# COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

| THE APPLICATION OF                        | )      |                  |
|-------------------------------------------|--------|------------------|
| CELLCO PARTNERSHIP D/B/A VERIZON WIRELESS | )      |                  |
| AND HARMONI TOWERS, LLC FOR ISSUANCE      | )      |                  |
| OF A CERTIFICATE OF PUBLIC                | ) CASI | E NO. 2023-00133 |
| CONVENIENCE AND NECESSITY TO CONSTRUCT    | )      |                  |
| A WIRELESS COMMUNICATIONS FACILITY        | )      |                  |
| IN THE COMMONWEALTH OF KENTUCKY           | )      |                  |
| IN THE COUNTY OF GRAVES                   | )      |                  |
|                                           |        |                  |

SITE NAME: FANCY FARM

\* \* \* \* \* \* \*

# APPLICATION FOR CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY FOR CONSTRUCTION OF A WIRELESS COMMUNICATIONS FACILITY

Cellco Partnership, d/b/a Verizon Wireless and VB BTS II, LLC d/b/a Vertical Bridge, LLC ("Co-Applicants"), by counsel, pursuant to (i) KRS §§278.020, 278.040, 278.650, 278.665, and other statutory authority, and the rules and regulations applicable thereto, and (ii) the Telecommunications Act of 1996, respectfully submits this Application requesting issuance of a Certificate of Public Convenience and Necessity ("CPCN") from the Kentucky Public Service Commission ("PSC") to construct, maintain, and operate a Wireless Communications Facility ("WCF") to serve the customers of the Co-Applicants with wireless communications services.

In support of this Application, Co-Applicants respectfully provide and state the following information:

- 1. The complete name and address of the Co-Applicants:
  - a. Cellco Partnership, d/b/a Verizon Wireless, having a local address of 2902 Ring Road, Elizabethtown, KY 42701.

b. VB BTS II, LLC d/b/a Vertical Bridge, LLC, having an address of 750 Park of Commerce Dr, Boca Raton, FL 33487.

# 2. Co-Applicants;

- a. Cellco Partnership, d/b/a Verizon Wireless is a Delaware general partnership, and a copy of the Statement of Good Standing from Delaware and Amended Certificate of Assumed Name is on file with the Secretary of State of Commonwealth of Kentucky is included as part of Exhibits A 1-2.
- b. VB BTS II, LLC d/b/a Vertical Bridge, LLC is a Delaware Limited Liability Company organized in the State of Delaware on December 2, 2015. We attest that VB BTS II, LLC d/b/a Vertical Bridge, LLC is in good standing with the State of Delaware and is also authorized to transact business in the Commonwealth of Kentucky. A copy of the Delaware Certificate of Formation and Certificate of Good Standing is included as part of **Exhibits A 3-4**. The Certificate of Authority is on file with the Secretary of State of Commonwealth of Kentucky and is included as part of **Exhibits A 5**.
- 3. Co-Applicants propose construction of an antenna tower for communications services, which is to be located in an area outside the jurisdiction of a planning commission, and Co-Applicants submit this application to the PSC for a certificate of public convenience and necessity pursuant to KRS §§ 278.020(1), 278.040, 278.650, 278.665, and other statutory authority.
- 4. The Co-Applicant, Cellco Partnership, d/b/a Verizon Wireless operates on frequencies licensed by the Federal Communications Commission ("FCC") pursuant to applicable FCC requirements. A copy of the Co-Applicant's FCC Application and Licenses

with Authorization to provide wireless services are attached to this Application as part of **Exhibit B**, and the facility will be constructed and operated in accordance with applicable FCC regulations.

- 5. The public convenience and necessity require the construction of the proposed WCF. The construction of the WCF will bring or improve the Co-Applicants' services to an area currently not served or not adequately served by the Co-Applicants by increasing coverage or capacity and thereby enhancing the public's access to innovative and competitive wireless communications services. A statement from Co-Applicant, Cellco Partnership, d/b/a Verizon Wireless's RF Design Engineer outlining said need is attached as **Exhibit R** along with Propagation Maps attached as **Exhibit Ra**. The WCF is an integral link in the Co-Applicant's network design that must be in place to provide adequate coverage to the service area.
- 6. To address the above-described service needs, Co-Applicants propose to construct a WCF on Kentucky Highway 80, Fancy Farm, KY 42039 (North Latitude: (36° 48' 09.61", West Longitude 88° 47' 55.21"), on a parcel of land located entirely within the county referenced in the caption of this application. The property on which the WCF will be located is owned by KM & K Farms, LLC pursuant to a Deed recorded at Deed Book 189, Page 85 in the office of the County Clerk. The proposed WCF will consist of a 290-foottall tower, with an approximately 5-foot-tall lightning arrestor attached at the top, for a total height of 295-feet. The WCF will also include concrete foundations and a shelter or cabinets to accommodate the placement of the Co-Applicant's radio electronics equipment and appurtenant equipment. The Co-Applicant's equipment cabinet or shelter will be approved for use in the Commonwealth of Kentucky by the relevant building inspector.

The WCF compound will be fenced, and all access gate(s) will be secured. A description of the manner in which the proposed WCF will be constructed is attached as **Exhibit C** and **Exhibit D**.

- 7. A list of utilities, corporations, or persons with whom the proposed WCF is likely to compete along with a map showing the proposed location as well as the identified like facilities is attached as **Exhibit E**.
- 8. The site development plan and a vertical profile sketch of the WCF signed and sealed by a professional engineer registered in Kentucky depicting the tower height, as well as a proposed configuration for the antennas of the Co-Applicant, Cellco Partnership, d/b/a Verizon Wireless has also been included as part of **Exhibit C**.
- 9. Foundation design plans signed and sealed by a professional engineer registered in Kentucky and a description of the standards according to which the tower was designed are included as part of **Exhibit D**.
- 10. Co-Applicants have considered the likely effects of the installation of the proposed WCF on nearby land uses and values and has concluded that there is no more suitable location reasonably available from which adequate services can be provided, and that there are no reasonably available opportunities to co-locate Co-Applicant's antennas on an existing structure. When suitable towers or structures exist, Co-Applicant's attempts to co-locate on existing structures such as communications towers or other structures capable of supporting Co-Applicant's facilities; however, no other suitable or available co-location site was found to be located in the vicinity of the site. A statement from Co-Applicant, Cellco Partnership, d/b/a Verizon Wireless's RF Design Engineer outlining exploration of co-location opportunities is attached as **Exhibit R**.

- 11. A copy of the Application for Federal Aviation Administration's ("FAA") and the FAA Determination of No Hazard to Air Navigation is attached as **Exhibit F**.
- 12. A copy of Application to the Kentucky Airport Zoning Commission ("KAZC") is attached as **Exhibit G**. The approval from KAZC will be submitted when received.
- 13. A geotechnical engineering report was performed by Power of Design Group, LLC, Louisville, KY, dated March 23, 2022, and is attached as **Exhibit H**. The name and address of the geotechnical engineering firm and the professional engineer registered in Kentucky who prepared the report are included as part of **Exhibit S**.
- 14. Clear directions to the proposed WCF site from the County seat are attached as **Exhibit I**. The name and telephone number of the preparer of **Exhibit I** are included as part of this exhibit.
- 15. Co-Applicants, pursuant to a written agreement, have acquired the right to use the WCF site and associated property rights. A copy of the agreement is attached as **Exhibit J**.
- 16. Personnel directly responsible for the design and construction of the proposed WCF are well qualified and experienced. The tower and foundation drawings for the proposed tower submitted as part of **Exhibit D** bear the signature and stamp of a professional engineer registered in the Commonwealth of Kentucky. All tower designs meet or exceed the minimum requirements of applicable laws and regulations. The identity and qualifications of each person directly responsible for design and construction of the proposed tower are contained in **Exhibit S**.

- 17. The Construction Manager for the proposed facility is Vince Caprino and the identity and qualifications of each person directly responsible for design and construction of the proposed tower are contained in **Exhibit S**.
- 18. As noted on the Survey attached as part of **Exhibit C**, the surveyor has determined that the tower site and access easement are not within any flood hazard area per Flood Hazard Boundary Map, Community Panel Number 21083C0125C, Dated December 3, 2009.
- 19. **Exhibit K** includes a map drawn to an appropriate scale that shows the location of the proposed tower and identifies every owner of real estate within 500 feet of the proposed tower (according to the records maintained by the County Property Valuation Administrator). This map and the associated Notice List is accompanied by a certificate signed and stamped by the registered surveyor that said information is from the PVA records, dated April 20, 2023. In addition, our office verified and updated the notification list with the Graves County **PVA** June 6. 2023 https://www.qpublic.net/ky/graves/index.html . Exhibit K also identifies every structure and every easement within 500 feet of the proposed tower or within 200 feet of the access road including intersection with the public street system.
- 20. Co-Applicants have sent certified notices to every person who, according to the records of the County Property Valuation Administrator, owns property which is within 500 feet of the proposed tower or contiguous to the site property, by certified mail, return receipt requested, of the proposed construction. Each notified property owner has been provided with a map of the location of the proposed construction, the PSC docket number for this application, the address of the PSC, and informed of his or her right to request

intervention. A list of the notified property owners and a copy of the form of the notice sent by certified mail to each landowner are attached as **Exhibit L** and **Exhibit M**, respectively. Thirteen (13) notices were sent to surrounding property owners on April 21, 2023; to date ten (10) notice green cards have been returned. After additional research, seventeen (17) notices were sent to the additional surrounding property owners on June 6, 2023, and Three (3) notices were resent to property owners on the original list that have not been returned, also on June 6, 2023. Copies of the mailed envelopes, returned green cards, are included in **Exhibit M**.

- 21. Co-Applicants have notified the applicable County Judge/Executive by certified mail, return receipt requested, of the proposed construction. This notice included the PSC docket number under which the application will be processed and informed the County Judge/Executive of his/her right to request intervention. A copy of this notice is attached as **Exhibit N**.
- 22. Notice signs meeting the requirements prescribed by 807 KAR 5:063, Section 1(2) that measure at least 2 feet in height and 4 feet in width and that contain all required language in letters of required height, have been posted, one in a visible location on the proposed site and one on the nearest public road. Such signs shall remain posted for at least two weeks after filing of the Application, and a copy of the posted text is attached as **Exhibit O**.
- 23. A legal notice advertisement regarding the location of the proposed facility has been published in a newspaper of general circulation in the county in which the WCF is proposed to be located. A copy of the newspaper legal notice advertisement is attached as **Exhibit P**.

- 24. The area of the proposed facility is in the unincorporated area of Graves County, Kentucky, part of the unincorporated town of Fancy Farm. The 0.5-mile search ring consists of the Highway 80 corridor, largely agricultural with a mix of residential and commercial / industrial properties. The terrain in this area is relatively moderate, rolling topography. There is no zoning or Plan Commission in Graves County. The general area where the proposed facility is to be located is a tilled field adjacent to a water tower. The nearest residential structure is 290 feet from the proposed tower site.
- 25. The process that was used by the Co-Applicant, Cellco Partnership, d/b/a Verizon Wireless radio frequency engineers in selecting the site for the proposed WCF was consistent with the general process used for selecting all other existing and proposed WCF facilities within the proposed network design area. Co-Applicant's radio frequency engineers have conducted studies and tests to develop a highly efficient network that is designed to handle voice and data traffic in the service area. The engineers determined an optimum area for the placement of the proposed facility in terms of elevation and location to provide the best quality service to customers in the service area. A radio frequency design search area prepared in reference to these radio frequency studies was considered by the Co-Applicant when searching for sites for its antennas that would provide the coverage deemed necessary by the Co-Applicant. A map of the area in which the tower is proposed to be located which is drawn to scale and clearly depicts the necessary search area within which the site should be located pursuant to radio frequency requirements is attached as Exhibit Q.
- 26. The tower must be located at the proposed location and proposed height to provide necessary service to wireless communications users in the subject area, as set out and

documented in the RF Design Engineers' Statement of Need and Propagation Maps

attached as Exhibit R and Ra. The proposed tower will expand and improve voice and

data service for Verizon Wireless customers.

27. Attached hereto as Exhibit T please find an Affidavit of Certification for all

information contained in this application.

28. All Exhibits to this Application are hereby incorporated by reference as if fully set out

as part of the Application.

29. All responses and requests associated with this Application may be directed to:

Russell L. Brown

Clark, Quinn, Moses, Scott & Grahn, LLP

320 North Meridian Street, Suite 1100

Indianapolis, IN 46204

Phone: (317) 637-1321

FAX: (317) 687-2344

Email: rbrown@clarkquinnlaw.com

Attorney for Cellco Partnership d/b/a Verizon Wireless

WHEREFORE, Co-Applicants respectfully request that the PSC accept the foregoing

Application for filing and having met the requirements of KRS §§278.020(1), 278.650, and 278

.665 and all applicable rules and regulations of the PSC, grant a Certificate of Public Convenience

and Necessity to construct and operate the WCF at the location set forth herein.

Respectfully submitted,

Russell L. Brown

Clark, Quinn, Moses, Scott & Grahn, LLP

320 North Meridian Street, Suite 1100

Indianapolis, IN 46204

Phone: (317) 637-1321 / FAX: (317) 687-2344

Email: rbrown@clarkquinnlaw.com

Attorney for Cellco Partnership d/b/a Verizon Wireless

# LIST OF EXHIBITS

| A  | Co-Applicant Entities                                                                                                  |
|----|------------------------------------------------------------------------------------------------------------------------|
| В  | FCC Application and License Documentation                                                                              |
| С  | Site Development Plan: 500' Vicinity Map Legal Descriptions Flood Plain Certification Site Plan Vertical Tower Profile |
| D  | Tower and Foundation Design                                                                                            |
| Е  | Competing Utilities, Corporations, or Persons List<br>And Map of Like Facilities in Vicinity                           |
| F  | FAA Application and Determination of no Hazard                                                                         |
| G  | KAZC Application                                                                                                       |
| Н  | Geotechnical Report                                                                                                    |
| I  | Directions to WCF Site                                                                                                 |
| J  | Copy of Real Estate Agreement                                                                                          |
| K  | 500' Radius and Abutters Map with Surveyor Certification                                                               |
| L  | Notification Listing                                                                                                   |
| M  | Copy of Property Owner Notification                                                                                    |
| N  | Copy of County Judge Executive notice                                                                                  |
| O  | Copy of Posted Notices                                                                                                 |
| P  | Copy of Newspaper Legal Notice Advertisement                                                                           |
| Q  | Copy of Radio Frequency Design Search Area                                                                             |
| R  | Copy of RF Design Engineer Statement of Need                                                                           |
| Ra | Propagation Maps                                                                                                       |
| S  | List of Qualified Professionals                                                                                        |
| T  | Affidavit of Certification                                                                                             |



Page 1

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF

DELAWARE, DO HEREBY CERTIFY "CELLCO PARTNERSHIP" IS DULY FORMED

UNDER THE LAWS OF THE STATE OF DELAWARE AND IS IN GOOD STANDING AND

HAS A LEGAL EXISTENCE SO FAR AS THE RECORDS OF THIS OFFICE SHOW, AS

OF THE TWENTY-SEVENTH DAY OF APRIL, A.D. 2023.

AND I DO HEREBY FURTHER CERTIFY THAT THE ANNUAL TAXES HAVE BEEN PAID TO DATE.

ELARY'S OFFICE OF THE PROPERTY OF THE PROPERTY

Authentication: 203227418

Date: 04-27-23



# Michael G. Adams Secretary of State

## **Certificate**

I, Michael G. Adams, Secretary of State for the Commonwealth of Kentucky, do hereby certify that the foregoing writing has been carefully compared by me with the original thereof, now in my official custody as Secretary of State and remaining on file in my office, and found to be a true and correct copy of

CERTIFICATE OF ASSUMED NAME OF VERIZON WIRELESS ADOPTED BY GENERAL PARTNERS OF CELLCO PARTNERSHIP FILED JUNE 21, 2006.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my Official Seal at Frankfort, Kentucky, this 10th day of May, 2023.

CONTRACTOR OF SHARE O

Michael G. Adams Secretary of State

Commonwealth of Kentucky

kdcoleman/0641227 - Certificate ID: 290787

# COMMONWEALTH OF KENTUCKY TREY GRAYSON SECRETARY OF STATE



0641227.07

cornish

Trey Grayson
Secretary of State
Received and Filed
06/21/2006 12:06:09 PM
Fee Receipt: \$20.00

## **CERTIFICATE OF ASSUMED NAME**

| This certifies that the assumed name of                                        | •                            |               |                  |
|--------------------------------------------------------------------------------|------------------------------|---------------|------------------|
| Verizon Wireless                                                               |                              |               |                  |
| Name under which the but                                                       | shoos will be conducted)     |               |                  |
| has been adopted by See Addendum                                               |                              |               |                  |
| Red name - KR                                                                  | 13 365,015(1)                |               |                  |
| which is the "real name" of YOU MUST CHECK ONE  a Domestic General Partnership | a Foreign General Partr      | •             |                  |
| a Domestic Registered Limited Liability Partnership                            | a Foreign Registered Li      | mited Liabili | ty Partnership   |
| a Domestic Limited Partnership                                                 | a Foreign Limited Partn      | ership        |                  |
| a Domestic Business Trust                                                      | a Foreign Business Tru       | st            |                  |
| a Domestic Corporation                                                         | a Foreign Corporation        |               |                  |
| a Domestic Limited Liability Company                                           | a Foreign Limited Liabi      | lity Compan   | у                |
| a Joint Venture                                                                |                              |               |                  |
| organized and existing in the state or country of                              |                              | , and v       | whose address is |
| One Verizon Way                                                                | Basking Ridge                | NJ            | 07920            |
| Street address, II ony                                                         | City                         | Stale         | Zlp Code         |
| The certificate of assumed name is executed by : NYNEX PCS Inc.                |                              |               |                  |
| - and Ochapher                                                                 |                              |               |                  |
| Jane A. Schapker-Assistant Secretary                                           | Opedari                      | •             |                  |
| Path or lagar reason and Tale                                                  | Print or type so ree and the |               | <del></del>      |
| June 15, 2006                                                                  | Deb                          | <del></del>   | <del></del>      |
|                                                                                |                              |               |                  |

# Addendum

The full name of the Partnership is Cellco Partnership; a Delaware general partnership with its headquarters located One Verizon Way, Basking Ridge NJ 07920-1097.

| ·                                      |                                                 |
|----------------------------------------|-------------------------------------------------|
| General Partners of Cellco Partnership | Address                                         |
| Bell Atlantic Cellular Holdings, L.P.  | One Verizon Way Basking Ridge, NJ 07920         |
| NYNEX PCS Inc.                         | One Verizon Way Basking Ridge, NJ 07920         |
| PCSCO Partnership                      | One Verizon Way Basking Ridge, NJ 07920         |
| GTE Wireless Incorporated              | One Verizon Way Basking Ridge, NJ 07920         |
| GTE Wireless of Ohio Incorporated      | One Verizon Way Basking Ridge, NJ 07920         |
| PCS Nucleus, L.P.                      | 2999 Oak Road, 7th Floor Walnut Creek, CA 94597 |
| JV PartnerCo, LLC                      | 2999 Oak Road, 7th Floor Walnut Creek, CA 94597 |

Page 1



I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF

DELAWARE, DO HEREBY CERTIFY THE ATTACHED IS A TRUE AND CORRECT

COPY OF THE CERTIFICATE OF FORMATION OF "VB BTS II, LLC", FILED

IN THIS OFFICE ON THE EIGHTH DAY OF JUNE, A.D. 2022, AT 1:01

O`CLOCK P.M.



Authentication: 203631822

Date: 06-08-22

6844426 8100 SR# 20222658754

# STATE OF DELAWARE CERTIFICATE OF FORMATION OF LIMITED LIABILITY COMPANY

The undersigned authorized person, desiring to form a limited liability company pursuant to the Limited Liability Company Act of the State of Delaware, hereby certifies as follows:

| 1.       | The name of the lim                                                                                  | ited liability compa                      | my is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                          |
|----------|------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|
|          |                                                                                                      | VB BTS II                                 | I, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                          |
| 2.       | The Registered Offi                                                                                  | ce of the limited lia<br>850 New Burton F |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n the State of I | Delaware is<br>(street), |
|          | City of                                                                                              | Dover                                     | the state of the s | 19904            | The                      |
| liabilit | ty company may be se                                                                                 | erved is<br>COGENCY GLO                   | OBAL INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                          |
|          |                                                                                                      | Ву:                                       | /s/ D:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aniel Marinberg  |                          |
| D        | State of Delaware<br>Secretary of State<br>Division of Corporations<br>belivered 01:01 PM 06/08/2022 | 2)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rized Person     |                          |
|          | FILED 01:01 PM 06/08/2022                                                                            | Name:_                                    | Dan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iel Marinberg    |                          |
| SR 2022  | 22658754 - File Number 684442                                                                        | 5                                         | Print o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or Type          |                          |



I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF

DELAWARE, DO HEREBY CERTIFY "VB BTS II, LLC" IS DULY FORMED UNDER

THE LAWS OF THE STATE OF DELAWARE AND IS IN GOOD STANDING AND HAS A

LEGAL EXISTENCE SO FAR AS THE RECORDS OF THIS OFFICE SHOW, AS OF

THE TWENTY-THIRD DAY OF JANUARY, A.D. 2023.

AND I DO HEREBY FURTHER CERTIFY THAT THE SAID "VB BTS II, LLC"
WAS FORMED ON THE EIGHTH DAY OF JUNE, A.D. 2022.

AND I DO HEREBY FURTHER CERTIFY THAT THE ANNUAL TAXES HAVE BEEN ASSESSED TO DATE.



Authentication: 202551773

Date: 01-23-23



## 202303080004

FAYETTE CO, KY FEE \$46.00 PRESENTED / LODGED: 03-08-2023 08:19:15 AM

RECORDED: 03-08-2023

SUSAN LAMB CLERK BY: HALLIE WOOSLEY DEPUTY CLERK

**BK: IB 428** PG: 690-690



# COMMONWEALTH OF KENTUCKY MICHAEL G. ADAMS, SECRETARY OF STATE

Michael G. Adams Kentucky Secretary of State Received and Filed: 3/7/2023 12:33 PM Fee Receipt: \$90.00

mmoore ADD

1265644.06

| Division of Business Filings<br>P.O. Box 718<br>Frankfort, KY 40802<br>(502) 564-3490<br>www.sos.ky.gov                      | Certificate<br>(Foreign Bus                                                        | of Authority<br>iness Entity)                                          |                                                | FBE                                                          |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------|
| Pursuant to the provisions of KRS 14/<br>and, for that purpose, submits the follo                                            | A - 030 the undersigned hereby appli<br>wing statements:                           | es for authority to transact bush                                      | ness in Kentucky on                            | behalf of the entity named below                             |
| The entity is a: profit corpubusiness to limited party non-profit is:                                                        | ration monprofit X limited Sa itd cooper                                           | corporation bility company ative association                           |                                                | ted liability company                                        |
| 2. The name of the entity is                                                                                                 | profession                                                                         | nai service corporation                                                |                                                |                                                              |
| (The                                                                                                                         | name must be identical to the nam                                                  | VB BTS II, LLC                                                         | n of State )                                   | ·                                                            |
| 1. The name of the entity to be used in                                                                                      | Kentucky is (if applicable):                                                       | e all tageta with the decisivi                                         | A or smite'l                                   |                                                              |
|                                                                                                                              | (Ciniu e                                                                           | rovide if "real name" is unav                                          | allable for use: oth                           | erwise, teave blank )                                        |
| . The state or country under whose la<br>i. The date of organization is                                                      | is nie ennth is diBsursed is                                                       |                                                                        | elaware                                        |                                                              |
|                                                                                                                              | 8/8/2022                                                                           | and the period of duration is                                          | A blank downth                                 | '                                                            |
| The mailing address of the entity's p                                                                                        | incipal office is                                                                  | tit is                                                                 | are elsak, eurapen                             | s considered perpetual.)                                     |
| 750 Park of Comme                                                                                                            | rce Drive, Suite 200                                                               | Soca Raton<br>City                                                     | FL                                             | 33487                                                        |
| The street address of the entity's reg                                                                                       | islared office in Kentucky ic                                                      | City                                                                   | State                                          | Zip Code                                                     |
| 828 Lane Allen f                                                                                                             | Anad Suite 218                                                                     | Lexington                                                              | КУ                                             | 40504                                                        |
| reet Address (No P.O. Box Number                                                                                             |                                                                                    | City                                                                   | State                                          | Zip Code                                                     |
| d the name of the registered agent at                                                                                        | that office is                                                                     | Cogency Gio                                                            | bal inc.                                       |                                                              |
| The names and business addresses                                                                                             | of the entity's representatives (secret                                            | EV. Officers and directors many                                        | seem business or an                            |                                                              |
| Daniel Marinberg                                                                                                             | 750 Park of Commerce Dr. Ste 200                                                   |                                                                        |                                                | nerai pariners):                                             |
| me                                                                                                                           | Street or P.O. Box                                                                 | Gity Soca Raton                                                        | State FL                                       | 33487                                                        |
| me                                                                                                                           |                                                                                    |                                                                        | arara                                          | Zip Code                                                     |
| mp                                                                                                                           | Street or P.O. Box                                                                 | City                                                                   | State                                          | Zip Code                                                     |
| ma                                                                                                                           | Street or P.O. Box                                                                 | City                                                                   |                                                |                                                              |
|                                                                                                                              |                                                                                    |                                                                        | State                                          | Zip Code                                                     |
| i a professional service corporation, a<br>i treasurer are licensed in one or more<br>lement of purposes of the corporation. | i the individual shareholders, not less<br>slates or territories of the United Sta | than one half (1/2) of the direct<br>les or District of Columbia to re | lors, and all of the of<br>nder a professional | fficers other than the secretary<br>service described in the |
| I certify that, as of the date of filing thi                                                                                 | s application, the above-named entity                                              | validly exists under the laws of                                       | the jurisdiction of its                        | s formation.                                                 |
| if a limited partnership, it elects to be                                                                                    | a limited liability limited partnership.                                           | Check the box if applicable:                                           | ]                                              |                                                              |
| if a limited liability company, check i                                                                                      | oox if manager-managed:                                                            |                                                                        |                                                |                                                              |
| This application will be effective upon                                                                                      |                                                                                    |                                                                        |                                                |                                                              |
|                                                                                                                              |                                                                                    |                                                                        |                                                |                                                              |
| sture of Authorized Representative                                                                                           | Adam B.                                                                            | Ginder-Vice President & Associate Gene                                 | and Counted                                    | 03/07/23                                                     |
|                                                                                                                              |                                                                                    | Printed Namo & Titlo                                                   |                                                | Date                                                         |
| Cogency Glob                                                                                                                 | pal Inc.                                                                           | Only to come on the section                                            |                                                |                                                              |
| pe/Print Name of Registered Agent                                                                                            | Curs                                                                               | ent to serve as the registered a                                       | geni on behalf of the                          | Dusiness entity.                                             |
| PSACO TO                                                                                                                     | FOR B                                                                              | HOOD AS                                                                | STANTS                                         |                                                              |
|                                                                                                                              |                                                                                    |                                                                        | 4/2/2/4/A                                      | ECRETAY 3/76                                                 |

ASR Application Search Exhibit B

# **Application A1218864**

**Application Detail** 

File Number A1218864 Constructed Registration 1324370 Dismantled

Number

NEPA EMI No

**Application Information** 

Status Granted Date Received 04/04/2023
Purpose Amendment Entered 04/04/2023

Mode Interactive

**Antenna Structure** 

Structure Type LTOWER - Lattice Tower

**Location** (in NAD83 Coordinates)

Lat/Long 36-48-09.6 N 088-47-54.2 W Address 10710 State Route 80 West -

16207023

City, State Fancy Farm , KY

Zip 42039 County GRAVES

Center of Position of Tower

AM Array in Array

**Heights (meters)** 

Elevation of Site Above Mean Sea Level Overall Height Above Ground (AGL)

131.3 90.0

Overall Height Above Mean Sea Level Overall Height Above Ground w/o Appurtenances

221.3 88.4

**Proposed Marking and/or Lighting** 

FAA Style E

**FAA Notification** 

FAA Study 2022-ASO-27278-OE FAA Issue Date 01/06/2023

**Owner & Contact Information** 

FRN 0003290673 Owner Entity General Partnership

Type

**Owner** 

Cellco Partnership P: (770)797-1070

Attention To: Network Regulatory F:

5055 North Point Pkwy E: Network.Regulatory@verizonwireless.com

Alpharetta, GA 30022

NP2NE Network Engineering

**Contact** 

Attention To: Network Regulatory P: (770)797-1070

5055 North Point Pkwy F:

NP2NE Network Engineering E: Network Regulatory@verizonwireless.com

Alpharetta, GA 30022

**Environmental Compliance** 

Does the applicant request a Waiver of the Is the applicant submitting an Environmental

Commission's rules for environmental notice? Assessment?

No No

Is another Federal Agency taking responsibility for

environmental review?

Yes

responsibility for environmental review

Basis for Certification

Reason for another Federal Agency taking

The FCC issued a Finding of No Significant Impact.

Does the applicant certify to No Significant

Environmental Effect pursuant to Section

Name of Federal Agency Local Notice Date

07/20/2022

National Notice Date

07/28/2022

Certification

Authorized Party Le Scanve, Christophe Title Authorized Representative

Receipt Date 04/04/2023

**Comments** 

**Comments** 

None

**History** 

**Event Date** 

04/04/2023 Amendment Received 04/04/2023 Application Granted

07/13/2022 New Application Received

**Trans Log** 

Date **Description Existing Value Requested Value** 

07/27/2022 Application: Identify the change type as Major or Minor Minor Major

07/27/2022 Environmental Compliance: National Notice Date 07/28/2022 09/19/2022

04/04/2023 Structure: The date the FAA determination was issued 01/06/2023

All Trans Log (10)

**Pleadings** 

**Pleading Type Filer Name** Description **Date Entered** 

None

**Automated Letters** 

Date **Description** 

None

**Attachments** 

**Description Date Entered Type** 

None

CLOSE WINDOW

#### REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.



# **Federal Communications Commission**

**Wireless Telecommunications Bureau** 

## RADIO STATION AUTHORIZATION

LICENSEE: KENTUCKY RSA NO. 1 PARTNERSHIP

ATTN: LICENSING MANAGER KENTUCKY RSA NO. 1 PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022

| <b>Call Sign</b><br>KNKQ306 | <b>File Number</b> 0009611390 |
|-----------------------------|-------------------------------|
|                             | Service<br>Cellular           |
| Market Numer<br>CMA443      | Channel Block<br>B            |
|                             | t Designator                  |

FCC Registration Number (FRN): 0001836709

Market Name Kentucky 1 - Fulton

|  | <b>nt Date</b><br>31-2021 |
|--|---------------------------|
|--|---------------------------|

#### **Site Information:**

Location Latitude Longitude Ground Elevation Structure Hgt to Tip Antenna Structure (meters) Registration No.

1 36-20-59.2 N 089-22-12.3 W 98.0

Address: 0.68 MILE SOUTH OF LASSITER CORNER & REEL FOOT LAKE

City: LASSITER CORNER County: LAKE State: TN Construction Deadline:

Antenna: 1

**Maximum Transmitting ERP in Watts: 135.800** 

Azimuth(from true north) 90 135 180 225 270 315 Antenna Height AAT (meters) 148.000 117.000 147.000 121.000 149.000 107.000 117.000 146.000 Transmitting ERP (watts) 133.300 103.500 36.500 4.500 1.500 3.900 38.800 109.600

### **Conditions:**

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

| Location Latitude  2 36-45-58.0 N  Address: 416 Jimtown Road                                                                                                                                                                              | <b>Longitude</b><br>088-38-50.0 W                           |                                        | ound Eleva<br>eters)<br>3.0             | (                                       | Structure Hgt<br>(meters)<br>147.8 | to Tip                                    | Antenna St<br>Registration<br>1043917     |                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|
|                                                                                                                                                                                                                                           | GRAVES State                                                | : KY Co                                | nstruction                              | Deadli                                  | ine:                               |                                           |                                           |                                            |
| Antenna: 2  Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)                                                                                                                     | Watts: 140.820<br>0<br>124.300<br>91.200                    | <b>45</b><br>120.000<br>87.100         | <b>90</b><br>100.800<br>85.110          | 135<br>92.100<br>85.110                 | <b>180</b><br>88.300<br>89.130     | <b>225</b><br>103.100<br>87.100           | <b>270</b><br>108.600<br>89.130           | <b>315</b> 100.800 89.130                  |
| Location Latitude                                                                                                                                                                                                                         | Longitude                                                   |                                        | ound Eleva                              |                                         | Structure Hgt                      | to Tip                                    | Antenna St                                |                                            |
| 4 36-54-35.5 N<br>Address: (Wickliffe) 353 CR                                                                                                                                                                                             | 089-04-01.6 W<br>1307                                       | (mo                                    | eters)<br>).3                           |                                         | ( <b>meters</b> )<br>121.0         |                                           | Registration<br>1030662                   | n No.                                      |
| City: Bardwell County: CA                                                                                                                                                                                                                 | RLISLE State: 1                                             | KY Con                                 | struction I                             | Deadlin                                 | e:                                 |                                           |                                           |                                            |
| Antenna: 4 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 5 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) | 0<br>107.500<br>189.230<br>1 Watts: 140.820<br>0<br>107.500 | 45<br>98.100<br>48.640<br>45<br>98.100 | 90<br>119.800<br>1.690<br>90<br>119.800 | 135<br>96.700<br>0.930<br>135<br>96.700 |                                    | 225<br>133.300<br>0.930<br>225<br>133.300 | 270<br>130.900<br>1.810<br>270<br>130.900 | 315<br>130.400<br>52.120<br>315<br>130.400 |
| Antenna: 6 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)                                                                                                                      | 0                                                           | <b>45</b> 98.100 0.350                 | 368.980<br>90<br>119.800<br>1.230       | 174.580<br>135<br>96.700<br>35.330      | 180<br>86.900<br>112.440           | 0.930<br><b>225</b><br>133.300<br>35.270  | 0.930<br><b>270</b><br>130.900<br>1.000   | 0.930<br><b>315</b><br>130.400<br>0.350    |
| <b>Location Latitude</b>                                                                                                                                                                                                                  | Longitude                                                   |                                        | ound Eleva<br>eters)                    |                                         | Structure Hgt<br>(meters)          | to Tip                                    | Antenna St<br>Registration                |                                            |
| 6 36-31-12.4 N                                                                                                                                                                                                                            | 088-50-41.5 W                                               | 144                                    | 1.2                                     |                                         | 122.2                              |                                           | 1030665                                   |                                            |
| Address: (Fulton) 550 Powell                                                                                                                                                                                                              |                                                             | 7 Comet                                | motio D-                                | .ali                                    |                                    |                                           |                                           |                                            |
| City: Fulton County: HICK                                                                                                                                                                                                                 | MAN State: KY                                               | Constr                                 | ruction Dea                             | adiine:                                 |                                    |                                           |                                           |                                            |
| Antenna: 4 Maximum Transmitting ERP in Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 5 Maximum Transmitting ERP in Azimuth(from true north)                                                      | 0<br>128.200<br>110.570<br>1 Watts: 140.820<br>0            | <b>45</b> 122.800 412.100              | 90<br>123.200<br>98.560                 | 135<br>135.200<br>4.220                 | 180<br>147.500<br>1.510            | 225<br>157,200<br>0.920                   | 270<br>143.900<br>0.920                   | 315<br>141.700<br>6.530                    |
| Antenna Height AAT (meters) Transmitting ERP (watts)                                                                                                                                                                                      | 128.200<br>0.550                                            | 122.800<br>0.550                       | 123.200<br>0.550                        | 135.200<br>0.550                        |                                    | 157.200<br>16.430                         | 143.900<br>11.480                         | 141.700<br>0.700                           |

| Location Latitude  6 36-31-12.4 N  Address: (Fulton) 550 Powel  City: Fulton County: HIC                                       |                            | ( <b>n</b>                     | round Elev<br>neters)<br>44.2<br>truction De |                         | Structure Hgt<br>(meters)<br>122.2 | to Tip                         | Antenna St<br>Registratio<br>1030665 |                               |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------|----------------------------------------------|-------------------------|------------------------------------|--------------------------------|--------------------------------------|-------------------------------|
| Antenna: 6 Maximum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)              | 0                          | <b>45</b><br>122.800<br>5.650  | <b>90</b><br>123.200<br>2.230                | 135<br>135.20<br>0.920  | 180<br>00 147.500<br>1.320         | <b>225</b><br>157.200<br>5.450 | <b>270</b><br>143.900<br>78.640      | <b>315</b> 141.700 402.820    |
| Location Latitude 7 36-38-26.2 N                                                                                               | Longitude<br>088-16-00.1 W | (n                             | round Elev<br>neters)<br>65.8                | ation                   | Structure Hgt<br>(meters)<br>90.8  | to Tip                         | Antenna St<br>Registratio<br>1030663 |                               |
| Address: (Murray) 1431 Var<br>City: Murray County: CA                                                                          |                            | KV C                           | onstruction                                  | Doodli                  | no•                                |                                |                                      |                               |
| City. Murray County: CA                                                                                                        | LLOWAI States              | KI C                           | onsti action                                 | Deauli                  | 110.                               |                                |                                      |                               |
| Antenna: 4 Maximum Transmitting ERP i Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 5 | 0                          | <b>45</b><br>107.100<br>6.420  | <b>90</b><br>115.000<br>0.560                | 135<br>106.90<br>0.560  | 180<br>00 87.400<br>0.560          | <b>225</b><br>91.300<br>0.830  | <b>270</b><br>86.200<br>39.630       | <b>315</b> 97.500 251.940     |
| Maximum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 6              | 0<br>106.900<br>3.450      | <b>45</b><br>107.100<br>96.460 | <b>90</b><br>115.000<br>263.070              | 135<br>106.90<br>57.230 |                                    | <b>225</b> 91.300 0.560        | <b>270</b><br>86.200<br>0.560        | <b>315</b> 97.500 0.560       |
| Azimum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)                          | 0                          | <b>45</b><br>107.100<br>0.370  | <b>90</b><br>115.000<br>0.370                | 135<br>106.90<br>12.730 |                                    | 225<br>91.300<br>104.340       | <b>270</b><br>86.200<br>9.310        | <b>315</b><br>97.500<br>0.370 |
| Location Latitude                                                                                                              | Longitude                  |                                | round Elev<br>neters)                        | ation                   | Structure Hgt (meters)             | to Tip                         | Antenna St<br>Registratio            |                               |
| 8 37-03-51.4 N                                                                                                                 | 088-57-23.6 W              | ,                              | 16.4                                         |                         | 92.4                               |                                | 1030664                              |                               |
| Address: (La Center) 220 RI                                                                                                    |                            |                                |                                              |                         |                                    |                                |                                      |                               |
| City: LA CENTER Count                                                                                                          | ty: BALLARD St             | ate: KY                        | Construct                                    | ion Dea                 | adline:                            |                                |                                      |                               |
| Antenna: 2 Maximum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)              | 0                          | <b>45</b> 78.400 71.430        | <b>90</b><br>71.900<br>167.460               | 135<br>66.000<br>63.670 |                                    | <b>225</b> 67.000 0.640        | 270<br>87,700<br>0.330               | <b>315</b> 96.100 0.330       |
| Antenna: 3  Maximum Transmitting ERP Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)             | 0                          | <b>45</b> 78.400 1.000         | <b>90</b><br>71.900<br>1.380                 | 135<br>66.000<br>23.440 |                                    | <b>225</b> 67.000 457.090      | 270<br>87.700<br>66.070              | <b>315</b><br>96.100<br>2.240 |

| Location Latitude  8 37-03-51.4 N  Address: (La Center) 220 RIG                                                     | Longitude  088-57-23.6 W CHARDSON I N      | (n                             | round Eleva<br>neters)<br>16.4 | tion                           | Structure Hgt<br>(meters)<br>92.4 | to Tip                          | Antenna St<br>Registratio<br>1030664 |                                 |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------------------|---------------------------------|--------------------------------------|---------------------------------|
| ` '                                                                                                                 |                                            | tate: KY                       | Constructi                     | on De                          | adline:                           |                                 |                                      |                                 |
| Antenna: 4 Maximum Transmitting ERP i Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) | n Watts: 140.820<br>0<br>85.600<br>165.960 | <b>45</b><br>78.400<br>6.610   | <b>90</b><br>71.900<br>0.910   | 135<br>66.000<br>0.500         | 180<br>) 65.300<br>0.500          | <b>225</b><br>67.000<br>0.890   | <b>270</b><br>87.700<br>45.710       | <b>315</b><br>96.100<br>223.870 |
| Location Latitude  10 36-44-07.9 N  Address: 3975 State Route 2:                                                    | <b>Longitude</b><br>088-58-29.2 W<br>206   | (n                             | round Eleva<br>neters)<br>31.9 | tion                           | Structure Hgt<br>(meters)<br>92.9 | to Tip                          | Antenna St<br>Registratio<br>1030723 |                                 |
|                                                                                                                     |                                            | e: KY                          | Construction                   | Dead                           | line:                             |                                 |                                      |                                 |
| Antenna: 2 Maximum Transmitting ERP i Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) | n Watts: 140.820<br>0<br>100.500<br>96.610 | <b>45</b><br>101.900<br>96.610 | 90<br>98.900<br>96.610         | <b>135</b><br>84.700<br>96.610 |                                   | <b>225</b><br>118.900<br>96.610 | <b>270</b><br>119.900<br>96.610      | <b>315</b> 100.400 96.610       |
| Location Latitude                                                                                                   | Longitude                                  |                                | round Eleva<br>neters)         | tion                           | Structure Hgt<br>(meters)         | to Tip                          | Antenna St<br>Registratio            |                                 |
| 11 37-02-00.0 N                                                                                                     | 088-22-10.0 W                              | 10                             | 05.5                           |                                | 106.7                             |                                 | 1040303                              |                                 |
| Address: (Calvert City) 641 3<br>City: Calvert City County:                                                         | •                                          | tate: KY                       | Constructi                     | ion De                         | eadline:                          |                                 |                                      |                                 |
| Antenna: 2 Maximum Transmitting ERP i Azimuth(from true north)                                                      |                                            | 45                             | 90                             | 135                            | 180                               | 225                             | 270                                  | 315                             |
| Antenna Height AAT (meters)<br>Transmitting ERP (watts)<br>Antenna: 3                                               | 78.900<br>23.380                           | 77.600<br>330.300              | 88.100<br>378.360              | 83.000<br>36.130               | 68.600                            | 85.300<br>0.970                 | 97.900<br>0.970                      | 93.100<br>0.970                 |
| Maximum Transmitting ERP i Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts) Antenna: 4 | <b>0</b><br>78.900<br>0.970                | <b>45</b><br>77.600<br>0.970   | <b>90</b><br>88.100<br>0.970   | 135<br>83.000<br>14.730        |                                   | <b>225</b><br>85.300<br>357.480 | <b>270</b><br>97.900<br>49.940       | <b>315</b> 93.100 1.230         |
| Maximum Transmitting ERP i Azimuth(from true north) Antenna Height AAT (meters) Transmitting ERP (watts)            | n Watts: 140.820<br>0<br>78.900<br>63.740  | <b>45</b> 77.600 2.060         | <b>90</b><br>88.100<br>0.660   | 135<br>83.000<br>0.660         | 180<br>68.600<br>0.660            | <b>225</b><br>85.300<br>4.020   | <b>270</b><br>97.900<br>107.530      | <b>315</b> 93.100 274.970       |

| Location Latitude 12 36-34-49.2 N                                                                                                                      | <b>Longitude</b> 088-31-45.2 W                                                                                                        | (1                           | Fround Elemeters)<br>55.5     | (1                      | Structure Hg<br>meters)<br>91.4 | t to Tip                        | Antenna St<br>Registration<br>1202399 |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|-------------------------|---------------------------------|---------------------------------|---------------------------------------|--------------------------------|
| Address: 12201 SR 97                                                                                                                                   | CDAVEG GLA V                                                                                                                          | <b>V</b> C 4                 | 41 D                          | 111                     |                                 |                                 |                                       |                                |
| City: TriCity County:                                                                                                                                  | GRAVES State: K                                                                                                                       | Y Const                      | ruction De                    | adline:                 |                                 |                                 |                                       |                                |
| Antenna: 2<br>Maximum Transmitting F                                                                                                                   | ERP in Watts: 140.820                                                                                                                 |                              |                               |                         |                                 |                                 |                                       |                                |
| Azimuth(from true n<br>Antenna Height AAT (me<br>Fransmitting ERP (watts)<br>Antenna: 3                                                                | ters) 75.100                                                                                                                          | <b>45</b><br>73.400<br>4.680 | <b>90</b><br>74.100<br>67.610 | 135<br>70.100<br>91.200 | <b>180</b><br>102.600<br>13.180 | 225<br>100.900<br>0.450         | <b>270</b><br>74.700<br>0.250         | <b>315</b><br>81.300<br>0.200  |
| Antenna: 3 Maximum Transmitting E Azimuth(from true n Antenna Height AAT (me Fransmitting ERP (watts) Antenna: 4                                       | orth) <b>0</b> 75.100                                                                                                                 | 45<br>73.400<br>0.200        | <b>90</b><br>74.100<br>0.200  | 135<br>70.100<br>0.350  | <b>180</b><br>102.600<br>18.200 | <b>225</b><br>100.900<br>89.130 | <b>270</b> 74.700 66.070              | <b>315</b><br>81.300<br>2.630  |
| Maximum Transmitting E<br>Azimuth(from true n<br>Antenna Height AAT (me<br>Fransmitting ERP (watts)                                                    | orth) <b>0</b> 75.100                                                                                                                 | 45<br>73.400<br>38.020       | <b>90</b><br>74.100<br>0.200  | 135<br>70.100<br>0.380  | <b>180</b><br>102.600<br>0.200  | <b>225</b><br>100.900<br>0.200  | <b>270</b> 74.700 1.260               | <b>315</b><br>81.300<br>42.660 |
| Location Latitude                                                                                                                                      | Longitude                                                                                                                             |                              | Fround Ele-<br>neters)        |                         | Structure Hg<br>meters)         | t to Tip                        | Antenna St<br>Registratio             |                                |
|                                                                                                                                                        |                                                                                                                                       |                              |                               | `                       |                                 |                                 | O                                     |                                |
| 51-05- <del>4</del> 1.21 <b>\</b>                                                                                                                      | 088-42-35.2 W                                                                                                                         | 1                            | 04.2                          | 6                       | 53.4                            |                                 | 1200593                               |                                |
| Address: (Paducah West                                                                                                                                 | t) 4415 Merredith Rd.                                                                                                                 |                              |                               |                         | 53.4                            | <b>11</b> 4                     | U                                     |                                |
| Address: (Paducah West                                                                                                                                 | t) 4415 Merredith Rd.                                                                                                                 | tate: KY                     |                               |                         | /                               | )14                             | U                                     |                                |
| Antenna: 4                                                                                                                                             | t) 4415 Merredith Rd.<br>v: MCCRACKEN S                                                                                               |                              |                               |                         | 53.4                            | )14                             | U                                     |                                |
| Address: (Paducah West City: Paducah County  Antenna: 4  Maximum Transmitting F  Azimuth(from true n  Antenna Height AAT (me  Fransmitting ERP (watts) | t) 4415 Merredith Rd. v: MCCRACKEN S  ERP in Watts: 140.820  oorth) 0 ters) 59.900                                                    |                              |                               |                         | 53.4                            | 225<br>34.700<br>0.330          | U                                     | <b>315</b> 64.600 1.370        |
| Address: (Paducah West City: Paducah County Antenna: 4 Maximum Transmitting F                                                                          | t) 4415 Merredith Rd. v: MCCRACKEN S  ERP in Watts: 140.820 torth) 0 ters) 59.900 24.580  ERP in Watts: 140.820 torth) 0 ters) 59.900 | 45<br>55.900                 | 90<br>65.200                  | 135<br>50.700           | 33.4 line: 07-08-20             | <b>225</b> 34.700               | 270<br>42.800                         | 64.600                         |

Call Sign: KNKQ306 **Print Date:** 08-31-2021 **File Number:** 0009611390

**Ground Elevation** Structure Hgt to Tip **Location Latitude** Longitude **Antenna Structure** (meters) (meters) Registration No. 15 36-46-54.2 N 088-03-28.1 W 199.0 126.5 1205551 Address: 14664 Canton Road City: Golden Pond **County: TRIGG** State: KY Construction Deadline: 05-19-2006 Antenna: 2 **Maximum Transmitting ERP in Watts:** 140.820 Azimuth(from true north)
Antenna Height AAT (meters) 90 135 180 225 270 315 45 165.000 178.000 183.900 160.400 174.500 170.600 167.000 177.000 Transmitting ERP (watts) 96.610 96.610 96.610 96.610 96.610 96.610 96.610 96.610 **Ground Elevation** Structure Hgt to Tip **Location Latitude** Longitude **Antenna Structure** (meters) (meters) Registration No. 16 089-10-30.9 W 1282534 36-34-03.0 N 109.4 91.4 Address: (Hickman site) Holley Street City: Hickman **County:** FULTON Construction Deadline: 05-28-2014 State: KY Antenna: 1 **Maximum Transmitting ERP in Watts:** 140.820 Azimuth(from true north) 45 90 135 180 225 270 315 Antenna Height AAT (meters) 105.500 102.800 107.900 96.700 89.300 75.700 68.400 107.300 Transmitting ERP (watts) 141.700 118.910 1.140 0.580 0.580 0.580 0.580 4.050 Antenna: 2 **Maximum Transmitting ERP in Watts:** 140.820 Azimuth(from true north) 90 180 225 270 315 45 135 Antenna Height AAT (meters) 105.500 102.800 96.700 89.300 75.700 68.400 107.900 107.300 Transmitting ERP (watts) 0.580 4.050 141.730 118.910 1.140 0.580 0.580 0.580 Antenna: 3 **Maximum Transmitting ERP in Watts: 140.820** Azimuth(from true north) 90 135 180 225 270 315 45 Antenna Height AAT (meters) 105.500 102.800 96.700 89.300 75.700 68.400 107.900 107.300 Transmitting ERP (watts) 45.610 0.460 0.460 0.460 0.460 0.460 7.710 24.600 **Ground Elevation Structure Hgt to Tip Location Latitude** Longitude **Antenna Structure** (meters) (meters) Registration No. 17 37-10-55.4 N 088-56-43.7 W 102.7 99.1 1252613 Address: (Monkey's Eyebrow) 4625 Odgen Colvin Circle **County:** BALLARD State: KY Construction Deadline: 10-24-2014 Antenna: 1 **Maximum Transmitting ERP in Watts: 140.820** Azimuth(from true north)
Antenna Height AAT (meters) 225 270 45 90 135 180 315 85.900 83.500 74.300 84.600 86.500 83.200 90.600 69.600 **Transmitting ERP (watts)** 7.080 125.890 478.630 112.200 4.570 1.580 1.000 1.000 Antenna: 2 **Maximum Transmitting ERP in Watts: 140.820** Azimuth(from true north)
Antenna Height AAT (meters) 225 270 45 90 135 180 315

83.200

1.000

84.600

64.570

74.300

446.680

86.500

2.820

85.900

1.000

Transmitting ERP (watts)

83.500

1.410

90.600

12.020

69.600

213.800

LocationLatitudeLongitudeGround Elevation (meters)Structure Hgt to Tip (meters)Antenna Structure Registration No.1737-10-55.4 N088-56-43.7 W102.799.11252613

Address: (Monkey's Eyebrow) 4625 Odgen Colvin Circle

City: Kevil County: BALLARD State: KY Construction Deadline: 10-24-2014

Antenna: 4

**Maximum Transmitting ERP in Watts:** 140.820 Azimuth(from true north)
Antenna Height AAT (meters) **0** 85.900 45 90 135 180 225 270 315 69.600 2.000 83.500 90.600 74.300 84.600 86.500 83.200 **Transmitting ERP (watts)** 2.000 2.000 398.110 549.540 2.000 2.000 4.900

**Control Points:** 

Control Pt. No. 3

Address: 500 W. Dove Rd.

City: Southlake County: TARRANT State: TX Telephone Number: (800)264-6620

Waivers/Conditions:

**NONE** 

#### REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.



# **Federal Communications Commission**

**Wireless Telecommunications Bureau** 

## RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

ATTN: REGULATORY CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022

| <b>Call Sign</b><br>KNLH404 | File Number |
|-----------------------------|-------------|
| Radio                       | Service     |
| CW - PCS                    | Broadband   |

FCC Registration Number (FRN): 0003290673

| ,                                       |                                 |                               |                       |
|-----------------------------------------|---------------------------------|-------------------------------|-----------------------|
| <b>Grant Date</b> 04-24-2017            | Effective Date<br>11-30-2017    | Expiration Date<br>04-28-2027 | Print Date            |
| Market Number<br>BTA339                 |                                 | nel Block                     | Sub-Market Designator |
|                                         | <b>Market</b><br>Paducah-Murray |                               |                       |
| <b>1st Build-out Date</b><br>04-28-2002 | 2nd Build-out Date              | 3rd Build-out Date            | 4th Build-out Date    |

#### Waivers/Conditions:

This authorization is subject to the condition that, in the event that systems using the same frequencies as granted herein are authorized in an adjacent foreign territory (Canada/United States), future coordination of any base station transmitters within 72 km (45 miles) of the United States/Canada border shall be required to eliminate any harmful interference to operations in the adjacent foreign territory and to ensure continuance of equal access to the frequencies by both countries.

## **Conditions:**

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Licensee Name: CELLCO PARTNERSHIP

Call Sign: KNLH404 File Number: Print Date:

700 MHz Relicensed Area Information:

Market Name Buildout Deadline Buildout Notification Status

#### REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.



# **Federal Communications Commission**

**Wireless Telecommunications Bureau** 

### RADIO STATION AUTHORIZATION

LICENSEE: ALLTEL CORPORATION

ATTN: REGULATORY ALLTEL CORPORATION 5055 NORTH POINT PKWY, NP2NE ENGINEERING ALPHARETTA, GA 30022

| Call Sign<br>WQBT313 | File Number |
|----------------------|-------------|
| Radio                | Service     |
| CW - PCS             | Broadband   |

FCC Registration Number (FRN): 0002942159

| •                                       |                                   |                               |                       |
|-----------------------------------------|-----------------------------------|-------------------------------|-----------------------|
| <b>Grant Date</b> 06-05-2015            | Effective Date<br>05-07-2020      | Expiration Date<br>06-23-2025 | Print Date            |
| Market Number<br>MTA026                 |                                   | nel Block<br>A                | Sub-Market Designator |
|                                         | <b>Market</b><br>Louisville-Lexin |                               |                       |
| <b>1st Build-out Date</b><br>10-23-2000 | 2nd Build-out Date                | 3rd Build-out Date            | 4th Build-out Date    |

#### Waivers/Conditions:

This authorization is subject to the condition that, in the event that systems using the same frequencies as granted herein are authorized in an adjacent foreign territory (Canada/United States), future coordination of any base station transmitters within 72 km (45 miles) of the United States/Canada border shall be required to eliminate any harmful interference to operations in the adjacent foreign territory and to ensure continuance of equal access to the frequencies by both countries.

This authorization is subject to the condition that the remaining balance of the winning bid amount will be paid in accordance with Part 1 of the Commission's rules, 47 C.F.R. Part 1.

## **Conditions:**

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Licensee Name: ALLTEL CORPORATION

Call Sign: WQBT313 File Number: Print Date:

This license is conditioned upon compliance with the provisions of Applications of AT&T Wireless Services, Inc. and Cingular Wireless Corporation For Consent to Transfer Control of Licenses and Authorizations, Memorandum Opinion and Order, FCC 04-255 (rel. Oct. 26, 2004).

Licensee Name: ALLTEL CORPORATION

Call Sign: WQBT313 File Number: Print Date:

700 MHz Relicensed Area Information:

Market Name Buildout Deadline Buildout Notification Status

#### REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.



# **Federal Communications Commission**

**Wireless Telecommunications Bureau** 

## RADIO STATION AUTHORIZATION

LICENSEE: ALLTEL CORPORATION

ATTN: REGULATORY ALLTEL CORPORATION 5055 NORTH POINT PKWY, NP2NE ENGINEERING ALPHARETTA, GA 30022

| Call Sign<br>WQBT318 | File Number    |
|----------------------|----------------|
| Radio                | <b>Service</b> |
| CW - PCS             | Broadband      |

FCC Registration Number (FRN): 0002942159

| •                                    |                                   |                               |                       |
|--------------------------------------|-----------------------------------|-------------------------------|-----------------------|
| <b>Grant Date</b> 06-05-2015         | Effective Date<br>05-07-2020      | Expiration Date<br>06-23-2025 | Print Date            |
| Market Number<br>MTA026              |                                   | nel Block<br>A                | Sub-Market Designator |
|                                      | <b>Market</b><br>Louisville-Lexin |                               |                       |
| <b>1st Build-out Date</b> 06-23-2000 | 2nd Build-out Date                | 3rd Build-out Date            | 4th Build-out Date    |

#### Waivers/Conditions:

This authorization is subject to the condition that, in the event that systems using the same frequencies as granted herein are authorized in an adjacent foreign territory (Canada/United States), future coordination of any base station transmitters within 72 km (45 miles) of the United States/Canada border shall be required to eliminate any harmful interference to operations in the adjacent foreign territory and to ensure continuance of equal access to the frequencies by both countries.

This authorization is subject to the condition that the remaining balance of the winning bid amount will be paid in accordance with Part 1 of the Commission's rules, 47 C.F.R. Part 1.

#### **Conditions:**

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Licensee Name: ALLTEL CORPORATION

Call Sign: WQBT318 File Number: Print Date:

This license is conditioned upon compliance with the provisions of Applications of AT&T Wireless Services, Inc. and Cingular Wireless Corporation For Consent to Transfer Control of Licenses and Authorizations, Memorandum Opinion and Order, FCC 04-255 (rel. Oct. 26, 2004).

Licensee Name: ALLTEL CORPORATION

Call Sign: WQBT318 File Number: Print Date:

700 MHz Relicensed Area Information:

Market Name Buildout Deadline Buildout Notification Status

#### REFERENCE COPY

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.



# **Federal Communications Commission**

**Wireless Telecommunications Bureau** 

## RADIO STATION AUTHORIZATION

LICENSEE: ALLTEL CORPORATION

ATTN: REGULATORY ALLTEL CORPORATION 5055 NORTH POINT PKWY, NP2NE ENGINEERING ALPHARETTA, GA 30022

| Call Sign<br>WQBT318 | File Number    |
|----------------------|----------------|
| Radio                | <b>Service</b> |
| CW - PCS             | Broadband      |

FCC Registration Number (FRN): 0002942159

| •                                    |                                   |                               |                       |
|--------------------------------------|-----------------------------------|-------------------------------|-----------------------|
| <b>Grant Date</b> 06-05-2015         | Effective Date<br>05-07-2020      | Expiration Date<br>06-23-2025 | Print Date            |
| Market Number<br>MTA026              |                                   | nel Block<br>A                | Sub-Market Designator |
|                                      | <b>Market</b><br>Louisville-Lexin |                               |                       |
| <b>1st Build-out Date</b> 06-23-2000 | 2nd Build-out Date                | 3rd Build-out Date            | 4th Build-out Date    |

#### Waivers/Conditions:

This authorization is subject to the condition that, in the event that systems using the same frequencies as granted herein are authorized in an adjacent foreign territory (Canada/United States), future coordination of any base station transmitters within 72 km (45 miles) of the United States/Canada border shall be required to eliminate any harmful interference to operations in the adjacent foreign territory and to ensure continuance of equal access to the frequencies by both countries.

This authorization is subject to the condition that the remaining balance of the winning bid amount will be paid in accordance with Part 1 of the Commission's rules, 47 C.F.R. Part 1.

#### **Conditions:**

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

This license may not authorize operation throughout the entire geographic area or spectrum identified on the hardcopy version. To view the specific geographic area and spectrum authorized by this license, refer to the Spectrum and Market Area information under the Market Tab of the license record in the Universal Licensing System (ULS). To view the license record, go to the ULS homepage at http://wireless.fcc.gov/uls/index.htm?job=home and select "License Search". Follow the instructions on how to search for license information.

Licensee Name: ALLTEL CORPORATION

Call Sign: WQBT318 File Number: Print Date:

This license is conditioned upon compliance with the provisions of Applications of AT&T Wireless Services, Inc. and Cingular Wireless Corporation For Consent to Transfer Control of Licenses and Authorizations, Memorandum Opinion and Order, FCC 04-255 (rel. Oct. 26, 2004).

Licensee Name: ALLTEL CORPORATION

Call Sign: WQBT318 File Number: Print Date:

700 MHz Relicensed Area Information:

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.



## **Federal Communications Commission**

**Wireless Telecommunications Bureau** 

#### RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022

| <b>Call Sign</b><br>WQGA718 | <b>File Number</b> 0009793647 |  |
|-----------------------------|-------------------------------|--|
| Radio Service               |                               |  |
| AW - AWS (1710-1755 MHz and |                               |  |
| 2110-2155 MHz)              |                               |  |

FCC Registration Number (FRN): 0003290673

| <b>Grant Date</b> 02-22-2022 | Effective Date<br>02-22-2022 | Expiration Date<br>11-29-2036 | <b>Print Date</b> 02-23-2022 |
|------------------------------|------------------------------|-------------------------------|------------------------------|
| Market Number<br>REA004      |                              | nel Block<br>F                | Sub-Market Designator<br>15  |
|                              | <b>Marke</b> t<br>Mississip  |                               |                              |
| 1st Build-out Date           | 2nd Build-out Date           | 3rd Build-out Date            | 4th Build-out Date           |

#### Waivers/Conditions:

This authorization is conditioned upon the licensee, prior to initiating operations from any base or fixed station, making reasonable efforts to coordinate frequency usage with known co-channel and adjacent channel incumbent federal users operating in the 1710-1755 MHz band whose facilities could be affected by the proposed operations. See, e.g., FCC and NTIA Coordination Procedures in the 1710-1755 MHz Band, Public Notice, FCC 06-50, WTB Docket No. 02-353, rel. April 20, 2006.

