wind 90	2 53	1 27	-2 19	-109 97	-63 64	1.73
		60	Wind 60	2 64	2.29	-1 32	-66 36	-114 72	1.20
		90	Wind 90	2 75	2 75	0 00	-0 32	-137 78	-1 62
		120	Wind Normal	2 84	2.46	1 42	70 57	-123 13	-2 33
		150	Wind 90	2.55	1.27	2 21	110 08	-64 08	-0 49
		180	Wind 60	2 42	0.00	2 42	120 75	-0 34	-0 15
		210	Wind 90	2 53	-1.27	2 19	109 32	62 96	-1 73
- 1		240	Wind Normal	2 84	-2.46	1 42	70.57	122 45	-1.20
		270	Wind 90	2.75	-2.75	0 00	-0 32	137 10	1 62
		300	Wind 60	2 64	-2 29	-1 32	-66 36	114 04	2.33
		330	Wind 90	2 55	-1.27	-2 21	-110.73	63.40	0 49
TII	40 00-20 00	0	Wind Normal	2 62	0 00	-2 62	-79 04	-0 38	0 15
	10 00 20 00	30	Wind 90	2 51	1 25	-2 17	-65.48	-37 98	1 73
		60	Wind 60	2 59	2 24	-1.30	-39 22	-67 70	1 20
		90	Wind 90	2 70	2 70	0.00	-0.36	-81 41	-1 61
		120	Wind Normal	2 82	2 44	141	41 95	-73 66	-2 34
		150	Wind 90	2 52	1 26	2 18	65 17	-38 21	-0.50
1		180	Wind 60	2 39	0.00	2 39	71 45	-0 38	-0.15
		210	Wind 90	2 51	-1 25	217	64.77	37.22	-1 73
- 1		240	Wind Normal	2 82	-2 44	141	41.95	72 90	-1 20
		270	Wind 90	2 70	-2 70	0 00	-0 36	80 65	1.61
		300	Wind 60	2.59	-2 24	-1 30	-39 22	66 94	2 34
		330	Wind 90	2.52	-1 26	-2 18	-65 89	37 45	0.50
T12	20 00-0 00	0	Wind Normal	2 40	0 00	-2 40	-24 41	-0.42	0.14
112	20 00-0 00	30	Wind 90	2 29	1 14	-1 98	-20 20	-11 86	1.65
		60							
		90	Wind 60 Wind 90	2.36 2.46	2 04 2 46	-1 18 0 00	-12 17 -0 39	-20 82 -24 98	1.16 -1.53
		120	Wind Normal	2.57	2 23	1.29	12 48	-22 70	-2 23
		150	Wind 90	2 30	1 15	1 99	19 54	-11 92	-0 48
		180	Wind 60	2 18	0 00	2 18	21.46	-0.42	-0.14
		210	Wind 90	2 29	-1.14	1 98	19 42	11 02	-1 65
		240	Wind Normal	2 57	-2.23	1 29	12 48	21 86	-1 16
1		270	Wind 90	2 46	-2 46	0.00	-0 39	24 14	1.53
1		300	Wind 60	2 36	-2 04	-1 18	-12 17	19 98	2 23
		330	Wind 90	2 30	-1.15	-1 99	-20 32	11 08	0.48

valmont	Job 553967	Page 27 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone (574)936-4221 FAX (574) 936-6458	Client Horvath Towers	Designed by Joseph

Mast Totals - No Ice

Wind Azimuth	V_{ν}	V.	OTM,	OTM _z	Torque
9	K	K	kip-fi	kip-fi	kıp-fi
0	0 00	-26.45	-2728 77	-2 37	0.91
30	13 10	-22 69	-2384 67	-1378 04	13.46
60	23 80	-13 74	-1449 98	-2510 45	9.91
90	28 38	0.00	-1 94	-2971 78	-11 14
120	24 82	14.33	1469 33	-2550.68	-16 17
150	12 96	22 45	2318.73	-1342 21	-2.53
180	0.00	24.75	2571 53	-2 37	-0.91
210	-13.03	22.57	2355.70	1358 82	-13.46
240	-25 03	14 45	1493.81	2588 34	-9.91
270	-28 24	0.00	-1 94	2938 07	11.14
300	-23 47	-13 55	-1411 02	2438 22	16.17
330	-12.96	-22.45	-2322 61	1337.47	2.53

Mast Vectors - With Ice

Section No.	Section Elevation	Wind Azımuth	Directionality	F	ν,	V ₁	OTM,	OTM;	Torque
1.5	ft	0		A.	K	K	kip-ft	kip-ft	kıp-ft
TI	230.00-220.00	0	Wind Normal	0.12	0.00	-0.12	-27 04	0.32	-0.03
	D	30	Wind 90	0 12	0.06	-0.10	-23 30	-13 26	-0 0
		60	Wind 60	0.12	0.10	-0.06	-13 26	-23 03	0.00
		90	Wind 90	0.12	0.12	0 00	0 22	-26 54	0.0
		120	Wind Normal	0 10	0 09	0 05	11 60	-19 38	0.02
		150	Wind 90	0.10	0.05	0 09	20 09	-11 15	0.03
		180	Wind 60	0.10	0.00	0.10	23 26	0.32	0.03
		210	Wind 90	0.10	-0.05	0.09	20 09	11.79	0.0
		240	Wind Normal	0.10	-0.09	0 05	11 60	20 02	-0.00
		270	Wind 90	0.10	-0.10	0 00	0.22	22 97	-0.0
		300	Wind 60	0.10	-0 09	-0 05	-11 15	20 02	-0 03
		330	Wind 90	0.10	-0 05	-0 09	-19.65	11 79	-0.02
T2 220 00-200 0	220 00-200 00	0	Wind Normal	0 28	0.00	-0 28	-57 13	0 10	-0.0
		30	Wind 90	0 28	0.14	-0 25	-50 19	-29.65	0.0
		60	Wind 60	0 28	0.25	-0 14	-28 40	-51.39	0.0
		90	Wind 90	0.28	0 28	0.00	1.33	-58 29	0.0
		120	Wind Normal	0 24	0.21	0 12	26.28	-43 11	0.0
		150	Wind 90	0.24	0.12	0.21	44.57	-24 86	0.0
		180	Wind 60	0.24	0.00	0 24	52.33	0.10	0.03
		210	Wind 90	0.25	-0 12	021	46.39	26 12	-0.0
		240	Wind Normal	0.25	-0 21	0 12	27 33	45 13	-0.03
		270	Wind 90	0.24	-0 24	0 00	1.33	51 03	-0.0
		300	Wind 60	0 24	-0.21	-0 12	-23.61	43 31	-0.08
8.0		330	Wind 90	0.24	-0 12	-0 21	-41.91	25 06	-0.08
T3	200.00-180.00	0	Wind Normal	0.31	0 00	-0 31	-59.52	-0.59	-0.03
		30	Wind 90	0.32	0.16	-0 28	-52.59	-30.89	0.03
		60	Wind 60	0.33	0.28	-0 16	-31.14	-54.35	0.04
		90	Wind 90	0 33	0.33	0.00	-0 11	-62.95	0.0
		120	Wind Normal	0 29	0.25	0 14	27.10	-47 72	0.0
		150	Wind 90	0 28	0.14	0.24	45 75	-27 07	0.0
		180	Wind 60	0.28	0.00	0 28	52 56	-0 59	0.03
		210	Wind 90	0.28	-0 14	0 25	46.53	26 33	-0.03

valmont	Јо Б 553967	Page 28 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

No.	Section Elevation	Wind Azimuth	Directionality	F	V	1,2	OTM.	OTM.	Torque
1133	ft	0		K	K	K	kip-ft	kip-ft	kıp-fi
		240	Wind Normal	0 29	-0 25	0.15	27.55	47 31	-0
		270	Wind 90	0 29	-0.29	0.00	-0 11	55 01	-0
		300	Wind 60	0 29	-0.25	-0.14	-27 32	46 54	-0
24	w.CD/Cb-6.Lb-Tb-	330	Wind 90	0 28	-0 14	-0.24	-45 97	25.88	-0
T4	180.00-160.00	0	Wind Normal	0.38	0.00	-0 38	-65 96	-0 55	-0.
		30	Wind 90	0 38	0.19	-0 33	-56 91	-32 94	0.
		60	Wind 60	0 39	0.33	-0 19	-33.62	-57.38	0.
		90	Wind 90	0 39	0.39	0 00	-0.81	-67 06	-0
		120	Wind Normal	0 39	0.34	0 20	32.63	-58.47	-0
		150	Wind 90	0.38	0.19	0 33	55.29	-32.94	0
		180	Wind 60	0.38	0.00	0 38	63.08	-0 55 31 84	-0
		210	Wind 90	0.38	-0 19 -0 34	0 33	55 29 32.63	57 36	-0
		240	Wind Normal	200000000000000000000000000000000000000	200000000000000000000000000000000000000			65.95	
		270	Wind 90	0.39	-0.39 -0.33	0.00	-0 81 -33 62	56 27	0
		300	Wind 60 Wind 90	0 39	-0 19	-0 19 -0 33	-56.91	31 84	-0
T5	160.00-140.00	330	Wind Normal	0.40	0.00	-0 40	-61 09	-0 79	-0
13	100.00-140.00	30	Wind 90	0.40	0.00	-0 35	-52 94	-30.74	0
- 1		60	Wind 60	0.40	0 35	-0 20	-31 60	-53.70	0
		90	Wind 90	041	0.41	0.00	-1 05	-62 90	-0
		120	Wind Normal	041	0.36	0 21	30 07	-54 69	-0
		150	Wind 90	0.40	0.20	0 35	50 84	-30 74	0
		180	Wind 60	0 39	0.00	0.39	57 85	-0.79	0
		210	Wind 90	0.40	-0 20	0.35	50 84	29 17	-0
		240	Wind Normal	0.41	-0 36	021	30 07	53 12	-0
		270	Wind 90	0.41	-0.41	0 00	-1 05	61 33	0
	300	Wind 60	0.41	-0 35	-0.20	-31 60	52.13	0	
		330	Wind 90	0.40	-0 20	-0 35	-52 94	29 17	-0
16	140 00-120 00	0	Wind Normal	0.42	0.00	-0.42	-55 95	-1 02	-0
	110 00 120.00	30	Wind 90	0 42	0.21	-0.36	-48 52	-28 29	0
		60	Wind 60	0.43	0 37	-0 21	-29 15	-49 27	0
		90	Wind 90	0.44	0 44	0.00	-1 29	-57 75	-0
		120	Wind Normal	0.44	0.38	0.22	27 13	-50 25	-0
		150	Wind 90	0.42	0.21	0.36	45 94	-28 29	0
		180	Wind 60	0.41	0.00	0.41	52 23	-1.02	0
		210	Wind 90	0.42	-0.21	0 36	45 94	26 24	-0
		240	Wind Normal	0 44	-0.38	0.22	27 13	48 21	-0
		270	Wind 90	0 44	-0 44	0.00	-1 29	55 70	0
		300	Wind 60	0.43	-0 37	-021	-29 15	47.22	0
		330	Wind 90	0.42	-0.21	-0 36	-48 52	26 24	-0
Γ7	120 00-100 00	0.	Wind Normal	0 43	0.00	-0 43	-49 14	-1.26	-0
		30	Wind 90	0.43	0.21	-0 37	-42 50	-24 68	0
		60	Wind 60	0.44	0.38	-0 22	-25 92	-42 81	0
		90	Wind 90	0.45	0 45	0.00	-1 93	-50 47	-0
		120	Wind Normal	0 45	0.39	0.23	22 86	-44 19	-0
		150	Wind 90	0 43	0.22	0.37	39 07	-24 93	0
		180	Wind 60	0.42	0.00	0 42	44 18	-1 26	0
		210	Wind 90	0.43	-0.21	0 37	38.64	22 16	-0
		240	Wind Normal	0 45	-0.39	0 22	22.61	41.24	-0
		270	Wind 90	0.45	-0.45	0 00	-1 93	47 95	0
		300	Wind 60	0.44	-0.38	-0 22	-26 17	40 72	0
	100 00 00	330	Wind 90	0 43	-0.22	-0.37	-42 93	22.41	-0
18	100 00-80 00	0	Wind Normal	0.43	0.00	-0 43	-40.79	-1.51	-0
		30	Wind 90	0.42	0.21	-0 37	-35 26	-20 50	0
		60	Wind 60	0 43	0.37	-0 22	-21 81	-35 18	0
		90	Wind 90	0 44	0 44	0 00	-2.37	-41.47	-0
		120	Wind Normal	0.45	0.39	0 22	17 83	-36.50	-0
		150	Wind 90	0.43	0.21	0 37	30.97	-20 76	0
		180	Wind 60	0.42	0.00	0.42	35.04	-1.51	0
		210	Wind 90	0 42	-0.21	0 37	30 52	17.48	-0
	240	Wind Normal	0.44	-0 38	0 22	17.57	33 03	-0	

valmont	Job	553967	Page 29 of 63
1545 Pidco Dr	Project	U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN	Client	0-22 x 230 - HV 15/4 Shrewsberry, KT	
Phone: (574)936-4221	Cheff	Horvath Towers	Designed by

Section No.	Section Elevation	Wind Azimuth	Directionality	F	V_{x}	r,	OTM,	OTM.	Torque
140	ft	0		K	K	K	kip-ft	kıp-ft	kıp-ft
		270	Wind 90	0 44	-0 44	0 00	-2 37	38 46	0.1
		300	Wind 60	0.44	-0 38	-0 22	-22 07	32 61	0.1
12.00		330	Wind 90	0 43	-0.21	-0 37	-35 71	17 74	-0 0
T9	80.00-60.00	0	Wind Normal	0 43	0.00	-0 43	-33 13	-1.77	-0 1
		30	Wind 90	0.43	0.21	-0.37	-28 72	-16.80	0.0
		60	Wind 60	0.44	0.38	-0.22	-18 04	-28.35	0.0
		90	Wind 90	0.45	0.45	0 00	-2.69	-33 29	-0.1
		120	Wind Normal	0 46	0 39	0 23	13 27	-29.40	-0.1
		150	Wind 90	0.43	0 22	0 38	23 67	-16.99	0.0
		180	Wind 60	0.42	0 00	0.42	26 93	-1 77	0.1
		210	Wind 90	0 43	-0 21	0.37	23 34	13 26	-0.0
		240	Wind Normal	0.45	-0 39	0 23	13 07	25 53	-0.0
1		270	Wind 90	0.45	-0 45	0.00	-2 69	29 75	0.1
		300	Wind 60	0.44	-0 38	-0.22	-18 23	25 15	0 1
4.0		330	Wind 90	0 43	-0 22	-0 38	-29 05	13 45	-0.0
T10	60.00-40.00	0	Wind Normal	0.42	0 00	-0 42	-23 80	-2 04	-0.1
		30	Wind 90	0.41	0 20	-0 35	-20 73	-12 28	0.0
		60	Wind 60	0 42	0 36	-0 21	-13 44	-20 13	0.0
		90	Wind 90	0 43	0 43	0 00	-3.00	-23 50	-0.1
		120	Wind Normal	0 44	0 38	0 22	7 89	-20 90	-0 1
		150	Wind 90	0 41	0 21	0 36	14 97	-12 41	0.0
1		180	Wind 60	0.40	0.00	0 40	17.18	-2 04	0.1
		210	Wind 90	0.41	-0.20	0.35	14.74	8 20	-0.0
		240	Wind Normal	0 43	-0.37	0 22	7 76	16 60	-0 0
		270	Wind 90	0 43	-0.43	0 00	-3 00	19 42	0.1
		300	Wind 60	0 42	-0.37	-0 21	-13.57	16 27	0.1
1.00		330	Wind 90	0.41	-0.21	-0 36	-20 96	8 33	-0.0
TII	40 00-20 00	0	Wind Normal	0 39	0.00	-0 39	-15.04	-2 33	-0 1
		30	Wind 90	0.38	0.19	-0 33	-13 24	-8 08	0.0
		60	Wind 60	0 39	0.34	-0 19	-9.13	-12 46	0.0
		90	Wind 90	0 40	0.40	0.00	-3.28	-14.36	-0 1
		120	Wind Normal	0.41	0.35	0 20	2 86	-12 97	-0.1
		150	Wind 90	0 39	0.19	0 34	6.80	-8 15	0.0
1		180	Wind 60	0 38	0.00	0 38	8 02	-2.33	0.1
		210	Wind 90	0 38	-0 19	0 33	6 68	3 42	-0.0
		240	Wind Normal	0.40	-0.35	0.20	2 79	8 19	-0.0
		270	Wind 90	0 40	-0 40	0.00	-3 28	9.69	0 1
		300	Wind 60	0.39	-0 34	-0 20	-9 19	7.91	0 1
		330	Wind 90	0 39	-0 19	-0 34	-13 36	3.49	-0.0
T12	20 00-0.00	0	Wind Normal	0.33	0.00	-0 33	-6.85	-2 68	-0 1
		30	Wind 90	0.33	0.16	-0 28	-6 32	-4.30	0.0
		60	Wind 60	0.33	0 29	-0 17	-5 16	-5 54	0.0
		90	Wind 90	0.34	0 34	0.00	-3.50	-6 08	-0.1
		120	Wind Normal	0.35	0 30	0 17	-1 75	-5 70	-0 1
		150	Wind 90	0.33	0.16	0 29	-0.65	-4.32	0.0
		180	Wind 60	0.32	0.00	0 32	-0.31	-2 68	0.1
1		210	Wind 90	0.33	-0 16	0 28	-0 68	-1 05	-0 0
		240	Wind Normal	0.35	-0.30	0.17	-1 77	0 32	-00
		270	Wind 90	0.34	-0.34	0.00	-3 50	0.73	0.1
		300	Wind 60	0.33	-0 29	-0.17	-5 18	0 22	0.1
		330	Wind 90	0 33	-0.16	-0 29	-6 36	-1 03	-0.0

Mast Totals - With Ice

Wind	F.	V_z	OTM,	OT.M,	Torque
Azimuth	K	K	kıp-fi	kip-fi	kip-fi

valmont	Job 553967	Page 30 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, K	Date 12:33:09 08/19/22
Plymouth, IN Phone. (574)936-4221 FAX. (574) 936-6458	Client Horvath Towers	Designed by Joseph

Wind Azımuth	P _k	V.	OTM,	OTM _i	Torque	
0	K	K	kip-ft	kip-ft	kip-ft	
0	0.00	-4 35	-495 42	-14 12	-0 97	
30	2 16	-3 74	-431 22	-252 42	0.42	
60	3 81	-2 20	-260.65	-433 58	0.63	
90	4 48	0.00	-18.48	-504.66	-0.70	
120	3 83	2.21	217 75	-423 28	-0.76	
150	2 12	3.68	377 31	-242 62	0.75	
180	0 00	4.16	432 35	-14.12	0.97	
210	-2 11	3.66	378 31	214.97	-0.42	
240	-3 82	2.20	218 34	396.05	-0.63	
270	-4.39	0.00	-18.48	457 99	0 70	
300	-3 74	-2.16	-250 86	388.38	0.76	
330	-2 12	-3 68	-414 26	214 39	-0.75	

Mast Vectors - Service

Section No.	Section Elevation	Wind Azimuth	Directionality	F	V _x	13	OTM.	OTM.	Torque
	ſŧ	- 0		K	K	K	kip-fi	kip-fi	kıp-fi
TI	230 00-220 00	0	Wind Normal	0.12	0.00	-0 12	-27.50	0 06	-0.04
		30	Wind 90	0.12	0.06	-0 11	-23 81	13 72	-0.07
		60	Wind 60	0.12	0.10	-0 06	-13.49	-23 40	0.00
		90	Wind 90	0.12	0 12	0 00	0.05	-26 50	0.0
		120	Wind Normal	0.11	0.10	0.06	12 48	-21 46	0.04
		150	Wind 90	0.11	0.06	0 10	21.98	-12.60	0.0
		180	Wind 60	0.11	0.00	0.11	25.38	0.06	0.04
		210	Wind 90	0.11	-0.06	0.10	21 98	12 72	0.02
		240	Wind Normal	0.11	-0 10	0.06	12 48	21 58	-0 00
	- 1	270	Wind 90	0.11	-0.11	0.00	0.05	24 38	-0.03
		300	Wind 60	0.11	-0.10	-0.06	-12.37	21.58	-0.04
		330	Wind 90	0 11	-0 06	-0 10	-21.88	12 72	-0.05
T2	220.00-200.00	0	Wind Normal	0.36	0.00	-0 36	-75 89	0.02	-0 04
250		30	Wind 90	0 40	0 20	-0.34	-72 08	-41 76	0 12
		60	Wind 60	0.41	0.35	-0.20	-42.47	-74.02	0.20
		90	Wind 90	0.38	0.38	0.00	0 27	-79.85	0.13
	1	120	Wind Normal	0 34	0 29	0.17	35 51	-61.01	0.14
		150	Wind 90	0 33	0.16	0.28	59 62	-34.25	0.14
		180	Wind 60	0 34	0.00	0.34	72 50	0.02	0.04
		210	Wind 90	0 38	-0 19	0.33	69 22	39 82	-0.12
		240	Wind Normal	0.39	-0 34	0.19	41 05	70.65	-0 20
		270	Wind 90	0.36	-0 36	0.00	0.27	75 94	-0.15
		300	Wind 60	0 34	-0 29	-0.17	-34.96	61 05	-0.14
		330	Wind 90	0 33	-0.16	-0 28	-59 07	34 28	-0 14
T3	200 00-180 00	0	Wind Normal.	0 52	0.00	-0.52	-98 45	-0.11	0.03
		30	Wind 90	0.56	0.28	-0 49	-92 34	-53.43	0.23
		60	Wind 60	0.61	0.53	-0 31	-58 26	-101 04	0.19
1		90	Wind 90	0.62	0 62	0 00	0.01	-118 20	-0 09
1		120	Wind Normal	0.57	0.49	0.29	54 18	-93 94	-0 15
		150	Wind 90	0.52	0.26	0.45	85 27	-49.33	0.0
		180	Wind 60	0.50	0.00	0.50	95 19	-0 11	-0.03
		210	Wind 90	0.54	-0.27	047	89 52	51 57	-0 2
		240	Wind Normal	0.60	-0.52	0.30	56.64	97.98	-0.19
		270	Wind 90	0.60	-0 60	0 00	0.01	114.70	0.09
		300	Wind 60	0.57	-0.49	-0 29	-54 17	93 73	0 15
		330	Wind 90	0.52	-0 26	-0 45	-85 25	49 12	-00
T4	180 00-160 00	0	Wind Normal	0.81	0.00	-0 81	-138 18	-0 10	0.00
4.7	. 30.00-100.00	30	Wind 90	0.82	0.41	-0.71	-120 15	-69 40	0.23
		60	Wind 60	0 86	0.75	-0 43	-73 60	-127 37	0.16

valmont	Јо в 553967	Page 31 of 63
1545 Pideo Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

Section No.	Section Elevation	Wind Azımuth	Directionality	F	У.	15	OTM _s	OTM:	Torque	
	fi	ſŧ	0		K	K	K	kip-ft	kip-fi	kip-ft
		90	Wind 90	0.90	0.90	0.00	-0 12	-153 01	-0.2	
		120	Wind Normal	0.91	0.78	0.45	76 82	-133 35	-0.2	
		150	Wind 90	0 82	041	0.71	119 92	-69 40	-0.0	
		180	Wind 60	0.77	0.00	0.77	131 04	-0 10	-0.02	
		210	Wind 90	0.82	-0.41	0.71	119 92	69 20	-0.2.	
		240	Wind Normal	0.91	-0 78	0.45	76 82	133 15	-0.10	
		270	Wind 90	0.90	-0 90	0.00	-0 12	152 81	0.2	
		300	Wind 60	0 86	-0.75	-0 43	-73.60	127 18	0.23	
100		330	Wind 90	0.82	-0.41	-0.71	-120 15	69 20	0.03	
T5	160.00-140.00	0	Wind Normal	0 84	0.00	-0 84	-125 79	-0 14	0.0	
		30	Wind 90	0 84	0.42	-0.73	-109 12	-63 06	0.3	
		60	Wind 60	0.89	0.77	-0 44	-66.61	-115 26	0 2	
		90	Wind 90	0 92	0.92	0.00	-0.15	-138 26	-0 2	
		120	Wind Normal	0 93	0.80	0 46	69 47	-120 72	-0 3	
j j		150	Wind 90	0 84	0.42	0 73	108.83	-63 06	-0 0:	
1		180	Wind 60	0.80	0.00	0.80	119.20	-0 14	-0.03	
		210	Wind 90	0 84	-0.42	0 73	108.83	62.78	-0.3	
		240	Wind Normal	0 93	-0.80	0 46	69.47	120 44	-0.2.	
		270	Wind 90	0 92	-0.92	0.00	-0 15	137 98	0.2	
		300	Wind 60	0.89	-0.77	-0 44	-66.61	114 98	0.3	
		330	Wind 90	0.84	-0.42	-0 73	-109 12	62 78	0.03	
T6	140 00-120 00	0	Wind Normal	0.86	0.00	-0 86	-111.47	-0 18	0.0	
3.50		30	Wind 90	0.85	0 43	-0 74	-96.15	-55 59	0.38	
		60	Wind 60	0.90	0.78	-0 45	-58.47	-101 14	0.29	
		90	Wind 90	0 93	0.93	0.00	-0.18	-121 34	-0.32	
		120	Wind Normal	0 94	0.82	0 47	61.18	-106 46	-0 40	
- 1		150	Wind 90	0.85	0 43	0 74	95 80	-55 59	-0.0	
		180	Wind 60	0.81	0.00	0.81	104 99	-0 18	-0 0	
		210	Wind 90	0.85	-0 43	0 74	95 80	55 23	-0.38	
		240	Wind Normal	0.94	-0 82	0 47	61 18	106 10	-0.29	
		270	Wind 90	0.93	-0 93	0.00	-0 18	120 98	0.33	
		300	Wind 60	0.90	-0.78	-0 45	-58 47	100 78	0 40	
		330	Wind 90	0 85	-0 43	-0.74	-96.15	55.23	0.07	
T7	120 00-100.00	0	Wind Normal	0.87	0.00	-0 87	-96.45	-0.22	0.04	
		30	Wind 90	0.86	0.43	-0 75	-82 27	-47 59	0.44	
		60	Wind 60	19.0	0.79	-0.45	-50 13	-86.66	0.30	
		90	Wind 90	0.94	0 94	0.00	-0 22	-103.96	-0.4	
		120	Wind Normal	0 96	0.83	0 48	52 56	-91 64	-0.57	
1		150	Wind 90	0.87	0.43	0.75	82 31	-47 87	-0 1	
1		180	Wind 60	0.82	0.00	0.82	90.27	-0.22	-0.04	
1		210	Wind 90	0 86	-0 43	0.75	81 83	47.15	-0.44	
		240	Wind Normal	0 96	-0 83	0.48	52 56	91 20	-0.30	
		270	Wind 90	0.94	-0 94	0.00	-0 22	103 52	0.47	
		300	Wind 60	0.91	-0.79	-0 45	-50 13	86.22	0.5	
100		330	Wind 90	0.87	-0 43	-0.75	-82 75	47 43	0.1	
T8	100 00-80 00	0	Wind Normal	0.88	0.00	-0.88	-79 55	-0 26	0.04	
100		30	Wind 90	0.86	0.43	-0.75	-67 39	-39 02	0.49	
		60	Wind 60	0.91	0.78	-0.45	-41 00	-70.83	0.33	
		90	Wind 90	0 94	0 94	0.00	-0.26	-84 98	-0.47	
		120	Wind Normal	0.96	0.83	0 48	43 05	-75 27	-0.66	
		150	Wind 90	0.87	0.43	0.75	67 38	-39 31	-0 13	
		180	Wind 60	0 82	0.00	0.82	73 91	-0 26	-0.04	
1		210	Wind 90	0 86	-0.43	0 75	66 87	38 50	-0 49	
1		240	Wind Normal	0 96	-0.83	0 48	43 05	74 75	-0.33	
		270	Wind 90	0 94	-0 94	0.00	-0.26	84 46	0.47	
		300	Wind 60	0.91	-0.78	-0 45	-41 00	70 31	0.66	
40	4242.70.00	330	Wind 90	0.87	-0.43	-0 75	-67.89	38 79	0.13	
T9	80 00-60.00	0	Wind Normal	0 88	0.00	-0 88	-61 72	-0 30	0.05	
		30	Wind 90	0.85	0 43	-0 74	-52 04	-30.18	0.54	
		60	Wind 60	0.89	0.77	-0 45	-31 57	-54.48	0.33	
		90	Wind 90	0.93	0.93	0.00	-0 29	-65 37	-0.51	

valmont	Job	553967	Page 32 of 63
1545 Pidco Dr	Project U-2	2 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

Section No.	Section Elevation	Wind Azimuth	Directionality	F	T's	I'	OTM _x	OTM.	Torque
	ft	0		K	K	K	kip-fi	kip-fi	kip-ft
		120	Wind Normal	0 95	0 83	0.48	33 12	-58 17	-0 7
		150	Wind 90	0.86	0.43	0.74	51.83	-30 39	-0 1
		180	Wind 60	0 82	0 00	0.82	56 88	-0 30	-0 0
		210	Wind 90	0 85	-0 43	0 74	51 46	29 58	-0.5
		240	Wind Normal	0 95	-0.83	0 48	33 12	57 58	-0 3
		270	Wind 90	0 93	-0.93	0 00	-0.29	64 77	0.5
- 1		300	Wind 60	0.89	-0.77	-0 45	-31 57	53 88	0.7
		330	Wind 90	0.86	-0.43	-0 74	-52.41	29 79	01
T10	60.00-40.00	0	Wind Normal	0.85	0.00	-0 85	-43.03	0 34	0.0
		30	Wind 90	0.83	0.41	-0 72	-36 13	-21 01	0.5
		60	Wind 60	0 86	0.75	-0 43	-21 89	-37 69	0.3
		90	Wind 90	0 90	0 90	0.00	-0 32	-45 22	-0 5
		120	Wind Normal	0.93	0.80	0.46	22.82	-40 43	-0 7
		150	Wind 90	0.83	0.42	0 72	35.73	-21 15	-0.1
		180	Wind 60	0.79	0.00	0 79	39 21	-0 34	-00
		210	Wind 90	0.83	-0 41	0 72	35 48	20 33	-0.5
1		240	Wind Normal	0.93	-0.80	0 46	22.82	39 75	-0.3
		270	Wind 90	0 90	-0 90	0 00	-0 32	44.54	0.5
		300	Wind 60	0.86	-0 75	-0 43	-21 89	37 01	0.7
		330	Wind 90	0 83	-0 42	-0 72	-36.37	20 47	0.1
TIL	40 00-20 00	0	Wind Normal	0.86	0.00	-0 86	-26.05	-0.38	0.0
		30	Wind 90	0.82	0.41	-0.71	-21 62	-12 66	0.5
		60	Wind 60	0.85	0.73	-0 42	-13 05	-22 36	0.3
		90	Wind 90	0.88	0.88	0.00	-0 36	-26 84	-0.5
		120	Wind Normal	0.92	0.80	0.46	13 46	-24 31	-0.7
		150	Wind 90	0 82	0.41	0.71	21 04	-12.73	-0 1
		180	Wind 60	0.78	0.00	0 78	23 09	-0 38	-0.0
- 4		210	Wind 90	0.82	-0 41	0.71	20 91	11 90	-0 5
		240	Wind Normal	0 92	-0 80	0.46	13 46	23 55	-0 3
		270	Wind 90	0 88	-0 88	0.00	-0 36	26 08	0.5
		300	Wind 60	0.85	-0 73	-0.42	-13 05	21 60	0.7
		330	Wind 90	0 82	-0 41	-0.71	-21 75	11 97	0.1
T12	20.00-0.00	0	Wind Normal	0.78	0.00	-0.78	-8 23	-0 42	0.0
		30	Wind 90	0.75	0.37	-0 65	-6 86	-4 15	0.5
		60	Wind 60	0 77	0.67	-0 38	-4 24	-7 08	0.3
		90	Wind 90	0.80	0.80	0 00	-0 39	-8 44	-0 5
		120	Wind Normal	0 84	0 73	0 42	3 81	-7 70	-0 7
		150	Wind 90	0 75	0.38	0 65	6 12	-4 18	-0 1
		180	Wind 60	0.71	0.00	0.71	6 74	-0 42	-00
		210	Wind 90	0 75	-0.37	0.65	6.08	3 31	-0.5
		240	Wind Normal	0.84	-0.73	0.42	3 81	6.86	-0.3
		270	Wind 90	0.80	-0.80	0 00	-0 39	7 60	0.5
		300	Wind 60	0 77	-0.67	-0 38	-4 24	6 24	0.7
		330	Wind 90	0.75	-0.38	-0 65	-6 90	3 34	0.1