#### **Conditions:**

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

**Call Sign:** WQGA718 **File Number:** 0009793647 **Print Date:** 02-23-2022

700 MHz Relicensed Area Information:

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.



## **Federal Communications Commission**

**Wireless Telecommunications Bureau** 

#### RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022

| <b>Call Sign</b><br>WQGA960 | <b>File Number</b> 0009775572 |  |
|-----------------------------|-------------------------------|--|
| Radio Service               |                               |  |
| AW - AWS (1710-1755 MHz and |                               |  |
| 2110-2155 MHz)              |                               |  |

FCC Registration Number (FRN): 0003290673

| <b>Grant Date</b> 01-03-2022   | Effective Date<br>01-03-2022            | Expiration Date<br>11-29-2036 | <b>Print Date</b> 01-05-2022 |
|--------------------------------|-----------------------------------------|-------------------------------|------------------------------|
| <b>Market Number</b><br>BEA072 | Channel Block B Sub-Market Designator 0 |                               |                              |
| Market Name<br>Paducah, KY-IL  |                                         |                               |                              |
| 1st Build-out Date             | 2nd Build-out Date                      | 3rd Build-out Date            | 4th Build-out Date           |

#### Waivers/Conditions:

This authorization is conditioned upon the licensee, prior to initiating operations from any base or fixed station, making reasonable efforts to coordinate frequency usage with known co-channel and adjacent channel incumbent federal users operating in the 1710-1755 MHz band whose facilities could be affected by the proposed operations. See, e.g., FCC and NTIA Coordination Procedures in the 1710-1755 MHz Band, Public Notice, FCC 06-50, WTB Docket No. 02-353, rel. April 20, 2006.

### **Conditions:**

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

700 MHz Relicensed Area Information:

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.



## **Federal Communications Commission**

**Wireless Telecommunications Bureau** 

#### RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

ATTN: REGULATORY CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE ENGINEERING ALPHARETTA, GA 30022

| <b>Call Sign</b><br>WQGD606 | <b>File Number</b> 0009565676 |  |
|-----------------------------|-------------------------------|--|
| Radio Service               |                               |  |
| AW - AWS (1710-1755 MHz and |                               |  |
| 2110-2155 MHz)              |                               |  |

FCC Registration Number (FRN): 0003290673

| <b>Grant Date</b> 12-16-2021  | Effective Date<br>12-16-2021 | Expiration Date<br>12-18-2036 | <b>Print Date</b> 07-09-2022 |
|-------------------------------|------------------------------|-------------------------------|------------------------------|
| Market Number<br>BEA072       |                              |                               |                              |
| Market Name<br>Paducah, KY-IL |                              |                               |                              |
| 1st Build-out Date            | 2nd Build-out Date           | 3rd Build-out Date            | 4th Build-out Date           |

#### Waivers/Conditions:

This authorization is conditioned upon the licensee, prior to initiating operations from any base or fixed station, making reasonable efforts to coordinate frequency usage with known co-channel and adjacent channel incumbent federal users operating in the 1710-1755 MHz band whose facilities could be affected by the proposed operations. See, e.g., FCC and NTIA Coordination Procedures in the 1710-1755 MHz Band, Public Notice, FCC 06-50, WTB Docket No. 02-353, rel. April 20, 2006.

Special Condition for AU/name change (6/4/2016): Grant of the request to update licensee name is conditioned on it not reflecting an assignment or transfer of control (see Rule 1.948); if an assignment or transfer occurred without proper notification or FCC approval, the grant is void and the station is licensed under the prior name.

#### **Conditions:**

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

700 MHz Relicensed Area Information:

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.



## **Federal Communications Commission**

**Wireless Telecommunications Bureau** 

#### RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

ATTN: REGULATORY CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022

| <b>Call Sign</b><br>WQJQ692 | File Number        |
|-----------------------------|--------------------|
| <b>Radio</b>                | Service            |
| WU - 700 MHz Up             | per Band (Block C) |

FCC Registration Number (FRN): 0003290673

| ,                                |                                         |                               |                    |
|----------------------------------|-----------------------------------------|-------------------------------|--------------------|
| <b>Grant Date</b> 01-10-2020     | Effective Date<br>02-11-2021            | Expiration Date<br>06-13-2029 | Print Date         |
| Market Number<br>REA004          | Channel Block C Sub-Market Designator 0 |                               |                    |
|                                  | <b>Market</b><br>Mississip              |                               |                    |
| 1st Build-out Date<br>06-13-2013 | <b>2nd Build-out Date</b> 06-13-2019    | 3rd Build-out Date            | 4th Build-out Date |

#### Waivers/Conditions:

If the facilities authorized herein are used to provide broadcast operations, whether exclusively or in combination with other services, the licensee must seek renewal of the license either within eight years from the commencement of the broadcast service or within the term of the license had the broadcast service not been provided, whichever period is shorter in length. See 47 CFR §27.13(b).

This authorization is conditioned upon compliance with section 27.16 of the Commission's rules

#### **Conditions:**

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Call Sign: WQJQ692 File Number: Print Date:

**700 MHz Relicensed Area Information:** 

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.



## **Federal Communications Commission**

**Wireless Telecommunications Bureau** 

#### RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

ATTN: REGULATORY CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022

| <b>Call Sign</b><br>WREF214       | File Number |  |
|-----------------------------------|-------------|--|
| Radio Service                     |             |  |
| UU - Upper Microwave Flexible Use |             |  |
| Service                           |             |  |

FCC Registration Number (FRN): 0003290673

| <b>Grant Date</b> 10-02-2019 | Effective Date<br>10-02-2019 | Expiration Date<br>10-02-2029 | Print Date            |
|------------------------------|------------------------------|-------------------------------|-----------------------|
| Market Number<br>C21083      |                              | el Block                      | Sub-Market Designator |
| Market Name<br>GRAVES, KY    |                              |                               |                       |
| 1st Build-out Date           | 2nd Build-out Date           | 3rd Build-out Date            | 4th Build-out Date    |

#### Waivers/Conditions:

**NONE** 

### **Conditions:**

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Call Sign: WREF214 File Number: Print Date:

700 MHz Relicensed Area Information:

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.



## **Federal Communications Commission**

**Wireless Telecommunications Bureau** 

#### RADIO STATION AUTHORIZATION

LICENSEE: STRAIGHT PATH SPECTRUM, LLC

ATTN: REGULATORY STRAIGHT PATH SPECTRUM, LLC 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022

| <b>Call Sign</b><br>WRHG984       | File Number |  |
|-----------------------------------|-------------|--|
| Radio Service                     |             |  |
| UU - Upper Microwave Flexible Use |             |  |
| Service                           |             |  |

FCC Registration Number (FRN): 0012576435

| <b>Grant Date</b> 06-04-2020                                  | <b>Effective Date</b> 06-04-2020 | Expiration Date<br>06-04-2030 | Print Date         |
|---------------------------------------------------------------|----------------------------------|-------------------------------|--------------------|
| Market Number PEA243 Channel Block M1 Sub-Market Designator 0 |                                  |                               |                    |
| Market Name<br>Paducah, KY                                    |                                  |                               |                    |
| 1st Build-out Date                                            | 2nd Build-out Date               | 3rd Build-out Date            | 4th Build-out Date |

#### Waivers/Conditions:

**NONE** 

#### **Conditions:**

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Licensee Name: STRAIGHT PATH SPECTRUM, LLC

Call Sign: WRHG984 File Number: Print Date:

700 MHz Relicensed Area Information:

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.



## **Federal Communications Commission**

**Wireless Telecommunications Bureau** 

#### RADIO STATION AUTHORIZATION

LICENSEE: STRAIGHT PATH SPECTRUM, LLC

ATTN: REGULATORY STRAIGHT PATH SPECTRUM, LLC 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022

| <b>Call Sign</b><br>WRHG994       | File Number |  |
|-----------------------------------|-------------|--|
| Radio Service                     |             |  |
| UU - Upper Microwave Flexible Use |             |  |
| Service                           |             |  |

FCC Registration Number (FRN): 0012576435

| <b>Grant Date</b> 06-04-2020 | Effective Date<br>06-04-2020 | Expiration Date<br>06-04-2030 | Print Date                  |
|------------------------------|------------------------------|-------------------------------|-----------------------------|
| Market Number<br>PEA243      |                              |                               | Sub-Market Designator<br>() |
|                              | Market Name<br>Paducah, KY   |                               |                             |
| 1st Build-out Date           | 2nd Build-out Date           | 3rd Build-out Date            | 4th Build-out Date          |

#### Waivers/Conditions:

**NONE** 

#### **Conditions:**

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Licensee Name: STRAIGHT PATH SPECTRUM, LLC

Call Sign: WRHG994 File Number: Print Date:

700 MHz Relicensed Area Information:

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.



## **Federal Communications Commission**

**Wireless Telecommunications Bureau** 

#### RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

ATTN: REGULATORY CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022

| <b>Call Sign</b><br>WRNG990 | File Number |
|-----------------------------|-------------|
| Radio                       | Service     |
| PM - 3.7 G                  | Hz Service  |

FCC Registration Number (FRN): 0003290673

| 8                                                                                     |                              |                               |                       |
|---------------------------------------------------------------------------------------|------------------------------|-------------------------------|-----------------------|
| <b>Grant Date</b> 07-23-2021                                                          | Effective Date<br>07-23-2021 | Expiration Date<br>07-23-2036 | Print Date            |
| Market Number<br>PEA243                                                               |                              | el Block                      | Sub-Market Designator |
| Market Name<br>Paducah, KY                                                            |                              |                               |                       |
| 1st Build-out Date         2nd Build-out Date           07-23-2029         07-23-2033 |                              | 3rd Build-out Date            | 4th Build-out Date    |

#### Waivers/Conditions:

This final license provides authorization during the full 15-year license term. Operation under this final license may begin on the earlier of (1) 12/5/2025 or (2) the date that the certification for accelerated relocation for this PEA is validated by the FCC pursuant to 47 CFR § 27.1412(g).

License is conditioned on compliance with all applicable FCC rules and regulations, including licensee making payments required by 47 C.F.R. §§ 27.1401- 27.1424 as described in FCC 20-22. See FCC 20-22, paras. 178-331.

### **Conditions:**

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Call Sign: WRNG990 File Number: Print Date:

700 MHz Relicensed Area Information:

This is not an official FCC license. It is a record of public information contained in the FCC's licensing database on the date that this reference copy was generated. In cases where FCC rules require the presentation, posting, or display of an FCC license, this document may not be used in place of an official FCC license.



## **Federal Communications Commission**

**Wireless Telecommunications Bureau** 

#### RADIO STATION AUTHORIZATION

LICENSEE: CELLCO PARTNERSHIP

ATTN: REGULATORY CELLCO PARTNERSHIP 5055 NORTH POINT PKWY, NP2NE NETWORK ENGINEERING ALPHARETTA, GA 30022

| <b>Call Sign</b><br>WRNG985 | File Number |
|-----------------------------|-------------|
| <b>Radio</b>                | Service     |
| PM - 3.7 G                  | Hz Service  |

FCC Registration Number (FRN): 0003290673

| <b>Grant Date</b> 07-23-2021         | Effective Date 07-23-2021            | Expiration Date<br>07-23-2036 | Print Date         |
|--------------------------------------|--------------------------------------|-------------------------------|--------------------|
| Market Number<br>PEA243              |                                      | Channel Block A1              |                    |
|                                      | <b>Market</b><br>Paduca              |                               |                    |
| <b>1st Build-out Date</b> 07-23-2029 | <b>2nd Build-out Date</b> 07-23-2033 | 3rd Build-out Date            | 4th Build-out Date |

#### Waivers/Conditions:

This final license provides authorization during the full 15-year license term. Operation under this final license may begin on the earlier of (1) 12/5/2025 or (2) the date that the certification for accelerated relocation for this PEA is validated by the FCC pursuant to 47 CFR § 27.1412(g).

License is conditioned on compliance with all applicable FCC rules and regulations, including licensee making payments required by 47 C.F.R. §§ 27.1401- 27.1424 as described in FCC 20-22. See FCC 20-22, paras. 178-331.

### **Conditions:**

Pursuant to §309(h) of the Communications Act of 1934, as amended, 47 U.S.C. §309(h), this license is subject to the following conditions: This license shall not vest in the licensee any right to operate the station nor any right in the use of the frequencies designated in the license beyond the term thereof nor in any other manner than authorized herein. Neither the license nor the right granted thereunder shall be assigned or otherwise transferred in violation of the Communications Act of 1934, as amended. See 47 U.S.C. § 310(d). This license is subject in terms to the right of use or control conferred by §706 of the Communications Act of 1934, as amended. See 47 U.S.C. §606.

Call Sign: WRNG985 File Number: Print Date:

700 MHz Relicensed Area Information:





# **FANCY FARM**

US-KY-5135

**KENTUCKY HIGHWAY 80** FANCY FARM, KY 42039 **GRAVES COUNTY** 

TENANT: KENTICKY RSA 1 PSHP d/b/a VERIZON "EV FANCY FARM'

ROM GRAVES COUNTY COURT CLERK, 101 E SOUTH ST #2, MAYFIELD, KY 42066: HEAD EAST ON E SOUTH ST TOWARD S 6TH ST (190 FT). TURN LEFT AT THE 1ST CROSS STREET ONTO S 6TH ST (361 FT). TURN LEFT ONTO E BROADWAY (2.4 MI). CONTINUE ONTO KY-80 W (7.8 MI). TURN RIGHT ONTO KY-339 N/KY-80 W (249 FT). TURN LEFT ONTO KY-80 W (0.4 MI). SITE WILL BE LOCATED ON RIGHT (NORTH) SIDE OF ROAD.

FROM EVANSVILLE MTSO: 800 RUSSELL ROAD CHANDLER. IN 47610: HEAD NORTH ON RUSSELL RD TOWARD GARDNER RD (0.2 MI). TURN LEFT ONTO GARDNER RD (1.6 MI). TURN LEFT ONTO IN-62 (4.2 MI). USE THE RIGHT LANE TAKE THE RAMP ONTO 1-69 S (0.4 MI). MERGE ONTO 1-69 S (7.8 MI). TAKE EXIT O FOR VETERANS MEM PKWY/US-41 TOWARD VINCENNES/HENDERSON KY (0.3 MI). KEEP LÉFT AT THE FORK, FOLLOW SIGNS FOR US-41 S AND MERG ONTO US-41 S (0.9 MI). MERGE ONTO US-41 S (6.1 MI). KEEP LEFT TO STAY ON US-41 S (4.3 MI). CONTINUE ONTO 1-69 (SIGNS FOR MADISONVILLE/FULTON) (41.8 MI). KEEP RIGHT TO STAY ON 1-69, FOLLOW SIGNS FOR PADUCAH (38.4 MI). TAKE EXIT 68B TO MERGE ONTO I-24 W/I-69 S TOWARD PADUCAH (16.2 MI). TAKE EXIT 25A ON THE LEFT FOR I-69 S TOWARD FULTON S (0.9 MI). CONTINUE ONTO I-69 (28.4 MI). TAKE EXIT 22 FOR KY-80 TOWARD MAYFIELD/FANCY FARM (0.2 MI). TURN RIGHT ONTO KY-80 W/W BROADWAY/FANCY FARM RD (8.3 MI). TURN RIGHT ONTO KY-339 N/KY-80 W (249 FT). TURN LEFT ONTO KY-80 W (0.4 MI). SITE WILL BE LOCATED ON RIGHT

## NEW 290'-0" SELF SUPPORT TOWER w/5' LIGHTNING ARRESTOR -TOTAL TOWER HEIGHT 295'-0"

## VERTICAL BRIDGE SITE

FANCY FARM SITE #: US-KY-5135

#### /ERIZON SITE

EV FANCY FARM FUZE ID: 16207023 LOCATION CODE: 495686

#### SITE ADDRESS

KENTUCKY HIGHWAY 80 FANCY FARM, KY 42039 GRAVES COUNTY E911 ADDRESS: TBD

#### CLIENT CONTACT

VERIZON 2902 RING ROAD FUZABETHTOWN KY 42701 CONTACT: JACKIE STRAIGHT PHONE: (290) 750-0023 E-MAIL: JACKIE.STRAIGHT@ VERIZONWIRELESS.COM

#### OWER OWNER

VICINITY MAP

VB BTS II, LLC 750 PARK OF COMMERCE DRIVE SUITE 200 BOCA RATON, FL 33487 CONTACT: GRETCHEN BLANTON MOBILE: (704) 472-0374 E-MAIL: GBLANTON@ VERTICALBRIDGE.COM

### PROPERTY OWNER

KM & K FARMS LLC COON RAPIDS, MN 55448 PHONE: (763) 248-2538 E-MAIL: KHAYDEN5191@ COMCAST NET

GRAVES COUNTY SHERIFF 101 E SOUTH ST #3 PHONE: (270) 247-4501

MILBURN VOLUNTEER FIRE DEPT. HIGHWAY 80 MILBURN, KY 42070 PHONE: (270) 694-3207

#### GENERAL INFORMATION

LATITUDE : 36.802670" N LONGITUDE : 88.798391" W 1983 (NAD83) 431'± AMSL FI EVATION . 1988 (NAVD88)

## PROPOSED LEASE AREA

100'-0" x 100'-0" (10,000 SF)

#### PROJECT TOTAL DISTURBED AREA

COMPOUND: (10,000 SF) = (0.23 ACRE (23.840 SF) = (0.55 ACRE

#### NOTE: ALL ITEMS WITHIN THESE CONSTRUCTION DOCUMENTS ARE BY TOWER OWNER'S GENERAL CONTRACTOR AND HIS SUB-CONTRACTORS UNI ESS NOTED AS (VZW GC) WHICH SHALL INCLUDE VERIZON

- INDICAL NUM:
  INSTALL (1) NEW "VERIZON ONLY" FIBER OPTIC CONDUIT WITH PULL TAPE FROM NEW "VERIZON ONLY" 24"
  \$36" HAND HOLE OUTSIDE COMPOUND AND STUB UP AT FUTURE FIBER REDESTAL LOCATION
  PERMANENT ELECTRIC POWER MUST BE AVAILABLE FOR VERIZON AT THE METER BASE PRIOR TO THE SITE
  BEING RELEASED AS TENANT READY.

ERIZON SCOPE (VZW GC):
 INSTALL A NEW 11'-6"x14'-9" PREFABRICATED CANOPY ON EXISTING CONCRETE PAD

- INSTALL NEW 30KW DIESEL GENERATOR ON EXISTING CONCRETE PAD INSTALL VZW ICE BRIDGE AND FOUNDATIONS INSTALL VZW ANTENNA MOUNTING SUPPORT STRUCTURE ON TOWER
- INSTALL VZW ANTENNAS, LINES, COAX, GPS ANTENNA AND RADIO EQUIPMENT INSTALL EXISTING SUBSURFACE GROUND LEADS TO VZW EQUIPMENT & FACILITIES INSTALL VZW ELECTRIC SERVICE COMDUCTORS FROM UTILITY H-FRAME TO VZW ILC ENCLOSURE
- INSTALL VZW GENERATOR CIRCUITS FROM VZW ILC & EQUIPMENT ENCLOSURES TO VZW GENERATOR INSTALL CIRCUITS FROM VZW ILC TO VZW EQUIPMENT ENCLOSURES INSTALL CIRCUITS FROM VZW ILC TO VZW EQUIPMENT ENCLOSURES INSTALL REW OUTDOOR OVP AND CABLING HERAME SUPPORT
- INSTALL (2) 1-1/4" & (1) 1" INNERDUCTS WITH PULL TAPES AND TRACER WIRE WITHIN OWNER INSTALLED "VERIZON ONLY" FIBER OPTIC CONDUITS

#### PROJECT DESCRIPTION



## WEST KENTUCKY RECC ADDRESS: 1218 W BROADWAY

## 2012 INTERNATIONAL ENERGY CODE (COMMERCIAL)

ACCESSIBILITY REQUIREMENTS: FACILITY IS UNMANNED AND NOT FOR HUMAN HABITATION. HANDICAPPED ACCESS REQUIREMENTS ARE NOT REQUIRED IN ACCORDANCE WITH THE 2009 IBC BUILDING CODE

ALL WORK AND MATERIALS SHALL BE PERFORMED AND INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL

GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUCTED TO PERMIT

2018 KENTUCKY BUILDING CODE

#### APPLICABLE CODES

WORK NOT CONFORMING TO THESE CODES.

BUILDING CODE

STRUCTURAL CODE

MECHANICAL CODE

PLUMBING CODE

ELECTRICAL CODE

NERGY CODE

GAS CODE

FIRE/LIFE SAFFTY CODE

PREPARED BY: POWER OF DESIGN GROUP, LLC - (502) 437-5252

POWER OF DESIGN GROUP, LLC 11490 BLUEGRASS PARKWAY LOUISVILLE, KY 40299 PHONE: (502) 437-5252

11490 BLUEGRASS PARKWAY LOUISVILLE, KY 40299

PHONE: (270) 247-1321

### ARCHITECTURAL

TIA/EIA-222 - REVISION G (INCLUDES ADDENDUM #2)

2012 INTERNATIONAL MECHANICAL CODE (IMC 2012)

KENTUCKY STATE PLUMBING CODE (815 KAR CHAP, 20)

2017 NATIONAL ELECTRICAL CODE (NEC) - NFPA 70

2012 INTERNATIONAL FIRE CODE (2012 IEC)

2009 NATIONAL FUEL GAS CODE (NFPA 54)

POWER OF DESIGN GROUP, LLC

### **CONSULTANT TEAM**



DESCRIPTION PROJECT INFORMATION, SITE MAPS, SHEET INDEX

500' RADIUS & ABUTTERS MAP REVISION LOG

TOWER ELEVATION TE-1 TOWER ELEVATION

#### CIVIL C-1

SHEET NUMBER

B-1 TO B-1.1

B-2 TO B-2.1

OVERALL SITE PLAN W/AERIAL OVERLAY OVERALL SITE PLAN W/DISTANCES TO PROPERTY LINES C-1A TOWER DISTANCE TO RESIDENTIAL STRUCTURES C-1B DETAILED SITE PLAN DIMENSIONED SITE PLAN





## 04/25/2023



## ZONING **DRAWINGS**

| REV. | DATE     | DESCRIPTION       |
|------|----------|-------------------|
| Α    | 9.28.22  | ISSUED FOR REVIEW |
| 0    | 11.15.22 | ISSUED AS FINAL   |
| 1    | 4.25.23  | 500'R REVISION    |
|      |          |                   |
|      |          |                   |

## SITE INFORMATION:

### **FANCY FARM**

KENTUCKY HIGHWAY 80 FANCY FARM, KY 42039 **GRAVES COUNTY** 

VERTICAL BRIDGE SITE NUMBER US-KY-5135

**EV FANCY FARM** POD NUMBER

DRAWN BY

CHECKED BY: 09.28.22

POD

SHEET TITLE:

**PROJECT** INFORMATION, SITE MAPS, SHEET INDEX

SHEET NUMBER:





#### TITLE OF COMMITMENT

THIS SURVEY DOES NOT CONSTITUTE A TITLE SEARCH BY POD GROUP, LLC. AND AS SUCH WE ARE NOT RESPONSIBLE FOR THE INVESTIGATION OR INDEPENDENT SEARCH FOR EASEMENTS OF RECORD, ENCUMBRANCES, RESTRICTIVE COVENANTS, OWNERSHIP TITLE EVIDENCE, UNRECORDED EASEMENTS, AUGMENTING EASEMENTS, IMPLIED OR PRESCRIPTIVE EASEMENTS, OR ANY OTHER FACTS THAT AN ACCURATE AND CURRENT TITLE SEARCH MAY DISCLOSE. INFORMATION REGARDING THESE MATTERS WERE GAINED FROM AMC SETTLEMENT SERVICES, LOAN NO.: VZW / EV FANCY FARM2, ORDER NO.: 50012406, DATED AUGUST 5, 2020 AND PER TITLE UPDATE REPORT ORDER NO. 37123186, DATED APRIL 27, 2022. THE FOLLOWING COMMENTS ARE IN REGARD TO SAID COMMITMENT AND THE NUMBERS IN THE COMMENTS CORRESPOND TO THE NUMBERING SYSTEM IN SAID POLICY.

#### SCHEDULE B SECTION II (EXCEPTIONS)

- 1. DEFECTS, LIENS, ENCUMBRANCES, ADVERSE CLAIMS OR OTHER MATTERS, IF ANY, CREATED, FIRST APPEARING IN THE PUBLIC RECORDS OR ATTACHING SUBSEQUENT TO THE EFFECTIVE DATE BUT PRIOR TO THE DATE THE PROPOSED INSURED ACQUIRES FOR VALUE OF RECORD THE ESTATE OR INTEREST OR MORTGAGE THEREON COVERED BY THIS COMMITMENT. (POWER OF DESIGN GROUP, LLC., DID NOT EXAMINE OR ADDRESS THIS ITEM.)
- 2. TAXES OR SPECIAL ASSESSMENTS WHICH ARE NOT SHOWN AS EXISTING LIENS BY THE PUBLIC RECORDS. (NOT A LAND SURVEYING MATTER, THEREFORE POWER OF DESIGN GROUP, LLC., DID NOT EXAMINE OR ADDRESS THIS ITEM.)
- 3. ANY ENCROACHMENT, ENCUMBRANCE, VIOLATION, VARIATION, OR ADVERSE CIRCUMSTANCE AFFECTING THE TITLE THAT WOULD BE DISCLOSED BY AN ACCURATE AND COMPLETE LAND SURVEY OF THE LAND. (NO ENCROACHMENTS WERE OBSERVED ON THE AREA OF THE PREMISES, OR EASEMENT. POWER OF DESIGN GROUP, LLC DID NOT PERFORM A BOUNDARY SURVEY OF THE PARENT PARCEL, THEREFORE, THIS SHOULD NOT BE CONSTRUED AS NO ENCROACHMENTS EXIST.)
- 4. RIGHTS OR CLAIMS OF PARTIES IN POSSESSION NOT SHOWN BY THE PUBLIC RECORDS. (RIGHTS OR CLAIMS ARE NOT A LAND SURVEYING MATTER, THEREFORE POWER OF DESIGN GROUP, LLC., DID NOT EXAMINE OR ADDRESS THIS ITEM.)
- 5. ANY LIEN OR RIGHT TO A LIEN, FOR SERVICES, LABOR, OR MATERIAL HERETOFORE OR HEREAFTER FURNISHED, IMPOSED BY LAW AND NOT SHOWN BY THE PUBLIC RECORDS. (NOT A LAND SURVEYING MATTER, THEREFORE POWER OF DESIGN GROUP, LLC., DID NOT EXAMINE OR ADDRESS THIS ITEM.)
- 6. EASEMENTS OR CLAIMS OF EASEMENTS, NOT SHOWN BY THE PUBLIC RECORDS. (POWER OF DESIGN GROUP, LLC., DID NOT EXAMINE OR ADDRESS THIS ITEM.)

#### TAXES

7. TAXES, OR SPECIAL ASSESSMENTS, IF ANY, NOT SHOWN AS EXISTING LIENS BY THE PUBLIC RECORDS.

PARCEL ID #: 006.00.00.005.00 COMMENTS: PARENT PARCEL

YEAR: TYPE: PERIOD: TAX AMOUNT: PENALTY: AMOUNT DUE: STATUS: DUE DATE: GOOD THRU DATE: 2019 CITY & COUNTY ANNUAL \$148.96 \$0.00 N/A PAID N/A N/A

PER TITLE UPDATE REPORT ORDER NO. 37123186, DATED APRIL 27, 2022

YEAR: TYPE: PERIOD: TAX AMOUNT: STATUS: ASSESSMENT: 2021 COUNTY ANNUAL \$150.53 PAID \$16,800.00

PARCEL ID #: 006.00.00.005.02

COMMENTS: LEASEHOLD PARCEL

YEAR: TYPE: PERIOD: TAX AMOUNT: PENALTY: AMOUNT DUE: STATUS: DUE DATE: GOOD THRU DATE: 2019 CITY & COUNTY ANNUAL \$168.44 \$0.00 N/A PAID N/A N/A

#### PER TITLE UPDATE REPORT ORDER NO. 37123186, DATED APRIL 27, 2022:

YEAR: TYPE: PERIOD: TAX AMOUNT: STATUS: ASSESSMENT: 2021 COUNTY ANNUAL \$170.24 PAID \$19,000.00

(NOT A LAND SURVEYING MATTER, THEREFORE POWER OF DESIGN GROUP, LLC., DID NOT EXAMINE OR ADDRESS THIS ITEM.)

#### MORTGAGE

NONE OF RECORD.

LIENS / JUDGEMENTS

NONE OF RECORD.

#### OTHER:

- 8. SUBJECT TO EASEMENT IN DEED FROM ALBERT EUGENE GOATLEY AND WIFE, MARY VERNON GOATLEY, TO DANNY TOON AND WIFE, NICOLE TOON DATED 8/26/1994 AND RECORDED 8/30/1994 IN BOOK 350, PAGE 477, GRAVES COUNTY RECORDS. (EASEMENT IN DEED AS RECORDED IN BOOK 350, PAGE 477 DOES NOT AFFECT THE PARENT PARCEL OR THE ACCESS & UTILITY EASEMENT.)
- 9. SUBJECT TO EASEMENT FOR POWER LINES AND WATER METERS IN DEED FROM JAMES M. ELLIOTT, TRUSTEE OF THE JAMES M. ELLIOTT DECLARATION OF TRUST TO THOMAS H. ELLIOTT DATED 10/9/1995 AND RECORDED 10/13/1995 IN BOOK 357, PAGE 700, GRAVES COUNTY RECORDS. (EASEMENT AS RECORDED IN BOOK 357, PAGE 700 DOES NOT AFFECT THE PARENT PARCEL OR THE ACCESS & UTILITY EASEMENT AND IS SHOWN HEREON.)
- 10. SUBJECT TO EASEMENT OF 20 FOOT WIDE STRIP OF LAND FORMERLY USED AS A ROADWAY REFERENCED IN DEED FROM MAIN STREET BANK & TRUST FKA BANKILLINOIS, SUCCESSOR TRUSTEE OF THE JAMES M. ELLIOTT DECLARATION OF TRUST UNDER AGREEMENT DATED 5/6/1994 TO KENT E. HAYDEN AND W. KEITH HAYDEN DATED 10/7/2005 AND RECORDED 11/14/2005 IN BOOK 427, PAGE 770, GRAVES COUNTY RECORDS. (NO COPY OF THE ACTUAL EASEMENT REFERENCED IN BOOK 80, PAGE 329, IS AVAILABLE) (THERE IS NOT A COPY OF OR A PLOTTABLE DESCRIPTION INCLUDED OF THE 20' EASEMENT AS REFERENCED IN BOOK 427, PAGE 770, THEREFORE POD CANNOT DETERMINE THE AFFECT ON THE PARENT PARCEL OR THE ACCESS & UTILITY EASEMENT.)
- 11. SUBJECT TO DEED OF EASEMENT FROM ALGENE GOATLEY AND WIFE, MARY VERNON GOATLEY TO FANCY FARM WATER & SEWER DISTRICT DATED 6/29/1995 AND RECORDED 6/30/1995 IN BOOK 356, PAGE 10, GRAVES COUNTY RECORDS. (EASEMENT AS RECORDED IN BOOK 356, PAGE 10 DOES NOT AFFECT THE PARENT PARCEL OR THE ACCESS & UTILITY EASEMENT.)
- 12. SUBJECT TO ANY MATTERS AS MAY BE SHOWN ON PLAT OF QUAIL HOLLOW SUBDIVISION (PHASE RECORDED 12/12/2016 IN PLAT BOOK F, PAGE 75, GRAVES COUNTY RECORDS. (THIS VOIDS THE EASEMENT SHOWN AS PARCEL 11, TRACT II IN VESTING DEED IN BOOK 506, PAGE 639) (MATTERS AS SHOWN IN PLAT IN BOOK 506, PAGE 639 DOES NOT AFFECT THE PARENT PARCEL OR THE ACCESS & UTILITY EASEMENT.)

PER TITLE UPDATE REPORT ORDER NO. 37123186, DATED APRIL 27, 2022, NO NEW DOCUMENTS OF RECORD WERE FOUND IN THE SEARCH PERIOD OF AUGUST 5, 2020 THROUGH APRIL 20, 2022.

#### **LEGAL DESCRIPTIONS**

#### PROPOSED LEASE AREA

THE FOLLOWING IS A DESCRIPTION OF THE PROPOSED LEASE AREA TO BE LEASED FROM THE PROPERTY CONVEYED TO KM & K FARMS LLC AS RECORDED IN DEED BOOK 506, PAGE 639 OF RECORD IN THE OFFICE OF THE CLERK OF GRAVES COUNTY, KENTUCKY, PARCEL ID: 006.00.005.00, WHICH IS MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEARING DATUM USED HEREIN IS BASED UPON KENTUCKY STATE PLANE COORDINATE SYSTEM, SINGLE ZONE, NAD 83, FROM A REAL TIME KINEMATIC GLOBAL POSITIONING SYSTEM OBSERVATION USING THE KENTUCKY TRANSPORTATION CABINET REAL TIME GPS NETWORK COMPLETED ON JUNE 24, 2020.

COMMENCING AT A FOUND 5/8" REBAR WITH A YELLOW CAP STAMPED "RT CARTER PLS" AT THE SOUTHWEST CORNER OF THE PARCEL CONVEYED TO JASON S & KAYLA HENSON AS DESCRIBED IN DEED BOOK 447, PAGE 52, PARCEL ID: 006.00.00.007.00 AND BEING IN THE NORTH RIGHT OF WAY LINE OF KENTUCKY HIGHWAY 80; FOR REFERENCE, SAID COMMENCEMENT POINT IS 564°00'14"E 904.96' FROM A FOUND 1/2" REBAR WITH NO CAP IN THE SOUTHWEST CORNER OF KM & K FARMS LLC AS RECORDED IN DEED BOOK 506, PAGE 639, PARCEL ID: 006.00.00.005.00 AND BEING IN THE NORTH RIGHT OF WAY LINE OF SAID KENTUCKY HIGHWAY 80, THENCE N64°00'14"W 275.99' TO A POINT ON THE NORTH RIGHT OF WAY LINE OF SAID KENTUCKY HIGHWAY 80 AND ALSO BEING THE SOUTH LINE OF SAID KM & K FARMS LLC; THENCE LEAVING SAID LINE N25°59'46"E 234.23' TO A SET 1/2" REBAR, 18" LONG, CAPPED "PATTERSON PLS 3136", HEREAFTER REFERRED TO AS A "SET IPC", AT THE SOUTHWEST CORNER OF THE PROPOSED LEASE AREA AND BEING THE TRUE POINT OF BEGINNING; THENCE N25°59'46"E 100.00' TO A SET 1PC; THENCE S64°00'14"E 100.00' TO A SET 1PC; THENCE S25°59'46"W 100.00' TO A SET 1PC; THENCE N64°00'14"W 100.00' TO THE POINT OF BEGINNING CONTAINING 10,000.000 SQUARE FEET AS PER SURVEY BY MARK E. PATTERSON, PLS #3136 DATED JUNE 24, 2020.

#### PROPOSED 30' / VARIABLE WIDTH ACCESS & UTILITY EASEMENT

THE FOLLOWING IS A DESCRIPTION OF THE PROPOSED 30' / VARIABLE WIDTH ACCESS AND UTILITY EASEMENT TO BE GRANTED FROM THE PROPERTY CONVEYED TO KM & K FARMS LLC AS RECORDED IN DEED BOOK 506, PAGE 639 OF RECORD IN THE OFFICE OF THE CLERK OF GRAVES COUNTY, KENTUCKY, PARCEL ID: 006.00.00.005.00, WHICH IS MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEARING DATUM USED HEREIN IS BASED UPON KENTUCKY STATE PLANE COORDINATE SYSTEM, SINGLE ZONE, NAD 83, FROM A REAL TIME KINEMATIC GLOBAL POSITIONING SYSTEM OBSERVATION USING THE KENTUCKY TRANSPORTATION CABINET REAL TIME GPS NETWORK COMPLETED ON JUNE 24, 2020.

COMMENCING AT A FOUND 5/8" REBAR WITH A YELLOW CAP STAMPED "RT CARTER PLS" AT THE SOUTHWEST CORNER OF THE PARCEL CONVEYED TO JASON S & KAYLA HENSON AS DESCRIBED IN DEED BOOK 447, PAGE 52, PARCEL ID: 006.00.00.007.00 AND BEING IN THE NORTH RIGHT OF WAY LINE OF KENTUCKY HIGHWAY 80; FOR REFERENCE, SAID COMMENCEMENT POINT IS S64°00'14"E 904.96' FROM A FOUND 1/2" REBAR WITH NO CAP IN THE SOUTHWEST CORNER OF KM & K FARMS LLC AS RECORDED IN DEED BOOK 506, PAGE 639, PARCEL ID: 006.00.00.005.00 AND BEING IN THE NORTH RIGHT OF WAY LINE OF SAID KENTUCKY HIGHWAY 80, THENCE N64°00'14"W 275.99' TO A POINT ON THE NORTH RIGHT OF WAY LINE OF SAID KENTUCKY HIGHWAY 80 AND ALSO BEING THE SOUTH LINE OF SAID KM & K FARMS LLC; THENCE LEAVING SAID LINE N25°59'46"E 234.23' TO A SET 1/2" REBAR, 18" LONG, CAPPED "PATTERSON PLS 3136", HEREAFTER REFERRED TO AS A "SET IPC", AT THE SOUTHWEST CORNER OF THE PROPOSED LEASE AREA AND BEING THE TRUE POINT OF BEGINNING; THENCE S64°00'14"E 100.00' TO A SET IPC; THENCE N25°59'46"E 100.00' TO A SET IPC; THENCE LEAVING SAID PROPOSED LEASE AREA S64°00'14"E 30.00' TO A POINT; FOR REFERENCE, SAID POINT IS N08°45'52"E 61.69' FROM A FOUND 5/8" REBAR WITH A YELLOW CAP STAMPED "RT CARTER PLS" AT THE NORTHWEST CORNER OF THE PARCEL CONVEYED TO FANCY FARM WATER DISTRICT AS RECORDED IN DEED BOOK 189 PAGE 85, PARCEL ID: 006.00.00.008.00; THENCE S25°59'46"W 98.58'; THENCE ALONG THE ARC OF A CURVE TO THE LEFT HAVING A RADIUS OF 50.00', ARC LENGTH OF 12.65', THE CHORD OF WHICH BEARS \$18°44'47"W 12.62'; THENCE \$11°29'47"W 230.47' TO THE NORTH RIGHT OF WAY LINE OF KENTUCKY HIGHWAY 80; THENCE ALONG SAID NORTH RIGHT OF WAY LINE N64\*00'14"W 50.48'; THENCE LEAVING SAID NORTH RIGHT OF WAY LINE N64\*00'14"W 50.48'; THENCE LEAVING SAID NORTH RIGHT OF WAY LINE OF KENTUCKY HIGHWAY 80; THENCE ALONG SAID NORTH RIGHT OF WAY LINE OF KENTUCKY HIGHWAY 80; THENCE ALONG SAID NORTH RIGHT OF WAY LINE OF KENTUCKY HIGHWAY 80; THENCE ALONG SAID NORTH RIGHT OF WAY LINE OF KENTUCKY HIGHWAY 80; THENCE ALONG SAID NORTH RIGHT OF WAY LINE OF KENTU

#### PARENT PARCEL, LEGAL DESCRIPTION, DEED BOOK 506, PAGE 639 (NOT FIELD SURVEYED)

ALL THAT PARCEL OF LAND IN THE IN THE COUNTY OF GRAVES AND COMMONWEALTH OF KENTUCKY AS MORE FULLY DESCRIBED IN DEED AND BOOK 506 PAGE 639 AND PARCEL # 006.00.00.005.00 AND 006.00.00.005.02, BEING KNOWN AND DESIGNATED AS:

DUE TO THE NUMEROUS PRIOR OUTSALES REFERENCED IN THE CURRENT VESTING DEED AND BACK DEEDS, A SURVEY IS REQUIRED IN ORDER TO DETERMINE WHAT THE CURRENT, CORRECT LEGAL DESCRIPTION OF THE SUBJECT PROPERTY IS.

#### PARCEL NUMBER: 006.00.00.005.00 AND 006.00.00.005.02

PATTERSON

LICENSED

PROFESSIONAL

BEING THE SAME PROPERTY ACQUIRED BY KM & K FARMS, LLC, A KENTUCKY LIMITED LIABILITY COMPANY BY DEED OF WILLIAM KEITH HAYDEN A/K/A W. KEITH HAYDEN, SINGLE, AND KENT E. HAYDEN A/K/A KENT HAYDEN AND MONICA HAYDEN, HUSBAND AND WIFE, DATED 12/12/2016 AND RECORDED 12/28/2016 IN BOOK / PAGE: 506 / 639

#### LAND SURVEYOR'S CERTIFICATE

I, MARK E. PATTERSON, HEREBY CERTIFY THAT I AM A LICENSED PROFESSIONAL LAND SURVEYOR LICENSED IN COMPLIANCE WITH THE LAWS OF THE COMMONWEALTH OF KENTUCKY. I FURTHER CERTIFY THAT THIS PLAT AND THE SURVEY ON THE GROUND WERE PERFORMED BY PERSONS UNDER MY DIRECT SUPERVISION, AND THAT THE DIRECTIONAL AND LINEAR MEASUREMENTS BEING WITNESSED BY MONUMENTS SHOWN HEREON ARE TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE. THE "RURAL" SURVEY, AND THE PLAT ON WHICH IT IS BASED, MEETS ALL SPECIFICATIONS AS STATED IN KAR 201 18:150.



09/14/2022

6 0

PREPARED BY:

POD

POWER OF DESIGN

11490 BLUEGRASS PARKWAY

LOUISVILLE, KY 40299 502-437-5252

PREPARED FOR

KENTUCKY RSA PARTNERSHIP

## SITE SURVEY

| REV | . DATE  | DESCRIPTION     |
|-----|---------|-----------------|
| Α   | 6.29.20 | PRELIM ISSUE    |
| В   | 11.2.20 | TITLE REVIEW    |
| 0   | 9.14.22 | ISSUED AS FINAL |
|     |         |                 |
|     |         |                 |
|     |         |                 |
|     |         |                 |

#### SITE INFORMATION:

## EV FANCY FARM

KENTUCKY HIGHWAY 80 FANCY FARM, KY 42039 GRAVES COUNTY

TAX PARCEL NUMBER: 006.00.00.005.00

PROPERTY OWNER: KM & K FARMS LLC P O BOX 48035 COON RAPIDS, MN 55448

SOURCE OF TITLE: DEED BOOK 506, PAGE 639

 POD NUMBER:
 20-64963

 DRAWN BY:
 JRS

 CHECKED BY:
 MEP

 SURVEY DATE:
 6.24.20

 PLAT DATE:
 6.29.20

SHEET TITLE:

## SITE SURVEY

THIS DOES NOT REPRESENT A
BOUNDARY SURVEY OF THE
PARENT PARCEL

SHEET NUMBER: (2 pages)

B-1.1





## **REVISION LOG**

| REV * | MM/DD/YY   | SHEET NUMBER | DESCRIPTION OF REVISION |  |
|-------|------------|--------------|-------------------------|--|
| A     | 9/28/2022  | ALL SHEETS   | ISSUED FOR REVIEW       |  |
| 0     | 11/15/2022 | ALL SHEETS   | ISSUED AS FINAL         |  |
| 1     | 4/25/2023  | B-2 & B-2.1  | 500'R REVISION          |  |







EN PERMIT: 3594

## ZONING DRAWINGS

| REV. | DATE     | DESCRIPTION       |
|------|----------|-------------------|
| Α    | 9.28.22  | ISSUED FOR REVIEW |
| 0    | 11.15.22 | ISSUED AS FINAL   |
| 1    | 4.25.23  | 500'R REVISION    |
|      |          |                   |
|      |          |                   |

SITE INFORMATION:

**FANCY FARM** 

KENTUCKY HIGHWAY 80 FANCY FARM, KY 42039 GRAVES COUNTY

VERTICAL BRIDGE SITE NUMBER: US-KY-5135

VERIZON SITE NAME: EV FANCY FARM

POD NUMBER: 21-117201

DRAWN BY: CHECKED BY: DATE: POD MEP 09.28.22

SHEET TITLE:

**REVISION LOG** 

SHEET NUMBER:

R-1



### NOTE:

- 1. IT IS THE INSTALLING CONTRACTOR'S RESPONSIBILITY TO VERIFY ALL ANTENNA INFORMATION AGAINST FINAL RADIO ENGINEERING PLAN PROVIDED BY KENTUCKY RSA 1 PSHP d/b/a VERIZON (VZW GC)
- 2. ALL TOWER LIGHTING SHALL BE INSTALLED AS REQUIRED BY THE FEDERAL AVIATION ADMINISTRATION AND RECOMMENDED BY THE USFWS INTERIM GUIDELINES (2000) FOR LIGHTING OF TOWERS OVER 200' IN HEIGHT.



POWER OF DESIGN

11490 BLUEGRASS PARKWAY LOUISVILLE, KY 40299 502-437-5252

# **DRAWINGS**

|   | REV. | DATE     | DESCRIPTION       |
|---|------|----------|-------------------|
|   | Α    | 9.28.22  | ISSUED FOR REVIEW |
|   | 0    | 11.15.22 | ISSUED AS FINAL   |
|   | 1    | 4.25.23  | 500'R REVISION    |
| ı |      |          |                   |
|   |      |          |                   |

### SITE INFORMATION: **FANCY FARM**

KENTUCKY HIGHWAY 80 FANCY FARM, KY 42039

GRAVES COUNTY VERTICAL BRIDGE SITE NUMBER: US-KY-5135

> VERIZON SITE NAME: **EV FANCY FARM**

POD NUMBER: 21-11720

DRAWN BY: POD CHECKED BY: 09.28.22

SHEET TITLE:

**TOWER ELEVATION** 

SHEET NUMBER:



**COAX PLAN** 

SCALE: N.T.S.











EN PERMIT: 3594

## ZONING DRAWINGS

| REV. | DATE     | DESCRIPTION       |
|------|----------|-------------------|
| Α    | 9.28.22  | ISSUED FOR REVIEW |
| 0    | 11.15.22 | ISSUED AS FINAL   |
| 1    | 4.25.23  | 500'R REVISION    |
|      |          |                   |
|      |          |                   |

## SITE INFORMATION:

## **FANCY FARM**

KENTUCKY HIGHWAY 80 FANCY FARM, KY 42039 GRAVES COUNTY

VERTICAL BRIDGE SITE NUMBER: US-KY-5135

VERIZON SITE NAME:

EV FANCY FARM

POD NUMBER: 21-11720 DRAWN BY: POD

DRAWN BY: POD
CHECKED BY: MEP
DATE: 09.28.22

SHEET TITLE:

OVERALL SITE PLAN W/DISTANCE TO PROPERTY LINES

SHEET NUMBER:

C-1A







04/25/2023



EN PERMIT: 3594

## ZONING DRAWINGS

| REV. | DATE     | DESCRIPTION       |
|------|----------|-------------------|
| Α    | 9.28.22  | ISSUED FOR REVIEW |
| 0    | 11.15.22 | ISSUED AS FINAL   |
| 1    | 4.25.23  | 500'R REVISION    |
|      |          |                   |
|      |          |                   |

## SITE INFORMATION:

**FANCY FARM** 

KENTUCKY HIGHWAY 80 FANCY FARM, KY 42039 GRAVES COUNTY

VERTICAL BRIDGE SITE NUMBER: US-KY-5135

VERIZON SITE NAME: EV FANCY FARM

POD NUMBER: 21-11720.

DRAWN BY: POD CHECKED BY: MEP DATE: 09.28.22

SHEET TITLE:

DISTANCE TO RESIDENTIAL STRUCTURES

SHEET NUMBER:

C-1B





## **Exhibit D**



|         |             |            |        |         |          | TOWER CO   | LUMN                    |                           |                          |         |
|---------|-------------|------------|--------|---------|----------|------------|-------------------------|---------------------------|--------------------------|---------|
| SECTION | ELEVATION   | FACE WIOTH | PANELB | LEGRIZE | LEGSTYLE | GTY & DIA  | Bracing Size            | HORIZONAL<br>BRACING SIZE | BRACHO BOLT<br>QTY & DIA | BECTION |
| 71      | 580, * 580. | \$.0"      | 2      | 2 50"   | ¥        | 4 x 2M*    | 18" x 2" x 2"           | 14" # 3" # 3"             | 1 x 3/4 *                | 854.3   |
| 12      | 280' - 280' | 6.0        | 3      | 4.00"   | V        | 6 x 3/4"   | 3/16" x 2-1/2" x 2-1/2" |                           | 1 a 364 "                | 1573.0  |
| 73      | 240' - 260' | 7.0'       | 3      | 8.00"   | v        | 0 x 3/4"   | 3/48" E 7" × 2"         |                           | 1 4 344 *                | 1504.3  |
| 74      | 720' - 240' | p.0°       | 3      | 8.00"   | ٧        | 6 x 1"     | 3/18" x 2-1/2" x 2-1/2" |                           | 1 x 3/4 -                | 2273    |
| TB      | 200.+550.   | 11.0       | 2      | 1.50"   | 1280FH   | 0 x 1"     | 3/16" x 2-1/2" x 2-1/2" |                           | 5 4 1 "                  | 2578    |
| Te      | 100, 1500.  | 13.0       | 2      | 1.75    | 1280FH   | 8 x 1 156" | 184" x 2-1/2" x 2-1/2"  |                           | 1×1-                     | 3041.   |
| 17      | 160' - 180' | 15.0"      | 8      | 1,73"   | 1280FH   | 8 x 1 1/4" | 1M" = 2-1/2" = 2-1/2"   |                           | 9 4 1 "                  | 31413   |
| TR      | 140' - 160' | 170        | 2      | 1.76*   | 120DFH   | 0 4 1 964  | 3/18"× 3" × 3"          |                           | 1117                     | 3154    |
| 76      | 120' - 140' | 19.0       | 1      | 2.00"   | 128DH3   | 12×1"      | 3rt6"x 2" = 3"          |                           | 1 : 78"                  | 0046    |
| Thū     | 100'-120'   | 21.0       |        | 2.00"   | 1280N2   | 12 × 1"    | 3H4"x 3" x 3"           |                           | 1 = 746 *                | #188.   |
| T 91    | 80'-100'    | 23.0       | 1      | 5.00.   | 1280H2   | 12 = 1"    | 3/44"x 3" x 3"          |                           | 1 = 7/6 *                | 4238.0  |
| 712     | 60" - 80"   | 25.0"      | 1      | 2.25    | 120042   | 12 x 1"    | 3/16"× 3" x 3"          |                           | 1 = 775                  | 4828.   |
| 113     | 40"-00"     | 27.0       | 1      | 2.25"   | 128DH2   | 12 × 1"    | 14" = 3-1/2" = 3-1/2"   |                           | 1 = 7/6 "                | 5701.   |
| 774     | 201.40      | 29.0"      | 1      | 2.25    | 128 DH2  | 12 = 1"    | 184" K 3-172" K 3-172"  | 1                         | 1 × 746."                | 8817.   |
| TVS     | 0'-20'      | 21.0       | r      | 2.50    | 1280412  | 4 1 1 344" | 164" 4 3-1/2" 1 3-1/2"  |                           | 1 6.746"                 | 6637    |



| REV | DESCRIPTION  | ON OF REVISIONS | CPD         | BY   DATE | US-KY-5135 FANCY FARM<br>VB BTS II, LLC<br>U 31 X 290'                                                                                                                                                                           | DESCRIPTION Tower View Page 1 | valmont  1.677-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR |         |
|-----|--------------|-----------------|-------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------|---------|
| MEA | OCOCINIT TIE | REVISION HISTOR |             | 10/1 0//0 | COPYRIGHT 2022                                                                                                                                                                                                                   |                               |                                                               |         |
| SAN | SAN          | JL              | APPROVED BY | 10/6/2022 | PROPING TARY HOTE.  THE DATA AND TRO-MIGUES EDITAMED IN THIS GRAWING ARE PROPING TARY INFORBATION OF VALIDAY INFORESTICS AND OD-MIGRED A TRADE SECRET. ARY USE ON DISCLOSURE WITHOUT THE CONSENT OF VALIDAY WASHOOT INFORMATION. | 565090                        | 293706T                                                       | 1 OF 17 |

| DESIGNED APPURTENANCE LOADING       |           |
|-------------------------------------|-----------|
| TYPE                                | ELEVATION |
| (1) 848"X 16" LIGHTNING ROD         | 380 0000  |
| (1) SEACON                          | 580 0000  |
| (1) 40,000 8Q.W (277.8 SQ.FT EPA)   | 288 9000  |
| (1) 30,000 8Q.W. (206.3 8Q.FT EPA)  | 276 0000  |
| (1) 50,000 BQ PL (206 3 SQ FT EPA)  | 288 0000  |
| (2) 2-1/2" X T SCH. 40              | 740 0000  |
| (1) 5" HP ()(240 DEG AZIMUTH)       | 240 0000  |
| (1) SP1 R& (INCLUDES 4.8"X72" PIPE) | 240 0000  |
| (3) ÓB LIGHT                        | 148.0000  |



SITE DESCRIPTION US-KY-5135 FANCY FARM VB BTS II, LLC Tower View Page 2 U 31 X 290° 1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, CR **STRUCTURES** DESCRIPTION OF REVISIONS CPD BY DATE REV COPYRIGHT 2022 REVISION HISTORY PROPRIETARY NOTE.

THE DATA AND TECHNICISES CONTAINED IN THE DRAWHOLDER PROPRIET DAY INFORMATION OF VALIDATE
THE DATA AND TECHNICISES CONTAINED IN THE DRAWHOLDER OF DISCUSSION OF VALIDATE OF VALIDAT ENG. FILE NO. APPROVED BY DRAWN BY APPROVED BY SAN DESIGNED BY RELEASE DATE 10/6/2022 565090 293706T 2 OF 17



|                  |    |         | PARTS LIST                                           |                                                    |                 |          |
|------------------|----|---------|------------------------------------------------------|----------------------------------------------------|-----------------|----------|
| IVER QTY PART NO |    | PART NO | PART DESCRIPTION                                     |                                                    | UNIT WT         | WET WIT  |
| BOL              | 3  | 261171  | #12 BASE SECTION - 2 1/2" LEG - 1/2" GRACE W(1)      |                                                    | 1424 950        | 4274.860 |
| VO               |    | 205817  | U-31 UPPER ANGLE SINGLE BOLT FOR 20-0" LONG TA       |                                                    | 97,370          | 594 229  |
| LO               |    | 285818  | U-31 COWER ANGLE - SINGLE BOLT FOR 20"0" LONG TA     |                                                    | 104 820         | 627 72   |
| FD               |    | 265616  | U-31 LONG ANGLE - SINGLE BOLT FOR 20'-0" LONG TAP    |                                                    | 208 820         | 1281 120 |
| MC,              | 27 | 312123  | EN" GALVANIZED LOCKWASHER (53-22230)                 |                                                    | 0.070           | .0.846   |
| Line .           | 27 | 312501  | SIP"-11 HOT DIPPED GALVANIZED NUT                    |                                                    | 0 120           | 3.244    |
| AS               | 27 | 237668  | RING FILL SPACER SIS" THICK 1 040" HOLE              |                                                    | 0.090           | 2.43     |
| 440              | 27 | 101896  | 88" 11 X 2 1M" A-328 BOLT 1 1M" THREAD               |                                                    | 0.200           | 7,020    |
| ABICE            | 15 | 101806  | 5/8" 11 X 2 1/4" A-325 BOLT 1 1/4" THREAD            |                                                    | 0 200           | 3.900    |
| AL CL            | 15 | 312123  | ENT GALVANIZED LOCKWASHER (83-22238)                 | DE" GALVAMZED LOCKWASHER (53-22239)                |                 | 9.300    |
| ANION            | 15 | 312501  | SW"-11 HOT DIPPED GALVANIZED NUT                     |                                                    | 0 129           | 9 800    |
| OCF              | 3  | 211833  | MID BRACE CONNECTION PLATE FOR 812 BID LEG ANGLES    | MID BRACE CONNECTION PLATE FOR \$12 BID LEG ANGLES |                 | 01 FF6   |
| SL               | 12 | 312193  | 7/8" GALVANIZED LOCKWASHER                           |                                                    | 0 050           | 0.804    |
| SH:              | 12 | 212216  | 78F-8 HOT DIPPED GALVANIZED HUT                      |                                                    | 0 300           | 3.600    |
| 58               | 12 | 172276  | 172275 7/8"-9 X 2-1/2" A-325 BOLT WITH 1-1/2" THREAD |                                                    | 1 230           | 14 760   |
|                  |    |         |                                                      | Total WI                                           | 9837 97 (b [310 | 4 46 kg) |



COPYRIGHT 2022

CPO BY DATE



US-KY-5135 FANCY FARM VB BTS II, LLC U 31 X 290°

SECTION U-31.0 (0' - 20' ELEVATION)

1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR

**STRUCTURES** 

| SAN    | SAN      | DESIGNED BY | APPROVED BY | 10/6/2022 |
|--------|----------|-------------|-------------|-----------|
| 21.314 | 197-11-1 | 100         | 1.00        | 10.0.00   |

**DESCRIPTION OF REVISIONS** 

REV

565090

ENG. FILE NO.

293706T

3 OF 17



|       |     |          | PARTS LIST                                          | 0.00            |           |
|-------|-----|----------|-----------------------------------------------------|-----------------|-----------|
| (TEM  | OTY | FART NO. | PART DESCRIPTION                                    | UNITWT          | NET WT    |
| GDL.  | 3   | 196960   | #12 LEG SECTION 2-14" LEG 1/7" BRACE THE B          | 1190 520        | 3301 546  |
| uo.   | - 1 | 285799   | U-26 UPPER ANGLE SMIGLE BOLT FOR 20-0"LONG TA       | 92.490          | 664 640   |
| LO    | - 4 | 265750   | U-20 LOWER ANGLE - SINGLE BOLT FOR 20'-0" LONG TA   | 99.730          | 598.340   |
| FD    |     | 285797   | U-SWLONG ANGLE - SINGLE BOLT FOR 20'-8" LONG TAP    | 198.570         | 1191.420  |
| RIE   | 24  | 312123   | SIS" GALVANIZED LOCKWASHER (53-22230)               | 0 020           | 0 480     |
| Ases  | 24  | 312501   | 58"-11 HOT OIPPED GALVANIZED NUT                    | 0 120           | 2.640     |
| AS    | 24  | 237850   | RING FILL SPACER SIT THICK I DAY HOLE               | 0.000           | 2 160     |
| MB    | 24  | 181495   | M8"-11 X 2 1M" A-325 BOLT 1 1M" THREAD              | V 260           | 8.240     |
| AB/CB | 75  | 461898   | 56"-11 X 2 14" A-325 BOLT # 14" THREAD              | #.200           | 3.900     |
| AL CL | 10  | 312128   | SAT GALVANIZED LOCKWASHER (53-22230)                | 0.020           | 0 300     |
| ANICH | 98  | 312601   | SM"-11 HOT CHPPED GALVANIZED NUT                    | 0 120           | 1.800     |
| DCP   | 3   | 211838   | MID SPLACE CONNECTION PLATE FOR \$12 BID LEG ANGLES | 20 500          | 81 770    |
| SL.   | 12  | 312193   | 78" GALVANIZED LOCKWASHER                           | ù 050           | 0.606     |
| \$N   | 92  | 312216   | 78"-9 HOT DIPPED BALVANIZED HUT                     | 4 300           | 3,400     |
| 88    | 12  | 172275   | 747-6 X 2-112" A-326 BOLT WITH 1-112" THREAD        | 1 230           | 14 760    |
| LCS   | 38  | 222016   | 1" 4 X AJA" A J25 BOLT WITH 1-34" THREAD            | 1 369           | 48 600    |
| LCF   | 38  | 312222   | 1" GALVANIZED FLAT WASHER (FASA)                    | 0.140           | 5.040     |
| LCL   | 3.0 | 312223   | 1" GALVANIZED LOCKWABNER                            | 0.000           | 2,000     |
| FCH   | 3.0 | 412804   | 1 4 HOT DIFFED GALVANIZED NUT                       | 0.430           | 16 480    |
|       |     |          | Te                                                  | 1017.07 lb (264 | 11.36 hg) |

NOTE: THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY. THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW. PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS.









(ON COL CO) COB)

LEG TO LEG CONNECTION

DETAIL A ANGLE INTERSECTION CONNECTION

DETAIL B END SIDE PLATE ANGLE CONNECTION

DETAIL C STITCH BOLT CONNECTION

COPYRIGHT 2022



**DESCRIPTION OF REVISIONS** CPD BY DATE US-KY-5135 FANCY FARM VB BTS II, LLC U 31 X 290"

SECTION U-29.0 (20' - 40' ELEVATION)

1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR

**STRUCTURES** 

ENG. FILE NO.