Mast Totals - Service

Wind Azimuth	V _v	V	OTM _v	OTM _z	Torque
0	0.00	Λ 0.74	kip-fi		kip-ft
0	0.00	-8.64	-892 33	-2.37	0.30
30	4.28	-7.41	-779 98	-451.57	4.40
60	7 77	-4 49	-474 77	-821.33	3 23
90	9 27	0.00	-1 94	-971 97	-3 64
120	8.10	4.68	478.47	-834.47	-5 28
150	4.23	7 33	755.83	-439.87	-0.83
180	0.00	8.08	838 38	-2 37	-0 30

valmont	Job	553967	Page 33 of 63	
1545 Pidco Dr	Project	J-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22	
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph	

Wind Azimuth	V _c K	V ₂	OTM _t	OTM _s kip-fi	Torque kıp-fi
210	-4 26	7.37	767 90	442 10	-4.40
240	-8 17	4 72	486.47	843 58	-3 23
270	-9 22	0.00	-1 94	957 77	3 64
300	-7 66	-4.42	-462.05	794 56	5.28
330	-4 23	-7.33	-759.71	435 13	0.83

Discrete Appurtenance Pressures - No Ice GH = 0.850

Description	Aiming Azimuth	Weight K	Offset,	Offset,	i fi	K _±	q: psf	C ₁ A ₁ Front ft ²	C _I A:- Side ft ²
5/8" x 10' lightning rod	240 0000	0.02	-2.00	1 15	235 00	1515	36	0 63	0.63
Beacon	120 0000	0.07	2.00	1.15	231.00	1510	36	2.40	2 40
OB light	240 0000	0.03	-5.25	3.03	115.00	1 303	31	0 50	0.50
OB light	120 0000	0.03	5.25	3.03	115 00	1.303	31	0.50	0.50
OB light	0 0000	0.03	0.00	-6.06	115 00	1 303	31	0.50	0.50
208 sq ft EPA	0.0000	4.16	0.00	0.00	225 00	1 501	36	208 00	208 00
130 sq ft EPA	0.0000	2.60	0.00	0.00	210 00	1.480	35	130 00	130.00
130 sq ft EPA	0.0000	2.60	0.00	0.00	195 00	1 457	35	130 00	130.00
	Sum Weight	9 55							

Discrete Appurtenance Vectors - No Ice

		5 8'	x 10' lightning rod -	Elevation 235 - Fre	um Leg C		
Wind Azimuth	Fa	F;	1/4	V _č	OTM _x	OTM:	Torque
0	K	K	K	K	kip-ft	kip-fi	kip-fi
0	0.01	0.02	0.00	-0.02	-4 51	0.05	-0 04
30	0.02	0.01	0.01	-0.02	-3 90	-2 22	-0 02
60	0.02	0.00	0.02	-0.01	-2.24	-3.88	0.00
90	0 02	10.0	0.02	0.00	0.03	-4.49	0.02
120	0.01	0.02	0 02	0.01	2 30	-3 88	0.04
150	0 00	0.02	0.01	0.02	3 96	-2 22	0.04
180	0.01	0.02	0.00	0 02	4 56	0 05	0.04
210	0 02	0.01	-0 01	0 02	3 96	2.31	0.02
240	0.02	0.00	-0.02	0 01	2 30	3 98	0 00
270	0.02	0 01	-0.02	0.00	0 03	4 58	-0 02
300	0.01	0.02	-0 02	-0 01	-2 24	3 98	-0 04
330	0.00	0.02	-0.01	-0.02	-3.90	2.31	-0.04

Beacon - Flevation 231 - From Leg B											
Wind Azimuth	F_a	F _s	V.	<i>V.</i>	OTM_{ϵ}	OTM: kip-fi	Torque kıp-fi				
	K			K	kıp-fi						
0	0.04	0.06	0.00	-0.07	-16 98	-0.15	0.15				
30	0.00	0 07	0.04	-0.06	-14 70	-8 68	0.17				
60	0.04	0.06	0.06	-0 04	-8 45	-14 93	0.15				
90	0.06	0 04	0.07	0.00	0 08	-17 21	0.09				
120	0.07	0.00	0.06	0 04	8 62	-14 93	0.00				
150	0.06	0 04	0.04	0.06	14 86	-8 68	-0 09				
180	0.04	0.06	0.00	0.07	17 15	-0.15	-0.15				

valmont	Јоb 553967	Page 34 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

	Beacon - Flevarion 231 - From Leg B											
Wind Azimuth	Fa	F.	<i>V.</i>	ν.	OTM _e	OTM:	Torque					
0	K	K	K	K	kip-fi	kip-fi	kip-fi					
210	0 00	0.07	-0 04	0.06	14 86	8.39	-0 17					
240	0.04	0.06	-0.06	0.04	8.62	14.63	-0 15					
270	0.06	0.04	-0 07	0.00	0.08	16.92	-0.09					
300	0.07	0.00	-0 06	-0.04	-8 45	14 63	0.00					
330	0.06	0.04	-0 04	-0.06	-14.70	8 39	0 09					

OB light - Elevation 115 - Fram Leg C												
Wind Azimuth	F _u	<i>F</i> ,	V _r	ν_	OTM,	OTM.	Torque					
0	K	K	K	K	kip-ft	kip-fi	kip-fi					
0	0.01	0.01	0.00	-0 01	-1 44	0.16	-0 07					
30	0.01	0.01	0.01	-0 01	-1 23	-0.61	-0 04					
60	0.01	0 00	0.01	-0 01	-0 67	-1 17	0.00					
90	10.0	0.01	0.01	0.00	0 09	-1 37	0.04					
120	10.0	0.01	0.01	100	0.86	-1.17	0.07					
150	0.00	0.01	0.01	10.0	141	-0 61	0.08					
180	10.0	0.01	0.00	10.0	1 62	0.16	0.07					
210	0.01	0.01	-0.01	100	141	0 92	0.04					
240	0.01	0.00	-0.01	001	0 86	1 48	0.00					
270	0.01	0.01	-0.01	0 00	0 09	1 69	-0 04					
300	0.01	0.01	-0.01	-0.01	-0 67	1 48	-0.07					
330	0.00	0.01	-0.01	-0 01	-1 23	0 92	-0.08					

			OB light - Elevai	ion 115 - From Leg	B		
Wind Azimuth	F _u	F_s	V _x	V ₂	OTM _v	OTM:	Torque
0	K	K	A'	K	kip-ft	kip-ft	kip-ft
0	0.01	0.01	0.00	-0 01	-1 44	-0.16	0.07
30	0.00	0.01	0.01	-0.01	-1.23	-0 92	0.08
60	0.01	0.01	0.01	-0 01	-0 67	-1 48	0 07
90	0.01	0.01	0.01	0 00	0 09	-1 69	0 04
120	0.01	0.00	0.01	0.01	0 86	-1 48	0 00
150	0.01	0.01	0.01	0.01	1.41	-0 92	-0 04
180	0.01	0.01	0 00	0.01	1.62	-0 16	-0.07
210	0.00	0.01	-0.01	0.01	1.41	061	-0.08
240	0.01	0.01	-0.01	0.01	0.86	1 17	-0.07
270	0.01	0.01	-0.01	0.00	0.09	1 37	-0.04
300	0.01	0.00	-0 01	-0.01	-0 67	1.17	0.00
330	0.01	0.01	-0.01	-0 01	-1 23	0.61	0.04

			OB light - Elevat	ion 115 - From Leg	A		
Wind Azimuth	F _a	F_i	V.	<i>V_z</i>	OTM,	OTM;	Torque
0	K	K	K	K	kıp-fi	kip-fi	kip-fi
0	0.01	0 00	0.00	-0 01	-1.71	0.00	0.00
30	0.01	0.01	10.0	-0 01	-1.51	-0.76	-0.04
60	0.01	0.01	0.01	-0.01	-0 95	-1 32	-0.07
90	0.00	10.0	0.01	0.00	-0.18	-1 53	-0.08
120	0.01	0.01	0.01	0.01	0.58	-1.32	-0.07
150	0.01	0.01	0.01	0.01	1 14	-0 76	-0.04
180	0.01	0.00	0.00	0.01	1.35	0.00	0.00
210	0.01	0.01	-0.01	0.01	1.14	0 76	0.04
240	0.01	0.01	-0 01	0.01	0.58	1 32	0.07
270	0.00	0.01	-0 01	0.00	-0 18	1 53	0.08

valmont	Job	553967	Page 35 of 63
1545 Pidco Dr	Project	J-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone. (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

			OB light - Elevat	ion 115 - From Leg	A		
Wind Azimuth	F _a	F_{κ}	V _a	V ₂	OTM _v	OT.M.	Torque
0	K	K	K	K	kip-ft	kip-ft	kip-ft
300	0.01	0.01	-0 01	-0 01	-0 95	1 32	0.0
330	0.01	0.01	-0.01	-0.01	-1.51	0 76	0.0

			208 sq.ft EPA - F	levation 225 - None	('		
Wind Azimuth	267 277 3 2 2 2 2	F,	V.	V_{\pm}	OTM,	OTM: ksp-ft	Torque
0		K	K	A	kip-ft		kip-ft
0	6 37	0.00	0 00	-6.37	-1432 68	0 00	0.00
30	6 37	0.00	3 18	-5 51	-1240 74	-716.34	0 00
60	6 37	0.00	5 5 1	-3.18	-716 34	-1240.74	0 00
90	6.37	0.00	6 37	0.00	0 00	-1432 68	0 00
120	6 37	0 00	5 51	3.18	716 34	-1240 74	0.00
150	6 37	0.00	3 18	5.51	1240 74	-716 34	0.00
180	6.37	0.00	0.00	6.37	1432.68	0 00	0.00
210	6 37	0.00	-3 18	5.51	1240 74	716.34	0.00
240	6 37	0.00	-5.51	3 18	716.34	1240.74	0.00
270	6 37	0 00	-6 37	0.00	0.00	1432 68	0 00
300	6 37	0.00	-5 51	-3.18	-716 34	1240 74	0.00
330	6.37	0 00	-3.18	-5 51	-1240 74	716.34	0.00

			130 sq ft. EPA - E	levation 210 - None	B		
Wind Azimuth	Fa	F _a F,	V_{v}	V.	OTM.	OTM.	Torque kip-fi
0.	• K	K	K	K	kip-fi	kip-ft	
0	3 14	0.00	0.00	-3 14	-658 94	0.00	0.0
30	3.14	0.00	1.57	-2.72	-570.66	-329 47	0.0
60	3.14	0.00	2.72	-1.57	-329 47	-570.66	0.0
90	3 14	0.00	3 14	0 00	0.00	-658 94	0.0
120	3 14	0.00	2 72	1 57	329 47	-570 66	0.0
150	3 14	0.00	1.57	2.72	570.66	-329.47	0.0
180	3.14	0.00	0 00	3 14	658.94	0 00	0.0
210	3 14	0.00	-1.57	2 72	570 66	329 47	0.0
240	3 14	0.00	-2 72	1.57	329 47	570 66	0.0
270	3 14	0 00	-3 14	0.00	0.00	658 94	0.0
300	3 14	0.00	-2.72	-1.57	-329 47	570.66	0.0
330	3 14	0.00	-1 57	-2.72	-570 66	329 47	0.0

			130 sq.ft EPA - E	levation 195 - None	A		
Wind Azimuth	Fø	F,	V_{ϵ}	V.,	OTM _e	OT.M.	Torque
0	K	K	K	K	kip-fi	kip-ft	kıp-fi
0	3.09	0 00	0.00	-3.09	-602.40	0.00	0.00
30	3.09	0 00	1.54	-2.68	-521 70	-301 20	0.00
60	3 09	0.00	2.68	-1 54	-301 20	-521 70	0.00
90	3 09	0.00	3.09	0.00	0.00	-602 40	0.00
120	3 09	0.00	2.68	1.54	301.20	-521.70	0.00
150	3 09	0.00	1.54	2.68	521 70	-301 20	0.00
180	3 09	0.00	0.00	3.09	602 40	0.00	0.00
210	3 09	0.00	-1.54	2.68	521 70	301 20	0.00
240	3 09	0.00	-2.68	1.54	301.20	521.70	0.00
270	3 09	0.00	-3.09	0.00	0.00	602 40	0.00
300	3.09	0.00	-2.68	-1.54	-301 20	521 70	0.00
330	3 09	0.00	-1.54	-2.68	-521.70	301 20	0.00

valmont	Job	553967	Page 36 of 63
1545 Pidco Dr	Project	U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

Discrete Appurtenance Totals - No Ice

Wind Azimuth	V_{\star}	V_{ε}	OTM,	OTM _z	Torque
0	K	K	kip-ft	kip-ft	kip-ft
0	0.00	-12.73	-2720 10	-0 10	0.11
30	6 36	-11 02	-2355.66	-1360.21	0 15
60	11.02	-6 36	-1360 00	-2355 87	0.15
90	12 73	0.00	0.11	-2720 31	0.11
120	11.02	6.36	1360.22	-2355 87	0.04
150	6 36	11.02	2355 88	-1360 21	-0.04
180	0.00	12.73	2720 32	-0 10	-0.11
210	-6 36	11.02	2355.88	1360.01	-0 15
240	-11.02	6 36	1360.22	2355.67	-0.15
270	-12 73	0.00	0.11	2720.11	-0 11
300	-11.02	-6 36	-1360.00	2355.67	-0 04
330	-6.36	-11.02	-2355.66	1360.01	0.04

Discrete Appurtenance Pressures - With Ice $G_H = 0.850$

Description	Aiming Azimuth	Weight	Offset,	Offset:	2	K.	q;	C ₁ A _C Front	C ₄ A _C Side	I,
	0	K	ſ	ſ	fi		psf	fr ²	fi-	in
5/8" x 10' lightning rod	240.0000	0.08	-2.00	1.15	235 00	1.515	3	4 28	4 28	1.8254
Beacon	120.0000	0 16	2 00	1.15	231.00	1.510	3	3.39	3 39	1 8222
OB light	240.0000	0.05	-5 25	3.03	115 00	1.303	3	0.84	0.84	1 6995
OB light	120.0000	0.05	5 25	3.03	115 00	1 303	3	0.84	0 84	1 6995
OB light	0.0000	0.05	0 00	-6.06	115.00	1.303	3	0.84	0 84	1 6995
208 sq.ft. EPA	0.0000	7 94	0 00	0.00	225 00	1 501	3	397 01	397.01	1 8174
130 sq.ft. EPA	0.0000	4 95	0.00	0 00	210 00	1 480	3	247.32	247 32	1.8049
130 sq.ft. EPA	0.0000	4 93	0.00	0 00	195.00	1 457	3	246.45	246 45	1 7916
	Sum	18.20	7,000							1,400
	Weight:									

Discrete Appurtenance Vectors - With Ice

		5 8'	'x 10' lightning rod-	Elevation 235 - Fro	om Leg (*		
Wind Azimuth	F_a	F_s	V_{ϵ}	P _a	OTM _v	OTM;	Torque
σ	K	K	K	K	kip-ft	kip-fi	kip-ft
0	0.01	0.01	0.00	-0.01	-2 44	0 16	-0 02
30	0.01	0.01	0.01	-0 01	-2 10	-1 10	-0.01
60	0.01	0.00	0.01	-0 01	-1 17	-2 03	0.00
90	0.01	0.01	0.01	0.00	0.09	-2 37	0.01
120	0.01	0.01	0.01	0.01	1 36	-2.03	0.02
150	0.00	0.01	0.01	0 01	2 29	-1 10	0.02
180	0.01	0.01	0.00	0.01	2 63	0 16	0.02
210	0.01	0.01	-0.01	0.01	2 29	1.43	0.01
240	0.01	0.00	-0 01	0 01	1 36	2 36	0.00
270	0.01	0.01	-0 01	0.00	0 09	2 70	-0 01
300	0.01	0.01	-0 01	-0.01	-1 17	2 36	-0 02
330	0.00	0.01	-0.01	-0.01	-2 10	1.43	-0.02

valmont	Job 553967	Page 37 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth. IN Phone: (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

		ALC: THE	Beacon - Elevan	ion 231 - From Leg i	Н		
Wind Azımıah	Fa	F,	ν_{ϵ}	V ₂	OTM _v	OTM:	Torque
0	K	K	K	K	kip-fi	kip-ft	kip-ft
0	0.00	0.01	0.00	-0.01	-1.78	-0 32	0.0
30	0.00	0.01	0.00	-0.01	-1.52	-1 30	0.0
60	0.00	0.01	0.01	-0.00	-0 80	-2.02	0.0
90	0.01	0.00	0.01	0.00	0.19	-2.29	0.0
120	0.01	0.00	0.01	0.00	1.17	-2 02	0.0
150	0.01	0.00	0.00	0.01	1 89	-1 30	-0.0
180	0.00	0.01	0.00	0.01	2 15	-0.32	-0 0
210	0.00	0.01	-0.00	0.01	1 89	0 66	-0.0
240	0.00	0.01	-0.01	0.00	1.17	1 38	-0 0
270	0.01	0.00	-0.01	0.00	0.19	1 64	-00
300	0.01	0.00	-0.01	-0.00	-0.80	1 38	0.0
330	0.01	0.00	-0.00	-0.01	-1 52	0 66	0.0

			OB light - Elevat	ion 115 - From Leg	C		
Wind Azimuth	Fa	Fr	- Vy	V_z	OTM _v	OTM:	Torque
0	K	K	K	K	kip-fi	kip-fi	kip-ft
0	0.00	0.00	0.00	-0 00	-0 07	0 25	-0.0
30	0.00	0.00	0.00	-0.00	-0.04	0 14	-0 (
60	0.00	0.00	0.00	-0.00	0.04	0.07	0.0
90	0.00	0.00	0.00	0 00	0 14	0 04	0.0
120	0.00	0.00	0.00	0.00	0 25	0.07	0.0
150	0 00	0.00	0.00	0.00	0 32	0.14	0.0
180	0 00	0.00	0.00	0.00	0.35	0.25	0.0
210	0.00	0.00	-0.00	0.00	0.32	0 35	0.0
240	0.00	0.00	-0.00	0.00	0 25	0 43	0.0
270	0.00	0.00	-0 00	0.00	0 14	0.46	-0.0
300	0.00	0.00	-0.00	-0.00	0.04	0.43	-0.0
330	0.00	0.00	-0 00	-0 00	-0.04	0.35	-0.0

			OB light - Elevan	ion 115 - From Leg	В		
Wind Azimuth	Fa	F,	Ve	V.	OTM _x	OTM,	Torque
. 0	K	K	K	K.	kip-fi	kip-ft	kip-fi
0	0.00	0.00	0.00	-0 00	-0.07	-0 25	0.01
30	0.00	0 00	0.00	-0 00	-0.04	-0.35	0.01
60	0.00	0.00	0.00	-0.00	0 04	-0.43	0.01
90	0.00	0 00	0.00	0.00	0 14	-0.46	0.01
120	0.00	0 00	0.00	0.00	0 25	-0.43	0.00
150	0.00	0.00	0.00	0.00	0.32	-0.35	-0 01
180	0.00	0.00	0.00	0.00	0.35	-0 25	-0.01
210	0.00	0.00	-0.00	0.00	0.32	-0 14	-0 01
240	0.00	0.00	-0.00	0.00	0 25	-0.07	-0.01
270	0.00	0.00	-0.00	0.00	0.14	-0.04	-0.01
300	0.00	0.00	-0.00	-0.00	0.04	-0 07	0.00
330	0.00	0.00	-0.00	-0.00	-0.04	-0.14	0.01

Wind	F _a	F,	K.	V.	OTM,	OTM;	Torque
Azimuth	K	K		K	kip-ft	kip-ft	kip-fi
0	0 00	0.00	0.00	-0.00	-0 49	0 00	0 0
30	0 00	0.00		-0.00	-0 47	-0 10	-0 0

valmont	Јо b 553967	Page 38 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth 1N Phone (574)936-4221 FAX (574) 936-6458	Client Horvath Towers	Designed by Joseph

			OB light Elevat	ion 115 From Leg	A		
Wind Azımıdh	Fa	F,	V_{ϵ}	V.	OTM _x	OTM; kip-ft	Torque
0	K	K	K	K	kip-ft		kip-ft
60	0.00	0.00	0.00	-0 00	-0 39	-0 18	-0.0
90	0 00	0.00	0.00	0 00	-0.28	-0.21	-0.01
120	0.00	0.00	0.00	0.00	-0 18	-0.18	-0.0
150	0.00	0.00	0.00	0.00	-0.10	-0 10	-0.0
180	0.00	0.00	0.00	0.00	-0.08	0.00	0.00
210	0.00	0 00	-0.00	0.00	-0.10	0.10	0.0
240	0 00	0.00	-0.00	0 00	-0 18	0 18	0.0
270	0 00	0 00	-0.00	0.00	-0 28	021	0.0
300	0.00	0 00	-0 00	-0 00	-0 39	0 18	0.0
330	0.00	0.00	-0 00	-0 00	-0 47	0.10	0.0

			208 sq.ft. EPA - F	levation 225 - None	C.		
Wind Asimuth	F,,	F,	V.	V-	OTM _*	OTM ₂	Torque
0	K	K	K	K	kip-ft	kip-ft	kip-fi
0	0.99	0.00	0.00	-0 99	-223 23	0.00	0.00
30	0.99	0.00	0.50	-0.86	-193 32	-111.62	0.00
60	0 99	0 00	0 86	-0.50	-111 62	-193 32	0.00
90	0.99	0.00	0 99	0.00	0.00	-223.23	0.00
120	0 99	0.00	0 86	0.50	111 62	-193 32	0.00
150	0.99	0.00	0.50	0 86	193.32	-111.62	0.00
180	0 99	0.00	0 00	0 99	223 23	0.00	0.00
210	0.99	0.00	-0 50	0.86	193 32	111.62	0.00
240	0.99	0.00	-0 86	0.50	111 62	193.32	0.00
270	0 99	0.00	-0.99	0.00	0.00	223.23	.0.00
300	0 99	0.00	-0 86	-0.50	-111 62	193 32	0.00
330	0.99	0.00	-0 50	-0.86	-193.32	111.62	0.00

			130 sq.ft EPA - E	Jevotion 210 - None	В		
Wind Azimuth	F_a	F,	IV.	<i>V</i> _	OTM,	OTM:	Torque
0	K	K	K	K	kip-ft	kip-ft	kip-ft
0	0 49	0 00	0.00	-0.49	-102 34	0.00	0.0
30	0 49	0.00	0 24	-0 42	-88 63	-51.17	0.0
60	0 49	0.00	0.42	-0 24	-51 17	-88.63	0.0
90	0 49	0 00	0.49	0.00	0.00	-102 34	0.0
120	0.49	0.00	0.42	0 24	51 17	-88.63	0.0
150	0.49	0.00	0.24	0.42	88 63	-51.17	0.0
180	0 49	0.00	0.00	0.49	102 34	0.00	0.0
210	0 49	0.00	-0 24	0.42	88 63	51 17	0.0
240	0 49	0.00	-0.42	0 24	51 17	88 63	0.0
270	0.49	0.00	-0.49	0 00	0.00	102 34	0.0
300	0 49	0.00	-0.42	-0 24	-51 17	88.63	0.0
330	0 49	0.00	-0.24	-0 42	-88.63	51 17	0.0

Wind Azimuth	Fu	F,	ν_{τ}	V_{z}	OTM,	OTM:	Torque
0	K	K	K	K.	kip-ft	kip-ft	kip-fi
0	0 48	0.00	0.00	-0.48	-93 23	0.00	0.00
30	0 48	0.00	0.24	-0.41	-80 74	-46.61	0.00
60	0 48	0.00	0.41	-0 24	-46 61	-80.74	0.00
90	0 48	0.00	0.48	0 00	0.00	-93.23	0.00
120	0 48	0.00	0.41	0 24	46 61	-80 74	0.00

valmont	Јов 553967	Page 39 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry,	Date 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

	-		150 sq.ft. FPA = E	levation 195 - None	· · · · · · · · · · · · · · · · · · ·		
Wind Azimuth	F_{α}	Fe	V .	V_{\pm}	OTM _r	OTM _z	Torque
0	K	K	K	K	kip-ft	kip-ft	kip-ft
150	0.48	0.00	0 24	0.41	80.74	-46.61	0.00
180	0.48	0.00	0 00	0.48	93 23	0.00	0.00
210	0.48	0.00	-0.24	0.41	80 74	46 61	0.00
240	0.48	0.00	-0 41	0 24	46 61	80 74	0.00
270	0.48	0.00	-0 48	0.00	0.00	93.23	0.00
300	0 48	0.00	-0 41	-0 24	-46 61	80.74	0.00
330	0.48	0.00	-0 24	-0 41	-80.74	46.61	0.00

Discrete Appurtenance Totals - With Ice

Wind Azimuth	<i>V</i> _v	V ₃	OTM _r	OTM ₂	Torque
٥	K	K	kip-fi	kip-ft	kip-ft
0	0.00	-1.98	-423.64	-0.16	-0.00
30	0 99	-1.72	-366.85	-212 12	0.01
60	1.72	-0 99	-211 68	-367.29	0.02
90	1.98	0.00	0.28	-424 08	0 02
120	1.72	0.99	212 24	-36729	0 02
150	0 99	1.72	367.41	-212 12	0.02
180	0.00	1.98	424.20	-0 16	0.00
210	-0.99	1 72	367.41	211.80	-0 01
240	-1 72	0.99	212.24	366 97	-0 02
270	-1.98	0.00	0.28	423 76	-0.02
300	-1 72	-0.99	-211 68	366.97	-0 02
330	-0.99	-1.72	-366.85	21180	-0 02

Discrete Appurtenance Pressures - Service $G_H = 0.850$

Description	Aiming Azimuth	Weight K	Offset,	Offset _z	z fi	Kz	q: psf	C ₁ A ₁ Front ft ³	C ₄ A ₁ : Side ft ²
5/8" x 10' lightning rod	240.0000	0.02	-2.00	115	235 00	1.515	12	0.63	0 63
Beacon	120 0000	0.07	2.00	1 15	231.00	1510	12	2 40	2.40
OB light	240 0000	0 03	-5 25	3.03	115.00	1 303	10	0.50	0.50
OB light	120,0000	0 03	5 25	3.03	115.00	1 303	10	0.50	0.50
OB light	0.0000	0.03	0.00	-6.06	115.00	1.303	10	0.50	0.50
208 sq ft EPA	0.0000	4 16	0.00	0.00	225.00	1.501	12	208.00	208.00
130 sq ft EPA	0.0000	2 60	0.00	0.00	210.00	1 480	12	130 00	130 00
130 sq ft EPA	0.0000	2 60	0.00	0.00	195 00	1 457	11	130 00	130 00
	Sum Weight	9 55							

Discrete Appurtenance Vectors - Service

		5 8	"x 10' lightning rod -	- Elevanon 235 - Fr	om Leg (*		
Wind Azimah	Fa	F,	V.	V _z	OTM _v	OTM-	Torque
0	K	K	K.	K	kip-ft	kip-ft	kip-fi
0	0.00	0.01	0.00	-0.01	-1 46	0 05	-0.0

valmont	Јов 553967	Page 40 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

		58'	'x 10' lightning rod	Elevation 235 - Fre	m Leg C		
Wind Azimuth	Fo	F_{ϵ}	P	V-	OTM ₅	OTW-	Torque
o	° K	K	K	K	kip-fi	kip-fi	kip-fi
30	0.01	0.00	0.00	-0.01	-1.26	-0.69	-0.0
60	0.01	0.00	0.01	-0 00	-0.71	-1.24	0.0
90	0.01	0.00	0.01	0 00	0.03	-1 44	0.0
120	0.00	0.01	10.0	0 00	0.77	-1.24	0.0
150	0.00	0.01	0 00	0.01	1.31	-0 69	0.0
180	0 00	0.01	0 00	0.01	1.51	0.05	0.0
210	0.01	0.00	-0 00	0.01	1.31	0 79	0.0
240	0.01	0.00	-0 01	0.00	0.77	1.33	0.0
270	0.01	0.00	-0.01	0.00	0 03	1.53	-0.0
300	0.00	0.01	-0 01	-0.00	-0.71	1.33	-0.0
330	0 00	0.01	-0.00	-0.01	-1 26	0 79	-0.0

		T. 1. W. 11. T.	Beacon - Elevan	on 231 - From Leg	9		
Wind I Azimuth	Fa	F, V, K	V_s	V	OTM _x	OTM- kip-fi	Torque
0	K		A	K	kip-fi		kip-fi
0	0.01	0 02	0.00	-0.02	-5 49	-0.15	0.05
30	0 00	0.02	0.01	-0.02	-4 74	-2.93	0.06
60	0.01	0.02	0.02	-0.01	-2 70	-4.97	0.05
90	0 02	0.01	0.02	0.00	0.08	-5 72	0.03
120	0 02	0.00	0.02	0.01	2.87	-4 97	0.00
150	0.02	0.01	0.01	0.02	4.91	-2 93	-0 03
180	10.0	0.02	0.00	0.02	5 66	-0 15	-0.09
210	0.00	0.02	-0.01	0.02	4.91	2.64	-0.06
240	0.01	0.02	-0 02	0.01	2 87	4 68	-0.05
270	0.02	0.01	-0 02	0 00	0.08	5 43	-0 03
300	0 02	0.00	-0.02	-0.01	-2.70	4 68	0.00
330	0.02	0.01	-0.01	-0.02	-4 74	2.64	0.03

			OB light - Elevat	ion 115 - From Leg	C		
Wind Azimuth	F,	F,	V _e	ν	OTM _e	OTM:	Torque
0	K	K	K	K	kip-ft	kip-ft	kip-fi
0	0.00	0 00	0.00	-0 00	-0 41	0 16	-00
30	0 00	0.00	0.00	-0 00	-0.34	-0 09	-0 0
60	0.00	0.00	0.00	-0.00	-0.16	-0 27	0.0
90	0.00	0 00	0.00	0.00	0.09	-0.34	0.0
120	0.00	0.00	0.00	0.00	0.34	-0.27	0.0
150	0.00	0.00	0.00	0.00	0.52	-0 09	0.0
180	0.00	0.00	0.00	0.00	0 59	0 16	0.0
210	0.00	0.00	-0 00	0.00	0.52	0.41	0.0
240	0.00	0.00	-0.00	0.00	0 34	0 59	0.0
270	0 00	0.00	-0.00	0.00	0.09	0.66	-0.0
300	0.00	0.00	-0.00	-0.00	-0.16	0.59	-0.0
330	0 00	0.00	-0.00	-0.00	-0 34	0.41	-0.0

Wind Azimuth	F _a	F _s	V _k	V. K	OTM _x kip-ft	OTM; kip-fi	Torque kip-fi
0	0.00	0.00	0.00	-0 00	-0.41	-0.16	0.02
30	0.00	0.00	0.00	-0.00	-0 34	-0.41	0.03
60	0.00	0.00	0.00	-0 00	-0 16	-0 59	0 02
90	0.00	0 00	0.00	0 00	0.09	-0.66	0.01

valmont	Јо ь 553967	Page 41 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberr	Date 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

			OB light - Elevat	ion 115 - From Leg	В		
Wind Azimuth	F_s F_s	F, V.	Ve	ν,	OTM _x	OTM.	Torque
0	K	K	K	K	kip-ft	kip-fi	kip-fi
120	0.00	0.00	0 00	0.00	0.34	-0.59	0.00
150	0.00	0.00	0 00	0.00	0.52	-0.41	-0.01
180	0.00	0.00	0 00	0.00	0 59	-0 16	-0 02
210	0.00	0.00	-0.00	0.00	0.52	0.09	-0 03
240	0.00	0.00	-0 00	0.00	0.34	0.27	-0.02
270	0.00	0.00	-0 00	0.00	0.09	0.34	-0.01
300	0.00	0.00	-0 00	-0.00	-0 16	0 27	0.00
330	0.00	0.00	-0.00	-0.00	-0 34	0 09	0.01

			OB light - Elevat	ion 115 - From Leg.	A		
Wind Azimuth	F _a	F,	ν.	V_z	OTM _e	OT.W,	Torque
0	K	K	K	K kip	kip-fi	kip-ft	kip-fi
0	0.00	0.00	0.00	-0.00	-0.68	0.00	0.00
30	0.00	0.00	0.00	-0 00	-0 61	-0 25	-0.0
60	0.00	0.00	0.00	-0.00	-0 43	-0 43	-0.02
90	0.00	0.00	0.00	0.00	-0 18	-0 50	-0.0.
120	0.00	0.00	0.00	0.00	0.07	-0 43	-0 02
150	0.00	0.00	0.00	0.00	0 25	-0.25	-00
180	0.00	0.00	0.00	0.00	0 32	0 00	0.00
210	0.00	0.00	-0.00	0.00	0 25	0.25	0.0
240	0.00	0.00	-0.00	0.00	0 07	0 43	0.0
270	0.00	0.00	-0.00	0.00	-0 18	0.50	0.0
300	0.00	0.00	-0.00	-0.00	-0.43	0.43	0.00
330	0 00	0.00	-0.00	-0.00	-0.61	0.25	0.0

			208 sq.ft. El'A - E	levation 225 - None	('		
Wind Azimuth	Fu	F,	V.	V ₃	OTM _r	OTM;	Torque
0	K	K	K	K	kip-ft	kip-ft	kip-fi
0	2.08	0 00	0.00	-2 08	-467 81	0.00	0.00
30	2.08	0 00	1.04	-1.80	-405 14	-233 91	0.00
60	2.08	0.00	1.80	-1 04	-233 91	-405 14	0.00
90	2.08	0 00	2.08	0.00	0.00	-467.81	0.00
120	2.08	0.00	1.80	1.04	233 91	-405 14	0.00
150	2.08	0.00	1.04	1.80	405.14	-233 91	0.00
180	2.08	0.00	0.00	2.08	467.81	0.00	0.00
210	2 08	0.00	-1.04	1.80	405 14	233 91	0.0
240	2.08	0.00	-1 80	1.04	233 91	405 14	0.00
270	2 08	0.00	-2.08	0.00	0 00	467 81	0.00
300	2.08	0.00	-1.80	-1.04	-233.91	405 14	0.00
330	2 08	0.00	-1.04	-1.80	-405.14	233 91	0.00

Wind F.,	F _{st}	F_s	V.	15	OTM _e	OTM:	Torque
0	K	N.	Λ'	K	kip-fi	kip-ft	kip-fi
0	1 02	0 00	0.00	-1.02	-215.16	0.00	0.0
30	1 02	0.00	0.51	-0.89	-186.34	-107 58	0.0
60	1 02	0.00	0.89	-0.51	-107 58	-186 34	0.0
90	1 02	0.00	1.02	0.00	0.00	-215 16	0.0
120	1 02	0.00	0.89	0.51	107.58	-186 34	0.0
150	1 02	0.00	0.51	0.89	186 34	-107 58	0.0
180	1 02	0.00	0.00	1 02	215 16	0.00	0.0

valmont	Job 553967	Page 42 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth IN Phone (574)936-4221 FAX (574) 936-6458	Client Horvath Towers	Designed by Joseph

Wind F _a Azimuth K	Fa	F,	ν,	k.	OTM _e	OTM:	Torque
	K K	K	K kı	kip-fi	kip-ft	kip-fi	
210	1 02	0.00	-0.51	089	186.34	107 58	0.00
240	1 02	0.00	-0 89	0.51	107.58	186.34	0.00
270	1.02	0.00	-1 02	0.00	0.00	215.16	0.00
300	1.02	0.00	-0 89	-0.51	-107 58	186.34	0.00
330	1.02	0.00	-0.51	-0.89	-186.34	107 58	0.0

		-0.0	130 sq.ft. EPA - E	Tevation 195 - None	A		
Wind Azimuth	Fa	F_s	15	$\nu_{\scriptscriptstyle \pm}$	OTM _x	OTM;	Torque
0	K	K	K	K	kip-ft	kip-ft	kip-ft
0	1.01	0 00	0.00	-1 01	-196 70	0.00	0.00
30	1 01	0 00	0.50	-0.87	-170 35	-98 35	0.00
60	1.01	0.00	0.87	-0 50	-98 35	-170 35	0.00
90	1.01	0.00	1.01	0 00	0.00	-196 70	0.00
120	1.01	0.00	0.87	0.50	98 35	-170 35	0.00
150	1.01	0.00	0.50	0.87	170 35	-98 35	0.00
180	1.01	0.00	0.00	1.01	196 70	0.00	0.00
210	1.01	0.00	-0.50	0.87	170.35	98 35	0.00
240	1.01	0.00	-0.87	0.50	98.35	170 35	0.00
270	1.01	0.00	-1 01	0 00	0.00	196 70	0.00
300	1 01	0 00	-0 87	-0 50	-98 35	170 35	0.00
330	1.01	0.00	-0.50	-0 87	-170 35	98.35	0.00

Discrete Appurtenance Totals - Service

Wind Azimuth	V _s	V.,	OTM,	OTM _s	Torque
0	K	K	kip-ft	kip-ft	kip-ft
0	0.00	-4 16	-888 12	-0 10	0 04
30	2.08	-3.60	-769 12	-444 22	0.05
60	3.60	-2.08	-444.01	-769 33	0.05
90	4.16	0.00	0 11	-888 33	0.04
120	3 60	2.08	444.23	-769 33	0.01
150	2.08	3 60	769 34	-444.22	-0.01
180	0.00	4.16	888 34	-0 10	-0.04
210	-2 08	3 60	769 34	444 02	-0 05
240	-3 60	2.08	444.23	769 13	-0.05
270	-4 16	0.00	0 11	888 13	-0 04
300	-3.60	-2 08	-444 01	769 13	-0 01
330	-2 08	-3.60	-769 12	444 02	0.01

Force Totals

Load Case	l'ertical Forces K	Sum of Forces X K	Sum of Forces Z K	Sum of Overturning Moments, M _e kip-ft	Sum of Overturning Moments, M. kip-ft	Sum of Torques kip-ft
Leg Weight Bracing Weight Total Member Self-Weight	19 80 8.07 27 87			+1 83	-2 47	

valmont	Job	553967	Page 43 of 63
1545 Pidco Dr	Project	U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

Load Case	Vertical Forces K	Sum of Forces X K	Sum of Forces Z K	Sum of Overturning Moments, M _x kip-ft	Sum of Overturning Moments, M ₂ kip-ft	Sum of Torques kip-fi
Total Weight	43.16		- 1	-1.83	-2 47	
Wind 0 deg - No Ice		0.00	-39.18	-5448.87	-2.47	1 02
Wind 30 deg - No Ice		19 47	-33.72	-4740.33	-2738.25	13.61
Wind 60 deg - No Ice		34.82	-20.10	-2809.98	-4866.32	10.05
Wind 90 deg - No Ice		41.11	0.00	-1 83	-5692.09	-11.04
Wind 120 deg - No Ice		35 84	20.69	2829.55	-4906.55	-16 13
Wind 150 deg - No Ice	177	19.33	33.47	4674.62	-2702.42	-2.57
Wind 180 deg - No Ice	0	0.00	37 48	5291 86	-2 47	-1.02
Wind 210 deg - No Ice	9	-19 40	33 59	4711 59	2718.82	-13 61
Wind 240 deg - No Ice		-36 05	20.81	2854 02	4944.02	-10 05
Wind 270 deg - No Ice		-40.97	0.00	-1.83	5658 18	11 04
Wind 300 deg - No Ice	1	-34 49	-19.91	-2771.01	4793 90	16.13
Wind 330 deg - No Ice		-19 33	-33.47	-4678 28	2697.48	2 57
Member Ice	51 46		-			100000000000000000000000000000000000000
Total Weight Ice	128.53			-18 20	-14.28	
Wind 0 deg - Ice	120103	0 00	-6 33	-919.07	-14 28	-0 98
Wind 30 deg - Ice		3 15	-5 46	-798.07	-464.54	0.43
Wind 60 deg - Ice		5 52	-3 19	-472.34	-800.87	0 64
Wind 90 deg - Ice		6 46	0.00	-18.20	-928 74	-0 68
Wind 120 deg - Ice	3	5 55	3 20	430 00	-790.57	-0 74
Wind 150 deg - Ice		3.11	5 39	744.71	-454 74	0.76
Wind 180 deg - Ice		0.00	6.14	856.55	-14.28	0 98
Wind 210 deg - Ice		-3.11	5.38	745 72	426.77	-0 43
Wind 240 deg - Ice		-5.53	3 19	430.58	763.02	-0 64
Wind 270 deg - Ice		-6.37	0 00	-18.20	881.76	0.68
Wind 300 deg - Ice		-5.46	-3 15	-462.54	755 35	0.74
Wind 330 deg - Ice		-3 11	-5 39	-781 10	426.19	-0 76
Total Weight	43.16			-1 83	-2 47	
Wind 0 deg - Service	13.10	0 00	-12.79	-1778.52	-0.10	0.33
Wind 30 deg - Service		6.36	-11.01	-1547.16	-893.41	4.44
Wind 60 deg - Service		11 37	-6.56	-916.83	-1588 30	3.28
Wind 90 deg - Service		13 42	0.00	0.11	-1857.94	-3 60
Wind 120 deg - Service		11 70	6.76	924 64	-1601.43	-5 27
Wind 150 deg - Service		631	10 93	1527.11	-881.72	-0.84
Wind 180 deg - Service		0 00	12.24	1728.66	-0.10	-0 33
Wind 210 deg - Service		-6 33	10 97	1539 19	888 48	-4 44
Wind 240 deg - Service		-11 77	6.80	932 63	1615.08	-3 28
Wind 270 deg - Service		-13 38	0.00	0.11	1848.28	3 60
Wind 300 deg - Service		-11 26	-6.50	-904.11	1566.06	5 27
Wind 330 deg - Service		-6 31	-10.93	-1526.89	881.52	0 84

Load Combinations

Comb No.		Description
100	Dead Only	
2	1.2 Dead+1 0 Wind 0 deg - No Ice	
3	1 2D+1 0W (pattern 1) 0 deg - No Ice	
4	1 2D+1 0W (pattern 2) 0 deg - No Ice	
5	0 9 Dead+1 0 Wind 0 deg - No Ice	
6	1 2 Dead+1 0 Wind 30 deg - No Ice	
7	1.2D+1.0W (pattern 1) 30 deg - No Ice	
8	1 2D+1 0W (pattern 2) 30 deg - No Ice	
9	0 9 Dead+1 0 Wind 30 deg - No Ice	
10	1 2 Dead+1 0 Wind 60 deg - No Ice	
11.	1.2D+1.0W (pattern 1) 60 deg - No Ice	

valmont	Job 553967	Page 44 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, F	Date 12:33:09 08/19/22
Plymouth, IN Phone (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

Camb.	Description	on	
No. 12	1 2D+1 0W (pattern 2) 60 deg = No lee		-
13	0 9 Dead+1 0 Wind 60 deg - No Ice		
14	1 2 Dead+1 0 Wind 90 deg - No Ice		
15	1 2D+1 0W (pattern I) 90 deg - No Ice		
16	1 2D+1 0W (pattern 2) 90 deg - No Ice		
17 18	0.9 Dead+1.0 Wind 90 deg - No Ice 1.2 Dead+1.0 Wind 120 deg - No Ice		
19	1 2D+1 0W (pattern 1) 120 deg - No Ice		
20	1 2D+1 0W (pattern 2) 120 deg - No Ice		
21	0 9 Dead+1 0 Wind 120 deg - No Ice		
22	1 2 Dead+1 0 Wind 150 deg - No Ice		
23 24	1 2D+1 0W (pattern 1) 150 deg - No Ice		
25	1.2D+1.0W (pattern 2) 150 deg - No Ice 0.9 Dead+1 0 Wind 150 deg - No Ice		
26	1 2 Dead+1 0 Wind 180 deg - No Ice		
27	1 2D+1 0W (pattern 1) 180 deg - No Ice		
28	1.2D+1.0W (pattern 2) 180 deg - No Ice		
29	0.9 Dead+1.0 Wind 180 deg - No Ice		
30 31	1 2 Dead+1 0 Wind 210 deg - No Ice 1 2D+1 0W (pattern 1) 210 deg - No Ice		
32	1 2D+1 0W (pattern 2) 210 deg - No Ice		
33	0 9 Dead+1 0 Wind 210 deg - No Ice		
34	1 2 Dead+1 0 Wind 240 deg - No Ice		
35	1 2D+1 0W (pattern 1) 240 deg - No Ice		
36	1 2D+1 0W (pattern 2) 240 deg - No Ice		
37 38	0 9 Dead+1 0 Wind 240 deg - No Ice 1 2 Dead+1 0 Wind 270 deg - No Ice		
39	1 2D+1 0W (pattern 1) 270 deg - No Ice		
40	1 2D+1 0W (pattern 2) 270 deg - No Ice		
41	0 9 Dead+1 0 Wind 270 deg - No Ice		
42 43	1.2 Dead+1.0 Wind 300 deg - No Ice		
44	1 2D+1 0W (pattern 1) 300 deg - No Ice 1 2D+1 0W (pattern 2) 300 deg - No Ice		
45	0 9 Dead+1 0 Wind 300 deg - No Ice		
46	1.2 Dead+1.0 Wind 330 deg - No Ice		
47	1 2D+1 0W (pattern 1) 330 deg - No Ice		
48	1 2D+1 0W (pattern 2) 330 deg - No Ice		
50	0 9 Dead+1 0 Wind 330 deg - No Ice 1 2 Dead+1 0 Ice+1 0 Temp		
51	1 2 Dead+1 0 Wind 0 deg+1 0 Ice+1 0 Temp		
52	1 2 Dead+1 0 Wind 30 deg+1 0 Ice+1 0 Temp		
53	1 2 Dead+1 0 Wind 60 deg+1 0 Ice+1 0 Temp		
54	1 2 Dead+1 0 Wind 90 deg+1 0 Ice+1 0 Temp		
55 56	1.2 Dead+1.0 Wind 120 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 150 deg+1.0 Ice+1.0 Temp		
57	1 2 Dead+1 0 Wind 180 deg+1 0 Ice+1 0 Temp		
58	1 2 Dead+1 0 Wind 210 deg+1.0 Ice+1 0 Temp		
59	1 2 Dead+1 0 Wind 240 deg+1 0 Ice+1 0 Temp		
60	1 2 Dead+1 0 Wind 270 deg+1 0 Ice+1 0 Temp		
61 62	1.2 Dead+1.0 Wind 300 deg+1.0 Ice+1.0 Temp 1.2 Dead+1.0 Wind 330 deg+1.0 Ice+1.0 Temp		
63	Dead+Wind 0 deg - Service		
64	Dead+Wind 30 deg - Service		
65	Dead+Wind 60 deg - Service		
66	Dead+Wind 90 deg - Service		
67 68	Dead+Wind 120 deg - Service		
69	Dead+Wind 150 deg - Service Dead+Wind 180 deg - Service		
70	Dead+Wind 210 deg - Service		
71	Dead+Wind 240 deg - Service		
72 73	Dead+Wind 270 deg - Service Dead+Wind 300 deg - Service		

valmont	Job	553967	Page 45 of 63
1545 Pidco Dr	Project	U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth 1N Phone (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

Comb. No.		Description	
74	Dead+Wind 330 deg - Service		

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov Load Comb	Axial K	Major Axis Moment	Minor Axi. Moment
TI	230 - 220	Thurs.	Wrote Property.			kip-ft	kip-fi
1.1	230 - 220	Leg	Max Tension	29	8 74	0.00	0 36
		Max Compression	18	-11 84	-0.32	-0 19	
			Max Mx	14	-10.52	0.37	0.01
			Max My	2	-11 78	-0.00	0 38
			Max Vy	14	2 49	-0.36	-0 03
		Participal I	Max Vx	2	-2 58	-0.00	0 38
		Diagonal	Max Tension	6	2 94	0.00	0 00
			Max Compression	14	-3 05	0.00	0.00
			Max Mx	59	0.47	-0 00	0.00
			Max. My	14	-2.71	-0 00	0.00
			Max Vy	59	0.01	-0.00	0.00
		770000000000	Max Vx	14	-0 00	-0 00	0.00
		Horizontal	Max Tension	2	0 79	0 00	0.00
			Max Compression	29	-0.68	0.00	0.00
			Max Mx	50	0.29	0.02	0.00
			Max My	34	-0 30	0 00	0.00
			Max Vy	50	-0 02	0 00	0 00
			Max Vx	34	-0.00	0.00	0.00
	Top Girt	Max Tension	34	0.51	0 00	0.00	
		Max Compression	10	-0 52	0 00	0.00	
		Max Mx	50	-0 02	0.02	0 00	
		Max My	34	-0.03	0.00	0 00	
			Max Vy	50	-0 02	0.00	0 00
		24,000,000	Max Vx	34	-0 00	0.00	0 00
	Bottom Girt	Max Tension	26	1 28	0 00	0.00	
			Max Compression	5	-1 17	0.00	0.00
			Max. Mx	50	0 02	0.02	0 00
			Max My	10	-0 34	0.00	-0 00
			Max Vy	50	-0 02	0.00	0 00
444	4.4 474	0.7	Max Vx	10	0 00	0.00	0.00
T2	220 - 200	Leg	Max Tension	13	60 89	0.63	-0 34
			Max Compression	34	-66.80	0.53	-0 31
			Max Mx	14	-10.53	-1 08	-0.07
			Max My	2	-11.78	-0 00	1.13
			Max Vy	14	4 36	-0 56	-0 11
		1.50.3.4	Max Vx	2	4.69	-0 00	0.63
		Diagonal	Max Tension	14	4 95	0.00	0.00
			Max Compression	14	-5.06	0.00	0.00
			Max Mx	59	0.67	-0 01	0 00
			Max My	14	-3 49	-0.00	0 00
			Max Vy	59	0.01	-0.01	0 00
		Name of the last	Max Vx	14	0.00	0 00	0 00
		Horizontal	Max Tension	26	1.04	0 00	0 00
			Max Compression	5	-0.83	0 00	0.00
			Max Mx	50	0.30	0 02	0.00
			Max My	34	0.20	0 00	0 00
			Max. Vy	50	-0.02	0.00	0.00
		E	Max. Vx	34	-0.00	0.00	0.00
		Top Girt	Max Tension	34	1.52	0.00	0 00
			Max Compression	10	-1 51	0.00	0 00
			Max Mx	50	0 00	0 02	0.00
			Max My	34	-0 56	0.00	0.00

valmont	Job 553967	Page 46 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth. IN Phone (574)936-4221 FAX. (574) 936-6458	Client Horvath Towers	Designed by Joseph

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
			Max. Vy	50	-0 02	0.00	0.00
			Max Vx	34	-0 00	0 00	0.00
		Bottom Girt	Max Tension	26	2.15	0.00	0.00
			Max Compression	2	-2 07	0.00	0.00
			Max. Mx	50	0.04	0 02	0.00
			Max. My	10	-0 72	0.00	-0.00
			Max Vy	50	-0 02	0.00	0 00
			Max. Vx	10	0.00	0.00	0.00
		Mid Girt	Max Tension	28	0.47	0.00	0.00
			Max Compression	43	-0 39	0.00	0.00
			Max Mx	50	0.05	0.02	0.00
			Max. My	10	0.18	0.00	-0.00
			Max Vy	50	-0.02	0.00	0.00
			Max Vx	10	0.00	0.00	0.00
73	200 - 180	Leg	Max Tension	13	147.59	3 59	-2.09
	200 - 100	res	Max Compression	34	-156.41	-1.71	1.07
			Max Mx	14	-136 48	4 13	0 20
				2	-155 12	0 00	
			Max. My	14	7 04	2.08	-4.11
			Max Vy	2			-0 07
		D	Max Vx		-7 34	0.00	-1 97
		Diagonal	Max Tension	14	8 97	0 00	0 00
			Max Compression	14	-8 88	0 00	0 00
			Max Mx	6	5 51	-0 01	-0 00
			Max. My	14	-5 67	0 00	0.00
			Max Vy	59	0 01	-0 01	0 00
		Access to the	Max Vx	14	0 00	0.00	0 00
		Horizontal	Max Tension	26	2 02	0.00	0 00
			Max Compression	5	-1 76	0 00	0.00
			Max, Mx	50	0 31	0.01	0 00
			Max. My	34	0.39	0.00	0.00
			Max Vy	50	-0.01	0.00	0.00
			Max Vx	34	-0 00	0.00	0.00
		Top Girt	Max Tension	34	1 59	0.00	0 00
			Max Compression	10	-1.57	0 00	0.00
			Max Mx	50	0.03	0.02	0.00
			Max My	34	-0 58	0.00	0.00
			Max Vy	50	0.02	0.00	0.00
			Max Vx	34	-0.00	0.00	0.00
		Bottom Girt	Max Tension	26	3.80	0.00	0.00
			Max Compression	34	-4 75	0.00	0.00
			Max Mx	50	0.37	0.02	0.00
			Max My	6	0.73	0.00	-0.00
			Max Vy	50	0.02	0.00	0 00
			Max Vx	6	0.00	0 00	0 00
		Mid Girt	Max Tension	26	1.79	0.00	0.00
			Max Compression	5	-1 53	0.00	0.00
			Max Mx	50	0.12	0.02	0 00
			Max My	10	-0.43	0 00	-0.00
			Max Vy	50	0.02	0.00	0.00
			Max. Vx	10	0.00	0 00	0.00
T4	180 - 160	Leg	Max Tension	13	152.17	-3 46	0.18
	100-100	LLE	Max Compression	34	-156.41	16 42	0 22
			Max. Mx	10	129.03	-18 75	-0 39
				14		1.15	
			Max. My		-5.72		26.32
			Max Vy	13	1 45	-17.04	-0 21
		Discount	Max Vx	6	3 14	-0.02	-19 05
		Diagonal	Max Tension	37	16.40	0.00	0.00
			Max Compression	10	-14 69	0 00	0 00
			Max Mx	13	-4 77	-0.28	-0.01
			Max My	10	7 34	0.11	-0.07
			Max Vy	10	0.07	0.00	0.00

valmont	Јо ь 553967	Page 47 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry,	Date 12:33:09 08/19/22
Plymouth, IN Phone (574)936-4221 FAX (574) 936-6458	Client Horvath Towers	Designed by Joseph

Section No.	Elevation fi	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment	Minor Axis Moment
			Max Vx	10	0.02	0 11	-0 07
		Top Girt	Max Tension	26	1.88	0.00	
		Top Circ				0.00	0 00
			Max Compression Max Mx	34	-2 63		0 00
				50	0 11 -0 23	-0.04	0.00
			Max. My	51 50		0.00	
			Max Vy		0.04	0 00	0 00
T5	160 - 140	100	Max Vx Max Tension	51	-0 00	0 00 -10.86	0 00
13	100 - 140	Leg	Max Compression	13 34	172.43 -184.19	11 04	0 13
				34	-176 60	14 13	0 22
			Max Mx	14	-6 56		
			Max My	34	-1 09	-0 36	0 22
			Max. Vy Max. Vx	6		14 13 0 02	
		Discount	Max Tension		0 63 4 55	0.01	-10 23 0 01
		Diagonal		6			
			Max Compression	10	-5 24	0.00	0.00
			Max Mx Max My	17	-4 31 2 62	-0.18	-0.02
				6	-3 63 0 04	-0 10	-0.04
			Max Vy Max Vx	14		0.00	0.00
T6	140 - 120	1		6	0.01	-0 10	-0.04
10	140 - 120	Leg	Max Tension	13	191.00	-5 89	0.09
			Max Compression Max Mx	10	-205 25 181 72	9 36 -10 40	0 13
			Max My	14	-7.55	0.05	8 89
			Max Vy Max Vx	13 31	061 -018	-10 34 0 02	-0.15
		Discount					6 47
		Diagonal	Max Tension	35	3 08	0 00	0.00
			Max Compression	14	-3 77	0 00	0.00
			Max Mx	34	2.03	0 10	0.00
			Max My	54	0 23	0.05	-0 01
			Max. Vy	51	-0.04	0 07	0.01
T*Y	120 - 100-	T. B. editor	Max Vx	51	-0.00	0.00	0.00
17	120 - 100	Leg	Max Tension	13	207 04	-4.80	0 07
			Max Compression	34	-224 30	8 04	0 09
			Max Mx	34	-214 78	8.43	011
			Max My	14	-9.17	-0 02	7.36
			Max Vy	35 7	-0 44	7 14 -0 02	0.09 -6.22
		Discount	Max Vx		0 25		
		Diagonal	Max Tension	43	3.35	0.00	0.00
			Max Compression	18	-3.87	0.00	0.00
			Max. Mx	34	2.41	0.09	0.00
			Max My	51	-0.01	0.06	0.01
			Max Vy	53	0.05	0.07	-0 01
T8	100 - 80	17.00	Max. Vx	51	0 00	0.00	0.00
18	100 - 80	Leg	Max Tension	13	222 56	-4 20	0.05
			Max Compression	34	-242.76	7.06	0 10
			Max Mx	34	-242 76	7.06	0 10
			Max My	14	-10 39	-0 06	6 90
			Max Vy	35	-0 40	6.33	0 10
		Port of the	Max Vx	14	-0 27	-0.06	6 90
		Diagonal	Max Tension	43	3 78	0.00	0.00
			Max. Compression	18	-4.35	0.00	0 00
			Max Mx	51	0 38	0.09	0 01
			Max My	51	-0 00	0.08	0.01
			Max Vy	53	0.05	0.09	-0 01
			Max Vx	51	0 00	0.00	0.00
1.8	80 - 60	Leg	Max Tension	13	237 95	-4 43	0.04
			Max Compression	34	-261.68	5.83	0.05
			Max Mx	34	-252 67	6.55	0.05
			Max My	14	-12.40	-0 01	5 58
			Max Vy	35	-0 32	5.85	0.05
			Max. Vx	14	-0.24	-0.01	5 58

valmont	Job	553967	Page 48 of 63	
1545 Pidco Dr	Project	-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22	
Plymouth IN Phone (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph	

Section No	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
				Comb.	K	kip-ft	kip-ft
		Diagonal	Max Tension	43	4.10	0.00	0.00
			Max Compression	18	-4 54	0.00	0 00
			Max Mx	53	0 34	0 12	-0.02
			Max My	51	0.01	0.10	0.02
			Max Vy	53	0.07	0.12	-0.02
			Max Vx	51	0.00	0.00	0.00
T10	60 - 40	Leg	Max Tension	13	253.04	-4 15	0.02
			Max Compression	34	-280 30	5.15	0.01
			Max Mx	34	-271 05	5 67	0.04
			Max. My	14	-13.19	0 02	4 94
			Max Vy	35	-0 26	5 08	0.04
			Max, Vx	39	0.13	0.06	-4 07
		Diagonal	Max Tension	19	451	0.00	0.00
			Max Compression	19	-4 86	0.00	0.00
			Max. Mx	53	0 43	0.14	-0 02
			Max. My	51	-0.16	0.14	0.02
			Max Vy	53	0.07	0 14	-0 02
			Max Vx	51	0 00	0.00	0.00
T11	40 - 20	Leg	Max Tension	13	267.62	-3.80	0 02
			Max Compression	34	-298 40	6 19	0.10
			Max Mx	34	-298 40	619	0.10
			Max My	14	-14 76	-0.15	4 88
			Max Vv	57	0.59	-4.49	-0 00
			Max Vx	14	0.22	-0.21	4.58
		Diagonal	Max Tension	43	4.77	0.00	0 00
			Max Compression	18	-5 38	0.00	0.00
			Max Mx	53	1.13	0.17	-0.02
			Max My	51	-0 18	0.15	0 02
			Max Vy	53	0 08	0.17	-0.02
			Max Vx	51	0.00	0.00	0.00
T12	20 - 0	Leg	Max Tension	13	281.27	-3.97	0.01
			Max Compression	34	-315 96	0.06	0.00
			Max. Mx	51	-90.22	5 60	0 02
			Max. My	14	-16.42	-0 35	8 04
			Max Vv	57	-0 92	-4 52	-0.00
			Max Vx	14	0 88	-0 45	7.96
		Diagonal	Max Tension	45	6 43	0 00	0.00
		D	Max Compression	18	-7 29	0 00	0.00
			Max. Mx	53	-1.26	0 24	0.03
			Max My	54	-2.29	0 23	0.03
			Max. Vy	53	0 10	0 24	0.03
			Max Vx	54	-0.01	0.00	0.00

Maximum Reactions

Location	Condition	Gov Load Comb.	Vertical K	Horizoniał, X K	Horizontal, Z K
Leg C	Max Vert	34	321 36	24 91	-14 08
	Max. H _x	34	321 36	24 91	-14 08
	Max H,	13	-285 30	-22.15	12.47
	Min Vert	13	-285.30	-22.15	12.47
	Min. H.	13	-285 30	-22 15	12 47
	Min H.	34	321 36	24.91	-14 08
Leg B	Max Vert	18	319.02	-24 42	-14 58
	Max. Hx	45	-280 95	21 55	12 94
	Max H,	45	-280 95	21 55	12.94

valmont	Job	553967	Page 49 of 63
1545 Pidco Dr	Project	U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone. (574)936-4221 FAX. (574) 936-6458	Client	Horvath Towers	Designed by Joseph

Location	Condition	Gov. Load Comb	Vertical K	Horizontal, X K	Horizontal, I
	Min Vert	45	-280.95	21.55	12 94
	Min H,	18	319 02	-24 42	-14 58
	Min H.	18	319 02	-24 42	-14 58
Leg A	Max Vert	2	307 62	0.03	27 11
	Max H _x	39	17.39	0 98	141
	Max. H.	2	307.62	0 03	27 11
	Min Vert	29	-268 00	-0 03	-23 68
	Min. H.	19	-117.30	-1.09	-11.12
	Min. H.	29	-268 00	-0.03	-23 68

Tower Mast Reaction Summary

Load Combination	Vertical	Shear,	Shear: K	Overturning Moment, M. kip-ft	Overturning Moment, M _s kip-ft	Torque
	K	K				kip-ft
Dead Only	43 16	-0 00	-0 00	-1 72	-2.44	0.00
1 2 Dead+1 0 Wind 0 deg - No Ice	51 79	-0 00	-39 18	-5532.05	-3.00	1 05
1 2D+1 0W (pattern 1) 0 deg - No Ice	51 79	-0.00	-36 48	-4912 81	-3.00	1 05
1 2D+1 0W (pattern 2) 0 deg - No Ice	51 79	-0 00	-26 24	-3948 77	-3.00	1.04
0 9 Dead+1.0 Wind 0 deg - No Ice	38.84	-0.00	-39 18	-5509 71	-2 25	1.04
I 2 Dead+1 0 Wind 30 deg - No Ice	51 79	19.46	-33.71	-4812 70	-2781.38	13.84
1 2D+1.0W (pattern 1) 30 deg - No Ice	51 79	18.12	-31.38	-4276 55	-2471 46	13.74
1 2D+1 0W (pattern 2) 30 deg - No Ice	51 79	13 05	-22 60	-3433 03	-1984 25	13 73
0 9 Dead+1 0 Wind 30 deg - No lce	38 84	19.46	-33.71	-4793 45	-2769 73	13.81
1 2 Dead+1 0 Wind 60 deg - No	51.79	34 82	-20 10	-2852.77	-4940 97	10 08
Ice I 2D+1.0W (pattern I) 60 deg -	51.79	32 48	-18 75	-2543 47	-4405.10	10 07
No Ice I 2D+I 0W (pattern 2) 60 deg -	51.79	23 25	-13 43	-2026.57	-3509.77	10.07
No Ice 0.9 Dead+1 0 Wind 60 deg - No	38 84	34 82	-20 10	-2841 19	-4921 04	10.07
Ice I 2 Dead+I 0 Wind 90 deg - No	51.79	41 11	0.00	-2.83	-5778.45	-11.23
Ice I 2D+1 0W (pattern 1) 90 deg -	51.79	38 41	0 00	-2 53	-5160.44	-11 14
No Ice 1 2D+1 0W (pattern 2) 90 deg -	51 79	27 39	0.00	-2 33	-4095.76	-11.13
No Ice 0 9 Dead+1 0 Wind 90 deg - No	38 84	41.11	0 00	-2 25	-5755 48	-1121
lce 1 2 Dead+1 0 Wind 120 deg -	51 79	35.84	20.69	2871 60	-4980 65	-16.15
No Ice I 2D+1 0W (pattern 1) 120 deg - No Ice	51 79	33.51	19.35	2563 72	-4447 29	-16.15
1.2D+1.0W (pattern 2) 120 deg No Ice	51 79	23.86	13.77	2034 81	-3531 16	-16 14
0 9 Dead+1 0 Wind 120 deg -	38 84	35 84	20.69	2860 95	-4960 55	-16.15
No Ice 1 2 Dead+1 0 Wind 150 deg -	51 79	19 32	33 47	4746 06	-2743 65	-2 43

valmont	Job 553967	Page 50 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth IN Phone (574)936-4221 FAX (574) 936-6458	Client Horvath Towers	Designed by Joseph