565090

293706T

4 OF 17

| REV      |             | CPD            | BY          | DAT |           |         |
|----------|-------------|----------------|-------------|-----|-----------|---------|
|          |             | REVISION HISTO | RY          |     |           |         |
| DRAWN BY | APPROVED BY | DESIGNED BY    | APPROVED BY |     | RELEAS    | SE DATE |
| SAN      | SAN         | JL.            | J_L         |     | 10/6/2022 |         |



|        |      |          | PARTS LIST                                         |           |                 |          |
|--------|------|----------|----------------------------------------------------|-----------|-----------------|----------|
| пен    | gry  | PART NO. | PART DESCRIPTION                                   |           | UNIT WT         | NET WT   |
| BOL    | 3    | 196880   | #12 LEG BECTION 2-14" LEG 1/2" BRACE 78"8          | -         | 1100 520        | 3301 540 |
| VØ-    |      | 285770   | U-27 UPPER ANGLE SINGLE BOLT FOR 20 0" LONG TA     |           | 87.960          | 525.300  |
| LD     |      | 286777   | U-27 LOWER ANGLE - SINGLE BOLT FOR 26'0" LONG TA   |           | 95.000          | 670 000  |
| FD     | 0    | 285776   | U-27 LONG ANGLE - SINGLE BOLT FOR 20'0" LONG TAP   | contacts. | 189,900         | 1133 340 |
| lat.   | 24   | 312123   | SIR" GALVANIZED LOCKWASHER (53-22230)              |           | 0.020           | 0.490    |
| NA .   | 24   | 312501   | SW'-11 HOT DIPPED GALVANIZED NUT                   |           | 8.120           | 2.680    |
| AS     | 24   | 237650   | RING FILL SPACER NOT THICK 1.040" HOLE             |           | 0.000           | 2.160    |
| MIS    | 24   | 161806   | SR"-11 X 2 14" A-325 BOLF 1 14" THREAD             |           | 6 260           | 6.240    |
| ABICE. | 1 15 | 101000   | SR"-11 X 2 1M" A-325 BOLT 1 1M" THREAD             |           | 0 200           | 3,990    |
| AL ICL | 16   | 312123   | SIE" GALVANIZED LOCKWASHER (\$3-22230)             |           | 0.029           | 0.300    |
| AN/CH  | 16   | 312501   | SAT 11 HOT DIPPED GALVANIZED HUT                   |           | 0.179           | 1.890    |
| DCP    | 3    | 211833   | MID BRACE CONNECTION PLATE FOR \$12 BYO LEG ANGLES |           | 20.500          | 61.770   |
| 8L     | 12   | 312193   | 7/8" GALVANIZEO LOCKWASHER                         |           | 0.050           | 0.000    |
| SM     | .12  | 312216   | FRE'4 HOT DIPPED GALVANIZED HUT                    |           | 9.300           | 3.600    |
| \$8    | 12   | 172278   | 78"-4 K 2-1/2" A-326 BOLT WITH 1-1/2" THREAD       |           | 1 230           | 14 740   |
| LCB    | 36   | 222016   | 1" 8 X 4-3H" A-325 BOLT WITH 1-3H" THREAD          |           | 1.380           | 49 800   |
| LCF    | 36   | 312222   | 1" GALVANIZED FLAT WASHER (F438)                   |           | 0.140           | 5.040    |
| LCL    | 36   | 312223   | 1" CALVANIZED LOCKWASHER                           |           | 0 080           | 2.800    |
| LCN    | 36   | 312504   | 1 - B HOT DIPPED GALVANIZED HUT                    |           | 0 430           | 18 490   |
|        |      |          |                                                    | Yotw Wt   | 6701 77 No [254 | 8.46 kg  |

NOTE: THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY. THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW. PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS.







DETAIL B END SIDE PLATE ANGLE CONNECTION



DETAIL C STITCH BOLT CONNECTION



LEG TO LEG CONNECTION (SIDE PLATES NOT SHOWN FOR CLARITY)



SITE

US-KY-5135 FANCY FARM VB BTS II, LLC U 31 X 290'

COPYRIGHT 2022

SECTION U-27.0 (40" - 60" ELEVATION)



1-877-457-4763 Plymouth, IN 1-800-547-2151 Salam, OR

**STRUCTURES** 

ENG. FILE NO.

565090

293706T

PAGE 5 OF 17

DRAWN BY SAN

REV

APPROVED BY SAN

DESCRIPTION OF REVISIONS

REVISION HISTORY DESIGNED BY

APPROVED BY

RELEASE DATE 10/6/2022

CPD BY DATE



|         |     |         | PARTS LIST                                         |            |                 |          |
|---------|-----|---------|----------------------------------------------------|------------|-----------------|----------|
| ITEM    | QTY | PART NO | PART DESCRIPTION                                   |            | UNIT WT         | HET WT   |
| BDL     | 3   | 195960  | #12 LEG SECTION 2-14" LEG -17" BRACE 74" B         | Same.      | 1100 820        | 2301 580 |
| VD      | 4   | 265757  | U-25 UPPER ANGLE BINGLE BOLT FOR 20"4" LONG TA     |            | 52.010          | 317.480  |
| LO      |     | 245754  | U-28 LOWER ANGLE - BINGLE BOLT FOR 20-0" LONG TA   |            | 87.860          | 347 180  |
| FO      | 6   | 285756  | U-25 LONG ANGLE - SINGLE BOLT FOR 20'-0" LONG TAP  |            | 114 830         | 586 960  |
| NAL.    | 24  | 312123  | SIR" GALVANIZED LOCKWASHER (63-22250)              |            | 0 020           | 0 480    |
| adde    | 24  | 312501  | ME"-11 HOT SIPPED GALVANIZED NUT                   |            | 0 120           | 2 880    |
| AS      | 24  | 237658  | RING FILL SPACER IN THICK 1.040" HOLE              |            | 0.090           | 2,180    |
| ANCE    | 24  | 181806  | SIGT 191 K 2 1M" A-328 BOLT 1 1M" THREAD           |            | 0.200           | E.240    |
| ABICB   | 15  | 161696  | 56"-11 X 2 14" A-325 BOLT 1 14" THREAD             |            | 0.260           | 3.900    |
| AL I CL | 16  | 317123  | SRT GALVANIZED LOCKWASHER (53-22230)               |            | 0.020           | 9.300    |
| AN CN   | 18  | 312501  | SRT 11 HOT DIPPED GALVANIZED NUT                   |            | 0 120           | 1,800    |
| DCP     | 3   | 211833  | MID BRACE CONNECTION PLATE FOR \$12 BYD LEG ANGLES |            | 20.500          | 81,770   |
| 8L      | 12  | 312103  | 78" GALVANIZED "OCKWASHER                          |            | 0.050           | 0.800    |
| SN      | 12  | 312216  | 78" @ HOT DIPPED GALVANIZED NUT                    |            | # 300           | 3.600    |
| 58      | 12  | 172276  | 78"-0 X 3-112" A-326 BOLT WITH 1-1/2" THREAD       |            | 1 230           | 14 790   |
| LCS     | 38  | 222016  | 1"-8 X 4-34" 4-325 BOLT WITH 1-34" THREAD          |            | 1,380           | 49.680   |
| LCF     | 30  | 312222  | 1" GALVANIZED FLAT WASHER (# 436)                  |            | 0 160           | 5.040    |
| rcr     | 3.0 | 312223  | 1 GALVANIZED LOCKWASHER                            |            | 0.000           | 2 880    |
| LCN     | 38  | 312504  | 1"-8 NOT DIPPED GALVANIZED NUT                     |            | 0.430           | 16 480   |
|         |     |         |                                                    | Total Wil. | 4826.73 lb (218 | 1 38 kg) |

NOTE: THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY. THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICYED BELOW PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS.



OREINT LEGS WITH PIN STAMP TOWARD BOTTOM OF SECTION

\* STITCH BOLT SPACING SHOWN IS MAX. FOR ALL ANGLES





OETAIL C STITCH BOLT CONNECTION



LEG TO LEG CONNECTION (SIDE PLATES NOT SHOWN FOR CLARITY)



SITE US-KY-5135 FANCY FARM VB BTS II, LLC U 31 X 290'

COPYRIGHT 2022

SECTION U-25.0 (60' - 80' ELEVATION)

1-877-467-4763 Phymouth, IN 1-800-547-2151 Salem, OR

**STRUCTURES** 

| EN | G, | F | LE | NO. |  |
|----|----|---|----|-----|--|
|    |    |   |    |     |  |
|    |    |   |    |     |  |

565090

293706T

6 OF 17

| REV      | DESCRIPTIO  | N OF REVISIONS |             | CPO | BY              | DATE |
|----------|-------------|----------------|-------------|-----|-----------------|------|
|          |             | REVISION HISTO | RY          |     |                 |      |
| ORAWN BY | APPROVED BY | DESIGNED BY    | APPROVED BY |     | RELEAS<br>10/6/ |      |

PROPRIET THE THOTE THE CONTROL OF THE PROPRIET ART INFORMATION OF VALMONT ON DESCRIPTION OF VALMONT ON DESCRIPTION OF VALMONT OF THE CONTROL OF THE CONTROL



|         |      |         | PARTS LIST                                        |           |                 |           |
|---------|------|---------|---------------------------------------------------|-----------|-----------------|-----------|
| IAEM    | OTY. | PART NO | PART DESCRIPTION                                  | 70        | UNIT WT         | NET WIT   |
| BOL     | 3    | vacaja  | #12 LEG SECTION - 2" LEG - 1/2" BRACE - 7/8" BOLT |           | 926 920         | 2760 760  |
| VD.     |      | 266733  | U-23 UPPER ANDLE - SINGLE BOLT FOR 20"-0" LONG TA |           | 49.920          | 299.620   |
| ro      |      | 265732  | U-23 LOWER ANGLE - SINGLE BOLT FOR 20"4" LONG TA  |           | 85.000          | 330 460   |
| FD      |      | 266731  | U-23 LONG ANGLE SINGLE BOLT FOR 20'-0"LONG TAP    |           | 100.040         | 454 340   |
| Mil     | 24   | 312123  | 5-6" DALVANIZED LOCKWASHER (\$3-22230)            |           | 0.020           | 0.480     |
| WH.     | 24   | 312501  | BET-11 HOT DIPPED GALVANIZED NUT                  |           | 0.126           | 2.880     |
| AS      | 24   | 237658  | RING FILL SPACER SIS" THICK 1.048" HOLE           |           | 0.090           | 2,160     |
| int     | 24   | 181898  | 88"-11 X 2 14" A-328 BOLY 1 14" THREAD            |           | 6.289           | 0 240     |
| ABICE   | 16   | 191895  | 58" 11 X 2 14" A-325 BOLT 1 14" THREAD            |           | 0.200           | 3.900     |
| AL CL   | 16   | 312123  | SHT GALVANIZED DCKWASHER (63-27239)               |           | 0 020           | 0.300     |
| AN / CN | 18   | 312501  | 54" (1 HOT DIPPED GALVANIZED NUT                  |           | 0.120           | 1.800     |
| DC#     | 3    | 211833  | MID BRACE CONNECTION PLATE FOR #12 BIG LEG ANGLES |           | 20 500          | 61 770    |
| 31_     | 12   | 312192  | 78" GALVANIZED LOCKWASHER                         |           | 0 060           | 4.800     |
| \$N     | 12   | 312216  | THE G HOT DIPPED GALVAINZED HUT                   |           | 0 300           | 3 600     |
| 28      | 12   | 172275  | 78"-9 X 2-1/2" A-326 BOLT WITH 1-1/2" THREAD      |           | 1 220           | 14 290    |
| LCB     | 34   | 222016  | 1"-8 X 4-344" A-325 BOLT WITH 1-3H" THREAD        |           | 1 380           | 49,600    |
| LCF     | 36   | 312222  | 1" GALVANIZED FLAT WASHER (F436)                  |           | 0 140           | B.D-00    |
| LCL     | 34   | 312223  | 1 GALVANIZED LOCKWASHER                           |           | 0 000           | 2.080     |
| LCH     | 3.6  | 317504  | 1"4 NOT DIPPED GALVANIZED NUT                     |           | 11.430          | 16.480    |
|         |      |         |                                                   | Total Wit | 4236.49 (b [192 | (3.49 kg) |

NOTE. THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY. THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS.



OREINT LEGS WITH PIN STAMP TOWARD BOTTOM OF SECTION

\* STITCH BOLT SPACING SHOWN IS MAX. FOR ALL ANGLES





END SIDE PLATE ANGLE CONNECTION



DETAIL C STITCH BOLT CONNECTION



LEG TO LEG CONNECTION (SIDE PLATES NOT SHOWN FOR CLARITY)



US-KY-5135 FANCY FARM VB BTS II, LLC U 31 X 290'

COPYRIGHT 2022

SECTION U-23.0 (80' - 100' ELEVATION)



1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR

**STRUCTURES** 

ENG. FILE NO.

565090

REVISION HISTORY APPROVED BY ORAWN BY SAN

REV

DESIGNED BY SAN

DESCRIPTION OF REVISIONS

APPROVED BY

RELEASE DATE 10/6/2022

CPO BY DATE

293706T



|         |      |          | PARTS LIST                                        |           |                 |           |
|---------|------|----------|---------------------------------------------------|-----------|-----------------|-----------|
| ITEM    | QTY  | PART NO. | PART DESCRIPTION                                  |           | TW TINU         | NET WT    |
| 800     | 3    | 195639   | HIZ LEG SECTION - 2" LEG - 172" BRACE - 78" BOLT  |           | 979 920         | 2790.740  |
| UD      | 4    | 268709   | U-21 WPPER ANGLE - SINGLE BOLT FOR 20:0" LONG TA  |           | 47 838          | 282 180   |
| 40      | 4    | 265798   | U-21 LOWER ANGLE BUIGLE BOLF FOR 28'-0"LONG TA    |           | 82.476          | 314.820   |
| FO      |      | 248707   | U.21 LONG ANGLE SINGLE BOLT FOR 20'4 LONG TAP     |           | 103,560         | 521 360   |
| MIL     | 21   | 312123   | BIS" DALVANIZED LOCKWASHER (53-22230)             |           | 0 076           | 6.420     |
| NAME .  | 21   | 312501   | 547-11 HOT DIPPED GALVANIZED NUT                  |           | 0 120           | 2.620     |
| AS      | . 21 | 237658   | HING FILL SPACER BAT THICK 1 048" HOLE            |           | 0.090           | 1.990     |
| ME      | 21   | 161696   | 845"-11 X 2 1M" A-326 SOLT 1 1M" THREAD           |           | 0.290           | 6.480     |
| ABICS   | 15   | 181898   | BR"-11 X 2 14" A-326 BOLT 1 1M" THREAD            |           | 0.200           | 3.900     |
| AL/CL   | 16   | 312123   | SM* GALVANIZED LOCKWASHER (53-22230)              |           | 0 020           | 0 300     |
| AN I ON | +6   | 312501   | SET-11 HOT DIPPED GALVANIZED NUT                  |           | 0.120           | 1,800     |
| DCP     | 3    | 211833   | MID BRACE CONNECTION PLATE FOR #12 BYD LEG ANGLES |           | 20,500          | 61 770    |
| SL      | 12   | 312105   | 78" GALVANIZED LOCKWASHER                         |           | 0.050           | 0.600     |
| SN      | 12   | 312218   | 78"-0 HOT GIPPED GALVANIZED NUT                   |           | 9.300           | 3,600     |
| 80      | 12   | 172275   | 787-8 X 2-112 A-328 BOLT WITH 1-112 THREAD        |           | 1:230           | 14 700    |
| LCB     | 34   | 222616   | 1"-8 X 4-3M" A-325 BOLT WITH 1-3M" THREAD         |           | 1 389           | 49 680    |
| LCF     | 36   | 312322   | 1" GALVANIZED FLAT WASHER (F434)                  |           | D 140           | \$.040    |
| LCL     | 38   | 512223   | 1" GALVANIZED LOCKWASHER                          |           | 0.000           | 2,980     |
| LCN     | 36   | 312604   | 1"-8 HOT DIPPED GALVANIZED NUT                    |           | 0.430           | 15.400    |
| -       |      |          |                                                   | Torse Wit | 4100.22 fb (186 | (2.86 kg) |

NOTE THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY. THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW. PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS

(SN)(SL)(38)



SAN

SAN









DETAIL B END SIDE PLATE ANGLE CONNECTION

CPD BY DATE

DETAIL C STITCH BOLT CONNECTION

SITE

COPYRIGHT 2022

LEG TO LEG CONNECTION (SIDE PLATES NOT SHOWN FOR CLARITY)

US-KY-5135 FANCY FARM VB BTS II, LLC U 31 X 290°

ENG. FILE NO.

SECTION U-21.0 (100' - 120' ELEVATION)

1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR

**STRUCTURES** 

DESCRIPTION OF REVISIONS REV REVISION HISTORY DRAWN BY

RELEASE DATE APPROVED BY DESIGNED BY APPROVED BY 10/6/2022

phomistary mote the data and technologs contained in this drawing are propretary information of valudon industries and doministry a trade secret. Any use on disclosure without the coment of yalkom! undustries in strictly provented.

565090

293706T

DREINT LEGS WITH PIN STAMP TOWARD BOTTOM OF SECTION ORIENT ANGLES WITH STAMPED ENG TOWARD TOP OF SECTION

"DIAGONAL ANGLESMUST BE INSTALLED WITH THE NON-BOLTED FACE UP. \* STITCH BOLT SPACING SHOWN IS MAX, FOR ALL ANGLES SEE LEG 19'-0" (\$.791 m) -

|         |     |         | PARTS LIST                                         |          |                 |          |
|---------|-----|---------|----------------------------------------------------|----------|-----------------|----------|
| ITEM    | QTY | PART NO | PART DESCRIPTION                                   |          | UMIT WT         | NET WT   |
| BDL     | 3   | 196437  | BIZLEG SECT -2" TO 1-34" TRAMS LEG 1/2" BRACE      | 1000     | 906 870         | 2720 810 |
| VO      |     | 265682  | U-19 UPPER ANGLE - SINGLE BOLT FOR 20'-9" LONG TA  |          | 44 280          | 295.840  |
| LD      |     | 205481  | U-IN LOWER ANGLE SINGLE BOLT FOR 29"-O" LONG TA    |          | 50 080          | 300.380  |
| FO      |     | 265600  | U-19 LONG ANGLE SHIGLE BOLT FOR 20"4" LONG TAP     | 10,000   | 98.380          | 800 200  |
| MIL     | 21  | 312123  | 58" GALVANIZED LOCKWASHER (\$3-27230)              |          | 0 020           | 0 420    |
| Sales   | 21  | 317501  | SIP-11 HOT DIPPED GALVANIZED BUT                   |          | 0 120           | 2.520    |
| AS      | 21  | 237656  | RING FILL SPACER SIG" THICK 1 049" HOLE            |          | 0.000           | 1.890    |
| MB      | 21  | 161805  | MET-11 K 2 1M A-325 BOLT 1 1M THREAD               |          | 0 260           | S 460    |
| AB/CIB  | 15  | 181886  | 587 11 K 2 14" A-325 BOLT 1 14" THREAD             | -        | 9 260           | 3.900    |
| AL CL   | 16  | 312123  | BIST GALVAINZED LOCKWASHER (83-22230)              |          | 0.020           | 9.300    |
| WH ) CH | 15  | 312801  | SAT-11 HOT CIPPED GALVANIZED NUT                   |          | 0.120           | 1,800    |
| DCF     | - 3 | 211833  | MID BRACE CONNECTION PLATE FOR \$12 BIO LEG ANGLES |          | 20,590          | 81 270   |
| 8L      | 12  | 392193  | 78" GALVANIZED LOCKWASHER                          |          | 0.950           | 0.600    |
| SH      | 12  | 312215  | TREA HOT OFFED GALVANIZED NUT                      |          | 0.300           | 3 600    |
| 58      | 12  | 172276  | 78 4 2-1/2 A-326 BOLT WITH 1-1/2 THREAD            |          | 1 230           | 14.780   |
| LCB     | 34  | 222510  | THE READ A 326 BOLT WITH 1-3M THREAD               |          | 1 380           | 49 800   |
| LGF     | .34 | 312222  | 1 GALVANIZED FLAT WASHER (F436)                    |          | 0 140           | 6.040    |
| LCL     | 34  | 312223  | 17 GALVANIZED LOCKWASHER                           |          | 8.080           | 2 860    |
| LCN     | 34  | 312504  | 1 - H HOT DIPPED GALVANIZED NUT                    |          | 0 430           | 16 400   |
|         |     |         |                                                    | Total Wt | 4046 P1 ID (183 | 7 33 kg) |

NOTE: THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY. THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW. PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS.



REV

SAN

DRAWN BY







(CO) (CO) (CO)

ANDREW ROSS

DETAIL 8 END SIDE PLATE ANGLE CONNECTION

CPO BY DATE

DETAIL C STITCH BOLT CONNECTION

SITE

LEG TO LEG CONNECTION
(SIDE PLATES NOT SHOWN FOR CLARITY)

US-KY-5135 FANCY FARM VB BTS II, LLC U 31 X 290'

SECTION U-19.0 (120' - 140' ELEVATION)

DESCRIPTION OF REVISIONS REVISION HISTORY

APPROVED BY APPROVED BY RELEASE DATE 10/6/2022 DESIGNED BY

PROPRIET THE ROPE
THE GRATA AND CONTRIBUTED BY THE DESIGNED ARE PROPRIET ARE INFORMATION OF VALIDATION OF VALIDATION OF THE DESIGNED ARE PROPRIET ARE INFORMATION OF VALIDATION OF VALIDATION OF THE CONSENT OF VALIDATION OF THE CONSENT OF VALIDATION OF VALIDATION OF THE CONSENT OF VALIDATION OF VA

ENG. FILE NO.

565090

DWG. NO

1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR **STRUCTURES** 

293706T

ORIENT LEGS WITH PIN STAMP
TOWARD BOTTON OF SECTION
ORIENT ARGLES WITH STAMPED
END TOWARD TOP OF SECTION
"DIAGONAL ANGLES MUST BE INSTALLED
WITH THE NON-BOLTED FACE UP, 7 IT
THIS MAY BE ON THE OPPOSITE SIDE OF THE
SIDE PLATE THAN WHAT IS SHOWN IN THE DETAIL.



NOTE. THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS.





|       |     |        | PARTS LIST                                       |           |                 |          |
|-------|-----|--------|--------------------------------------------------|-----------|-----------------|----------|
| IVEM  | DTY | PARTNO | PART DESCRIPTION                                 |           | UNIT WT         | HET WY   |
| BOL   | -3  | 195217 | #12 LEG SECTION 1-34" LEG 1/2" BRACE 1" BOL      |           | 746.710         | 2246 13  |
| ro    |     | 279264 | U-18 UPPER DIAGONAL 3" 4 3" 4 3/16" ANGLE (A\$72 |           | 89.430          | 416 59   |
| AS .  |     | 104291 | RING FILL SPACER 1/2" THICK 1.049" HOLE          |           | 0.070           | 0.42     |
| 1,004 | - 6 | 312902 | SM" 16 HOT DIPPED GALVANIZED NUT                 |           | 0.196           | 1,94     |
| ML    |     | 312153 | 3H" GALVANIZED LOCKWASHER                        |           | 0.036           | 0.18     |
| MIS   | 6   | 186427 | 3M"-10 X 3" A-3257 BOLY WITH FULL THREAD         |           | 0 470           | 2.82     |
| SL    | 24  | 312223 | 1" GALVANIZED LOCKWASHER                         |           | 0.000           | 1.92     |
| \$N   | 24  | 312304 | 1"-B HOT DIPPED GALVANIZED NUT                   | O. Ye     | 0.430           | 80 33    |
| 88    | 24  | 172266 | 1"-8 X 2-1H" A-325 BOLT WITH 1-3H" THREAD        |           | 0,840           | 20.10    |
| UD    |     | 126620 | U-18 LOWER DIAGONAL 3" x 3" x 3/16" ANGLE (A672  |           | 66 120          | 396 72   |
| LCS   | 16  | 222022 | 1-14"-7 % \$-12" A-325 BOLT WITH 2" THREAD       |           | 2 530           | 48.64    |
| LCF   | 18  | 312282 | 1-144" GALVANIZED FLAT WASHER (F438)             |           | 0 130           | 2.34     |
| LCL   | 18  | 312263 | 1.14 GALVANIZED LOCKWASHER                       |           | 0.150           | 2.70     |
| LOH   | 18  | 312807 | 1.1M". THOT DIPPED GALVANIZED HU?                |           | 0 730           | 12 14    |
|       | -   | -      |                                                  | Total Wit | 3154.11 (5 [143 | 1.99 40) |

NATHAW ROSS 35794

)|(

US-KY-5135 FANCY FARM VB BTS II, LLC U 31 X 290'

COPYRIGHT 2022

SECTION U-17.0 (140' - 160' ELEVATION)

valmont **₹** 

1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR STRUCTURES

PROPRIETARY NOTE
THE BATA AND TECHNIQUES DONTAINED IN THIS DRAWING AND PROPRIETARY INFORMATION OF VALIDIARY
INFORMATION AND CHARGE SCORE. ANY USE OF DISCLOSURE WITHOUT THIS CONSIGNED WAS SCORE. ANY USE OF DISCLOSURE WITHOUT THIS CONSIGNED WAS SCORE.

ENG. FILE NO.

565090

DWG. NO.

293706T

ORIENT LEGS WITH PIN STAMP TOWARD SOTTOM OF SECTION ORIENT ANGLES WITH STAMPED END TOWARD TOP OF SECTION

"DAGONAL ANGLES MUST BE INSTALLED WITH THE NON-BOLTED FACE UP. THE THIS MAY BE ON THE OPPOSITE SIDE OF THE SIDE PLATE THAN WHAT IS SHOWN IN THE DETAIL.



NOTE: THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW, PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS.





REV



DETAIL 8 MID SIDE PLATE ANGLE CONNECTION

CPD BY DATE



LEG TO LEG CONNECTION

| ITEM | DIA | PART NO | PART DESCRIPTION                                  |                         | UNIT WT         | NET WT   |
|------|-----|---------|---------------------------------------------------|-------------------------|-----------------|----------|
| BOL  | 3   | 195217  | #12 LEG SECTION - 1-34" LEG - 1/2" BRACE - 1" BOL |                         | 748.710         | 2240.130 |
| LO   | - 6 | 279250  | U-18 UPPER DIAGONAL - 2 1/2" × 2 1/2" × 1M" ANGLE |                         | 88.430          | 410 580  |
| AS   |     | 104291  | RING FILL SPACER 1/2" THICK 1 948" HOLE           |                         | 0 070           | 0 420    |
| MM   |     | 312802  | 34"-18 HOT DIPPED GALVANIZED NUT                  |                         | 0 180           | 1 140    |
| RAL. | 6   | 312163  | 34 GALVANIZED LOCKWASHER                          |                         | 0.030           | 0.480    |
| MS   | - 4 | 160427  | SHT-18 K 3" A-225T BOLT WITH FULL THREAD          | 1007                    | 0.470           | 2.820    |
| SL   | 24  | 312223  | 1" GALVANIZED LOCKWASHER                          | 1" GALVAMZED LOCKWASHER |                 | 1.020    |
| SN   | 24  | 212604  | 1-6 HOT DIPPED GALVANIZED NUT                     |                         | 0 430           | 19 320   |
| 35   | 24  | 172266  | 1"-8 X 2-114" A-325 BOLT WITH 1-34" THREAD        |                         | 0 840           | 20 190   |
| VO   | 4   | 279227  | U-14 LOWER GIAGONAL - 2 1/2" = 2 1/2" = 1M" ANCLE |                         | 66.000          | 390.000  |
| LCS  | 10  | 223022  | 1.44-TX 6-10" A-375 BOLT WITH T THREAD            |                         | 3.530           | 45 540   |
| LCF  | 18  | 312202  | 1-14" GALVANIZED FLAT WASHER (F436)               |                         | 0.130           | 7.340    |
| LCL  | 18  | 312283  | 1-1M GALVANIZED LOCKWASHER                        |                         | 0 150           | 2.700    |
| LCH  | 16  | 312507  | 1.4M-7 HOT DIPPED GALVANIZED NUT                  |                         | 0.730           | 13 140   |
|      |     |         |                                                   | Total WI                | 2141 29 10 [142 | 6.22 Ng) |

PARTS LIST



)[[ 0

US-KY-5135 FANCY FARM VB BTS II, LLC U 31 X 290"

COPYRIGHT 2022

SITE

DESCRIPTION

SECTION U-15.0 (160' - 180' ELEVATION)

valmont❤

1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR STRUCTURES

REVISION HISTORY CO

ORAWN BY APPROVED BY OSSIGNED BY APPROVED BY RELEASE DATE SAN SAN JL J\_L 10/6/2022

DESCRIPTION OF REVISIONS

priet fank mote Oat a man teomhouse contained in this drawing are proprietart information of valudint Us tries and combidered a trade becret " aft use or drec, obure inthout the combent of Mont industries 13 strict, projunted. ENG. FILE NO.

565090

20

293706T

PAGE 11 OF 17

ORIENT LEGS WITH PIN STAMP TOWARD BOTTOM OF SECTION ORIENT ANGLES WITH STAMPED END TOWARD TOP OF SECTION TO DIAGONAL ANGLES MUST BE INSTALLED WITH THE MON-BOLTED FACE UP. 71
THIS MAY BE ON THE OPPOSITE SIDE OF THE SIDE PLATE THAN WHAT IS SHOWN IN THE DETAIL.



NOTE: THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY. THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS.





DESCRIPTION OF REVISIONS

APPROVED BY

REVISION HISTORY

DESIGNED BY

REV

DRAWN BY

SAN



DETAIL B MID SIDE PLATE ANGLE CONNECTION

APPROVED BY



LEG TO LEG CONNECTION (SIDE PLATES NOT SHOWN FOR CLARITY)

|      |     |          | PARTS LIST                                         |          |                |          |
|------|-----|----------|----------------------------------------------------|----------|----------------|----------|
| rrem | DIX | PART NO. | PART DESCRIPTION                                   |          | UNIT WY        | NET WT   |
| BOL  | 3   | 195213   | #12 LEG #ECT - 1-344" TO 1-1/2" TRANS LEG - 1/2" 8 |          | 730 890        | 2218 670 |
| LO   |     | 279226   | U-14 UPPER DIAGONAL - 2 1/2" x 2 1/2" x 1M" ANGLE  |          | 61,680         | 370.000  |
| AS   |     | 104291   | RING FILL SPACER 1/2" THICK 1.040" HOLE            |          | 0.070          | 0.429    |
| MM   |     | 312602   | 3M"-10 HOT DIPPED GALVANIZED NUT                   |          | 0.190          | 1,140    |
| ML   |     | 312163   | 3M" GALVANIZEO LOCKWASHER                          |          | 0.030          | 9,180    |
| MS   |     | 190427   | 347-10 x 3" A-326T BOLT WITH FULL THREAD           |          | 0.470          | 2.820    |
| SL   | 24  | 312223   | 1" GALVANIZEO LOCKWASHER                           |          | 0.080          | 1.920    |
| 314  | 24  | 312504   | 1"-6 HOT DIPPED GALVANIZED NUT                     | _        | 0.430          | 16 320   |
| 98   | 24  | 172266   | 1"4 X 2-1M" A-325 BOLT WITH 1-3M" THREAD           |          | 0.940          | 20 180   |
| un   | 4   | 278671   | U-12 LOWER DIAGONAL 2 1/2" x 2 1/2" x 14" ANOLE    |          | 56.490         | 350 940  |
| LCB  | 18  | 222022   | 1.44-7 % \$-1/2" A-326 BOLT WITH 2" THREAD         | 3        | 2 530          | 48 540   |
| LGF  | 18  | 312282   | 1-144" GALVANIZED FLAT WASHER (F434)               |          | 0.130          | 2,340    |
| LCL  | 18. | 312263   | 1.1M* GALVANIZED LOCKWASHER                        |          | 0.760          | 2.700    |
| LON  | 16  | 312807   | 1.144-7 HOT DIPPED GALVANIZED MUT                  |          | 0 730          | 13 140   |
|      |     |          |                                                    | Total Wt | 3041 37 % [136 | 0.61 kg) |



DESCRIPTION

SECTION U-13.0 (180' - 200' ELEVATION)

1-877-467-4763 Phymouth, IN 1-800-547-2151 Salem, OR

**STRUCTURES** 

CPD BY DATE COPYRIGHT 2022

RELEASE DATE

10/6/2022

SITE

PROPRIETARY NOTE.

THE DATA AND TECHNOLIES EXHTANED IN THIS DRAWNIG ARE PROPRIETARY WITCHATION OF MAJEGINT MOUSTINGS AND COMMISSION OF MAJEGINT ANY USE ON DISOLOGUERY WITHOUT THE COMMENT OF YARDRIT INCRETINES IS STREETLY PROPRIETED.

US-KY-5135 FANCY FARM

VB BTS II, LLC U 31 X 290'

ENG. FILE NO.

565090

DWG. NO.

293706T

PAGE 12 OF 17

DRIENT LEGS WITH PIN STAMP TOWARD BOTTOM OF SECTION ORIENT ANGLES WITH STAMPED END TOWARD TOP OF SECTION TO DIAGONAL ANGLES MUST BE INSTALLED WITH THE MON-BOLTED FACE UP.
THIS MAY BE ON THE OPPOSITE SIDE OF THE SIDE PLATE THAN WHAT IS SHOWN IN THE DETAIL.

REV



NOTE: THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS.



DESCRIPTION OF REVISIONS



|      | -       |         | PARTS LIST                                         |           |                 |          |
|------|---------|---------|----------------------------------------------------|-----------|-----------------|----------|
| ITEM | DIX     | PART NO | PART DESCRIPTION                                   |           | UNIT WT         | MET WT   |
| BOL  | 3       | 194551  | #12 LEG SECTION 1-1/2" LEG - 1/2" BRACE - 1"BOL    |           | 802 830         | 1808 480 |
| LO   |         | 124801  | U-12 UPPER DIAGONAL - 2 1/2" x 2 1/2" x 3/16" ANGL |           | 42.250          | 253 500  |
| AS   | - 1 - 0 | 104291  | RING FILL SPACER 172" THICK I SHE" HOLE            |           | 0.070           | 0 420    |
| AMPA |         | 312002  | 3M" 16 HOT DIPPED GALVANIZED NUT                   |           | 0 190           | 1 140    |
| ML   | 1 - 6   | 312185  | 3H" GALVANIZED LOCKWASHER                          |           | 0 030           | 0,180    |
| MS   |         | 180427  | 3M" 10 X 3" A-326T BOLT WITH FULL THREAD           |           | 0 470           | 2.020    |
| 8L   | 24      | 312223  | 1" GALVANIZED LOCKWASHER                           |           | 6.080           | 1,920    |
| SM . | 24      | 312504  | 1"4 HOT DIFFED CALVANIZED HUT                      |           | 9 430           | 10 320   |
| 86   | 24      | 172286  | 1-6 K 2-1H" A 325 BOLT WITH 1-3M" THREAD           |           | 0.940           | 20.160   |
| UD.  |         | 126797  | U-10 LOWER GIAGONAL 2 1/2" + 2 1/2" + 3/18" ANGL   | - 35      | 40,670          | 240 420  |
| LOB  | 18      | 222018  | 1-6 x 4-34" A-326 BOLT WITH 1-34" THREAD           |           | 1.280           | 24 840   |
| LCF  | 18      | 312222  | 1- GALVANIZED FLAT WASHER (F438)                   | -         | 0 140           | 7 520    |
| LCL  | 16      | 312223  | 1" GALVANIZED LOCKWASHER                           |           | 9.080           | 9 440    |
| LON  | 18      | 312804  | 1"4 HOT DIPPED GALVANIZED HUT                      |           | 0.430           | 7.740    |
|      | _       |         |                                                    | Total Wil | 2376 R1 No T107 | 9 68 601 |



US-KY-5135 FANCY FARM VB BTS II, LLC U 31 X 290'

COPYRIGHT 2022

CPO BY DATE

SECTION U-11.0 (200' - 220' ELEVATION)

1-877-487-4763 Plymouth, IN 1-890-547-2151 Salem, OR

**STRUCTURES** 

REVISION HISTOR DWG NO. Proprietant note
The Gata and Technologis dontaned in this draming are proprietably information of Valuont
Incompress and considered a trads secret. Any life or directioning introduct the consent of
Valuotitions is a trigical propriet. ENG. FILE NO. RELEASE DATE 10/6/2022 APPROVED BY DESIGNED BY APPROVED BY 565090 293706T 13 OF 17 SAN SAN

DRIENT LEGS WITH PIN STAMP TOWARD SOTTOM OF SECTION ORIENT ANGLES WITH STAMPED END TOWARD TOP OF SECTION

"DIADONAL ANGLES MUST BE INSTALLED WITH THE HON-BOLTED FACE UP. "] 1 THIS MAY BE ON THE OPPOSITE SIDE OF THE SIDE PLAYETHAN WHAT IS SHOWN IN THE DETAIL.



|      | 1997 |         | PARTS LIST                                         |          |                 |          |
|------|------|---------|----------------------------------------------------|----------|-----------------|----------|
| ITEM | QTY  | PART NO | PART DESCRIPTION                                   |          | UNIT WT         | NET WT   |
| PLC  | 3    | 229377  | PIPE LEG SECTION 20:0" (CLIMBING) 6" SCH. 40 V-SE  |          | \$37.946        | 1613.820 |
| 519  | 45   | 226199  | STEP BOLT ASSY SWE-11 K F WILDCK WASHER HEAVY      |          | 1.100           | 52.800   |
| LO   |      | 284757  | V-9 L QWER CLIPPED ANGLE - 2 1/2" + 2 1/2" + 3/16" |          | 32.000          | 192.840  |
| MB   |      | 227680  | SHE'-11 X 2-1M" ASTET HOT DIPPED GALV BOLT (FULL   |          | 0 840           | 8.760    |
| AS.  |      | 293154  | RING FILL SPACER DIST THICK I GAS" HOLE            |          | 0 000           | 0 540    |
| MM   |      | 312501  | 64T-11 HOT DIPPED GALVANIZED NUT                   |          | 0 120           | 1 080    |
| ML   |      | 312123  | SAF GALVANIZED LOCKWASHER (53-22230)               |          | 0.020           | 0.180    |
| 3L   | 34   | 312183  | 3H" GALVANIZED - DCKWASHER                         |          | 0 030           | 1 0400   |
| SN.  | 36   | 312802  | 34" 10 HOT DIPPED GALVANIZED NUT                   |          | 0 190           | 8.840    |
| 58   | 3-6  | 227526  | 3M 10 X 2-1M A-3261 BOLT WITH FULL THREAD          |          | 6 429           | 18 120   |
| MO   |      | 284756  | V-8 MIG ANGLE -2 1/2" x 2 1/2" x 3/14" ANGLE (AST  |          | 30 530          | 183 186  |
| UD   |      | 204/16  | A-9 OLLER WHOTE - 3 :15, = 5 1/2, = 31/4, WHOTE (V |          | 28,900          | 179 400  |
| LCS  | 100  | 172272  | 1"-8 X 4-1M" A-328 BOLT WITH 1-3M" THREAD          |          | E 845           | 16 120   |
| LCF  | 18   | 112222  | 1" GALVANIZED SLAT WASHER (F436)                   |          | 0.140           | 2 520    |
| LCL  | 18   | 312773  | 1 GALVANIZED LOCKWASHER                            |          | 0.063           | 1.440    |
| LCN  | 18   | 312604  | 1"4 HOT DIPPED GALVANIZED NUT                      |          | 9.430           | 7 740    |
|      |      |         |                                                    | Total Wt | 2273 16 Ib (103 | 2 03 kg) |

NOTE: THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY. THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW. PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS.



DETAIL A ANGLE INTERSECTION CONNECTION

APPROVED BY

SAN

REV

DRAWN BY

SAN

DESCRIPTION OF REVISIONS

REVISION HISTORY

DESIGNED BY



DETAIL B END SIDE PLATE ANGLE CONNECTION

APPROVED BY

CPO BY DATE

RELEASE DATE

10/6/2022



DETAIL C MID SIDE PLATE ANGLE CONNECTION



STEP BOLT INSTALLATION



LEG TO LEG CONNECTION (SIDE PLATES NOT SHOWN FOR CLARITY)



SITE

US-KY-5135 FANCY FARM VB BTS II, LLC U 31 X 290'

COPYRIGHT 2022

PROPRIETARY NOTE
THE BATA MAD TE OPHICAGE CONTAMED IN THE DRAWING ARE PROPRIETARY INFORMATION OF VALUDATE
THE BATA MAD TE OPHICAGE CONTAMES IN THAT BROWNERS AND VIETOR OF ONCO, OURSE INTHOUT THE CONSENT OF
VALUDATINE AND THE STREET A TRACE SECONT ANY VIETOR ONCO, OURSE INTHOUT THE CONSENT OF
VALUDATINE AND THE STREET A TRACE SECONT.

SECTION V-9.0 (220' - 240' ELEVATION)



1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR

**STRUCTURES** 

ENG. FILE NO.

565090

DWG. NO 293706T

ORIENT LEGS WITH PIN STAMP TOWARD BOTTOM OF SECTION ORIENT ANGLES WITH STAMPED END TOWARD TOP OF SECTION "DIAGONAL ANGLES MUST BE INSTALLED WITH THE NON-BOLTED FACE UP. "] †
THIS MAY BE ON THE OPPOSITE SIDE OF THE SIDE PLATE THAN WHAT IS SHOWN IN THE DETAIL.



|      |     |          | PARTS LIST                                         |          |                 |         |
|------|-----|----------|----------------------------------------------------|----------|-----------------|---------|
| IVEN | QTY | PART NO. | PART DESCRIPTION                                   |          | UHIT WT         | NET WT  |
| PLC  | 1   | 226200   | PIPE LEG SECTION 20'4" (CLIMBING) 5" BCH. 40 V-SE  |          | 388.910         | 389 610 |
| MUI  | 2   | 226201   | MIPE LEG SECTION 20'-0" (NON-CLIMBING) IT SCH 40   |          | 386.250         | 772 400 |
| STP  | 10. | 226188   | STEP BOLT ASSY ME'-11 X F WILDCK WASHER HEAVY      |          | 1 100           | 17 800  |
| LO   | - 8 | 284733   | V-7 LOWER CLIPPED ANGLE - 2" x 2" x 3"16" ANGLE (A |          | 21.810          | 129.000 |
| 148  | 1   | 227580   | MET-11 X Z-1MT A376T HOT DIPPED GALV. BOLT (FULL   |          | 0 840           | 8.760   |
| A\$  |     | 293154   | RING FILL SPACER 38" THICK 1.048" HOLE             |          | 0 000           | 0 640   |
| MAI  |     | 312501   | 5/8*-11 HOT DIPPED GALVANIZED NUT                  |          | 0 120           | 1.080   |
| ARL  | 9   | 312123   | PM. CYTANYSED FOCKMYSHER (P2-55530)                |          | 0 020           | 9.100   |
| 8L   | 34  | 312163   | 3H" GALVANIZED LOCKWASHER                          |          | 0 636           | 1.040   |
| 804  | 36  | 312502   | 34"-10 HOT DIPPED GALVANIZED HUT                   |          | 0 180           | 4.840   |
| 88   | 34  | 227570   | 3MT-10 X 2-MT A-326T BOLT WITH FULL THREAD         |          | 0.420           | 15 130  |
| MD   |     | 284732   | V-7 MID ANGLE 2" = 2" + 3H 6" ANGLE JASTZ QR 60    |          | 20.440          | 122 640 |
| UD   | - 0 | 284731   | V-7 UPPER ANGLE 2" 17" INT ANGLE (ASTE GR          |          | 19.370          | 116 229 |
| LCS  | 24  | 227648   | SM"-10 K 3-1/2" A-326T BOLT WITH FULL THREAD       |          | 0 640           | 12 860  |
| LCF  | 24  | 312152   | 3M" GALVAMIZED FLAT WASHER (F430)                  |          | 0.000           | 1.829   |
| LGL  | 24  | 312153   | 34" GALVANIZED LOCKWASHER                          |          | 0.030           | 0.720   |
| LCH  | 24  | 312602   | 24" 18 HOT DIPPED GALVANIZED NUT                   |          | 0.190           | 4 560   |
|      |     |          |                                                    | Total Wt | 1666 30 fb (725 | 60 40)  |

NOTE. THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS.







DETAIL B END SIDE PLATE ANGLE CONNECTION



DETAIL C MID SIDE PLATE ANGLE CONNECTION



STEP BOLT INSTALLATION



LEG TO LEG CONNECTION (SIDE PLATES NOT SHOWN FOR CLARITY)



SITE

US-KY-5135 FANCY FARM VB BTS II, LLC U 31 X 290

COPYRIGHT 2022

DESCRIPTION

SECTION V-7.0 (240' - 260' ELEVATION)



1-877-467-4763 Phymouth, IN 1-800-547-2151 Salem, OR

**STRUCTURES** 

DESCRIPTION OF REVISIONS CPD BY DATE REVISION HISTORY

REV RELEASE DATE APPROVED BY DESIGNED BY APPROVED BY 10/6/2022 SAN SAN

PROPRIETARY MOTE
THE DATA AND TECHNOLOGIS CONTANIED IN THIS DRAINING ARE PROPRIETARY INFORMATION OF VALIDATE
THE DATA AND TECHNOLOGIS OF TRACE SECRET. ANY USE OF DISCLOSURE WITHOUT THE CONCENT OF
VALIDATE MODULITIES IS \$170°C To PROPRIETED.

ENG. FILE NO.

565090

293706T

DRIENT LEGS WITH PIN STAMP TOWARD BOTTOM OF SECTION

ORIENT ANGLES WITH STAMPED END TOWARD TOP OF SECTION

"DIAGONAL ANGLES MUST BE INSTALLED WITH THE NON-BOLTED FACE UP. "] †
THIS MAY BE ON THE OPPOSITE SIDE OF THE SIDE PLATE THAN WHAT IS SHOWN IN THE DETAIL.



|      |     |        | PARTS LIST                                         |             |                 |         |
|------|-----|--------|----------------------------------------------------|-------------|-----------------|---------|
| ITEM | OTY | PARTNO | PART DESCRIPTION                                   |             | UNITWI          | NETWY   |
| PLC  | 1   | 226164 | PIPE LEG SECTION 29'4" (CLIMBING) 4" BCH. 40 V-BE  |             | 302.000         | 302 000 |
| PLN  | 2   | 226186 | PIPE LEG SECTION 20"-0" (NON-CLIMBING) 4" 8CH. 40  |             | 284 870         | 869 340 |
| STP  | 16  | 226199 | STEP BOLT ASSY SIET-11 X 7" WI LOCK WASHER HEAVY   |             | 1 100           | 17 800  |
| FO   | 18  | 286012 | V-8 DIAGONAL ANGLE - 2 172" + 2 172" + 3198" ANGLE |             | 24.300          | 437 400 |
| tet. |     | 312123 | BIF GALVAINZED LOCKWASHER (85-22236)               |             | 8.020           | 0.180   |
| AS.  |     | 116467 | RING FILL SPACER IN-THICK I GHE DIA HOLE           |             | 0 250           | 2,280   |
| 688  | 9   | 227580 | SIST-11 X 2-144" A325T HOT DIPPED GALV. BOLT (FULL |             | 0 640           | 6.700   |
| NIN  | 9   | 312501 | SAT-11 HOT DIPPED GALVANIZED NUT                   |             | 0.120           | 9.000   |
| 3L   | 34  | 312183 | SH" GALVANIZED LOCKWASHER                          |             | 0.030           | 1.000   |
| 8N   | 38  | 312602 | 3M"-10 HOT DIPPED GALVANIZED NUT                   |             | 0.190           | 6,840   |
| 88   | 36  | 227579 | 3MT-16 X 3-1MT A-32ST BOLT WITH FULL THREAD        |             | 0 420           | 18 120  |
| LCB  | 10  | 227800 | 34"-10 X 3-1/2" A-328T BOLT WITH FULL THREAD       |             | 0.540           | 1.720   |
| LCF  | 18  | 312152 | 34" GALVANIZEO FLAT WASHER (F436)                  |             | 0.060           | 1.440   |
| LCL  | 18  | 312153 | 3M" GALVANIZED LOCKWASHER                          |             | 0.030           | 0.540   |
| LON  | 18  | 312802 | 2M-10 HOT SIPPED GALVANIZED NUT                    |             | 0.190           | 3.420   |
|      |     |        |                                                    | Yorkel Wit- | 1373 88 lb [423 | 74 kg)  |

NOTE: THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY. THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS.



DETAIL A ANGLE INTERSECTION CONNECTION



DETAIL B END SIDE PLATE ANGLE CONNECTION



DETAIL C MID SIDE PLATE ANGLE CONNECTION



STEP BOLT INSTALLATION



LEG TO LEG CONNECTION (SIDE PLATES NOT SHOWN FOR CLARITY)



SITE

US-KY-5135 FANCY FARM VB BTS II, LLC U 31 X 290'

COPYRIGHT 2022

SECTION V-5.0 (260' - 280' ELEVATION)



1-877-487-4763 Plymouth, IN 1-800-547-2151 Salem, OR

**STRUCTURES** 

ENG. FILE NO.

565090

DWG NO 293706T

16 OF 17

| REV | DESCRIPTION OF REVISIONS | CPO | BY | DATE |
|-----|--------------------------|-----|----|------|
|     | REVISION HISTORY         |     |    |      |

APPROVED BY SAN SAN

DESIGNED BY

APPROVED BY

RELEASE DATE 10/6/2022

PROPRIETARY NOTE
THE GOTAL HARD TECHNIQUES CONTAMED ON THIS DISAMHOU AND PROPRIETARY INFORMATION OF VALUEDING
THE GOTAL HARD TECHNIQUES OF TRAINS SECRET. WHY UPE OR DISACLOSURE OF THOUT THE CONSECUT OF
VALUEDIN THE GOTAL THE STREET, A TRICKING TECHNIQUES.

THE GOTAL THE GOTAL THE STREET, A TRICKING TECHNIQUES.

ORIENT LEGS WITH PIN STAMP TOWARD BOTTOM OF SECTION

INSTALL ANGLES WITH STAMPED END TOWARD TOP OF SECTION

"Diagonal angles must be installed with the non-bouted face up. To this may be on the opposite side of the side plate than what is shown in the detail.



|      |     |          | PARTS LIST                                         |          |                |         |
|------|-----|----------|----------------------------------------------------|----------|----------------|---------|
| 17EM | QTY | PART NO. | PART DESCRIPTION                                   |          | UAIT WT        | NET WT  |
| PLC  | - 1 | 226172   | PIPE LEG BECTION 10'40" (CLIMBING) 2 1/2" BCH 40   |          | 108.330        | 196 330 |
| PLN  | 2   | 226173   | PIPE LEG BECTION 10'-0" (NON-CLIMBING) 2 1/2" SCH  |          | 106.650        | 213 300 |
| 210  |     | 226188   | STEP BOLT ASSY SWITTE T WILDCK WASHER HEAVY        |          | 9 900          | 8 800   |
| FD   | 12  | 286900   | V-6 DIADONAL ANGLE - 2" x 2" x 1/8" ANGLE (AS72 GR |          | 10.820         | 129 540 |
| ML   | - X | 212123   | SAP" GALVANIZED LOCKWASHER (\$3-22730)             |          | 0.020          | 0 120   |
| A5   | - 6 | 116467   | RING FRE SPACER 14" THICK 1 B48" DIA HOLE          |          | 0 250          | 1.500   |
| MB   | - 6 | 227589   | SIT-11 X 2-1H" A328T HOT DIPPED GALV BOLT (FULL    |          | 0.640          | 3.840   |
| 4000 | 4   | 312801   | 847-41 HOT DIPPED GALVANIZED NUT                   |          | 0.129          | 0.720   |
| \$L  | 24  | 312183   | 344" GALVANIZED LOCKWASHER                         |          | 0.036          | 0.720   |
| SN   | 24  | 212502   | 3H*46 HOT DIPPED GALVANIZED NUT                    |          | 8.196          | 4.500   |
| 86   | 24  | 227676   | 3M"-10 X 2-1M" A-326T BOLT WITH FULL THREAD        |          | 0.420          | 10 000  |
| UH   | 3   | 206974   | V-5 HORIZONTAL ANGLE (TYPE 1) 2" ± 3" = 141" ANG   |          | 21,600         | 64 500  |
| LCB  | 12  | 227868   | 34"-10 X 3-1/2" A-328T BOLT WITH FULL THREAD       |          | 9.540          | 8,480   |
| LOF  | 12  | 312152   | BA" GALVANIZED FLAT WASHER (F438)                  |          | 0 000          | 0.940   |
| rcr  | 12  | 312153   | 3M* GALVANIZED LOCKWASHER                          |          | 0.030          | 0.340   |
| LCN  | 12  | 312502   | 34"-10 HOT DIPPED GALVANIZED NUT                   |          | D 100          | 2.286   |
| -    |     |          |                                                    | Total Wt | 454 26 to 1252 | fit to) |

ANDREW

ROSS

NOTE: THE VIEWS SHOWN BELOW ARE FOR PART IDENTIFICATION ONLY. THE ACTUAL PART STYLE MAY VARY FROM WHAT IS DEPICTED BELOW. PLEASE SEE ASSEMBLY INFORMATION IN THE UPPER LEFT CORNER FOR FURTHER INSTALLATION INSTRUCTIONS.







OFFAIL B END SIDE PLATE ANGLE CONNECTION



DETAIL C MID SIDE PLATE ANGLE CONNECTION



DETAIL D

UPPER HORIZONTAL ANGLE CONNECTION



STEP BOLT INSTALLATION



LEG TO LEG CONNECTION (SIDE PLATES NOT SHOWN FOR CLARITY)

SITE

US-KY-5135 FANCY FARM VB BTS II, LLC U 31 X 290'

COPYRIGHT 2022

SECTION V-5.0 (280' - 290' ELEVATION)



1-877-467-4763 Plymouth, IN 1-800-547-2151 Salem, OR

**STRUCTURES** 

ENG. FILE NO.

565090

293706T

PAGE

REV DRAWN BY SAN

APPROVED BY SAN

DESIGNED BY

DESCRIPTION OF REVISIONS

REVISION HISTORY

APPROVED BY

CPD BY OATE

RELEASE DATE 10/6/2022





### **UNIT BASE FOUNDATION SUMMARY**

## VB BTS II, LLC US-KY-5135 Fancy Farm

V- 31.0 A- 565090 290

V 4.5

| undation Dimen                  | The same of the same of | -  |
|---------------------------------|-------------------------|----|
| rau wout, w.                    | 37.50                   | ft |
| Depth, D:                       | 7.00                    | ft |
| Ext. above grade, E:            | 0.50                    | ft |
| Pier diameter, d <sub>i</sub> : | 3.00                    | ft |
| Pad thickness, T:               | 1.75                    | ft |
| Depth neglected, N:             | 7.00                    | ft |
| Volume, Vo:                     | 95.66                   | cy |

| pad rebar qty., mp:     | 42 | bers*          |
|-------------------------|----|----------------|
| size, s p:              | 8  |                |
| pier vertical qty, m_c: | 15 | verticals/pier |
| size, <b>s</b> _c:      | 8  | 2.5' cage      |
| pler tie qty., m_t      | 14 | ties/pier      |
| size, S ;               | 4  | default hool   |

<sup>\*</sup>Reber to be equally speced, both ways, top & bottom, for a

Soil Information Per: POD, Project No. 20-64965, Dated: March 23, 2022

| Soil unit weight, Y:             | 110   | pcf     |
|----------------------------------|-------|---------|
| Ultimate Bearing, B <sub>c</sub> | 7.000 | ksf     |
| Cohesion, Ca.                    | 1,000 | kel     |
| Frietten angle: F                | 0.0   | degree: |
| Ult. Passive P., Pp:             | 0.396 | pcf     |
| Base sliding, µ.                 | 0.30  |         |
| Seismic Design Cat.:             | D     |         |
| Water at:                        | none  | ft      |

| Anchor Steel Sele | ction  |                            |
|-------------------|--------|----------------------------|
| Part Number, P/N: | 262357 | Dta = 1.75<br>Length = 60° |

| Material Properties    | Material Properties |     |  |  |  |  |
|------------------------|---------------------|-----|--|--|--|--|
| Steel tensile str. Fy. | 60000               | psi |  |  |  |  |
| Conc. Comp str. F'c.   | 4500                | psi |  |  |  |  |
| Conc. Density, δ:      | 150                 | pcf |  |  |  |  |
| Clear cover, cc        | 3.00                | in  |  |  |  |  |

| Backfill Compaction | วก   |      |
|---------------------|------|------|
| Lift thickness:     | 8    | In   |
| Compaction:         | 95   | %    |
| Standard Proctor:   | ASTM | D698 |

# Tower design conforms to the following:

- \* International Building Code (IBC)
- ANSI TIA-222-G
- \*Building Code Requirements for Reinforced Concrete (ACI 318-14)

Note: The centroid of the tower is offset from the centroid of the foundation

| oundation Loadi      | ng       |             |          |          |         |
|----------------------|----------|-------------|----------|----------|---------|
|                      |          | strass rati | o: 98,6% | mark up. | 1.4%    |
| Shear (Per Leg), Si: | 47.00    | kips        | x 1.01 = | 47.66    | kips    |
| Shear (total), 5:    | 71.00    | kips        | x 1.01 = | 71.99    | kips    |
| Moment, M:           | 12978.00 | ft-kips     | x 1.01 = | 13159.69 | ft-kips |
| Compression/Leg, C:  | 513.00   | kips        | x 1.01 = | 520.18   | kips    |
| Uplift/Leg, U:       | 445.00   | kips        | x 1.01 = | 451.23   | kips    |
| Tower Weight, W.:    | 90.00    | kips        | =        | 90.00    | kips    |



# NATHAN ANDREW ROSS 35794 Digitally signed by Nathan A Ross Date: 2022-10-06 09:31-07:00

# Additional Notes:

- \* No foundation modifications listed.
- \* See attached "Foundation Notes" for further information.

# **FOUNDATION NOTES**

- 1 THE ON-SITE GEOTECHNICAL ENGINEER SHALL CONFIRM THAT THE INSITU SOIL STRENGTHS MEET OR EXCEED THOSE PARAMETERS GIVEN IN THE SOIL REPORT.
- 2 SEE GEOTECHNICAL REPORT FOR ADDITIONAL CONSTRUCTION RECOMMENDATIONS, BACKFILL COMPACTION DETAIL, SUBGRADE PREPARATION, ETC.