Load Combination	l'erucal	Shear,	Shear:	Overturning Moment, M.	Overturning Moment, M _z	Torque
a.c. v	K	K	K	kip-fi	kip-ft	kip-fi
No Ice I 2D+1 0W (pattern 1) 150 deg - No Ice	51 79	17.98	31.15	4212 02	-2435.62	-2 50
1 2D+1 0W (pattern 2) 150 deg No Ice	51 79	12 96	22 44	3388 79	-1960 49	-2 5
9 Dead+1 0 Wind 150 deg - No Ice	38.84	19 32	33.47	4728 08	-2732.29	-2 4
1.2 Dead+1 0 Wind 180 deg - No Ice	51.79	-0.00	37 48	5373 26	-3 01	-1 0
1 2D+1 0W (pattern 1) 180 deg No Ice	51 79	-0 00	34.79	4756 70	-3 01	-1 0
2D+1 0W (pattern 2) 180 deg No Ice	51 79	-0 00	25 21	3849.04	-3 01	-1 0
0.9 Dead+1 0 Wind 180 deg - No Ice	38 84	-0 00	37.48	5352.65	-2 25	-1.04
l 2 Dead+1 0 Wind 210 deg - No Ice	51 79	-19.39	33.59	4783 85	2759 22	-13 82
1.2D+1.0W (pattern 1) 210 deg · No Ice	51 79	-18 05	31 27	4249 79	2451 25	-13.74
1 2D+1 0W (pattern 2) 210 deg - No Ice	51.79	-13 00	22.51	3411 48	1967.44	-13 72
0 9 Dead+1.0 Wind 210 deg = No Ice	38 84	-19 39	33.59	4765 69	2749.27	-13.80
1 2 Dead+1 0 Wind 240 deg - No Ice	51 79	-36 05	20.81	2896 83	5017,61	-10.08
2D+1 0W (pattern 1) 240 deg No Ice	51 79	-33 72	19 47		4484 33	-10 0
2D=1 0W (pattern 2) 240 deg No Ice	51 79	-23 98	13.85	2049 94	3550 95	-10.0
9 Dead+1 0 Wind 240 deg - No Ice	38 84	-36 04	20 81	2886 05	4998.83	-10.03
2 Dead+1 0 Wind 270 deg - No Ice 2D+1 0W (pattern 1) 270 deg	51 79 51 79	-40 96 -38.29	0.00	-2 81 -2 52	5742.96 5127.74	11.22
No Ice		-38.29	0.00		4069 27	11.1:
2D+1 0W (pattern 2) 270 deg No Ice 9 Dead+1 0 Wind 270 deg -	51.79 38.84	-40 97	0 00	-2 33 -2 24	5721 65	11.1.
To Ice 2 Dead+1.0 Wind 300 deg -	51.79	-34.49	-19.91	-2.24	4866.12	16.1
lo lce 2D+1 0W (pattern 1) 300 deg	51.79	-34.49	-18 57	-2505 40	4332.70	16.14
No Ice 2D+1.0W (pattern 2) 300 deg	51.79	-23 05	-13 31	-2001.54	3460 03	16 14
No Ice 9 Dead+1 0 Wind 300 deg -	38.84	34 49	-19 91	-2802 01	4848 02	16 13
lo Ice 2 Dead+1 0 Wind 330 deg -	51.79	-19 32	-33 47	-4749 60	2738.68	2.43
lo Ice 2D+1.0W (pattern 1) 330 deg	51.79	-17.98	-31 15	-4215.81	2430 21	2 50
No Ice 2D+1.0W (pattern 2) 330 deg	51 79	-12 95	-22 44	-3392.72	1954 84	2 50
No Ice 9 Dead+1 0 Wind 330 deg -	38 84	-19 32	-33.47	-4730 65	2728 73	2.4.
lo Ice						
2 Dead+1 0 Ice+1 0 Temp 2 Dead+1 0 Wind 0 deg+1 0	137 16 137 16	-0 00 -0 00	0.00 -6.33	-17 99 -954 34	-14.65 -15 18	-0.00 -0.9:
ce+1 0 Temp 2 Dead+1 0 Wind 30 deg+1 0 ce+1 0 Temp	137.16	3.15	-5.46	-828 69	-483.06	0.4:
2 Dead+1 0 Wind 60 deg+1 0	137 16	5.52	-3.19	-490 17	-832.45	0.65

valmont	Job 55	3967	Page 51 of 63
1545 Pideo Dr	Project U-22 x 230' - HV15	74 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth IN Phone (574)936-4221 FAX (574) 936-6458	Client Horvati	Towers	Designed by Joseph

Load Combination	Vertical	Shear,	Shear:	Overturning Moment M,	Overturning Moment, M;	Torque	
	K	K	K	kip-ft	kip-ft	kip-ft	
Ice+I 0 Temp							
1 2 Dead+1 0 Wind 90 deg+1 0 Ice+1 0 Temp	137 16	6 46	0.00	-18 33	-965 15	-0.69	
1.2 Dead+1.0 Wind 120	137 16	5.54	3.20	447 17	-821 43	-0 76	
deg+1 0 Ice+1 0 Temp							
1 2 Dead+1 0 Wind 150	137.16	3.11	5 39	774 26	-472 76	0.73	
deg+1 0 lce+1 0 Temp							
1 2 Dead+1 0 Wind 180	137 16	-0 00	6 14	890 59	-15 18	0 95	
deg+1 0 Ice+1 0 Temp							
1 2 Dead+1 0 Wind 210	137.16	-3.11	5.38	775.36	443 04	-0 45	
deg+1 0 Ice+1 0 Temp	13717	2.65	2.10	117.01	700 17	0.77	
1 2 Dead+1 0 Wind 240	137 16	-5 53	3 19	447 81	792 17	-0 64	
deg+1 0 Ice+1 0 Temp	122.10	r 27	0.00	10.11	015.51	0.70	
1 2 Dead+1 0 Wind 270	137 16	-6.37	0.00	-18.33	915 51	0.69	
deg+1 0 Ice+1 0 Temp	107.12		2.12	470.00	201.20	0.77	
1.2 Dead+1.0 Wind 300	137 16	-5 46	3 15	-479 89	784.28	0.76	
deg+1 0 Ice+1 0 Temp	125 16	4.11	c 30	010.00	110.10	0.20	
1.2 Dead+1.0 Wind 330	137 16	-3 11	-5 39	-810 88	442 42	-0.73	
deg+1 0 Ice+1 0 Temp	12.16	0.00	10.70	1002.00	2 10	0.21	
Dead+Wind 0 deg - Service	43 16	-0 00	-12.79	-1803 08	-2.49	0 34	
Dead+Wind 30 deg - Service	43 16	6 36	-1101	-1568 84	-907.30	4.46	
Dead+Wind 60 deg - Service	43 16	11 37	-6.56	-930 35	-1610 95	3.29	
Dead+Wind 90 deg - Service	43 16	13.42	0.00	-1 74	-1883.84	-3 61	
Dead+Wind 120 deg - Service	43 16	11.70	6.76	934 44	-1623.98	-5 27	
Dead+Wind 150 deg - Service	43.16	6.31	10.93	1544 83	-895 38	-0 84	
Dead+Wind 180 deg - Service	43 16	-0.00	12 24	1749 15	-2 49	-0 34	
Dead+Wind 210 deg - Service	43 16	-6.33	10.97	1557 11	897 47	-4 46	
Dead+Wind 240 deg - Service	43 16	-11 77	6.80	942 56	1633 04	-3 29	
Dead+Wind 270 deg - Service	43.16	-13.38	0.00	-1.74	1869.25	3 61	
Dead+Wind 300 deg - Service	43 16	-11.26	-6 50	-917.45	1583 58	5 27	
Dead+Wind 330 deg - Service	43.16	-6.31	-10.93	-1548.26	890.41	0 84	

Solution Summary

777.0	Su	m of Applied Force.	S		Sum of Reaction	IS.	
Load	PX	PY	PZ	$P\Lambda'$	PY	PZ	% Erro
Comb.	K	K	K	K	K	K	
1	0.00	-43 16	0.00	0.00	43 16	0.00	0.000%
2	0.00	-51.79	-39.18	0.00	51.79	39.18	0.006%
3	0.00	-51 79	-36 48	0.00	51 79	36 48	0 0059
4	0.00	-51 79	-26 24	0.00	51.79	26.24	0 0059
5	0.00	-38 84	-39 18	0.00	38 84	39.18	0.0099
6	19.47	-51.79	-33 72	-19 46	51 79	33.71	0.0079
7	18.12	-51 79	-31 38	-18 12	51 79	31 38	0.0069
8	13 05	-51 79	-22.60	~13.05	51 79	22 60	0 0069
8	19.47	-38 84	-33.72	-19 46	38 84	33.71	0.0079
10	34 82	-51 79	-20 10	-34.82	51.79	20.10	0.0079
11	32 49	-51 79	-18 76	-32.48	51 79	18 75	0 0069
12	23.26	-51 79	-13 43	-23.25	51.79	13 43	0.0069
13	34 82	-38 84	-20 10	-34.82	38.84	20.10	0.0079
14	41.11	-51.79	0.00	-41.11	51 79	-0.00	0.0079
15	38 42	-51 79	0.00	-38.41	51 79	-0.00	0.0069
16	27 39	-51 79	0.00	-27.39	51.79	-0.00	0.0069
17	41.11	-38 84	0 00	-41.11	38.84	-0.00	0.0079
18	35 84	-51 79	20.69	-35 84	51 79	-20 69	0.0069
19	33 52	-51.79	19 35	-33.51	51 79	-19 35	0.0059
20	23.86	-51 79	13.78	-23 86	51.79	-13 77	0.0059
21	35 84	-38 84	20 69	-35.84	38 84	-20 69	0 0099

valmont	Job	553967	Page 52 of 63
1545 Pidco Dr	Project U-22 :	k 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth IN Phone: (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

		ım of Applied Force			Sum of Reactions			
Load	PX	PY	PZ	PX	PY	PZ	% Erro	
Comb.	K	K	K	K	K	K		
22	19 33	-51 79	33 47	-19.32	51 79	-33.47	0.0079	
23	17.98	-51.79	31.15	-17.98	51 79	-31.15	0.006%	
24	12.96	-51 79	22 44	-12.96	51 79	-22 44	0.0069	
25	19 33	-38.84	33 47	-19 32	38.84	-33.47	0 0079	
26	-0 00	-51.79	37 48	0.00	51.79	-37 48	0 0079	
27	-0 00	-51.79	34 79	0.00	51.79	-34 79	0.0069	
28	-0 00	-51.79	25 21	0 00	51 79	-25 21	0 0069	
29	-0 00	-38 84	37 48	0.00	38 84	-37 48	0.0079	
30	-19 40	-51.79	33 59	19.39	51.79	-33 59	0.0079	
31	-18 05	-51.79	31.27	18.05	51 79	-31 27	0.0069	
32	-13 00	-51 79	22.51	13 00	51 79	-22 51	0.0069	
33	-19 40	-38 84	33 59	19 39	38.84	-33 59	0.0079	
34	-36.05	-51 79	20.81	36.05	51.79	-20.81	0.0069	
35	-33.73	-51.79	19 47	33.72	51 79	-19 47	0.005%	
36	-23 98	-51 79	13.85	23 98	51 79	-13 85	0.0059	
37	-36.05	-38 84	20.81	36.04	38 84	-20.81	0.0099	
38	-40.97	-51.79	0.00	40.96	51 79	-0 00	0.0079	
39	-38 29	-51.79	0.00	38 29	51 79	-0.00	0.0069	
40	-27 30	-51 79	0.00	27 29	51 79	-0 00	0.0069	
41	-40 97	-38 84	0.00	40 97	38.84	-0 00	0 0079	
42	-34.49	-51 79	-19.91	34 49	51.79	19.91	0.0079	
43	-32 17	-51 79	-18.57	32.16	51 79	18.57	0.0069	
44	-23 05	-51.79	-13 31	23 05	51 79	13 31	0.0069	
45	-34 49	-38 84	-19 91	34.49	38 84	19.91	0.0079	
46	-19 33	-51.79	-33 47	19.32	51.79	33.47	0.0079	
47	-17 98	-51.79	-31 15	17.98	51 79	31 15	0 0069	
48	-12 96	-51 79	-22.44	12.95	51 79	22 44	0 0069	
49	-19 33	-38 84	-33.47	19 32	38.84	33 47	0 0079	
50	0 00	-137 16	0.00	0.00	137 16	-0 00	0.0019	
51	0.00	-137.16	-6 33	0.00	137 16	6 3 3	0.0019	
52	3.15	-137.16	-5 46	-3.15	137 16	5.46	0.0019	
53	5 52	-137.16	-3.19	-5.52	137 16	3.19	0.0019	
54	6 46	-137.16	0.00	-6.46	137.16	-0.00	0.0019	
55	5.55	-137.16	3 20	-5.54	137 16	-3 20	0.0019	
56	3.11	-137 16	5 39	-3 11	137 16	-5 39	0.0019	
57	0.00	-137 16	6 14	0.00	137 16	-6.14	0.0019	
58	-3.11	-137 16	5 38	3.11	137 16	-5 38	0.0019	
59	-5.53	-137 16	3 19	5 53	137 16	-3 19	0.0019	
60	-6.37	-137 16	0.00	6 3 7	137.16	-0.00	0.0019	
61	-5 46	-137.16	-3.15	5 46	137.16	3.15	0.0019	
62	-3.11	-137 16	-5.39	3.11	137.16	5 39	0.0019	
63	0.00	-43 16	-12 79	0.00	43 16	12.79	0.0039	
64	6 36	-43 16	-1101	-6 36	43 16	11.01	0.0039	
65	11.37	-43 16	-6.56	-11.37	43 16	6.56	0.0039	
66	13 42	-43 16	0 00	-13 42	43 16	-0 00	0.0039	
67	11 70	-43 16	6.76	-11 70	43 16	-6 76	0.0039	
68	631	-43 16	10 93	-6 31	43 16	-10 93	0.0039	
69	0.00	-43 16	12 24	0.00	43 16	-12.24	0.0039	
70	-6 33	-43 16	10 97	6.33	43 16	-10 97	0.0039	
71	-11 77	-43 16	6 80	11.77	43 16	-6.80	0.0039	
72	-13 38	-43 16	0 00	13.38	43 16	-0.00	0.0039	
73	-11 26	-43 16	-6 50	11.26	43.16	6.50	0.0039	
74	-6.31	-43 16	-10 93	631	43 16	10.93	0.0039	

valmont	Job	553967	Page 53 of 63
1545 Pidco Dr	Project	U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth. IN Phone: (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

Load Combination	Converged?	Number of Cycles	Displacement Tolerance	Force Tolerance
	N/			The second secon
1	Yes	7	0 00000001	0.00012408
2	Yes	21	0 00006616	0.0001073
3	Yes	21	0 00006680	0.0001083
4	Yes	21	0 00006743	0.00010889
5	Yes	20	0.00008618	0.00013941
6	Yes	21	0.00007199	0.00011638
7	Yes	21	0 00007139	0 00011533
8	Yes	21	0.00007214	0 00011603
9	Yes	21	0.00006035	0 00009814
10	Yes	21	0 00007734	0 00012431
11	Yes	21	0 00007558	0 00012164
12	Yes	21	0 00007645	0.00012259
13	Yes	21	0 00006519	0 00010548
14	Yes	21	0 00007189	0 00011610
15	Yes	21	0 00007126	0 00011493
16	Yes	21	0 00007206	0.00011589
17	Yes	21	0 00006028	0 00009792
18	Yes	21	0 00006613	0 00010710
19	Yes	21	0 00006669	0 00010789
20	Yes	21	0 00006742	0 00010881
21	Yes	20	0 00008614	0 00013910
22	Yes	21	0 00007205	0 00011630
23	Yes	21	0 00007139	0.00011518
24	Yes	21	0 00007222	0 00011599
25	Yes	21	0 00006039	0.00009807
26	Yes	21	0 00007743	0 00012446
27	Yes	21	0.00007563	0 00012175
28	Yes	21	0 00007660	0 00012261
29	Yes	21	0 00006524	0 00010553
30	Yes	21	0.00000324	0 00011647
31				
	Yes	21	0.00007147	0.00011537
32	Yes	21	0.00007227	0.00011611
33	Yes	21	0.00006046	0 00009822
34	Yes	21	0.00006618	0.00010706
35	Yes	21	0.00006665	0.00010790
36	Yes	21	0.00006740	0 00010881
37	Yes	20	0.00008627	0 00013912
38	Yes	21	0.00007187	0 00011605
39	Yes	21	0.00007124	0.00011486
40	Yes	21	0.00007205	0.00011585
41	Yes	21	0.00006026	0.00009788
42	Yes	21	0 00007716	0 00012406
43	Yes	21	0 00007542	0.00012129
44	Yes	21	0 00007635	0 00012236
45	Yes	21	0 00006503	0 00010520
46	Yes	21	0 00000303	0 00011516
47	Yes	21	0 00007129	0.00011508
48	Yes	21	0 00007207	0 00011587
49	Yes	21	0.00006026	0.00009795
50	Yes	8	100000000	0.00008220
51	Yes	22	0 00000001	0 00010258
52	Yes	22	0.00000001	0 00010398
53	Yes	22	0.00000001	0 00010531
54	Yes	22	0 00000001	0 00010433
55	Yes	22	0 00000001	0 00010163
56	Yes	22	0.00000001	0 00010191
57	Yes	22	0.00000001	0.00010249
58	Yes	22	0 00000001	0 00010155
		22	0 00000001	
59	Yes			0 00010081
60	Yes	22	0.00000001	0.00010170
61	Yes	22	0 00000001	0.00010256
62	Yes	22	0 00000001	0.00010167

valmont	Јов 553967	Page 54 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shre	Date wsberry, KY 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

63	Yes	21	0.00006187	0 00009923
64	Yes	21	0 00006360	0 00010193
65	Yes	21	0 00006522	0 00010441
66	Yes	21	0.00006350	0.00010175
67	Yes	21	0.00006177	0.00009902
68	Yes	21	0 00006360	0.00010179
69	Yes	21	0.00006530	0.00010439
70	Yes	21	0.00006363	0.00010191
71	Yes	21	0.00006177	0 00009908
72	Yes	21	0.00006349	0.00010169
73	Yes	21	0 00006515	0 00010420
74	Yes	21	0.00006356	0 00010175

Maximum Tower Deflections - Service Wind

Section	Elevation	Horz	Gor.	Tilt	Twist
No.	fi	Deflection in	Load Comb.	0.	0.
TI	230 - 220	18 995	66	0.7930	0.0359
T2	220 - 200	17 314	66	0 7867	0 0344
T3	200 - 180	14 073	66	0 7076	0.0291
T4	180 - 160	11 287	66	0 5618	0.0228
T5	160 - 140	8 076	66	0 4811	0 0176
T6	140 - 120	5.763	66	0 4080	0.0138
T7	120 - 100	3 975	66	0 3304	0.0113
T8	100 - 80	2.614	66	0.2554	0.0092
T9	80 - 60	1619	71	0.1841	0.0070
T10	60 - 40	0 908	71	0.1348	0.0052
T11	40 - 20	0 4 1 0	71	0 0878	0 0033
T12	20 - 0	0 106	71	0.0431	0.0013

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	io i	fi
230.00	5/8" x 10' lightning rod	66	18.995	0.7930	0.0359	92696
225.00	208 sq ft EPA	66	18 156	0 7914	0.0352	92696
210.00	130 sq ft EPA	66	15 635	0.7600	0.0322	10307
195.00	130 sq ft EPA	66	13 370	0.6720	0.0274	10595
115.00	OB light	66	3 594	0.3115	0.0108	10582

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov	Tilt	Twist
No.	Ġ.	Deflection	Load Comb.	0	
Ti	230 - 220	III	Como.	2 4 165	0.111)
773		58.389	14	2 4465	0 1111
T2	220 - 200	53.217	14	2 4274	0 1063
T3	200 - 180	43 247	14	2 1838	0 0900
T4	180 - 160	34 678	14	1.7336	0.0707

valmont	Job 553967	Page 55 of 63
1545 Pideo Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth, IN Phone (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

Section No.	Elevation	Horz. Deflection	Gor Load	Tili	Twist
	ſŧ	in	Comb.		à
T5	160 - 140	24.803	14	1.4788	0 0559
T6	140 - 120	17 694	14	1 2538	0.0435
T7	120 - 100	12 201	14	1.0151	0.0346
T8	100 - 80	8.029	34	0.7842	0.0281
T9	80 - 60	4 973	34	0 5652	0.0213
T10	60 - 40	2.788	34	0.4138	0.0159
TII	40 - 20	1.258	34	0.2697	0.0102
T12	20 - 0	0.326	34	0 1323	0.0040

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft _		Comb.	in	0	٥	ft
230 00	5/8" x 10' lightning rod	14	58 389	2 4465	0 1111	27113
225.00	208 sq ft EPA	14	55.808	2 4417	0.1088	27113
210 00	130 sq ft. EPA	14	48.053	2 3450	0.0995	3355
195 00	130 sq ft EPA	14	41 087	2 0744	0.0850	3452
115 00	OB light	34	11.033	0 9570	0.0330	3433

Bolt Design Data

Section No.	Elevation	Component Type	Boli Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load		Criteria
	fi			in	Bolts	per Bolt K	per Bolt K	Allowal	ble	
T1	230	Leg	A325N	1 0000	2	4.37	53.01	0.082	1	Bolt Tension
T2	220	Leg	A325N	1 2500	2	30 45	82 83		1	Bolt Tension
T3	200	Leg	A325N	1 0000	4	36.90	53.01	0 696	1	Bolt Tension
T4	180	Leg	A325N	1 0000	6	25 36	53.01	0 478	1	Bolt Tension
		Diagonal	A325N	1.0000	T.	16 40	17.37	0 944	1	Member Block Shear
		Top Girt	A325N	1.0000	T.	2.71	13 06	0 208	/	Member Block Shear
T5	160	Leg	A325N	1 0000	6	28 74	53 01	0 542	1	Bolt Tension
		Diagonal	A325N	1 0000	1	4 55	13 03	0 349	1	Member Block Shear
T6	140	Leg	A325N	1 0000	6	31 83	53 01	0 600	1 1	Bolt Tension
		Diagonal	A325N	1 0000	Ţ	3 08	13.03	0 237	1	Member Block Shear
T7	120	Leg	A325N	1 0000	6	34 51	53.01	0.651	1	Bolt Tension
		Diagonal	A325N	1 0000	1	3 35	13.03		1	Member Block Shear
T8	100	Leg	A325N	1 0000	6	37 09	53.01	0.700	1	Bolt Tension
		Diagonal	A325N	1 0000	1	3 78	13.03	0 290	1	Member Block Shear
Т9	80	Leg	A325N	1.2500	6	39 66	82 83	0,479	1	Bolt Tension

valmont	Јо в 553967	Page 56 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth. IN Phone. (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

Section No.	Elevation	Component Type	Bolt Grade	Bolt Size	Number Of	Maximum Load	Allowable Load	Ratio Load	Allowable Ratio	Criteria
	ſì			in	Bolts	per Boli K	per Bolt K	Allowable		
		Diagonal	A325N	1 0000	1	4.10	17 37	0 236	-1-	Member Block Shear
T10	60	Leg	A325N	1.2500	6	42 17	82 83	0 509	1	Bolt Tension
		Diagonal	A325N	1 0000	1	4 51	17.37	0 260	· ·	Member Block Shear
T11	40	Leg	A325N	1 2500	6	44 60	82.83	0 538	1	Bolt Tension
		Diagonal	A325N	1 0000	1	4 77	14 17	0 337	1	Member Block Shear
T12	20	Leg	F1554-10	1 2500	4	70.32	86.29	0.815	- 1	Bolt Tension
		Diagonal	A325N	1 0000	1	6 43	23.61	0.272	1	Member Block Shear

Compression Checks

Leg Design Data (Compression) Section Elevation Size L L_{μ} Klir $P_{\scriptscriptstyle H}$ Ratio A ϕP_n No P_u fi fi K K ϕP_s 230 - 220 TI 1 1/4 10.00 2 35 904 1 2272 -11 84 32.03 0 370 K-1 00 T2 220 - 200 1 3/4 20.00 2 43 666 2 4053 -66.80 86.22 0 775 V K 1.00 0 946 T3 200 - 180 2 1/4 20.00 2 43 518 3.9761 -156 41 165 34 V K=100 0 951 T4 180 - 160 #12ZG-58 - 1.25" - 1.00" 20.03 10 02 428 3.6816 164 52 -156.41 conn. (Pirod 194434) K=1 00 T5 #12ZG-58 - 1 50" - 1.00" 10.02 357 5 3014 0.741 160 - 140 20.03 -184 19 248 43 K=1.00 conn. (Pirod 194651) T6 140 - 120 #12ZG-58 - 1 50" - 1.00" 20.03 10.02 357 5 3014 -205.25 248.43 0.826 K 1.00 conn. (Pirod 194651) 0.903 #12ZG-58 - 1 50" - 1.00" 357 T7 120 - 100 20.03 10.02 5 3014 -224.30 248 43 conn (Pirod 194651) K=1 00 V 357 0 977 T8 100 - 80 #12ZG-58 - 1 50" - 1.00" 20 03 10.02 5.3014 -242.76 248 43 conn. (Pirod 194651) K=1 00 1 T9 #12ZG-58 - 1 75" - 1.00" 20 03 10.02 30.6 72158 347 96 0.752 80 - 60 -261 69 K-1.00 conn -TR1-(Pirod 195213) 0 806 #12ZG-58 - 1 75" - 1 00" 306 T10 60 - 40 20 03 10.02 72158 -280 30 347 96 conn. (Pired 195217) K=1.00 W 0 858 TH #12ZG-58 - 1 75" - 1 00" 10.02 30.6 40 - 20 20.03 7.2158 -298 40 347.96 W conn (Pirod 195217) K=1 00 #12ZG-58 BASE - 1 75" -20.03 29.7 0 904 T12 20-0 10.02 72158 -315.96 349 49 1.00" conn (Pirod 281212) K=1 00

 $^{^{1}}P_{n}/\phi P_{n}$ controls

Valmont 553967 Page 57 of 63 Project Date 12:33:09 08/19/22 Plymouth IN Phone: (574)936-4221 FAX. (574) 936-6458 Client Horvath Towers Designed by Joseph

Truss-Leg Diagonal Data										
Section No.	Elevation st	Diagonal Size	L. ft	Kl/r	φ <i>P_a K</i>	A in²	ľ" K	φV _n K	Stres.	
T4	180 - 160	0.5	1 43	96 1	192.18	0 1963	3 14	4 53	0.694	
T5	160 - 140	0.5	1.42	95.2	276 74	0 1963	1.09	4.57	0.239	
T6	140 - 120	0.5	1 42	95.2	276.74	0 1963	0.61	4.57	0.135	
T7	120 - 100	0.5	1 42	95.2	276 74	0 1963	0.44	4 57	0.098	
Т8	100 - 80	0.5	1.42	95 2	276.74	0.1963	0.40	4.57	0.089	
Т9	80 - 60	0.5	1.40	94 4	376,67	0.1963	0.32	4.61	0.070	
T10	60 - 40	0.5	1.40	94 4	376,67	0 1963	0 26	4.61	0.058	
TH	40 - 20	0.5	1.40	94.4	376.67	0 1963	0.59	461	0.128	
T12	20 - 0	0.5	1 38	92.7	376.67	0 1963	0 92	4 76	0.194	

		Diagor	al Des	sign l	Data (C	Compi	ession)	
Section No.	Elevation	Size	L	L _e	KUr	A	$P_{\scriptscriptstyle H}$	φP _n	Ratio P _n
	ſŧ		ſı	ſı		m^2	K	K	ϕP_n
TI	230 - 220	3/4	4 64	2.26	130.2 K=0.90	0 4418	-3 05	5.89	0.517
T2	220 - 200	3/4	4 68	2 25	129.8 K=0.90	0 4418	-5 06	5 92	0.854
Т3	200 - 180	7/8	4 68	2 23	110 1 K=0.90	0 6013	-8 88	11.16	0.796
T4	180 - 160	L2 1/2x2 1/2x1/4	9 56	5 10	124 7 K=1 00	1 1900	-14.69	17 28	0 850
T5	160 - 140	L2 1/2x2 1/2x3/16	10.31	5 34	129 5 K=1 00	0 9020	-5 24	12.15	0.431
T6	140 - 120	L2 1/2x2 1/2x3/16	11 98	6.10	147 8 K=1 00	0 9020	-3 74	9 33	0 401
T7	120 - 100	L2 1/2x2 1/2x3/16	13.35	6 76	163 9 K=1 00	0 9020	-3 87	7 59	0 510
T8	100 - 80	L2 1/2x2 1/2x3/16	14 87	7 50	181.9 K=1.00	0 9020	-4 35	6.16	0 706
T9	80 - 60	L2 1/2x2 1/2x1/4	16.49	8 30	203 0 K=1 00	1 1900	-4.54	6.53	0 695
		KL/R > 200 (C) - 252							
T10	60 - 40	L2 1/2x2 1/2x1/4	18.19	9.15	223 5 K=1 00	1.1900	-4.86	5 38	0 903
		KL/R > 200 (C) - 267							3.

valmont	Job	553967	Page 58 of 63
1545 Pidco Dr	Project U-	22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth IN Phone (574)936-4221 FAX (574) 936-6458	Client	Horvath Towers	Designed by Joseph

Section No.	Elevation	Size	L	L_*	KUr	A	P_{sr}	ϕP_n	Ratio P _v
	si		ſì	ft		int	K	K	φP.
TII	40 - 20	L3x3x3/16	19 94	10 02	201 7 K=1.00	1 0900	-5 38	6 05	0.889
T12	20 - 0	KL/R > 200 (C) - 282 L3x3x5/16	21 74	10.91	222 3 K=1 00	1 7800	-7.29	8 13	0 896
		$KL/R \ge 200 (C) - 297$							

P "/ \phi P controls

Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	L.	Klir	A	P.	$\phi P_{\scriptscriptstyle H}$	Ratio P
	fi		ſ	fi		in ²	K	K	ϕP_n
Tl	230 - 220	3/4	4 00	3 90	174 5 K=0 70	0 4418	-0 68	3 28	0 206
T2	220 - 200	3/4	4 00	3 85	172.7 K=0.70	0 4418	-1.15	3 35	0 343
Т3	200 - 180	3/4	4.00	3 81	170 8 K=0 70	0.4418	-2.68	3 42	0 784

 $P_n / \phi P_n$ controls

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Klr	A	P.,	ϕP_n	Ratio Pu
	ſŧ		fi	ft		in	K	K	φP
T1	230 - 220	7/8	4.00	3.90	149.6 K=0.70	0.6013	-0.52	6.07	0 085
T2	220 - 200	7/8	4 00	3.85	148.0 K=0.70	0 6013	-1.51	6.20	0 243 1
Т3	200 - 180	1	4 00	3.81	128 1 K-0 70	0 7854	-2.71	10.81	0 251
T4	180 - 160	L3x3x3/16	4.00	2.62	86 3 K=1.64	1.0900	-2.71	26.05	0 104

¹ P " / \phi P" controls

Bottom Girt Design Data (Compression)

Section No.	Elevation	Size	L	$L_{\scriptscriptstyle 0}$	Klir	A	Pu	ϕP_n	Ratio P
	ft		ft	ft		m ²	K	K	φPa

valmont	Job 553967	Page 59 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, K	Date 12:33:09 08/19/22
Plymouth, IN Phone: (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

Section No.	Elevation	Size	L	Lu	Klr	A	P_{w}	ϕP_n	Ratio P.,
	ſi		ſŧ	ft		in	K	K	ϕP_n
TI	230 - 220	7/8	4 00	3 90	149 6 K=0 70	0 6013	-1 17	6.07	0.193
T2	220 - 200	7/8	4 00	3.85	148 0 K 0 70	0 6013	-2 07	6.20	0 333
T3	200 - 180	1	4 00	3 81	128 1 K=0 70	0 7854	-4.75	10.81	0 439

P . / pP. controls

Mid Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_{v}	Kl/r	A	P_{u}	ϕP_n	Ratio P.
	fi		ſi	fi		Int2	K	K	ϕP_{-}
T2	220 - 200	7/8	4.00	3 85	148.0 K=0.70	0 6013	-0 39	6.20	0.063
T3	200 - 180	T)	4.00	3 81	128 1 K=0 70	0 7854	-1 53	10.81	0 141

¹ P , / \phi P, controls

Tension Checks

Leg Design Data (Tension)

Section No.	Elevation	Size	L	Lu	Klir	A	P_{H}	ϕP_n	Ratio Pu
	fr		ſŧ	fi		in ²	K	K	ϕP_n
TI	230 - 220	1 1/4	10.00	2.35	90 4	1 2272	8 74	64 06	0 136 1
T2	220 - 200	1 3/4	20.00	2 43	66 6	2,4053	60.89	125 56	0 485
Т3	200 - 180	2 1/4	20.00	2.43	51.8	3.9761	147.59	207.55	0 711
T4	180 - 160	#12ZG-58 - 1 25" - 1 00" conn (Pirod 194434)	20.03	10.02	42 8	3.6816	152 17	192.18	0.792
T5	160 - 140	#12ZG-58 - 1 50" - 1 00" conn (Pirod 194651)	20 03	10 02	35.7	5 3014	172 43	276 74	0.623
Т6	140 - 120	#12ZG-58 - 1 50" - 1 00" conn. (Pirod 194651)	20 03	10.02	35.7	5 3014	191.00	276 74	0 690
T7	120 - 100	#12ZG-58 - 1 50" - 1 00" conn (Pirod 194651)	20.03	10.02	35.7	5 3014	207.04	276.74	0 748
T8	100 - 80	#12ZG-58 - 1 50" - 1 00" conn (Pirod 194651)	20 03	10 02	35.7	5 3014	222 56	276.74	0.804
T9	80 - 60	#12ZG-58 - 1 75" - 1 00"	20 03	10.02	30.6	7 2 1 5 8	237 96	376 67	0.632

valmont	Job 553967	Page 60 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shi	Date 12:33:09 08/19/22
Plymouth, IN Phone (574)936-4221 FAX (574) 936-6458	Client Horvath Towe	Designed by Joseph

Section No.	Elevation	Size	L	Lu	Kir	A	P.,	ϕP_n	Ratio P _u
	fi		ſ	ft		m^{ν}	K	K	ψP _n
	7	connTR1-(Pirod 195213)							V
TIO	60 - 40	#12ZG-58 - 1 75" - 1 00" conn (Pirod 195217)	20.03	10.02	30.6	7.2158	253 04	376.67	0 672
Tit	40 - 20	#12ZG-58 - 1,75" - 1 00" conn. (Pirod 195217)	20 03	10 02	30 6	7 2 1 5 8	267 62	376.67	0710
T12	20 - 0	#12ZG-58 BASE - 1 75" - 1 00" conn (Pirod 281212)	20 03	10 02	29 7	7 2 1 5 8	281 27	376.67	0 747

¹ P , / \phi P, controls

Truss-Leg	Diagonal	Data
-----------	----------	------

Section No.	Elevation ft	Diagonal Size	L _I fi	KI/r	φP _n K	A in ²	V., K	φV _n K	Stress Ratio
T4	180 - 160	0.5	1.43	96 I	192.18	0.1963	3.14	4.53	0.694
T5	160 - 140	0 5	1 42	95.2	276 74	0 1963	1 09	4.57	0 239
T6	140 - 120	0.5	1 42	95.2	276 74	0 1963	0 61	4.57	0 135
T7	120 - 100	0.5	1.42	95 2	276 74	0.1963	0 44	4 57	0.098
T8	100 - 80	0.5	1 42	95 2	276.74	0 1963	0 40	4.57	0.089
Т9	80 - 60	0.5	1 40	94.4	376 67	0.1963	0 32	4.61	0.070
T10	60 - 40	0.5	1.40	94 4	376.67	0.1963	0.26	461	0 058
T11	40 - 20	0 5	1.40	94 4	376.67	0 1963	0 59	461	0 128
T12	20 - 0	0.5	1.38	92.7	376.67	0.1963	0.92	4 76	0.194

Diagonal Design Data (Tension)

Elevation	Size	L	L_{a}	Kl/r	A	Pu	ϕP_n	Ratio P,,
fi		ſ	ft		in ²	K	K	ϕP_n
230 - 220	3/4	4.64	2.26	144.7	0 4418	2 94	19.88	0 148 1
220 - 200	3/4	4.68	2 25	144 3	0 4418	4 95	19.88	0 249 1
200 - 180	7/8	4 68	2 23	122 3	0 6013	8 97	27 06	0.331 1
180 - 160	L2 1/2x2 1/2x1/4	9 56	5 10	82 9	0 6816	16.40	33.23	0.493
160 - 140	L2 1/2x2 1/2x3/16	10.31	5 34	856	0 5183	4 55	25.27	0 180 1
	fi 230 - 220 220 - 200 200 - 180 180 - 160	fi 230 - 220 3/4 220 - 200 3/4 200 - 180 7/8 180 - 160 L2 1/2x2 1/2x1/4	ft ft 230 - 220 3/4 4.64 220 - 200 3/4 4.68 200 - 180 7/8 4.68 180 - 160 L2 1/2x2 1/2x1/4 9.56	ft ft ft 230 - 220 3/4 4.64 2.26 220 - 200 3/4 4.68 2.25 200 - 180 7/8 4.68 2.23 180 - 160 L2 1/2x2 1/2x1/4 9.56 5.10	ft ft ft 230 - 220 3/4 4.64 2.26 144 7 220 - 200 3/4 4.68 2.25 144 3 200 - 180 7/8 4.68 2.23 122 3 180 - 160 L2 1/2x2 1/2x1/4 9.56 5.10 82.9	ft ft ft in² 230 - 220 3/4 4.64 2.26 144 7 0.4418 220 - 200 3/4 4.68 2.25 144 3 0.4418 200 - 180 7/8 4.68 2.23 122 3 0.6013 180 - 160 L2 1/2x2 1/2x1/4 9.56 5.10 82.9 0.6816	ft ft ft in² K 230 - 220 3/4 4.64 2.26 144 7 0.4418 2.94 220 - 200 3/4 4.68 2.25 144 3 0.4418 4.95 200 - 180 7/8 4.68 2.23 122 3 0.6013 8.97 180 - 160 L2 1/2x2 1/2x1/4 9.56 5.10 82.9 0.6816 16.40	ft ft ft im² K K 230 - 220 3/4 4.64 2.26 144 7 0.4418 2.94 19.88 220 - 200 3/4 4.68 2.25 144 3 0.4418 4.95 19.88 200 - 180 7/8 4.68 2.23 122 3 0.6013 8.97 27.06 180 - 160 L2 1/2x2 1/2x1/4 9.56 5.10 82.9 0.6816 16.40 33.23

valmont	Јо ь 553967	Page 61 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth. IN Phone (574)936-4221 FAX: (574) 936-6458	Client Horvath Towers	Designed by Joseph

Section No.	Elevation	Size	L	L_{ν}	KUr	A	P_u	ϕP_n	Ratio P _"
	ſì		fi	fi		m^2	K	K	φP _n
									1 de
T6	140 - 120	L2 1/2x2 1/2x3/16	11.98	6.10	973	0.5183	3 08	25 27	0.122
122	44	and the second second		400.0					-
17	120 - 100	L2 1/2x2 1/2x3/16	13 35	6.76	107 5	0.5183	3 35	25 27	0 133
T8	100 - 80	L2 1/2x2 1/2x3/16	14 87	7.50	1189	0.5183	3 78	25 27	0 150
10	100 - 80	L2 1/2X2 1/2X3/10	1407	1,50	110 9	0.3163	3 10	23 21	130
T9	80 - 60	L2 1/2x2 1/2x1/4	16 49	8 30	132.8	0 6816	4.10	33.23	0 123
									1
T10	60 - 40	L2 1/2x2 1/2x1/4	18.19	9 15	146 0	0 6816	4.51	33 23	0 136
									V
TH	40 - 20	L3x3x3/16	19 94	10 02	130 7	0 6593	4 77	32 14	0.148
CAST NO.	are a	Value also				N. Rednis			V
T12	20 - 0	L3x3x5/16	21.74	10.91	144.7	1 0713	6.43	52.23	0 123

 $^{^{-1}}P_{n}$ / ϕP_{n} controls

		Horizontal Design Data (Tension)								
Section No.	Elevation	Size	L	L	Klir	À	P_u	φP _n	Ratio P _n	
	ſi		ſı	ft		in	K	K	φP _n	
TI	230 - 220	3/4	4.00	3.90	249.3	0.4418	0 79	19,88	0.040	
T2	220 - 200	3/4	4.00	3.85	246 7	0 4418	1.15	19 88	0.058	
T3	200 - 180	3/4	4 00	3 81	244 0	0 4418	2 68	19 88	0 135	

 $[\]frac{1}{P_n} / \phi P_n$ controls

	Top Girt Design Data (Tension)										
Section No.	Elevation	Size	L	$L_{\scriptscriptstyle M}$	Kl/r	Ā	P_n	ϕP_n	Ratio P _u		
	ſŧ		ft	st		in ²	K	K	ϕP_n		
TI	230 - 220	7/8	4.00	3 90	213 7	0.6013	0.51	27 06	0 019		
T2	220 - 200	7/8	4.00	3.85	211.4	0.6013	1 52	27.06	0.056		
Т3	200 - 180	Ĭ	4.00	3.81	183 0	0 7854	2 71	35.34	0.077		
T4	180 - 160	L3x3x3/16	4.00	2 62	383	0.6593	2 71	32.14	0.084		

valmont	Job	553967	Page 62 of 63
1545 Pidco Dr	Project U-2	22 x 230' - HV1574 Shrewsberry, KY	Date 12:33:09 08/19/22
Plymouth 1N Phone: (574)936-4221 FAX: (574) 936-6458	Client	Horvath Towers	Designed by Joseph

P ... / \phi P ... controls

Bottom Girt Design Data (Tension)									
Section No.	Elevation	Size	L	L	KUr	A	Pw	ϕP_n	Ratio P _u
	ſi		ſŧ	si		īn²	K	K	ϕP_n
TI	230 - 220	7/8	4 00	3,90	213.7	0 6013	1 28	27 06	0 047
T2	220 - 200	7/8	4 00	3.85	211.4	0.6013	2 15	27 06	0 079 1
T3	200 - 180	1	4 00	3.81	183.0	0 7854	3 80	35 34	0 107

 $^{^{-1}}P_{\pi}/\phi P_{n}$ controls

Mid Girt Design Data (Tension)									
Section No.	Elevation	Size	L	L	Klir	A	P _n	φP.,	Ratio P.
	ſŧ		fi	fi		m^2	K	K	ΦP.
T2	220 - 200	7/8	4 90	3.85	2114	0.6013	0.47	27.06	0 017
T3	200 - 180	1	4.00	3 81	183 0	0 7854	1.79	35 34	0.051

 $^{^{1}}P_{n}/\phi P_{n}$ controls

Section	Capac	itv	Table
ALCOHOLD FOR	- 60 M M M	2 40 2	I WARE IN

Section No.	Elevation fi	Component Type	Size	Critical Element	P K	o P _{alton}	% Capacity	Pass Fail
TI	230 - 220	Leg	1 1/4	2	-1184	32.03	37.0	Pass
T2	220 - 200	Leg	1 3/4	37	-66 80	86 22	77.5	Pass
T3	200 - 180	Leg	2 1/4	103	-156 41	165 34	946	Pass
T4	180 - 160	Leg	#12ZG-58 - 1.25" - 1.00" conn (Pirod 194434)	169	-156 41	164 52	95.1	Pass
T5	160 - 140	Leg	#12ZG-58 - 1 50" - 1 00" conn (Pirod 194651)	187	-184.19	248 43	74 [Pass
T6	140 - 120	Leg	#12ZG-58 - 1.50" - 1.00" conn (Pirod 194651)	202	-205.25	248 43	82.6	Pass
77	120 - 100	Leg	#12ZG-58 - 1.50" - 1.00" conn (Pirod 194651)	217	-224 30	248 43	90 3	Pass
T8	100 - 80	Leg	#12ZG-58 - 1 50" - 1 00" conn (Pirod 194651)	232	-242.76	248 43	97.7	Pass
T9	80 - 60	Leg	#12ZG-58 - 1.75" - 1.00" conn -TR1-(Pirod 195213)	247	-261 69	347 96	75 2	Pass
T10	60 - 40	Leg	#12ZG-58 - 1.75" - 1.00" conn (Pirod 195217)	262	-280.30	347 96	80 6	Pass

valmont	Јо ь 553967	Page 63 of 63
1545 Pidco Dr	Project U-22 x 230' - HV1574 Shrewsberry,	Date KY 12:33:09 08/19/22
Plymouth IN Phone (574)936-4221 FAX (574) 936-6458	Client Horvath Towers	Designed by Joseph

Section No.	Elevation ft	Component Type	Size	Critical Element	P K	oP _{allou} K	% Capacity	Pass Fail
T11	40 - 20	Leg	#12ZG-58 - 1 75" - 1 00" conn. (Pirod 195217)	277	-298 40	347 96	85 8	Pass
T12	20 - 0	Leg	#12ZG-58 BASE - 1 75" - 1.00" conn (Pirod 281212)	292	-315.96	349.49	90 4	Pass
TI	230 - 220	Diagonal	3/4	11	-3 05	5 89	51.7	Pass
T2	220 - 200	Diagonal	3/4	50	-5.06	5 92	85.4	Pass
T3	200 - 180	Diagonal	7/8	116	-8 88	11 16	79.6	Pass
T4	180 - 160	Diagonal	L2 1/2x2 1/2x1/4	184	-14 69	17 28	85 0 94 4 (b)	Pass
T5	160 - 140	Diagonal	L2 1/2x2 1/2x3/16	197	-5 24	12 15	43 1	Pass
T6	140 - 120	Diagonal	L2 1/2x2 1/2x3/16	206	-3.74	9.33	40 1	Pass
T7	120 - 100	Diagonal	L2 1/2x2 1/2x3/16	222	-3 87	7.59	510	Pass
T8	100 - 80	Diagonal	L2 1/2x2 1/2x3/16	237	-4 35	616	70 6	Pass
T9	80 - 60	Diagonal	L2 1/2x2 1/2x1/4	252	-4 54	6.53	69 5	Pass
TIO	60 - 40	Diagonal	L2 1/2x2 1/2x1/4	267	-4 86	5 38	90.3	Pass
TII	40 - 20	Diagonal	L3x3x3/16	282	-5 38	6.05	88 9	Pass
T12	20 - 0	Diagonal	L3x3x5/16	297	-7.29	8 13	89.6	Pass
Ti	230 - 220	Horizontal	3/4	23	-0 68	3.28	20 6	Pass
T2	220 - 200	Horizontal	3/4	55	-1 15	3 35	34 3	Pass
T3	200 - 180	Horizontal	3/4	121	-2.68	3.42	78 4	Pass
TI	230 - 220	Top Girt	7/8	5	-0.52	6.07	8.5	Pass
T2	220 - 200	Top Girt	7/8	41	-1.51	6.20	24.3	Pass
T3	200 - 180	Top Girt	Î	108	-2.71	10.81	25 1	Pass
T4	180 - 160	Top Girt	L3x3x3/16	174	-2.71	26 05	10.4	Pass
		6.5 10 00 00		****			20 8 (b)	
TI	230 - 220	Bottom Girt	7/8	7	-1.17	6.07	193	Pass
T2	220 - 200	Bottom Girt	7/8	43	-2 07	6 20	33 3	Pass
T3	200 - 180	Bottom Girt	1	110	-4.75	10.81	43.9	Pass
T2	220 - 200	Mid Girt	7/8	48	-0.39	6.20	6.3	Pass
T3	200 - 180	Mid Girt	Til-	112	-1.53	10.81	14.1	Pass
							Summary	
						Leg (T8)	97.7	Pass
						Diagonal (T4)	94.4	Pass
						Horizontal (T3)	78 4	Pass
						Top Girt (T3)	25 1	Pass
						Bottom Girt (T3)	43 9	Pass
						Mid Girt (T3)	14 (Pass
						Bolt Checks	94 4	Pass
						RATING =	97.7	Pass

GRAYSON COUNTY, KENTUCKY VERIZON WIRELESS SITE NAME: CK SHREWSBURY

POWER OF DESIGN 11490 BLUEGRASS PARKWAY LOUISVILLE, KY 40299 502-437-5252

PREPARED BY:

PREPARED FOR:

dIH9	TEBS	CE ATA
FCC REGISTRATION #: 1268314	FCC REGISTRATION #: 1280487	FCC REGISTRATION #: 1281698
SBA MONARCH TOWERS III, LLC	CELLCO PARTNERSHIP	KENTUCKY UTILITIES COMPANY
LAT: 37° 30' 50.0"N	LAT: 37° 25' 27.1"N	LAT: 37° 23' 01.9"N
LONG: 86° 25' 54.6"W	LONG: 86° 13' 46.7"W	LONG: 86° 15' 21.7"W

FCC KEGISTRATION #: 1281698 KENTUCKY UTILITIES COMPANY LAT: 37° 23' 01.9"N LONG: 86° 15' 21.7"W	FCC REGISTRATION #: 1284809 KENTUCKY UTILITIES COMPANY LAT: 37° 23' 58.9"N
	M1
O ₂	

FCC REGISTRATION #: 12	KENTUCKY UTILITIES CON LAT: 37° 23' 58.9"N	LONG: 86° 31' 46.8"W	
	M M)	

FCC REGISTRATION #: 1310238	CELLCO PARTNERSHIP	LAT: 37° 21' 41.7"N	LONG: 86° 08' 22.0"W
()

ISSUED FOR REVIEW

2.16.22

⋖

DESCRIPTION

DATE

REV.

REVISIONS

CK SHREWSBURY GRAY ROAD LEITCHFIELD, KY 42574 SITE INFORMATION:

GRAYSON COUNTY	068-00-00-050 OH
----------------	------------------

LEITCHFIELD, KY 42574 SOURCE OF TITLE:	(8)
_	. (8

DEED BOOK 482, PAGE 291	PAGE 291
POD NUMBER:	22-121716
DRAWN BY:	DAP
CHECKED BY:	MEP
SURVEY DATE:	9.3.21
PLAT DATE:	2.16.22

<u>ი</u>	2.1	ITLE:
ATE:		SHEET TI

TOWER GRID MAP

SHEET NUMBER: (1 page)

	GRAYSON
Kentuck UNBRIDLED SPIRIT	

« OE/AAA

Proposed Case for: 2021-ASO-50778-OE

For information only.

This proposal has not yet been studied. Study outcomes will be posted at a later date. Public comments are not requested, and will not be considered at this time.

Received	Date: 12/17/202	21		
Entered D	ate: 12/17/202	21		
Мар:	View Map			
Structure Summary				
Structure	Type: Antenna	Tower		
Structure	Name: CK SHRE	WSBURY (61	6995577)	
FCC Numb	er:			
Height a	nd Elevation			
				Propose
Site Eleva	tion:			69
			23	
iotai ileig	, (Al·iGL).			93
Frequenc	cies			
Low Freq	High Freq	Unit	ERP	Unit
6	7	GHz	55	dBW
6	7	GHz	42	dBW
10	11.7	GHz	55	dBW
10	11.7	GHz	42	dBW
17.7	19.7	GHz	55	dBW
	19.7	GHz	42	dBW
	23.6	GHz		dBW
		GHz		dBW
				W
				W
				W
				W
				W W
				W
				W
				w
				W
				W
		MHz		W
931	932	MHz	3500	W
932	932.5	MHz	17	dBW
935	940	MHz	1000	W
940	941	MHz	3500	W
1670	1675	MHz	500	W
1710	1755	MHz	500	W
1850	1910	MHz	1640	W
1850	1990	MHz	1640	W
1930	1990	MHz	1640	W
1990	2025	MHz	500	W
2110	2200	MHz	500	W
2305	2310	MHz	2000	W
	2360	MHz	2000	W
2245	2360	MHz	2000	W
2345				
2496 3550	2690 3700	MHz MHz	500 47	W dBm
	Structure Structure Structure Structure Structure FCC Numb Height a Site Eleva Structure Total Height To	Structure Summary	Structure Type: Antenna Tower	Structure Summary

27500	28350	MHz	75	dBm
29100	29250	MHz	75	dBm
31000	31300	MHz	75	dBm
38600	40000	MHz	75	dBm

Previous

Back to Search Next Result

Issued Date: 11/29/2022

Network Regulatory Cellco Partnership 5055 North Point Pkwy NP2NE Network Engineering Alpharetta, GA 30022

** DETERMINATION OF NO HAZARD TO AIR NAVIGATION **

The Federal Aviation Administration has conducted an aeronautical study under the provisions of 49 U.S.C., Section 44718 and if applicable Title 14 of the Code of Federal Regulations, part 77, concerning:

Structure: Antenna Tower CK SHREWSBURY (616995577)

Location: Leitchfield, KY

Latitude: 37-22-03.84N NAD 83

Longitude: 86-22-25.86W

Heights: 699 feet site elevation (SE)

235 feet above ground level (AGL) 934 feet above mean sea level (AMSL)

This aeronautical study revealed that the structure does not exceed obstruction standards and would not be a hazard to air navigation provided the following condition(s), if any, is(are) met:

Emissions from this site must be in compliance with the parameters set by collaboration between the FAA and telecommunications companies and reflected in the FAA 5G C band compatibility evaluation process (such as power, frequencies, and tilt angle). Operational use of this frequency band is not objectionable provided the Wireless Providers (WP) obtain and adhere to the parameters established by the FAA 5G C band compatibility evaluation process. **Failure to comply with this condition will void this determination of no hazard.**

As a condition to this Determination, the structure is to be marked/lighted in accordance with FAA Advisory circular 70/7460-1 M, Obstruction Marking and Lighting, a med-dual system-Chapters 4,8(M-Dual),&15.

Any failure or malfunction that lasts more than thirty (30) minutes and affects a top light or flashing obstruction light, regardless of its position, should be reported immediately to (877) 487-6867 so a Notice to Airmen (NOTAM) can be issued. As soon as the normal operation is restored, notify the same number.

It is required that FAA Form 7460-2, Notice of Actual Construction or Alteration, be e-filed any time the project is abandoned or:

	At least 10 days prior to start of construction (7460-2, Part 1)
X	Within 5 days after the construction reaches its greatest height (7460-2, Part 2)

See attachment for additional condition(s) or information.

This determination expires on 05/29/2024 unless:

- (a) the construction is started (not necessarily completed) and FAA Form 7460-2, Notice of Actual Construction or Alteration, is received by this office.
- (b) extended, revised, or terminated by the issuing office.
- (c) the construction is subject to the licensing authority of the Federal Communications Commission (FCC) and an application for a construction permit has been filed, as required by the FCC, within 6 months of the date of this determination. In such case, the determination expires on the date prescribed by the FCC for completion of construction, or the date the FCC denies the application.

NOTE: REQUEST FOR EXTENSION OF THE EFFECTIVE PERIOD OF THIS DETERMINATION MUST BE E-FILED AT LEAST 15 DAYS PRIOR TO THE EXPIRATION DATE. AFTER RE-EVALUATION OF CURRENT OPERATIONS IN THE AREA OF THE STRUCTURE TO DETERMINE THAT NO SIGNIFICANT AERONAUTICAL CHANGES HAVE OCCURRED, YOUR DETERMINATION MAY BE ELIGIBLE FOR ONE EXTENSION OF THE EFFECTIVE PERIOD.

This determination is based, in part, on the foregoing description which includes specific coordinates, heights, frequency(ies) and power. Any changes in coordinates, heights, and frequencies or use of greater power, except those frequencies specified in the Colo Void Clause Coalition; Antenna System Co-Location; Voluntary Best Practices, effective 21 Nov 2007, will void this determination. Any future construction or alteration, including increase to heights, power, or the addition of other transmitters, requires separate notice to the FAA. This determination includes all previously filed frequencies and power for this structure.

If construction or alteration is dismantled or destroyed, you must submit notice to the FAA within 5 days after the construction or alteration is dismantled or destroyed.

This determination does include temporary construction equipment such as cranes, derricks, etc., which may be used during actual construction of the structure. However, this equipment shall not exceed the overall heights as indicated above. Equipment which has a height greater than the studied structure requires separate notice to the FAA.

This determination concerns the effect of this structure on the safe and efficient use of navigable airspace by aircraft and does not relieve the sponsor of compliance responsibilities relating to any law, ordinance, or regulation of any Federal, State, or local government body.

A copy of this determination will be forwarded to the Federal Communications Commission (FCC) because the structure is subject to their licensing authority.

If we can be of further assistance, please contact our office at (718) 553-2611, or angelique.eersteling@faa.gov. On any future correspondence concerning this matter, please refer to Aeronautical Study Number 2021-ASO-50778-OE.

Signature Control No: 505007022-562909244

(DNE)

Angelique Eersteling Technician Attachment(s)
Additional Information
Case Description
Frequency Data
Map(s)

cc: FCC

Additional information for ASN 2021-ASO-50778-OE

BASIS FOR DECISION

Part 77 authorizes the FAA to evaluate a structure or object's potential electromagnetic effects on air navigation, communication facilities, and other surveillance systems. It also authorizes study of impact on arrival, departure, and en route procedures for aircraft operating under visual or instrument flight rules, as well as the impact on airport traffic capacity at existing public use airports. Broadcast in the 3.7 to 3.98 GHz frequency (5G C band) currently causes errors in certain aircraft radio altimeters and the FAA has determined they cannot be relied upon to perform their intended function when experiencing interference from wireless broadband operations in the 5G C band. The FAA has adopted Airworthiness Directives for all transport and commuter category aircraft equipped with radio altimeters that prohibit certain operations when in the presence of 5G C band

This determination of no hazard is based upon those mitigations implemented by the FAA and operators of transport and commuter category aircraft, and helicopters operating in the vicinity of your proposed location. It is also based on telecommunication industry and FAA collaboration on acceptable power levels and other parameters as reflected in the FAA 5G C band evaluation process.

The FAA 5G C band compatibility evaluation is a data analytics system used by FAA to evaluate operational hazards related to aircraft design. The FAA 5G C band compatibility evaluation process refers to the process in which the telecommunication companies and the FAA have set parameters, such as power output, locations, frequencies, and tilt angles for antenna that mitigate the hazard to aviation. As the telecommunication companies and FAA refine the tools and methodology, the allowable frequencies and power levels may change in the FAA 5G C band compatibility evaluation process. Therefore, your proposal will not have a substantial adverse effect on the safe and efficient use of the navigable airspace by aircraft provided the equipment and emissions are in compliance with the parameters established through the FAA 5G C band compatibility evaluation process.

Any future changes that are not consistent with the parameters listed in the FAA 5G C band compatibility evaluation process will void this determination of no hazard.

Case Description for ASN 2021-ASO-50778-OE

Proposing new, lattice self-support antenna tower. If M&L will be req'd, prefer dual red & med intensity. Questions to juliane.madsen@verizon.com

LOW FREQUENCY	HIGH FREQUENCY	FREQUENCY UNIT	ERP	ERP UNIT
TREQUERCI	TREQUENCT	OIII	EM	ONII
6	7	GHz	55	dBW
6	7	GHz	42	dBW
10	11.7	GHz	55	dBW
10	11.7	GHz	42	dBW
17.7	19.7	GHz	55	dBW
17.7	19.7	GHz	42	dBW
21.2	23.6	GHz	55	dBW
21.2	23.6	GHz	42	dBW
614	698	MHz	2000	W
614	698	MHz	1000	W
698	806	MHz	1000	W
806	824	MHz	500	W
806	901	MHz	500	W
824	849	MHz	500	W
851	866	MHz	500	W
869	894	MHz	500	W
896	901	MHz	500	W
901	902	MHz	7	W
929	932	MHz	3500	W
930	931	MHz	3500	W
931	932	MHz	3500	W
932	932.5	MHz	17	dBW
935	940	MHz	1000	W
940	941	MHz	3500	W
1670	1675	MHz	500	W
1710	1755	MHz	500	W
1850	1910	MHz	1640	W
1850	1990	MHz	1640	W
1930	1990	MHz	1640	W
1990	2025	MHz	500	W
2110	2200	MHz	500	W
2305	2310	MHz	2000	W
2305	2360	MHz	2000	W
2345	2360	MHz	2000	W
2496	2690	MHz	500	W
3550	3700	MHz	47	dBm
3700	3980	MHz	3280	W
27500	28350	MHz	75	dBm
29100	29250	MHz	75	dBm
31000	31300	MHz	75	dBm
38600	40000	MHz	75	dBm

TOPO Map for ASN 2021-ASO-50778-OE

KENTUCKY TRANSPORTATION CABINET

TC 55-2 Rev. 06/2020 Page 1 of 2

KENTUCKY AIRPORT ZONING COMMISSION

APPLICATION FOR PERMIT TO CONSTRUCT OR ALTER A STRUCTURE

JURISDICTION

602 KAR 50:030

- Section 1. The commission has zoning jurisdiction over that airspace over and around the public use and military airports within the Commonwealth which lies above the imaginary surface that extends outward and upward at one (1) of the following slopes:
 - (1) 100 to one (1) for a horizontal distance of 20,000 feet from the nearest point of the nearest runway of each public use airport and military airport with at least one (1) runway 3,200 feet or more in length; or
 - (2) fifty (50) to one (1) for a horizontal distance of 10,000 feet from the nearest point of the nearest runway of each public use and military airport with its longest runway less than 3,200 feet in length.
- Section 2. The commission has zoning jurisdiction over the use of land and structures within public use airports within the state.
- Section 3. The commission has jurisdiction from the ground upward within the limits of the primary and approach surfaces of each public use airport and military airport as depicted on airport zoning maps approved by the Kentucky Airport Zoning Commission.
- Section 4. The Commission has jurisdiction over the airspace of the Commonwealth that exceeds 200 feet in height above the ground.
- Section 5. The owner or person who has control over a structure which penetrates or will penetrate the airspace over which the Commission has Jurisdiction shall apply for a permit from the Commission in accordance with 602 KAR 50:090.