# UNIT BASE FOUNDATION (DL - 1.2) V- 31.0 A- 565090

# VB BTS II, LLC US-KY-5135 Fancy Farm

290

V 4.7

Reactions stress ratio 98.6% mark up: 1,4% x 1.01 × 47.66 kips Shear (Per Leg), S; 47.00 kips Shear (total), S. 71.00 kips 71.99 kips x 1.01 = Moment, M: 12978.00 ft-kips × 1.01 \* 13159.69 ft-kips Compression / leg, C: 513.00 kips 520.18 kips x 1.01 = x 1.01 = 451.23 kips Uplat/leg, U. 445.00 kips

Soil per: POD, Project No. 20-64965, Dated: March 23, 2022



| Uplift / log, U. 445.00<br>Tower weight, W <sub>2</sub> : 90.00   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                          | 18       |                 | 23     |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------|----------|-----------------|--------|
| TOWN WASHE WY GO.OU                                               | Kips 2 80.00 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ps                                |                          | Ung 2    |                 | O (et) |
| 0.042 30.05                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                          |          |                 |        |
| Physical Parameters:                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in the second second              | 440                      |          | 150             |        |
| Concrete volume:                                                  | V = T * W2 + 3 * (di2 / 4 * 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r)*(D+E-T)                        | V =                      | 95.7     | су              |        |
| Concrete weight.                                                  | W <sub>c</sub> = V * 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ***                               | W <sub>c</sub> =         | 387.4    | kips            |        |
| Soil weight                                                       | W <sub>a</sub> = (D - T) * (Wz - 3 * (d)z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /4-π))-γ                          | W <sub>1</sub> =         | 799.9    | kips            |        |
| Total weight                                                      | P = Wc + Ws + Wl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   | P=                       | 1277.29  | kips            |        |
| Passive Pressure:                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                          |          |                 |        |
| Pp coefficient:                                                   | $K_p = TAN(45 + \phi/2)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | K <sub>p</sub> =         | 1.000    |                 |        |
|                                                                   | Ppn = Kp * y * N + 2 * Co * 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2017                              | P <sub>on</sub> =        | 2.770    | ksf             |        |
|                                                                   | $P_{pt} = Kp * y * (D - T) + 2 * C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | P <sub>pt</sub> =        | 2,578    | ksf             |        |
|                                                                   | Ppb = Kp * y * D + 2 * Co * 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | P <sub>pb</sub> =        | 2.770    | ksf             |        |
|                                                                   | P <sub>ptop</sub> = IF(N < (D - T), Ppt, Pp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n)                                | P <sub>picp</sub> =      | 2.8      | ksf             |        |
|                                                                   | Pp' = (Pptop + Ppb) / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   | Pp' =                    | 2.770    | ksf             |        |
| Shear area.                                                       | T <sub>pp</sub> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | T <sub>pp</sub> =        | 0.0      | ft              |        |
|                                                                   | App = Tpp * W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | A <sub>pp</sub> =        | 0.00     | ft <sup>2</sup> |        |
| Shear Capacity:                                                   | $S_{achie} = (Pp' * App + \mu * P) * \varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | S <sub>ached</sub> =     | 287.391  | kips            |        |
| φr ≈ 0.75                                                         | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S <sub>actual</sub> = 287,39 kips | >= S=                    | 71.99    | kips            | OK     |
| Overturning Moment Resistance                                     | and Too.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                          |          |                 |        |
| W1 of soil wedge:                                                 | W = D * (D * TAN(q)) /2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W · v                             | W <sub>mv</sub> =        | 0.0      | kips            |        |
| Dist. from leg to edge:                                           | O = (W - 0.866 ° W) / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 1                               | 0=                       | 5.327    | ft              |        |
| Additional offset of WL                                           | O. = W/2 - (1/3 ° 0.866 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | w+0)                              | 0,=                      | 4.474    | ft              |        |
| Resisting moments                                                 | M <sub>ref</sub> = P * W / 2 - Wl * Oa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | M <sub>red</sub> =       | 23546.57 | ft-kips         |        |
|                                                                   | M <sub>m</sub> = Pp' ' App ' (D - N) / 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | M <sub>ro</sub> =        | 0.00     | ft-kips         |        |
|                                                                   | Mrow = Wsw * (W + D * TAN(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | M <sub>raw</sub> =       | 0.00     | ft-kips         |        |
| Total resisting:                                                  | M <sub>rt</sub> = (Mrwt + Mrp + Mrsw)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                | M <sub>r1</sub> =        | 17659.92 | ft-kips         |        |
| φr = 0.75                                                         | ing - (mar , mp , mon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ψ'                                | 11/41                    | 11000,02 | пчоро           |        |
| Total overturning                                                 | Mo = M + S * (D + E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | M <sub>o</sub> =         | 13699.65 | ft-kips         |        |
|                                                                   | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M <sub>n</sub> = 17659.92 ft-kips | >= M <sub>o</sub> =      | 13699.65 | ft-kips         | OK     |
| Bearing Resistance due to Press                                   | sure Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                          |          |                 |        |
| Area of met                                                       | area = W²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | area =                   | 1406.3   | R2              |        |
| Section modulus                                                   | SM = W3 / 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   | SM =                     | 8789.1   | R <sup>3</sup>  |        |
| Fectored total weight                                             | P' = (W(/1.2 + Wc + Ws)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *1.2                              | P'=                      | 1514.8   | kip             |        |
| Pressure exerted:                                                 | P <sub>soa</sub> = P' / area + Mo / SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | P <sub>mer</sub> =       | 2.636    | ksf             |        |
|                                                                   | Pneg = P' / area - Mo / SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | P <sub>min</sub> =       | -0.482   | ksf             |        |
| Note: The                                                         | stress resultant is NOT within the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kern. Bearing area has been ad    | -                        |          |                 |        |
| Load accentricity:                                                | e <sub>c</sub> = Mo / P'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | e <sub>0</sub> =         | 9.04     | A               |        |
| in Parallel Direction                                             | Pad = 2 * P' / (3 * W * (W / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - ec))                            | P <sub>ed</sub> =        | 2.8      | ksf             |        |
| in Diagonal Direction                                             | Pad_day see Diegonal Bearing Sheet (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | Pad day =                | 3.7      | ksf             |        |
| Adj. applied pressure:                                            | q <sub>a</sub> = iF(Pneg >= 0, Ppos, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | q. =                     | 2.775    | ksf             | _      |
| Overburden Pressure: (fectored)                                   | q <sub>obe</sub> = NA- Gross Bearing Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 Y                              | Q <sub>obe</sub> =       | 0.000    | ksf             |        |
| gy = 0.75                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | qa - q <sub>obp</sub> = 2.775 ksf | <= B <sub>c</sub> * φr = | 5.250    | ksf             | OK     |
| Concrete Shear Strength:<br>Une way beam action at d , from tower |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                          |          |                 |        |
| Effective depth:                                                  | d <sub>c</sub> = T -cc -db_p/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | d <sub>e</sub> =         | 17.500   | in              |        |
| Distance from edge of pad to<br>per face                          | d' = 0 - di / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | ď =                      | 3.827    | n               |        |
| Chillance from edge of ped to do                                  | d" = d' - dc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | d* =                     | 2.389    | ft              |        |
| Bearing Pressure Slop                                             | q, = qa / Weff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | q,=                      | 0.095    | kcf             |        |
| Required shear:                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /2 )]"d""W - [1.2"(D - T)"Y"d""W] | V <sub>a1</sub> =        | 174.87   | klps            |        |
| Available shear                                                   | V <sub>c1</sub> = 0s * 2 * \( \( \frac{1}{2} \) \( \frac{1} \) \( \frac{1} \) \( \frac{1}{2} \) \( \frac{1}{2} \ |                                   | V <sub>c1</sub> =        | 792.41   | kips            |        |
| [ACI 22 5 5 1] φs = 0.76 [ACI                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                 | ▼c1 <sup>-</sup>         | 192.41   | nipo            |        |
|                                                                   | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V <sub>c1</sub> = 792.41 kips     | >= V <sub>n1</sub> =     | 174.87   | kips            | OK     |

| Eq. S                 | Quare Column (ACI 8.10.1.3 &               | d add to d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | dan-                     | 21.00          | in                                      |             |
|-----------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|--------------------------|----------------|-----------------------------------------|-------------|
|                       | 22.6.4.1.2) Mat effective width in bearing | d <sub>eq</sub> =di / 2 ° vt<br>W <sub>eff</sub> = Min (W,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | deq =                    | 31.90<br>29.12 | in<br>R                                 |             |
| -                     |                                            | The second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |                          | 1,00           | R                                       |             |
| Hane o                | I long side to short side of Pier  Length  | $b_1 = dc/2 + \epsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lane or round                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | β =<br>b <sub>1</sub> =  | 63.70          | in                                      |             |
|                       | Vidin:                                     | b <sub>2</sub> = (dc + de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STATE OF THE PARTY OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | THE RESERVE          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | b <sub>2</sub> =         | 88.62          | in                                      |             |
| Critical              | Perimeter:                                 | b <sub>0</sub> = b1 + b2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g . se - on to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0) WIJI Z            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | b <sub>o</sub> =         | 152.32         | in                                      |             |
| Section               |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | / . / / . / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2. 1 62 0            | of a l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |             | C=                       | 13.320         | ft                                      |             |
|                       | Centrold  Eccentricity:                    | e <sub>c</sub> = (deq + d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b1/2)/(b1°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00+02                | uc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | _           |                          | 13.320         |                                         |             |
|                       | Poler MOI                                  | J <sub>c</sub> = [(dc * b1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | And the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * dens / 12          | ) + (h1 * /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | le * (h1 /2 - r    | 1A21 + (h1  |                          | 1.063E+06      |                                         |             |
| Moment                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 7 (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o inita            | 1) 2] . (0) |                          |                |                                         |             |
| Fraction<br>ansierred | flexure:<br>eccentricity                   | Y <sub>1</sub> = 1 / (1 + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13°4 (b1/b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2))                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | ٧,=                      | 0.64           |                                         |             |
| by by                 | of shear                                   | $y_v = 1 - yf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | Y <sub>v</sub> =         | 0.36           |                                         |             |
| Bearing I             | Pressure Slope.                            | q <sub>e</sub> = qa / Wef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | q <sub>s</sub> =         | 0.095          | kcf                                     |             |
| verage Be             | saring Pressure:                           | Qapt = ((Weff -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01) 1 qs + qa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | Qapi=                    | 2.522          | ksf                                     |             |
| Shear F               | orce at Section:                           | V <sub>n pw</sub> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | V <sub>n_pier</sub> =    | 421.326        | kips                                    |             |
|                       | Slab Moment                                | Mec = SI * (D -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T + E) + Vn_p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ier * e              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | M <sub>ac</sub> =        | 673.66         | ft-kips                                 |             |
|                       | Required shear gs = 0.75                   | ACI 21 Z II = (Vn. pier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / b0 * dc) + (v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | v * Msc* o           | / Jc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |             |                          | 194.62         | psi                                     |             |
|                       |                                            | C(22.6.5.2) = gs * MII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Name and Address of the Owner, where the Parket of the Owner, where the Parket of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, which  |                      | THE RESERVE OF THE PARTY OF THE | 2+(as*dc/bo))      | *A* \(Fc))  |                          | 201.246        | psi                                     |             |
|                       |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | 201.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | >=          | V <sub>n2</sub> =        | 194.62         | psi                                     | OK          |
| Mor                   | ment transfered:                           | W. saanna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |                          |                | *************************************** |             |
| 2.2                   | (Pier 1)                                   | M <sub>n1</sub> = yf * Msc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F 6 T 4 8 8 10 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CAT DA               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | News               | 2.1         | M <sub>nt</sub> =        | 311.643        | ft-kips                                 |             |
| E Mectr               | ve Beam Width:                             | W <sub>eff1</sub> = deq + 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 · ι , (W           | - w 511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (ton) - aed )      | 2)          | W <sub>eff1</sub> =      | 7.909          | ft<br>in <sup>2</sup>                   | -           |
|                       |                                            | A <sub>M_P1</sub> ' = Mn1 / (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | undf41               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | Adpi =                   | 3.957          |                                         |             |
| -                     | ALL STREET                                 | $a_{p1} = Ast_p1'$ $A_{st_p,st_p} = Mn1/(F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | a <sub>p1</sub> =        | 0.674          | in<br>in <sup>2</sup>                   |             |
|                       | Required steel:                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2))                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | A <sub>60,p,611</sub> =  | 3.632          | in <sup>2</sup>                         |             |
|                       | nel in entire mat:<br>ment transfered:     | Aup_mi = Asi_p_si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I THENY ( VV I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | A <sub>sl_p_ste1</sub> = | 17.219         | ***                                     |             |
|                       | (Pier 2 or 3)                              | M <sub>n2</sub> = yf * Msc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Controlling t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Case: Con            | ner.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |             | M <sub>n2</sub> =        | 430.392        | ft-kips                                 |             |
| Effective             | ve Beam Width                              | w <sub>err2</sub> = deq + 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 * T + MIN( 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 * T . (W           | - w/ - dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1)/2)              |             | W <sub>eff2</sub> =      | 7.204          | ft                                      |             |
|                       |                                            | A N DZ' = Mn2/(0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 * Fy * dc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | A <sub>et,02</sub> ' =   | 5.465          | in <sup>2</sup>                         |             |
|                       |                                            | a <sub>p2</sub> = Asl_p2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fy/(β ' F'c'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | weff2)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | a <sub>p2</sub> =        | 1.022          | in                                      |             |
|                       | Required steet:                            | A <sub>N_P_M2</sub> = Mn2 / (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y * (dc - ap2 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2))                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | A                        | 5.067          | in                                      |             |
| equired ste           | set in entre mat:                          | An_p_st = Ast_p_st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 * W / weff2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | A <sub>82_P_8862</sub> = | 26.373         | in <sup>a</sup>                         |             |
|                       |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | Pier Con                 | trolling Case  |                                         | Pier 2 Corn |
| wo way b              | neam action at d , / 2 from low            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |                          |                |                                         |             |
|                       | inforcement Dia                            | di <sub>1</sub> =di -2*cc-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | "db_1 - 1"db_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | di <sub>y</sub> =        | 28.000         | in                                      |             |
| Eq. S                 | Equare Column (ACI 8.10.1.3 & 22.6.4.1.2)  | d <sub>eq T</sub> =dprebar /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 * √π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | d <sub>eq T</sub> =      | 24.81          | in                                      |             |
| Critical              | Section Length:                            | b1 T = deq T +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | b <sub>i T</sub> .       | 42.314         | in                                      |             |
| Critical Se           | ction Perimeter:                           | b <sub>o_T</sub> = 4 * (deq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | + dc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | b <sub>e T</sub> .       | 169.26         | in                                      |             |
|                       | Polar MOI                                  | Je T = (b1_T^3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the latest and th | T*d*3/               | 6)+(dc * 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 T . b2 TA        | 2/2)        |                          | 921710.251     | in <sup>4</sup>                         |             |
| Shear F               | Force at Section:                          | V <sub>n.pres_T</sub> = U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | V <sub>n_per_T</sub> =   | 451.23         | kips                                    |             |
|                       | Required shear as = 0.75                   | Contract Value of the last of | T/b1 T*de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 + (vv * h          | Asc* c T/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jc T)              |             |                          | 182.533        | psi                                     |             |
|                       |                                            | C/ 22.6.5.2] ' = qs * MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | )*λ*√(Fc))  |                          | 201.25         | psi                                     |             |
|                       | 11.510.00 1.05.00                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | 201.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | >2          | V <sub>nt2</sub> =       | 182.53         | psi                                     | OK          |
| olumn                 | Compression Capacity:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |                          |                |                                         |             |
|                       | ression reaction:                          | Pc = qc * 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 ° F'c * (di² / 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( *π)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | P <sub>c</sub> =         | 2530.7         | kips                                    |             |
|                       | pc = 0.65 [ACI 21.2 2.2]                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |                          |                |                                         |             |
|                       |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P. =                 | 2530.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kips               | >=          | C=                       | 520.18         | kips                                    | OK          |
| ler Rain              | nforcement;                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             |                          |                |                                         |             |
|                       | s-sectional area:                          | A = di2 * 11/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | A <sub>o</sub> =         | 1017.88        | in                                      |             |
| 2030                  | se of steel (pier):                        | A <sub>N c</sub> =Ag * 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | A <sub>st_c</sub> =      | 10.18          | in                                      |             |
|                       | [ACI 10.6.1.1] & [ACI 10.3.1.2]            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | M_C                      |                |                                         |             |
|                       | Caga circle:                               | d <sub>o</sub> = di - 2 ° c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c - db_c - 2 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | db_t                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | d <sub>e</sub> ≖         | 28.00          | in                                      |             |
|                       | Reber:                                     | s_c = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d <sub>b_c</sub> = | 1           | in                       |                |                                         |             |
|                       |                                            | m_c = 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A <sub>0_c</sub> = | 0.79        | in <sup>2</sup>          |                | - (1)                                   |             |
|                       |                                            | A <sub>a_c</sub> = Ab_c * n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1_0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | A <sub>s,c</sub> =       | 11.85          | in <sup>2</sup>                         |             |
|                       |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | As c =               | 11.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in <sup>2</sup>    | >=          | A <sub>t,s</sub> =       | 10.18          | in²                                     | OK          |
|                       | Actual moment:                             | M <sub>max</sub> = (D - T +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E)*S/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | M <sub>rmin</sub> =      | 206.98         | ft-kips                                 |             |
|                       | noment capacity:                           | M <sub>aton</sub> per Maxmo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rent ids (see altec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | hed)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | M <sub>atom</sub> =      | 212.41         | ft-kips                                 |             |
|                       | Annorth Capacity.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |             | 6.4                      | -              | -                                       |             |
|                       | tonion a vapatory.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Malow =              | 212.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft-kips            | >=          | M <sub>ross</sub> =      | 206.98         | ft-kips                                 | OK          |
|                       | Bar separation:                            | B <sub>e_c</sub> = (do * π)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M <sub>allow</sub> = | 212.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft-kips            | >¤          | M <sub>max</sub> =       | 206.98<br>4.86 | ft-kips<br>in                           | OK          |

| Reinforcement location:<br>[ACI 25.4.2.4]  | Ψ <sub>L</sub> <sub>c</sub> = if the space   | e under the r    | ebar > 12 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , use 1.3   | , else use   | 1.0               | Ψ_=                   | 1.3   |     |      |
|--------------------------------------------|----------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-------------------|-----------------------|-------|-----|------|
| Epoxy coating                              | Ψ <sub>a c</sub> = if epoxy-c                | pated bars are   | e not used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | use 1.0:    | but if eoox  | v-coaled          | ψ <sub>α,ε</sub> =    | 1.0   | _   |      |
| [ACI 25 4 2 4]                             | 1.00                                         | sed, then if B   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                   | 70                    |       |     |      |
| Max term:<br>(ACI 25.4.2.4)                | Ψ <sub>1</sub> Ψ <sub>1_s</sub> = the produc | ct of wt & we,   | need not be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | taken la    | rger than    | 1.7               | ψιψος =               | 1,3   |     |      |
| Reinforcement size:<br>[ACI 25.4.2.4]      | $\psi_{i\_0}$ = if the bar :                 | size is 6 or les | s, then use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.8, else   | use 1.0      |                   | ψ, =                  | 1     |     |      |
| Light weight concrete:<br>[ACI 25,4,2,4]   | λ <sub>c</sub> = if lightwier                | ght concrete is  | s used, 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , else us   | e 1.0        |                   | λ = =                 | 1.0   | J   |      |
| Specing/cover-<br>[ACI 25.4 2.4]           | C <sub>c</sub> the smalle                    | r of: half the l | bar spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or the co   | ncrete ede   | e distace         | c_ =                  | 2.93  | in  |      |
| Transverse bars:<br>[ACI 25.4.2.3]         | k <sub>w_c</sub> = 0 in (p                   | er simplificati  | an)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |                   | k <sub>e_c</sub> =    | 0     | in  |      |
| Max term<br>[ACI 25.4.2.3]                 | c_s' = MIN( 2.5                              | 5. (c_c + ktr_c  | ) / db_c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |              |                   | c_c' =                | 2.500 | 1   |      |
| Excess reinforcement:<br>[ACI 25.4.10.1]   | R <sub>c</sub> = 1                           |                  | (axt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cess reinfo | ndber Inemed | tion is not used) | R_# =                 | 1.00  |     |      |
| Development (tensile)<br>(ACI 25.4.2.2)    | La' = (3 / 40) *                             | (Fy / 1 _c - √(F | .ci) . (Athe-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c " ws_c    | R_c / c_c)   | , qp_c            | L <sub>d</sub> '_, =  | 34.88 | in. |      |
| Minimum length:<br>[ACI 25,4.2,1]          | L <sub>d_min</sub> = 12 inche                | 35               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                   | L <sub>d_min</sub> =  | 12.0  | in  |      |
| Development length                         | Late = MAX( Le                               | min, Ldt' a      | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |              |                   | Lac=                  | 34.88 | in  |      |
| Confining Reinforcement<br>[ACI 25.4.9.3]  | $\psi_{c,c} = 1$                             | 7                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                   | $\psi_{t,s} =$        | 1.00  |     |      |
| Development (comp.).<br>[ACI 26.4.9.2]     | L <sub>00</sub> '_0 = Fy 'ψι_                | c * db_c * R_    | c/(50 * λ_c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | * v(F'c)    |              |                   | Loc'c =               | 17.89 | ln  |      |
|                                            | L <sub>de</sub> " = 0.0003                   | db_c Fy t        | pr_c * R_c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |              |                   | Lac** =               | 18.00 | in  |      |
| Development length:                        | Lac = MAX( 8.                                | Ldc'_c, Ldc"     | c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                   | Lac =                 | 18.00 | in  |      |
| Length available in pier:                  | L,c = D - T + 1                              | E - cc           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                   | L <sub>vc</sub> =     | 66.0  | in  |      |
|                                            |                                              | Check            | L <sub>ic</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66.0        | in           | >=                | Lac =                 | 34.9  | in  | OK   |
|                                            |                                              | Check            | L <sub>vc</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86.0        | in           | 200               | Lace                  | 18.0  | in  | OK   |
| Length available in pad                    | Lp = T - cc                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                   | L <sub>vp</sub> =     | 18.0  | in  |      |
|                                            |                                              | Check            | L <sub>10</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.0        | in           | >=                | Lanc =                | 34.9  | in  | HOOK |
|                                            |                                              | Check            | L <sub>sp</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.0        | in           | >=                | Lac.o =               | 18.0  | in  | OK   |
| artical Rebar Hook Ending:                 |                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                   |                       |       |     |      |
| Ser size & clear cover:<br>[ACI 25.4.3.2]  | Ψ <sub>L</sub> h = if the bar :              | size <= 11 an    | d side cc >=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5", us    | e 0.7, else  | use 1.0           | Ψ(,, =                | 0.7   |     |      |
| Epoxy coating:<br>[ACI 25.4.3.1]           | Ψ <sub>e_h</sub> = if epoxy-c                | oated bars ar    | e used, use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2, else   | use 1.0      |                   | Ψ•_h =                | 1.0   |     |      |
| Light weight concrete:<br>[ACI 25.4.3.1]   | A <sub>h</sub> if lightwie                   | ght concrete i   | s used, 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i, else us  | e 1.0        |                   | A <sub>jh</sub> =     | 1.0   |     |      |
| Confining Reinforcement.<br>[ACI 25.4 3.2] | Ψ <sub>r_h</sub> = 1                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                   | $\psi_{\tau,j_0} =$   | 1.00  |     |      |
| Development (hook):<br>[ACI 25.4 3.1]      | Lan' = (Fy * wt                              | _h               | r_h * R_c/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (50 · A_F   | • \(F'c)))   | db_c              | Lan' =                | 12.5  | in  |      |
| Minimum length:<br>[ACI 25.4.3.1]          | L <sub>dh_min</sub> the larger               | of: 8 * db or t  | 3 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |                   | L <sub>dh_min</sub> × | 8.0   | in  |      |
| Development length:                        | Lah = MAX( L                                 | -                | The state of the s |             |              |                   | Lan=                  | 12.5  | in  |      |
|                                            |                                              | Check            | L <sub>vp</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.0        | in           | >=                | L <sub>oh</sub> =     | 12.5  | in  | ОК   |
| Hook fail length:                          | La_tel 12 " db be                            | yond the ben     | d radius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |              |                   | Ln_w=                 | 16.0  | in  |      |
| Length available in pad                    | Lh.pad = (W - W                              | - di) / 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                   | Lh_past =             | 21    | in  |      |
|                                            |                                              | Check            | Lh pag =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.0        | in           | >=                | Langual =             | 16.0  | in  | ОК   |

| des per Anchor B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ismic zone is  ive seismic zo max1, Bs_t) / Bs_t_max  Check    | ones, else<br>_max2, Bs                                                                                          | 18*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bs_t_n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d <sub>b,1</sub> = A <sub>b,1</sub> = max4)                                                                                                                                                                                                                           | 0.5                             | Signed = z = in in²  Ball maxi = Ball maxi = Ball maxi = Ball maxi = max                                                                                                                                                                               | 1<br>8<br>12<br>9<br>12<br>8<br>10.6<br>10.6                                                                 | in<br>in<br>in<br>in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1 = 4 1 = 14 1 = 14  Ameri = 8 * db_c  Ameri = 24 * db_t  Ameri = 12* in acti  Ameri = 12* in acti  Ameri = (0 - T + E  Ameri = 262357  Ameri = 1.75  Ameri = 267257  Ameri =  | ive seismic zo<br>L_max1, Bs_t_<br>) / Bs_t_max<br>Check<br>in | nes, else<br>_max2, Bs<br>+ 2                                                                                    | 18°<br>_t_max3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bs_t_n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | max4)                                                                                                                                                                                                                                                                 | 0.2<br>>=                       | in $\ln^2$ $B_{a,t,max} = B_{a,t,max} = B_{a,t,max} = B_{a,t,max} = B_{a,t,max} = m_{a,t,max} = m_{a,t,t,max} = m_{a,t,t,max} = m_{a,t,t,t,max} = m_{a,t,t,t,t,t,t,t,t,t,t,t,t,t,t,t,t,t,t,t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8<br>12<br>9<br>12<br>8<br>10.6                                                                              | in<br>in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r i                             |
| 1 = 14  ment = 8 * db_c  ment = 24 * db_t  ment = 12* in acti  mos = MIN( Bs_ min = (O - T + E  1.75    mathrid = 262357  mathrid = 1.75    mathrid = 267257  mathrid = 267257 | L_max1, Bs_t_<br>)/Bs_t_max<br>Check                           | _max2, Bs<br>+ 2                                                                                                 | t_max3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bs_t_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | max4)                                                                                                                                                                                                                                                                 | 0.2<br>>=                       | $in^2$ $B_{a,t,max} = B_{a,t,max} = B_{a,t,max} = B_{a,t,max} = B_{a,t,max} = B_{a,t,max} = M_{a,t,max} = M_{a,t,$                                                                                                                                                                               | 12<br>9<br>12<br>8<br>10.6                                                                                   | in<br>in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ris control                     |
| ment = 8 * db_c  = 24 * db_t  = di / 4  ment = 12* in acti  max = MIN( Bs_ min = (D - T + E  = 262357  = 1.75  per Anchor B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L_max1, Bs_t_<br>)/Bs_t_max<br>Check                           | _max2, Bs<br>+ 2                                                                                                 | t_max3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bs_t_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | max4)                                                                                                                                                                                                                                                                 | >=                              | $B_{s\_t\_max} = B_{s\_t\_max} = B_{s\_t\_max} = B_{s\_t\_max} = m_{t\_max} = m_{t\_max$ | 12<br>9<br>12<br>8<br>10.6                                                                                   | in<br>in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ris control                     |
| maid = 24 * db_t  maid = di / 4  maid = 12* in acti  main = (D - T + E  [ ]  main = 262357  main = 1.75  main = 267357  main = 267357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L_max1, Bs_t_<br>)/Bs_t_max<br>Check                           | _max2, Bs<br>+ 2                                                                                                 | t_max3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |                                 | $B_{s\_t\_max} = B_{s\_t\_max} = B_{s\_t\_max} = B_{s\_t\_max} = m_{t\_max} = m_{t\_max$ | 12<br>9<br>12<br>8<br>10.6                                                                                   | in<br>in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pi                              |
| med = di / 4  med = 12" in acti  mes = MIN( Bs_ min = (D - T + E  = 262357 = 1.75  per Anchor B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L_max1, Bs_t_<br>)/Bs_t_max<br>Check                           | _max2, Bs<br>+ 2                                                                                                 | t_max3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |                                 | $B_{a,l,max} =$ $B_{a,l,max} =$ $B_{a,l,max} =$ $m_{a,l,max} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9<br>12<br>8<br>10.6                                                                                         | in in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
| main = 12" in acti  main = MIN( Bs_ min = (D - T + E  (D - T + E  1.75   min = 1.75    main = 262357  main = 1.75    main = 262357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L_max1, Bs_t_<br>)/Bs_t_max<br>Check                           | _max2, Bs<br>+ 2                                                                                                 | t_max3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |                                 | B <sub>e_1 max</sub> =  B <sub>e_1 max</sub> =  m <sub>s_min</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12<br>8<br>10.6                                                                                              | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| min = (D - T + E<br>min = (D - T + E<br>262357<br>= 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L_max1, Bs_t_<br>)/Bs_t_max<br>Check                           | _max2, Bs<br>+ 2                                                                                                 | t_max3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |                                 | B <sub>e 1 max</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8<br>10.6                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Die                             |
| (D - T + E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) / Bs_t_max<br>Check                                          | +2                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |                                 | m <sub>1,min</sub> ≖                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.6                                                                                                         | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ce                              |
| = 262357<br>= 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Check<br>in                                                    |                                                                                                                  | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L_=                                                                                                                                                                                                                                                                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                               |
| = 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in                                                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                                                                                                                                                                                                                                                     |                                 | Cine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| = 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ***                                                            |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L =                                                                                                                                                                                                                                                                   | 57                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| = 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ***                                                            |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                                                                                                                                                                                                                                                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| des per Anchor B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                            |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E. =                                                                                                                                                                                                                                                                  | 66<br>55.50                     | in<br>io                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | 41)                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       | 20.00                           | L <sub>ton</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45.63                                                                                                        | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| man David Africand M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | olts (see attached                                             |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |                                 | Loss, ren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34.88                                                                                                        | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| inel borunano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Check                                                          | L <sub>des</sub> =                                                                                               | 45.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                       | >=                              | L <sub>dea_max</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34.88                                                                                                        | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01                              |
| mes =D+E - pc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                              |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |                                 | E <sub>se rese</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85                                                                                                           | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Check                                                          | E. =                                                                                                             | 55.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                       | -CH                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85.00                                                                                                        | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ol                              |
| @ =D + F.T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       | -                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Loan total                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| 2-2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                | + 6 in                                                                                                           | >=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E <sub>m</sub> =                                                                                                                                                                                                                                                      | 55.50                           | in or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ≪=                                                                                                           | 72 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OI                              |
| min per ancstsel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ds (see attached                                               | )                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |                                 | d <sub>o mm</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.25                                                                                                        | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Check                                                          | d <sub>0</sub> =                                                                                                 | 28.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                     | >=                              | d <sub>o min</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.25                                                                                                        | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0)                              |
| 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |                                 | B=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37.5                                                                                                         | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |
| L1_2 =W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |                                 | B <sub>11,2</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37,5                                                                                                         | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |                                 | S <sub>11.2</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              | 1767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |
| L1_2 =(W - W) /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                              |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |                                 | 21_2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.25                                                                                                         | ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| L1_2 =(W - w) / :<br>R1_2 =SL1_2 + w\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                              |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |                                 | S <sub>R1_2</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.25                                                                                                         | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Moment (A.*                                                    | Wps)                                                                                                             | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ft*kips)                       |
| RI_2 = S <sub>LI_2</sub> + w\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                | wps)                                                                                                             | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                       | _                               | S <sub>R1_2</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              | ħ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [ft*kips]                       |
| RI_2 = S <sub>LI_2</sub> + w\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                | W(ps)                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                       | <u></u>                         | S <sub>R1_2</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              | ħ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [ft*kips]                       |
| RI_2 = S <sub>LI_2</sub> + w\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                | %(ps)                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                       | _                               | S <sub>R1_2</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              | ħ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [ft*kips]                       |
| R() = S() 1 + wh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                                                                                  | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 10                                                                                                                                                                                                                                                                  | 0.00 11                         | S <sub>R1_2</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34.25                                                                                                        | ħ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
| R() = S() 1 + wh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Moment (%                                                      |                                                                                                                  | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00 10                                                                                                                                                                                                                                                                 | 9.00 11                         | S <sub>R1.2</sub> =<br>Direction 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.25                                                                                                        | Moment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |
| R1, = S1, 2 + WA  11  00 25.00 3  m1, = M <sub>mext_5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Moment (%                                                      |                                                                                                                  | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 10                                                                                                                                                                                                                                                                  | 9.00 19                         | Sa1_2= Direction 2  5.00 20.00  M_ma1_1=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.00                                                                                                        | Moment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |
| R <sub>1,2</sub> = S <sub>1,2</sub> + wA 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Moment (%                                                      |                                                                                                                  | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 10                                                                                                                                                                                                                                                                  | 9.00 15                         | Sa1.2=<br>Direction 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.00 : 844.77                                                                                               | Moment  Moment  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
| Relative School   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Moment (h*                                                     | 40.00                                                                                                            | -500<br>-500<br>-1000<br>-0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 10                                                                                                                                                                                                                                                                  | .00 11                          | Sa1_2= Direction 2  5.00 20.00  M <sub>max1_2</sub> = M <sub>max1_2</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25.00 : 844.77 784.43                                                                                        | Moment  Moment  Associated as the second sec |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q = D + E - T                                                  | D + E - T + cc  Check 72  The per ancisted at (see affactive Check  Check  A  A  A  A  A  A  A  A  A  A  A  A  A | Check E <sub>so</sub> =  @ = D + E - T + cc Check 72 + 6 in  pres per ancisser its (see siturched) Check d <sub>o</sub> =  W <sub>1</sub> W <sub>1</sub> W <sub>1</sub> W <sub>1</sub> W <sub>1</sub> W <sub>1</sub> W <sub>2</sub> W <sub>3</sub> W <sub>4</sub> | Check E <sub>m</sub> = 55.50  © = D + E - T + cc  Check 72 + 6 in >=  The control of the co | Check E <sub>m</sub> = 55.50 in  (a) = D + E - T + cc    Check 72 + 6 in   >=     Dren per anosterious (see attached)   Check   d <sub>0</sub> = 28.00 in   Check   d <sub>0</sub> = 28.00 in   Check   d <sub>0</sub> = 28.00 in   Check   d <sub>0</sub> = 28.00 in | Check E <sub>m</sub> = 55.50 in | Check E <sub>m</sub> = 55.50 in <=   @ = D + E - T + cc  Check 72 + 6 in >= E <sub>m</sub> = 55.50  pren per anosterio de (see effected)  Check d <sub>0</sub> = 28.00 in >=   "1  "1  "1  "1  "1  "1  "1  "1  "1  "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Check   E <sub>ss</sub> = 55.50 in   <=   E <sub>ss_m</sub> =   E <sub>ss_m</sub> =       @ = D + E - T + cc | Check   E <sub>ss</sub> = 55.50 in   <u e<sub=""  ="">ss,max = 85.00                                    </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Check E <sub>m</sub> = 55.50 in |

| d Reinforcement:                         |                                            |                     |              |               |                    |              |                        |        |                 |     |
|------------------------------------------|--------------------------------------------|---------------------|--------------|---------------|--------------------|--------------|------------------------|--------|-----------------|-----|
|                                          | b = #(Fc <=                                | 4000, 0.86, IF(Fc   | = 8000, 0.65 | 0.85 - (Fc    | 4000) * 0.05))     |              | b =                    | 0.825  |                 |     |
| Effective width:                         | W <sub>e</sub> = W                         |                     |              |               |                    |              | W. =                   | 37,500 | ft              |     |
|                                          | A <sub>et_p</sub> ' = Mn / (0              | 1.9 * Fy * dc)      |              |               |                    |              | Aug =                  | 29.260 | in <sup>2</sup> |     |
|                                          | ap = Asl_p                                 | * Fy / (B * Fc *    | We)          |               |                    |              | a <sub>p</sub> =       | 1.05   | in              |     |
| Required steel:                          | Aup = Mn/(F                                | y * (dc - ap / 2)   | ) * (W / We  | 9)            |                    |              | Aug at "               | 27,149 | in <sup>2</sup> |     |
| Shrinkage:                               | ran = IF(Fy                                | = 60000, 0.00°      | 18, 0.002)   |               |                    |              | r <sub>sh</sub> =      | 0.0018 |                 |     |
|                                          | And put = psh " \                          | N°T/2               |              |               |                    |              | A <sub>st p sh</sub> = | 8.505  | in              |     |
|                                          | An - MAX(A                                 | st p st. Ast p      | sh. Ast p    | ste1, Ast     | p ste2)            |              | A <sub>st p</sub> =    | 27.149 | in <sup>2</sup> |     |
| Reber                                    | 5 = 8                                      | Equally spaced      |              |               | d <sub>0 0</sub> = | 1            | in                     |        |                 |     |
| 10000                                    |                                            | battom, both die    |              |               | A 0 =              |              | in <sup>2</sup>        |        |                 |     |
|                                          | A <sub>n p</sub> = Ab p                    |                     | V122/1/20    |               | n'h                | -            | A, p =                 | 33.18  | in²             |     |
|                                          | مريدا وروب                                 | Check               | Aw           | 33.18         | in                 | >=           | A <sub>N p</sub> =     | 27.15  | in <sup>2</sup> | OK  |
| S                                        | B - IN 2                                   | *cc - db_p) / (r    | - 10         |               |                    |              | B <sub>s p</sub> =     | 9.80   | in              | UIN |
| Bar separation                           | Dep - 144 - 2                              | Check               | 17           | >=            | 8, p =             | 9.80         | in                     | >=     | 4"              | DK  |
|                                          |                                            | Check               | - 11         |               | U <sub>s.p</sub> ~ | 9.00         | IB .                   | -      | -               | Un  |
| d Development Length:                    |                                            |                     |              |               |                    |              |                        |        |                 |     |
| Reinforcement tocation:                  | Ψ <sub>Lo</sub> = if the spa               | ace under the re    | abar > 12 ii | n, use 1.3    | , else use 1.      | 0            | = بψ                   | 1.3    |                 |     |
| [AC125.42.4]                             |                                            |                     |              |               |                    |              |                        |        |                 |     |
| Epoxy coeting                            | Ψ <sub>n,p</sub> = if epoxy-               | coated bars are     | not used,    | use 1.0:      | out if epoxy-      | coated       | Ψ <sub>0_0</sub> =     | 1.0    |                 |     |
| [ACI 25 4.2.4]                           | bars are                                   | used, then if B     | s < 6 * db c | or oc < 3 '   | db. use 1.5,       | else 1.2     |                        |        |                 |     |
| Max ferm:<br>[ACI 25.4 2.4]              | Ψ <sub>t</sub> ψ <sub>e,p</sub> = the prod | uct of wt & we.     | need not b   | e taken la    | rger than 1.7      | 7            | ΨιΨ•_0 =               | 1,3    |                 |     |
| Reinforcement size:<br>[ACI 25 4.2.4]    | $\psi_{i,j} = \text{if the ba}$            | r size is 6 or les  | s, then use  | 0.8, else     | use 1.0            |              | ψ,_p =                 | 1      |                 |     |
| Light weight concrete:<br>(ACI 25.4.2.4) | الله = if lightwi                          | eght concrete is    | used, 0.7    | 5, else us    | e 1.0              |              | λ_p =                  | 1.0    |                 |     |
| Spacing/bover.<br>(ACI 25.4.2.4)         | c_, the small                              | ller of: half the I | par spacing  | or the co     | ncrete edge        | distace      | a رو                   | 3.50   | in              |     |
| Transverse bars:<br>[ACI 25.4.2.3]       | k <sub>trup</sub> = 0 in                   | (per simplificati   | on)          |               |                    |              | k <sub>u_p</sub> =     | 0      | in              |     |
| Max term:<br>(AC) 25.4 2.31              | c_p' = MIN( 2                              | 2.5, (c_p + ktr_p   | )/db_p)      |               |                    |              | c^, =                  | 2.500  |                 |     |
| Excess reinforcement:<br>[ACI 25.4 10.1] | R <sub>p</sub> = 1                         |                     | (0)          | roess reinfor | cement réductio    | n is not use | d) R_p =               | 1.00   |                 |     |
| Development (tensile).<br>(ACI 25 4.2.2) | L <sub>d</sub> = (3 / 40                   | ) * (Fy / λ_p * √   | (F'c)) * ψtų | e_ρ • ψs      | p°R_p°db           | _p/c_p'      | _u L <sub>op</sub> '=  | 34.9   | in              |     |
| Minimum length:                          | L <sub>d min</sub> = 12 inc                | hes                 |              |               |                    |              | Le min s               | 12.0   | in              |     |
| [ACI 25 4.2.1]                           | -0_nan - 12 110                            |                     |              |               |                    |              |                        | 74.10  | 7.4             |     |
| Development length.                      | L <sub>do</sub> = MAX(                     | Ld min, Ldp')       |              |               |                    |              | L <sub>do</sub> =      | 34.9   | in              |     |
| Length available in ped:                 | Load = (W/2                                |                     |              |               |                    |              | Load =                 | 36.0   | in              |     |
|                                          | pan (177. m                                | Check               |              | 36.00         | in                 | >=           | L <sub>to</sub> =      | 34.88  | in              | OK  |

| VB BTS II, LLC<br>US-KY-5135 Fanc                       | y Farm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V- 31.0<br>A- 565090 | 290                                         |          |                 | ¥ 4.7     |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------|----------|-----------------|-----------|
| Reactions                                               | stress ratio 98.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | % mark up                                   | 1.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                             |          |                 |           |
| Shear (Per Leg), S <sub>i</sub> :                       | 47.00 kips x 1 fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Soil per: POD, P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | roject No. 20-649    | 965,                                        |          |                 |           |
| Shear (total). S:                                       | 71.00 kips x 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dated:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | March 23, 2022       |                                             |          |                 |           |
|                                                         | 2978.00 ft-kips x 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 = 13159.69 ft-                            | kips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                             |          | 0               |           |
| Compression / leg. C.                                   | 513.00 kips x 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 = 520.18 kij                              | ps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                             |          | Leg 1           |           |
| Uplift / leg. U                                         | 445.00 kips x 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 = 451.23 kij                              | ps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                             |          |                 |           |
| Tower weight, W <sub>I</sub> :                          | 90.00 kips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * 90.00 ki                                  | ps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                             | Logi     |                 | O<br>leg3 |
| hysical Parameters:                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                             |          |                 |           |
| Concrete volume:                                        | V = T * 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V2 + 3 * (di2 / 4 * π                       | ) * (D + E -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | V =                                         | 95.7     | су              |           |
| Concrete weight.                                        | Wc = V .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | W <sub>c</sub> =                            | 387.4    | kips            |           |
| Soil weight                                             | W <sub>e</sub> = (D -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T) * (W* - 3 * (di² /                       | /4°π))°γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | W, =                                        | 799.9    | kips            |           |
| Total weight:                                           | P = Wc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ws + Wt                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | P=                                          | 1277.29  | kips            |           |
| assive Pressure:                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                             | 4 444    |                 |           |
| Pp coefficient:                                         | 107,01400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (45 + \$ 12) <sup>3</sup>                   | lare-s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | K <sub>p</sub> =                            | 1.000    | 10.7            |           |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y "N+2"Co"V                                 | Control of the local division in the local d |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | P <sub>pn</sub> ≠                           | 2.770    | ksf             |           |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y* (D-T) + 2 * C                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | P <sub>00</sub> =                           | 2.578    | ksf<br>ksf      |           |
|                                                         | The second secon | y "D+2"Co" ν<br><(D-T), Ppt, Ppt            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | P <sub>ptop</sub> =                         | 2.770    | ksf             |           |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | op + Ppb) / 2                               | m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Pp'=                                        | 2.770    | ksf             |           |
| Sheer area:                                             | $T_{pp} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | op + Ppo) / 2                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Tpp =                                       | 0.0      | ft              |           |
| GE/2010 18 001                                          | A <sub>pp</sub> = Tpp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •w                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | App =                                       | 0.00     | ft <sup>2</sup> |           |
| Sheer Cepecity:<br>gr = 0.75                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * App + µ * P) * φι                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Sactual #                                   | 287.391  | kips            |           |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Check                                       | Sacked =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 287.39 klps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | >=                   | S =                                         | 71.99    | klps            | 0         |
| Overturning Moment Res                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D - T - 11-11 / G - 1                       | A1 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | W <sub>ew</sub> =                           | 0.0      | libra           |           |
| Wt of soll wedge.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D*TAN(φ)) / 2* \                            | ik. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | O =                                         | 5.327    | kips            |           |
| Dist. from leg to edge:<br>Additional offset of VA:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.866 ° w) / 2<br>2 - (1 / 3 ° 0.866 ° ·    | W+0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 0.=                                         | 4,474    | ft              |           |
| Resisting moments                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V / 2 - Wt * Oa                             | n + O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | M <sub>ret</sub> =                          | 23546.57 | ft-kips         |           |
| Troubling Troubline                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | App * (D - N) / 3                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | M <sub>rp</sub> =                           | 0.00     | ft-kips         |           |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | " (W + D - TAN(                             | 0)/3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | M <sub>rms</sub> =                          | 0.00     | ft-kips         |           |
| Total resisting:<br>or = 0.75                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rt + Mrp + Mrsw) *                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | M <sub>st</sub> =                           | 17659.92 | ft-kips         |           |
| Total overturning:                                      | M <sub>o</sub> = M +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S*(D+E)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | M <sub>o</sub> =                            | 13699.65 | ft-kips         |           |
| JA 160 040                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Check                                       | M <sub>r1</sub> = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17659.92 ft-kips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >=                   | M <sub>o</sub> =                            | 13699.65 | ft-kips         | 0         |
| Rearing Resistance due                                  | to Pressure Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                             |          |                 |           |
| Area of met.                                            | area = W²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | area =                                      | 1406.3   | ft <sup>2</sup> |           |
| Section modulus:                                        | SM = W <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | SM =                                        | 8789.1   | ft <sup>3</sup> |           |
| Fectored total weight:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / 1.2 + Wc + Ws) '                          | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | P' =                                        | 1136.1   | lúp             |           |
| Pressure exerted.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | area + Mo / SM                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                    | P <sub>mex</sub> =                          | 2.367    | ksf             |           |
| - 2.1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | area - Mo / SM                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I Tomas I Toma |                      | P <sub>rein</sub> ≖                         | -0.751   | ksf             |           |
|                                                         | te: The stress resultant i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             | kem, Bear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing area has bee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in adjusted belo     |                                             | 12.00    |                 |           |
| Load accentricity:                                      | e <sub>c</sub> = Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             | llan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 0 <sub>6</sub> =                            | 12.06    | ft              |           |
| Parallel Direction                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/(3.M.(M/5                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | P                                           | 3.018    | ksf<br>ksf      |           |
| n Diagonal Direction                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gonal Bearing Sheet (a<br>neg >= 0, Ppos, P | Control of the Contro |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Pade dag =                                  | 4.072    |                 |           |
| Adj. applied pressure:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE RESERVE TO SERVE                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Q <sub>a</sub> =                            | 0.000    | ksf<br>ksf      |           |
| Overburden Pressure: (fec                               | torouj Hopp - NA-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gross Bearing Pro                           | le - Goop =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.018 ksf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cm Cm                | Q <sub>obp</sub> =<br>B <sub>c</sub> ° φr = | 5.250    | ksf             | 0         |
| Concrete Shear Strength<br>One way beam action at d; fr |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O. NOCK                                     | HI NOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U.010 Kai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | -c wi-                                      | 0.2.00   | ner             | . 0       |
| Effective depth:                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oc-dbp/2                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | d <sub>c</sub> =                            | 17.500   | in              |           |
| Distance from edge of pad to                            | d' '= O -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | d" =                                        | 3.827    | ft              |           |
| pier face                                               | u -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -V1 -                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                             |          |                 |           |
| Distance from edge of ped to                            | d" = d' -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | d" =                                        | 2.369    | R               |           |

V<sub>c1</sub> = 792.41 kips

 $V_{n1} = [(qa - d^{+} \circ qs) + (d^{+} \circ qs/2)] \circ d^{-}W - [0.9 \circ (D - T) \circ \gamma^{+} d^{-}W]$ 

Bearing Pressure Slop

Required shear:

Available shear: [ACI 22 5 5 1] qs = 0.75 [ACI 21 2 1]

q, = qa / Weff

Vc1 = qs . 2 . A . V(F'c) . W . dc

Check

 $q_a =$ 

Vc1 =

V<sub>n1</sub> =

0.1504

792.41

206.13 kips

206.13 kips

kcf

kips

OK

| Eq S            | quara Column (ACI 8.10.1.3 & 22.6.4.1.2)        | d <sub>m</sub> =di/2 * √r                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                    |             | deg =                    | 31.90          | in              |              |
|-----------------|-------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|--------------------|-------------|--------------------------|----------------|-----------------|--------------|
|                 |                                                 | W <sub>eff</sub> = Min (W,               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                   |              |                    |             |                          | 20.073402      | 12.7            |              |
|                 | Met effective width in bearing                  | The second second                        | NAME OF TAXABLE PARTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Market Land          |              |                    | _           | W <sub>eff</sub> =       |                | n               |              |
| Ratio of        | long side to short side of Pier<br>Langth:      | b <sub>1</sub> = dc / 2 + ε              | uare or round                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |              |                    |             | β ≃<br>b₁ =              | 1,00<br>63,70  | in              |              |
|                 | Width:                                          | b <sub>2</sub> = (dc + de                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE RESERVE          |              |                    |             | b <sub>2</sub> =         | 88.62          | in              |              |
| Critical        | Parimeter                                       | b <sub>o</sub> = b1 + b2                 | 1 . 11 - 00140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 41116              |              |                    |             | b <sub>o</sub> =         | 152.32         | in              |              |
| Section         | Centrold                                        |                                          | b1/2)/(b1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | do 1 h2 5            | day.         |                    |             | C=                       | 13.320         | ft              |              |
|                 | Eccentricity'                                   | e <sub>c</sub> = (deq + d                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0C + 0Z              | aci          |                    |             |                          | 11.3818909     |                 |              |
|                 | Polar MOI                                       | Je = [(de * b1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · Mma 2 / 15         | 01 + /h1 * . | le * /h1 /2 - /    | W21 + (h1   |                          | 1.063E+06      |                 |              |
| Moment          |                                                 |                                          | 7,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | 7 10.        | (                  | , e1 . (n)  |                          |                |                 |              |
| Fraction        | flexure<br>eccentricity                         | Yt = 17 (1 + 2                           | /3°√(61/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2))                  |              |                    |             | γ <sub>1</sub> =         | 0.64           |                 |              |
| ansferred<br>by | of shear;                                       | y. = 1 - yf                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                    |             | γ <sub>v</sub> =         | 0.36           |                 |              |
| Bearing F       | Pressure Slope                                  | q <sub>a</sub> = qa / Wef                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                    |             | Q. =                     | 0.150          | kcf             |              |
| varage Be       | ering Pressure:                                 | q <sub>apt</sub> = ((Weff - I            | o1) * qs + qa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                   |              |                    |             | Qapi =                   | 2.619          | ksf             |              |
| Shear Fr        | orce at Section                                 | V <sub>n_pier</sub> = C - qa.pl          | *(b1 * b2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |              |                    |             | V <sub>n_prer</sub> =    | 417.495        | kips            |              |
|                 | Stab Moment:                                    | Mac = SI * (D -                          | T + E) + Vn_p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ler * a              |              |                    |             | Mec =                    | 670.02         | ft-kips         |              |
|                 | Required shear gs = 0.75                        | ACI 21 2 1] = (Vn_pier                   | / b0 * dc) + (v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | v " Msc"             | : / Jc)      |                    |             |                          | 192 99         | psi             |              |
|                 | Available shear: [A                             | C/22.6.5.2/ = \$8 * MI                   | √(4°λ°√(Fc),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2+(4/B))*.          | 1* V(Fc) . ( | 2+(as*dc/bo))      | *A*√(Fc))   |                          | 201.246        | psi             |              |
|                 |                                                 |                                          | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V <sub>c2</sub> =    | 201.25       | psi                | >=          | V10 =                    | 192,99         | psi             | OK           |
| Mon             | nent transfered:<br>(Pler 1)                    | Mel = vf * Msc                           | 700000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |              |                    |             | M <sub>n1</sub> =        | 306,779        | ft-kips         |              |
| F. Martin       | re Beam Width                                   | $W_{eff1} = deq + 1.3$                   | 5 * T + MIN/ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 T //               | - w) * SII   | (60) - den 1       | 21          | W <sub>eff</sub> ) =     | 7.909          | ft.             |              |
| a.sreruit       |                                                 | A <sub>et o1</sub> ' = Mn1 / (0.         | A CONTRACTOR OF THE PARTY OF TH |                      | , m, Oli     | -tool - ned );     | -,          | A <sub>nt p)</sub> '=    | 3.896          | in <sup>2</sup> |              |
|                 |                                                 | a <sub>p1</sub> = Ast p1'                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | weff1)               |              |                    |             | a <sub>pt</sub> =        | 0.663          | in              |              |
|                 | Required steel:                                 | Ante at = Mn1/(F                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                    |             | A <sub>plus att</sub> =  | 3.574          | ln <sup>2</sup> |              |
|                 | sel in entire met.                              | A <sub>st_p_ste1</sub> = Ast_p_st        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1/                  |              |                    | -           | A <sub>st p stol</sub> = | 16.946         | ini             |              |
|                 | nent transfered:                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.50                 | 2.2          |                    |             |                          |                |                 |              |
|                 | (Pier 2 or 3)                                   | Maz = yf " Msc                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 200          |                    |             | M <sub>n2</sub> =        | 428.070        | ft-klps         |              |
| Effective       | re Beam Width:                                  | W <sub>eff2</sub> = deq + 1.             | A STATE OF THE PARTY OF THE PAR | .5 ° T , (W          | / - w\ - dec | 1)/2)              |             | Weft2 =                  | 7.204          | ft              |              |
|                 |                                                 | A <sub>M,D2</sub> ' = Mn2 / (0.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                    |             | Aa, p2 =                 | 5.436          | ln <sup>2</sup> |              |
|                 |                                                 | a <sub>p2</sub> = Ast_p2' '              | and the same of th | T. Williams          |              |                    |             | a <sub>p2</sub> =        | 1.016          | in . 2          |              |
|                 | Required steet:                                 | Ast.p. 102 = Mn2/(F                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2))                  |              |                    |             | AND WZ                   | 5.039          | in <sup>2</sup> |              |
| Required sta    | eel in entire met:                              | Aut.p_ese2 = Ast_p_s                     | 2 * W / weff2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |              |                    |             | A <sub>st_p_ste2</sub> = | 26.226         | 311             |              |
|                 |                                                 | - (+0) 00 0 0 1 (4-10                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                    |             | Cor                      | ntrolling Case |                 | Pier 2: Come |
|                 | earn action at d / 2 from lowe                  |                                          | 0.16 4 4 9.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |              |                    |             | all                      | 00.000         | da.             |              |
|                 | inforcement Dia<br>quare Column (ACI 8 10.1.3 & | di <sub>T</sub> =di -2*cc-2              | _db_t - 1_db_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                    |              |                    |             | di <sub>T</sub> =        | 28.000         | in              |              |
|                 | 22.6.4.1.2)                                     | d <sub>eq_T</sub> =dprebar /             | 2 * Vm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |              |                    |             | dea_T =                  | 24.81          | in              |              |
| Critical        | Section Length:                                 | b <sub>1_T</sub> = deq_T +               | de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |              |                    |             | b1_T+                    | 42.314         | in              |              |
| Critical Sec    | ction Perimeter:                                | b <sub>o_T</sub> = 4 * (deq              | + dc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |              |                    |             | b <sub>0_7</sub> =       | 169.26         | in              |              |
|                 | Polar MOI                                       | J. T = (b1_T^3                           | * dc / 6)+ (b1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T°d^3/               | 6)+(dc * t   | 1_T b2_T           | 2 / 2)      | J <sub>c,T</sub> =       | 921710.251     | in*             |              |
| Shear Fe        | orce at Section:                                | V <sub>n_per_T</sub> ≖ U                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                    |             | V <sub>n_tem_T</sub> =   | 451.23         | kips            |              |
|                 | Required sheer; qs = 0.75                       | ACI 21 2.1] = (Vn_pier                   | T/b1_T * do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) + (yv * #          | Asc' C_T /   | Jc_T)              |             |                          | 182.533        | psi             |              |
|                 | Available shear [A                              | C122.6.5.2] "= \ps " MI                  | N( 4" 1" V(Fc) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (2+(4/B))°           | λ°√(Fc) . I  | 2+(as*dc/bo)       | )*\^*\(Fc)) |                          | 201.25         | psi             |              |
|                 |                                                 | -                                        | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vu =                 | 201.25       | psl                | >=          | Vn(2 =                   | 182.53         | psi             | OK           |
| olumn (         | Compression Capacity:                           | 16                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                    |             |                          |                |                 |              |
| Compri          | ession reaction:                                | P <sub>c</sub> = φc * 0.8!               | Fc (dr /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | িন)                  |              |                    |             | P <sub>c</sub> =         | 2530.7         | kips            |              |
|                 | gc * 0.65 [ACI 21.2 2.2]                        |                                          | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D =                  | 2530.69      | bine               | >=          | C=                       | 520.18         | kips            | OK           |
|                 |                                                 | 3                                        | - Uneca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | re-                  | 2000.09      | NUS                |             |                          | 520.10         | NUS             | Un           |
| ler Rein        | forcement:                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                    |             |                          |                |                 |              |
| Gress           | -sectional area:                                | A <sub>g</sub> = di <sup>2</sup> * π / · | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |              |                    |             | A <sub>q</sub> =         | 1017.88        | in <sup>2</sup> |              |
| Min. are-       | e of steel (pier):                              | A <sub>st</sub> = Ag * 0.01              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                    |             | A <sub>st_c</sub> =      | 10.18          | in              |              |
|                 | [ACT 10 6.1.1] & [ACT 10.3.1.2]                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                    |             |                          |                |                 |              |
|                 | Cage circle:                                    | d, = d - 2 ° o                           | c - db_c - 2 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ib_t                 |              |                    |             | d <sub>o</sub> =         | 28.00          | in              |              |
|                 | Rebar-                                          | s_= 8                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              | d <sub>0.0</sub> = | 1           | in                       |                |                 |              |
|                 |                                                 | m_s = 15                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              | A <sub>b_0</sub> = | 0.79        | in <sup>2</sup>          |                |                 |              |
|                 |                                                 | A <sub>0_c</sub> = Ab_c * n              | _c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |              |                    |             | A <sub>e_c</sub> =       | 11.85          | in <sup>2</sup> |              |
|                 |                                                 |                                          | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | As c =               | 11.85        | in²                | >=          | Ast,c =                  | 10.18          | in²             | OK           |
| - 3             | Actual moment:                                  | M <sub>max</sub> = (D - T +              | E)*\$/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |              |                    |             | M <sub>max</sub> =       | 206.98         | ft-kips         |              |
| Play m          | pment depecity:                                 | M <sub>alkov</sub> per Mexmor            | nnt.xis (see atlac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hed)                 |              |                    |             | Matter =                 | 212.41         | ft-kips         |              |
|                 |                                                 |                                          | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M <sub>attow</sub> = | 212.41       | ft-kips            | >=          | M <sub>max</sub> =       | 206.98         | ft-kips         | OK           |
|                 |                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |              |                    |             |                          |                |                 |              |
|                 | Bar separation                                  | $B_{s,c} = (do * \pi)$                   | m_c - db_c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |              |                    |             | Bage =                   | 4.86           | in              |              |

| Reinforcement location:                    | Ψ <sub>C</sub> = if the space                     | a under the r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ebar > 12 in      | use 1.3      | , else use                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ψι_c =              | 1.3   |     |      |
|--------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|-----|------|
| [ACI 25.4.2.4]<br>Epoxy coeting:           | Ψ <sub>e c</sub> = if epoxy-co                    | ated bars an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e not used. 1     | ise 1.0:     | but if epoxy                 | -coaled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ψ <sub>0,z</sub> =  | 1.0   | _   |      |
| [ACI 25.4.2.4]                             |                                                   | sed, then if B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |       |     |      |
| Mex term:<br>(AC) 25.4.2.4]                | ψ <sub>1</sub> ψ <sub>e_c</sub> = the produc      | Control of the Contro |                   |              | the Section of the Section 2 | The second secon | Ψ,Ψα_ς 22           | 1.3   | 4   |      |
| Reinforcement size:                        | $\psi_{s_{\underline{c}}} = \text{ if the bar s}$ | ize is 6 or les                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ss, then use      | 0.8, else    | use 1.0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ψ <sub>1_0</sub> =  | 1     |     |      |
| [ACI 25.4.2.4]<br>Light weight concrete:   | λ <sub>c</sub> = if lightwleg                     | hi concrete i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s used 0.75       | Alse us      | e 1.0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | λ =                 | 1.0   |     |      |
| [ACI 25.4.2.4]                             | n's - n agranag                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 0000, 0.70      | , 0.00 00    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                   | 1.0   |     |      |
| Specing/cover:<br>[ACI 25.4.2.4]           | c_c the smalle                                    | r of: half the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bar spacing       | or the co    | ncrete edg                   | e distace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c_c =               | 2.93  | in  |      |
| Transverse bars:<br>[ACI 25.4.2.3]         | k <sub>w_c</sub> = 0 in (p                        | er simplificati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lon)              |              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K <sub>b</sub> _c ≡ | 0     | in  |      |
| Mex term:<br>[ACI 25.4.2.3]                | c_c' = MIN( 2.5                                   | , (c_c + ktr_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c) / db_c)        |              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c, =                | 2.500 |     |      |
| Excess reinforcement:<br>[ACI 25.4.10.1]   | R <sub>c</sub> = 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (exc              | ese reinfor  | cement reduc                 | tion is not used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R_c=                | 1.00  |     |      |
| Development (tensile):<br>[ACI 25.4.2.2]   | L <sub>di_c</sub> = (3 / 40) *                    | Fy / A_c * √(F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .c)) , (fighe c   | "ms_c.       | R_c/c_c) *                   | db_c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - ولها              | 34.88 | in  |      |
| Minimum length:<br>[ACI 25.4.2.1]          | L <sub>d_min</sub> = 12 Inche                     | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ld_min =            | 12.0  | ln  |      |
| Development length:                        | Lat c = MAX( Lo                                   | _min, Ldt'_c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                 |              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lac=                | 34.88 | in  |      |
| Confining Reinforcement.<br>[ACI 25.4.9.3] | $\psi_{r_c} = 1$                                  | 2 27 2 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ψ, ,, =             | 1.00  |     |      |
| Development (comp.):<br>[ACI 25.4.9.2]     | Lde's = Fy 'wr_c                                  | *db_c* R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c/(50° A_c        | ' √(F'c)     | )                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lec's =             | 17.89 | ln  |      |
|                                            | L <sub>dc</sub> " <sub>c</sub> = 0.0003 *         | db_c * Fy *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ψr_c*R_c          |              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lac" =              | 18.00 | in  |      |
| Development length:                        | Loc = MAX(8,                                      | Ldc' c, Ldc"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (c)               |              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lee ==              | 18.00 | in  |      |
| Length available in pier:                  | L <sub>vc</sub> = D - T + I                       | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Τ-6*              |              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L <sub>vc</sub> =   | 66.0  | in  |      |
|                                            |                                                   | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L <sub>ic</sub> = | 66.0         | in                           | >=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lac =               | 34.9  | in  | OK   |
|                                            |                                                   | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L <sub>vc</sub> ≡ | 68.0         | in                           | >=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lac =               | 18.0  | in  | OK   |
| Length available in pad:                   | L.p = T - cc                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L <sub>vp</sub> =   | 18.0  | ln. |      |
|                                            |                                                   | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L <sub>vp</sub> = | 18.0         | in                           | >a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lage =              | 34.9  | in  | ноок |
|                                            |                                                   | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L <sub>sp</sub> = | 18.0         | in                           | >=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Late =              | 18.0  | in  | ОК   |
| ertical Rebar Hook Ending;                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | - Transition |                              | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |       |     |      |
| Bar size & clear cover:<br>[ACI 25.4.3.2]  | Ψω = if the ber s                                 | lze <= 11 an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d side cc >=      | 2.5", us     | e 0.7, else                  | use 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ψ <sub>1</sub> η =  | 0.7   |     |      |
| Epaxy coating:<br>[ACt 25.4.3.1]           | ψ <sub>e h</sub> = if epoxy-co                    | ated bars ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e used, use       | 1.2, else    | use 1.0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ψ <sub>e_h</sub> =  | 1.0   |     |      |
| Light weight concrete:<br>[ACI 25.4.3.1]   | λ <sub>n</sub> if lightwieg                       | ht concrete i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s used, 0.75      | , else us    | e 1.0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | λ_h =               | 1.0   |     |      |
| Confining Reinforcement:<br>[ACI 25.4.3.2] | $\psi_{r,h} = 1$                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\psi_{r\_h} =$     | 1.00  |     |      |
| Development (hock).<br>[ACI 25.4.3.1]      | Lan' = (Fy * wt                                   | h. me_p. d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pr_h * R_c /      | (50 ° λ_l    | * v(F'c))) *                 | db_c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L <sub>dh</sub> ' = | 12.5  | in  |      |
| Minimum length:                            | Laturin the larger                                | of: 8 * db or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 in              |              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Los min =           | 8.0   | in  |      |
| [ACI 25.4.3.1]                             |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |       |     |      |
| Development length                         | Lan = MAX( Lo                                     | lh_min, Ldh'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                 |              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L <sub>oh</sub> =   | 12.5  | in  |      |
|                                            |                                                   | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L <sub>sp</sub> = | 18.0         | in                           | >=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L <sub>oh</sub> ×   | 12.5  | in  | OK   |
| Hook tail length:                          | Lh tai 12 * db be                                 | yond the ber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nd radius         |              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lington 22          | 16.0  | In  |      |
| Length available in pad                    | Lh_pad = (W - W'                                  | di) / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lh_pag =            | 21    | in  |      |
|                                            |                                                   | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lh_per =          | 21.0         | In                           | >=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lon tol 2           | 16.0  | in  | OK   |