INSTRUCTIONS

- 1. "Alteration" means to increase or decrease the height of a structure or change the obstruction marking and lighting.
- 2. "Applicant" means the person who will own or have control over the completed structure.
- 3. "Certification by Applicant" shall be made by the individual who will own or control the completed structure; or a partner in a partnership; or the president or authorized officer of a corporation company, or association; or the authorized official of a body politic; or the legally designated representative of a trustee, receiver, or assignee.
- 4. Prepare the application and forward to the Kentucky Dept. of Aviation, ATTN: Airport Zoning Commission, 90 Airport Drive, Frankfort KY 40601. For questions, telephone 502-782-4043.
- 5. The statutes applicable to the Kentucky Airport Commission are KRS 183.861 to 183.990 and the administrative regulations are 602 KAR Chapter 50.
- 6. When applicable, attach the following appendices to the application:
- Appendix A. A 7.5 minute quadrangle topographical map prepared by the U.S. Geological Survey and the Kentucky Geological Survey with the exact location of the structure which is the subject of the application indicated thereon. (*The 7.5 minute quadrangle map may be obtained from the Kentucky Geological Survey, Department of Mines and Minerals, Lexington, KY 40506.*)
- Appendix B. For structures on or very near to property of a public use airport, a copy of the airport layout drawing (ALP) with the exact location of the structure which is the subject of this application indicated thereon. (*The ALP may be obtained from the Chairperson of the local airport board or the Kentucky Airport Zoning Commission*.)
- Appendix C. Copies of Federal Aviation Administration Applications (*FFA Form 7460-1*) or any orders issued by the manager, Air Traffic Division, FAA regional office.
- Appendix D. If the applicant has indicated in item number 7 of the application that the structure will not be marked or lighted in accordance with the regulations of the Commission, the applicant shall attach a written request for a determination by the commission that the marking and lighting are not necessary. The applicant shall specifically state the reasons that the absence of marking and lighting will not impair the safety of air navigation.
- Appendix E. The overall height in feet of the overhead transmission line or static wire above ground level or mean water level with span length 1,000 feet and over shall be depicted on a blueprint profile map.

PENALTIES

- 1. Persons failing to comply with the Airport Zoning Commission statutes and regulations are liable for a fine or imprisonment as set forth in KRS 183.990(3).
- 2. Applicants are cautioned: Noncompliance with Federal Aviation Administration Regulations may provide for further penalties.

KENTUCKY TRANSPORTATION CABINET

TC 55-2 Rev. 06/2020 Page 2 of 2

KENTUCKY AIRPORT ZONING COMMISSION

APPLICATION FOR PERMIT TO CONSTRUCT OR ALTER A STRUCTURE

APPLICANT (name)		PHONE	FAX	KY AERONAL	JTICAL STUDY #	
Verizon		303-829-0076				
ADDRESS (street)		CITY		STATE	ZIP	
5055 North Point Pkway	,	Alpharetta		GA	30022	
APPLICANT'S REPRESEN	ITATIVE (name)	PHONE	FAX			
Maureen Ramdath		303-829-0076				
ADDRESS (street)		CITY		STATE	ZIP	
5055 North Point Pkway	,	Alpharetta		GA	30222	
APPLICATION FOR New Construction Alteration Existing WORK SCHEDULE						
DURATION Perma	anent 🔲 Tem	porary (<i>months</i>	days)	Start E	ind	
TYPE Crane	Building	MARKING/PAINTIN	G/LIGHTING PREFER	RRED		
🔀 Antenna Tower		Red Lights & Pai	nt White- medi	um intensity	White- high intensity	
Power Line Wa	ater Tank	Dual- red & med	dium intensity white	Dual- re	d & high intensity white	
Landfill Ot	her	Other				
LATITUDE		LONGITUDE		DATUM X	NAD83 NAD27	
37 ^o 22'03.84"		86 ^o 22'25.86"		Other	. —	
NEAREST KENTUCKY		NEAREST KENTUCK	Y PUBLIC USE OR MI	LITARY AIRPO	ORT	
City Leitchfield County (Grayson	LEITCHFIELD-GRAYS	ON COUNTY			
SITE ELEVATION (AMSL,	feet)	TOTAL STRUCTURE	HEIGHT (AGL, feet)	CURRENT (FA	AA aeronautical study #)	
699.0	-	934	, ,	2021 ASO 50		
OVERALL HEIGHT (site e	elevation plus tot	al structure height,	feet)	PREVIOUS (F.	AA aeronautical study #)	
235	•		•	n/a		
DISTANCE (from neares	t Kentucky public	use or Military airp	ort to structure)	PREVIOUS (K	Y aeronautical study #)	
5.7	, ,			-	, ,	
DIRECTION (from neare	st Kentucky publi	ic use or Military air	port to structure)			
Near 369 Gray Road, Le		,	•			
DESCRIPTION OF LOCAT	TION (Attach USC	GS 7.5 minute quadr	angle map or an airp	ort layout dra	wing with the precise site	
marked and any certifie		,		•		
See Survey Attached	, ,					
·						
DESCRIPTION OF PROPO	OSAL					
Proposed 235ft antenna	Tower (1Near 3	69 Gray Road) CK SI	HREWSBURY # 16505	537		
FAA Form 7460-1 (Has t	the "Notice of Co	nstruction or Alterat	tion" been filed with	the Federal Av	viation Administration?)	
No X Yes, when?			,		,	
CERTIFICATION (I hereb		the above entries. m	ade bv me. are true.	complete, and	d correct to the best of	
my knowledge and belie		,	,,,		,,	
PENALITIES (Persons failing to comply with KRS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or						
imprisonment as set forth in KRS 183.990(3). Noncompliance with FAA regulations may result in further penalties.)						
NAME	TITLE	SIGNATURE		DATE	умине решения	
Maureen Ramdath	Reg Engineer		nRamdath	04/06/2023		
COMMISSION ACTION Chairperson, KAZC						
		Administrate	or, KAZC			
Approved	SIGNATURE			DATE		
Disapproved						

Date: May 20, 2022 POD Job Number: 22-125392

GEOTECHNICAL REPORT

CK SHREWSBURY

37° 22′ 03.840164″ N 86° 22′ 25.859306″ W

Gray Road, Leitchfield, KY 42574

Prepared For:

Prepared By:

May 20, 2022

Ms. Jackie Straight Verizon Wireless 2902 Ring Road Elizabethtown, KY 42701

Re: Geotechnical Report – PROPOSED 230' SELF-SUPPORT TOWER w/ 5' LIGHTNING ARRESTOR

Site Name: CK SHREWSBURY

Site Address: Gray Road, Leitchfield, Grayson County, Kentucky Coordinates: N37° 22' 03.840164", W86° 22' 25.859306"

POD Project No. 22-125392

Dear Ms. Straight:

Attached is our geotechnical engineering report for the referenced project. This report contains our findings, an engineering interpretation of these findings with respect to the available project characteristics, and recommendations to aid design and construction of the tower and equipment support foundations.

We appreciate the opportunity to be of service to you on this project. If you have any questions regarding this report, please contact our office.

Cordially,

Mark Patterson, P.E. Project Engineer

License No.: KY 16300

Copies submitted: (3) Ms. Jackie Straight

CK SHREWSBURY May 20, 2022

Geotechnical Report

TABLE OF CONTENTS

Page

1.	PURP	OSE AND SCOPE1
2.	PROJ	ECT CHARACTERISTICS
3.	SUBS	URFACE CONDITIONS1
4.	FOUN	IDATION DESIGN RECOMMENDATIONS2
4.	1. F	PROPOSED TOWER
	4.1.1.	Drilled Piers
	4.1.2.	Mat Foundation4
4.	2. E	EQUIPMENT PLATFORM4
4.	3. E	EQUIPMENT SLAB
4.	4. E	EQUIPMENT BUILDING
4.	5. [DRAINAGE AND GROUNDWATER CONSIDERATIONS
5.	GENE	RAL CONSTRUCTION PROCEDURES AND RECOMMENDATIONS5
5.	1 [ORILLED PIERS
5.	2 F	FILL COMPACTION6
5.	3 (CONSTRUCTION DEWATERING
6	FIELD	INVESTIGATION7
7	WAR	RANTY AND LIMITATIONS OF STUDY7

APPENDIX

BORING LOCATION PLAN BORING LOGS SOIL SAMPLE CLASSIFICATION Geotechnical Report

CK SHREWSBURY May 20, 2022

Geotechnical Report

PROPOSED 230' SELF-SUPPORT TOWER w/ 5' LIGHTNING ARRESTOR

Site Name: CK SHREWSBURY

Gray Road, Leitchfield, Grayson County, Kentucky

N37° 22′ 03.840164″, W86° 22′ 25.859306″

1. **PURPOSE AND SCOPE**

The purpose of this study was to determine the general subsurface conditions at the site of the proposed tower by

drilling three borings and to evaluate this data with respect to foundation concept and design for the proposed

tower. Also included is an evaluation of the site with respect to potential construction problems and

recommendations dealing with quality control during construction.

2. PROJECT CHARACTERISTICS

Verizon is proposing to construct a self-support tower and either an equipment shelter, slab, or platform at N37"

22' 03.840164", W86" 22' 25.859306", Gray Road, Leitchfield, Grayson County, Kentucky. The site is located in a

rolling farm field south of Shrewsbury in a rural area of Grayson County. The proposed lease area will be 6,000

square feet and will be accessed by a new access road off Gray Road running north to the site. The proposed

elevation at the tower location is about EL 699 and there is about 7-feet of change in elevation across the

proposed lease area. The proposed tower location is shown on the Boring Location Plan in the Appendix.

SUBSURFACE CONDITIONS

The subsurface conditions were explored by drilling three test borings near the base of the proposed tower. The

Geotechnical Soil Test Boring Logs, which are included in the Appendix, describes the materials and conditions

encountered. A sheet defining the terms and symbols used on the boring logs is also included in the Appendix. The

general subsurface conditions disclosed by the test boring is discussed in the following paragraphs.

According to the Kentucky Geological Survey, Kentucky Geologic Map Information Services, the site is underlain by the

Tradewater and Caseyville Formations. These formations are made up of sandstone, siltstone, shale, and coal and have

undefined karst potential. No sinkholes were noted on site or mapped with one-half mile of the site.

The borings encountered only a thin veneer of topsoil at the existing ground surface. Below the topsoil, the borings

encountered silty clay (CL) of low to medium plasticity to auger refusal depths between 11.1 to 12.1 feet. Auger refusal

is defined as the depth at which the boring can no longer be advanced using the current drilling method. The SPT

N-values in the silty clay were between 11 to over 50 blows per foot (bpf) generally indicating stiff to hard consistency.

Between 3.5 and 6 feet, the borings encountered very highly weathered siltstone, sandstone, and shale that could be

1

Geotechnical Report CK SHREWSBURY

May 20, 2022

augered through but had refusal of the sampling spoon. This resulted in limited recovery of the very highly weathered

siltstone.

The refusal material was cored in Boring 1 from 11.8 to 21.8 feet below the ground surface. Siltstone with Shale that

was hard, weathered, dark brown, thin bedded with a few thin clay partings was encountered. The recoveries of the

rock cores were 88 to 83 percent and the RQD values were 40 and 7 percent. These values generally represent poor to

fair quality rock from a foundation support viewpoint. The core run from 21.8 to 23.8 feet was not recovered due to

an issue with the core barrel.

Observations made at the completion of soil drilling operations indicated the boring to be dry. It must be noted,

however, that short-term water readings in test borings are not necessarily a reliable indication of the actual

groundwater level. Furthermore, it must be emphasized that the groundwater level is not stationary but will fluctuate

seasonally.

Based on the limited subsurface conditions encountered at the site and using Table 1615.1.1 of the 2018 Kentucky

Building Code, the site class is considered "B". Seismic design requirements for telecommunication towers are given in

section 1622 of the code. A detailed seismic study was beyond the scope of this report.

4. FOUNDATION DESIGN RECOMMENDATIONS

The following design recommendations are based on the previously described project information, the subsurface

conditions encountered in our borings, the results of our laboratory testing, empirical correlations for the soil

types encountered, our analyses, and our experience. If there is any change in the project criteria or structure

location, you should retain us to review our recommendations so that we can determine if any modifications are

required. The findings of such a review can then be presented in a supplemental report or addendum.

We recommend that the geotechnical engineer be retained to review the near-final project plans and

specifications, pertaining to the geotechnical aspects of the project, prior to bidding and construction. We

recommend this review to check that our assumptions and evaluations are appropriate based on the current

project information provided to us, and to check that our foundation and earthwork recommendations were

2

properly interpreted and implemented.

Geotechnical Report CK SHREWSBURY
May 20, 2022

4.1. Proposed Tower

Our findings indicate that the proposed self-support tower can be supported on drilled piers or on a common mat foundation. Please note that auger refusal was between 11.1 and 12.1 but that the sample spoon refused within 3 feet of the surface. The contractor should plan to deal with bedrock that may not be able to be excavated by soil methods before 11 feet.

4.1.1. Drilled Piers

The following table summarizes the recommended values for use in analyzing lateral and frictional resistance for the various strata encountered at the test boring. It is important to note that these values are estimated based on the standard penetration test results and soil types and were not directly measured. The all values provided are ultimate values and appropriate factors of safety should be used in conjunction with these values. If the piers will bear deeper than about 21 feet, a deeper boring should be drilled to determine the nature of the deeper material.

Depth Below Ground Surface, feet	0 - 2	2-6	6-21
Ultimate Bearing Pressure (psf)		13,800	44,250
C Undrained Shear Strength, psf	500	2,500	8,000
Ø Angle of Internal Friction degrees	0	0	0
Total Unit Weight, pcf	110	120	135
Soil Modulus Parameter k, pci	30	500	1000
Passive Soil Pressure, psf/one foot of depth		1,675 + 40(D-2)	10,000 + 45(D-6)
Side Friction, psf	100	600	1000

Note: D = Depth below ground surface (in feet) to point at which the passive pressure is calculated.

It is important that the drilled piers be installed by an experienced, competent drilled pier contractor who will be responsible for properly installing the piers in accordance with industry standards and generally accepted methods,

Geotechnical Report CK SHREWSBURY

May 20, 2022

without causing deterioration of the subgrade. The recommendations contained herein relate only to the soil-pier

interaction and do not account for the structural design of the piers.

4.1.2. Mat Foundation

The tower could be supported on a common mat foundation bearing on the limestone bedrock at least 6 feet in depth

can be designed using a net allowable bearing pressure of 6,000 pounds per square foot may be used. This value may

be increased by 30 percent for the maximum edge pressure under transient loads. The friction value can be increased

to 0.40 between the concrete and bedrock. The passive pressures given for the drilled pier foundation may be used to

resist lateral forces.

It is important that the mat be designed with an adequate factor of safety with regard to overturning under the

maximum design wind load.

The mat must found on either soil or bedrock but not both. Soil pockets can be removed and replaced with KY #57 feet

if a foundation on rock is chosen.

4.2. Equipment Platform

An equipment platform may be supported on shallow piers bearing in the very highly weathered rock and designed for

a net allowable soil pressure of 3,000 pounds per square foot. The piers should bear at a depth of at least 30 inches to

minimize the effects of frost action. All existing topsoil or clay soil should be removed beneath footings.

4.3. Equipment Slab

A concrete slab supporting the equipment must be supported on at least 6-inch layer of relatively clean granular

material such as gravel or crushed stone containing not more than 10 percent material that passes through a No. 4

sieve. This is to help distribute concentrated loads and equalize moisture conditions beneath the slab. Provided

that a minimum of 6 in. of granular material is placed below the slab, a modulus of subgrade reaction (k) of 120

lbs/cu.in. can be used for design of the slab. All existing topsoil or soft natural soil should be removed beneath

crushed stone layer.

Geotechnical Report CK SHREWSBURY

May 20, 2022

4.4. Equipment Building

If an equipment building support on a slab is chosen in place of the equipment platform, it may be supported on

shallow spread footings bearing in the highly weathered siltstone and designed for a net allowable soil pressure of

3,000 pounds per square foot.

The footings should be at least ten inches wide. If the footings bear on soil, they should bear at a depth of at least 30

inches to minimize the effects of frost action. All existing topsoil or clay natural soil should be removed beneath

footings.

Floor slabs must be supported on at least 4-inch layer of relatively clean granular material such as gravel or

crushed stone containing not more than 10 percent material that passes through a No. 4 sieve. This is to help

distribute concentrated loads and equalize moisture conditions beneath the slab. Provided that a minimum of 4 in.

of granular material is placed below the slab, a modulus of subgrade reaction (k) of 120 lbs/cu.in. can be used for

design of the floor slabs.

4.5. Drainage and Groundwater Considerations

Good site drainage must be provided. Surface run-off water should be drained away from the tower and platform

and not allowed to pond. It is recommended that all foundation concrete be placed the same day the excavation is

made.

At the time of this investigation, groundwater was not encountered. Therefore, no special provisions regarding

groundwater control are considered necessary for shallow foundations. Any seepage should be able to be pumped

with sumps.

5. GENERAL CONSTRUCTION PROCEDURES AND RECOMMENDATIONS

It is possible that variations in subsurface conditions will be encountered during construction. Although only minor

variations that can be readily evaluated and adjusted for during construction are anticipated, it is recommended

the geotechnical engineer, or a qualified representative be retained to perform continuous inspection and review

during construction of the soils-related phases of the work. This will permit correlation between the test boring

data and the actual soil conditions encountered during construction.

Geotechnical Report CK SHREWSBURY
May 20, 2022

5.1 Drilled Piers

Please note that auger refusal was between 11.1 and 12.1 but that the sample spoon refused within 3 feet of the surface. The contractor should plan to deal with bedrock that may not be able to be excavated by soil methods before 11 feet.

The following recommendations are recommended for drilled pier construction:

Clean the foundation bearing area so it is nearly level or suitably benched and is free of ponded water or loose material.

Make provisions for ground water removal from the drilled shaft excavation. While groundwater was not encountered during the soil drilling, some significant seepage may be encountered. The drilled pier contractor should have pumps on hand to remove water from the drilled pier.

Specify concrete slumps ranging from 4 to 7 inches for the drilled shaft construction. These slumps are recommended to fill irregularities along the sides and bottom of the drilled hole, displace water as it is placed, and permit placement of reinforcing cages into the fluid concrete.

Retain the geotechnical engineer to observe foundation excavations after the bottom of the hole is leveled, cleaned of any mud or extraneous material, and dewatered.

Install a temporary protective steel casing to prevent side wall collapse, prevent excessive mud and water intrusion in the drilled shaft.

The protective steel casing may be extracted as the concrete is placed provided a sufficient head of concrete is maintained inside the steel casing to prevent soil or water intrusion into the newly placed concrete.

 Direct the concrete placement into the drilled hole through a centering chute to reduce side flow or segregation.

5.2 Fill Compaction

All engineered fill placed adjacent to and above the tower foundation should be compacted to a dry density of at least 95 percent of the standard Proctor maximum dry density (ASTM D-698). This minimum compaction requirement should be increased to 98 percent for any fill placed below the tower foundation bearing elevation. Any fill placed beneath the tower foundation should be limited to well-graded sand and gravel or crushed stone. The compaction should be accomplished by placing the fill in about 8 inch (or less) loose lifts and mechanically

Geotechnical Report CK SHREWSBURY

May 20, 2022

compacting each lift to at least the specified minimum dry density. Field density tests should be performed on

each lift as necessary to ensure that adequate moisture conditioning and compaction is being achieved.

Compaction by flooding is not considered acceptable. This method will generally not achieve the desired

compaction and the large quantities of water will tend to soften the foundation soils.

5.3 Construction Dewatering

At the time of this investigation, groundwater was not encountered. Therefore, no special provisions regarding

groundwater control are considered necessary for shallow foundations. Any seepage should be able to be pumped

with sumps.

If groundwater is encountered in the drilled pier excavations, it may be difficult to dewater since pumping directly

from the excavations could cause a deterioration of the bottom of the excavation. If the pier excavations are not

dewatered, concrete should be placed by the termie method.

6 FIELD INVESTIGATION

Three soil test borings were drilled near the base of the proposed tower. Split-spoon samples were obtained by the

Standard Penetration Test (SPT) procedure (ASTM D1586) in all test borings. The borings encountered auger refusal

from about 11.1 to 12.1 feet. A rock core of the refusal material was taken in Boring 1 from 11.8 to 23.8 feet. The

split-spoon samples were inspected and visually classified by a geotechnical engineer. Representative portions of the

soil samples were sealed in glass jars and returned to our laboratory.

The boring logs are included in the Appendix along with a sheet defining the terms and symbols used on the logs and

an explanation of the Standard Penetration Test (SPT) procedure. The logs present visual descriptions of the soil strata

encountered, Unified System soil classifications, groundwater observations, sampling information, laboratory test

results, and other pertinent field data and observations.

7 WARRANTY AND LIMITATIONS OF STUDY

Our professional services have been performed, our findings obtained, and our recommendations prepared in

accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all

other warranties, either express or implied. POD Group is not responsible for the independent conclusions, opinions or

recommendations made by others based on the field exploration and laboratory test data presented in this report.

Geotechnical Report CK SHREWSBURY
May 20, 2022

A geotechnical study is inherently limited since the engineering recommendations are developed from information obtained from test borings, which depict subsurface conditions only at the specific locations, times and depths shown on the logs. Soil conditions at other locations may differ from those encountered in the test borings, and the passage of time may cause the soil conditions to change from those described in this report.

The nature and extent of variation and change in the subsurface conditions at the site may not become evident until the course of construction. Construction monitoring by the geotechnical engineer or a representative is therefore considered necessary to verify the subsurface conditions and to check that the soils connected construction phases are properly completed. If significant variations or changes are in evidence, it may then be necessary to reevaluate the recommendations of this report. Furthermore, if the project characteristics are altered significantly from those discussed in this report, if the project information contained in this report is incorrect, or if additional information becomes available, a review must be made by this office to determine if any modification in the recommendations will be required.

APPENDIX

BORING LOCATION PLAN
BORING LOGS
SOIL SAMPLE CLASSIFICATION

Boring Log

Boring: B-1

Page 1 of 1

Project: **CK Shrewsbury** City, State Leitchfield, KY

thod:		H.S.A.	Boring Date:	9-May-	22		Locati	on: P	ropose	d Towe	r Cente	r	
de Diame	ter: 3	1/4"	Drill Rig Type:	D-25 Hammer Type: Auto									
oundwater: DRY			Weather:										
ller: Gre	enbau	m Associate	Note:										
From (ft)	To (ft)	Mate	erial Description	Sample Depth (ft)	Sample Type	Blows per 6-inch increment	Recovery (in)	SPT-N value	Rock Quality (RQD,%)	Atterberg Limits	Moisture Content (%)	% Fines (clay & silt)	Unconfined Compressive Strength (ksf)
0.0	6.0	SILTY CLAY (CL) - very stiff,. Dry light brown	1 - 2.5	SS	6, 8, 8	16	16,			16%		6.0
				3.5 - 5	SS	50,	2	50,			15%		
6.0	11.8		nd SILTSTONE - very highly eathered, tan	6 - 7.5	ss	50,	2	50,					
				8.5 - 10	SS	50,	1	50,					
11.8	23.8	dark brown, t	h SHALE - weathered, hard, nin bedded with a few thin clay partings.	11.8 -16.8	RC		53		40%				
				16.8-21.8	RC		50		7%				
	21.0	- a core barrel	malfunction resulted in zero recovery	21.8-23.8	RC		0		0%				
			erminated at 23.8 feet										

Boring Log

Boring: B-2

Page 1 of 1

Project: **CK Shrewsbury** City, State Leitchfield, KY

Note: Note			H.S.A.	Boring Date:	9-M	ay-22			Locati	on: 2	0' Norti	h of Pro	posed	Tower	Center
Priller: Greenbaum Associates Note:	ide Diame	ter: 3	1/4"												
From To (ft) (ft) Material Description (ft) (ft) SANDSTONE and SILTSTONE - very highly weathered, tan (Capture Material Description (See Silt) Silts (Silt) Silts	oundwat	er: DR	1						Weat	her:					
0.0 3.5 CLAYSHALE - hard, very highly weathered, brown to dark brown. 1 - 2.5 SS 4, 9, 50 9 59, 15% 3.5 12.1 SANDSTONE and SILTSTONE - very highly weathered, tan 3.5 - 5 SS 50, 1 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,	iller: Gre	enbau	m Associat	es Note:											
0.0 3.5 CLAYSHALE - hard, very highly weathered, brown to dark brown. 1 - 2.5 SS 4, 9, 50 9 59, 15% 3.5 12.1 SANDSTONE and SILTSTONE - very highly weathered, tan 3.5 - 5 SS 50, 1 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,			Mat	erial Description	Sample Depth	(ft) Sample Type	Blows per	6-inch increment	Recovery (in)	SPT-N value	Rock Quality (RQD,%)	Atterberg Limits	Moisture Content (%)	% Fines (clay & silt)	Unconfined
3.5 12.1 SANDSTONE and SILTSTONE - very highly weathered, tan	0.0	3.5							9	59,					
8.5 - dark brown 8.5 - 10 SS 50, 3 50, 3 50,	3.5	12.1				- 5 SS	7			100					
				veditiered, tan			-								
		8.5	- dark brown		MILII	10 SS	+	50,	3	50,					
	-		Auger	Refusal at 12.1 feet			1								

Boring Log

Boring: B-3

Page 1 of 1

Project. City State Leitchfield KV CK Shrewshury

	Proj	ect:	CK Sh	rewsbury					City	Stat	e		Leitchf	ield, KY	
Meth	od:		H.S.A.	Boring Date:		9-May-22 Location: 20' East of Proposed Tower Center							nter		
Inside	Diame	ter: 3 1	/4"	Drill Rig Type:	D-25				Hammer Type: Auto						
		er: DRY							Weather:						
Drille	r: Gre	enbau	m Associate	es Note:			_								
	From (ft)	To (ft)	Ma	terial Description		Sample Depth (ft)	Sample Type	Blows per 6-inch increment	Recovery (in)	SPT-N value	Rock Quality (RQD,%)	Atterberg Limits	Moisture Content (%)	% Fines (clay & silt)	Unconfined Compressive Strength, (ksf)
	0.0	3.5	CLAY (CL) - stiff, light brown		1 - 2.5	SS	2, 3, 8	18	11,			16%		3.2
	3.5	11.1		NE and SILTSTONE - highly		3.5 - 5	SS	50,	3	50,					
			weathered, I	brown-light gray to tan with trace clay		6 - 7.5	SS	50,	2	50,					
						U.S.									
						8.5 - 10	SS	50,	3	50,					
			Auge	Refusal at 11.1 feet											

FINE AND COARSE GRAINED SOIL INFORMATION COARSE GRAINED SOILS **FINE GRAINED SOILS** PARTICLE SIZE (SILTS & CLAYS) (SANDS & GRAVELS) Qu, KSF N Relative Density N Consistency Estimated Boulders Greater than 300 mm (12 in) Cobbles 0-1 Very Soft 0-0.5 75 mm to 300 mm (3 to 12 in) 0-4 Very Loose 5-10 Loose 2-4 Soft 0.5-1 Gravel 4.74 mm to 75 mm (3/16 to 3 in) Firm Coarse Sand 11-20 Firm 5-8 1-2 2 mm to 4.75 mm Stiff 21-30 Very Firm 9-15 2-4 Medium Sand 0.425 mm to 2 mm Very Stiff 31-50 Dense 16-30 4-8 Fine Sand 0.075 mm to 0.425 mm Over 50 Very Dense Over 31 Hard 8+ Silts & Clays Less than 0.075 mm

The STANDARD PENETRATION TEST as defined by ASTM D 1586 is a method to obtain a disturbed soil sample for examination and testing and to obtain relative density and consistency information. A standard 1.4-inch I.D./2-inch O.D. split-barrel sampler is driven three 6-inch increments with a 140 lb. hammer falling 30 inches. The hammer can either be of a trip, free-fall design, or actuated by a rope and cathead. The blow counts required to drive the sampler the final two increments are added together and designate the N-value defined in the above tables.

ROCK PROPERTIES

ROCK QUAL	ITY DESIGNATION (RQD)	ROCK HARDNESS					
Percent RQD	Quality	Very Hard:	Rock can be broken by heavy hammer blows.				
0-25	Very Poor	Hard:	Rock cannot be broken by thumb pressure, but can be broken by moderate hammer blows.				
25-50	Poor	Moderately	Small pieces can be broken off along sharp edges by considerable				
50-75	Fair	Hard:	hard thumb pressure; can be broken with light hammer blows.				
75-90	Good	Soft:	Rock is coherent but breaks very easily with thumb pressure at sharp edges and crumbles with firm hand pressure.				
90-100	Excellent	Very Soft:	Rock disintegrates or easily compresses when touched; can be hard to very hard soil.				

Recovery =	Length of Rock Core Recovered Length of Core Run	X100	63 REC NQ	Core Diameter BQ NQ	1-7/16 1-7/8
RQD =	Sum of 4 in. and longer Rock Pieces Recovered Length of Core Run	X100	43 RQD	HQ	2-1/2

SYMBOLS

KEY TO MATERIAL TYPES

	SOILS
Group Symbols	Typical Names
GW	Well graded gravel - sand mixture, little or no fines
GP	Poorly graded gravels or gravel - sand mixture, little or no fines
GM	Silty gravels, gravel - sand silt mixtures
GC	Clayey gravels, gravel - sand - clay mixtures
sw	Well graded sands, gravelly sands, little or no fines
SP	Poorly graded sands or gravelly sands, little or no fines
SM	Silly sands, sand - sill mixtures
sc	Clayey sands, sand - clay mixtures
ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts
OL	Organic silts and organic silty clays of low plasticity
CL	Inorganic clays of low range plasticity, gravelly clays, sandy clays, silty clays, lean clays
мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
СН	Inorganic clays of high range plasticity, fat clays

	ROCKS
Symbols	Typical Names
	Limestone or Dolomite
	Shale
	Sandstone

N:		dard Penetration, BPF
M:	Mois	ture Content, %
LL:	Liqui	d Limit, %
PI:	Plast	ticity Index, %
Qp:	Pock	et Penetrometer Value, TSF
Qu:		onfined Compressive Strength nated Qu, TSF
γ	Dry l	Unit Weight, PCF
F:	Fines	s Content
	S	AMPLING SYMBOLS
	SS	Split Spoon Sample
	On	Relatively Undisturbed Sample
	Ţ	
	5	Rock Core Sample

SOIL PROPERTY SYMBOLS

Directions to Site

FROM GRAYSON COUNTY JUDGE EXECUTIVE: 130 E MARKET ST, LEITCHFIELD, KY 42754: HEAD WEST ON E MARKET ST TOWARD S HEYSER DR (459 FT). TURN LEFT AT THE 2ND CROSS STREET ONTO S MAIN ST (499 FT). TURN RIGHT AT THE 1ST CROSS STREET ONTO W WHITE OAK ST (1.6 MI). CONTINUE ONTO BEAVER DAM RD (0.3 MI). TURN LEFT ONTO KY-187 S/SHREWSBURY RD (7.8 MI). TURN LEFT ONTO GRAY RD (0.5 MI). SITE WILL BE LOCATED ON LEFT (NORTH EAST) SIDE OF ROAD.

Location Code: 689716

Atty: Coots Henke & Wheeler, P.C.: Daniel E. Coots

LAND LEASE AGREEMENT

WITNESSETH

In consideration of the mutual covenants contained herein and intending to be legally bound hereby, the Parties hereto agree as follows:

GRANT. In accordance with this Agreement, LESSOR hereby grants to LESSEE the right to install, maintain and operate a telecommunications tower, facility, and equipment ("Use") upon the Premises (as hereinafter defined), which are a part of that real property owned, leased or controlled by LESSOR at approximately 369 Gray Road, Leitchfield, Kentucky 42574 (the "Property"). The Property is legally described on Exhibit "A" attached hereto and made a part hereof. The Premises are a portion of the Property including a portion of the parcel of land space (the "Land Space") consisting of approximately 100' x 60', or 6,000 square feet of land, as shown in detail on Exhibit "B" attached hereto and made a part LESSOR hereby grants permission to LESSEE to install, maintain and operate the telecommunications tower, facility, equipment, antennas and appurtenances described in Exhibit "B" attached hereto. LESSEE reserves the right to replace the aforementioned equipment with similar and comparable equipment. In addition, LESSOR hereby grants to LESSEE a non-exclusive right (the "Easements") over the Property for access, ingress and egress, seven (7) days a week twenty-four (24) hours a day, on foot or motor vehicle, including trucks over or along a thirty foot (30') wide right-of-way extending from the nearest public right-of-way, Gray Road, to the Land Space, and for the installation and maintenance of utility wires, poles, cables, conduits, fiber, and pipes over, under, or along one or more rights of way from the Land Space, said Land Space and Rights of Way (hereinafter collectively referred to as the "Premises") being substantially as described herein in Exhibit "B" attached hereto and made a part hereof. The Property is also shown on the Tax Map of the City of Leitchfield, Grayson County, as Tax Map ID Number 068-00-00-050.0H.

In the event any public utility is unable to use the Easements, the LESSOR hereby agrees to grant an additional right-of-way either to the LESSEE or to the public utility at no cost to the LESSEE.