| Ties:<br>Afinimum size:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S_tmin =IF                                                                                                                                                          | (s c <= 11                            | 0, 3, 4)                             |                     |                                                  |                   |                       |              | \$ 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                         |                                                        |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|---------------------|--------------------------------------------------|-------------------|-----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -70m; -11                                                                                                                                                           |                                       |                                      |                     |                                                  |                   |                       |              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           |                                                        |          |
| [ACI 25.7.2.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                     | of the nate                           | min sees to 1                        | nee there           | 2 ple= 4 5                                       |                   |                       |              | z=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                         |                                                        |          |
| z factor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                     | o if the sels                         | mic zone is I                        | ซรร เกสก            | ∠ erse 1.U                                       |                   |                       | 0.5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                         |                                                        |          |
| Tie perameters:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s <sub>.1</sub> = 4<br>m <sub>.1</sub> = 14                                                                                                                         |                                       |                                      |                     |                                                  |                   | 6]=<br>6]=            | 0.5          | in<br>in <sup>d</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           |                                                        |          |
| Allowable tie specing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                     | 15.0                                  |                                      |                     |                                                  |                   |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                        |          |
| per vertical rebar<br>[ACI 25.7.2.1] & [ACI 18.4.3.3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                     |                                       |                                      |                     |                                                  |                   |                       |              | Ba_Umax1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                         | in                                                     |          |
| per tio size<br>(ACI 25.7.2.1) & (ACI 18.4.3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B <sub>s_t_max</sub> = 2                                                                                                                                            | 24 * db_t                             |                                      |                     |                                                  |                   |                       |              | B <sub>e_t_med</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                                                        | in-                                                    |          |
| per pier diameter<br>[ACI 25.7.2.1] & [ACI 18.4.3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B <sub>a_l_med</sub> ≡ e                                                                                                                                            | di / 4                                |                                      |                     |                                                  |                   |                       |              | B <sub>s_Cmax3</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                         | in                                                     |          |
| per seismic zone<br>[ACI 25.7 2.1] & [ACI 18.4 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     | 12" in active                         | e seismic zor                        | nes, else           | 18"                                              |                   |                       |              | Ball_mart =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                        | in                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                     | MIN( Bs t                             | max1, Bs_t_                          | max2. Bs            | t max3.                                          | Bs t m            | nax4)                 |              | B <sub>s,t,rue</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                         | in                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                     | Committee Committee of the            | /Bs_t_max                            |                     |                                                  |                   |                       |              | m , =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.6                                                      |                                                        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Charles A                                                                                                                                                           | port.                                 | Check                                | m j =               | 14.0                                             |                   |                       | >=           | m <sub>_t,min</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.6                                                      |                                                        | OH       |
| hor Steel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                     |                                       |                                      |                     |                                                  | _                 |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                        |          |
| A/S perameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P = 2                                                                                                                                                               | 62357                                 |                                      |                     |                                                  | 1                 |                       | 66           | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |                                                        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                 | 1.75 in                               | i                                    |                     |                                                  |                   |                       | 55.50        | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |                                                        |          |
| evelopment evailable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                   |                                       | ts (see attached                     | 43                  |                                                  |                   | - All                 | ON UT        | L <sub>m</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.63                                                     | in                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                     |                                       | is (see attached<br>is (see attached |                     |                                                  |                   |                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34.88                                                     | in                                                     |          |
| tequired development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -das_min pe                                                                                                                                                         |                                       |                                      |                     | 4E 02                                            | in                | -                     | >=           | Loss min =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |                                                        | pa a     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E -                                                                                                                                                                 | - 1                                   | Check                                | L <sub>das</sub> sr | 45.63                                            | in                |                       | 28           | L <sub>dat_res</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34.88                                                     | in                                                     | OF       |
| To bottom rebar grid:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E <sub>at_max</sub> =D                                                                                                                                              |                                       |                                      | -                   |                                                  | 12                |                       |              | E <sub>ss_mex</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85                                                        | in                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                     | - Luc                                 | Check                                | E <sub>m</sub> =    | 55.50                                            | ii)               |                       | <0           | E <sub>as_max</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85.00                                                     | ln                                                     | OF       |
| To top reber grid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rebar @ = 0                                                                                                                                                         | 700                                   | The second second                    |                     |                                                  |                   |                       |              | rebar @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72.00                                                     | in                                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                     | _                                     |                                      | + 6 in              | >=                                               | E                 | M 2                   | 55.50        | in or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < m                                                       | 72 in                                                  | OF       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                     |                                       | s (see attached)                     | )                   |                                                  |                   |                       |              | do_min =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25.25                                                     | in                                                     |          |
| Min. cage dia:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | do_mn pe                                                                                                                                                            | -                                     | Check                                | d <sub>o</sub> =    | 28.00                                            | in P <sub>2</sub> | <b>e</b> <sub>2</sub> | >=<br>       | d <sub>o_max</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.25                                                     | in 20.07                                               | -        |
| Alin. cage dia:  Reactions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                     | -                                     |                                      |                     | 28.00                                            |                   | • <sub>2</sub>        | <b>&gt;=</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ngth in bearin                                            | g. 20.07                                               |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                     |                                       |                                      |                     | 28.00                                            | Î                 | e <sub>2</sub>        | <b>&gt;=</b> | Effective les                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ngth in bearin                                            | g. 20.07                                               | ft       |
| Reactions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ^^                                                                                                                                                                  | <b>+ + + +</b>                        |                                      |                     | 28.00                                            | Î                 |                       |              | Effective len                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ngth in bearin                                            | g 20.07<br>g 17.43                                     | ft       |
| Reactions:  Total Beem Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A, A,                                                                                                                                                               | ↓ ↓ ↓<br>v                            |                                      |                     | 28.00                                            | Î                 |                       |              | Effective lang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ngth in bearingth not bearing                             | g 20.07<br>g 17.43                                     | ft       |
| Reactions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B <sub>12,1</sub> = V<br>S <sub>12,1</sub> = C                                                                                                                      | ↓ ↓ ↓ ↓<br>v                          |                                      |                     | 28.00                                            | Î                 |                       |              | Effective len                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ngth in bearin                                            | g 20.07<br>g 17.43<br>ft                               | ft       |
| Reactions:  Total Beem Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A, A,                                                                                                                                                               | ↓ ↓ ↓ ↓<br>v                          |                                      |                     | 28.00                                            | Î                 |                       | **           | Effective lang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ngth in bearingth not bearing                             | g 20.07<br>g 17.43                                     | ft       |
| Reactions:  Total Beam Length resion of Left Support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B <sub>12.1</sub> = V<br>S <sub>12.1</sub> = V<br>S <sub>12.1</sub> = V                                                                                             | V V V V V V V V V V V V V V V V V V V |                                      |                     | 28.00                                            | Î                 |                       |              | Effective length of the state o | 37.5<br>5.327<br>32.17                                    | g 20.07 g 17.43 ft ft ft                               | ft       |
| Reactions:  Total Beam Length reabon of Left Support:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B <sub>12.1</sub> = V<br>S <sub>12.1</sub> = V<br>S <sub>12.2</sub> = V<br>B <sub>12.2</sub> = V                                                                    | v v o v o v                           |                                      |                     | 28.00                                            | Î                 |                       |              | Effective lang  Effective lang  BL2.1=  SL2.1=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37.5<br>5.327<br>32.17                                    | g 20.07<br>g 17.43<br>ft                               | ft       |
| Reactions:  Total Beem Length realism of Right Support tion of Right Support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B <sub>12.1</sub> = V<br>S <sub>12.1</sub> = O<br>S <sub>R2.1</sub> = V<br>B <sub>12.2</sub> = V<br>S <sub>12.3</sub> = (1)                                         | V V V V V V V V V V V V V V V V V V V |                                      |                     | 28.00                                            | Î                 |                       |              | Effective length of the state o | 37.5<br>5.327<br>32.17                                    | g 20.07 g 17.43 ft ft ft                               | ft       |
| Reactions:  Total Beem Length realison of Left Support tion of Right Support office Geometry Input (Option 2) Total Beam Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B <sub>12.1</sub> = V<br>S <sub>12.1</sub> = V<br>S <sub>12.2</sub> = V<br>B <sub>12.2</sub> = V                                                                    | V V V V V V V V V V V V V V V V V V V |                                      |                     | 28.00                                            | Î                 |                       |              | Effective lenger | 37.5<br>5.327<br>32.17                                    | g 20.07<br>g 17.43<br>ft                               | ft       |
| Total Beem Length realism of Right Support tion of Right Support Total Beam Length receion of Left Support total Beam Length receion of Left Support tion of Right Support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B <sub>12.1</sub> = V<br>S <sub>12.1</sub> = O<br>S <sub>R2.1</sub> = V<br>B <sub>12.2</sub> = V<br>S <sub>12.3</sub> = (1)                                         | V V V V V V V V V V V V V V V V V V V |                                      | do=                 | 28.00                                            | Î                 |                       |              | Effective length in the second | 37.5<br>5.327<br>32.17<br>37.5<br>3.25                    | g 20.07<br>g 17.43<br>ft<br>ft                         | ft<br>ft |
| Total Beem Length restion of Left Support tion of Right Support Total Geametry Input (Option 2) Total Geam Length restion of Left Support tion of Right Support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B <sub>12.1</sub> = V<br>S <sub>12.1</sub> = O<br>S <sub>82.1</sub> = V<br>S <sub>82.2</sub> = V<br>S <sub>82.2</sub> = (S <sub>82.2</sub> = S                      | V V V V V V V V V V V V V V V V V V V | Check                                | do=                 | 11                                               | Î                 |                       |              | Effective length of the state o | 37.5<br>5.327<br>32.17<br>37.5<br>3.25                    | g 20.07 g 17.43 ft ft ft ft ft                         | ft<br>ft |
| Total Beem Length resison of Left Support tion of Right Support Total Beam Length resison of Left Support total Beam Length resison of Left Support toon of Right Support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B <sub>12.1</sub> = V<br>S <sub>12.1</sub> = O<br>S <sub>82.1</sub> = V<br>S <sub>82.2</sub> = V<br>S <sub>82.2</sub> = (S <sub>82.2</sub> = S                      | V V V V V V V V V V V V V V V V V V V | Check                                | do=                 | 2000                                             | Î                 |                       |              | Effective length of the state o | 37.5<br>5.327<br>32.17<br>37.5<br>3.25                    | g 20.07 g 17.43 ft ft ft ft ft                         | ft<br>ft |
| Total Beam Length resison of Left Support tion of Right Support tions of Beam Length receising from the Support total Beam Length scelon of Left Support tion of Right Support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B <sub>12.1</sub> = V<br>S <sub>12.1</sub> = O<br>S <sub>82.1</sub> = V<br>S <sub>82.2</sub> = V<br>S <sub>82.2</sub> = (S <sub>82.2</sub> = S                      | V V V V V V V V V V V V V V V V V V V | Check                                | do=                 | 2000<br>1500<br>1000                             | Î                 |                       |              | Effective length of the state o | 37.5<br>5.327<br>32.17<br>37.5<br>3.25                    | g 20.07 g 17.43 ft ft ft ft ft                         | ft<br>ft |
| Total Beam Length resiston of Left Support tion of Right Support tion of Right Support Total Beam Length receion of Left Support tion of Right Support tion of Right Support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B <sub>12.1</sub> = V<br>S <sub>12.1</sub> = O<br>S <sub>82.1</sub> = V<br>S <sub>82.2</sub> = V<br>S <sub>82.2</sub> = (S <sub>82.2</sub> = S                      | V V V V V V V V V V V V V V V V V V V | Check                                | do=                 | 2000                                             | Î                 |                       |              | Effective length of the state o | 37.5<br>5.327<br>32.17<br>37.5<br>3.25                    | g 20.07 g 17.43 ft ft ft ft ft                         | ft<br>ft |
| Total Beam Length cebon of Left Support tion of Right Support tion of Right Support total Beam Length scession of Left Support tion of Right Support tion of Right Support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B <sub>12.1</sub> = V<br>S <sub>12.1</sub> = O<br>S <sub>82.1</sub> = V<br>S <sub>82.2</sub> = V<br>S <sub>82.2</sub> = (S <sub>82.2</sub> = S                      | V V V V V V V V V V V V V V V V V V V | Check                                | do=                 | 2000<br>1500<br>1000                             | Î                 |                       |              | Effective length of the state o | 37.5<br>5.327<br>32.17<br>37.5<br>3.25                    | g 20.07 g 17.43 ft ft ft ft ft                         | ft<br>ft |
| Total Beem Length resistant of Right Support total Beam Length received of Right Support.  Olids Geometry Input (Option 2)  Total Beam Length received of Left Support.  bon of Right Support.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B <sub>12.1</sub> = V<br>S <sub>12.1</sub> = O<br>S <sub>82.1</sub> = V<br>S <sub>82.2</sub> = V<br>S <sub>82.2</sub> = (S <sub>82.2</sub> = S                      | V V V V V V V V V V V V V V V V V V V | Check **                             | do=                 | 2000<br>1500<br>1000<br>500<br>0                 | Î                 |                       |              | Effective length of the state o | 37.5<br>5.327<br>32.17<br>37.5<br>3.25                    | g 20.07 g 17.43 ft ft ft ft ft                         | ft<br>ft |
| Total Beam Length cebon of Left Support tion of Right Support tion of Right Support total Beam Length scession of Left Support tion of Right Support tion of Right Support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B <sub>12.1</sub> = W<br>S <sub>12.1</sub> = O<br>S <sub>82.1</sub> = W<br>B <sub>12.2</sub> = W<br>S <sub>12.2</sub> = S<br>Direction 1                            | V V V V V V V V V V V V V V V V V V V | Check **                             | do=                 | 2000<br>1500<br>1000<br>500                      | Î                 |                       |              | Effective length of the state o | 37.5<br>5.327<br>32.17<br>37.5<br>3.25<br>34.25           | g 20.07 g 17.43 ft ft ft ft ft                         | ft ft    |
| Total Beem Length Incebon of Left Support Both of Right Support Total Beem Length Incebon of Right Support Both of Right Support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B <sub>12.1</sub> = W<br>S <sub>12.1</sub> = C<br>S <sub>82.1</sub> = V<br>S <sub>82.2</sub> = W<br>S <sub>82.2</sub> = S<br>Direction 1                            | V V V V V V V V V V V V V V V V V V V | -Moment (ft*)                        | d <sub>o</sub> =    | 2000<br>1500<br>1000<br>500<br>0                 | ,A.,              |                       |              | Effective for A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37.5<br>5.327<br>32.17<br>37.5<br>3.25<br>34.25           | g 20.07 g 17.43 ft | ft ft    |
| Total Beem Length Incebon of Left Support Both of Right Support Total Beem Length Incebon of Right Support Both of Right Support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B <sub>12.1</sub> = W<br>S <sub>12.1</sub> = O<br>S <sub>82.1</sub> = W<br>B <sub>12.2</sub> = W<br>S <sub>12.2</sub> = S<br>Direction 1                            | V V V V V V V V V V V V V V V V V V V | -Moment (ft*)                        | d <sub>o</sub> =    | 2000<br>1500<br>1000<br>500<br>0                 | ,A.,              |                       |              | Effective form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37.5<br>5.327<br>32.17<br>37.5<br>3.25<br>34.25           | \$ 20.07 g 17.43 ft ft ft ft ft ft                     | ft ft    |
| Total Beem Length resident of Left Support tion of Right Support tion of Right Support total Beem Length resident of Left Support tion of Right Support ti | B <sub>12.1</sub> = V<br>S <sub>12.1</sub> = O<br>S <sub>R2.1</sub> = V<br>B <sub>12.2</sub> = V<br>S <sub>12.2</sub> = (V<br>S <sub>R2.2</sub> = S<br>Direction 1  | V V V V V V V V V V V V V V V V V V V | -Moment (ft*)                        | d <sub>o</sub> =    | 2000<br>1500<br>1000<br>500<br>0                 | ,A.,              |                       |              | Effective length of the state o | 37.5<br>5.327<br>32.17<br>37.5<br>3.25<br>34.25           | g 20.07 g 17.43 ft | ft ft    |
| Total Beem Length resison of Left Support tion of Right Support total Beam Length resison of Left Support total Beam Length. scation of Left Support tion of Right Support tion of Right Support tion to the S | B <sub>12.1</sub> = W<br>S <sub>12.1</sub> = C<br>S <sub>12.2</sub> = C<br>S <sub>12.2</sub> = C<br>S <sub>12.2</sub> = C<br>S <sub>12.2</sub> = S<br>Direction 1   | V V V V V V V V V V V V V V V V V V V | -Moment (ft*)                        | d <sub>o</sub> =    | 2000<br>1500<br>1000<br>500<br>0                 | ,A.,              |                       |              | Effective length of the state o | 37.5<br>5.327<br>32.17<br>37.5<br>3.25<br>34.25           | g 20.07 g 17.43 ft | ft ft    |
| Total Beam Length resison of Left Support tion of Right Support tion of Right Support total Beam Length receison of Left Support tion of Right Support tio | B <sub>12.1</sub> = V<br>S <sub>12.1</sub> = C<br>S <sub>R2.1</sub> = V<br>B <sub>12.2</sub> = V<br>S <sub>12.3</sub> = (1)<br>S <sub>R2.2</sub> = S<br>Direction 1 | V V V V V V V V V V V V V V V V V V V | -Moment (ft*)                        | d <sub>o</sub> =    | 2000<br>1500<br>1000<br>500<br>0<br>-500<br>9.00 | ,A.,              |                       |              | Effective length of the state o | 37.5<br>5.327<br>32.17<br>37.5<br>3.25<br>3.4.25<br>25.00 | g 20.07 g 17.43 ft | ft ft    |

| Pad Reinforcement:                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                |                          |             |                      |        |                 |    |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|--------------------------|-------------|----------------------|--------|-----------------|----|
|                                          | b = IF(Fc ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4000, 0.85, IF(F'c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >= 8000, 0.65      | 0.85 - (Fc - 4 | 1000) * 0.05))           |             | b=                   | 0.825  |                 |    |
| Effective width:                         | We = W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                |                          |             | W <sub>0</sub> =     | 37 500 | ft              |    |
|                                          | A <sub>al.p</sub> ' = Mn / (0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 * Fy * dc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                |                          |             | A <sub>H_0</sub> ' = | 34.904 | in <sup>2</sup> |    |
|                                          | a <sub>p</sub> = Ast_p' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fy/(B · Fc ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | We)                |                |                          |             | a <sub>p</sub> =     | 1.25   | in              |    |
| Required steet:                          | Ascos = Mn / (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y * (dc - ap / 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) * (W / We        | 9).            |                          |             | Ada at =             | 32.580 | in <sup>2</sup> |    |
| Shrinkaga                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60000, 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                |                          |             | feb =                | 0.0018 |                 |    |
|                                          | A <sub>et o eh</sub> = psh * V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                |                          |             | An pan=              | 8.505  | in <sup>2</sup> |    |
|                                          | A <sub>M p</sub> = MAX(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sh Ast o           | ste1 Ast r     | ste2)                    |             | A <sub>st o</sub> =  | 32 580 | in <sup>2</sup> |    |
| Reber                                    | \$ = 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Equally spaced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | _5(01,115(_)   | d <sub>b p</sub> =       | 1           | in                   | 02.000 |                 |    |
| Neoes                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                | A <sub>b,p</sub> =       | 0.79        | in <sup>2</sup>      |        |                 |    |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bottom, both di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rechons.           |                | Ob_p **                  | 0.13        |                      | 22.40  | in²             |    |
|                                          | A _ Ab_p *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | particular designation of the last of the |                    | 00.10          | n²                       | -           | A <sub>8,p</sub> =   | 33.18  | in <sup>2</sup> |    |
|                                          | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A <sub>s,p</sub> ≃ | 00.10          | 11                       | >=          | Aug =                | 32,58  |                 | OK |
| Bar separation:                          | B (W - 2 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                |                          |             | B. 0 =               | 9.80   | in              |    |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                 | >#             | B <sub>ap</sub> ≠        | 9.80        | in                   | >=     | 4°              | OK |
| Pad Development Length:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                |                          |             |                      |        |                 |    |
| Reinforcement location.                  | Ψ <sub>Lp</sub> = if the spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ce under the re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ebar > 12 ir       | , use 1.3, e   | Ise use 1.0              |             | Ψι, =                | 1.3    |                 |    |
| [ACI 25.4 2.4]                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                |                          |             |                      |        |                 |    |
| Epoxy coating                            | ψ <sub>e,p</sub> = if epoxy-c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                |                          |             | Ψ=_0=                | 1.0    |                 |    |
| [ACI 25.4.2.4]                           | The second secon | used, then if B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                | STATE OF THE OWNER, WHEN | else 1.2    |                      |        |                 |    |
| Max term:                                | ψιψω <sub>D</sub> = the produ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ict of wt & we,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | need not b         | e taken larg   | er than 1,7              |             | ΨιΨο_p =             | 1.3    |                 |    |
| [AC) 25.4 2.4]                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                |                          |             |                      |        |                 |    |
| Reinforcement size:                      | ψω = if the bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | size is 6 or les                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s, then use        | 0.8, else u    | se 1.0                   |             | ψ <sub>a_p</sub> =   | - 1    |                 |    |
| [ACI 25.4 2.4]                           | 4 (40.10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                |                          |             | 4 1                  |        | _               |    |
| Light weight concrete:<br>[ACI 25.4 2.4] | $\lambda_p = \text{if lightwise}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ght concrete is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | used, 0.75         | o, else use 1  | 0.1                      |             | = مر                 | 1.0    |                 |    |
| Specing/cover                            | c o = the small                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne of half the h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ar rancina         | or the cons    | rate adap d              | intana      | c <sub>o</sub> =     | 3.50   | in              |    |
| [ACI 25.4.2.4]                           | o_p - the attibili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | di Ot. Hell Did L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ar spacing         | OI BIG CONG    | icio dago o              | is is the   | -0_0                 | 0.00   |                 |    |
| Transverse bars                          | k <sub>v o</sub> = 0 in (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | per simplification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on)                |                |                          |             | K <sub>e o</sub> =   | 0      | in              |    |
| (ACI 25.4 2.3)                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                |                |                          |             |                      |        |                 |    |
| Mex term                                 | c,' = MIN( 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5. (c p + ktr p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ) / db p)          |                |                          |             | c ,' =               | 2.500  |                 |    |
| (ACI 25.4.2.3)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                |                          |             |                      |        |                 |    |
| Excess reinforcement:                    | R <sub>6</sub> = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | fex                | ess reinforcen | nent reduction           | is not used | Re=                  | 1.00   |                 |    |
| [ACT 25.4 10.1]                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,,,,,,             |                |                          |             | , 3                  |        |                 |    |
| Development (tensila)                    | L <sub>d</sub> = (3 / 40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *(Fy/A_p * \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (F'c)) * ψtų       | e_p * ws_p     | * R_p * db_              | p/c_p'_     | u L <sub>dp</sub> '= | 34.9   | in              |    |
| [ACr 25.4 2 2]                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                |                          |             |                      | 10.2   |                 |    |
| Minimum length:                          | La_min = 12 inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | es                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                |                          |             | Ld_mm =              | 12.0   | in              |    |
| JACI 25.4.2 1J                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                |                          |             |                      |        |                 |    |
| Development length                       | Lop = MAX( L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d_min, Ldp' )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                |                          |             | L <sub>dp</sub> =    | 34.9   | in              |    |
| Longth evailable in pad:                 | Lped = (W / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -W12)-cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                |                          |             | Lped #               | 36.0   | in              |    |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Load =             | 36.00          |                          | >=          | L <sub>do</sub> =    | 34.88  | in              | OK |

# UNIT BASE FOUNDATION DIAGONAL BEARING CHECK

VB BTS II, LLC US-KY-5135 Fancy Farm

V- 31.0

290

A- 565090

|                                            |                        | Load Case -<br>DL 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Load Case -<br>DL 0.9   |                 |
|--------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|
| Moment of Inertia of Mat                   | MOI                    | 164794.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 164794.92               | ft <sup>4</sup> |
| Total Factored Weight                      | P'                     | 1514.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1136.06                 | kips            |
| Load Eccentricity                          | е                      | 9.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.06                   | ft.             |
| Bearing at Corner A                        | B <sub>c a</sub>       | 3.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.01                    | ksf             |
| Bearing at Corner B                        | Beb                    | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.81                    | ksf             |
| Bearing at Corner C                        | Всс                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.40                   | ksf             |
| Bearing at Corner D                        | B <sub>c d</sub>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.81                    | ksf             |
| Initial Location of Neutral Axis from C    | NA c ini               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16,80                   | ft              |
| Calculated Location of Neutral Axis from C | NA c cal               | 17.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.09                   | ft              |
| MOI for Effective Bearing Area             | MOI                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 117004.22               | ft⁴             |
| Distance to Point Load from NA             | L <sub>p</sub>         | 18.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.49                   | ft              |
| Effective Length in Bearing along AB & AD  | Well                   | 37.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.50                   | ft              |
| Total Vol.<br>Difference                   | Voltot                 | 1514.75<br>-0.0002<br>ok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1136.06<br>0.0000<br>ok | kips<br>kips    |
| Adjusted Bearing at A                      | B <sub>c_s_sd</sub>    | 3.6505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0723                  | ksf             |
| Adjusted Bearing at B & D                  | B <sub>c_td_adj</sub>  | The second secon | 0.34                    | ksf             |
| Maximum Diagonal Bearing Pressure          | B <sub>c_dis_max</sub> | 3.6505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0723                  | ksf             |
| Bearing Available                          | B <sub>c</sub> * φr    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.2500                  | ksf             |
| Check                                      |                        | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OK                      |                 |



# THIS SPREADSHEET IS SET UP FOR A MAXIMUM OF 56 BARS. MAXIMUM FACTORED MOMENT OF A CIRCULAR SECTION



| Found            | lation |      |
|------------------|--------|------|
| Concrete         |        |      |
| Pier diameter =  | 3.00   | ft   |
| Pier area =      | 1017.9 | in^2 |
| Reinforcement    |        |      |
| Clear cover =    | 3.00   | in   |
| Cage diameter =  | 2.33   | ft   |
| Bar size =       | 8      |      |
| Bar diameter =   | 1.000  | in   |
| Bar area =       | 0.785  | in^2 |
| Number of bars = | 15     |      |

| Material Strength               | 8       |     |
|---------------------------------|---------|-----|
| Concrete compressive strength = | 4500    | psi |
| Reinforcement yield strength =  | 60000   | psi |
| Modulus of elasticity =         | 29000   | ksi |
| Reinforcement yield strain =    | 0.00207 |     |
| Limiting compressive strain =   | 0.003   |     |

(per ACI 10.3.5 - OK)

| Seismic             |     |
|---------------------|-----|
| SDC =               | D   |
| Are hooks required? | yes |

#### Minimum Area of Steel

Required area of steel = 10.18 in/2
Actual area of steel = 11.78 in/2
Bar spacing = 5.28 in

#### **Axial Loading**

Load factor = 1.00

Reduction factor = 0.65575 (per ACI 9.3.1 & 2) 0.6557471

Factored axial load = 451.23 kips

#### Neutral Axis

Distance from extreme edge to neutral axis = 3.85 iii

Equivalent compression zone factor = 0.825 (per ACI 10.2.7.3)

OK

Distance from extreme edge to

Equivalent compression zone factor = 3.18 in Distance from centroid to neutral axis = 14.15 in

#### Compression Zone

Area of steel in compression zone = 0.00 in^2

Angle from centroid of pier to intersection of

equivalent compression zone and edge of pier = 34.58 deg

Area of concrete in compression = 44.13 in^2 44.130982

Force in concrete = 0.85 \* Fc \* (Acc - steel in comp zone) = 168.80 kips (per ACI 10.3.6.2)

Total reinforcement forces = -620.03 kips

Force in concrete = -168.80 kips

Force in concrete - - 100.00 kips

Sum of the forces in concrete = 0.00 kips OK

#### **Maximum Moment**

First moment of the concrete area in compression about the centoid = 710 62 in<sup>3</sup>
Distance between centroid of concrete in compression and centroid of pier = 16.10 in

Moment of concrete in compression = 2718.12 in-kips

Total reinforcement moment = 1168.94 in-kips

Nominal moment strength of column = 3887.06 in-kips
Factored moment strength of column = 2548.93 in-kips 212.41 ft-kips

Maximum allowable moment of the pier = 212.41 ft-kips

# Individual Bars

| Bar | Angle from first bar | Distance<br>to<br>centroid | Distance<br>to<br>neutral<br>axis | Distance to equivalent comp. zone | Strain   | Area of<br>steel in<br>compressi<br>on | Axial force | Moment    |
|-----|----------------------|----------------------------|-----------------------------------|-----------------------------------|----------|----------------------------------------|-------------|-----------|
| #   | (deg)                | (in)                       | (in)                              | (in)                              |          | (in^2)                                 | (kips)      | (in-kips) |
| 1   | 0.00                 | 0.00                       | -14.15                            | -14.82                            | -0.01101 | 0.00                                   | -47.12      | 0.00      |
| 2   | 24.00                | 5.69                       | -8.45                             | -9.13                             | -0.00658 | 0.00                                   | -47.12      | -268.34   |
| 3   | 48.00                | 10.40                      | -3.74                             | -4.42                             | -0.00291 | 0.00                                   | -47.12      | -490.28   |
| 4   | 72.00                | 13.31                      | -0.83                             | -1.51                             | -0.00065 | 0.00                                   | -14.74      | -196.29   |
| 5   | 96.00                | 13.92                      | -0.22                             | -0.90                             | -0.00017 | 0.00                                   | -3.95       | -55.03    |
| 6   | 120.00               | 12.12                      | -2.02                             | -2.70                             | -0.00157 | 0.00                                   | -35.85      | -434.65   |
| 7   | 144.00               | 8.23                       | -5.92                             | -6.59                             | -0.00461 | 0.00                                   | -47.12      | -387.78   |
| 8   | 168.00               | 2.91                       | -11.24                            | -11.91                            | -0.00875 | 0.00                                   | -47.12      | -137.17   |
| 9   | 192.00               | -2.91                      | -17.06                            | -17.73                            | -0.01328 | 0.00                                   | -47.12      | 137.17    |
| 10  | 216.00               | -8.23                      | -22.38                            | -23.05                            | -0.01742 | 0.00                                   | -47.12      | 387.78    |
| 11  | 240.00               | -12.12                     | -26.27                            | -26.95                            | -0.02045 | 0.00                                   | -47.12      | 571.35    |
| 12  | 264.00               | -13.92                     | -28.07                            | -28.74                            | -0.02185 | 0.00                                   | -47.12      | 656.12    |
| 13  | 288.00               | -13.31                     | -27.46                            | -28.14                            | -0.02138 | 0.00                                   | -47.12      | 627.44    |
| 14  | 312.00               | -10.40                     | -24.55                            | -25.22                            | -0.01911 | 0.00                                   | -47.12      | 490.28    |
| 15  | 336.00               | -5.69                      | -19.84                            | -20.51                            | -0.01545 | 0.00                                   | -47.12      | 268.34    |

| Foundation:       | Pier diameter =             | 3.0    | ft  | Cover between side of pier and cage = | 3 00 in.  |
|-------------------|-----------------------------|--------|-----|---------------------------------------|-----------|
|                   | Cage diameter =             | 2.33   | ft  | Cover between top of pier and cage =  | 3.00 in.  |
|                   | Rebar size =                | 8      |     | Compressive strength of concrete =    | 4500 psi  |
|                   | Number of bars =            | 15     |     | Rebar yield strength =                | 60000 psi |
|                   | Clear spacing =             | 4.86   | in. | 1100.550.550.550.550.550              | 211121313 |
|                   | Are there hooks?            | n      |     |                                       |           |
|                   | Check Compression?          | n      |     |                                       |           |
| Anchor Steel:     | Part number:                | 262357 |     |                                       |           |
|                   | Embedment length =          | 55.5   | in. |                                       |           |
|                   | Bolt Diameter =             | 1.75   |     |                                       |           |
| Anchor Plate:     | Part number:                | 281262 |     |                                       |           |
|                   | Plate width =               | 19.25  | in. |                                       |           |
| Required develops | nent length (compression) = | 999.00 | in. |                                       |           |
| Required dev      | elopment length (tension) = | 34.88  | in. |                                       |           |
| Ava               | ilable development length = | 45.625 | in. |                                       |           |
|                   |                             | OK     |     |                                       |           |

| Foundation:   | Pier diameter =         | 3.0      | ft  | Cover between side of pier and cage = | 3.00 in.  |
|---------------|-------------------------|----------|-----|---------------------------------------|-----------|
|               | Cage diameter =         | 2.333333 | ft  | Minimum cover between A/S and cage =  | 3.00 in.  |
| Anchor Steel: | Part number:            | 262357   |     | Angle of anchor steel in foundation = | 0 degrees |
|               | Embedment length =      | 55.5     | in. |                                       |           |
| Anchor Plate: | Part number:            | 281262   |     |                                       |           |
|               | Largest plate width =   | 19.25    | in. |                                       |           |
|               | Bolt Diameter =         | 1.75     | in. |                                       |           |
|               | Minimum cage diameter = | 25.25    | in. |                                       |           |
|               | Actual cage diameter =  | 28       | in. |                                       |           |
|               |                         | OK       |     |                                       |           |

# **SELF-SUPPORT TOWER FOUNDATION DESIGN SUMMARY**

# VB BTS II, LLC **US-KY-5135 Fancy Farm**

V- 31 A- 565090 290

V 24

| ier Dimensions                  |       |          |
|---------------------------------|-------|----------|
| Pler diameter, d <sub>i</sub> : | 4.00  | ft       |
| Depth, D:                       | 36.5  | ft       |
| Ext. above grade, E:            | 0.50  | ft       |
| Bell diameter, b <sub>d</sub> : | none  | ft       |
| Volume, V <sub>a</sub> .        | 17.22 | cy / leg |

| Rebar | m_e        | 23 | verticals                   |
|-------|------------|----|-----------------------------|
|       | size, s_c: | 8  | equally space<br>in 35' ceo |
| Ties  | size, S_i: | 4  | default hook                |
|       | m_t:       | 46 | tie qty                     |

**Anchor Bolts** 

Uplift/Leg. U:

Soil Information Per: POD, Project No. 20-64965, Dated: March 23, 2022

| te Parameters                    |        |     |
|----------------------------------|--------|-----|
| Ultimate Bearing, Bc:            | 16.500 | ksf |
| Ultimate Pp:                     | 0.846  | kcf |
| Uit. Skin Friction, SF:          | 1.325  | ksf |
| Seismic Design Cat.:             | D      |     |
| Depth neglected, N:              | 4.00   | ft  |
| Neglect bottom, N <sub>b</sub> : | none   | ft  |

# Additional Notes:

\* No foundation modifications listed.

451.23 kips

\* See attached "Foundation Notes" for further information.

| aterial Properties     |       |     |  |  |  |
|------------------------|-------|-----|--|--|--|
| Steel tensile str. Fy: | 60000 | psi |  |  |  |
| Conc. Comp. str, F'c   | 4500  | psi |  |  |  |
| Conc Density, 5:       | 150.0 | pcf |  |  |  |
| Clear cover, cc:       | 3.00  | lin |  |  |  |

#### Tower design conforms to the following:

- International Building Code (IBC)
- \* ANSI TIA-222-G
- \* Building Code Requirements for Reinforced Concrete (ACI 318-

| P/N: 262357         | 66*    | long. 1 75° diame | ter .    |   |         |             |
|---------------------|--------|-------------------|----------|---|---------|-------------|
| Foundation Loading  | g      |                   |          |   |         | -, ,, ,,,,, |
| Max Corner Reacti   | ons    | stress rat        | 0. 95.5% |   | mark up | 1.4%        |
| Shear/Leg, 5:       | 47.00  | kips              | x 1.014  | 2 | 47.66   | kips        |
| MomenVLeg, M:       | 0.00   | ft-kips           | x 1.014  | = | 0.00    | ft-kips     |
| Compression/Leg, C: | 513.00 | kips              | x 1.014  | = | 520.18  | kips        |
|                     |        |                   |          |   |         |             |

445.00 kips

x 1.014 =





# **FOUNDATION NOTES**

- THE ON-SITE GEOTECHNICAL ENGINEER SHALL CONFIRM THAT THE INSITU SOIL STRENGTHS MEET OR EXCEED THOSE PARAMETERS GIVEN IN THE SOIL REPORT.
- 2 SEE GEOTECHNICAL REPORT FOR ADDITIONAL CONSTRUCTION RECOMMENDATIONS, BACKFILL COMPACTION DETAIL, SUBGRADE PREPARATION, ETC.
- 3 CONCRETE IS TO BE PLACED THE SAME DAY THAT THE EXCAVATION IS COMPLETED.
  4 A TEMPORARY, FULL LENGTH STEEL CASING MAY BE REQUIRED DURING INSTALLATION.

# SST DRILLED PIER FOUNDATION

# VB BTS II, LLC US-KY-5135 Fancy Farm

V- 31.0 290 A- 565090

| Design Summary |       |    |  |  |  |
|----------------|-------|----|--|--|--|
| Pier diameter: | 4.00  | R  |  |  |  |
| Design depth:  | 36.5  | ft |  |  |  |
| Output value   | 47 00 |    |  |  |  |

| Pier diameter:       | 4.00  | R           |
|----------------------|-------|-------------|
| Design depth:        | 36.5  | ft          |
| Concrete volume:     | 17.22 | cu.yd. sach |
| Use #4 circular ties |       |             |

Min. concrete compressive strength to be 4500 pai. Use anchor bolt p/n 135816

| Maximum Loading    |        |          |  |  |  |  |
|--------------------|--------|----------|--|--|--|--|
| Max, Uplift, U max | 451.23 | kips/leg |  |  |  |  |
| Max. Comp., C max: | 602.83 | kips/leg |  |  |  |  |
| Max. Shear, S mex: | 47.66  | kips/leg |  |  |  |  |

Soil per: POD, Project No. 20-64965, Dated: March 23, 2022

...

Ultimate bearing: Ultimate S F (uplift): Ultimate S F (comp.): 18.500 ksf 1.325 ksf 1.325 ksf

| ayer | From    | To         | Cont. layer  | Pier     |          |        | 100                    | Y                      |                                   |                   |                          |                 |              |                          |                   |                                 |
|------|---------|------------|--------------|----------|----------|--------|------------------------|------------------------|-----------------------------------|-------------------|--------------------------|-----------------|--------------|--------------------------|-------------------|---------------------------------|
| V    | 100     |            | length       | diameter | Cohesion | Phi    | Unit weight<br>of soil | Overburden<br>pressure | Average<br>overburden<br>pressure |                   | Factored<br>Incton force | weight          | Upim reessi. | Factored skin<br>Inction | friction force    | Factored<br>bearing<br>capacity |
| N    | (ft)    | (ft)       | (ft)         | (ft)     | (ksf)    | (deg)  | (pcl)                  | (ksf)                  | (ksf)                             | (ksf)             | (kips)                   | (kips)          | (kips)       | (kal)                    | (kips)            | (ksf)                           |
| 1    | 0.00    | 4.00       | 4.00         | 4.00     | 0.500    | 0.000  | 110.0                  | 0.440                  | 0.220                             | 0.000             | 0.00                     | 6.36            | 8.36         | 0.000                    | 0.00              | -                               |
| 2    | 4.00    | 13.00      | 9.00         | 4.00     | 1.500    | 0.000  | 120.0                  | 1.520                  | 0.980                             | 0.300             | 33.93                    | 12.72           | 46.65        | 0.300                    | 33.93             | - 2                             |
| 3    | 13.00   | 20.00      | 7.00         | 4.00     | 2.000    | 0.000  | 120.0                  | 2.360                  | 1,940                             | 0.375             | 32.99                    | 9.90            | 42.86        | 0.375                    | 32.99             |                                 |
| 4    | 20.00   | 36.50      | 16.50        | 4.00     | 0.000    | 32.000 | 90.0                   | 3.845                  | 3.103                             | 1.875             | 388.77                   | 23.33           | 412.10       | 1.875                    | 388.77            | 12.38                           |
|      | Lateral | pressure o | oefficient = | 0.6      |          |        |                        |                        |                                   |                   | Total Upark Cap          | secuty (hips) = | 508.00       | Total friction           | capecity (lops) = | 455.69                          |
|      |         |            |              |          | •        |        |                        |                        |                                   |                   |                          |                 | OK           |                          | сериону (кари) =  | 155.51                          |
|      |         |            |              |          |          |        |                        |                        | Warment Aust                      | ige Skin Friction | up#/i                    | 1 325           | lost         | Total Comp               | Capacity (kips) = | 81120                           |

Reinforcement Design:

Concrete Clear Cover (in) = 3.00

| # of<br>bars | Bar size | Area per bar<br>(sq.in.) | Clear<br>spacing<br>(in.) | Bar area<br>(sq.in.) | Steel<br>required<br>(sq.in.) | Ultimate<br>Lateral<br>Resist<br>(kcf) * | Maimum<br>length<br>(ft) ** |
|--------------|----------|--------------------------|---------------------------|----------------------|-------------------------------|------------------------------------------|-----------------------------|
| 23           | 8        | 0.79                     | 4.74                      | 18.17                | 18.10                         | 0.848                                    | 12.70                       |

\*see Passive (attached)
\*see Broms method (attached)
\*\*\*see Maximum Factored Moment of a
Circular Section (attached).

Minimum area of steel is OK Minimum pier length is OK Rebar spacing is OK

Moment Check (fi-k) 261.06

**Equivalent Weighted Average Cohesion** 

| Layer | From<br>(ft) | To<br>(ft) | Layer<br>Length<br>(ft) | Neglect? | Cohesion<br>(ksf) | Weighted<br>Cohesion<br>(ksf) |
|-------|--------------|------------|-------------------------|----------|-------------------|-------------------------------|
| 1     | 0.00         | 4.00       | 0.00                    | У        | 0.500             | 0.00                          |
| 2     | 4.00         | 13.00      | 9.00                    | n        | 1.500             | 13.50                         |
| 3     | 13.00        | 20.00      | 7.00                    | n        | 2.000             | 14.00                         |
| 4     | 20.00        | 36.50      | 16.50                   | n        | 0.000             | 0.00                          |
| 5     | 36.50        | 36.50      | 0.00                    | n        | 0.000             | 0.00                          |
| 6     | 36.50        | 36.50      | 0.00                    | n        | 0.000             | 0.00                          |
| 7     | 36.50        | 36.50      | 0.00                    | n        | 0.000             | 0.00                          |
| 8     | 36.50        | 36.50      | 0.00                    | n        | 0.000             | 0.00                          |
| 9     | 36.50        | 36.50      | 0.00                    | n        | 0.000             | 0.00                          |
| 10    | 36.50        | 36.50      | 0.00                    | n        | 0.000             | 0.00                          |
| 11    | 36.50        | 36.50      | 0.00                    | n        | 0.000             | 0.00                          |
| 12    | 36.50        | 36.50      | 0.00                    | n        | 0.000             | 0.00                          |
| 13    | 36.50        | 36.50      | 0.00                    | n        | 0.000             | 0.00                          |
| 14    | 36.50        | 36.50      | 0.00                    | n        | 0.000             | 0.00                          |
| 15    | 36.50        | 36.50      | 0.00                    | n        | 0.000             | 0.00                          |
| 16    | 36.50        | 36.50      | 0.00                    | n        | 0.000             | 0.00                          |
| 17    | 36.50        | 36.50      | 0.00                    | n        | 0.000             | 0.00                          |
| 18    | 36.50        | 36.50      | 0.00                    | n        | 0.000             | 0.00                          |
| 19    | 36.50        | 36.50      | 0.00                    | n        | 0.000             | 0.00                          |
| 20    | 36.50        | 36.50      | 0.00                    | n        | 0.000             | 0.00                          |
| Bell  | 36.50        | 36.50      | 0.00                    | n        | 0.000             | 0.00                          |
|       |              | Total =    | 32.50                   | 1        | Total =           | 27.50                         |

| Weighted Average Equivalent Cohesion = | 0.85 | (ksf) |
|----------------------------------------|------|-------|
|----------------------------------------|------|-------|

| Diameter of pier, di:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.00     | ft                         |                                     |    | S/leg   | M/leg  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|-------------------------------------|----|---------|--------|
| Extension above grade, E:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.50     | ft                         |                                     |    | (kips)  | (k-ft) |
| Neglect at ground surface, N:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.00     | ft                         |                                     |    | 7.45.37 |        |
| Ultimate Passive Pressure, Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.846    | kcf                        |                                     | LC | 47.66   | 0      |
| Reduction Factor, f.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.75     |                            |                                     |    |         |        |
| Nominal Passive Pressure (Pp*f), Ppa-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.635    | kcf                        |                                     |    |         |        |
| # of pier dia Pp acts over, Nd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.00     |                            |                                     |    |         |        |
| Solved Brom's $G_a = \sqrt{((S * (E + N + F / 2) + 1))}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M) / ((N | <sub>d</sub> / 3) * 2.25 * | P <sub>pa</sub> * d <sub>i</sub> )) |    |         |        |
| Brom's $G_a = \sqrt{((S * (E + N + F / 2) + I))}$<br>Equation LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M) / ((N | <sub>d</sub> / 3) * 2.25 * | P <sub>pa</sub> * d <sub>i</sub> )) |    |         |        |
| Brom's $G_a = \sqrt{((S * (E + N + F / 2) + I))}$<br>Equation LC<br>for $G_a$ (ft) 6.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M) / ((N | <sub>d</sub> / 3) * 2.25 * | P <sub>pa</sub> * d <sub>i</sub> )) |    |         |        |
| Brom's $G_a = \sqrt{((S * (E + N + F / 2) + I))}$ Equation LC for $G_a$ (ft) 6.64  Minimum $L = E + N + F + G_a$ length of LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M) / ((N | <sub>d</sub> / 3) * 2.25 * | P <sub>pa</sub> * d <sub>i</sub> )) |    |         |        |
| Brom's $G_a = \sqrt{((S * (E + N + F / 2) + I))}$ Equation LC for $G_a$ (ft) 6.64  Minimum $L = E + N + F + G_a$ length of LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M) / ((N | <sub>d</sub> / 3) * 2.25 * | P <sub>pa</sub> * d <sub>i</sub> )) |    |         |        |
| Brom's $G_a = \sqrt{((S * (E + N + F / 2) + I))}$ Equation LC for $G_a$ (ft) 6.64  Minimum $L = E + N + F + G_a$ length of LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M) / ((N | <sub>d</sub> / 3) * 2.25 * | P <sub>pa</sub> * d <sub>i</sub> )) |    |         |        |
| Brom's $G_a = \sqrt{((S * (E + N + F / 2) + I))}$ Equation  For $G_a$ (ft) $LC$ Minimum $L = E + N + F + G_a$ length of or incomplete to the content of th | 12.70    | ft                         |                                     |    |         |        |
| Brom's $G_a = \sqrt{((S * (E + N + F / 2) + I))}$ Equation for $G_a$ (ft)  Minimum length of pier, L (ft)  Minimum length req'd, L:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.70    | ft                         |                                     |    |         |        |

## THIS SPREADSHEET IS SET UP FOR A MAXIMUM OF 56 BARS. MAXIMUM FACTORED MOMENT OF A CIRCULAR SECTION



| Found            | lation |      |
|------------------|--------|------|
| oncrete          |        |      |
| Pier diameter =  | 4.00   | ft   |
| Pier area =      | 1809.6 | in^2 |
| einforcement     |        |      |
| Clear cover =    | 3.00   | in   |
| Cage diameter =  | 3.33   | ft   |
| Bar size =       | 8      |      |
| Bar diameter =   | 1.000  | in   |
| Bar area =       | 0.785  | in^2 |
| Number of bars = | 23     |      |

|      |     | hs | Material Strength              |
|------|-----|----|--------------------------------|
|      | psi | ă. | oncrete compressive strength = |
| 11   | psi |    | Reinforcement yield strength = |
|      | ksi |    | Modulus of elasticity =        |
| (per |     | 0  | Reinforcement yield strain =   |
|      |     |    | Limiting compressive strain =  |

Saismic SDC=

D

yes

(per ACI 10.3.5 - OK)

| Bar size =     | 8     |      | Are hooks required? |
|----------------|-------|------|---------------------|
| Bar diameter = | 1.000 | in   |                     |
| Bar area =     | 0.785 | in^2 |                     |

#### Minimum Area of Steel

Required area of steel = 18.10 in^2
Actual area of steel = 18.06 in^2 No Good IIII
Bar spacing = 4.74 in

#### **Axial Loading**

Load factor = 1.00 Reduction factor = 0.65575 (per ACI 9.3.1 & 2)

Factored axial load = 451.23 kips

#### **Neutral Axis**

Distance from extreme edge to neutral axis = 5.93 In

Equivalent compression zone factor = 0.825 (per ACI 10.2.7.3)

Equivalent compression zone factor = 4.90 In

Distance from centroid to neutral axis = 18.07 in

#### Compression Zone

Area of steel in compression zone = 1.57 in^2 Angle from centroid of pier to intersection of equivalent compression zone and edge of pier = deg Area of concrete in compression = 96.95 in^2 Force in concrete = 0.85 ° fc ° (Acc - steel in comp zone) = 364.83 kips (per ACI 10.3.6.2) Total reinforcement forces = -816.06 kips Factored axial load = 451.23 kips Force in concrete = -364.83 kips

#### **Maximum Moment**

First moment of the concrete area in compression about the centoid = 2043.81 in^3
Distance between centroid of concrete in compression and centroid of pier = 21.08 in

kips

Moment of concrete in compression = 7690.92 in-kips
Total reinforcement moment = 5023.33 in-kips
Nominal moment strength of column = 12714.25 in-kips

Factored moment strength of column = 8337.33 in-kips 694.78 ft-kips

Sum of the forces in concrete =

Maximum allowable moment of the pier = 694.78 ft-kips

OK.

#### Individual Bars

| Bar | Angle from first bar | Distance<br>to<br>centroid | Distance<br>to<br>neutral<br>axis | Distance to equivalent comp. zone | Strain   | Area of<br>steel in<br>compressi<br>on | Axial force | Momen     |
|-----|----------------------|----------------------------|-----------------------------------|-----------------------------------|----------|----------------------------------------|-------------|-----------|
| #   | (deg)                | (in)                       | (in)                              | (in)                              |          | (ln^2)                                 | (kips)      | (in-kips) |
| 1   | 0.00                 | 0.00                       | -18.07                            | -19.10                            | -0.00913 | 0.00                                   | -47.12      | 0.00      |
| 2   | 15.65                | 5.40                       | -12.67                            | -13.71                            | -0.0064  | 0.00                                   | -47.12      | -254.28   |
| 3   | 31.30                | 10.39                      | -7.67                             | -8.71                             | -0.00388 | 0.00                                   | -47.12      | -489.70   |
| 4   | 46.96                | 14.62                      | -3.45                             | -4.49                             | -0.00174 | 0.00                                   | -39.71      | -580.42   |
| 5   | 62.61                | 17.76                      | -0.31                             | -1.35                             | -0.00016 | 0.00                                   | -3.54       | -62.94    |
| 6   | 78.26                | 19.58                      | 1.52                              | 0.48                              | 0.00077  | 0.79                                   | 17.46       | 341.84    |
| 7   | 93.91                | 19.95                      | 1.89                              | 0.85                              | 0.00095  | 0.79                                   | 21.74       | 433.72    |
| 8   | 109.57               | 18.85                      | 0.78                              | -0.26                             | 0.00039  | 0.00                                   | 8.98        | 169.18    |
| 9   | 125.22               | 16.34                      | -1.73                             | -2.76                             | -0.00087 | 0.00                                   | -19.87      | -324.74   |
| 10  | 140.87               | 12.62                      | -5.44                             | -6.48                             | -0.00275 | 0.00                                   | -47.12      | -594.79   |
| 11  | 156.52               | 7.97                       | -10.10                            | -11.14                            | -0.0051  | 0.00                                   | -47.12      | -375.48   |
| 12  | 172.17               | 2.72                       | -15.34                            | -16.38                            | -0.00776 | 0.00                                   | -47.12      | -128.33   |
| 13  | 187.83               | -2.72                      | -20.79                            | -21.83                            | -0.01051 | 0.00                                   | -47.12      | 128.33    |
| 14  | 203.48               | -7.97                      | -26.03                            | -27.07                            | -0.01316 | 0.00                                   | -47.12      | 375.48    |
| 15  | 219.13               | -12.62                     | -30.69                            | -31.73                            | -0.01551 | 0.00                                   | -47.12      | 594.79    |
| 16  | 234.78               | -16.34                     | -34.40                            | -35.44                            | -0.01739 | 0.00                                   | -47.12      | 769.98    |
| 17  | 250.43               | -18.85                     | -36.91                            | -37.95                            | -0.01866 | 0.00                                   | -47.12      | 888.06    |
| 18  | 266.09               | -19.95                     | -38.02                            | -39.06                            | -0.01922 | 0.00                                   | -47.12      | 940.28    |
| 19  | 281.74               | -19.58                     | -37.65                            | -38.69                            | -0.01903 | 0.00                                   | -47.12      | 922.77    |
| 20  | 297.39               | -17.76                     | -35.82                            | -36.86                            | -0.01811 | 0.00                                   | -47.12      | 836.81    |
| 21  | 313.04               | -14.62                     | -32.68                            | -33.72                            | -0.01652 | 0.00                                   | -47.12      | 688.80    |
| 22  | 328.70               | -10.39                     | -28.46                            | -29.50                            | -0.01439 | 0.00                                   | -47.12      | 489.70    |
| 23  | 344.35               | -5.40                      | -23.46                            | -24.50                            | -0.01186 | 0.00                                   | -47.12      | 254.28    |

| Foundation:              | Pier diameter =             | 4.0    | ft  | Cover between side of pier and cage = | 3.00 in.   |
|--------------------------|-----------------------------|--------|-----|---------------------------------------|------------|
|                          | Cage diameter =             | 3.5    | ft  | Cover between top of pier and cage =  | 3.00 in.   |
|                          | Rebar size =                | 8      |     | Compressive strength of concrete =    | 4500 psi   |
|                          | Number of bars =            | 23     |     | Rebar yield strength =                | 60000 psi  |
|                          | Clear spacing =             | 4.74   | in. |                                       | (2.000.00) |
|                          | Are there hooks?            | n      |     |                                       |            |
|                          | Check Compression?          | n      |     |                                       |            |
| Anchor Steel:            | Part number:                | 262357 |     |                                       |            |
|                          | Embedment length =          | 55.5   | in. |                                       |            |
|                          | Bolt Diameter =             | 1.75   |     |                                       |            |
| Anchor Plate:            | Part number:                | 281262 |     |                                       |            |
|                          | Plate width =               | 19.25  | In. |                                       |            |
| Required developm        | ent length (compression) =  | 999.00 | in. |                                       |            |
| Required devi            | elopment length (tension) = | 26.83  | in. |                                       |            |
| 10 Tyrate 20 Co., 10 Co. |                             |        | in. |                                       |            |
| Avai                     | lable development length =  | 38.625 | in. |                                       |            |
|                          |                             | OK     |     |                                       |            |

| Foundation:   | Pier diameter =         | 4.0    | ft  | Cover between side of pier and cage = | 3.0 | 00 in.  |
|---------------|-------------------------|--------|-----|---------------------------------------|-----|---------|
|               | Cage diameter =         | 3.5    | ft  | Minimum cover between A/S and cage =  | 150 | 00 in.  |
| Anchor Steel: | Part number:            | 262357 |     | Angle of anchor steel in foundation = | 0   | degrees |
|               | Embedment length =      | 55.5   | in. |                                       |     |         |
| Anchor Plate: | Part number:            | 281262 |     |                                       |     |         |
|               | Largest plate width =   | 19.25  | in. |                                       |     |         |
|               | Bolt Diameter =         | 1.75   | in. |                                       |     |         |
|               | Minimum cage diameter = | 25.25  | in. |                                       |     |         |
|               | Actual cage diameter =  | 42     | in. |                                       |     |         |
|               |                         | OK     |     |                                       |     |         |



#### **DESIGNED APPURTENANCE LOADING**

| TYPE                             | ELEVATION | TYPE                | ELEVATION |
|----------------------------------|-----------|---------------------|-----------|
| 5/8" x 10" lightning rod         | 290       | 2-1/2" x 7" Sch. 40 | 240       |
| Beacon                           | 290       | 2-1/2" x 7" Sch. 40 | 240       |
| 40,000 sq.in. (277.8 sq.ft. EPA) | 285       | 6" HP               | 240       |
| 30,000 sq.in, (208,3 sq.ft, EPA) | 275       | OB light            | 145       |
| 30,000 sq.in. (208.3 sq.ft. EPA) | 265       | OB light            | 145       |
| SP1 R5 (Includes 4.5"x72" Pipe)  | 240       | OB light            | 145       |

SYMBOL LIST

| MARK | SIZE                                                       | MARK | SIZE                                          |
|------|------------------------------------------------------------|------|-----------------------------------------------|
| A    | P- 2.50" - 0.75" conn. 10" -C-(Pirod 226172)               | Н    | #12ZG-58 -2.00" - 0.875" connTR3-(Pirod       |
| В    | B P- 4.00*- 0.75" conn20" -C-Trans-6B-48-(Pirod<br>226184) |      | 195637)                                       |
|      |                                                            |      | #12ZG-58 -2.00" - 0.875" conn. (Pirod 195639) |
| C    | P= 8.00"- 0.75" connTrans-20' -C-(Pirod 226200)            | J    | #12ZG-58 BASE - 2.50" - 0.875" connTR4-(Pirod |
| D    | D P- 6.00"- 0.75" connHBD-Trans-20"-C-(Pirod 229377)       |      | 281171)                                       |
|      |                                                            |      | L2x2x1/8                                      |
| E    | #12ZG-58 - 1.50" - 1.00" conn. (Pirod 194651)              | L    | L2 1/2x2 1/2x3/16                             |
| F    | #12ZG-58 - 1.75" - 1.00" connTR1-(Pirod 195213)            | M    | L3x3x1/4                                      |
| G    | #12ZG-58 - 1.75" - 1 (00" conn. (Pirod 195217)             | N    | 2 @ 4.79167                                   |

**MATERIAL STRENGTH** 

| GRADE   | Fy     | Fu     | GRADE   | Fy     | Fu     |
|---------|--------|--------|---------|--------|--------|
| A572-50 | 50 ksi | 65 ksi | A572-58 | 58 ksi | 75 ksi |

#### **TOWER DESIGN NOTES**

1. Tower is located in Graves County, Kentucky.

- Tower designed for Exposure C to the TIA-222-G Standard.
   Tower designed for a 106 mph basic wind in accordance with the TIA-222-G Standard.
- Tower is also designed for a 30 mph basic wind with 1.00 in ice. Ice is considered to increase in thickness with height.
- Deflections are based upon a 60 mph wind. Tower Risk Category II.
- 6.
- Topographic Category 1 with Crest Height of 0.00 ft
- A KA Factor of 1.00 has been applied to the anchor tenant EPA loading (for shielding).
   A KA factor of 0.82 has been applied to EPA loading for other 2 carriers (for shielding).
   TOWER RATING: 98.6%

ALL REACTIONS ARE FACTORED

MAX. CORNER REACTIONS AT BASE:

DOWN: 513 K SHEAR 47 K

UPLIFT -445 K SHEAR: 41 K

> AXIAL 281 K

SHEAR MOMENT 2312 kip-ft 11 K

TORQUE 8 kip-ft 30 mph WIND - 1 0000 in ICE

> AXIAL 90 K

SHEAR MOMENT 71 K 12978 kip-ft

TORQUE 48 kip-ft REACTIONS - 106 mph WIND



**STRUCTURES** 

1545 Pidco Dr. Plymouth, IN ont Industries, Inc. -Specialty Structures Group Phone: (574)-936-4221 FAX: (574)-936-6458

| 565090                    |                                              | Min so      |
|---------------------------|----------------------------------------------|-------------|
| roject H-31 x290' SST - 1 | US-KY-5135 Fancy I                           | Farm        |
| lient: VB BTS II, LLC     | Drawn by: JL                                 | App'd:      |
| ode: TIA-222-G            | Date 10/06/22                                | Scale NTS   |
| ath:                      | N. A. S. | Dwg No. E-1 |

#### Feed Line Plan

App Out Face Trass-Log





| 565090                   |                                |             |
|--------------------------|--------------------------------|-------------|
| oject H-31 x290' SST - I | US-KY-5135 Fancy               | Farm        |
| ient: VB BTS II, LLC     | Drawn by JL                    | App'd       |
| ode TIA-222-G            | Date 10/06/22                  | Scale NTS   |
| ath:                     | e are the free from the second | Dwg No. E-7 |

#### Plot Plan Total Area - 0.09 Acres





TIA-222-G - 106 mph/30 mph 1.0000 in Ice Exposure C

Leg Compression (K)





| ob 565090                  |                                     |             |
|----------------------------|-------------------------------------|-------------|
| Project H-31 x290' SST - I | US-KY-5135 Fancy i                  | Farm        |
| Client: VB BTS II, LLC     | Drawn by: JL                        | App'd       |
| Code: TIA-222-G            | Date: 10/06/22                      | Scale NTS   |
| Path                       | 6-KY-5180 Fancy Farm02 Tower Calcus | Dwg No. E-3 |







1545 Pidco Dr. Plymouth, IN nt Industries, Inc. -Specialty Structures Group Phone: (574)-936-4221 FAX: (574)-936-6458

| <sup>Job.</sup> 565090    |                                     |             |
|---------------------------|-------------------------------------|-------------|
| Project: H-31 x290' SST - | US-KY-5135 Fancy                    | Farm        |
| Client: VB BTS II, LLC    | Drawn by: JL                        | App'd:      |
| Code: TIA-222-G           | Date 10/06/22                       | Scale NTS   |
| Delhi                     | SAY 5180 Fancy Farming Tower Calcus | Dwg No. E-4 |





| Valmont                                                      | Јо <b>в</b> 565090                            | Page 1 of 72             |
|--------------------------------------------------------------|-----------------------------------------------|--------------------------|
| 1545 Pidco Dr                                                | Project H-31 x290' SST - US-KY-5135 Fancy Far | m Date 07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                         | Designed by<br>JL        |

#### **Tower Input Data**

The main tower is a 3x free standing tower with an overall height of 290.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.00 ft at the top and 31.00 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Graves County, Kentucky.

ASCE 7-10 Wind Data is used.

Basic wind speed of 106 mph.

Risk Category II.

Exposure Category C.

Topographic Category 1.

Crest Height 0.00 ft.

Nominal ice thickness of 1.0000 in.

Ice thickness is considered to increase with height.

Ice density of 56 pcf.

A wind speed of 30 mph is used in combination with ice.

Temperature drop of 50 °F.