LESSEE may survey the Premises and said survey shall then become Exhibit "C" which shall be attached hereto and made a part hereof, and shall control in the event of boundary and access discrepancies between it and Exhibit "B". Cost for such work shall be borne by the LESSEE.

2. This Agreement shall be effective as of the date of execution by both INITIAL TERM. Parties ("Effective Date"). The initial term of the Agreement shall be for five (5) years beginning on (as hereinafter defined). the Commencement Date The "Commencement Date" shall be the LESSEE first (1st) day the month after begins construction the

Location Code: 689716

Atty: Coots Henke & Wheeler, P.C.: Daniel E. Coots

telecommunications facility. LESSOR and LESSEE agree that they shall acknowledge, in writing, the Commencement Date once construction of the telecommunications facility has commenced.

3. EXTENSIONS. This Agreement shall automatically be extended for 4 additional five (5) year terms unless LESSEE terminates it at the end of the then current term by giving LESSOR written notice of the intent to terminate at least three (3) months prior to the end of the then current term. The initial term and all extensions shall be collectively referred to herein as the "Term".

4. RENTAL.

- (a). Rental payments shall begin on the Commencement Date and be due at a total annual rental of to be paid in equal monthly installments of on the first (1st) day of the month, in advance, to LESSOR at 223 Huff Road, Leitchfield, Kentucky 42574 or to such other person, firm, or place as LESSOR may, from time to time, designate in writing at least thirty (30) days in advance of any rental payment date by notice given in accordance with Paragraph 20 below. LESSOR and LESSEE acknowledge and agree that the initial rental payment shall not be delivered by LESSEE until sixty (60) days after the Commencement Date. Upon agreement of the Parties, LESSEE may pay rent by electronic funds transfer and in such event, LESSOR agrees to provide to LESSEE bank routing information for such purpose upon request of LESSEE.
- (b). For any party to whom rental payments are to be made, LESSOR or any successor in interest of LESSOR hereby agrees to provide to LESSEE (i) a completed, current version of Internal Revenue Service Form W-9, or equivalent; (ii) complete and fully executed state and local withholding forms if required; and (iii) other documentation to verify LESSOR's or such other party's right to receive rental as is reasonably requested by LESSEE. Rental shall accrue in accordance with this Agreement, but LESSEE shall have no obligation to deliver rental payments until the requested documentation has been received by LESSEE. Upon receipt of the requested documentation, LESSEE shall deliver the accrued rental payments as directed by LESSOR.
- (c). The rental amount shall increase by at the beginning of each from the Commencement Date, as defined herein.
- (d). ADDITIONAL EXTENSIONS. If at the end of the fourth (4th) five (5) year extension term this Agreement has not been terminated by either Party by giving to the other written notice of an Intention to terminate it at least three (3) months prior to the end of such term, this Agreement shall continue in force upon the same covenants, terms and conditions for a further term of five (5) years and for five (5) year terms thereafter until terminated by either Party by giving to the other written notice of its intention to so terminate at least three (3) months prior to the end of such term. Annual rental for each such additional five (5) year term shall be equal to the annual rental payable with respect to the immediately preceding five (5) year term. The initial term and all extensions shall be collectively referred to herein as the "Term".
- 5. <u>ACCESS</u>. LESSEE shall have the non-exclusive right of ingress and egress from a public right-of-way, 7 days a week, 24 hours a day, over the Property to and from the Premises for the purpose of Installation, operation and maintenance of LESSEE's communications equipment over or along a thirty foot (30') right-of-way ("Easement"), which shall be depicted on Exhibit "B". LESSEE may use the Easement for the installation, operation and maintenance of wires, cables,

Location Code: 689716

Atty: Coots Henke & Wheeler, P.C.: Daniel E. Coots

conduits and pipes for all necessary electrical, telephone, fiber and other similar support services. In the event it is necessary, LESSOR agrees to grant LESSEE or the provider the right to install such services on, through, over and/or under the Property, provided the location of such services shall be reasonably approved by LESSOR. Notwithstanding anything to the contrary, the Premises shall include such additional space sufficient for LESSEE's radio frequency signage and/or barricades as are necessary to ensure LESSEE's compliance with Laws (as defined in Paragraph 27).

- 6. <u>CONDITION OF PROPERTY</u>. LESSOR shall deliver the Premises to LESSEE in a condition ready for LESSEE's Use and clean and free of debris. Notwithstanding the foregoing, LESSEE shall be responsible for any tree clearing/site preparation associated with the Land Space and/or Easement areas. LESSOR represents and warrants to LESSEE that as of the Effective Date, the Premises is (a) in compliance with all Laws; and (b) in compliance with all EH&S Laws (as defined in Paragraph 24).
- 7. IMPROVEMENTS. The communications equipment including, without limitation, the tower, equipment shelters/platforms, antenna mounts, antennas, conduits, and other improvements shall be at LESSEE's expense and installation shall be at the discretion and option of LESSEE. LESSEE shall have the right to replace, repair, add or otherwise modify its communications equipment, antennas, conduits, fencing and other screening, or other improvements or any portion thereof and the frequencies over which the communications equipment operates, whether or not any of the communications equipment, antennas, conduits or other improvements are listed on any exhibit.
- 8. GOVERNMENT APPROVALS. LESSEE's Use is contingent upon LESSEE obtaining all of the certificates, permits and other approvals (collectively the "Government Approvals") that may be required by any Federal, State or Local authorities (collectively, the "Government Entities") as well as a satisfactory soil boring test, environmental studies, or any other due diligence LESSEE chooses that will permit LESSEE's Use. By signing this Agreement, LESSOR consents to LESSEE making all necessary applications with the appropriate zoning authority and shall cooperate with LESSEE in its effort to obtain such approvals. LESSOR shall take no action which would adversely affect the status of the Property with respect to LESSEE's Use.
- 9. TERMINATION. LESSEE may, unless otherwise stated, immediately terminate this Agreement upon written notice to LESSOR in the event that (i) any applications for such Government Approvals should be finally rejected; (ii) any Government Approval issued to LESSEE is canceled, expires, lapses or is otherwise withdrawn or terminated by any Government Entity; (iii) LESSEE determines that such Government Approvals may not be obtained in a timely manner; (iv) LESSEE determines any structural analysis is unsatisfactory; (v) LESSEE, in its sole discretion, determines the Use of the Premises is obsolete or unnecessary; (vi) with 3 months prior notice to LESSOR, upon the annual anniversary of the Commencement Date; or (vii) at any time before the Commencement Date for any reason or no reason in LESSEE's sole discretion.
- 10. <u>INDEMNIFICATION</u>. Subject to Paragraphs 11 and 12, each Party shall indemnify and hold the other harmless against any claim of liability or loss from personal injury or property damage resulting from or arising out of the negligence or willful misconduct of the indemnifying Party, its employees, contractors or agents, except to the extent such claims or damages may be due to or caused by the negligence or willful misconduct of the other Party, or its employees, contractors or agents. The indemnified Party will provide the indemnifying Party with prompt, written notice

Location Code: 689716

Atty: Coots Henke & Wheeler, P.C.: Daniel E. Coots

of any claim covered by this indemnification; provided that any failure of the indemnified Party to provide any such notice, or to provide it promptly, shall not relieve the indemnifying Party from its indemnification obligation in respect of such claim, except to the extent the indemnifying Party can establish actual prejudice and direct damages as a result thereof. The indemnified Party will cooperate appropriately with the indemnifying Party in connection with the indemnifying Party's defense of such claim. The indemnifying Party shall defend any indemnified Party, at the indemnified Party's request, against any claim with counsel reasonably satisfactory to the indemnified Party. The indemnifying Party shall not settle or compromise any such claim or consent to the entry of any judgment without the prior written consent of each indemnified Party and without an unconditional release of all claims by each claimant or plaintiff in favor of each indemnified Party.

- 11. INSURANCE. The LESSOR agrees that at its own cost and expense, LESSOR will maintain commercial liability insurance with limits not less than \$1,000,000 for injury to or death of one or more persons in any one occurrence and \$1,000,000 for damage or destruction in any one occurrence. The LESSEE agrees that at its own cost and expense, it will maintain commercial general liability insurance with limits not less than \$2,000,000 for injury to or death of one or more persons in any one occurrence and \$2,000,000 for damage or destruction in any one occurrence. The Parties agree to include the other Party as an additional insured. The Parties hereby waive and release any and all rights of action for negligence against the other which may hereafter arise on account of damage to the Premises or the Property, resulting from any fire, or other casualty which is insurable under "Causes of Loss - Special Form" property damage insurance or for the kind covered by standard fire insurance policies with extended coverage, regardless of whether or not, or in what amounts, such insurance is now or hereafter carried by the Parties, even if any such fire or other casualty shall have been caused by the fault or negligence of the other Party. These waivers and releases shall apply between the Parties and they shall also apply to any claims under or through either Party as a result of any asserted right of subrogation. All such policles of insurance obtained by either Party concerning the Premises or the Property shall waive the insurer's right of subrogation against the other Party.
- 12. <u>LIMITATION OF LIABILITY</u>. Except for indemnification pursuant to Paragraphs 10 and 24, a violation of Paragraph 30, or a violation of law, neither Party shall be liable to the other, or any of their respective agents, representatives, or employees for any lost revenue, lost profits, loss of technology, rights or services, incidental, punitive, indirect, special or consequential damages, loss of data, or interruption or loss of use of service, even if advised of the possibility of such damages, whether under theory of contract, tort (including negligence), strict liability or otherwise.

13. INTERFERENCE.

- (a). LESSOR agrees that LESSOR and other occupants of the Property will not cause interference to LESSEE's equipment (that is measurable in accordance with industry standards to the then existing equipment of LESSEE).
- (b). Without limiting any other rights or remedies, if interference occurs and continues for a period in excess of 48 hours following notice to the interfering party via telephone to LESSEE'S Network Operations Center (at (800) 224-6620/(800) 621-2622) or to LESSOR at (270) 230-3184, the interfering party shall or shall require any other user to reduce power or cease operations of the interfering equipment until the interference is cured.

Location Code: 689716

Atty: Coots Henke & Wheeler, P.C.: Daniel E. Coots

(c). The Parties acknowledge that there will not be an adequate remedy at law for noncompliance with the provisions of this Paragraph and therefore the Parties shall have the right to equitable remedies such as, without limitation, injunctive relief and specific performance.

- 14. REMOVAL AT END OF TERM. Upon expiration or within ninety (90) days of earlier termination, LESSEE shall remove LESSEE's Communications Equipment (except footings) and restore the Premises to its original condition, reasonable wear and tear and casualty damage excepted. LESSOR agrees and acknowledges that the communications equipment shall remain the personal property of LESSEE and LESSEE shall have the right to remove the same at any time during the Term, whether or not said items are considered fixtures and attachments to real property under applicable laws. If such time for removal causes LESSEE to remain on the Premises after termination of the Agreement, LESSEE shall pay rent at the then existing monthly rate or on the existing monthly pro-rate basis if based upon a longer payment term, until the removal of the communications equipment is completed.
- 15. <u>HOLDOVER</u>. If upon expiration of the Term the Parties are negotiating a new lease or a lease extension, then this Agreement shall continue during such negotiations on a month to month basis at the rental in effect as of the date of the expiration of the Term. In the event that the Parties are not in the process of negotiating a new lease or lease extension and LESSEE holds over after the expiration or earlier termination of the Term, then LESSEE shall pay rent at the then existing monthly rate or on the existing monthly pro-rata basis if based upon a longer payment term, until the removal of the communications equipment is completed.
- RIGHT OF FIRST REFUSAL. If at any time after the Effective Date, LESSOR receives an offer 16. or letter of intent from any person or entity that is in the business of owning, managing or operating communications facilities or is in the business of acquiring landlord interests in agreements relating to communications facilities, to purchase fee title, an easement, a lease, a license, or any other interest in the Premises or any portion thereof or to acquire any interest in this Agreement, or an option for any of the foregoing, LESSOR shall provide written notice to LESSEE of said offer ("LESSOR's Notice"). LESSOR's Notice shall include the prospective buyer's name, the purchase price being offered, any other consideration being offered, the other terms and conditions of the offer, a description of the portion of and interest in the Premises and/or this Agreement which will be conveyed in the proposed transaction, and a copy of any letters of intent or form agreements presented to LESSOR by the third party offeror. LESSEE shall have the right of first refusal to meet any bona fide offer of sale or transfer on the terms and conditions of such offer or by effectuating a transaction with substantially equivalent financial terms. If LESSEE fails to provide written notice to LESSOR that LESSEE intends to meet such bona fide offer within thirty (30) days after receipt of LESSOR's Notice, LESSOR may proceed with the proposed transaction in accordance with the terms and conditions of such third party offer, in which event this Agreement shall continue in full force and effect and the right of first refusal described in this Paragraph shall survive any such conveyance to a third party. If LESSEE provides LESSOR with notice of LESSEE's intention to meet the third party offer within thirty (30) days after receipt of LESSOR's Notice, then if LESSOR's Notice describes a transaction involving greater space than the Premises, LESSEE may elect to proceed with a transaction covering only the Premises and the purchase price shall be pro-rated on a square footage basis. Further, LESSOR acknowledges and agrees that if LESSEE exercises this right of first refusal, LESSEE may require a reasonable period of time to conduct due diligence and effectuate the closing of a transaction on substantially equivalent financial terms of

Location Code: 689716

Atty. Coots Henke & Wheeler, P.C.: Daniel E Coots

the third party offer. For purposes of this Paragraph, any transfer, bequest or devise of LESSOR's interest in the Property as a result of the death of LESSOR, whether by will or intestate succession, or any conveyance to LESSOR's family members by direct conveyance or by conveyance to a trust for the benefit of family members shall not be considered a sale for which LESSEE has any right of first refusal.

- 17. RIGHTS UPON SALE. Should LESSOR, at any time during the Term, decide (i) to sell or otherwise transfer all or any part of the Property, or (ii) to grant to a third party by easement or other legal instrument an interest in and to any portion of the Premises, such sale, transfer, or grant of an easement or interest therein shall be under and subject to this Agreement and any such purchaser or transferee shall recognize LESSEE's rights hereunder. In the event that LESSOR completes any such sale, transfer, or grant described in this Paragraph without executing an assignment of the Agreement whereby the third party agrees in writing to assume all obligations of LESSOR under this Agreement, then LESSOR shall not be released from its obligations to LESSEE under this Agreement, and LESSEE shall have the right to look to LESSOR and the third party for the full performance of the Agreement.
- 18. <u>LESSOR'S TITLE</u>. LESSOR covenants that LESSEE, on paying the rent and performing the covenants herein, shall peaceably and quietly have, hold and enjoy the Premises. LESSOR represents and warrants to LESSEE as of the Effective Date and covenants during the Term that LESSOR has full authority to enter into and execute this Agreement and that there are no liens, judgments, covenants, easements, restrictions or other impediments of title that will adversely affect LESSEE's Use.
- 19. ASSIGNMENT. Without any approval or consent of the other Party, this Agreement may be sold, assigned or transferred by either Party to (i) any entity in which the Party directly or indirectly holds an equity or similar interest; (ii) any entity which directly or indirectly holds an equity or similar interest in the Party; or (iii) any entity directly or indirectly under common control with the Party. LESSEE may unilaterally assign this Agreement without the approval or consent of LESSOR to any third party tower company that agrees to construct and develop the Premises. LESSEE may also assign this Agreement to any entity which acquires all or substantially all of LESSEE's assets in the market defined by the FCC in which the Property is located by reason of a merger, acquisition or other business reorganization without approval or consent of LESSOR. As to other parties, this Agreement may not be sold, assigned or transferred without the written consent of the other Party, which such consent will not be unreasonably withheld, delayed or conditioned. No change of stock ownership, partnership interest or control of LESSEE or transfer upon partnership or corporate dissolution of either Party shall constitute an assignment hereunder. LESSEE may sublet the Premises in LESSEE's sole discretion.
- 20. <u>NOTICES</u>. Except for notices permitted via telephone in accordance with Paragraph 13, all notices hereunder must be in writing and shall be deemed validly given if sent by certified mail, return receipt requested or by commercial courier, provided the courier's regular business is delivery service and provided further that it guarantees delivery to the addressee by the end of the next business day following the courier's receipt from the sender, addressed as follows (or any other address that the Party to be notified may have designated to the sender by like notice):

Location Code: 689716

Atty: Coots Henke & Wheeler, P.C.: Daniel E. Coots

LESSOR: Darrell and Sandi Roof

223 Huff Road

Leitchfield, Kentucky 42574

LESSEE: Cellco Partnership

d/b/a Verizon Wireless 180 Washington Valley Road Bedminster, New Jersey 07921 Attention: Network Real Estate

Notice shall be effective upon actual receipt or refusal as shown on the receipt obtained pursuant to the foregoing.

- 21. SUBORDINATION AND NON-DISTURBANCE. If applicable and within fifteen (15) days of the Effective Date, LESSOR shall obtain a Non-Disturbance Agreement, as defined below, from its existing mortgagee(s), ground lessors and master lessors, if any, of the Property. At LESSOR's option, this Agreement shall be subordinate to any future master lease, ground lease, mortgage, deed of trust or other security interest (a "Mortgage") by LESSOR which from time to time may encumber all or part of the Property; provided, however, as a condition precedent to LESSEE being required to subordinate its interest in this Agreement to any future Mortgage covering the Property, LESSOR shall obtain for LESSEE's benefit a non-disturbance and attornment agreement for LESSEE's benefit in the form reasonably satisfactory to LESSEE, and containing the terms described below (the "Non-Disturbance Agreement"), and shall recognize LESSEE's rights under this Agreement. The Non-Disturbance Agreement shall include the encumbering party's ("Lender's") agreement that, if Lender or its successor-in-interest or any purchaser of Lender's or its successor's interest (a "Purchaser") acquires an ownership interest in the Property, Lender or such successor-in-interest or Purchaser will honor all of the terms of the Agreement. Such Non-Disturbance Agreement must be binding on all of Lender's participants in the subject loan (if any) and on all successors and assigns of Lender and/or its participants and on all Purchasers. In return for such Non-Disturbance Agreement, LESSEE will execute an agreement for Lender's benefit in which LESSEE (1) confirms that the Agreement is subordinate to the Mortgage or other real property interest in favor of Lender, (2) agrees to attorn to Lender if Lender becomes the owner of the Property and (3) agrees to accept a cure by Lender of any of LESSOR's defaults, provided such cure is completed within the deadline applicable to LESSOR. In the event LESSOR defaults in the payment and/or other performance of any mortgage or other real property interest encumbering the Property, LESSEE, may, at its sole option and without obligation, cure or correct LESSOR's default and upon doing so, LESSEE shall be subrogated to any and all rights, titles, liens and equities of the holders of such mortgage or other real property interest and LESSEE shall be entitled to deduct and setoff against all rents that may otherwise become due under this Agreement the sums paid by LESSEE to cure or correct such defaults.
- 22. <u>DEFAULT</u>. It is a "Default" if (i) either Party fails to comply with this Agreement and does not remedy the failure within thirty (30) days after written notice by the other Party or, if the failure cannot reasonably be remedied in such time, if the failing Party does not commence a remedy within the allotted thirty (30) days and diligently pursue the cure to completion within ninety (90) days after the initial written notice, or (ii) LESSOR fails to comply with this Agreement

Location Code: 689716

Atty: Coots Henke & Wheeler, P.C.: Daniel E. Coots

and the failure substantially Interferes with LESSEE's Use, in LESSEE's reasonable discretion, and LESSOR does not remedy the failure within five (5) days after written notice from LESSEE or, if the failure cannot reasonably be remedied in such time, if LESSOR does not commence a remedy within the allotted five (5) days and diligently pursue the cure to completion within fifteen (15) days after the initial written notice. The cure periods set forth in this Paragraph 22 do not extend the period of time in which either Party has to cure Interference pursuant to Paragraph 13 of this Agreement.

- 23. REMEDIES. In the event of a Default, without limiting the non-defaulting Party in the exercise of any right or remedy which the non-defaulting Party may have by reason of such default, the non-defaulting Party may terminate this Agreement and/or pursue any remedy now or hereafter available to the non-defaulting Party under the Laws or judicial decisions of the state in which the Property is located. Further, upon a Default, the non-defaulting Party may at its option (but without obligation to do so), perform the defaulting Party's duty or obligation. The costs and expenses of any such performance by the non-defaulting Party shall be due and payable by the defaulting Party upon invoice therefor. If LESSEE undertakes any such performance on LESSOR's behalf and LESSOR does not pay LESSEE the full undisputed amount within thirty (30) days of its receipt of an invoice setting forth the amount due, LESSEE may offset the full undisputed amount due against all fees due and owing to LESSOR under this Agreement until the full undisputed amount is fully reimbursed to LESSEE.
- 24, ENVIRONMENTAL. LESSEE shall conduct its business in compliance with all applicable laws governing the protection of the environment or employee health and safety ("EH&S Laws"). LESSEE shall indemnify and hold harmless the LESSOR from claims to the extent resulting from LESSEE's violation of any applicable EH&S Laws or to the extent that LESSEE causes a release of any regulated substance to the environment. LESSOR shall indemnify and hold harmless LESSEE from all claims resulting from the violation of any applicable EH&S Laws by LESSOR or its employees, contractors or agents, or a release of any regulated substance to the environment caused by LESSOR, its employees, contractors or agents, except to the extent resulting from the activities of LESSEE. The Parties recognize that LESSEE is only leasing a small portion of LESSOR's property and that LESSEE shall not be responsible for any environmental condition or issue except to the extent resulting from LESSEE's specific activities and responsibilities. In the event that LESSEE encounters any hazardous substances that do not result from its activities, LESSEE may relocate its facilities to avoid such hazardous substances to a mutually agreeable location or, if LESSEE desires to remove at its own cost all or some the hazardous substances or materials (such as soil) containing those hazardous substances, LESSOR agrees to sign any necessary waste manifest associated with the removal, transportation and/or disposal of such substances.
- 25. CASUALTY. If a fire or other casualty damages the Property or the Premises and substantially impairs LESSEE's Use, in LESSEE's reasonable discretion, rent shall abate until LESSEE'S Use is restored. If LESSEE's Use is not restored within forty-five (45) days, LESSEE may terminate this Agreement.
- 26. <u>CONDEMNATION</u>. If a condemnation of any portion of the Property or Premises substantially impairs LESSEE's Use, in LESSEE's reasonable discretion, LESSEE may terminate this Agreement <u>LESSEE</u> may on its own behalf make a claim in any condemnation proceeding involving the Premises for losses related to LESSEE's communications equipment, relocation costs

Location Code: 689716

Atty: Coots Henke & Wheeler, P.C.: Daniel E. Coots

and, specifically excluding loss of LESSEE's leasehold interest, any other damages LESSEE may incur as a result of any such condemnation.

27. <u>APPLICABLE LAWS</u>. During the Term, LESSOR shall maintain the Property in compliance with all applicable laws, EH&S Laws, rules, regulations, ordinances, directives, covenants, easements, consent decrees, zoning and land use regulations, and restrictions of record, permits, building codes, and the requirements of any applicable fire insurance underwriter or rating bureau, now in effect or which may hereafter come into effect (including, without limitation, the Americans with Disabilities Act and laws regulating hazardous substances) (collectively "Laws"). LESSEE shall, in respect to the condition of the Premises and at LESSEE's sole cost and expense, comply with (i) all Laws relating solely to LESSEE's specific and unique nature of use of the Premises; and (ii) all building codes requiring modifications to the Premises due to the Improvements being made by LESSEE in the Premises. It shall be LESSOR's obligation to comply with all Laws relating to the Property, without regard to specific use (including, without limitation, modifications required to enable LESSEE to obtain all necessary building permits).

28. <u>TAXES</u>.

- (a). LESSOR shall invoice and LESSEE shall pay any applicable transaction tax (including sales, use, gross receipts, or excise tax) imposed on the LESSEE and required to be collected by the LESSOR based on any service, rental space, or equipment provided by the LESSOR to the LESSEE. LESSEE shall pay all personal property taxes, fees, assessments, or other taxes and charges imposed by any Government Entity that are imposed on the LESSEE and required to be paid by the LESSEE that are directly attributable to the LESSEE's equipment or LESSEE's use and occupancy of the Premises. Payment shall be made by LESSEE within sixty (60) days after presentation of a receipted bill and/or assessment notice which is the basis for such taxes or charges. LESSOR shall pay all ad valorem, personal property, real estate, sales and use taxes, fees, assessments or other taxes or charges that are attributable to LESSOR's Property or any portion thereof imposed by any Government Entity.
- (b). LESSEE shall have the right, at its sole option and at its sole cost and expense, to appeal, challenge or seek modification of any tax assessment or billing for which LESSEE is wholly or partly responsible for payment. LESSOR shall reasonably cooperate with LESSEE at LESSEE's expense in filling, prosecuting and perfecting any appeal or challenge to taxes as set forth in the preceding sentence, including but not limited to, executing any consent, appeal or other similar document. In the event that as a result of any appeal or challenge by LESSEE, there is a reduction, credit or repayment received by the LESSOR for any taxes previously paid by LESSEE, LESSOR agrees to promptly reimburse to LESSEE the amount of said reduction, credit or repayment. In the event that LESSEE does not have the standing rights to pursue a good faith and reasonable dispute of any taxes under this paragraph, LESSOR will pursue such dispute at LESSEE's sole cost and expense upon written request of LESSEE.
 - 29. ACCESS TO TOWER. LESSOR agrees the LESSEE shall have free access to the Tower at all times for the purpose of installing and maintaining the said equipment. LESSOR shall furnish LESSEE with necessary means of access for the purpose of ingress and egress to this site and Tower location. It is agreed, however, that only authorized engineers, employees or properly authorized contractors of LESSEE or persons under their direct supervision will be permitted to enter said premises.

Location Code: 689716

Atty: Coots Henke & Wheeler, P.C.: Daniel E. Coots

- 30. NON-DISCLOSURE. The Parties agree this Agreement and any information exchanged between the Parties regarding the Agreement are confidential. The Parties agree not to provide copies of this Agreement or any other confidential information to any third party without the prior written consent of the other or as required by law. If a disclosure is required by law, prior to disclosure, the Party shall notify the other Party and cooperate to take lawful steps to resist, narrow, or eliminate the need for that disclosure.
- 31. MOST FAVORED LESSEE. LESSOR represents and warrants that the rent, benefits and terms and conditions granted to LESSEE by LESSOR hereunder are now and shall be, during the Term, no less favorable than the rent, benefits and terms and conditions for substantially the same or similar tenancies or licenses granted by LESSOR to other parties. If at any time during the Term LESSOR shall offer more favorable rent, benefits or terms and conditions for substantially the same or similar tenancies or licenses as those granted hereunder, then LESSOR shall, within thirty (30) days after the effective date of such offering, notify LESSEE of such fact and offer LESSEE the more favorable offering. If LESSEE chooses, the parties shall then enter into an amendment that shall be effective retroactively to the effective date of the more favorable offering, and shall provide the same rent, benefits or terms and conditions to LESSEE. LESSEE shall have the right to decline to accept the offering. LESSOR's compliance with this requirement shall be subject, at LESSEE's option, to independent verification.
- 32. MISCELLANEOUS. This Agreement contains all agreements, promises and understandings between the LESSOR and the LESSEE regarding this transaction, and no oral agreement, promises or understandings shall be binding upon either the LESSOR or the LESSEE in any dispute, controversy or proceeding. This Agreement may not be amended or varied except in a writing signed by all Parties. This Agreement shall extend to and bind the heirs, personal representatives, successors and assigns hereto. The failure of either party to insist upon strict performance of any of the terms or conditions of this Agreement or to exercise any of its rights hereunder shall not waive such rights and such party shall have the right to enforce such rights at any time. The performance of this Agreement shall be governed, interpreted, construed and regulated by the laws of the state in which the Premises is located without reference to its choice of law rules. Except as expressly set forth in this Agreement, nothing in this Agreement shall grant, suggest or imply any authority for one Party to use the name, trademarks, service marks or trade names of the other for any purpose whatsoever. LESSOR agrees to execute a Memorandum of this Agreement, which LESSEE may record with the appropriate recording officer. The provisions of the Agreement relating to indemnification from one Party to the other Party shall survive any termination or expiration of this Agreement.

[Signature page follows. The remainder of this page is intentionally blank.]

Location Code: 689716

Atty: Coots Henke & Wheeler, P.C.: Daniel E. Coots

IN WITNESS WHEREOF, the Parties hereto have set their hands and affixed their respective seals

the day and year first above written.

	LESSOR:
Jonat P. Thee	By: Donall Pal
WITNESS	Darrell Roof
	Date: 2/25/22
Janatt P. Thee	By: Sand Post
WITNESS	Sandi Roof
	Date:
	LESSEE:
	CELLCO PARTNERSHIP
	d/b/a Verizon Wireless
	By: ESM
WITNESS Object 1 Ball	Printed: <u>Ed Maher</u> Director - Neiwork Field Enginearing Its:

Location Code: 689716

Atty: Coots Henke & Wheeler, P.C.: Daniel E. Coots

EXHIBIT "A"

DESCRIPTION OF PROPERTY

Property located in Grayson County, Kentucky

A certain tract or parcel of land on the headwaters of Clay Lick Creek (near Shrewsbury) in Grayson County, Kentucky, and bounded as follows:

Beginning at a point in the East right of way of Kentucky Highway 187, corner to Billy Roof (see Deed Book 164, Page 611); thence northeast 350 feet to a point in the East right of way of said highway and corner to property conveyed to Tony Roof; thence southeast, at a right angle to said right of way, severing the parent tract and with land conveyed to Tony Roof approximately 3,100 feet to the original line; thence southwest with the original line to an original corner in Gray Road; thence northwest with the original line and Gray Road to corner of Billy Roof; thence continuing northeast with said Billy Roof line 770 feet to Billy Roof's easternmost corner; thence northwest with said Billy Roof line to the right of way of Kentucky Highway 187, the beginning corner.

AND BEING a portion of the same property conveyed to Darrell Roof and Sandi Roof from Billy Roof (a/k/a Billy Gean Roof) and Clydia Roof by Deed dated August 6, 2019 and recorded August 7, 2019 in Deed Book 482, Page 291.

Tax Parcel No. 068-00-00-050.0D

VzW Site Name: CK Shrewshury Location Code: 689716 Atty: Coots Henke & Wheeler, P.C.: Daniel E. Coots

EXHIBIT "B"

SITE PLAN OF THE PREMISES AND DESCRIPTION OF TOWER EQUIPMENT

CK SHREWSBURY

GRAY ROAD LEITCHFIELD, KY 42574 GRAYSON COUNTY

PODD POWEL OF DESIGN POWER OF READONNAMEN COLUMN CONTRACTOR OF THE POST OF THE CELLCO PARTNERSHIP ARM

verizon

PRELIMINARY NOT FOR CONSTRUCTION

DUTERALE STR PLAN DUTERALE STR PLAN DIMENSIONED STR PLAN CARRALL STE UTILITY PLAN

TOWER ELEVATION

TOWER OWNER: VERIZON

verizon

CELLCO PARTNERSHIP

NEW 230'-0" SELF. ARRESTOR -TOTAL	NEW 230'-0" SELF SUPPORT TOWER w/5'-0" LIGHTNING ARRESTOR -TOTAL TOWER HEIGHT 235'-0"		OPTO-2002 WITH THE WILLS AND CONTRIBUTE OF THE WILL AND THE WILL TO CONTRIBUTE OF THE WILL AND THE WILL THE WILL THE WILL AND THE WILL THE WI	A), CONTRINE FOLLOW SIGNS S. M.O. TURN TIC JAN LETT CHITO
TO CONTROLLED TO	PROCO 1107 AND	CONTRIBUTION IN A CONTRIBUTION OF THE PARTY	TO CONTROL THE PROPERTY OF THE	NE CARRES WORTHON CONTRINE WORTHON

FOLLOWING COURSE AL SOUTHER DE TITL LOCAL "L' MITTING IN THE LINCUS AND		MONTROTIONAL FOWER OF DECKN GROUP, LLC 11 600 BLUGGAKES PARWAY INDUSTRIE, KY 6229 PHONE: [202] ALP 5252	MITTERS DO NOT HOUSE NOT INSURED, SO NOT MOSTED NOT CONTINUED BY NOT THE	
The Control of the Co	APPLICABLE CODES	SUNTROLL FOURTH OF CESCH CERCUP, LLC 11400 SUNTLICENSES PARTWAY FOURTH OF CESCH CESCH PHONE: DOI: 10.74253	MADED HELD MADED LIDSTERY CONCENT TO PARK TO PAGES DARL TO	CONSULTANT TEAM

A 1025.21 ISSUED FOR REDVEW LEASE EXHIBIT

P	

NOS NICO NACES	ECT ION, SITE ET INDEX	1
DALCASO BY: DALCASO BY: DATE:	PROJI INFORMAT MAPS, SHE	T.