Deflections calculated using a wind speed of 60 mph.

A KA Factor of 1.00 has been applied to the anchor tenant EPA loading (for shielding)...

A KA factor of 0.82 has been applied to EPA loading for other 2 carriers (for shielding)...

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

#### **Options**

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice Always Use Max Kz
- Use Special Wind Profile

  √ Include Bolts In Member Capacity
  Leg Bolts Are At Top Of Section
  Secondary Horizontal Braces Leg
  Use Diamond Inner Bracing (4 Sided)
  SR Members Have Cut Ends
  SR Members Are Concentric

Distribute Leg Loads As Uniform

- Assume Legs Pinned

  √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
- √ Retension Guys To Initial Tension Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt Autocalc Torque Arm Areas Add IBC 6D+W Combination
- √ Sort Capacity Reports By Component Triangulate Diamond Inner Bracing
- √ Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg Angle Legs

Use ASCE 10 X-Brace Ly Rules

- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression
- √ All Leg Panels Have Same Allowable Offset Girt At Foundation
- √ Consider Feed Line Torque
- √ Include Angle Block Shear Check Use TIA-222-G Bracing Resist Exemption Use TIA-222-G Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

# Valmont

1545 Pidco Dr.

Plymouth, IN Phone: (574)-936-4221 FAX: (574)-936-6458

| Job     | 565090                                 | Page<br>2 of 72           |
|---------|----------------------------------------|---------------------------|
| Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Client  | VB BTS II, LLC                         | Designed by               |



### **Tower Section Geometry**

| Tower<br>Section | Tower<br>Elevation | Assembly<br>Database | Description            | Section<br>Width | Number<br>of<br>Sections | Section<br>Length |  |
|------------------|--------------------|----------------------|------------------------|------------------|--------------------------|-------------------|--|
|                  | ſ                  |                      |                        | fi               |                          | fi                |  |
| TI               | 290.00-280.00      |                      | V-Series Leg           | 5 00             | 1                        | 10 00             |  |
| T2               | 280.00-260.00      |                      | V-Series Leg           | 5 00             | 1                        | 20.00             |  |
| T3               | 260.00-240.00      |                      | V-Series Leg           | 5 00             | 1                        | 20.00             |  |
| T4               | 240.00-220.00      |                      | V-Series Leg           | 7 00             | 1                        | 20 00             |  |
| T5               | 220 00-200 00      |                      | PiRod 12BDFH Truss Leg | 9.00             | 1                        | 20 00             |  |
| T6               | 200 00-180 00      |                      | PiRod 12BDFH Truss Leg | 11.00            | 1                        | 20.00             |  |
| T7               | 180.00-160.00      |                      | PiRod 12BDFH Truss Leg | 13 00            | -1                       | 20 00             |  |
| T8               | 160 00-140 00      |                      | PiRod 12BDFH Truss Leg | 15.00            | 1                        | 20 00             |  |
| T9               | 140 00-120 00      |                      | PiRod 12BDH2 Truss Leg | 17.00            | 1                        | 20.00             |  |
| T10              | 120 00-100 00      |                      | PiRod 12BDH2 Truss Leg | 19 00            | 1                        | 20 00             |  |
| TH               | 100 00-80 00       |                      | PiRod 12BDH2 Truss Leg | 21 00            | 1                        | 20 00             |  |
| T12              | 80 00-60 00        |                      | PiRod 12BDH2 Truss Leg | 23 00            | 1                        | 20.00             |  |
| T13              | 60 00-40 00        |                      | PiRod 12BDH2 Truss Leg | 25 00            | 1                        | 20.00             |  |
| T14              | 40 00-20 00        |                      | PiRod 12BDH2 Truss Leg | 27.00            | 1                        | 20 00             |  |
| TIS              | 20 00-0 00         |                      | PiRod 12BDH2 Truss Leg | 29.00            | 1                        | 20.00             |  |

| Tower   | Tower     | Diagonal | Bracing | Has     | Has         | Top Giri | Bottom Gir |
|---------|-----------|----------|---------|---------|-------------|----------|------------|
| Section | Elevation | Spacing  | Type    | K Brace | Horizontals | Offset   | Offset     |
|         |           |          |         | End     |             |          |            |
|         | ft        | fi       |         | Panels  |             | in       | in         |

| Valmont                                                     | Job<br>565090                                  | Page 3 of 72              |
|-------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1545 Pideo Dr                                               | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                          | Designed by<br>JL         |

| Tower Tower Section Elevation |               | Diagonal<br>Spacing | Bracing<br>Type | Has<br>K Brace | Has<br>Horizontals | Top Girt<br>Offset | Bottom Giri<br>Offset |  |
|-------------------------------|---------------|---------------------|-----------------|----------------|--------------------|--------------------|-----------------------|--|
|                               | fi            | ji                  |                 | End<br>Panels  |                    | in                 | ın                    |  |
| TI                            | 290 00-280 00 | 4 79                | X Brace         | No             | No                 | 5 0000             | 0 0000                |  |
| T2                            | 280 00-260 00 | 6 67                | X Brace         | No             | No                 | 0.0000             | 0 0000                |  |
| T3                            | 260 00-240 00 | 6.67                | X Brace         | No             | No                 | 0 0000             | 0.0000                |  |
| T4                            | 240.00-220.00 | 6.67                | X Brace         | No             | No                 | 0.0000             | 0.0000                |  |
| T5                            | 220 00-200 00 | 10 00               | X Brace         | No             | No                 | 0 0000             | 0 0000                |  |
| T6                            | 200 00-180 00 | 10.00               | X Brace         | No             | No                 | 0 0000             | 0 0000                |  |
| T7                            | 180.00-160.00 | 10.00               | X Brace         | No             | No                 | 0.0000             | 0.0000                |  |
| T8                            | 160.00-140.00 | 10.00               | X Brace         | No             | No                 | 0.0000             | 0.0000                |  |
| T9                            | 140 00-120 00 | 20 00               | X Brace         | No             | No                 | 0.0000             | 0.0000                |  |
| T10                           | 120 00-100 00 | 20 00               | X Brace         | No             | No                 | 0 0000             | 0 0000                |  |
| TII                           | 100.00-80.00  | 20 00               | X Brace         | No             | No                 | 0.0000             | 0.0000                |  |
| T12                           | 80.00-60 00   | 20 00               | X Brace         | No             | No                 | 0.0000             | 0.0000                |  |
| T13                           | 60.00-40.00   | 20 00               | X Brace         | No             | No                 | 0 0000             | 0 0000                |  |
| T14                           | 40.00-20 00   | 20.00               | X Brace         | No             | No                 | 0.0000             | 0.0000                |  |
| T15                           | 20 00-0 00    | 20 00               | X Brace         | No             | No                 | 0.0000             | 0.0000                |  |

| Tower | Section | Geometry | (cont'd) |
|-------|---------|----------|----------|
|-------|---------|----------|----------|

| Tower Elevation      | Leg<br>Type | Leg<br>Size                                                   | Leg<br>Grade        | Diagonal<br>Type      | Diagonal<br>Size  | Diagonal<br>Grade   |
|----------------------|-------------|---------------------------------------------------------------|---------------------|-----------------------|-------------------|---------------------|
| T1 290 00-280.00     | Pipe        | P- 2.50" - 0.75" conn -10"<br>-C-(Pirod 226172)               | A572-50<br>(50 ksi) | Equal Angle           | 1.2x2x1/8         | A572-50<br>(50 ksi) |
| T2 280 00-260 00     | Pipe        | P- 4.00"- 0.75" conn -20'<br>-C-Trans-6B-4B-(Pirod<br>226184) | A572-50<br>(50 ksi) | Equal Angle           | L2 1/2x2 1/2x3/16 | A572-50<br>(50 ksi) |
| T3 260 00-240 00     | Pipe        | P- 5 00"- 0 75" conn -Trans-20'<br>-C-(Pirod 226200)          | A572-50<br>(50 ksi) | Equal Angle           | L2x2x3/16         | A572-50<br>(50 ksi) |
| T4 240 00-220 00     | Pipe        | P- 6.00"- 0.75"<br>connHBD-Trans-20'<br>-C-(Pirod 229377)     | A572-50<br>(50 ksi) | Equal Angle           | L2 1/2x2 1/2x3/16 | A572-50<br>(50 ksi) |
| T5 220 00-200 00     | Truss Leg   | #12ZG-58 - 1 50" - 1 00" conn.<br>(Pirod 194651)              | A572-58<br>(58 ksi) | Equal Angle           | L2 1/2x2 1/2x3/16 | A572-50<br>(50 ksi) |
| T6 200 00-180 00     | Truss Leg   | #12ZG-58 - 1 75" - 1 00"<br>conn -TR1-(Pirod 195213)          | A572-58<br>(58 ksi) | Equal Angle           | L2 1/2x2 1/2x1/4  | A572-50<br>(50 ksi) |
| T7 180 00-160 00     | Truss Leg   | #12ZG-58 - 1 75" - 1 00" conn<br>(Pirod 195217)               | A572-58<br>(58 ksi) | Equal Angle           | L2 1/2x2 1/2x1/4  | A572-50<br>(50 ksi) |
| T8 160.00-140 00     | Truss Leg   | #12ZG-58 - 1.75" - 1.00" conn.<br>(Ptrod 195217)              | A572-58<br>(58 ksi) | Equal Angle           | L3x3x3/16         | A572-50<br>(50 ksi) |
| T9 140.00-120.00     | Truss Leg   | #12ZG-58 -2 00" - 0 875"<br>conn -TR3-(Pirod 195637)          | A572-58<br>(58 ksi) | Double Equal<br>Angle | 2L3x3x3/16        | A572-50<br>(50 ksi) |
| T10<br>120 00-100 00 | Truss Leg   | #12ZG-58 -2 00" - 0 875"<br>conn (Pirod 195639)               | A572-58<br>(58 ksi) | Double Equal<br>Angle | 2L3x3x3/16        | A572-50<br>(50 ksi) |
| T11 100.00-80.00     | Truss Leg   | #12ZG-58 -2 00" - 0 875"<br>conn (Pirod 195639)               | A572-58<br>(58 ksi) | Double Equal<br>Angle | 2L3x3x3/16        | A572-50<br>(50 ksi) |
| T12 80 00-60 00      | Truss Leg   | #12ZG-58 -2 25" - 0 875"<br>conn. (Pirod 195960)              | A572-58<br>(58 ksi) | Double Equal<br>Angle | 2L3x3x3/16        | A572-50<br>(50 ksi) |
| T13 60.00-40 00      | Truss Leg   | #12ZG-58 -2 25" - 0.875"<br>conn (Pirod 195960)               | A572-58<br>(58 ksi) | Double Equal<br>Angle | 2L3 I/2x3 I/2x1/4 | A572-50<br>(50 ksi) |
| T14 40.00-20 00      | Truss Leg   | #12ZG-58 -2 25" - 0.875"<br>conn. (Pirod 195960)              | A572-58<br>(58 ksi) | Double Equal<br>Angle | 2L3 1/2x3 1/2x1/4 | A572-50<br>(50 ksi) |
| T15 20 00-0 00       | Truss Leg   | #12ZG-58 BASE - 2.50" -<br>0 875" conn -TR4-(Pirod<br>281171) | A572-58<br>(58 ksi) | Double Equal<br>Angle | 2L3 1/2x3 1/2x1/4 | A572-50<br>(50 ksi) |

| Valmont                                                    | Job     | 565090                                 | Page 4 of 72              |
|------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr                                              | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth IN<br>Phone (574) 936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by               |

| Tower Section Geometry (cont'd) |                  |                  |                     |                     |                     |                      |
|---------------------------------|------------------|------------------|---------------------|---------------------|---------------------|----------------------|
| Tower<br>Elevation<br>fi        | Top Giri<br>Type | Top Girt<br>Stze | Top Girl<br>Grade   | Bottom Girt<br>Type | Bottom Girt<br>Size | Bottom Girt<br>Grade |
| TI 290 00-280 00                | Equal Angle      | L3x3x1/4         | A572-50<br>(50 ksi) | Solid Round         |                     | A36<br>(36 ksi)      |

| Tower<br>Elevation  | Gusset<br>Area<br>(per face) | Gusset<br>Thickness | Gusset Grade    | Adjust Factor A <sub>j</sub> | Adjusi<br>Factor<br>A, | Weight Mult | Double Angle<br>Stitch Bolt<br>Spacing<br>Diagonals | Double Angle<br>Stitch Bolt<br>Spacing<br>Horizontals | Double Ang<br>Stitch Bolt<br>Spacing<br>Redundants |
|---------------------|------------------------------|---------------------|-----------------|------------------------------|------------------------|-------------|-----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|
|                     |                              | in                  | 127             |                              |                        | 1.00        | in                                                  | <i>in</i>                                             | in                                                 |
| 90 00-280 00        | 0.00                         | 0.2500              | A36<br>(36 ksi) | - 1                          | - 1                    | 1 05        | 36 0000                                             | 36 0000                                               | 36.0000                                            |
| T2                  | 0.00                         | 0.2500              | A36             |                              | 1                      | 1.05        | 36 0000                                             | 36.0000                                               | 36.0000                                            |
| 80 00-260 00        | 0.00                         | 0.2300              | (36 ksi)        | 1.                           | 1                      | 1.05        | 30 0000                                             | 30.0000                                               | 30.0000                                            |
| T3                  | 0.00                         | 0 3750              | A36             | 1                            | 1                      | 1.05        | 36 0000                                             | 36 0000                                               | 36.0000                                            |
| 60 00-240 00        | 0.00                         | 0 3750              | (36 ksi)        |                              | ,                      | 1.03        | 30 0000                                             | 30.0000                                               | 30.0000                                            |
| T4                  | 0.00                         | 0 3750              | A36             | É                            | 4                      | 1.05        | 36 0000                                             | 36.0000                                               | 36.0000                                            |
| 40 00-220 00        |                              |                     | (36 ksi)        | 3                            |                        | 4145        | 20 0000                                             | 50.000                                                | 20.0000                                            |
| T5                  | 0.00                         | 0 5000              | A36             | 1                            | 1                      | 1.05        | 36 0000                                             | 36.0000                                               | 36.0000                                            |
| 20 00-200 00        |                              |                     | (36 ksi)        |                              |                        |             | - E.W. 3-3-3-3-                                     |                                                       |                                                    |
| T6                  | 0.00                         | 0.5000              | A36             | 1                            | 1                      | 1.05        | 36.0000                                             | 36.0000                                               | 36.0000                                            |
| 00 00-180 00        |                              |                     | (36 ksi)        |                              |                        |             |                                                     |                                                       |                                                    |
| T7                  | 0.00                         | 0 5000              | A36             | 1                            | 1                      | 1.05        | 36 0000                                             | 36.0000                                               | 36.0000                                            |
| 80 00-160 00        |                              |                     | (36 ksi)        |                              |                        |             |                                                     |                                                       |                                                    |
| Т8                  | 0.00                         | 0.5000              | A36             | 1                            | 1                      | 1.05        | 36 0000                                             | 36.0000                                               | 36.0000                                            |
| 60 00-140 00        |                              |                     | (36 ksi)        |                              |                        |             |                                                     |                                                       |                                                    |
| Т9                  | 0.00                         | 0 6250              | A36             | 1                            | )                      | 1.05        | 36 0000                                             | 36.0000                                               | 36.0000                                            |
| 40 00-120 00        | 2.21                         | 0.000               | (36 ksı)        |                              |                        | V           |                                                     | 23 2022                                               |                                                    |
| T10                 | 0.00                         | 0.6250              | A36             | 1                            | 1                      | 1.05        | 36 0000                                             | 36.0000                                               | 36.0000                                            |
| 20 00-100 00        | 0.00                         | 0.4050              | (36 ksi)        | 100                          | 4                      | 1 5 5       | 25.0000                                             | 22.6466                                               |                                                    |
| T11                 | 0.00                         | 0 6250              | A36             | 1                            | 3                      | 1,05        | 36 0000                                             | 36.0000                                               | 36.0000                                            |
| 100 00-80 00<br>T12 | 0.00                         | 0.6250              | (36 ksi)<br>A36 |                              |                        | 1.05        | 77,0000                                             | 17.0000                                               | 76.0000                                            |
| 80.00-60.00         | 0.00                         | 0.0230              | (36 ksi)        | 1                            |                        | 1 05        | 36 0000                                             | 36.0000                                               | 36.0000                                            |
| T13                 | 0.00                         | 0.6250              | A36             | i                            |                        | 1.05        | 36 0000                                             | 36.0000                                               | 36.0000                                            |
| 60.00-40 00         | 0.00                         | 0.0230              | (36 ksi)        |                              | 1                      | 1.05        | 30.0000                                             | 30.0000                                               | 30.0000                                            |
| T14                 | 0.00                         | 0 6250              | A36             | 1                            | 1.                     | 1.05        | 36 0000                                             | 36 0000                                               | 36.0000                                            |
| 40.00-20.00         | 0.00                         | 0 0230              | (36 ksi)        | 1                            | 0.                     | 1.03        | 30 0000                                             | 20.0000                                               | 30.0000                                            |
| 15 20 00-0.00       | 0.00                         | 0.6250              | A36             | 1:                           | b                      | 1.05        | 36 0000                                             | 36.0000                                               | 36.0000                                            |
|                     | 0.00                         | 0.0200              | (36 ksi)        |                              |                        | 1103        | 20.0003                                             | 20.000                                                | 30,0000                                            |

| to-the con- |         |          |          |
|-------------|---------|----------|----------|
| Tower       | Section | Geometry | (cont'd) |

| Valmont                                                      | Job     | 565090                                 | Page 5 of 72              |
|--------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr                                                | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by               |

| Tower<br>Elevation | Calc<br>K<br>Single | Calc<br>K<br>Solid | Legs | X<br>Brace<br>Diags | K<br>Brace<br>Diags | Single<br>Diags | Girts | Horiz. | Sec<br>Horiz | Inner<br>Brace |
|--------------------|---------------------|--------------------|------|---------------------|---------------------|-----------------|-------|--------|--------------|----------------|
|                    | Angles              | Rounds             |      | X                   | X                   | X               | X     | X      | X            | X              |
| ft                 |                     |                    |      | Y                   | Y                   | Y               | Y     | Y      | Y            | Y              |
| T1                 | Yes                 | Yes                | 1    | 1                   | 4                   | 1               | 1     | 1      | (1)          | 1              |
| 290.00-280.00      |                     |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1            | 1              |
| T2                 | Yes                 | Yes                | T    | 10                  | 1                   | 1               | 1     | 1      | 1            | 1              |
| 280.00-260.00      |                     |                    |      | 100                 | 1                   | 1               | 1     | 1      | 1            | 0              |
| T3                 | Yes                 | Yes                | 1    | T                   | 1                   | 1               | 1     | 1      | 1            | T              |
| 260 00-240.00      |                     |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1            | 1              |
| T4                 | Yes                 | Yes                | T    | 1                   | 1                   | 1               | 1     | 1      | 1            | T              |
| 240.00-220.00      |                     |                    |      | 1                   | 1                   | 10              | 1     | 1      | 1            | 1              |
| T5                 | Yes                 | Yes                | T    | 1                   | 1                   | 1.              | 1     | 1      | 1.           | 1              |
| 220.00-200.00      |                     |                    |      | 1                   | 4                   | 1               | 1     | 1      | 1            | 1              |
| T6                 | Yes                 | Yes                | 1    | 1                   | 1                   | 1               | 1     | 1      | 1            | 1              |
| 200.00-180.00      |                     |                    |      | 1                   | 4                   | 1               | 1     | 1      | 1            | 1              |
| T7                 | Yes                 | Yes                | T    | P                   |                     | 1               | 1     | 1      | 11           | Î.             |
| 180 00-160.00      |                     |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1            | 1              |
| Т8                 | Yes                 | Yes                | 1    | 1                   | j.                  | 1               | 1     | 1      | 1            | 1              |
| 160.00-140.00      |                     |                    |      | 1                   | 1                   | 1               | î     | 1      | 1            | 1              |
| Т9                 | Yes                 | Yes                | Ĭ-   | 1                   | 10                  | 1               | Í     | I      | 1            | 1              |
| 40 00-120.00       |                     |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1            | 1              |
| T10                | Yes                 | Yes                | 1    | 1                   | 1                   | 1               | 1     | Î      | 1            | 1              |
| 120 00-100 00      |                     | 1.75               |      | 1                   | 1                   | 1               | 1     | 1      | 1            | 1              |
| T11                | Yes                 | Yes                | 1    | 1                   | 1                   | T.              | 1     | 1      | î            | 1              |
| 100.00-80 00       | ,,,==               |                    | 16   | 1                   | 1                   | 1               | 1     | 1      | 1            | 1              |
| T12                | Yes                 | Yes                | I.   | 1                   | 1                   | 10              | 1     | 1      | 1            | 1              |
| 80.00-60.00        |                     |                    |      | 1                   | 1                   | 1               | Î     | 1      | 1            | 1              |
| T13                | Yes                 | Yes                | 1    | 1                   | 1                   | 1               | ì     | 1      | T.           | 1              |
| 60 00-40.00        | 2 7896              |                    |      | 1                   | 1                   | 1               | 1     | 1      | 1            | 1              |
| T14                | Yes                 | Yes                | 1    | 1                   | 1                   | 1               | i.    | ĭ      | i            | 1              |
| 40 00-20 00        | . 00                | 4 63               |      | 1                   | 1                   | 1               | i     | i      | 11           | 1              |
| T15                | Yes                 | Yes                | 1    | 1                   | 1                   | 10              | i.    | 1      | î            | 1              |
| 20.00-0.00         | 1 00                | 1 %:31             | A .  | 1                   | Ŷ                   | 1               | 1     | 1      | Y            | Ŷ              |

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length

|                          |               |                         | Truss-Leg               | K Factors     |                         |                         |
|--------------------------|---------------|-------------------------|-------------------------|---------------|-------------------------|-------------------------|
|                          | Trus          | s-Legs Used As Leg Me   | mbers                   | Truss         | -Legs Used As Inner M   | embers                  |
| Tower<br>Elevation<br>ft | Leg<br>Panels | X<br>Brace<br>Diagonals | Z<br>Brace<br>Diagonals | Leg<br>Panels | X<br>Brace<br>Diagonals | Z<br>Brace<br>Diagonals |
| T5<br>220.00-200.00      | 1             | 0.5                     | 0.7                     | Î             | 0.5                     | 0.7                     |
| T6<br>200.00-180.00      | 1             | 0.5                     | 07                      | 1             | 0.5                     | 0.7                     |
| T7<br>180.00-160.00      | 1             | 0.5                     | 0 7                     | 1             | 0.5                     | 0.7                     |
| T8<br>160.00-140.00      | 1             | 0.5                     | 0.7                     | 1             | 0.5                     | 0.7                     |
| T9<br>140.00-120.00      | 1             | 0.5                     | 0.7                     | 1             | 0.5                     | 0.7                     |
| T10<br>120 00-100.00     | 1             | 0.5                     | 0.7                     | T-            | 0.5                     | 07                      |
| T11<br>100.00-80 00      | 1             | 0.5                     | 0.7                     | 1)            | 0.5                     | 0.7                     |

| Valmont                                                      | Job<br>565090                                  | Page 6 of 72              |
|--------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1545 Pidco Dr                                                | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                          | Designed by               |

| T12<br>80.00-60.00 | Î  | 0.5 | 0.7 | Î.  | 0.5 | 0.7 |
|--------------------|----|-----|-----|-----|-----|-----|
| T13<br>60 00-40 00 | 1  | 0.5 | 0.7 | l l | 0.5 | 0.7 |
| T14<br>40.00-20.00 | 1  | 0,5 | 0.7 | T.  | 0.5 | 07  |
| T15<br>20 00-0 00  | j. | 0.5 | 0 7 | 1>  | 0.5 | 0.7 |

| Tower<br>Elevation<br>ft | Leg                       |    | Diago                     | nal  | Top G                     | irt  | Botton                       | Girt | Mid                    | Girt | Long Ho                      | rizontal | Short Ho                     | rizontal |
|--------------------------|---------------------------|----|---------------------------|------|---------------------------|------|------------------------------|------|------------------------|------|------------------------------|----------|------------------------------|----------|
|                          | Net Width<br>Deduct<br>in | U  | Net Width<br>Deduct<br>in | U    | Net Width<br>Deduct<br>in | U    | Net<br>Width<br>Deduct<br>in | U    | Net<br>Width<br>Deduct | U    | Net<br>Width<br>Deduct<br>in | U        | Net<br>Width<br>Deduct<br>in | U        |
| TI<br>290.00-280.00      | 0.0000                    | 1  | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0 0000                       | 0.75 | 0.0000                 | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75     |
| T2<br>280.00-260.00      | 0.0000                    | 1  | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0 0000                       | 0.75 | 0.0000                 | 0.75 | 0.0000                       | 0 75     | 0.0000                       | 0.75     |
| T3<br>260 00-240 00      | 0.0000                    | 1  | 0.0000                    | 0 75 | 0.0000                    | 0.75 | 0 0000                       | 0.75 | 0.0000                 | 0.75 | 0.0000                       | 0.75     | 0 0000                       | 0 75     |
| T4<br>240.00-220.00      | 0.0000                    | 1  | 0.0000                    | 0 75 | 0.0000                    | 0.75 | 0.0000                       | 0 75 | 0,0000                 | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75     |
| T5<br>220 00-200 00      | 0.0000                    | 1  | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0 0000                       | 0.75 | 0.0000                 | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75     |
| T6<br>200.00-180.00      | 0.0000                    | 1  | 0.0000                    | 0 75 | 0.0000                    | 0.75 | 0.0000                       | 0 75 | 0.0000                 | 0.75 | 0.0000                       | 0 75     | 0.0000                       | 0.75     |
| T7<br>180.00-160.00      | 0.0000                    | 1  | 0.0000                    | 0.75 | 0.0000                    | 0 75 | 0 0000                       | 0.75 | 0,0000                 | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75     |
| T8<br>160 00-140 00      | 0.0000                    | T. | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75 | 0.0000                 | 0 75 | 0.0000                       | 0 75     | 0 0000                       | 0.75     |
| T9<br>140 00-120.00      | 0.0000                    | Ť. | 0.0000                    | 0.75 | 0.0000                    | 0 75 | 0 0000                       | 0.75 | 0.0000                 | 0.75 | 0.0000                       | 0 75     | 0.0000                       | 0.75     |
| T10<br>120.00-100.00     | 0.0000                    | 1  | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0 0000                       | 0.75 | 0 0000                 | 0 75 | 0.0000                       | 0 75     | 0.0000                       | 0 75     |
| T11<br>100.00-80.00      | 0.0000                    | 1  | 0.0000                    | 0 75 | 0.0000                    | 0.75 | 0 0000                       | 0.75 | 0.0000                 | 0 75 | 0.0000                       | 0.75     | 0.0000                       | 0 75     |
| T12<br>80.00-60.00       | 0.0000                    | 1  | 0.0000                    | 0.75 | 0.0000                    | 0 75 | 0 0000                       | 0 75 | 0 0000                 | 0 75 | 0.0000                       | 0 75     | 0.0000                       | 0 75     |
| T13                      | 0.0000                    | 1  | 0.0000                    | 0.75 | 0.0000                    | 0 75 | 0.0000                       | 0.75 | 0.0000                 | 0 75 | 0.0000                       | 0.75     | 0 0000                       | 0.75     |
| T14<br>40.00-20.00       | 0.0000                    | 1  | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75 | 0.0000                 | 0.75 | 0.0000                       | 0 75     | 0.0000                       | 0.75     |
| T15 20.00-0.00           | 0.0000                    | 1. | 0.0000                    | 0.75 | 0.0000                    | 0.75 | 0.0000                       | 0.75 | 0 0000                 | 0.75 | 0.0000                       | 0.75     | 0.0000                       | 0.75     |

| Tower<br>Elevation<br>st | Reduna<br>Horizon         |      | Redund<br>Diago           |      | Redund<br>Sub-Diag        |      | Redui<br>Sub-Hoi             |      | Redundan                     | t Vertical | Redunda                      | ant Hip | Redunda<br>Diag              |      |
|--------------------------|---------------------------|------|---------------------------|------|---------------------------|------|------------------------------|------|------------------------------|------------|------------------------------|---------|------------------------------|------|
|                          | Net Width<br>Deduct<br>in | U    | Net Width<br>Deduct<br>in | U    | Net Width<br>Deduct<br>in | U    | Net<br>Width<br>Deduct<br>in | U    | Net<br>Width<br>Deduct<br>in | U          | Net<br>Width<br>Deduct<br>in | U       | Net<br>Width<br>Deduct<br>in | U    |
| T1<br>90.00-280.00       | 0.0000                    | 0.75 | 0 0000                    | 0 75 | 0.0000                    | 0.75 | 0.0000                       | 0.75 | 0.0000                       | 0.75       | 0.0000                       | 0.75    | 0 0000                       | 0.75 |

| Valmont                                                      | Job     | 565090                                 | Page 7 of 72              |
|--------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr                                                | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by<br>JL         |

| Tower<br>Elevation<br>st | Reduna<br>Hortzoi                            |      | Reduna<br>Diago           |      | Redund<br>Sub-Diag        | 93,000 | Redui<br>Sub-Hoi             |       | Redundan                     | ı Verncal | Redund                       | ant Hip | Redunda<br>Diag              |      |
|--------------------------|----------------------------------------------|------|---------------------------|------|---------------------------|--------|------------------------------|-------|------------------------------|-----------|------------------------------|---------|------------------------------|------|
|                          | Net Width<br>Deduct<br>in                    | U    | Net Width<br>Deduct<br>in | U    | Net Width<br>Deduct<br>in | U      | Net<br>Width<br>Deduct<br>in | U     | Net<br>Width<br>Deduct<br>in | U         | Net<br>Width<br>Deduct<br>in | U       | Net<br>Width<br>Deduct<br>in | U    |
| T2                       | 0.0000                                       | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75   | 0 0000                       | 0.75  | 0.0000                       | 0.75      | 0.0000                       | 0 75    | 0 0000                       | 0.75 |
| 280.00-260.00            |                                              |      |                           |      |                           |        |                              |       |                              |           |                              |         |                              |      |
| T3                       | 0.0000                                       | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0 75   | 0.0000                       | 0.75  | 0.0000                       | 0.75      | 0.0000                       | 0.75    | 0 0000                       | 0.75 |
| 260.00-240.00            |                                              |      |                           |      | 0.2200                    |        |                              | 1.50  | 2.2622                       | 0.00      | e. 20200                     | 225     | 5 4 5 7 5                    | 2.00 |
| T4                       | 0.0000                                       | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0 75   | 0.0000                       | 0.75  | 0.0000                       | 0.75      | 0.0000                       | 0.75    | 0 0000                       | 0.75 |
| 240.00-220 00<br>T5      | 0 0000                                       | 0.75 | 0 0000                    | 0.75 | 0.0000                    | 0.75   | 0 0000                       | 0.75  | 0.0000                       | 0.75      | 0.0000                       | 0.75    | 0.0000                       | 0.75 |
| 220.00-200.00            | 0.0000                                       | 0 /3 | 0 0000                    | 0 /3 | 0.0000                    | 0 13   | 0.0000                       | 0.75  | 0.0000                       | 0.75      | 0 0000                       | 0.75    | 0.0000                       | 0.75 |
| T6                       | 0 0000                                       | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75   | 0 0000                       | 0.75  | 0 0000                       | 0.75      | 0 0000                       | 0.75    | 0 0000                       | 0 75 |
| 200.00-180.00            | 1.00 (2.2) (2.2)                             | 0.15 | 0.0000                    | 0.13 | 0.0000                    | 0.75   | 0 0000                       | 0.73  | 0 0000                       | 013       | 0 0000                       | 0 13    | 0 0000                       | 9 13 |
| T7                       | 0 0000                                       | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75   | 0.0000                       | 0.75  | 0.0000                       | 0.75      | 0 0000                       | 0.75    | 0.0000                       | 0.75 |
| 180.00-160.00            |                                              |      |                           |      | 272.25                    |        |                              |       | W-2026                       | 333       |                              | 187.53  | 8.0-23                       |      |
| T8                       | 0.0000                                       | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75   | 0 0000                       | 0.75  | 0.0000                       | 0.75      | 0 0000                       | 0.75    | 0 0000                       | 0.75 |
| 160.00-140.00            | I have been been been been been been been be |      |                           |      |                           |        |                              |       |                              |           |                              |         |                              |      |
| T9                       | 0.0000                                       | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75   | 0 0000                       | 0 75  | 0 0000                       | 0.75      | 0.0000                       | 0.75    | 0 0000                       | 0.75 |
| 140.00-120.00            | 1                                            | 0.20 | 44444                     |      | 0.000                     |        |                              | 121   | 2222                         | 2.5       |                              | 55.     | 0.0000                       | -    |
| T10                      | 0.0000                                       | 0 75 | 0 0000                    | 0.75 | 0 0000                    | 0.75   | 0.0000                       | 0 75  | 0.0000                       | 0.75      | 0 0000                       | 0.75    | 0 0000                       | 0.75 |
| 120.00-100 00<br>T11     | 0 0000                                       | 0.75 | 0 0000                    | 0.75 | 0.0000                    | 0.75   | 0.0000                       | 0.75  | 0.0000                       | 0.75      | 0.0000                       | 0.75    | 0 0000                       | 0.75 |
| 100.00-80.00             | 0.0000                                       | 0 13 | 0.0000                    | 0.13 | 0.0000                    | 0.73   | 0.0000                       | 0.75  | 0.0000                       | 0 /3      | 0.0000                       | 0.73    | 0.0000                       | 0.73 |
| T12                      | 0.0000                                       | 0.75 | 0.0000                    | 0.75 | 0 0000                    | 0.75   | 0.0000                       | 0.75  | 0.0000                       | 0.75      | 0 0000                       | 0.75    | 0.0000                       | 0.75 |
| 80 00-60 00              |                                              |      |                           |      |                           |        |                              | 77.00 |                              |           | 0.000                        |         | 0.0000                       | 0    |
| T13                      | 0.0000                                       | 0.75 | 0.0000                    | 0.75 | 0.0000                    | 0.75   | 0.0000                       | 0.75  | 0 0000                       | 0.75      | 0 0000                       | 0.75    | 0.0000                       | 0.75 |
| 60 00-40 00              | 1000                                         |      |                           |      | 1000000                   |        |                              |       |                              | 37.5      |                              |         | 100 m                        |      |
| T14                      | 0.0000                                       | 0.75 | 0 0000                    | 0.75 | 0 0000                    | 0.75   | 0.0000                       | 0.75  | 0 0000                       | 0.75      | 0 0000                       | 0.75    | 0 0000                       | 0.75 |
| 40 00-20 00              | 0.0007                                       |      |                           |      | 5.06.04.0                 |        |                              |       |                              |           |                              |         |                              |      |
| Γ15 20.00-0.00           | 0.0000                                       | 0.75 | 0.0000                    | 0.75 | 0 0000                    | 0.75   | 0.0000                       | 0.75  | 0 0000                       | 0.75      | 0 0000                       | 0.75    | 0 0000                       | 0.75 |

| Tower               |              |              |              | Connectio     | on Offsets  |               |             |               |
|---------------------|--------------|--------------|--------------|---------------|-------------|---------------|-------------|---------------|
| Elevation           |              | Diag         | onal         |               |             | K-Br          | acing       |               |
|                     | Vert.<br>Top | Horiz<br>Top | Vert<br>Bot. | Horiz<br>Bot. | Vert<br>Top | Horiz.<br>Top | Vert<br>Bot | Horiz.<br>Bot |
| ſi                  | in           | in           | in           | in            | in          | ın            | m           | in            |
| T1<br>290 00-280 00 | 5.0000       | 5 0000       | 5 0000       | 5 0000        | 0.0000      | 0.0000        | 0.0000      | 0 0000        |
| T2<br>280.00-260.00 | 5.0000       | 5 0000       | 5 0000       | 5.0000        | 0.0000      | 0.0000        | 0 0000      | 0 0000        |
| T3<br>260 00-240 00 | 5.0000       | 6.2500       | 5 0000       | 6.2500        | 0 0000      | 0.0000        | 0.0000      | 0 0000        |
| T4<br>240 00-220 00 | 5.0000       | 6.2500       | 5 0000       | 6.2500        | 0.0000      | 0 0000        | 0.0000      | 0.0000        |
| T5<br>220 00-200 00 | 5.0000       | 10 7500      | 5 0000       | 10 7500       | 0.0000      | 0.0000        | 0.0000      | 0 0000        |
| T6<br>200 00-180 00 | 5 0000       | 10 7500      | 5 0000       | 10.7500       | 0 0000      | 0.0000        | 0.0000      | 0 0000        |
| T7<br>180 00-160.00 | 5 0000       | 10 7500      | 5,0000       | 10.7500       | 0 0000      | 0.0000        | 0.0000      | 0 0000        |

| Valmont                                                    | Job 565090                                     | Page 8 of 72              |
|------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1545 Pideo Dr                                              | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX (574)-936-6458 | Client VB BTS II, LLC                          | Designed by<br>JL         |

| Tower                |              |               |             | Connection | on Offsets | h            |             |               |
|----------------------|--------------|---------------|-------------|------------|------------|--------------|-------------|---------------|
| Elevation            |              | Diag          | onal        |            |            | K-Br         | acing       |               |
|                      | Vert.<br>Top | Horiz.<br>Top | Vert<br>Bot |            |            | Horiz<br>Top | Vert<br>Bot | Horiz,<br>Bot |
| ft                   | in           | ın            | in          | in         | in         | in           | ın          | in            |
| T8<br>160 00-140 00  | 5.0000       | 10.7500       | 5.0000      | 10.7500    | 0 0000     | 0.0000       | 0.0000      | 0 0000        |
| T9<br>140 00-120 00  | 5 0000       | 11 5000       | 5 0000      | 11 5000    | 0 0000     | 0.0000       | 0.0000      | 0 0000        |
| T10<br>120 00-100 00 | 5.0000       | 11 5000       | 5 0000      | 11,5000    | 0.0000     | 0 0000       | 0.0000      | 0.0000        |
| T11<br>100.00-80.00  | 5 0000       | 11 5000       | 5 0000      | 11 5000    | 0 0000     | 0 0000       | 0.0000      | 0 0000        |
| T12<br>80 00-60 00   | 5.0000       | 11,5000       | 5 0000      | 11.5000    | 0 0000     | 0 0000       | 0.0000      | 0.0000        |
| T13<br>60 00-40 00   | 5 0000       | 11 5000       | 5 0000      | 11,5000    | 0 0000     | 0 0000       | 0.0000      | 0 0000        |
| T14<br>40.00-20.00   | 5 0000       | 11.5000       | 5.0000      | 11,5000    | 0.0000     | 0.0000       | 0 0000      | 0 0000        |
| T15 20 00-0.00       | 5 0000       | 11.5000       | 5.0000      | 11.5000    | 0.0000     | 0.0000       | 0.0000      | 0.0000        |

| Tower<br>Elevation<br>fi | Leg<br>Connection<br>Type | Leg       |     | Diago     | al  | Top G     | irt | Bottom    | Girt | Mid G     | irt | Long Hori | zontal | Short Hort | isontai |
|--------------------------|---------------------------|-----------|-----|-----------|-----|-----------|-----|-----------|------|-----------|-----|-----------|--------|------------|---------|
|                          | Air                       | Bolt Size | No.  | Bolt Size | No. | Bolt Size | No.    | Bolt Size  | No.     |
| TI                       | Flange                    | 0 7500    | 4   | 0.7500    | 1   | 0.7500    | 1   | 1.0000    | 0    | 1 0000    | 0   | 1.0000    | 0      | 1 0000     | 0       |
| 290 00-280 00            |                           | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |        | A325N      |         |
| T2                       | Flange                    | 0.7500    | 6   | 0 7500    | 1   | 0.0000    | 0   | 1.0000    | 0    | 1 0000    | 0   | 1 0000    | 0      | 1 0000     | 0       |
| 280 00-260 00            |                           | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |        | A325N      |         |
| T3                       | Flange                    | 0.7500    | 8   | 0.7500    | 1   | 0.0000    | 0   | 1.0000    | 0    | 1 0000    | 0   | 0000 1    | 0      | 1.0000     | 0       |
| 260 00-240 00            |                           | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |        | A325N      |         |
| T4                       | Flange                    | 1.0000    | 6   | 0.7500    | 1   | 0.0000    | 0   | 1.0000    | 0    | 1.0000    | 0   | 1.0000    | 0      | 1 0000     | 0       |
| 240 00-220 00            |                           | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |        | A325N      |         |
| T5                       | Flange                    | 1.0000    | 6   | 1.0000    | 1   | 0.0000    | 0   | 1.0000    | 0    | 1.0000    | 0   | 1.0000    | 0      | 1.0000     | 0       |
| 220 00-200 00            |                           | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |        | A325N      |         |
| T6                       | Flange                    | 1.2500    | 6   | 1 0000    | 1   | 0.0000    | 0   | 1.0000    | 0    | 1 0000    | 0   | 1.0000    | 0      | 1.0000     | 0       |
| 200.00-180.00            |                           | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |        | A325N      |         |
| T7                       | Flange                    | 1.2500    | 6   | 1 0000    | 1   | 0.0000    | 0   | 1 0000    | 0    | 1 0000    | 0   | 1 0000    | 0      | 1 0000     | 0       |
| 180.00-160.00            |                           | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |        | A325N      |         |
| T8                       | Flange                    | 1.2500    | 6   | 1 0000    | 1   | 0.0000    | 0   | 1.0000    | 0    | 1.0000    | 0   | 1.0000    | 0      | 1.0000     | 0       |
| 160.00-140.00            |                           | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |        | A325N      |         |
| T9                       | Flange                    | 1 0000    | 12  | 0 8750    | 1   | 0.0000    | 0   | 1 0000    | 0    | 1 0000    | 0   | 1 0000    | 0      | 1.0000     | 0       |
| 140.00-120.00            |                           | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |        | A325N      |         |
| T10                      | Flange                    | 1 0000    | 12  | 0 8750    | 1   | 0.0000    | 0   | 1 0000    | 0    | 1 0000    | 0   | 1 0000    | 0      | 1.0000     | 0       |
| 120 00-100 00            |                           | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |        | A325N      |         |
| T11                      | Flange                    | 1 0000    | 12  | 0.8750    | 1   | 0.0000    | 0   | 1 0000    | 0    | 1.0000    | 0   | 1.0000    | 0      | 1.0000     | 0       |
| 100.00-80.00             |                           | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |        | A325N      |         |
| T12                      | Flange                    | 1.0000    | 12  | 0 8750    | -1  | 0 0000    | 0   | 1 0000    | 0    | 1.0000    | 0   | 1 0000    | 0      | 1 0000     | 0       |
| 80.00-60.00              |                           | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |        | A325N      |         |
| T13                      | Flange                    | 1 0000    | 12  | 0 8750    | 1   | 0.0000    | 0   | 1 0000    | 0    | 1 0000    | 0   | 1.0000    | 0      | 1.0000     | 0       |
| 60 00-40 00              | l I v                     | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |        | A325N      |         |
| T14                      | Flange                    | 1.0000    | 12  | 0 8750    | 1   | 0.0000    | 0   | 1,0000    | 0    | 1.0000    | 0   | 1 0000    | 0      | 1.0000     | 0       |
| 40.00-20.00              |                           | A325N     |     | A325N     |     | A325N     |     | A325N     |      | A325N     |     | A325N     |        | A325N      |         |

| Valmont                                                      | Job 565090                                     | Page 9 of 72              |
|--------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1545 Pidco Dr.                                               | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                          | Designed by<br>JL         |

| Tower<br>Elevation<br>ft | Leg<br>Connection<br>Type | Leg                 | J   | Diagoi          | ıal | Top G           | irt | Bottom          | Girt | Mid G           | irt | Long Hori       | zontal | Short Hort      | contai |
|--------------------------|---------------------------|---------------------|-----|-----------------|-----|-----------------|-----|-----------------|------|-----------------|-----|-----------------|--------|-----------------|--------|
| ,                        |                           | Bolt Size           | No. | Bolt Size       | No. | Bolt Size       | No. | Bolt Size       | No.  | Bolt Size       | No. | Bolt Size       | No     | Bolt Size       | No.    |
| T15 20,00-0.00           | Flange                    | 1.7500<br>F1554-105 | 4   | 0 8750<br>A325N | 1   | 0.0000<br>A325N | 0   | 1 0000<br>A325N | 0    | 1.0000<br>A325N | 0   | 1.0000<br>A325N | 0      | I 0000<br>A325N | 0      |

# Feed Line/Linear Appurtenances - Entered As Round Or Flat

| Description                    | Face<br>or | Allow<br>Shield | Exclude<br>From       | Component<br>Type | Placement          | Face<br>Offset | Lateral<br>Offset | #  |     |                   | Diameter | Perimeter | Weight |
|--------------------------------|------------|-----------------|-----------------------|-------------------|--------------------|----------------|-------------------|----|-----|-------------------|----------|-----------|--------|
|                                | Leg        |                 | Torque<br>Calculation |                   | ſì                 | in             | (Frac FW)         |    | Row | in                | in       | in        | plf    |
| Safety Line<br>3/8             | C          | No              | No                    | Ar (CaAa)         | 290 00 -<br>0 00   | 3.0000         | 0                 | 1  | 1   | 0 3750            | 0 3750   |           | 0 22   |
| Lighting<br>power cord         | В          | No              | No                    | Ar (CaAa)         | 290.00 -<br>145.00 | 1,0000         | -0.49             | 1  | Ţ   | 0 8700            | 0 8700   |           | 0.15   |
| Lighting<br>power cord<br>**** | В          | No              | No                    | Ar (CaAa)         | 145 00 -<br>0 00   | 1.0000         | -0 49             | 3  | 3   | 0.8700            | 0.8700   |           | 0.15   |
| LDF7-50A<br>(1-5/8 FOAM)       | C          | No              | No                    | Ar (CaAa)         | 285.00 -<br>0.00   | 3.0000         | 0.42              | 12 | 6   | 0 5200<br>1 0000  | 1 9800   |           | 0 82   |
| LDF7-50A<br>(1-5/8 FOAM)       | В          | No              | No                    | Ar (CaAa)         | 275.00 -<br>0.00   | 3.0000         | 0 42              | 12 | 6   | 0.5200            | 1.9800   |           | 0.82   |
| LDF7-50A<br>(1-5/8 FOAM)       | Α          | No              | No                    | Ar (CaAa)         | 265.00 -<br>0.00   | 3 0000         | 0.42              | 12 | 6   | 0.5200<br>1.0000  | 1.9800   |           | 0 82   |
| EW63                           | C          | No              | No                    | Ar (CaAa)         | 240 00 -<br>0.00   | 3 0000         | 0.39              | 9  | 1   | 0.9300            | 1.5742   |           | 0.51   |
| ***                            |            |                 |                       |                   |                    |                |                   |    |     |                   |          |           |        |
| 1 75" Rails                    | C          | No              | No                    | Af (CaAa)         | 285 00 -<br>0 00   | 3 0000         | 0.46              | 1  | 1   | 32.2500<br>1.0000 | 1.7500   |           | 2 70   |
| 1 75" Rails                    | C          | No              | No                    | Af (CaAa)         | 285.00 -<br>0.00   | 3 0000         | 0.38              | 1  | 1   | 32 2500<br>1.0000 | 1 7500   |           | 2 70   |
| ***                            |            |                 |                       |                   |                    |                |                   |    |     |                   |          |           |        |

# Feed Line/Linear Appurtenances - Entered As Area

| Description | Face<br>or | Allow<br>Shield | Exclude<br>From       | Component<br>Type | Placement | Total<br>Number | C.A.   | Weigh |
|-------------|------------|-----------------|-----------------------|-------------------|-----------|-----------------|--------|-------|
|             | Leg        |                 | Torque<br>Calculation | 315               | fi        | 7,000           | ft²/ft | plf   |
| ****        |            |                 |                       |                   |           |                 |        |       |
| ***         |            |                 |                       |                   |           |                 |        |       |

# Feed Line/Linear Appurtenances Section Areas

| Valmont                                                     | Job<br>565090                                  | Page 10 of 72             |
|-------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1545 Pidco Dr.                                              | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                          | Designed by<br>JL         |

| Section | Tower<br>Elevation                              | Face | $A_R$ | $A_F$ | C <sub>A</sub> A <sub>A</sub> | C <sub>t</sub> A <sub>1</sub><br>Out Face | Weight |
|---------|-------------------------------------------------|------|-------|-------|-------------------------------|-------------------------------------------|--------|
|         | ſŧ                                              |      | ſt²   | SP    | ft²                           | ft <sup>2</sup>                           | K      |
| TI      | 290 00-280.00                                   | A    | 0 000 | 0.000 | 0.000                         | 0.000                                     | 0.00   |
|         |                                                 | В    | 0 000 | 0.000 | 0.870                         | 0 000                                     | 0.00   |
|         |                                                 | C    | 0 000 | 0.000 | 15 172                        | 0 000                                     | 0.08   |
| T2      | 280 00-260.00                                   | A    | 0.000 | 0.000 | 11.880                        | 0.000                                     | 0.05   |
|         |                                                 | В    | 0.000 | 0 000 | 37.380                        | 0.000                                     | 0.15   |
|         |                                                 | C    | 0.000 | 0.000 | 59 937                        | 0.000                                     | 0.31   |
| T3      | 260 00-240.00                                   | A    | 0.000 | 0.000 | 47.520                        | 0.000                                     | 0.20   |
|         |                                                 | В    | 0.000 | 0.000 | 49 260                        | 0.000                                     | 0.20   |
|         |                                                 | C    | 0 000 | 0 000 | 59 937                        | 0.000                                     | 0.31   |
| T4      | 240.00-220.00                                   | A    | 0 000 | 0.000 | 47 520                        | 0.000                                     | 0.20   |
|         | and the armostic                                | В    | 0 000 | 0.000 | 49 260                        | 0.000                                     | 0 20   |
|         |                                                 | C    | 0 000 | 0 000 | 63.085                        | 0.000                                     | 0.32   |
| T5      | 220 00-200 00                                   | A    | 0 000 | 0 000 | 47.520                        | 0.000                                     | 0.20   |
|         | 10-34-6-40-00-00-00-00-00-00-00-00-00-00-00-00- | В    | 0.000 | 0.000 | 49.260                        | 0.000                                     | 0.20   |
|         |                                                 | C    | 0 000 | 0.000 | 63.085                        | 0.000                                     | 0.32   |
| T6      | 200.00-180.00                                   | A    | 0.000 | 0.000 | 47.520                        | 0.000                                     | 0.20   |
| C.A.    | P27112-207171                                   | В    | 0.000 | 0.000 | 49.260                        | 0.000                                     | 0 20   |
|         |                                                 | C    | 0.000 | 0.000 | 63.085                        | 0.000                                     | 0 32   |
| T7      | 180 00-160 00                                   | A    | 0.000 | 0.000 | 47,520                        | 0 000                                     | 0.20   |
| * V     | .00 00 ,00 00                                   | В    | 0.000 | 0.000 | 49.260                        | 0.000                                     | 0 20   |
|         |                                                 | C    | 0.000 | 0.000 | 63.085                        | 0.000                                     | 0 32   |
| T8      | 160 00-140 00                                   | A    | 0.000 | 0.000 | 47.520                        | 0.000                                     | 0.20   |
|         | 100 00-1-10 00                                  | В    | 0.000 | 0.000 | 50.130                        | 0.000                                     | 0 20   |
|         |                                                 | C    | 0.000 | 0.000 | 63.085                        | 0 000                                     | 0 32   |
| T9      | 140 00-120 00                                   | A    | 0.000 | 0.000 | 47.520                        | 0.000                                     | 0 20   |
| 4.2     | 140.00-120.00                                   | В    | 0 000 | 0 000 | 52.740                        | 0 000                                     | 0 21   |
|         |                                                 | C    | 0.000 | 0 000 | 63 085                        | 0.000                                     | 0 32   |
| T10     | 120 00-100 00                                   | A    | 0.000 | 0 000 | 47 520                        | 0.000                                     | 0 20   |
| 110     | 120 00-100 00                                   | В    | 0.000 | 0 000 | 52.740                        | 0.000                                     | 0.21   |
|         |                                                 | C    | 0.000 | 0.000 | 63.085                        | 0.000                                     | 0.32   |
| TII     | 100 00-80 00                                    | A    | 0 000 | 0 000 | 47 520                        | 0 000                                     | 0 20   |
| 10.1    | 100 00-00 00                                    | В    | 0.000 | 0 000 | 52.740                        | 0.000                                     | 0 21   |
|         |                                                 | C    | 0.000 | 0 000 | 63.085                        | 0.000                                     | 0.32   |
| T12     | 80.00-60.00                                     | A    | 0 000 | 0 000 | 47 520                        | 0 000                                     | 0.20   |
| 112     | 00.00-00.00                                     | В    | 0.000 | 0 000 | 52 740                        | 0.000                                     | 0.21   |
|         |                                                 | C    | 0 000 | 0 000 | 63 085                        | 0.000                                     | 0.32   |
| T13     | 60 00-40 00                                     | A    | 0 000 | 0 000 | 47 520                        | 0.000                                     | 0.32   |
| 113     | 00.00-40.00                                     | В    | 0.000 | 0 000 | 52 740                        | 0 000                                     | 0.21   |
|         |                                                 | Ĉ    | 0.000 | 0 000 | 63.085                        | 0.000                                     | 0.21   |
| T14     | 40.00-20.00                                     | A    | 0.000 | 0.000 | 47 520                        | 0.000                                     | 0.20   |
| 114     | 40.00-20.00                                     | В    | 0.000 | 0 000 | 52 740                        | 0.000                                     | 0.20   |
|         |                                                 | C    | 0.000 | 0.000 | 63 085                        | 0.000                                     | 0.32   |
| TIE     | 20.00.0.00                                      |      |       |       |                               | 0.000                                     | 0.20   |
| T15     | 20 00-0 00                                      | A    | 0.000 | 0.000 | 47 520                        |                                           |        |
|         |                                                 | B    | 0.000 | 0.000 | 52 740<br>63 085              | 0.000                                     | 0.21   |

# Feed Line/Linear Appurtenances Section Areas - With Ice

| Tower<br>Section | Tower<br>Elevation | Face<br>or | Ice<br>Thickness | AR              | $A_{j}$         | C <sub>1</sub> A <sub>.l</sub><br>In Face | C <sub>A</sub> A <sub>1</sub><br>Out Face | Weigh |
|------------------|--------------------|------------|------------------|-----------------|-----------------|-------------------------------------------|-------------------------------------------|-------|
| P. Z + O. Z + O. | fi                 | Leg        | in               | ft <sup>2</sup> | Jt <sup>2</sup> | ft2                                       | ft <sup>2</sup>                           | K     |
| TI               | 290 00-280 00      | A          | 2 481            | 0 000           | 0.000           | 0 000                                     | 0.000                                     | 0.00  |
|                  |                    | В          |                  | 0 000           | 0.000           | 5 832                                     | 0.000                                     | 0 10  |
|                  |                    | C          |                  | 0.000           | 0 000           | 26.859                                    | 0.000                                     | 0.61  |
| T2               | 280 00-260 00      | A          | 2 468            | 0.000           | 0 000           | 13 620                                    | 0.000                                     | 0.33  |
|                  |                    | В          |                  | 0.000           | 0.000           | 52 471                                    | 0.000                                     | 1 20  |
|                  |                    | C          |                  | 0.000           | 0 000           | 96.511                                    | 0.000                                     | 2 24  |
| T3               | 260.00-240.00      | A          | 2 449            | 0 000           | 0.000           | 54 353                                    | 0.000                                     | 1.32  |

| Valmont                                                     | Јо <b>Б</b> 565090                             | Page 11 of 72             |
|-------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1545 Pidco Dr.                                              | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                          | Designed by               |

| Tower<br>Section | Tower<br>Elevation | Face<br>or | Ice<br>Thickness | $A_R$ | $A_F$           | C <sub>I</sub> A <sub>1</sub><br>In Face | C <sub>1</sub> A <sub>1</sub><br>Out Face | Weight |
|------------------|--------------------|------------|------------------|-------|-----------------|------------------------------------------|-------------------------------------------|--------|
| SECTION          | fi<br>fi           | Leg        | in               | ft    | ft <sup>2</sup> | fr <sup>2</sup>                          | P <sup>2</sup>                            | K      |
|                  |                    | В          |                  | 0 000 | 0.000           | 65 888                                   | 0 000                                     | 1.52   |
|                  |                    | C          |                  | 0 000 | 0.000           | 96.156                                   | 0 000                                     | 2.22   |
| T4               | 240.00-220.00      | Ã          | 2 429            | 0.000 | 0.000           | 54 216                                   | 0.000                                     | 1.31   |
| 4.4              | 240.00 220.00      | В          | 2 (2)            | 0.000 | 0.000           | 65 670                                   | 0.000                                     | 1.51   |
|                  |                    | C          |                  | 0 000 | 0.000           | 108.638                                  | 0 000                                     | 2 45   |
| T5               | 220.00-200.00      | A          | 2.407            | 0.000 | 0.000           | 54 068                                   | 0.000                                     | 1.30   |
|                  | 220,00 200,00      | В          | 2.10)            | 0 000 | 0.000           | 65 435                                   | 0.000                                     | 1.49   |
|                  |                    | Č          |                  | 0.000 | 0.000           | 108 139                                  | 0 000                                     | 2 42   |
| T6               | 200.00-180.00      | A          | 2.383            | 0.000 | 0.000           | 53 907                                   | 0 000                                     | 1.29   |
|                  | 200.00 100.00      | В          | 2.303            | 0.000 | 0.000           | 65 178                                   | 0.000                                     | 1.48   |
|                  |                    | C          |                  | 0 000 | 0.000           | 107 594                                  | 0 000                                     | 2 40   |
| T7               | 180.00-160 00      | Ä          | 2.356            | 0 000 | 0.000           | 53.730                                   | 0 000                                     | 1.28   |
|                  | .50.00 100 00      | В          | 4.450            | 0.000 | 0.000           | 64.895                                   | 0 000                                     | 1.47   |
|                  |                    | C          |                  | 0.000 | 0.000           | 106 996                                  | 0.000                                     | 2.37   |
| T8               | 160 00-140 00      | A          | 2.327            | 0.000 | 0.000           | 53.533                                   | 0.000                                     | 1.27   |
|                  | 100 00 110.00      | В          |                  | 0.000 | 0.000           | 68.421                                   | 0.000                                     | 1.49   |
|                  |                    | C          |                  | 0.000 | 0.000           | 106 330                                  | 0.000                                     | 2 34   |
| T9               | 140.00-120.00      | A          | 2.294            | 0.000 | 0 000           | 53.312                                   | 0 000                                     | 1 25   |
|                  | 1.0.00 .20.00      | В          |                  | 0.000 | 0 000           | 79 493                                   | 0 000                                     | 1 58   |
|                  |                    | č          |                  | 0.000 | 0.000           | 105 579                                  | 0 000                                     | 2 30   |
| T10              | 120.00-100.00      | A          | 2.256            | 0.000 | 0.000           | 53.057                                   | 0.000                                     | 1 24   |
|                  | 120,00             | В          | 2 82 9           | 0.000 | 0.000           | 78.977                                   | 0.000                                     | 1.56   |
|                  |                    | C          |                  | 0.000 | 0.000           | 104 716                                  | 0.000                                     | 2 26   |
| TII              | 100.00-80.00       | A          | 2.211            | 0.000 | 0.000           | 52.756                                   | 0.000                                     | 1.22   |
|                  | season Novel       | В          |                  | 0.000 | 0.000           | 78.368                                   | 0.000                                     | 1.53   |
|                  |                    | C          |                  | 0.000 | 0 000           | 103 698                                  | 0.000                                     | 2 22   |
| T12              | 80 00-60 00        | A          | 2 156            | 0.000 | 0.000           | 52 389                                   | 0.000                                     | 1 20   |
|                  | *********          | В          |                  | 0.000 | 0.000           | 77.624                                   | 0.000                                     | 1 50   |
|                  |                    | C          |                  | 0 000 | 0 000           | 102.453                                  | 0.000                                     | 2 16   |
| T13              | 60 00-40 00        | A          | 2 085            | 0 000 | 0.000           | 51.911                                   | 0.000                                     | 1.17   |
|                  |                    | В          |                  | 0 000 | 0 000           | 76 658                                   | 0.000                                     | 1 46   |
|                  |                    | C          |                  | 0 000 | 0.000           | 100.834                                  | 0.000                                     | 2.09   |
| T14              | 40 00-20 00        | A          | 1 981            | 0.000 | 0 000           | 51.217                                   | 0.000                                     | 1.13   |
| 5.2 4            | 12021-2022         | В          | 2.6(2.2)         | 0.000 | 0 000           | 75 254                                   | 0.000                                     | 1 40   |
|                  |                    | C          |                  | 0.000 | 0 000           | 98 479                                   | 0.000                                     | 1.99   |
| T15              | 20 00-0 00         | Ā          | 1.775            | 0 000 | 0.000           | 49 843                                   | 0 000                                     | 1 05   |
| 232              |                    | В          | 1,100            | 0 000 | 0 000           | 72 474                                   | 0.000                                     | 129    |
|                  |                    | C          |                  | 0 000 | 0.000           | 93 807                                   | 0.000                                     | 1.79   |