CK SHREWSBURY

LEITENFILLE, ET 42574 GAATSEN COUNTY

POD NUMBER:

II.	
0)	
	315-000
	0,

VzW Site Name: CK Shrewsbury Location Code: 689716 Atty: Coots Henke & Wheeler, P.C.: Daniel E. Coots

EXHIBIT "C"

SURVEY

LEGAL DESCRIPTIONS

PARENT PAREN, - LEGAL DESCRIPTION - DEED BOOK 483, PAGE 291 (NOT FIELD SURVEYED BROWSET) DOCKTOON GRAVIAN COUNTY PROTECTOR

A CERTAIN TRACT OR PARCES OF LAND ON THE HEADY BOUNDED AS FOLLOWS:

ESTIMATION AT A ROBERT IN THE EAST ROSET OF MANY OF EMPTLOYS INCHRONOUS LIST, CORREST TO BLLY MODE (JETS BEED MODE) 164, FACE EXISTS
ROSE THE ROSE SOUTHARD, A A RESET ARREL TO SALD RESET OF MAN, SYSTEMSOF THE RASET THAT ARE DESCRIPTION OF THE RESET OF

AND REING A PORTION OF THE SAME PROPERTY CONVEYED TO CHREEL BOOF AND SAND ROOF FROM BULY BOOF DATA BILLY GRAN ROOF].
AND CLYDIA BOOF BY DIED DATED AUGUST 4, 2019 AND RECORDED AUGUST 7, 2019 IN DEED DOCK 402, FACE 291

THE FOLLOWING IS A DESCRIPTION OF THE PROPOSED LEASE AREA ON THE PROFESTY CONNEYED TO DAMEEL ROOF IS MADE FOOD AS RECORDED IN THE CHROLO OF THE CLEEK OF EXECUTION COUNTY, KENTUCKY IN BEED ROOF AND, PAGE 25T, PARCEL ID: HIS QUIPO USE OF WHICH IS MORE PARTICULARLY DESCRIPTION AS FOLLOWS:

elainn) dathai uich herby g ares upp artiuch statt rank coordnat schea, turee core, klo el jedm a kel time Krilaric Clora, fostiopere system osesikation uibng the erituch transportation carbet elai time 6/5 network Completto os reptember 1, 2021.

BIORDED MY ACCUSE A UNITERACTURE.

HE FOLLOWING IS A DECOMPTION OF THE PROPOSED TO ACCESS & UTILITY GASEMENT ON THE PROPERTY COMMYED TO DARRELL ROOF &
SAME FOOD AS EXCORDED IN THE OFFICE OF THE CLERK OF GRAVEON COUNTY, NETHYLOTY IN DEED BLOCK ASS, MARK SM. HARCLE IN:

6.00-00-00-00-00, WHICH IS WORSE PARTICLASED POSCIEDED AT PROPERTY.

BEST OFFI

SCARING CATUM USED HEREIN IS EASED UPON RENTLICHT STATE PLANS EDGREDNATE EFSTEM, SINGLE ZORE, RAD EN, FROM A REAL TIME ERICHANTE GLEBAL POSITIONING SPETEM OBSERVATION USING THE RENTUCKY TRANSPORTATION CARRIET REAL TIME CPS NETWORK CHARACTERS OB SPETEMBER 3, 2021.

SET DESCRIPTION AND THE MANIEL OF DISSOCRATIONS AND THE MANIEL OF MANIEL OF

TORMS AND CONDITIONS OF OIL AND BAS LEASE DATED DECEMBER 23, 2977 BY AND BETWEEN HEADHEL ROOF AND BASHOON, AND LAKEFORD OIL & CACCO. DECEMBER 20. 1977 BY DEED BOOK 25, PAGE 315.

ACCUMENT TO DIL 5. GAS LEASE MEDITORS ON DECEMBER 23, 1977 IN DEED BOOK SE, VAGE 315, IDN, AND CAS-LIASE RECORDED IN DEED BOOK SE, VAGE 315 AND CAS-LIASE RECORDED IN DEED BOOK SE, VAGE 315 AND EARLY AND APPLIET THE PARENT WHICH, THE PROPERTY OF ACCESS A VITILET VAGEORY.

TON THANK, COMEN EAST MEDITED STATE OF THE ART CONTINUENT OF STREETINGS, A PARK MICHIGAN AND THANKS TO THOSE SECTION OF THE ART CONTINUENT AND THE ART CONTINUENTS. THE ART CONTINUENTS AND THE CONTINUENTS AND THE ART CONTINUENTS AND THE CO

POD

NOW OF DESIGN

PARTNERSHIP ZOZ Ver

SITE SURVEY A 103031

> SITE INFORMATION: CK SHREWSBURY CXAY NOAD LETTO-FRELD, RY 42574 GRAYSON COUNTY

TAX PARCEL NUMBER: 058-00-00-050.GH

PROPERTY DWNES: DARRELL & SANDI ROOF 223 HUFF ROAD LEITCHFELD, KY 42574

SOURCE OF TITLE: DEED BOOK 482, PAGE 291

21-1020 A/W MEP 9.3.21 10.20.21

SITE SURVEY THIS DOES NOT HEPRESENT A HOUNDARY SURVEY OF THE PARENT PARCEL

B-1.1

MARK PATTERSON, PLS #3136

DATE

THE LAWS THAT THIS PLAT

NOT FOR RECORDING OR PROPERTY TRANSFER.

ONLY AND IS NOT A BOUNDARY SURVEY 2. THIS MAP IS FOR GENERAL INFORMATIONAL PURPOSES

AND ANY ERRORS CONTAINED IN THEIR FILES EXPRESSLY DISCLAIMS ANY WARRANTY FOR THE CONTENT AND THE COUNTY PROPERTY VALUATION ADMINISTRATION INACCURACIES AND TIME LAPSE IN UPDATING FILES. POD THE CURRENT OWNERS AND ADDRESSES DUE TO THE VALUATION ADMINISTRATION RECORDS MAY NOT REFLECT VALUATION ADMINISTRATION OFFICE ON SEPTEMBER 1, 2021 AND RE-VERIFIED ON FEBRUARY 16, 2022. THE PROPERTY THE RECORDS OF THE ADAIR COUNTY KENTUCKY PROPERTY 1. ALL INFORMATION SHOWN HEREON WAS OBTAINED FROM

GENERAL NOTE:

:3TON

VALUATION ADMINISTRATOR OFFICE. ТНЕ GRAYSON COUNTY PROPERTY PARCEL NUMBERS ARE OF RECORD IN

MARK E. PATTERSON

МАКК РАТТЕВЅОИ, РLS #3136 03/02/2022

BONNDARY SURVEYING OF ANY KIND HAS BEEN

PREPARED UNDER MY DIRECT SUPERVISION. NO

ADJOINING PROPERTY OWNERS PER PVA RECORDS WAS

I HEREBY CERTIFY THAT THIS EXHIBIT PERTAINING TO THE

PERFORMED FOR THIS EXHIBIT.

CERTIFICATE

ABUTTERS MAP 500' RADIUS AND

SHEET NUMBER: (1 page)

SHEET TITLE:

22.71.2 :3TAQ TAJ9 CHECKED BA: WEb MIA :Y8 NWARG 21-102884 **POD NUMBER:**

DEED BOOK 485' byce 531 SOURCE OF TITLE:

LEITCHFIELD, KY 42574 223 HUFF ROAD DARRELL & SANDI ROOF PROPERTY OWNER:

H0.020-00-00-880 TAX PARCEL NUMBER:

GRAYSON COUNTY LEITCHFIELD, KY 42574 GRAY ROAD

CK 2HBEM2BURY

П	SITE INFORMATION:		
	FINAL	3.2.22	0
ı	ISSUED FOR REVIEW	22.71.2	1
	DESCRIPTION	3TAQ	٠٧:

JANIA	3.2.22	_
ISSUED FOR REVIEW	22.71.22	-
DESCRIPTION	3TAQ	.۷

FINAL	3.2.22	0
ISSUED FOR REVIEW	22.71.2	A
DESCRIPTION	3TAQ	REV.
EXHIBIT		

FINAL	22.2.8	0
ISSUED FOR REVIEW	22.71.2	Α
DESCRIPTION	3TAQ	REV.

ROOF DAVID

KOOF DAVID

KOOF DAVID ROOF DAVID PARCEL ID: 068-00-00-053 LEITCHFIELD, KY 42754 273 GRAY RD WILLIAMS JOSHUA & MARY ELLEN

PARCEL ID: 068-00-00-052.0A

LEITCHFIELD, KY 42754 WILLIAMS JOSHUA & MARY ELLEN
273 GRAY RD
171
273 GRAY RD PARCEL ID: 068-00-00-052.0B

LEITCHFIELD, KY 42754 PARCEL ID: 068-00-052

LEITCHFIELD, KY 42754

LEITCHFIELD, KY 42754 QT 212 GBAY RD MERCER EFFIE SUE PARCEL ID: 068-00-00-052.0C

LEITCHFIELD, KY 42754

MILLIAMS JOSHUA & MARY ELLEN
273 GRAY RD

H1 WILLIAMS DEREK & CYNTHIA 369 GRAY RD PARCEL ID: 068-00-00-052.0E

PARCEL ID: 068-00-041.0B
SEATON FARMS
443 RABBIT FLAT RD
443 RABBIT FLAT RD LEITCHFIELD, KY 42754 **6511 SHREWSBURY RD** CT CHILDRESS TERESA ROOF PARCEL ID:068-00-00-050.0A LEITCHFIELD, KY 42754

RAD ROOF DARRELL & SANDI PARCEL ID: 068-00-050.0D

LEITCHFIELD, KY 42754

PARCEL ID: 068-00-00-051

PARCEL ID: 068-00-00-050.01

LEITCHFIELD, KY 42754 ET P O BOX 293

P O BOX 293

LEITCHFIELD, KY 42754

ET 212 GBAY RD
MERCER EFFIE SUE

LEITCHFIELD, KY 42754 223 HUFF RD ROOF DARRELL & SANDI PARCEL ID: 068-00-050.0H

ADJACENT PROPERTY OWNERS

Notification Listing

Roof, Darrell & Sandi 223 Huff Road Leitchfield, KY 42754

Childress, Teresa Roof 6511 Shrewbury Road Leitchfield, KY 42754

Seaton Farms 443 Rabbit Flat Road Leitchfield, KY 42754

Mudd, Priscilla & Josh P.O. Box 293 Leitchfield, KY 42754

Mercer, Effie Sue 515 Gray Road Leitchfield, KY 42754

Williams, Derek & Cynthia 369 Gray Road Leitchfield, KY 42754

Williams, Joshua & Mary Ellen 273 Gray Road Leitchfield, KY 42754

Roof, David 629 Shrewsbury Sadler Road Leitchfield, KY 42754

Horvath Towers VI, LLC 312 West Colfax Avenue South Bend, IN 46601

Kevin Henderson Judge Executive 130 E. Market Street Leitchfield, KY 42754

Russell L. Brown Attorney at Law rbrown@clarkquinnlaw.com 320 N. Meridian St., Ste. 1100 Indianapolis, IN 46204 (317) 637-1321 main (317) 687-2344 fax

May 23, 2023

Notice of Proposed Construction of Wireless Communications Facility Site Name: Shrewsbury

Cellco Partnership, d/b/a Verizon Wireless is filing an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located on the north side of Gray Road east of Shrewsbury Road, Leitchfield, KY 42574 (North Latitude: (37° 22' 03.84", West Longitude 86° 22' 25.86"). The proposed facility will include a 230-foot tall antenna tower, plus a 5-foot lightning arrestor, for a total height of 235 feet with related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

This notice is being sent to you because the County Property Valuation Administrator's records indicate that you may own property that is within a 500' radius of the proposed tower site or contiguous to the property on which the tower is to be constructed. You have a right to submit testimony to the Kentucky Public Service Commission ("PSC"), either in writing or to request intervention in the PSC's proceedings on the application. You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2023-00139 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. Applicant's radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us at 317-637-1321 if you have any comments or questions about this proposal.

Sincerely,

Russell L. Brown

Attorney for Applicant

RLB/mnw enclosure

Location Map

9589 0710 5270 0167 3918 33

FIRST-CLASS

Roof, Darrell & Sandi 223 Huff Road Leitchfield, KY 42754

Clark Quinn lark, Quinn, Moses, Scott & Grahn, LLP

CERTIFIED MAIL

9589 0710 5270 0167 3918 26

FIRST-CLASS

Childress, Teresa Roof 6511 Shrewbury Road Leitchfield, KY 42754

Clark Quinn

CERTIFIED MAIL

9589 0710 5270 0167 3918 19

FIRST-CLASS

Seaton Farms 443 Rabbit Flat Road Leitchfield, KY 42754

CERTIFIED MAIL

9589 0710 5270 0167 3918 02

FIRST-CLASS

Mudd, Priscilla & Josh P.O. Box 293 Leitchfield, KY 42754

Clark Quinn lark, Quinn, Moses, Scott & Grahn, LLP

CERTIFIED MAIL

9589 0710 5270 0167 3917 96

FIRST-CLASS

Mercer, Effie Sue 515 Gray Road Leitchfield, KY 42754

Clark Quinn lark, Quinn, Moses, Scott & Grahn, LLP

CERTIFIED MAIL

9589 0710 5270 0167 3917 89

FIRST-CLASS

US POSTAGE MIPITNEY BOWES

ZIP 46204
02 7H
0006035028

MAY 23 2023

Williams, Derek & Cynthia 369 Gray Road Leitchfield, KY 42754

9589 0710 5270 0167 3920 21

Williams, Joshua & Mary Ellen 273 Gray Road Leitchfield, KY 42754

Clark Quinn ark, Quinn, Moses, Scott & Grahn, LLP

CERTIFIED MAIL®

9589 0710 5270 0167 3920 14

FIRST-CLASS

Roof, David 629 Shrewsbury Sadler Poad Leitchfield, KY 42754

Clark Quinn ark, Quinn, Moses, Scott & Grahn, LLP

CERTIFIED MAIL

9589 0710 5270 0167 3920 07

FIRST-CLASS

Horvath Towers VI, LLC 312 West Colfax Avenue South Bend, IN 46601

SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY
 Complete items 1, 2, and 3. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. Article Addressed to: Williams, Derek & Cynthia 	B. Received by (Printed Name) C., Date of Delivery D. Is delivery address different from item 1? Yes If YES, enter delivery address below: No
369 Gray Road Leitchfield, KY 42754	
9590 9402 8129 2349 7939 24 2. Article Number (<i>Transfer from service label</i>) 7589 0710 5270 0167 3917	3. Service Type
PS Form 3811, July 2020 PSN 7530-02-000-9053	Domestic Return Receip
Mr.	
Complete items 1, 2, and 3. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. Article Addressed to: Mudd, Priscilla & Josh P.O. Box 293	A. Signature X
Leitchfield, KY 42754	
	3. Service Type ☐ Priority Mail Express® ☐ Adult Signature ☐ Registered Mail™ ☐ Registered Mail™
9590 9402 8129 2349 7939 48 2. Article Number (Transfer from service label) 9589 0710, 5270 0167 3918	

SENDER: COMPLETE THIS	SECTION	COMPLETE THIS SECTION ON	DELIVERY
■ Complete items 1, 2, and 3		A. Signature	
■ Print your name and addres	s on the reverse	x Joanna Ma	☐ Addresse
so that we can return the ca		B. Received by (Printed Name)	C. Date of Deliver
or on the front if space per	nits.	Joanna Mercer	
Article Addressed to:		D. Is delivery address different from If YES, enter delivery address	
Mercer, Effie Sue		ii 120, onto donvory address	
515 Gray Road			
Leitchfield, KY 4275	4		
Ecitoraticia, Ki 1275			
		3. Service Type	☐ Priority Mail Express®
		☐ Adult Signature	☐ Registered Mail TM ☐ Registered Mail Restrict
9590 9402 8129 23	/0 7030 31	dult Signature Restricted Delivery Certified Mail® Certified Mail Restricted Delivery	Delivery ☐ Signature Confirmation¹
		☐ Collect on Delivery ☐ Collect on Delivery Restricted Delivery	☐ Signature Confirmation
2. Article Number (Transfer from s		Insured Mail	
9589 0710 5270		76 00)	Domestic Return Receip
PS Form 3811, July 2020 PSN	17530-02-000-9053		Domestic Heturi Neceip
		Michigan	
SENDER: COMPLETE THIS	SECTION	COMPLET	
Complete items 1, 2, and 3.	Sal Stage of	A. Signar	
■ Print your name and address	s on the reverse	X Saud DXN	Agent Polyders
so that we can return the can have a so that we can return the can be acknown to the backnown		B. Received by (Printed Name)	C. Date of Deliver
or on the front if space perr		Sandi Roof	5125/23
1. Article Addressed to:		D. Is delivery address different from If YES, enter delivery address	
Boot Darroll & Sans	li.	in ree, onto delivery address	
Roof, Darrell & Sand 223 Huff Road	11		
Leitchfield, KY 4275	Л		
Leitermeia, Kr 4273			
***************************************	B) B) (() B) () B) ()	3. Service Type	☐ Priority Mail Express®
		☐ Adult Signature ☐Adult Signature Restricted Delivery	☐ Registered Mail™ ☐ Registered Mail Restrict
9590 9402 8129 23	49 7939 79	Certified Mail® Certified Mail Restricted Delivery	Delivery ☐ Signature Confirmation ⁷
2. Article Number (Transfer from s	ervice label)	☐ Collect on Delivery ☐ Collect on Delivery Restricted Delivery	☐ Signature Confirmation Restricted Delivery
9589 0700 527	3918	Mail Mail Restricted Delivery	
PS Form 3811, July 2020 PSN	7530-02-000-9053		Domestic Return Receip
	7251		
CENDER COMPLETE THE	OF OF ION	COMPLETE THIS SECTION ON	DELIVERY
SENDER: COMPLETE THIS	Made and the second		DELIVERT
Complete items 1, 2, and 3 Print your name and address		At Signature	☐ Agent
so that we can return the ca		B. Beceived by (Printed Name)	Addresse
Attach this card to the back or on the front if space per		B. Received by (Printed Name)	C. Date of Deliver
1. Article Addressed to:	Titto.	D. Is delivery address different fro	m item 1? Yes
1 42 3		If YES, enter delivery address	below: No
Childress, Teresa Roo			
6511 Shrewbury Roa			
Leitchfield, KY 42754	ļ		
			- Strong
		3. Service Type ☐ Adult Signature	☐ Priority Mail Express® ☐ Registered Mail™
9590 9402 8129 23	49 7939 62	Adult Signature Restricted Delivery Certified Mail® Certified Mail Restricted Delivery	Registered Mail Restrict Delivery
		Collect on Delivery	☐ Signature Confirmation ☐ Signature Confirmation
2. Article Number (Transfer from s		Collect on Delivery Restricted Delivery	Restricted Delivery
	765 3478 56	nsured Mail Restricted Delivery over \$500)	
PS Form 3811, July 2020 PSN	7530-02-000-9053		Domestic Return Receip

SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY
 Complete items 1, 2, and 3. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. 	A. Signature A Agent Addresse B. Regeived by (Printed Name) C. Date of Deliver S 3 1 2 0 2 3
1. Article Addressed to:	D. Is delivery address different from item 1? Yes If YES, enter delivery address below: No
Horvath Towers VI, LLC	
312 West Colfax Avenue	
South Bend, IN 46601	
9590 9402 3129 2340 7959 80	3. Service Type □ Adult Signature □ Adult Signature Restricted Delivery □ Certified Mail® □ Confirmation □ Collect on Delivery □ Confirmation □ Signature Confirmation
2. Article National Problem From Security (1997) 9589 0710 9276 0167 9920	Collect on Delivery Restricted Delivery Insured Mail Mar hastricted Delivery Insured Mail Mar hastricted Delivery Insured Mail
PS Form 3811, July 2020 PSN 7530-02-000-9053	Domestic Return Receip

USPS Tracking®

FAQs >

Tracking Number:

Remove X

9589071052700167392014

Copy Add to Informed Delivery (https://informeddelivery.usps.com/)

Latest Update

Your package is moving within the USPS network and is on track to be delivered to its final destination. It is currently in transit to the next facility.

Get More Out of USPS Tracking:

USPS Tracking Plus®

-eedback

Moving Through Network

In Transit to Next Facility

June 5, 2023

Departed USPS Regional Facility

LOUISVILLE KY DISTRIBUTION CENTER June 1, 2023, 10:30 am

See All Tracking History

Text & Email Updates		
USPS Tracking Plus®		

Product Information

•

See Less ∧

Track Another Package

Enter tracking or barcode numbers

Need More Help?

Contact USPS Tracking support for further assistance.

FAQs

USPS Tracking®

FAQs >

Tracking Number:

Remove X

9589071052700167391819

Copy Add to Informed Delivery (https://informeddelivery.usps.com/)

Latest Update

Your item departed our USPS facility in LOUISVILLE KY DISTRIBUTION CENTER on June 6, 2023 at 10:30 pm. The item is currently in transit to the destination.

Get More Out of USPS Tracking:

USPS Tracking Plus®

-eedback

Moving Through Network

Departed USPS Regional Facility

LOUISVILLE KY DISTRIBUTION CENTER June 6, 2023, 10:30 pm

In Transit to Next Facility

June 6, 2023

See All Tracking History

Text & Email Updates	~
USPS Tracking Plus®	~
Product Information	~

See Less ∧

Track Another Package

Enter tracking or barcode numbers

Need More Help?

Contact USPS Tracking support for further assistance.

FAQs

USPS Tracking®

FAQs >

Tracking Number:

Remove X

9589071052700167392021

Copy Schedule a Redelivery (https://tools.usps.com/redelivery.htm)

Latest Update

This is a reminder to arrange for redelivery of your item before June 8, 2023 or your item will be returned on June 9, 2023. You may arrange redelivery by using the Schedule a Redelivery feature on this page or may pick up the item at the Post Office indicated on the notice.

Get More Out of USPS Tracking:

USPS Tracking Plus®

Delivery Attempt: Action Needed

Reminder to Schedule Redelivery of your item before June 8, 2023

May 30, 2023

Notice Left (No Authorized Recipient Available)

LEITCHFIELD, KY 42754 May 25, 2023, 12:58 pm

See All Tracking History

Text & Email Updates	~
Schedule Redelivery	~
USPS Tracking Plus®	~

Product Information

See Less ∧

Track Another Package

Enter tracking or barcode numbers

Need More Help?

Contact USPS Tracking support for further assistance.

FAQs

Russell L. Brown Attorney at Law rbrown@clarkquinnlaw.com 320 N. Meridian St., Ste. 1100 Indianapolis, IN 46204 (317) 637-1321 main (317) 687-2344 fax

May 30, 2023

Via Certified Mail, Return Receipt Requested

Kevin Henderson Judge Executive 130 E. Market Street Leitchfield, KY 42754

RE: Notice of Proposal to Construct Wireless Communications Facility Kentucky Public Service Commission Docket No. 2023-00139

Site Name: Shrewsbury

Dear Judge Henderson:

Cellco Partnership, d/b/a Verizon Wireless is filing an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located on the north side of Gray Road east of Shrewsbury Road, Leitchfield, KY 42574 (North Latitude: (37° 22' 03.84", West Longitude 86° 22' 25.86"). The proposed facility will include a 230-foot tall antenna tower, plus a 5-foot lightning arrestor, for a total height of 235 feet with related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

You have a right to submit comments to the PSC or to request intervention in the PSC's proceedings on the application. You may contact the PSC at: Executive Director, Public Service Commission, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2023-00139 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. Verizon Wireless' radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us with any comments or questions you may have.

Sincerely,

Russell L. Brown

Attorney for Applicant

RLB/mnw Enclosures

Location Map

Clark Quinn

CERTIFIED MAIL

9589 0710 5270 0167 3919 87

FIRST-CLASS

US POSTAGE MIPITNEY BOWES

ZIP 46204 \$ 008.100
02 7H
0006035028 MAY 30 2023

Kevin Henderson Judge Executive 130 E. Market Street Leitchfield, KY 42754

COMPLETE THIS SECTION ON DELIVERY **SENDER: COMPLETE THIS SECTION** A. Signature ■ Complete items 1, 2, and 3. ☐ Agent ■ Print your name and address on the reverse ☐ Addresse so that we can return the card to you. B. Received by (Printed Name) C. Date of Deliver Attach this card to the back of the mailpiece, DOWNS or on the front if space permits. MARI ANNE 1. Article Addressed to: If YES, enter delivery address below: 130 E MARKET ST. Kevin Henderson Judge Executive 130 E. Market Street Leitchfield, KY 42754 3. Service Type ☐ Priority Mail Express® ☐ Adult Signature ☐ Registered Mail™ Adult Signature Restricted Delivery Certified Mail® ☐ Registered Mail Restrict Delivery 9590 9402 8129 2349 7942 11 ☐ Certified Mail Restricted Delivery ☐ Collect on Delivery ☐ Collect on Delivery ☐ Collect on Delivery Restricted Delivery ☐ Signature Confirmation[†] ☐ Signature Confirmation Restricted Delivery 2. Article Number (Transfer from service label) Mail Restricted Delivery 9589 0710 5270 0167 3919 87

Domestic Return Receip

PS Form 3811, July 2020 PSN 7530-02-000-9053

SITE NAME: Shrewsbury NOTICE SIGNS

The signs are at least (2) feet by four (4) feet in size, of durable material, with the text printed in black letters at least one (1) inch in height against a white background, except for the word "tower," which is at least four (4) inches in height.

Cellco Partnership, d/b/a Verizon Wireless proposes to construct a telecommunications **tower** on this site. If you have questions, please contact Clark, Quinn, Moses, Scott & Grahn, LLP, 320 N. Meridian Street, Indianapolis, IN 46204; 317-637-1321, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2023-00139 in your correspondence.

Cellco Partnership, d/b/a Verizon Wireless proposes to construct a telecommunications **tower** on this site. If you have questions, please contact Clark, Quinn, Moses, Scott & Grahn, LLP, 320 N. Meridian Street, Indianapolis, IN 46204; 317-637-1321, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2023-00139 in your correspondence.

VIA EMAIL: classifieds@messenger-inquirer.com

Robert B. Scott
Charles R. Grahn
Frank D. Otte*
John "Bart" Herriman
William W. Gooden**
Michael P. Maxwell
Russell L. Brown**
Jennifer F. Perry
Keith L. Beall
N. Davey Neal
Travis W. Cohron
Maggie L. Sadler
Kristin A. McIlwain
Olivia A. Hess

Land Use Consultant Elizabeth Bentz Williams, AICP

*Also admitted in Montana

†Also admitted in Kentucky

Registered Civil Mediator

Mayfield Mmessenger 86A Commerce Blvd. Benton, KY 42025

RE: Legal Notice Advertisement

Site Name: Shrewbury

To Whom It May Concern,

Please publish the following legal notice advertisement in the next available edition of the Mayfield Messenger Publication:

NOTICE

Cellco Partnership, d/b/a Verizon Wireless is filing an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located on the north side of Gray Road east of Shrewsbury Road, Leitchfield, KY 42574 (North Latitude: (37° 22' 03.84", West Longitude 86° 22' 25.86"). The proposed facility will include a 230-foot tall antenna tower, plus a 5-foot lightning arrestor, for a total height of 235 feet with related ground facilities. You have a right to submit comments to the PSC or to request intervention in the PSC's proceedings on the application. You may contact the PSC at: Executive Director, Public Service Commission, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2023-00139 in any correspondence sent in connection with this matter.

After this advertisement has been published, please forward a tearsheet copy, affidavit of publication, and invoice to Clark, Quinn, Moses, Scott & Grahn, LLC, 320 N. Meridian Street, Indianapolis, IN 46204 or by email to ebw@clarkquinnlaw.com. Please call me on my cell with any questions at 317-902-2187 if you have any questions. Thank you for your assistance.

Sincerely,

This both Baty Williams

Elizabeth Bentz Williams, AICP

Design Search Area

May 19, 2022

RE: Proposed Verizon Wireless Communications Facility

Site Name: CK Shrewsbury

To Whom It May Concern:

As a radio frequency engineer for Verizon Wireless, I am providing this letter to state the need for the Verizon Wireless site called Shrewsbury and its compliance to RF emission standards as set by FCC. The Shrewsbury cell site is necessary to achieve coverage and capacity needs in the Shrewsbury area, along Shrewsbury Rd, Phelps Johnson Rd and to the surrounding residential areas. This site is necessary to provide this coverage and capacity that cannot be established in any other manner. This new tower is required as there is no other means of providing this service in this area.

Whenever possible, Verizon Wireless seeks out colocation opportunities. Colocation allows Verizon Wireless to increase capacity, coverage and services in a targeted area in a more timely manner and at less cost than building a new raw land site.

The height for the Shrewsbury site was determined through in-depth terrain modeling as well as signal propagation modeling. Due to the rising and falling terrain combine with the dense wooded area, it was determined that a centerline height of 225 feet was necessary to provide adequate coverage in the area. A lower height would greatly reduce coverage and result in the inability of the Shrewsbury site to operate properly in the Verizon Network.

The site will provide the quality coverage our customers expect and rely on; Customers will experience access to mobile voice and wireless data services previously unavailable, and support Homeland Security through enhanced 911 services.

This cell site has been designed, and will be constructed and operated in a manner that satisfies regulations and requirements of all applicable governmental agencies that have been charged with regulating tower specifications, operation, construction, and placement, including the FAA and FCC.

RF emission readings at this site in the accessible areas would be well below the applicable limits for FCC Uncontrolled/General Population and FCC Controlled/Occupational environments as outlined in 47 CFR 1.1301 through 1.1319. The site would carry appropriate RF emission signage to the public entering the site area.

This site would transit frequencies within the licensed frequency bands and the power limitations set by FCC regulatory authority. The site would go through the complete rigorous regulatory process before it comes on-air to provide service to our customers.

Sincerely,

(Nowlos B)

Gordon Snyder RF Engineer, Verizon Wireless

CK Shrewsbury

Coverage Plots

Exhibit S List and Identity and Qualifications of Professionals

Mark E. Patterson Professional Land Surveyor Kentucky License 3136 Power of Design Group, LLC 11490 Bluegrass Parkway Louisville, KY 40299

Mark E. Patterson Professional Engineer Kentucky License 16300 Power of Design Group, LLC 11490 Bluegrass Parkway Louisville, KY 40299

Joseph Pachicarah Professional Engineer Kentucky License 22177 Valmont 1545 Pidco Dr. Plymouth, IN 46563

Vince Caprino Construction Manager Verizon Wireless 2421 Holloway Road Louisville, KY 40299

Gordan Snyder RF Engineer Verizon Wireless 2421 Holloway Road Louisville, KY 40299 STATE OF INDIANA)
) SS:
COUNTY OF MARION)

AFFIDAVIT OF CERTIFICATION COMMONWEALTH OF KENTUCKY PUBLIC SERVICE COMMISSION

I Russell L. Brown, attorney for Cellco Partnership, d/b/a Verizon Wireless do hereby certify that as the person supervising the preparation of this application that the all statements and information contained herein are true and accurate to the best of that person's knowledge, information, and belief formed after a reasonable inquiry for all information within this application.

Russell L. Brown

Attorney, for Cellco Partnership, d/b/a Verizon Wireless

STATE OF INDIANA, COUNTY OF MARION, SS:

Subscribed and sworn to before me this 6th day of June 202.

(Notary Public

Printed Name of Notary: Elizabeth Bentz Williams

My commission expires: November 18, 2028

My County of Residence: Marion

Commission #: <u>0639620</u>