## **Feed Line Center of Pressure**

| Section | Elevation     | $CP_X$   | CP2     | $CP_X$   | CP <sub>2</sub> |
|---------|---------------|----------|---------|----------|-----------------|
|         |               |          |         | Ice      | lce             |
|         | ſi            | in       | in      | in       | in              |
| TI      | 290 00-280.00 | -6 0440  | 2.5269  | -4 1991  | 1 9665          |
| T2      | 280 00-260.00 | -5 2859  | 3.4526  | -4 4234  | 3,6711          |
| T3      | 260 00-240.00 | -5 2047  | -2.0634 | -4.6307  | 0 2373          |
| T4      | 240.00-220.00 | -6.6195  | -1.6863 | -7 0257  | 1 4224          |
| T5      | 220 00-200 00 | -7 5880  | -1.8549 | -7.2804  | 1 3960          |
| T6      | 200 00-180 00 | -8 7178  | -2.0862 | -7 9617  | 1 4695          |
| T7      | 180 00-160 00 | -9 7798  | -2 3069 | -9 3024  | 1 6656          |
| T8      | 160 00-140 00 | -10 1621 | -2.8375 | -10 0559 | 1 1845          |
| T9      | 140 00-120 00 | -11.7689 | -4.6661 | -12 1831 | -0 5721         |
| T10     | 120 00-100 00 | -12 8075 | -5.0598 | -13 2136 | -0 6878         |
| T11     | 100.00-80.00  | -13.8031 | -5.4391 | -14 1893 | -0.8162         |
| T12     | 80.00-60 00   | -14 5254 | -5.7082 | -15 0567 | -0.9602         |
| T13     | 60.00-40.00   | -14 7260 | -5 8109 | -15 5917 | -1 1195         |

| Valmont                                                      | Job       | 565090                                 | Page 12 of 72             |
|--------------------------------------------------------------|-----------|----------------------------------------|---------------------------|
| 1545 Pidco Dr.                                               | Project H | I-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>E4Y: (574)-936-6158 | Client    | VB BTS II, LLC                         | Designed by               |

| Section | Elevation   | $CP_X$   | CP.     | $CP_{V}$ | $CP_{\ell}$ |  |
|---------|-------------|----------|---------|----------|-------------|--|
|         |             |          |         | Ice      | Ice         |  |
|         | ſi          | in       | in      | in       | in          |  |
| T14     | 40.00-20.00 | -15 5223 | -6.1205 | -16.3348 | -1.3556     |  |
| T15     | 20 00-0 00  | -16.1588 | -6 3656 | -16 9095 | -1 7876     |  |

# Shielding Factor Ka

| K <sub>a</sub><br>lce | K <sub>a</sub><br>No Ice | Feed Line<br>Segment Elev. | Description           | Tower Feed Line<br>Section Record No. |    |  |  |
|-----------------------|--------------------------|----------------------------|-----------------------|---------------------------------------|----|--|--|
| 0.477                 | 0.6000                   | 280.00 -<br>290.00         | Safety Line 3/8       | TI Safety Line 3/                     |    |  |  |
| 0.477                 | 0.6000                   | 280.00 -<br>290.00         | Lighting power cord   | 2                                     | TI |  |  |
| 0.477                 | 0.6000                   | 280.00 -<br>285.00         | LDF7-50A (1-5/8 FOAM) | 5                                     | Ti |  |  |
| 0.477                 | 0.6000                   | 280.00 -<br>285.00         | 1 75" Rails           | 11                                    | TI |  |  |
| 0.477                 | 0.6000                   | 280.00 -<br>285.00         | 1 75" Rails           | 12                                    | T1 |  |  |
| 0.497                 | 0 6000                   | 260.00 -<br>280.00         | Safety Line 3/8       | 1                                     | T2 |  |  |
| 0.497                 | 0.6000                   | 260.00 -<br>280.00         | Lighting power cord   | 2                                     | T2 |  |  |
| 0 497                 | 0 6000                   | 260 00 -<br>280 00         | LDF7-50A (1-5/8 FOAM) | 5                                     | T2 |  |  |
| 0.497                 | 0 6000                   | 260.00 -<br>275.00         | LDF7-50A (1-5/8 FOAM) | 6                                     | T2 |  |  |
| 0.497                 | 0 6000                   | 260 00 -<br>265 00         | LDF7-50A (1-5/8 FOAM) | 7                                     | T2 |  |  |
| 0 497                 | 0 6000                   | 260.00 -<br>280.00         | 1 1 75" Rails 260.00  |                                       | T2 |  |  |
| 0 497                 | 0 6000                   | 260 00 -<br>280 00         | 1.75" Rails           | 12                                    | T2 |  |  |
| 0 553                 | 0 6000                   | 240 00 -<br>260 00         | Safety Line 3/8       | .1                                    | Т3 |  |  |
| 0 553                 | 0 6000                   | 240 00 -<br>260 00         |                       | 2                                     | Т3 |  |  |
| 0 553                 | 0.6000                   | 240 00 -<br>260 00         | LDF7-50A (1-5/8 FOAM) | 5                                     | Т3 |  |  |
| 0 553                 | 0 6000                   | 240 00 -<br>260 00         | LDF7-50A (1-5/8 FOAM) | 6                                     | Т3 |  |  |
| 0 553                 | 0 6000                   | 240 00 -<br>260 00         | LDF7-50A (1-5/8 FOAM) | 7                                     | Т3 |  |  |
| 0 553                 | 0.6000                   | 240 00 -<br>260.00         | 1.75" Rails           | (1                                    | Т3 |  |  |
| 0 553                 | 0.6000                   | 240 00 -<br>260.00         | 1 75" Rails           | 12                                    | Т3 |  |  |
| 0 599                 | 0.6000                   | 220 00 -<br>240.00         | T4 1 Safety Line 3/8  |                                       | T4 |  |  |
| 0 599                 | 0 6000                   | 220 00 -<br>240 00         | Lighting power cord   | 2                                     | T4 |  |  |
| 0 599                 | 0 6000                   | 220 00 -<br>240.00         | LDF7-50A (1-5/8 FOAM) | 5                                     | T4 |  |  |
| 0 599                 | 0 6000                   | 220 00 -<br>240 00         | LDF7-50A (1-5/8 FOAM) | 6                                     | T4 |  |  |
| 0.599                 | 0 6000                   | 220.00 -<br>240.00         | LDF7-50A (1-5/8 FOAM) | 7                                     | T4 |  |  |

| Valmont                                                     | Job       | Page<br>13 of 72                      |                           |
|-------------------------------------------------------------|-----------|---------------------------------------|---------------------------|
| 1545 Pidco Dr                                               | Project H | -31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client    | VB BTS II, LLC                        | Designed by               |

| Feed Line<br>Record No. | Description                                                                                                                                                                                                                 | Feed Line<br>Segment Elev.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K <sub>n</sub><br>No Ice | K.a<br>Ice |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|--|
| on Record No. T4 8      |                                                                                                                                                                                                                             | 220 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000                   | 0 5994     |  |
| 11                      | 1 75" Rails                                                                                                                                                                                                                 | 220 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000                   | 0.5994     |  |
| 12                      | 1 75" Rails                                                                                                                                                                                                                 | 220 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000                   | 0.5994     |  |
| i                       | Safety Line 3/8                                                                                                                                                                                                             | 200 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000                   | 0 5668     |  |
| 2                       | Lighting power cord                                                                                                                                                                                                         | 200 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000                   | 0 5668     |  |
| 5                       | LDF7-50A (1-5/8 FOAM)                                                                                                                                                                                                       | 200 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000                   | 0 5668     |  |
| 6                       | LDF7-50A (1-5/8 FOAM)                                                                                                                                                                                                       | 200 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6000                   | 0.566      |  |
| 7                       | LDF7-50A (1-5/8 FOAM)                                                                                                                                                                                                       | 200 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000                   | 0 5668     |  |
| 8                       | EW63                                                                                                                                                                                                                        | 200 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000                   | 0.5668     |  |
| 11                      | I 75" Rails                                                                                                                                                                                                                 | 200 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000                   | 0 5668     |  |
| 12                      | 1 75" Rails                                                                                                                                                                                                                 | 200 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000                   | 0 5668     |  |
| t                       | Safety Line 3/8                                                                                                                                                                                                             | 180 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000                   | 0.5683     |  |
| 2                       | Lighting power cord                                                                                                                                                                                                         | 180 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000                   | 0.568      |  |
| 5                       | LDF7-50A (1-5/8 FOAM)                                                                                                                                                                                                       | 180 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000                   | 0.568      |  |
| 6                       | 6 LDF7-50A (1-5/8 FOAM) 180 00 -                                                                                                                                                                                            | 0 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.568                    |            |  |
| 7                       | LDF7-50A (1-5/8 FOAM)                                                                                                                                                                                                       | 180.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6000                   | 0.568      |  |
| 8                       | EW63                                                                                                                                                                                                                        | 180.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000                   | 0.568      |  |
| 11                      | 1.75" Rails                                                                                                                                                                                                                 | 180.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6000                   | 0.568      |  |
| 12                      | 1 75" Rails                                                                                                                                                                                                                 | 180.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6000                   | 0 568      |  |
| 1                       | Safety Line 3/8                                                                                                                                                                                                             | 160 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6000                   | 0.6000     |  |
| T7 2 Lighting power cor |                                                                                                                                                                                                                             | 160.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6000                   | 0.6000     |  |
| 5                       | LDF7-50A (1-5/8 FOAM)                                                                                                                                                                                                       | 160.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6000                   | 0.6000     |  |
|                         |                                                                                                                                                                                                                             | 160.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6000                   | 0 6000     |  |
| 7                       | LDF7-50A (1-5/8 FOAM)                                                                                                                                                                                                       | 160.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000                   | 0 6000     |  |
| 8                       | EW63                                                                                                                                                                                                                        | 160 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6000                   | 0 6000     |  |
| 11                      | 1.75" Rails                                                                                                                                                                                                                 | 160.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6000                   | 0 6000     |  |
| 12                      | 12 1.75" Rails 160 00 - 0.0                                                                                                                                                                                                 | 0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 600                    |            |  |
| 1                       | Safety Line 3/8                                                                                                                                                                                                             | 140 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000                   | 0 600      |  |
| 2                       | Lighting power cord                                                                                                                                                                                                         | 145.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000                   | 0 600      |  |
| 3                       | Lighting power cord                                                                                                                                                                                                         | The state of the s | 0 6000                   | 0 600      |  |
| 5                       | LDF7-50A (1-5/8 FOAM)                                                                                                                                                                                                       | 145.00<br>140.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,6000                   | 0.600      |  |
|                         | 8<br>11<br>12<br>1<br>2<br>5<br>6<br>7<br>8<br>11<br>12<br>1<br>2<br>5<br>6<br>7<br>8<br>11<br>12<br>1<br>2<br>5<br>6<br>7<br>8<br>11<br>12<br>1<br>2<br>1<br>1<br>2<br>1<br>1<br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 8 EW63 11 1 75" Rails 12 1 75" Rails 13 1 75" Rails 14 Safety Line 3/8 2 Lighting power cord 25 LDF7-50A (1-5/8 FOAM) 26 LDF7-50A (1-5/8 FOAM) 27 LDF7-50A (1-5/8 FOAM) 28 EW63 29 Lighting power cord 29 LDF7-50A (1-5/8 FOAM) 20 LDF7-50A (1-5/8 FOAM) 21 LDF7-50A (1-5/8 FOAM) 22 Lighting power cord 25 LDF7-50A (1-5/8 FOAM) 26 LDF7-50A (1-5/8 FOAM) 27 LDF7-50A (1-5/8 FOAM) 28 EW63 29 Lighting power cord 29 LDF7-50A (1-5/8 FOAM) 20 LDF7-50A (1-5/8 FOAM) 21 LDF7-50A (1-5/8 FOAM) 22 Lighting power cord 23 LDF7-50A (1-5/8 FOAM) 25 Lighting power cord 26 LDF7-50A (1-5/8 FOAM) 27 LDF7-50A (1-5/8 FOAM) 38 EW63 39 Lighting power cord 30 Lighting power cord 31 Lighting power cord 31 Lighting power cord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S                        | B          |  |

| Valmont                                                    | Job     | 565090                                 | Page 14 of 72             |
|------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr                                              | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by<br>JL         |

| Tower<br>Section | Feed Line<br>Record No. | Description                                    | Feed Line<br>Segment Elev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | K.<br>No Ice | K.<br>Ice |  |
|------------------|-------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|--|
| T8               | Record No.              | LDF7-50A (1-5/8 FOAM)                          | 140 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000       | 0 600     |  |
| 10               | Ò                       | LDF 7-30A (1-3/8 FOAM)                         | 160.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000       | 0.000     |  |
| Т8               | 7                       | LDF7-50A (1-5/8 FOAM)                          | 140 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000       | 0 600     |  |
| 10               |                         | EDI 7-30N (1-3/01 O/M)                         | 160.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0000       | 0.000     |  |
| T8               | 8                       | EW63                                           | 140 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6000       | 0 600     |  |
| 300              | 1                       |                                                | 160.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0.00       |           |  |
| T8               | 11                      | 1.75° Rails                                    | 140 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000       | 0 600     |  |
|                  |                         |                                                | 160.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |           |  |
| T8               | 12                      | 1.75° Rails                                    | 140 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000       | 0 600     |  |
| 100              |                         | 5 0 3 70                                       | 160 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 65.2       | 200       |  |
| Т9               | 1                       | Safety Line 3/8                                | 120.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000       | 0 600     |  |
| TO               |                         | Linkson and acceptance                         | 140.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 6000       | 0 600     |  |
| Т9               | 3                       | Lighting power cord                            | 120.00 -<br>140.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 6000       | 0.000     |  |
| Т9               | 5                       | LDF7-50A (1-5/8 FOAM)                          | 120.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6000       | 0.600     |  |
| 1.7              | 1                       | EDI 1-30A (1-3/6 I OAM)                        | 140.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000       | 0.000     |  |
| T9               | 6                       | LDF7-50A (1-5/8 FOAM)                          | 120 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000       | 0.600     |  |
| 5.4              |                         | 95 01 3319 <b>(</b> 1 513 1 519 1 <b>0</b>     | 140.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-2-2-5-5    | 13/3/24   |  |
| T9               | 7                       | LDF7-50A (1-5/8 FOAM)                          | 120.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6000       | 0.600     |  |
|                  |                         |                                                | 140 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |           |  |
| T9               | 8                       | EW63                                           | 120 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6000       | 0.600     |  |
|                  | 1                       |                                                | 140.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |           |  |
| T9               | 11                      | 1 75* Rails                                    | 120 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6000       | 0.600     |  |
| ima              | 1.0                     | 1                                              | 140 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 0.00      |  |
| T9               | 12                      | 1 75" Rails                                    | 120 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000       | 0.600     |  |
| 7710             | -                       | C-C-+- 1 1/0                                   | 140.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6000       | 0.600     |  |
| TIO              | 1                       | Safety Line 3/8                                | 100 00 -<br>120 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0000       | 0.000     |  |
| TIO              | 3                       | Lighting power cord                            | 100 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000       | 0.600     |  |
| 110              |                         | Eighting potter core                           | 120.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000       | 0.000     |  |
| T10              | 5                       | LDF7-50A (1-5/8 FOAM)                          | 100 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000       | 0 600     |  |
| 1000             |                         | 2000                                           | 120 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |           |  |
| T10              | 6                       | LDF7-50A (1-5/8 FOAM)                          | 100.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000       | 0.600     |  |
| 100              |                         |                                                | 120.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.00         |           |  |
| T10              | 7                       | LDF7-50A (1-5/8 FOAM)                          | 100 00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000       | 0 600     |  |
|                  |                         | Pitter                                         | 120.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4000       | 0 100     |  |
| TIO              | 8                       | EW63                                           | 100.00 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 6000       | 0.600     |  |
| T10              | 11                      | 1 75" Rails                                    | 120.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 6000       | 0 600     |  |
| 110              | 1.1                     | 1 75 Kans                                      | 120.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 0000       | 0 000     |  |
| TIO              | 12                      | 1.75" Rails                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6000       | 0.600     |  |
| 110              | 1.2                     | 122 Kuns                                       | 120.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000       | 0.000     |  |
| T11              | 1                       | Safety Line 3/8                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 6000       | 0.600     |  |
| T11              | 3                       | Lighting power cord                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 6000       | 0.600     |  |
| TII              | 5                       | LDF7-50A (1-5/8 FOAM)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 6000       | 0 600     |  |
| TII              | 6                       | LDF7-50A (1-5/8 FOAM)                          | 80 00 - 100 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.6000       | 0 600     |  |
| TII              | 7                       | LDF7-50A (1-5/8 FOAM)                          | 80 00 - 100 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.6000       | 0 600     |  |
| TIL              | 8                       |                                                | 80 00 - 100 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.6000       | 0.600     |  |
| T11              | 11                      |                                                | 80 00 - 100 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.6000       | 0.600     |  |
| TII              | 12                      |                                                | 80 00 - 100 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.6000       | 0.60      |  |
| T12              | 1                       | Safety Line 3/8                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6000       | 0.60      |  |
| T12              | 3                       | Lighting power cord                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6000       | 0.60      |  |
| T12              | 5                       | LDF7-50A (1-5/8 FOAM)<br>LDF7-50A (1-5/8 FOAM) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6000       | 0.60      |  |
| T12              | 7                       | LDF7-50A (1-5/8 FOAM)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 6000       | 0 60      |  |
| T12              | 8                       | EW63                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 6000       | 0.60      |  |
| T12              | 11                      | 1 75" Rails                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6000       | 0.60      |  |
| T12              | 12                      | 1.75" Rails                                    | THE RESERVE OF THE PARTY OF THE | 0 6000       | 0 60      |  |
| T13              | 1                       | Safety Line 3/8                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 6000       | 0.60      |  |
| T13              | 3                       | Lighting power cord                            | 40.00 - 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 6000       | 0.60      |  |
| T13              | 5                       | LDF7-50A (1-5/8 FOAM)                          | The Control of the Co | 0 6000       | 0 60      |  |
| T13              | 6                       | LDF7-50A (1-5/8 FOAM)                          | 40 00 - 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 6000       | 0 60      |  |

| Valmont                                                     | Job 565090                                     | Page 15 of 72          |
|-------------------------------------------------------------|------------------------------------------------|------------------------|
| 1545 Pidco Dr                                               | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date 07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                          | Designed by            |

| Tower<br>Section | Feed Line<br>Record No. | Description           | Feed Line<br>Segment Elev | K.,<br>No Ice | K.<br>Ice |  |
|------------------|-------------------------|-----------------------|---------------------------|---------------|-----------|--|
| T13              | 7                       | LDF7-50A (1-5/8 FOAM) | 40.00 - 60.00             | 0.6000        | 0.6000    |  |
| T13              | 8                       | EW63                  | 40.00 - 60 00             | 0.6000        | 0 6000    |  |
| T13              | 11                      | 1.75" Rails           | 40.00 - 60.00             | 0 6000        | 0 6000    |  |
| T13              | 12                      | 1 75" Rails           | 40.00 - 60.00             | 0.6000        | 0 6000    |  |
| T14              | 1                       | Safety Line 3/8       | 20.00 - 40.00             | 0.6000        | 0.6000    |  |
| T14              | 3                       | Lighting power cord   | 20.00 - 40.00             | 0.6000        | 0.6000    |  |
| T14              | 5                       | LDF7-50A (1-5/8 FOAM) | 20.00 - 40.00             | 0 6000        | 0 6000    |  |
| T14              | 6                       | LDF7-50A (1-5/8 FOAM) | 20.00 - 40 00             | 0.6000        | 0.6000    |  |
| T14              | 7                       | LDF7-50A (1-5/8 FOAM) | 20.00 - 40 00             | 0 6000        | 0.6000    |  |
| T14              | 8                       | EW63                  | 20.00 - 40.00             | 0 6000        | 0 6000    |  |
| T14              | 11                      | 1 75" Rails           | 20.00 - 40.00             | 0 6000        | 0 6000    |  |
| T14              | 12                      | 1 75" Rails           | 20.00 - 40.00             | 0 6000        | 0.6000    |  |
| TIS              | 1                       | Safety Line 3/8       | 0.00 - 20.00              | 0 6000        | 0.6000    |  |
| T15              | 3                       | Lighting power cord   | 0.00 - 20.00              | 0.6000        | 0.6000    |  |
| TI5              | 5                       | LDF7-50A (1-5/8 FOAM) |                           | 0 6000        | 0.6000    |  |
| T15              | 6                       | LDF7-50A (1-5/8 FOAM) | 0.00 - 20.00              | 0.6000        | 0.6000    |  |
| T15              | 7                       | LDF7-50A (1-5/8 FOAM) |                           | 0.6000        | 0.6000    |  |
| T15              | 8                       | EW63                  |                           | 0 6000        | 0 6000    |  |
| T15              | 11                      | 1 75" Rails           | (2020 M) 1000 (1000 M)    | 0 6000        | 0 6000    |  |
| T15              | 12                      | 1.75" Rails           |                           | 0 6000        | 0.6000    |  |

| Description                       | Face<br>or<br>Leg | Offset<br>Type | Offsets.<br>Horz<br>Lateral | Azimuth<br>Adjustinent | Placement |                              | C <sub>1</sub> A <sub>.1</sub><br>Front | C <sub>v</sub> A <sub>A</sub><br>Side | Weight               |
|-----------------------------------|-------------------|----------------|-----------------------------|------------------------|-----------|------------------------------|-----------------------------------------|---------------------------------------|----------------------|
|                                   |                   |                | Vert<br>fi<br>fi<br>fi      | 0                      | fi        |                              | ft²                                     | ft <sup>2</sup>                       | К                    |
| 5/8" x 10' lightning rod          | C                 | From Leg       | 0 00<br>0 00<br>5 00        | 0 0000                 | 290 00    | No Ice<br>1/2" Ice<br>1" Ice | 0.63<br>1.63<br>2.63                    | 0.63<br>1.63<br>2.63                  | 0 02<br>0 03<br>0 04 |
| Beacon                            | В                 | From Leg       | 0 00<br>0 00<br>1 00        | 0 0000                 | 290 00    | No Ice<br>1/2" Ice<br>1" Ice | 2.40<br>2.67<br>2.96                    | 2 40<br>2 67<br>2 96                  | 0 07<br>0 10<br>0 12 |
| *                                 |                   |                |                             |                        |           | 4 1-7                        |                                         |                                       | 7.07                 |
| OB light                          | A                 | From Leg       | 0 00<br>0 00<br>1 00        | 0 0000                 | 145 00    | No Ice<br>1/2" Ice<br>1" Ice | 0.50<br>0.60<br>0.70                    | 0 50<br>0 60<br>0 70                  | 0.03<br>0.04<br>0.04 |
| OB light                          | В                 | From Leg       | 0.00<br>0.00<br>1.00        | 0 0000                 | 145 00    | No Ice<br>1/2" Ice<br>1" Ice | 0.50<br>0.60<br>0.70                    | 0 50<br>0 60<br>0 70                  | 0.03<br>0.04<br>0.04 |
| OB light                          | С                 | From Leg       | 0.00<br>0.00<br>1.00        | 0.0000                 | 145 00    | No Ice<br>1/2" Ice<br>1" Ice | 0.50<br>0.60<br>0.70                    | 0.50<br>0.60<br>0.70                  | 0.03<br>0.04<br>0.04 |
| 40,000 sq in (277 8 sq ft<br>EPA) | Α                 | None           |                             | 0.0000                 | 285 00    | No Ice<br>1/2" Ice<br>1" Ice | 277 80<br>347 25<br>416 70              | 277 80<br>347 25<br>416 70            | 4 50<br>5 50<br>6 50 |
| 30,000 sq in (208.3 sq ft<br>EPA) | С                 | None           |                             | 0.0000                 | 275.00    | No Ice<br>1/2" Ice<br>1" Ice | 208 30<br>260 38<br>312 46              | 208 30<br>260 38<br>312 46            | 4 10<br>5 20<br>6 30 |
| 30,000 sq in (208.3 sq ft<br>EPA) | В                 | None           |                             | 0.0000                 | 265 00    | No Ice<br>1/2" Ice           | 208 30<br>260 38                        | 208 30<br>260 38                      | 4 10                 |

**Discrete Tower Loads** 

| Valmont                                                     | almont Job 565090                      |                        |  |  |
|-------------------------------------------------------------|----------------------------------------|------------------------|--|--|
| 1545 Pidco Dr                                               | Project<br>H-31 x290' SST - US-KY-5135 | Date 07:03:40 10/06/22 |  |  |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                  | Designed by            |  |  |

| Description               | Face<br>or<br>Leg | Offset<br>Type | Offsets:<br>Horz<br>Lateral<br>Fert | Azimuth<br>Adjustment | Placement |                    | C <sub>1</sub> A <sub>1</sub><br>Front | C (A)<br>Side   | Weighi |
|---------------------------|-------------------|----------------|-------------------------------------|-----------------------|-----------|--------------------|----------------------------------------|-----------------|--------|
|                           |                   |                | fi<br>fi                            | a                     | ſŧ        |                    | fi                                     | ft <sup>2</sup> | K      |
| ****                      |                   |                |                                     |                       |           | I = Ice            | 312.46                                 | 312.46          | 6 30   |
| SP1 R5 (Includes 4 5"x72" | C                 | From Leg       | 0.50                                | 0.0000                | 240.00    | No Ice             | 2 85                                   | 3.15            | 0 14   |
| Pipe)                     |                   |                | 0.00                                |                       |           | 1/2" Ice           | 3 36<br>3 90                           | 3.69<br>4.26    | 0.17   |
| 2-1/2" x 7' Sch 40        | В                 | From Face      | 0.00                                | 0.0000                | 240 00    | No Ice             | 2 0 1                                  | 2 01            | 0.04   |
|                           |                   |                | 0.00                                |                       |           | 1/2" Ice<br>1" Ice | 2 55                                   | 2.55<br>2.92    | 0 06   |
| 2-1/2" x 7 Sch 40         | C                 | From Face      | 0.00                                | 0.0000                | 240.00    | No Ice             | 201                                    | 2.01            | 0 04   |
|                           |                   |                | 0.00                                |                       |           | 1/2" Ice<br>1" Ice | 2.55                                   | 2 55<br>2 92    | 0.06   |

| Dishes      |                   |               |                |                                    |                       |                       |           |                     |          |                  |        |
|-------------|-------------------|---------------|----------------|------------------------------------|-----------------------|-----------------------|-----------|---------------------|----------|------------------|--------|
| Description | Face<br>or<br>Leg | Dish<br>Type  | Offset<br>Type | Offsets<br>Horz<br>Lateral<br>Vert | Azimuth<br>Adjustment | 3 dB<br>Beam<br>Width | Elevation | Outside<br>Diameter |          | Aperture<br>Area | Weight |
|             |                   |               |                | ft                                 | 0                     | 0                     | JI        | ft.                 |          | Jī <sup>2</sup>  | K      |
| 6' HP       | C                 | Paraboloid    | From           | 1 00                               | 0.0000                |                       | 240.00    | 6 00                | No Ice   | 28.27            | 0 30   |
|             |                   | w/Shroud (HP) | Leg            | 0 00                               |                       |                       |           |                     | 1/2" Ice | 29.07            | 0 52   |
|             |                   |               | 100            | 0 00                               |                       |                       |           |                     | 1" Ice   | 29.86            | 0.74   |

|                                                            |              |                 | Tru            | ss-Leç        | s-Leg Properties  |                          |                 |  |  |  |
|------------------------------------------------------------|--------------|-----------------|----------------|---------------|-------------------|--------------------------|-----------------|--|--|--|
| Section<br>Designation                                     | Area         | Area<br>Ice     | Self<br>Weight | lce<br>Weight | Equiv<br>Diameter | Equiv<br>Diameter<br>Ice | Leg<br>Area     |  |  |  |
|                                                            | $m^{\Gamma}$ | in <sup>2</sup> | K              | K.            | in                | in                       | in <sup>2</sup> |  |  |  |
| #12ZG-58 - 1 50" -<br>1 00" conn (Pirod<br>194651)         | 2010.3106    | 6026 8591       | 0.62           | 2.07          | 6 9802            | 20 9266                  | 5 3014          |  |  |  |
| #12ZG-58 - 1.75" -<br>1.00"<br>connTR1-(Pirod<br>195213)   | 2035 9652    | 7211 2772       | 0 79           | 2.09          | 7 0693            | 25 0392                  | 7.2158          |  |  |  |
| #12ZG-58 - 1.75" -<br>1 00" conn (Pirod<br>195217)         | 2035 9652    | 7187 9803       | 0.79           | 2 06          | 7 0693            | 24.9583                  | 7 2158          |  |  |  |
| #12ZG-58 - 1 75" -<br>1 00" conn (Pirod<br>195217)         | 2035 9652    | 7162.0721       | 0.79           | 2 01          | 7 0693            | 24.8683                  | 7 2 1 5 8       |  |  |  |
| #12ZG-58 -2 00" -<br>0.875"<br>conn -TR3-(Pirod<br>195637) | 2339 7677    | 6176 2066       | 1.00           | 2 02          | 8 1242            | 21 4452                  | 9 4248          |  |  |  |
| #12ZG-58 -2 00" -<br>0 875" conn. (Pirod                   | 2339 7677    | 6154 8760       | 1 00           | 1 96          | 8 1242            | 21 3711                  | 9 4248          |  |  |  |

| Valmont                                                      | Job                     | 565090                     | Page 17 of 72             |
|--------------------------------------------------------------|-------------------------|----------------------------|---------------------------|
| 1545 Pideo Dr.                                               | Project<br>H-31 x290' S | ST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client                  | VB BTS II, LLC             | Designed by<br>JL         |

| Section<br>Designation         | Area            | Area<br>Ice     | Self<br>Weight | Ice<br>Weight | Equiv<br>Diameter | Equiv.<br>Diameter<br>Ice | Leg<br>Area |
|--------------------------------|-----------------|-----------------|----------------|---------------|-------------------|---------------------------|-------------|
|                                | in <sup>2</sup> | in <sup>2</sup> | K              | K             | in                | in                        | in          |
| 195639)                        |                 | - NAME OF       |                |               | 1 2 2 2 2 2       | - Care C. /               |             |
| #12ZG-58 -2.00" -              | 2339 7677       | 6129 7197       | 1 00           | 1 90          | 8 1242            | 21 2837                   | 9 4248      |
| 0 875" conn. (Pirod<br>195639) |                 |                 |                |               |                   |                           |             |
| #12ZG-58 -2 25" -              | 2475 7141       | 6170 9183       | 1.17           | 1 84          | 8 5962            | 21 4268                   | 11 9282     |
| 0.875" conn (Pirod<br>195960)  |                 |                 |                |               |                   |                           |             |
| #12ZG-58 -2 25" -              | 2475 7141       | 6130 8735       | 117            | 1 74          | 8 5962            | 21 2878                   | 11 9282     |
| 0.875" conn (Pirod<br>195960)  |                 |                 |                |               |                   |                           |             |
| #12ZG-58 -2 25" -              | 2475.7141       | 6072 5831       | 1.17           | 1.60          | 8.5962            | 21 0854                   | 11.9283     |
| 0.875" conn (Pirod<br>195960)  |                 |                 |                |               |                   |                           |             |
| #12ZG-58 BASE -                | 2548 5522       | 5961 8648       | 1.29           | 1.32          | 8.8491            | 20 7009                   | 14 7262     |
| 2 50" - 0.875"                 |                 |                 |                |               |                   |                           |             |
| conn -TR4-(Pirod               |                 |                 |                |               |                   |                           |             |
| 281171)                        |                 |                 |                |               |                   |                           |             |

### Tower Pressures - No Ice

 $G_H = 0.850$ 

| Section       | 2            | K <sub>≥</sub> | $q_z$ | An,             | F | AF     | As     | Aire     | Leg   | C,A,            | $C_{AA,i}$ |
|---------------|--------------|----------------|-------|-----------------|---|--------|--------|----------|-------|-----------------|------------|
| Elevation     |              |                |       | 100             | a |        |        |          | %     | ln              | Out        |
|               |              |                |       | 6.2             | C | 6.5    | A)     | 1.5      |       | Face            | Face       |
| fl            | ft           |                | psf   | ft <sup>2</sup> | 2 | ft     | ſŧ     | ft'      | 1000  | fi <sup>7</sup> | fi.        |
| T1            | 285.00       | 1.578          | 39    | 52.396          | A | 5 022  | 4.792  | 4.792    | 48 83 | 0.000           | 0.000      |
| 290.00-280.00 |              | 0.00           |       | 1334            | В | 5 022  | 4.792  |          | 48.83 | 0.870           | 0.000      |
|               | 200 Ed 1 200 |                | 5.41  | 55.036          | C | 5 022  | 4 792  | 3.5945.6 | 48 83 | 15 172          | 0.000      |
| T2            | 270.00       | 1.56           | 38    | 107.500         | A | 8.961  | 15.000 | 15,000   | 62 60 | 11 880          | 0.000      |
| 280.00-260.00 | 100          | -              |       | 1000000         | В | 8.961  | 15 000 | -        | 62 60 | 37 380          | 0.000      |
|               | VG6.85       | 56.25          | Lile. | 0.00.00         | C | 8.961  | 15 000 | 000.00   | 62 60 | 59 937          | 0.000      |
| T3            | 250 00       | 1 535          | 38    | 129 283         | A | 7 669  | 18 574 | 18 574   | 70 78 | 47 520          | () 000     |
| 260 00-240 00 |              |                |       |                 | В | 7 669  | 18 574 |          | 70 78 | 49 260          | 0.000      |
|               | to contain   | and the second |       |                 | C | 7 669  | 18 574 | 200      | 70 78 | 59.937          | 0 000      |
| T4            | 230.00       | 1 508          | 37    | 171 054         | A | 11.361 | 22 120 | 22 120   | 66.07 | 47 520          | 0.000      |
| 240 00-220 00 |              |                | 17.21 | 6-00            | B | 11.361 | 22 120 |          | 66.07 | 49 260          | 0.00       |
| 277.1         |              |                |       |                 | C | 11.361 | 22 120 | 1        | 66.07 | 63 085          | 0.00       |
| TS            | 210 00       | 1 48           | 36    | 222 527         | A | 10.261 | 23 306 | 23 306   | 69 43 | 47 520          | 0.00       |
| 220 00-200 00 | 4.00         |                |       | -               | В | 10.261 | 23.306 |          | 69 43 | 49.260          | 0.00       |
|               | 100          |                |       | 9.779           | C | 10.261 | 23.306 |          | 69 43 | 63 085          | 0.00       |
| T6            | 190 00       | 1 449          | 35    | 262 944         | A | 11 439 | 23 604 | 23 604   | 67 36 | 47 520          | 0.00       |
| 200 00-180 00 | 27,752       |                | 97.   | 1.3.2           | В | 11.439 | 23 604 | 4.700    | 67 36 | 49 260          | 0.00       |
|               |              |                |       |                 | C | 11.439 | 23 604 |          | 67.36 | 63 085          | 0.000      |
| T7            | 170 00       | 1 415          | 35    | 302.944         | A | 12.727 | 23 604 | 23 604   | 64 97 | 47.520          | 0.000      |
| 180.00-160.00 | 340745       | 100000         |       | -               | В | 12 727 | 23.604 | 1200000  | 64.97 | 49 260          | 0.000      |
| 22002         |              |                |       |                 | C | 12 727 | 23.604 |          | 64.97 | 63.085          | 0.000      |
| T8            | 150.00       | 1.378          | 34    | 342 944         | A | 16 913 | 23.604 | 23 604   | 58.26 | 47 520          | 0.000      |
| 160.00-140.00 | *********    | 13,347,24      | 117   | 100000          | В | 16 913 | 23.604 |          | 58.26 | 50 130          | 0.000      |
|               |              |                | 201   | 100             | C | 16 913 | 23 604 |          | 58.26 | 63.085          | 0.000      |
| T9            | 130.00       | 1.337          | 33    | 383 361         | A | 12 514 | 27 126 | 27 126   | 68 43 | 47 520          | 0.00       |
| 140 00-120 00 |              | 2000           |       |                 | В | 12 514 | 27 126 |          | 68.43 | 52 740          | 0.00       |
|               |              |                |       |                 | C | 12 514 | 27.126 |          | 68.43 | 63.085          | 0 00       |
| T10           | 110.00       | 1 291          | 32    | 423 361         | A | 13 178 | 27 126 | 27 126   | 67 30 | 47.520          | 0.00       |
| 120 00-100 00 | 110.00       | 00.0           | -     |                 | В | 13 178 | 27 126 | 27,129   | 67 30 | 52 740          | 0 00       |
| 123.00 100 00 |              | 1 1            |       |                 | Č | 13.178 | 27 126 |          | 67 30 | 63.085          | 0.00       |

| Valmont                                                    | Job 565090                          | Page 18 of 72          |
|------------------------------------------------------------|-------------------------------------|------------------------|
| 1545 Pidco Dr                                              | Project<br>H-31 x290' SST - US-KY-5 | Date 07:03:40 10/06/22 |
| Plymouth, 1N<br>Phone (574)-936-4221<br>FAX (574)-936-6458 | Client VB BTS II, L                 | LC Designed by         |

| Section<br>Elevation                     | s     | Kz    | qz   | Ac              | F<br>a | $A_F$  | AR     | Airy     | Leg<br>% | C <sub>1</sub> A <sub>3</sub><br>In | C <sub>4</sub> A <sub>4</sub><br>Out |
|------------------------------------------|-------|-------|------|-----------------|--------|--------|--------|----------|----------|-------------------------------------|--------------------------------------|
| fi                                       | ſŧ    |       | psf  | ft <sup>2</sup> | e      | ſt²    | ft²    | ſt²      |          | Face<br>ft <sup>2</sup>             | Face<br>fr                           |
| T11                                      | 90.00 | 1.238 | 30   | 463 361         | A      | 13 884 | 27 126 | 27.126   | 66.15    | 47 520                              | 0 000                                |
| 100 00-80 00                             | 2.74  |       |      | Vertical A      | В      | 13.884 | 27 126 |          | 66.15    | 52 740                              | 0.000                                |
|                                          |       | 1.00  |      | 20.00           | C      | 13.884 | 27 126 | 77.00    | 66 15    | 63 085                              | 0 000                                |
| T12                                      | 70 00 | 1.174 | 29   | 503.778         | A      | 14.623 | 28 702 | 28 702   | 66.25    | 47 520                              | 0.000                                |
| 80 00-60 00                              | 100   |       | 40   |                 | В      | 14.623 | 28.702 | 45.44.5  | 66.25    | 52 740                              | 0.000                                |
| 200000000000000000000000000000000000000  |       |       | 1.00 |                 | C      | 14.623 | 28.702 |          | 66.25    | 63 085                              | 0 000                                |
| T13                                      | 50 00 | 1.094 | 27   | 543 778         | A      | 17.958 | 28 702 | 28 702   | 61 51    | 47.520                              | 0 000                                |
| 60.00-40.00                              | 100   |       |      |                 | В      | 17 958 | 28.702 | C75 C25. | 61.51    | 52 740                              | 0 000                                |
| 20.00.00.00.00.00.00.00.00.00.00.00.00.0 | - 4   |       |      | 100             | C      | 17 958 | 28.702 |          | 61.51    | 63 085                              | 0.000                                |
| T14                                      | 30 00 | 0.982 | 24   | 583 778         | A      | 18 884 | 28 702 | 28 702   | 60.32    | 47 520                              | 0 000                                |
| 40.00-20.00                              |       | 4.355 | - 61 |                 | В      | 18 884 | 28.702 |          | 60.32    | 52 740                              | 0 000                                |
| In the same of the                       |       | 200   |      | 9.00            | C      | 18.884 | 28.702 |          | 60.32    | 63 085                              | 0 000                                |
| T15 20 00-0 00                           | 10.00 | 0.85  | 21   | 624 196         | A      | 19.836 | 29.546 | 29.546   | 59.83    | 47 520                              | 0.000                                |
|                                          | 1     | 1,000 | 0.51 |                 | В      | 19 836 | 29.546 |          | 59.83    | 52 740                              | 0.000                                |
|                                          |       | 150   |      |                 | C      | 19.836 | 29 546 |          | 59.83    | 63 085                              | 0.000                                |

## **Tower Pressure - With Ice**

 $G_H = 0.850$ 

| Section<br>Elevation | 2      | Kz    | $q_z$ | 12         | Air         | F | AF              | Ak      | Aleg    | Leg<br>% | C.A.            | C <sub>s</sub> A <sub>s</sub> |
|----------------------|--------|-------|-------|------------|-------------|---|-----------------|---------|---------|----------|-----------------|-------------------------------|
| 270,000              | 1      |       |       |            |             | c |                 |         |         | 5,4      | Face            | Face                          |
| fi                   | fi     |       | psf   | in         | ft2         | e | ft <sup>2</sup> | fr      | fr      |          | ft <sup>2</sup> | ſŕ                            |
| TI                   | 285 00 | 1.578 | 3     | 2.4812     | 56.531      | A | 5.022           | 24.538  | 13 062  | 44.19    | 0.000           | 0.000                         |
| 290.00-280.00        | 72.00  |       |       |            | 200         | В | 5 022           | 24.538  |         | 44.19    | 5.832           | 0.000                         |
| 200                  |        |       |       |            |             | C | 5 022           | 24 538  |         | 44.19    | 26 859          | 0.000                         |
| T2                   | 270.00 | 1.56  | 3     | 2.4678     | 115 726     | A | 8 961           | 49.143  | 31 452  | 54.13    | 13.620          | 0.000                         |
| 280.00-260.00        |        | 200   | 100   |            |             | В | 8 961           | 49.143  |         | 54.13    | 52 471          | 0.000                         |
| -22,7-12,000         |        | 1     |       | A          |             | C | 8 961           | 49 143  |         | 54.13    | 96 511          | 0.000                         |
| Т3                   | 250.00 | 1 535 | 3     | 2 4489     | 137 456     | A | 7 669           | 53 709  | 34 927  | 56.91    | 54 353          | 0.000                         |
| 260 00-240.00        |        |       |       | 1          |             | В | 7.669           | 53 709  |         | 56.91    | 65.888          | 0.000                         |
|                      |        |       |       |            |             | C | 7 669           | 53 709  |         | 56 91    | 96 156          | 0.000                         |
| T4                   | 230.00 | 1 508 | 3     | 2.4286     | 179 160     | A | 11 361          | 60 410  | 38.338  | 53.42    | 54 216          | 0.000                         |
| 240 00-220 00        |        | 6.7   |       | 10000      | 200         | В | 11 361          | 60 410  |         | 53.42    | 65.670          | 0.000                         |
|                      |        |       |       |            | 100         | C | 11.361          | 60 410  | 7.00    | 53.42    | 108.638         | 0.000                         |
| TS                   | 210.00 | 1.48  | 3     | 2,4066     | 230.559     | A | 10 261          | 89 627  | 69 871  | 69 95    | 54 068          | 0.000                         |
| 220 00-200 00        | -11.00 | 100   |       |            | 2000        | В | 10 261          | 89 627  | 12.32.3 | 69 95    | 65.435          | 0.000                         |
|                      |        | 100   | 1     |            |             | C | 10 261          | 89 627  |         | 69 95    | 108 139         | 0.000                         |
| T6                   | 190.00 | 1 449 | 3     | 2.3826     | 270 896     | A | 11 439          | 105 407 | 83.603  | 71 55    | 53 907          | 0.000                         |
| 200 00-180 00        | -      |       | -     |            | 1387.575    | В | 11 439          | 105 407 | 220,000 | 71.55    | 65 178          | 0.000                         |
| SAN A PACACA         |        |       |       |            |             | C | 11 439          | 105 407 |         | 71.55    | 107 594         | 0.000                         |
| T7                   | 170.00 | 1.415 | 3     | 2.3563     | 310 808     | A | 12 727          | 107 323 | 83.333  | 69 42    | 53 730          | 0.000                         |
| 180 00-160 00        |        | 200   |       |            | 773-5-0-3   | В | 12 727          | 107 323 | 1,000   | 69.42    | 64 895          | 0.000                         |
| ,                    |        |       |       |            |             | C | 12.727          | 107 323 |         | 69.42    | 106 996         | 0.000                         |
| T8                   | 150.00 | 1 378 | 3     | 2 3270     | 350 710     | A | 16 913          | 109 270 | 83.032  | 65 80    | 53 533          | 0 000                         |
| 160 00-140 00        | -      |       |       | a.v.       |             | В | 16 913          | 109 270 | 10.00   | 65 80    | 68 421          | 0 000                         |
|                      | 100    |       |       |            |             | C | 16.913          | 109 270 |         | 65 80    | 106 330         | 0.000                         |
| Т9                   | 130.00 | 1 337 | 3     | 2.2939     | 391 017     | A | 12 514          | 90 739  | 71 603  | 69 35    | 53 312          | 0 000                         |
| 140.00-120.00        |        | 9.0   |       |            | 1/2/2/2     | В | 12.514          | 90 739  | 20.00   | 69 35    | 79 493          | 0.000                         |
| 1.0450-00414.1       |        |       | 0.00  |            |             | C | 12 514          | 90.739  |         | 69 35    | 105 579         | 0.000                         |
| T10                  | 110 00 | 1 291 | 3     | 2 2559     | 430 890     | A | 13 178          | 91.175  | 71.356  | 68 38    | 53 057          | 0 000                         |
| 120.00-100.00        | 7.5    | 10000 |       | The second | 20715       | В | 13 178          | 91 175  |         | 68 38    | 78 977          | 0 000                         |
| 377453043430         |        | 2.7   |       |            |             | C | 13 178          | 91 175  |         | 68 38    | 104 716         | 0.000                         |
| TII                  | 90.00  | 1 238 | 2     | 2 2111     | 470 741     | A | 13 884          | 91 529  | 71.064  | 67.42    | 52 756          | 0 000                         |
| 100 00-80.00         | 100.03 |       | -     |            | 3.500.301.0 | В | 13 884          | 91 529  | 22,000  | 67 42    | 78 368          | 0 000                         |

| Valmont                                                      | Job     | 565090                                 | Page 19 of 72             |
|--------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr.                                               | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by               |

| Section<br>Elevation<br>ft | s<br>ft | Kz    | q <sub>i</sub> | 1 <sub>2</sub> | Aci     | F<br>a<br>c | A <sub>F</sub> | A <sub>R</sub> | Alex    | Leg<br>% | C <sub>1</sub> A <sub>1</sub><br>In<br>Face<br>It <sup>2</sup> | C <sub>1</sub> A <sub>.1</sub><br>Out<br>Face<br>fr |
|----------------------------|---------|-------|----------------|----------------|---------|-------------|----------------|----------------|---------|----------|----------------------------------------------------------------|-----------------------------------------------------|
| ,                          | -       |       | 1.5            |                | 1       | C           | 13.884         | 91.529         |         | 67.42    | 103.698                                                        | 0.000                                               |
| T12 80:00-60:00            | 70.00   | 1 174 | 2              | 2 1562         | 510.975 | A           | 14.623         | 92.562         | 71 542  | 66.75    | 52 389                                                         | 0.000                                               |
|                            | * 4.000 | 25.13 |                |                | 0.8263% | В           | 14 623         | 92.562         | 36.5    | 66.75    | 77.624                                                         | 0.000                                               |
|                            |         | 1.0   |                |                | -       | C           | 14.623         | 92.562         |         | 66.75    | 102,453                                                        | 0 000                                               |
| T13 60.00-40.00            | 50.00   | 1.094 | 2              | 2.0849         | 550.737 | A           | 17.958         | 92.471         | 71 077  | 64.36    | 51.911                                                         | 0.000                                               |
| ALD OLLOWING THE           |         |       |                |                | 333.31  | В           | 17.958         | 92.471         | -321300 | 64.36    | 76.658                                                         | 0.000                                               |
|                            |         |       |                |                | 100     | C           | 17.958         | 92.471         |         | 64.36    | 100.834                                                        | 0.000                                               |
| T14 40.00-20.00            | 30.00   | 0 982 | 2              | 1 9810         | 590.390 | A           | 18 884         | 91.779         | 70 402  | 63.62    | 51 217                                                         | 0.000                                               |
|                            |         |       |                | 0.31           | 7.3.3   | В           | 18 884         | 91.779         | -       | 63.62    | 75 254                                                         | 0 000                                               |
|                            |         |       |                |                |         | C           | 18 884         | 91 779         |         | 63.62    | 98 479                                                         | 0.000                                               |
| T15 20.00-0.00             | 10.00   | 0 85  | 2              | 1 7749         | 630 119 | A           | 19 836         | 89 237         | 69 118  | 63.37    | 49 843                                                         | 0.000                                               |
|                            |         |       |                | 11.47.5        | 11100   | В           | 19 836         | 89.237         |         | 63.37    | 72.474                                                         | 0.000                                               |
|                            |         |       |                |                |         | C           | 19.836         | 89.237         |         | 63.37    | 93 807                                                         | 0.000                                               |

# Tower Pressure - Service

 $G_H=0.850$ 

| Section<br>Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3        | Kz    | q <sub>z</sub> | Aa        | Fa | AF     | $A_R$           | Aleg            | Leg<br>% | C <sub>1</sub> A <sub>A</sub><br>In | C <sub>1</sub> A <sub>4</sub><br>Out |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|----------------|-----------|----|--------|-----------------|-----------------|----------|-------------------------------------|--------------------------------------|
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0      |       |                | 4.5       | C  |        | 44              |                 |          | Face                                | Face                                 |
| ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fi       |       | psf            | ft2       | e  | fi²    | ft <sup>2</sup> | fr <sup>2</sup> |          | ft²                                 | ft <sup>-</sup>                      |
| TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 285.00   | 1.578 | 12             | 52 396    | A  | 5 022  | 4 792           | 4 792           | 48 83    | 0 000                               | 0.000                                |
| 290.00-280.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |       |                | 10.00     | В  | 5.022  | 4 792           | 1,011           | 48 83    | 0.870                               | 0.000                                |
| - The state of the | 200      | 5.65  | 3.5            |           | C  | 5 022  | 4.792           | 1.777           | 48 83    | 15.172                              | 0.000                                |
| T2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 270.00   | 1 56  | 12             | 107 500   | A  | 8.961  | 15 000          | 15 000          | 62 60    | 11 880                              | 0.000                                |
| 280 00-260.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |       |                |           | B  | 8.961  | 15.000          |                 | 62 60    | 37.380                              | 0.000                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                |           | C  | 8.961  | 15.000          |                 | 62 60    | 59.937                              | 0.000                                |
| T3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 250 00   | 1 535 | 12             | 129 283   | A  | 7.669  | 18 574          | 18 574          | 70 78    | 47.520                              | 0 000                                |
| 260 00-240 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |       |                | ( )       | В  | 7 669  | 18 574          |                 | 70.78    | 49,260                              | 0.000                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                | 100       | C  | 7.669  | 18 574          | 45.70           | 70.78    | 59 937                              | 0.000                                |
| T4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 230.00   | 1 508 | 12             | 171 054   | A  | 11 361 | 22.120          | 22 120          | 66.07    | 47.520                              | 0.000                                |
| 240 00-220.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |       | 100            | 1         | В  | 11 361 | 22 120          | -               | 66 07    | 49 260                              | 0 000                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F (7)    | 1     |                | A         | C  | 11.361 | 22 120          |                 | 66 07    | 63.085                              | 0.000                                |
| T5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 210 00   | 1.48  | 12             | 222 527   | A  | 10 261 | 23 306          | 23 306          | 69 43    | 47.520                              | 0.00                                 |
| 220 00-200.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00     |       | 9.7            | 1000      | В  | 10 261 | 23 306          |                 | 69 43    | 49 260                              | 0.000                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                |           | C  | 10 261 | 23 306          |                 | 69 43    | 63.085                              | 0.000                                |
| T6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 190 00   | 1 449 | 11             | 262 944   | A  | 11.439 | 23 604          | 23 604          | 67 36    | 47.520                              | 0.000                                |
| 200 00-180 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · COLUMN |       |                |           | В  | 11 439 | 23.604          |                 | 67 36    | 49 260                              | 0.000                                |
| A 10 A 5 COLUMN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00     |       | . 654          | 1000      | C  | 11 439 | 23 604          |                 | 67 36    | 63.085                              | 0.000                                |
| T7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 170 00   | 1415  | 11             | 302 944   | A  | 12 727 | 23.604          | 23.604          | 64.97    | 47.520                              | 0.000                                |
| 180 00-160 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 10 CM  |       | 100            |           | В  | 12 727 | 23.604          | 100000          | 64.97    | 49.260                              | 0.000                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                |           | C  | 12 727 | 23.604          |                 | 64.97    | 63.085                              | 0.000                                |
| T8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150 00   | 1.378 | 11             | 342 944   | A  | 16 913 | 23.604          | 23.604          | 58.26    | 47 520                              | 0.000                                |
| 160 00-140.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25000    | 10000 | 100            |           | В  | 16 913 | 23.604          |                 | 58.26    | 50 130                              | 0.000                                |
| -0.2 × 20.00 do 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       |                |           | C  | 16 913 | 23.604          |                 | 58.26    | 63 085                              | 0.000                                |
| T9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130.00   | 1.337 | 10             | 383.361   | A  | 12 514 | 27.126          | 27 126          | 68.43    | 47.520                              | 0.000                                |
| 140.00-120.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.50     | 11000 | -              | 2000      | В  | 12 514 | 27.126          |                 | 68.43    | 52 740                              | 0.000                                |
| 137171074817170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                |           | C  | 12 514 | 27 126          |                 | 68 43    | 63 085                              | 0.000                                |
| T10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110.00   | 1.291 | 10             | 423.361   | A  | 13.178 | 27 126          | 27 126          | 67.30    | 47.520                              | 0.00                                 |
| 120.00-100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100000   |       |                |           | В  | 13.178 | 27.126          | 2,0-7.52        | 67.30    | 52 740                              | 0.000                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                | 107-4     | c  | 13 178 | 27 126          |                 | 67 30    | 63 085                              | 0.000                                |
| TII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90.00    | 1 238 | 10             | 463.361   | A  | 13.884 | 27 126          | 27 126          | 66 15    | 47 520                              | 0.00                                 |
| 100.00-80.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 1,000 | 2.5            | 235 538 0 | В  | 13.884 | 27.126          | 201192          | 66 15    | 52 740                              | 0.00                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                |           | C  | 13.884 | 27 126          |                 | 66 15    | 63 085                              | 0 00                                 |

| Valmont                                                      | Job 565090                                | Page 20 of 72          |
|--------------------------------------------------------------|-------------------------------------------|------------------------|
| 1545 Pidco Dr                                                | Project<br>H-31 x290' SST - US-KY-5135 Fa | Date 07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                     | Designed by JL         |

| Section<br>Elevation<br>ft | î<br>fi | Kz    | q <sub>z</sub> | A <sub>G</sub> | F<br>a<br>c | A <sub>F</sub> | A <sub>R</sub> | A <sub>log</sub> | Leg<br>% | C.A.<br>In<br>Face<br>ft <sup>2</sup> | C <sub>1</sub> A <sub>1</sub><br>Out<br>Face<br>ft |
|----------------------------|---------|-------|----------------|----------------|-------------|----------------|----------------|------------------|----------|---------------------------------------|----------------------------------------------------|
| T12                        | 70.00   | 1.174 | 9              | 503 778        | A           | 14.623         | 28.702         | 28 702           | 66.25    | 47.520                                | 0.000                                              |
| 80.00-60.00                |         | 200   |                | 00.784.47      | В           | 14.623         | 28 702         | 0.00             | 66.25    | 52.740                                | 0 000                                              |
| 5.54.54.36.3               |         |       |                |                | C           | 14.623         | 28 702         |                  | 66.25    | 63.085                                | 0.000                                              |
| T13                        | 50.00   | 1.094 | 9              | 543.778        | A           | 17.958         | 28.702         | 28.702           | 61.51    | 47.520                                | 0.000                                              |
| 60.00-40.00                |         |       |                |                | В           | 17.958         | 28.702         | 100              | 61.51    | 52.740                                | 0.000                                              |
|                            |         |       |                | 100            | C           | 17.958         | 28.702         |                  | 61.51    | 63.085                                | 0.000                                              |
| T14                        | 30.00   | 0.982 | 8              | 583 778        | A           | 18.884         | 28.702         | 28.702           | 60.32    | 47.520                                | 0 000                                              |
| 40.00-20.00                |         |       |                | 7.77           | В           | 18 884         | 28.702         | 200              | 60.32    | 52.740                                | 0.000                                              |
|                            |         |       |                |                | C           | 18 884         | 28 702         |                  | 60.32    | 63.085                                | 0.000                                              |
| T15 20.00-0.00             | 10 00   | 0.85  | 7              | 624 196        | A           | 19.836         | 29 546         | 29 546           | 59.83    | 47.520                                | 0.000                                              |
|                            |         |       |                |                | В           | 19.836         | 29 546         |                  | 59.83    | 52 740                                | 0.000                                              |
|                            |         |       |                |                | C           | 19.836         | 29.546         |                  | 59.83    | 63.085                                | 0.000                                              |

# **Tower Forces - No Ice - Wind Normal To Face**

| Section<br>Elevation | Add<br>Weight | Self<br>Weight | F<br>a | e     | $C_F$ | q:    | $D_F$ | $D_R$ | AE              | F    | W        | Ctrl.<br>Face |
|----------------------|---------------|----------------|--------|-------|-------|-------|-------|-------|-----------------|------|----------|---------------|
| ft                   | K             | K              | c<br>e |       |       | psf   |       |       | St <sup>2</sup> | K    | plf      |               |
| TI                   | 0 08          | 0.38           | A      | 0 187 | 2.639 | 39    | 1     | 1     | 7 764           | 0.92 | 91 74    | C             |
| 290 00-280.00        |               | 2.50           | В      | 0 187 | 2.639 | 11000 | 1     | 1     | 7.764           |      | 20,000   |               |
| 7 11 11 11           |               |                | C      | 0.187 | 2 639 |       | 1     | 1     | 7.764           |      | 200      |               |
| T2                   | 0.51          | 1.10           | A      | 0 223 | 2 521 | 38    | 1     | 1     | 16.654          | 2.64 | 132.05   | C             |
| 280.00-260.00        | 2.0           |                | В      | 0 223 | 2 521 |       | 1     | 1     | 16.654          |      |          |               |
|                      | 7.4           |                | C      | 0 223 | 2 521 |       | 1     | 1     | 16 654          | -    |          |               |
| T3                   | 0.71          | 1 28           | A      | 0 203 | 2.586 | 38    | 1     | 1     | 16.212          | 2 95 | 147 38   | C             |
| 260.00-240.00        | 2.7           | 9.22           | В      | 0 203 | 2 586 |       | 1     | 1     | 16 212          | -    |          |               |
|                      |               |                | C      | 0.203 | 2 586 |       | 1     | 1     | 16 212          |      |          |               |
| T4                   | 0.72          | 1.73           | Α      | 0.196 | 2.61  | 37    | 1     | 1.    | 21.167          | 3.37 | 168 67   | C             |
| 240.00-220 00        |               | -              | В      | 0 196 | 2.61  |       | 1     | 1     | 21 167          |      | 0.00     |               |
|                      |               |                | C      | 0 196 | 2.61  | 100   | 1     | 1     | 21 167          |      |          |               |
| T5                   | 0.72          | 2.33           | A      | 0 151 | 2.768 | 36    | -1    | 1     | 23 490          | 3.61 | 180.50   | C             |
| 220 00-200 00        |               | 100            | В      | 0.151 | 2.768 | 1     | 1     | 15    | 23 490          | 2500 | 27.327   | 100           |
| 2.604.4.75.4.4.4.4   |               |                | C      | 0.151 | 2.768 |       | î     | i i   | 23 490          |      |          | 100           |
| T6                   | 0.72          | 3.07           | A      | 0.133 | 2 834 | 35    | I     | 1.1   | 24 800          | 3.69 | 184.64   | C             |
| 200 00-180 00        | 3.00          |                | В      | 0.133 | 2.834 | 201   | 1     | Ĺ     | 24 800          |      | 130.000  |               |
|                      |               |                | C      | 0 133 | 2 834 |       | 1     | i i   | 24 800          |      |          |               |
| T7                   | 0.72          | 3 15           | A      | 0.12  | 2.885 | 35    | 1     | 1     | 26.067          | 3 75 | 187.62   | C             |
| 180 00-160 00        |               | 2007           | В      | 0.12  | 2.885 |       | 1     | Ť.    | 26 067          | 7.75 | 13.1,160 | 100           |
|                      |               |                | C      | 0 12  | 2 885 |       | 1     | î     | 26 067          |      |          |               |
| T8                   | 0 72          | 3 16           | A      | 0.118 | 2 892 | 34    | 1     | î     | 30.251          | 4.02 | 201 07   | В             |
| 160.00-140.00        |               | 2.10           | В      | 0.118 | 2.892 | 1000  | i     | Î.    | 30 251          | 1.02 | 40.00    | 125           |
| 140,00               |               |                | c      | 0 118 | 2 892 |       | i     | 1     | 30 251          |      |          |               |
| Т9                   | 0.72          | 4 16           | A      | 0 103 | 2 95  | 33    | î     | 1     | 27 825          | 3.80 | 189 78   | В             |
| 140.00-120.00        | 0,12          | 7.10           | 8      | 0 103 | 2 95  | -     | 1     | ĩ     | 27.825          | 3.00 | 102 10   |               |
| 140.00 120.00        |               |                | C      | 0 103 | 2 95  |       | 1     | i     | 27 825          | 7.1  |          |               |
| T10                  | 0 72          | 4 22           | A      | 0.095 | 2 983 | 32    | 1     | î     | 28 484          | 3 74 | 187 10   | В             |
| 120.00-100.00        | 0.72          | 7 22           | В      | 0.095 | 2 983 | 3.5   | 1     | î     | 28 484          | 277  | 107 10   | D             |
| 120.00-100.00        | - 3           |                | č      | 0.095 | 2 983 |       | 1     | 1     | 28 484          |      |          |               |
| TII                  | 0 72          | 4 29           | A      | 0.089 | 3 011 | 30    | î     | 1     | 29 187          | 3.66 | 183 08   | В             |
| 100.00-80.00         | 0 72          | 4.4.2          | В      | 0.089 | 3.011 | 20    | - 3   | i i   | 29.187          | 5.00 | 102.00   |               |
| 100.00-80.00         |               |                | c      | 0.089 | 3.011 |       | 1     | i     | 29.187          |      |          |               |
| T12                  | 0 72          | 4 89           | Ã      | 0.086 | 3 021 | 29    | 1     | 10    | 30 816          | 3.60 | 180 01   | В             |
| 80 00-60 00          | 0 72          | 4.07           | B      | 0.086 | 3 021 | 29    | 1     | - 5   | 30.816          | 5.00 | 100.01   | D             |
| 80 00-00.00          |               |                | C      | 0.086 | 3 021 |       | 1     | 1     | 30.816          |      |          |               |
| T13                  | 0 72          | 5 75           | 1      | 0.086 | 3 022 | 27    | 1     |       | 34 150          | 3 58 | 179 18   | В             |
| 60 00-40 00          | 0 /2          | 3 /3           | A<br>B | 0.086 |       | 21    | 1     | 1     | 34.150          | 3 38 | 1/7 18   | D             |
| 00.00-40.00          |               |                | D      | 0.000 | 3.022 | 1     |       | 4     | 34.130          |      | _        |               |

| Valmont                                                      | Job 565090                                     | Page 21 of 72             |
|--------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1545 Pidco Dr                                                | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                          | Designed by JL            |

| Section<br>Elevation | Add<br>Weight | Self<br>Weight | Fa | e     | $C_F$ | q.<br>psf | $D_{\mathbb{F}}$ | $D_{\kappa}$ | As                | F     | 15     | Ctrl.<br>Face |
|----------------------|---------------|----------------|----|-------|-------|-----------|------------------|--------------|-------------------|-------|--------|---------------|
| ft                   | K             | K              | e  |       | 1     |           |                  |              | ſt²               | K     | plf    |               |
|                      | 1.5           |                | C  | 0 086 | 3 022 |           | 1                | 1            | 34 150            | 100   | TO THE |               |
| T14                  | 0.72          | 5.87           | A  | 0.082 | 3 039 | 24        | 4                | 1            | 35 077            | 3 29  | 164 41 | В             |
| 40 00-20 00          | 2.7           | 2.00           | В  | 0.082 | 3.039 | i nan     | 1                | 1            | 35 077            |       | 2017   |               |
|                      | 100           |                | C  | 0 082 | 3 039 | 1.0       | 1                | 1            | 35 077            | 4.3   |        |               |
| T15                  | 0.72          | 6.32           | A  | 0.079 | 3.049 | 21        | 1                | 1            | 36 506            | 2 93  | 146 43 | В             |
| 20 00-0 00           | 14            |                | В  | 0.079 | 3.049 |           | 1                | 1            | 36 506            | 15.43 |        |               |
|                      |               |                | C  | 0.079 | 3 049 |           | 1                | T.           | 36 506            | 0.0   |        |               |
| Sum Weight           | 9.93          | 51.68          |    | 5.070 |       |           |                  | ОТМ          | 6981 92<br>kip-ft | 49 56 |        |               |

## Tower Forces - No Ice - Wind 60 To Face

| Section<br>Elevation | Add<br>Weight | Self<br>Weight | F<br>a | e     | C,                                      | q:  | $D_{\ell}$ | $D_{k}$ | AE     | F     | 19     | Ctrl.<br>Face |
|----------------------|---------------|----------------|--------|-------|-----------------------------------------|-----|------------|---------|--------|-------|--------|---------------|
| û                    | K             | K              | e      |       |                                         | psf |            |         | R      | K     | plf    |               |
| TI                   | 0 08          | 0.38           | A      | 0.187 | 2.639                                   | 39  | 0.8        | 1       | 6.760  | 0.83  | 83.05  | Α             |
| 290.00-280.00        | 0.00          | 0.00           | В      | 0 187 | 2 639                                   | 30  | 0.8        | 1       | 6 760  |       |        | 30            |
| 200.00               | 10.00         |                | C      | 0 187 | 2 639                                   |     | 0.8        | il      | 6 760  |       |        |               |
| T2                   | 0.51          | 1 10           | A      | 0 223 | 2 521                                   | 38  | 0.8        | i       | 14 861 | 2 49  | 124 72 | A             |
| 280.00-260 00        | 0.5.          |                | В      | 0.223 | 2 521                                   | 20  | 0.8        | î       | 14.861 | -     | 2011/4 | 2.0           |
| 200.00 200 00        |               |                | C      | 0 223 | 2 521                                   |     | 0.8        | i       | 14 861 |       |        |               |
| Т3                   | 0.71          | 1 28           | A      | 0 203 | 2 586                                   | 38  | 08         | 1       | 14 678 | 2 82  | 141 06 | C             |
| 260 00-240 00        | 0,71          | 7.20           | В      | 0 203 | 2 586                                   | 30  | 0.8        | 1       | 14 678 | 2 02  | 11100  |               |
| 200 00 210 00        |               |                | C      | 0 203 | 2.586                                   |     | 08         | 1       | 14 678 |       |        |               |
| T4                   | 0.72          | 1.73           | A      | 0 196 | 2.61                                    | 37  | 08         | 1       | 18 895 | 3.19  | 159 37 | C             |
| 240 00-220 00        | 0.72          | 1,10           | В      | 0 196 | 2.61                                    | 2.  | 0.8        | 1       | 18 895 | 2,117 | 10.01  |               |
| 240 00-220 00        |               |                | c      | 0.196 | 2.61                                    |     | 0.8        | i       | 18 895 |       |        |               |
| T5                   | 0.72          | 2 3 3          | A      | 0.151 | 2 768                                   | 36  | 0.8        | 1       | 21 438 | 3 44  | 171 77 | C             |
| 220 00-200 00        | 0.72          | 2 32           | B      | 0.151 | 2 768                                   | 50  | 0.8        | 1       | 21 438 | 234   |        | -             |
| 220 00-200 00        |               |                | c      | 0.151 | 2.768                                   |     | 08         | 1       | 21.438 | -     |        |               |
| Т6                   | 0.72          | 3 07           | Ã      | 0.133 | 2 834                                   | 35  | 08         | - 11    | 22 512 | 3 50  | 174 88 | C             |
| 200 00-180 00        | 0.72          | 307            | B      | 0.133 | 2.834                                   | 55  | 0.8        | - 2     | 22 512 | 3.30  | 174 00 | -             |
| 200 00-180.00        |               |                | č      | 0.133 | 2.834                                   | 1   | 0.8        | il      | 22 512 |       |        |               |
| 17                   | 0.72          | 3 15           | A      | 0.133 | 2.885                                   | 35  | 0.8        | 1       | 23 521 | 3.54  | 176 82 | C             |
| 180.00-160.00        | 0.72          | 3.13           | B      | 0 12  | 2 885                                   | 33  | 0.8        | 1       | 23 521 | 2.24  | 170.02 | -             |
| 160.00-100.00        |               |                | C      | 0 12  | 2 885                                   |     | 0.8        | 1       | 23 521 |       |        |               |
| Т8                   | 0.72          | 3 16           | A      | 0.118 | 2 892                                   | 34  | 0.8        | 1       | 26.868 | 3 74  | 187 06 | C             |
| 160 00-140 00        | 0.72          | 310            | B      | 0.118 | 2 892                                   | 34  | 0.8        | i       | 26.868 | 3.74  | 107 00 | -             |
| 100 00-140 00        |               |                | C      | 0 118 | 2 892                                   |     | 0.8        | 1       | 26.868 |       |        |               |
| Т9                   | 0 72          | 4 16           | A      | 0 103 | 2.95                                    | 33  | 0.8        | î       | 25.322 | 3 59  | 179 52 | C             |
| 140.00-120.00        | 0 /2          | 410            | B      | 0 103 | 2 95                                    | 22  | 0.8        | 1       | 25.322 | 3.37  | 117 52 | -             |
| 140.00-120.00        | -             |                | c      | 0 103 | 2.95                                    |     | 0.8        | 1       | 25 322 |       |        |               |
| T10                  | 0.72          | 4 22           | A      | 0.095 | 2.983                                   | 32  | 0.8        | 1       | 25.849 | 3 53  | 176.55 | C             |
| 120.00-100 00        | 0.12          | 4 22           | B      | 0 095 | 2 983                                   | 32  | 0.8        | 1       | 25 849 | 333   | 110.55 | ~             |
| 120.00-100.00        |               |                | C      | 0.095 | 2.983                                   |     | 0.8        | 1       | 25 849 | 1     |        |               |
| TIL                  | 0.72          | 4 29           | A      | 0.033 | 3.011                                   | 30  | 0.8        | 1       | 26 411 | 3 45  | 172 33 | C             |
| 100 00-80 00         | 0 12          | 4.43           | B      | 0.089 | 3 011                                   | 50  | 08         | 7       | 26 411 | 3.43  | 11233  |               |
| 100.00-80.00         |               |                | C      | 0.089 | 3 011                                   |     | 0.8        | 1       | 26 411 |       |        |               |
| T12                  | 0 72          | 4.89           | A      | 0 086 | 3 021                                   | 29  | 0.8        | 1       | 27 891 | 3 38  | 169 23 | C             |
| 80 00-60 00          | 0.72          | 4.89           | B      | 0 086 | 3.021                                   | 29  | 0.8        | 1       | 27 891 | 3 38  | 109 23 |               |
| 90 00-00 00          |               |                | C      | 0.086 | 3 021                                   | 1   | 0.8        | 1       | 27 891 |       |        |               |
| 7713                 | 0.72          | 5.75           | - 60   | 0.086 | 3.021                                   | 27  | 08         |         | 30 559 | 3.34  | 166 85 | С             |
| T13                  | 0.72          | 3.75           | A      |       | 100000000000000000000000000000000000000 | 21  | 0.8        | 1       | 30 559 | 3.34  | 100 83 | C             |
| 60.00-40.00          |               |                | B      | 0.086 | 3 022                                   |     | 0.8        | 14      | 30 334 |       |        |               |

| Valmont                                                     | Job 565090                                   | Page 22 of 72          |
|-------------------------------------------------------------|----------------------------------------------|------------------------|
| 1545 Pidco Dr                                               | Project H-31 x290' SST - US-KY-5135 Fancy Fa | Date 07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                        | Designed by<br>JL      |

| Section<br>Elevation                    | Add<br>Weight | Self<br>Weight | F<br>a<br>c | e     | C <sub>F</sub> | q.<br>psf | D <sub>F</sub> | D <sub>B</sub> | $A_E$             | F     | 1V     | Ctrl<br>Face |
|-----------------------------------------|---------------|----------------|-------------|-------|----------------|-----------|----------------|----------------|-------------------|-------|--------|--------------|
| fi                                      | K             | K              | e           |       | 1              |           |                |                | ft <sup>2</sup>   | K     | plf    |              |
|                                         |               |                | C           | 0.086 | 3.022          |           | 0.8            | 1              | 30.559            |       |        |              |
| T14                                     | 0.72          | 5 87           | A           | 0.082 | 3.039          | 24        | 0.8            | 1              | 31.300            | 3.05  | 152.69 | C            |
| 40.00-20.00                             | 30.7          | - 2.5          | В           | 0.082 | 3.039          | 1.00      | 0.8            | 1              | 31.300            |       | 1      |              |
| COLOR STATE                             |               |                | C           | 0.082 | 3.039          |           | 08             | 1.             | 31 300            |       | 100.00 |              |
| TI5                                     | 0.72          | 6 32           | A           | 0.079 | 3.049          | 21        | 0.8            | 1              | 32 539            | 2.71  | 135.74 | C            |
| 20 00-0.00                              | 1 1 1 1 1 1 1 |                | В           | 0.079 | 3.049          |           | 0.8            | 1              | 32.539            |       | 3.000  |              |
| 120000000000000000000000000000000000000 |               |                | C           | 0.079 | 3.049          |           | 0.8            | 1              | 32 539            |       |        |              |
| Sum Weight                              | 9.93          | 51.68          |             |       |                |           |                | ОТМ            | 6584 84<br>kip-ft | 46.60 |        |              |

### Tower Forces - No Ice - Wind 90 To Face

| Section<br>Elevation | Add<br>Weight | Self<br>Weight | F           | е     | C <sub>F</sub> | q.   | $D_F$ | D <sub>k</sub> | Ai              | F     | 19        | Ctrl.<br>Face |
|----------------------|---------------|----------------|-------------|-------|----------------|------|-------|----------------|-----------------|-------|-----------|---------------|
| ſ                    | K             | K              | e           |       |                | psf  |       |                | ft <sup>2</sup> | K     | plf       |               |
| TI                   | 0.08          | 0.38           | A           | 0 187 | 2 639          | 39   | 0.85  | - 1            | 7011            | 0.82  | 82 30     | В             |
| 290 00-280 00        | 2000          | 3.4.5          | В           | 0.187 | 2 639          |      | 0.85  | 1              | 7011            |       | 4.4       |               |
|                      |               | 100            | C           | 0.187 | 2.639          |      | 0.85  | 1              | 7.011           |       |           |               |
| T2                   | 0.51          | 1.10           | A           | 0.223 | 2,521          | 38   | 0.85  | 1              | 15 309          | 2 56  | 128 00    | A             |
| 280.00-260.00        |               | 35.00          | В           | 0.223 | 2.521          | 7.77 | 0.85  | 1              | 15 309          | 10000 |           |               |
|                      | 7.1           |                | C           | 0 223 | 2,521          |      | 0.85  | 1              | 15 309          |       |           |               |
| T3                   | 0.71          | 1.28           | A           | 0.203 | 2 586          | 38   | 0.85  | 1              | 15 061          | 2 85  | 142 64    | C             |
| 260 00-240.00        | 137-517       | 7.04           | В           | 0 203 | 2.586          |      | 0.85  | 1              | 15.061          | 30.7  | 2050      |               |
| creation in city of  | 1             |                | C           | 0 203 | 2.586          |      | 0.85  | î              | 15 061          | - 3   |           |               |
| T4                   | 0.72          | 1.73           | A           | 0.196 | 2.61           | 37   | 0.85  | 1              | 19 463          | 3 23  | 161 70    | C             |
| 240 00-220.00        |               | -12042         | В           | 0.196 | 2.61           |      | 0.85  | 1.             | 19 463          |       |           |               |
|                      |               |                | C           | 0 196 | 2.61           |      | 0.85  | T              | 19 463          |       |           |               |
| T5                   | 0 72          | 2.33           | A           | 0 151 | 2.768          | 36   | 0.85  | 1              | 21 951          | 3 48  | 173 95    | C             |
| 220 00-200.00        |               | -100           | В           | 0.151 | 2.768          | 16.6 | 0.85  | 1              | 21 951          | 7776  | 6,000,000 | 1000          |
|                      |               |                | C           | 0.151 | 2.768          |      | 0.85  | 1              | 21.951          |       |           |               |
| T6                   | 0 72          | 3.07           | A           | 0.133 | 2.834          | 35   | 0.85  | 1              | 23 084          | 3 55  | 177 32    | C             |
| 200.00-180.00        |               | 2.0.1          | В           | 0.133 | 2.834          | 2.0  | 0.85  | 1              | 23 084          | 2.00  | 313188    |               |
| 200.00 100.00        |               |                | $\tilde{c}$ | 0.133 | 2.834          |      | 0.85  | 1              | 23.084          |       |           |               |
| T7                   | 0.72          | 3 15           | Ā           | 0.12  | 2.885          | 35   | 0.85  | 1              | 24 158          | 3 59  | 179 52    | C             |
| 180.00-160.00        | 0.72          | 2.12           | В           | 0.12  | 2.885          |      | 0.85  | 1              | 24 158          | 2.2.  |           | -             |
| 100.00               |               |                | C           | 0 12  | 2.885          |      | 0.85  | 1              | 24.158          |       |           |               |
| Т8                   | 0 72          | 3 16           | A           | 0.118 | 2.892          | 34   | 0 85  | 11             | 27 714          | 3 81  | 190.57    | C             |
| 160.00-140.00        |               | 2.0            | В           | 0.118 | 2.892          | -    | 0.85  | 1              | 27 714          |       |           | -             |
| 100.00 110.00        |               |                | c           | 0.118 | 2.892          |      | 0 85  | il             | 27 714          |       |           |               |
| Т9                   | 0 72          | 4 16           | A           | 0.103 | 2 95           | 33   | 0.85  | Ŷ.             | 25 948          | 3 64  | 182 09    | C             |
| 140.00-120.00        |               | ,,,,           | В           | 0.103 | 2.95           | -    | 0 85  | 11             | 25 948          |       |           |               |
| 1.0.00 120.00        |               |                | C           | 0.103 | 2.95           |      | 0 85  | 1              | 25 948          |       |           |               |
| T10                  | 0 72          | 4 22           | A           | 0.095 | 2 983          | 32   | 0 85  | î              | 26 508          | 3 58  | 179.18    | C             |
| 120.00-100.00        | 0,12          | ,              | В           | 0.095 | 2 983          | 0.2  | 0 85  | 1              | 26 508          |       | 173.10    |               |
| 120.00-100.00        |               |                | C           | 0.095 | 2 983          |      | 0.85  | î              | 26 508          | 1     |           |               |
| TIL                  | 0 72          | 4 29           | A           | 0.089 | 3.011          | 30   | 0.85  | î              | 27 105          | 3.50  | 175.01    | C             |
| 100.00-80.00         | 0 72          | 427            | В           | 0.089 | 3 011          | 50   | 0 85  | í              | 27 105          | 3,50  | 172.01    |               |
| 100.00-00 00         | 100           |                | C           | 0.089 | 3.011          |      | 0.85  | 1              | 27 105          |       |           |               |
| T12                  | 0 72          | 4.89           | A           | 0.086 | 3 021          | 29   | 0.85  | 1              | 28 622          | 3 44  | 171 93    | C             |
| 80.00-60.00          | 0 72          | 4.07           | B           | 0.086 | 3.021          | 49   | 0.85  | 1              | 28 622          | 2.79  | 171.93    | -             |
| 60.00*00.00          |               |                | C           | 0.086 | 3.021          |      | 0.85  | î              | 28 622          |       |           |               |
| T13                  | 0.72          | 5.75           | A           | 0.086 | 3.022          | 27   | 0.85  | î              | 31 457          | 3.40  | 169 93    | С             |
| 60.00-40.00          | 0.72          | 3.13           | B           | 0.086 |                | 41   | 0.85  | i              | 31 457          | 3.40  | 107.73    |               |
| 00.00-40.00          |               |                | D           | 0.080 | 3 022          |      | 0.63  | 1              | 31437           | 1     |           |               |

| Valmont                                                      | Job 565090                                     | Page 23 of 72             |
|--------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1545 Pidco Dr                                                | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                          | Designed by               |

| Section<br>Elevation | Add<br>Weight | Self<br>Weight | F<br>a<br>c | e     | C,    | q:<br>psf | $D_F$ | $D_R$ | AE                | F     | 34       | Ctrl<br>Face |
|----------------------|---------------|----------------|-------------|-------|-------|-----------|-------|-------|-------------------|-------|----------|--------------|
| ft                   | K             | K              | e           |       | 1     |           |       |       | ſt²               | K     | plf      |              |
|                      |               | 7              | C           | 0.086 | 3.022 |           | 0.85  | 1     | 31 457            |       |          |              |
| TI4                  | 0.72          | 5.87           | A           | 0.082 | 3.039 | 24        | 0.85  | 12    | 32.244            | 3.11  | 155 62   | C            |
| 40.00-20 00          |               | 1              | В           | 0.082 | 3 039 | 1-4       | 0.85  | 1     | 32.244            | 1000  | A. A. C. |              |
| A                    |               | 100            | C           | 0.082 | 3 039 | 100       | 0 85  | 1     | 32.244            |       | 5        |              |
| T15                  | 0.72          | 6.32           | A           | 0.079 | 3.049 | 21        | 0.85  | 1     | 33.531            | 2.77  | 138.41   | C            |
| 20 00-0 00           |               |                | В           | 0.079 | 3.049 | 7.5       | 0.85  | 1     | 33.531            |       | 100000   |              |
|                      |               |                | C           | 0.079 | 3 049 |           | 0.85  | 1     | 33 531            |       |          |              |
| Sum Weight           | 9 93          | 51 68          |             |       |       |           |       | OTM   | 6683 58<br>kip-ft | 47.34 |          |              |

## Tower Forces - With Ice - Wind Normal To Face

| Section<br>Elevation | Add<br>Weight | Self<br>Weight | F | ę     | Cr    | q:   | $D_{\ell}$ | Da   | A               | F    | 10    | Cırl.<br>Face |
|----------------------|---------------|----------------|---|-------|-------|------|------------|------|-----------------|------|-------|---------------|
| fi .                 | K             | K              | e |       |       | psf  |            |      | ft <sup>2</sup> | K    | plf   |               |
| TI                   | 071           | 2.28           | A | 0.523 | 1.872 | 3    | 1          | 1    | 22 139          | 0.15 | 14 80 | C             |
| 290 00-280 00        | 8.77          |                | В | 0 523 | 1 872 | -    | T.         | 1    | 22 139          |      |       |               |
| 220.00.200.00        | 100           |                | C | 0.523 | 1.872 |      | Ŷ          | 1    | 22 139          |      |       |               |
| T2                   | 3.76          | 4.69           | A | 0 502 | 1.897 | 3    | î          | 1    | 42 679          | 0.38 | 19.10 | C             |
| 280.00-260.00        | 5.70          |                | В | 0 502 | 1.897 | -    | Ť          | 1    | 42 679          |      |       | 1.7           |
|                      |               |                | C | 0 502 | 1.897 |      | 1          | 1    | 42 679          |      |       |               |
| Т3                   | 5.05          | 4.90           | Ā | 0.447 | 1.979 | 3    | 1          | 1    | 42 988          | 0.45 | 22.39 | C             |
| 260 00-240 00        | 5.05          | 1.70           | В | 0.447 | 1.979 |      | 1          | 1    | 42 988          | 5    |       |               |
| 200 00 21000         |               |                | c | 0.447 | 1 979 |      | 1          | 1    | 42 988          |      |       |               |
| T4                   | 5 26          | 6.24           | A | 0.401 | 2.063 | 3    | 1          | î    | 49 811          | 0 52 | 26.08 | C             |
| 240 00-220 00        |               | 4,5.           | В | 0.401 | 2.063 |      | 1          | î    | 49.811          | 3.5  |       |               |
| 210 00 220 00        |               |                | C | 0 401 | 2 063 |      | 1          | 11   | 49 811          |      |       |               |
| T5                   | 5 22          | 11 15          | A | 0 433 | 2.002 | 3    | 1          | 11   | 68 631          | 0.58 | 29 09 | C             |
| 220 00-200 00        |               |                | В | 0.433 | 2.002 | -    | î          | 1    | 68 631          | 2.00 |       | _             |
| 220 00 200 00        |               |                | C | 0 433 | 2.002 | 1    | il         | 1    | 68 631          | 1    | - 27  |               |
| Т6                   | 5 17          | 12.20          | A | 0.431 | 2.005 | 3    | 1          | 1    | 79 991          | 0.62 | 31.25 | C             |
| 200 00-180.00        | 337           | 12.20          | В | 0.431 | 2.005 | -    | 1          | 1    | 79 991          | 0.02 | 3, 25 | _             |
| 200 00 100.00        |               |                | c | 0.431 | 2.005 |      | 1          | 1    | 79 991          |      |       |               |
| T7                   | 511           | 12 43          | A | 0 386 | 2 092 | 3    | 1          | 1    | 80 383          | 0.64 | 32 01 | C             |
| 180 00-160.00        |               |                | В | 0.386 | 2 092 |      | Ť          | 1    | 80 383          |      | 200,  | -             |
| 100 00 100.00        |               |                | Č | 0 386 | 2 092 |      | i          | 1    | 80.383          |      |       |               |
| Т8                   | 5 09          | 13.00          | Ā | 0 36  | 2 149 | 3    | î          | 1    | 84 636          | 0 66 | 32 88 | В             |
| 160.00-140.00        | 3.07          | 15.00          | В | 0 36  | 2 149 | - 5  | i          | 1    | 84 636          | 0.00 | 52 00 | -             |
| 100.00 110.00        |               |                | c | 0 36  | 2 149 | 4.77 | i          | 1    | 84 636          |      |       |               |
| Т9                   | 5 13          | 13 72          | Ā | 0 264 | 2 396 | 3    | 1          | 11   | 65 921          | 0.59 | 29.73 | В             |
| 140.00-120.00        | 27.2          |                | В | 0 264 | 2 396 | ~    | 1          | 1    | 65.921          | ***  |       | -             |
| 110.00 120.00        |               |                | c | 0 264 | 2 396 | 1111 | 1          | 1    | 65.921          |      |       |               |
| T10                  | 5.06          | 13.72          | A | 0 242 | 2 461 | 3    | 1          | 1    | 66 345          | 0.58 | 29.19 | В             |
| 120.00-100.00        | 5.00          | 13.7.2         | В | 0 242 | 2 461 |      | 1          | i    | 66 345          | 0.00 | 27-17 |               |
| 120.00 100.00        |               |                | č | 0 242 | 2 461 | W    | 1          | 1    | 66 345          |      |       |               |
| T11                  | 4 97          | 13 69          | A | 0 224 | 2518  | 2.   | 1          | i    | 66 886          | 0.57 | 28.41 | В             |
| 100 00-80 00         |               | 10.02          | В | 0 224 | 2518  |      | 1          | 1    | 66 886          |      | 20.41 | -             |
| 100 00 00 00         |               |                | C | 0 224 | 2 518 |      | T          | 1    | 66.886          |      |       |               |
| T12                  | 4 86          | 14 20          | A | 021   | 2.564 | 2    | 1          | 1    | 67.963          | 0.55 | 27.40 | В             |
| 80 00-60.00          | 4.00          | 14.20          | В | 0.21  | 2.564 |      | 1          | 1    | 67 963          | 0,55 | 27-70 |               |
| 20 00 00.00          |               |                | C | 0.21  | 2.564 |      | 1          | 1    | 67.963          |      |       |               |
| T13                  | 4.72          | 15.26          | A | 0.201 | 2.594 | 2    | î          | 1    | 71 089          | 0.53 | 26.32 | В             |
| 60.00-40.00          | 7.12          | 13.20          | В |       | 2.594 | 2    | 1          | - 31 | 71 089          | 0.55 | 40.34 | u             |

| Valmont                                                     | Job<br>565090                                  | Page 24 of 72             |
|-------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1545 Pideo Dr                                               | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth. 1N<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                          | Designed by JL            |

| Section<br>Elevation | Add<br>Weight<br>K | Self<br>Weight<br>K | F<br>a<br>c | e     | $C_F$ | q:<br>psf | $D_F$ | $D_R$ | A <sub>#</sub>    | F<br>K | w<br>plf | Cirl<br>Face |
|----------------------|--------------------|---------------------|-------------|-------|-------|-----------|-------|-------|-------------------|--------|----------|--------------|
|                      | T                  |                     | C           | 0.201 | 2 594 |           | 1     | 1     | 71 089            |        | 1000     |              |
| T14                  | 4.51               | 14.91               | A           | 0 187 | 2 638 | 2         | 1     | 1     | 71 418            | 0 48   | 23 78    | В            |
| 40.00-20.00          | 100                |                     | В           | 0 187 | 2 638 | 12.0      | 1     | 1     | 71 418            |        | 200      |              |
| -                    |                    |                     | C           | 0 187 | 2 638 |           | 1     | 1     | 71.418            |        |          |              |
| T15                  | 4 13               | 14 16               | A           | 0.173 | 2 688 | 2         | 1     | T.    | 70 727            | 041    | 20 38    | В            |
| 20.00-0.00           |                    | 100                 | В           | 0.173 | 2 688 |           | 1     | 1.    | 70 727            |        | 100      |              |
|                      |                    |                     | C           | 0.173 | 2.688 |           | 1     | - 1   | 70 727            |        |          |              |
| Sum Weight           | 68 75              | 166.54              |             |       |       |           |       | ОТМ   | 1101 37<br>kip-ft | 7.71   |          |              |

# Tower Forces - With Ice - Wind 60 To Face

| Section<br>Elevation                            | Add<br>Weight | Self<br>Weight | F      | ę     | C <sub>F</sub> | q:     | $D_F$ | $D_{\tilde{R}}$ | AE     | F         | 3/2   | Ctrl<br>Face |
|-------------------------------------------------|---------------|----------------|--------|-------|----------------|--------|-------|-----------------|--------|-----------|-------|--------------|
| G                                               | K             | K              | c<br>e |       |                | psf    |       |                 | ft2    | K         | plf   |              |
| TI                                              | 0.71          | 2 28           | A      | 0.523 | 1.872          | 3      | 0.8   | 1               | 21 135 | 0.14      | 14 30 | A            |
| 290.00-280.00                                   | 0.71          | 2 20           | В      | 0.523 | 1.872          | 3      | 0.8   | T)              | 21.135 | 0.14      | 14 20 | -11          |
| 270.00-260.00                                   |               |                | C      | 0.523 | 1 872          |        | 0.8   | 1               | 21 135 |           |       |              |
| T2                                              | 3.76          | 4.69           | A      | 0 502 | 1.897          | 3      | 0.8   | 1               | 40.887 | 0.37      | 18 66 | A            |
| 280 00-260 00                                   | 5.70          | 4.02           | B      | 0.502 | 1.897          | 2      | 0.8   | 1               | 40.887 | 03,       | 10.00 |              |
| 200 00-200.00                                   |               |                | C      | 0.502 | 1 897          |        | 0.8   | 1               | 40 887 |           |       |              |
| Т3                                              | 5.05          | 4 90           | Ă      | 0 447 | 1 979          | 3      | 0.8   | î               | 41 454 | 0 44      | 22 01 | C            |
| 260 00-240 00                                   | 5.05          | 4 30           | B      | 0.447 | 1979           | - 1    | 0.8   | 1               | 41 454 | 2.13      | 22.01 | ~            |
| 200 00 210 00                                   |               |                | c      | 0 447 | 1 979          | 1      | 0.8   | 1               | 41.454 |           |       |              |
| T4                                              | 5.26          | 6 24           | Ā      | 0 401 | 2 063          | 3      | 0.8   | i               | 47.539 | 0.51      | 25.49 | C            |
| 240 00-220 00                                   | 2.20          | 0.24           | В      | 0.401 | 2 063          | - 2    | 0.8   | 1               | 47 539 | 0.51      | 22.12 | _            |
| 210 00 220 00                                   |               |                | č      | 0 401 | 2 063          |        | 0.8   | 1               | 47 539 |           |       |              |
| TS                                              | 5 22          | 11 15          | A      | 0 433 | 2 002          | 3      | 0.8   | 1               | 66 579 | 0.57      | 28.59 | c            |
| 220 00-200 00                                   | 322           | 11.15          | В      | 0 433 | 2 002          |        | 0.8   | 1               | 66 579 | 37,2,7    | 40.57 | -            |
| 220 00 200 00                                   |               |                | C      | 0.433 | 2.002          | 100    | 0.8   | 1               | 66.579 |           |       |              |
| Т6                                              | 5 17          | 12.20          | A      | 0.431 | 2.005          | 3      | 0.8   | i               | 77 703 | 0.61      | 30.69 | C            |
| 200 00-180 00                                   | 211           | 12.54          | В      | 0 431 | 2 005          |        | 0.8   | 1               | 77 703 | 5,64      |       |              |
| 200 00 100 00                                   |               |                | C      | 0 431 | 2 005          | 1.7    | 0.8   | 1               | 77 703 |           |       |              |
| T7                                              | 5.11          | 12.43          | A      | 0 386 | 2.092          | 3      | 0.8   | 1               | 77 837 | 0.63      | 31.38 | C            |
| 180.00-160.00                                   |               | 1200           | В      | 0 386 | 2.092          | -      | 0.8   | 1               | 77.837 | 2.52      |       |              |
| .00.00 100 00                                   |               |                | c      | 0 386 | 2 092          |        | 0.8   | 1               | 77.837 |           |       |              |
| T8                                              | 5.09          | 13 00          | Ā      | 0.36  | 2 149          | 3      | 08    | 1               | 81 254 | 0 64      | 32 05 | C            |
| 160.00-140.00                                   | 0.07          | 19.90          | В      | 0.36  | 2.149          |        | 0.8   | 1               | 81 254 |           |       |              |
| ,00,00 1,0.00                                   | 100           |                | C      | 0 36  | 2 149          | 1 0    | 0.8   | 1               | 81 254 |           |       |              |
| Т9                                              | 5.13          | 13 72          | A      | 0 264 | 2.396          | 3      | 0.8   | 1               | 63 418 | 0.58      | 29 07 | C            |
| 140.00-120.00                                   | 393           | -              | В      | 0.264 | 2.396          |        | 0.8   | 1               | 63.418 | 2.50      |       | 1            |
|                                                 |               |                | C      | 0 264 | 2 396          |        | 0.8   | 1               | 63 418 |           |       |              |
| T10                                             | 5.06          | 13.72          | A      | 0.242 | 2.461          | 3      | 0.8   | 1               | 63 709 | 0.57      | 28 49 | C            |
| 120 00-100 00                                   | 87.50         | 1400           | В      | 0.242 | 2.461          | 139    | 0.8   | 1               | 63.709 | 44.       |       |              |
| Sec. 29. 27. 27. 27. 27. 27. 27. 27. 27. 27. 27 |               |                | C      | 0.242 | 2 461          |        | 0.8   | 1               | 63.709 |           |       |              |
| T11                                             | 4 97          | 13 69          | A      | 0.224 | 2 518          | 2      | 08    | 1               | 64 109 | 0.55      | 27 69 | C            |
| 100 00-80 00                                    | 100           | 18000          | В      | 0.224 | 2 5 1 8        | -      | 0.8   | 1               | 64 109 | 75.40-6-1 | 54793 |              |
|                                                 |               |                | C      | 0 224 | 2 5 1 8        | 1. (4) | 0.8   | 1               | 64 109 |           |       |              |
| T12                                             | 4 86          | 14 20          | A      | 0.21  | 2 564          | 2      | 0.8   | 1               | 65 038 | 0.53      | 26.67 | C            |
| 80.00-60.00                                     | 1 (2)         | -              | В      | 0.21  | 2 564          | 1      | 0.8   | 1               | 65.038 |           |       |              |
| 576755730730                                    |               |                | C      | 0.21  | 2 564          |        | 0.8   | 1               | 65 038 |           |       |              |
| T13                                             | 4 72          | 15.26          | A      | 0 201 | 2 594          | 2      | 0.8   | 1               | 67 497 | 0.51      | 25.47 | C            |
| 60 00-40 00                                     |               |                | В      | 0.201 |                |        | 0.8   | 11              | 67.497 | 7.0       |       |              |

| Valmont                                                      | Job        | 565090                                | Page 25 of 72             |
|--------------------------------------------------------------|------------|---------------------------------------|---------------------------|
| 1545 Pidco Dr                                                | Project H- | -31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, 1N<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client     | VB BTS II, LLC                        | Designed by               |

| Section<br>Elevation | Add<br>Weight<br>K | Self<br>Weight<br>K | F<br>a<br>c<br>e | e     | $C_F$ | q:<br>psf | $D_F$ | $D_R$ | A <sub>E</sub>    | F<br>K | nv<br>plf     | Cirl.<br>Face |
|----------------------|--------------------|---------------------|------------------|-------|-------|-----------|-------|-------|-------------------|--------|---------------|---------------|
|                      |                    | - 10                | C                | 0 201 | 2 594 |           | 0.8   | T     | 67 497            |        | Po            |               |
| T14                  | 4.51               | 14.91               | A                | 0.187 | 2.638 | 2         | 0.8   | î     | 67 641            | 0.46   | 22 96         | C             |
| 40.00-20.00          | 0.00               | 0,41354             | В                | 0.187 | 2.638 |           | 0.8   | 1     | 67.641            | 2000   | . C. S. M. S. |               |
|                      |                    |                     | C                | 0 187 | 2.638 |           | 0.8   | 1     | 67 641            |        | 1             |               |
| T15                  | 4.13               | 14.16               | A                | 0.173 | 2.688 | 2         | 08    | 1     | 66.760            | 0.39   | 19 63         | C             |
| 20.00-0.00           | 2000               | 33,777              | В                | 0.173 | 2.688 |           | 0.8   | 1     | 66.760            |        | 40000         |               |
|                      | 2.5                |                     | C                | 0.173 | 2.688 |           | 0.8   | -1    | 66.760            |        |               |               |
| Sum Weight           | 68.75              | 166 54              | 20               |       |       |           |       | ОТМ   | 1076 99<br>kip-ft | 7 52   |               |               |

# Tower Forces - With Ice - Wind 90 To Face

| Section<br>Elevation                    | Add<br>Weighi | Self<br>Weight | F<br>a<br>c | e     | C <sub>#</sub> | q:<br>psf | D <sub>F</sub> | D <sub>ii</sub> | AE              | F      | IV.     | Ctrl<br>Face |
|-----------------------------------------|---------------|----------------|-------------|-------|----------------|-----------|----------------|-----------------|-----------------|--------|---------|--------------|
| ft                                      | K             | K              | e           |       |                | 404       |                |                 | fi <sup>2</sup> | K      | plf     |              |
| TI                                      | 0.71          | 2 28           | Ä           | 0.523 | 1 872          | 3         | 0.85           | 1               | 21.386          | 0.14   | 14.24   | В            |
| 290.00-280.00                           | - 200         | 9.33           | В           | 0 523 | 1.872          |           | 0.85           | 1               | 21.386          | 200    | 1,000   |              |
| 2,0.00 200,00                           |               |                | C           | 0 523 | 1 872          |           | 0.85           | 1               | 21 386          |        |         |              |
| T2                                      | 3.76          | 4 69           | A           | 0 502 | 1 897          | 3         | 0.85           | 1               | 41 335          | 0.38   | 18.87   | A            |
| 280.00-260.00                           | -             | 9751           | В           | 0 502 | 1.897          | -         | 0.85           | 1               | 41.335          | 2.2.5  | 1200    | 12.2         |
| 24.700 502/10                           |               |                | C           | 0.502 | 1 897          |           | 0.85           | 1               | 41 335          |        |         |              |
| T3                                      | 5 05          | 4 90           | A           | 0.447 | 1 979          | 3         | 0.85           | 1.              | 41 837          | 0.44   | 22 10   | C            |
| 260 00-240 00                           | 10.76         | 1,111,111      | В           | 0.447 | 1 979          | 100       | 0.85           | 1               | 41 837          | 26.2.  | 20000   | 2,4          |
| 20,000,000,000                          |               |                | C           | 0.447 | 1.979          | 1.5       | 0.85           | 1               | 41 837          |        |         |              |
| T4                                      | 5 26          | 6.24           | A           | 0 401 | 2.063          | 3         | 0.85           | 1               | 48 107          | 0.51   | 25 64   | C            |
| 240 00-220 00                           | 3997          | 200            | В           | 0 401 | 2 063          |           | 0.85           | 1               | 48 107          | 4375,0 |         | 100          |
|                                         |               |                | C           | 0 401 | 2 063          | 7.5       | 0.85           | 1               | 48 107          |        |         |              |
| TS                                      | 5 22          | 11 15          | A           | 0 433 | 2.002          | 3         | 0.85           | 1               | 67 092          | 0.57   | 28 72   | C            |
| 220 00-200 00                           | 10,22         | 1000           | В           | 0.433 | 2 002          |           | 0 85           | 1               | 67 092          | 1000   |         | 1.7          |
| 2000 2000                               |               |                | C           | 0 433 | 2.002          | 10.0      | 0.85           | 1               | 67 092          | 1      |         |              |
| T6                                      | 5 17          | 12.20          | A           | 0 431 | 2 005          | 3         | 0.85           | 1               | 78 275          | 0.62   | 30 83   | C            |
| 200 00-180 00                           | 2130          | 135/03         | В           | 0.431 | 2.005          |           | 0.85           | 1               | 78 275          | 12.62  | 24 (35) | 1 65         |
| 563020 554655                           |               |                | C           | 0 431 | 2.005          |           | 0.85           | 1               | 78 275          |        |         |              |
| T7                                      | 5.11          | 12.43          | A           | 0.386 | 2.092          | 3         | 0.85           | Û               | 78.474          | 0.63   | 31.54   | C            |
| 180 00-160 00                           | 2227          | 100            | В           | 0.386 | 2 092          |           | 0.85           | T.              | 78.474          |        | 100     | 1            |
| A                                       |               |                | C           | 0.386 | 2.092          |           | 0.85           | 1               | 78.474          |        |         |              |
| T8                                      | 5.09          | 13.00          | A           | 0.36  | 2 149          | 3         | 0 85           | 1               | 82 099          | 0.64   | 32 22   | C            |
| 160 00-140.00                           | 27.444        | 2000           | В           | 0.36  | 2 149          |           | 0.85           | 1               | 82 099          | 100    | - 200   |              |
| 750000000000000000000000000000000000000 |               |                | C           | 0.36  | 2 149          |           | 0.85           | 1               | 82 099          |        |         |              |
| T9                                      | 5 13          | 13 72          | A           | 0 264 | 2 396          | 31        | 0.85           | 1               | 64.044          | 0.58   | 29 09   | C            |
| 140 00-120.00                           | 100           |                | В           | 0.264 | 2 396          |           | 0.85           | 1               | 64.044          |        | 200     |              |
|                                         | 100           |                | C           | 0.264 | 2 396          |           | 0 85           | - 1             | 64.044          |        |         |              |
| T10                                     | 5.06          | 13.72          | Α           | 0.242 | 2 461          | 3         | 0.85           | - 1             | 64 368          | 0.57   | 28.53   | C            |
| 120.00-100.00                           | 375           | 7.44.7         | В           | 0.242 | 2 461          |           | 0.85           | -1              | 64 368          | 1,000  |         |              |
|                                         |               |                | C           | 0 242 | 2 461          |           | 0.85           | 1               | 64 368          |        |         |              |
| T11                                     | 4 97          | 13 69          | A           | 0.224 | 2 5 1 8        | 2         | 0.85           | - 1             | 64 804          | 0.55   | 27 74   | C            |
| 100 00-80 00                            | 100           |                | В           | 0.224 | 2518           |           | 0.85           | - 1             | 64 804          |        |         |              |
| A - Charles State (St.)                 |               |                | C           | 0 224 | 2518           |           | 0.85           | 1               | 64 804          |        |         |              |
| T12                                     | 4 86          | 14 20          | A           | 0.21  | 2 564          | 2         | 0.85           | 1               | 65 769          | 0.53   | 26.73   | C            |
| 80 00-60 00                             | Y             |                | В           | 0.21  | 2 564          |           | 0.85           | 1               | 65.769          |        |         |              |
|                                         |               |                | C           | 021   | 2.564          |           | 0.85           | 1               | 65 769          |        |         |              |
| T13                                     | 4 72          | 15.26          | A           | 0 201 | 2 594          | 2         | 0.85           | 3               | 68 395          | 0.51   | 25 56   | C            |
| 60 00-40 00                             |               |                | В           | 0.201 |                |           | 0.85           | 11              | 68 395          | ***    |         |              |

| Valmont                                                     | Јо <b>ь</b><br>565090                          | Page 26 of 72             |
|-------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1545 Pidco Dr.                                              | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                          | Designed by<br>JL         |

| Section<br>Elevation | Add<br>Weight<br>K | Self<br>Weight<br>K | F<br>a<br>c | e            | C <sub>F</sub> | q:<br>psf | $D_F$ | $D_{\mathcal{R}}$ | A <sub>E</sub>    | F    | nv<br>plf | Cirl<br>Face |
|----------------------|--------------------|---------------------|-------------|--------------|----------------|-----------|-------|-------------------|-------------------|------|-----------|--------------|
| <i>J</i> .           |                    |                     | C           | 0.201        | 2.594          |           | 0.85  | 1                 | 68.395            | - 1  | Po        |              |
| T14                  | 4 51               | 14.91               | A           | 0.187        | 2.638          | 2         | 0.85  | 1                 | 68.585            | 0.46 | 23 06     | C            |
| 40 00-20 00          |                    | 96 (350)            | В           | 0.187        | 2.638          |           | 0.85  | 1                 | 68.585            |      |           |              |
| 2.000                |                    |                     | C           | 0.187        | 2.638          |           | 0.85  | 1                 | 68.585            |      |           |              |
| T15                  | 4 13               | 14 16               | A           | 0.173        | 2.688          | 2         | 0.85  | 1                 | 67 752            | 0.39 | 19.72     | C            |
| 20 00-0 00           |                    |                     | В           | 0.173        | 2.688          |           | 0.85  | Ť                 | 67 752            |      | 2000      |              |
|                      |                    |                     | C           | 0.173        | 2.688          |           | 0.85  | 1                 | 67.752            |      |           |              |
| Sum Weight           | 68.75              | 166 54              |             | Laborate and | 6.00           |           |       | OTM               | 1081.65<br>kip-ft | 7 55 |           |              |

# **Tower Forces - Service - Wind Normal To Face**

| Section<br>Elevation | Add<br>Weight | Self<br>Weight | F<br>a | e     | Cr    | $q_{\scriptscriptstyle I}$ | $D_{\tilde{r}}$ | $D_{x}$ | AE              | F      | 36'     | Ctrl.<br>Face |
|----------------------|---------------|----------------|--------|-------|-------|----------------------------|-----------------|---------|-----------------|--------|---------|---------------|
| ſŧ                   | K             | K              | e      |       |       | psf                        |                 |         | ft <sup>2</sup> | K      | plf     |               |
| TI                   | 0.08          | 0 38           | A      | 0.187 | 2 639 | 12                         | 1               | 1       | 7.764           | 0.29   | 29 39   | C             |
| 290.00-280.00        | -             |                | В      | 0.187 | 2.639 |                            | 1               | 1       | 7.764           | -      | 1.00    |               |
|                      |               |                | C      | 0 187 | 2.639 |                            | - 1             | 1.1     | 7 764           | -      |         |               |
| T2                   | 0.51          | 1 10           | A      | 0 223 | 2.521 | 12                         | - 1             | 11      | 17 644          | 087    | 43 61   | C             |
| 280 00-260 00        | 1             |                | В      | 0 223 | 2.521 | 1.00                       | - 1             | £3      | 17.644          | - A-34 | 1,444   | 40            |
| 200,000,000,000      |               |                | C      | 0.223 | 2.521 | 1 2                        | 1               | T       | 17.644          |        |         |               |
| T3                   | 071           | 1 28           | A      | 0 203 | 2.586 | 12                         | 1               | Ĩ       | 18 168          | 1.00   | 49.81   | C             |
| 260 00-240 00        |               |                | В      | 0 203 | 2 586 | 1,722                      | 1               | 1       | 18 168          | -      |         |               |
| 24.24.07.27.27.00.1  |               |                | C      | 0 203 | 2.586 |                            | 3)              | 1       | 18 168          |        |         |               |
| T4                   | 0.72          | 1 73           | A      | 0.196 | 2.61  | 12                         | 1               | 1       | 23.269          | 1.14   | 56 80   | C             |
| 240 00-220 00        | 1800000       | 2.42           | В      | 0.196 | 261   | 2.2                        | 1               | 1       | 23 269          | 45.0   |         |               |
| 202086 20205         |               |                | C      | 0 196 | 261   |                            | 1               | 1       | 23 269          |        |         |               |
| T5                   | 0.72          | 2 33           | A      | 0.151 | 2.768 | 12                         | 3               | 1       | 23 490          | 1 16   | 57 83   | C             |
| 220 00-200 00        | 3.40          | 10000          | В      | 0.151 | 2 768 |                            | 3               | 1       | 23 490          | 0.004  | 7.5.00  |               |
|                      | 1 - +1        |                | c      | 0.151 | 2 768 |                            | 1               | 1.      | 23 490          |        |         |               |
| Т6                   | 0.72          | 3 07           | A      | 0.133 | 2.834 | 11                         | - d             | 1       | 24 800          | 1 18   | 59 16   | C             |
| 200 00-180 00        | 37.32         | 100            | В      | 0 133 | 2 834 | 201                        | i i             | i.      | 24 800          |        | 7.0     |               |
|                      |               |                | C      | 0.133 | 2 834 | - 1                        | 1               | 1       | 24 800          |        |         |               |
| T7                   | 0.72          | 3.15           | A      | 0.12  | 2 885 | H                          | 1.1             | 1.1     | 26.067          | 1 20   | 60 11   | C             |
| 180.00-160.00        | 0.12          | 10000          | В      | 0.12  | 2.885 | 2.5                        | 1               | i i     | 26.067          | 1.00   | 43.27   | 100           |
| 244,44,444,44        |               |                | C      | 0.12  | 2.885 |                            | 1               | 1       | 26.067          |        |         |               |
| T8                   | 0 72          | 3 16           | Ā      | 0.118 | 2 892 | 11                         | 1               | 1       | 30.251          | 1 29   | 64.42   | В             |
| 160 00-140.00        |               |                | В      | 0 118 | 2 892 | 130                        | 1               | 1       | 30.251          | 0,000  | 3.11.00 | 1             |
| 100 00 170.00        |               |                | C      | 0 118 | 2 892 |                            | 1               | 1       | 30.251          |        |         |               |
| Т9                   | 0 72          | 4 16           | Ă      | 0 103 | 2 95  | 10                         | 1               | 1       | 27 825          | 1 22   | 60.81   | В             |
| 140 00-120 00        | 0.74          | ,,,,,          | В      | 0 103 | 2.95  | 100                        | i i             | 1       | 27 825          |        | -       |               |
| 110.00               | 7.            |                | C      | 0.103 | 2.95  |                            | 1               | 1       | 27.825          |        |         |               |
| T10                  | 0.72          | 4 22           | A      | 0 095 | 2.983 | 10                         | 1               | 1       | 28 484          | 1.20   | 59.95   | В             |
| 120 00-100 00        | 0,72          | 7,65           | В      | 0.095 | 2.983 |                            | î               | 1       | 28 484          |        |         |               |
| 120.00.100.00        |               |                | C      | 0.095 | 2.983 | 0.0                        | 1               | Î       | 28 484          | 1 1    |         |               |
| T11                  | 0 72          | 4 29           | A      | 0 089 | 3.011 | 10                         | - 7             | 1       | 29 187          | 1.17   | 58.66   | В             |
| 100.00-80.00         | 0.72          | 7.47           | В      | 0.089 | 3.011 | 1.0                        | 1               | i       | 29 187          |        | 50.00   |               |
| 100.00 00 00         |               |                | c      | 0.089 | 3.011 |                            | 1               | 1       | 29 187          |        |         |               |
| T12                  | 0.72          | 4 89           | Ā      | 0 086 | 3 021 | 9                          | Ŷ               | 1       | 30 816          | 1.15   | 57 68   | В             |
| 80 00-60 00          | 0.72          | 7.07           | B      | 0.086 | 3 021 | -                          | 1               | 1       | 30 816          |        | 21.00   |               |
| 50 00-00.00          |               |                | C      | 0.086 | 3.021 |                            | 1               | 1       | 30 816          |        |         |               |
| T13                  | 0.72          | 5 75           | A      | 0.086 | 3 022 | 9                          | i i             | 1       | 34 150          | 1.15   | 57.41   | В             |
| 60 00-40.00          | 0.72          | 3/3            | B      | 0.086 | 3 022 | 7                          | 1               | 1       | 34 150          | 1.13   | 3.1.41  | D             |
| 00.00-40.00          |               |                | 1 0    | 0.000 | 3 022 |                            |                 | 4.1     | 100             |        |         | 1             |

| Valmont                                                     | Јо <b>ь</b><br>565090                          | Page 27 of 72             |
|-------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1545 Pidco Dr                                               | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client  VB BTS II, LLC                         | Designed by<br>JL         |

| Section<br>Elevation | Add<br>Weight<br>K | Self<br>Weight<br>K | F<br>a<br>c | е     | $C_F$ | q:<br>psf | D <sub>+</sub> | D <sub>R</sub> | A <sub>k</sub>    | F<br>K | w<br>plf | Cirl<br>Face |
|----------------------|--------------------|---------------------|-------------|-------|-------|-----------|----------------|----------------|-------------------|--------|----------|--------------|
| Ji .                 | Λ.                 |                     | C           | 0.086 | 3.022 |           |                | - 1            | 34 150            | Λ.     | рij      | -            |
| T14                  | 0.72               | 5.87                | A           | 0.082 | 3.039 | 8         | 1              | 1              | 35 077            | 1.05   | 52 68    | В            |
| 40.00-20.00          | 0,72               | 2.07                | B           | 0.082 | 3.039 |           | 1              | i              | 35 077            | 1.02   | 52 00    |              |
| 10.00 20.00          |                    |                     | C           | 0.082 | 3.039 |           | i              | 1              | 35.077            |        |          |              |
| T15                  | 0.72               | 6.32                | A           | 0.079 | 3.049 | 7         | 1              | 1              | 36 506            | 0 94   | 46.92    | В            |
| 20 00-0.00           | 12.44              | 1,700               | В           | 0.079 | 3.049 | 1 M       | 1              | 1              | 36.506            | 91.77  | 2477.0   |              |
|                      |                    |                     | C           | 0.079 | 3.049 |           | 1              | 1              | 36.506            |        |          |              |
| Sum Weight           | 9 93               | 51 68               |             | 7.0   |       |           |                | OTM            | 2269 60<br>kip-ft | 16.01  |          |              |

## Tower Forces - Service - Wind 60 To Face

| Section<br>Elevation | Add<br>Weight | Self<br>Weight | F<br>a | e     | $C_{\ell}$ | q:  | $D_{i}$ | $D_h$ | $A_{\tilde{\kappa}}$ | F      | W           | Ctrl<br>Face |
|----------------------|---------------|----------------|--------|-------|------------|-----|---------|-------|----------------------|--------|-------------|--------------|
| fi                   | K             | K              | e      |       |            | psf |         |       | (t <sup>2</sup>      | K      | plf         |              |
| TI                   | 0.08          | 0.38           | A      | 0.187 | 2.639      | 12  | 0.8     | -11   | 6.760                | 0.27   | 26 61       | A            |
| 290 00-280 00        |               |                | В      | 0.187 | 2 639      | -   | 0.8     | 1     | 6.760                | 2.45   |             | 1            |
| 270 00 200 00        | 1             |                | C      | 0.187 | 2.639      |     | 0.8     | 1.1   | 6 760                |        |             |              |
| T2                   | 0.51          | 1 10           | A      | 0 223 | 2.521      | 12  | 0.8     | T     | 15 852               | 0.83   | 41 26       | A            |
| 280 00-260 00        |               | 1405-          | В      | 0 223 | 2 521      |     | 0.8     | I.    | 15 852               | 1.5    | V. 1. O. Z. | 11.2.4       |
| 221/12/02/15/        |               |                | C      | 0.223 | 2 521      |     | 0.8     | 1     | 15.852               |        |             |              |
| Т3                   | 0.71          | 1 28           | A      | 0.203 | 2.586      | 12  | 0.8     | 1     | 16.634               | 0 96   | 47 78       | C            |
| 260 00-240.00        |               | 1,000          | В      | 0.203 | 2 586      | 7.2 | 0.8     | i     | 16.634               | 7 27   | 24/4/4      |              |
|                      | 1             |                | C      | 0.203 | 2 586      |     | 0.8     | 1     | 16.634               | - 4    |             |              |
| T4                   | 0.72          | 1.73           | A      | 0.196 | 2 61       | 12  | 0.8     | i i   | 20 997               | 1 08   | 53.82       | C            |
| 240.00-220.00        |               | 10.5           | В      | 0 196 | 2.61       |     | 0.8     | 1     | 20 997               |        |             |              |
|                      | - 31          |                | c      | 0.196 | 261        |     | 0.8     | 1     | 20.997               |        |             |              |
| TS                   | 0.72          | 2 33           | A      | 0 151 | 2 768      | 12  | 0.8     | 1     | 21 438               | 1.10   | 55 03       | C            |
| 220 00-200 00        | 19.10         | 9,00           | В      | 0 151 | 2 768      | 35  | 0.8     | Ť.    | 21 438               | 10,000 | 10000       |              |
| 200 00 200 00        |               |                | C      | 0 151 | 2.768      |     | 0.8     | 1     | 21.438               |        |             |              |
| T6                   | 0.72          | 3 07           | Ă      | 0 133 | 2 834      | 11  | 0.8     | 1     | 22 512               | 1.12   | 56.03       | C            |
| 200 00-180 00        |               |                | В      | 0 133 | 2.834      |     | 0.8     | 1     | 22 512               | 0.5    | 4.44        |              |
| 200 00 100 00        |               |                | c      | 0 133 | 2 834      | 1.2 | 0.8     | 1     | 22 512               |        |             |              |
| T7                   | 0.72          | 3 15           | A      | 0.12  | 2 885      | 11  | 0.8     | 1     | 23 521               | 1 13   | 56.65       | C            |
| 180 00-160 00        |               |                | В      | 0 12  | 2 885      | 100 | 0.8     | 1     | 23 521               |        |             | 1.3          |
| 10000100             |               |                | c      | 0.12  | 2.885      | -   | 0.8     | - 11  | 23 521               |        |             |              |
| T8                   | 0 72          | 3 16           | Ā      | 0.118 | 2.892      | 11  | 0.8     | 1     | 26 868               | 1 20   | 59 93       | C            |
| 160 00-140 00        | 202           | 2,10           | В      | 0.118 | 2 892      |     | 0.8     | 1     | 26 868               | 10.0   | 40.00       | -            |
|                      |               |                | C      | 0.118 | 2.892      |     | 0.8     | 1     | 26 868               |        | 100         |              |
| Т9                   | 0.72          | 4 16           | Ā      | 0 103 | 2.95       | 10  | 0.8     | 1     | 25 322               | 1 15   | 57.52       | C            |
| 140 00-120 00        | 2.12          | 7.50           | В      | 0.103 | 2 95       | 15  | 0.8     | 1     | 25.322               | 299    | 2,130       | 100          |
| 110.00               | 7.71          |                | C      | 0.103 | 2 95       |     | 0.8     | 1     | 25.322               |        |             |              |
| T10                  | 0.72          | 4 22           | A      | 0.095 | 2 983      | 10  | 0.8     | 1     | 25.849               | 1.13   | 56.57       | C            |
| 120.00-100.00        |               | 3,100          | В      | 0.095 | 2 983      |     | 0.8     | i     | 25.849               |        |             | -            |
|                      |               |                | C      | 0.095 | 2 983      |     | 0.8     | 1     | 25 849               |        |             |              |
| TII                  | 0.72          | 4.29           | A      | 0.089 | 3 011      | 10  | 0.8     | 1     | 26.411               | 1.10   | 55 21       | C            |
| 100 00-80.00         | 7 (2          |                | В      | 0.089 | 3 011      |     | 0.8     | 1     | 26 411               | 0.00   |             | 1            |
|                      |               |                | C      | 0.089 | 3 011      |     | 0.8     | Î     | 26 411               |        |             |              |
| T12                  | 0.72          | 4 89           | A      | 0.086 | 3 021      | 9   | 0.8     | 1     | 27 891               | 1 08   | 54 22       | C            |
| 80 00-60 00          | 9.72          |                | В      | 0.086 | 3 021      | - 5 | 0.8     | 1     | 27.891               | . 55   |             | -            |
| 20 00 00 00          |               |                | C      | 0 086 | 3 021      |     | 0.8     | 1     | 27 891               |        |             |              |
| T13                  | 0 72          | 5.75           | Ā      | 0.086 | 3 022      | 9   | 0.8     | i     | 30 559               | 1.07   | 53.46       | C            |
| 60 00-40 00          | 0.72          | 2.73           | B      | 0 086 |            |     | 0.8     | â     | 30 559               |        | 33,70       | ~            |

| Valmont                                                     | Job                         | 565090                | Page 28 of 72             |
|-------------------------------------------------------------|-----------------------------|-----------------------|---------------------------|
| 1545 Pidco Dr                                               | Project<br>H-31 x290' SST - | US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client VB I                 | BTS II, LLC           | Designed by JL            |

| Section<br>Elevation | Add<br>Weighi<br>K | Self<br>Weight<br>K | F<br>a<br>c | e     | C)    | q:<br>psf | Dr  | $D_R$ | A <sub>k</sub>    | F     | w<br>plf | Ctrl<br>Face |
|----------------------|--------------------|---------------------|-------------|-------|-------|-----------|-----|-------|-------------------|-------|----------|--------------|
|                      |                    |                     | C           | 0.086 | 3.022 |           | 0.8 | 1     | 30 559            |       | -        |              |
| T14                  | 0 72               | 5 87                | A           | 0.082 | 3 039 | 8         | 0.8 | 1     | 31.300            | 0 98  | 48.92    | C            |
| 40.00-20.00          | 3.00               |                     | В           | 0.082 | 3.039 | 1000      | 0.8 | 1     | 31.300            | 100   | 200      |              |
| 1000                 | 100                |                     | C           | 0.082 | 3.039 |           | 0.8 | 1     | 31 300            | 4 2.1 | 1.00     |              |
| T15                  | 0 72               | 6 32                | A           | 0.079 | 3.049 | 7         | 0.8 | 1     | 32.539            | 0.87  | 43 49    | C            |
| 20.00-0.00           |                    |                     | В           | 0.079 | 3.049 |           | 0.8 | 1     | 32 539            | 2.00  |          |              |
|                      |                    |                     | C           | 0.079 | 3.049 |           | 0.8 | 1     | 32 539            |       |          |              |
| Sum Weight           | 9 93               | 51 68               |             |       |       |           |     | ОТМ   | 2142 37<br>kip-ft | 15 06 |          |              |

### Tower Forces - Service - Wind 90 To Face

| Section<br>Elevation | Add<br>Weight | Self<br>Weight | F      | e     | C,    | q.    | $D_F$ | $D_k$ | A                | F    | W.    | Ctrl<br>Face |
|----------------------|---------------|----------------|--------|-------|-------|-------|-------|-------|------------------|------|-------|--------------|
| 0                    | K             | K              | E      |       |       | psf   |       |       | Q <sup>2</sup>   | K    | plf   |              |
| TI                   | 0.08          | 0 38           | A      | 0.187 | 2.639 | 12    | 0.85  | - 1   | 7.011            | 0.26 | 26.37 | В            |
| 290 00-280.00        | 0,00          | 0.50           | В      | 0 187 | 2.639 | 10    | 0.85  | 1.1   | 7011             | 0.20 | 20.57 |              |
| 270 00-200.00        | 11            |                | Č      | 0.187 | 2.639 |       | 0.85  | 11    | 7011             |      | 10.22 |              |
| T2                   | 0.51          | 110            | A      | 0.223 | 2.521 | 12    | 0.85  | i     | 16.300           | 0.85 | 42 31 | A            |
| 280 00-260 00        | 0.51          | 110            | В      | 0.223 | 2.521 | 1.2   | 0.85  | i     | 16.300           | 0.05 | 72.21 |              |
| 200 00-200 00        |               |                | C      | 0.223 | 2.521 |       | 0.85  | 1     | 16.300           |      | -     |              |
| Т3                   | 0 71          | 1.28           | A      | 0.203 | 2.586 | 12    | 0.85  | 1     | 17017            | 0 97 | 48 29 | C            |
| 260 00-240 00        | 0 /1          | 1 20           | B      | 0.203 | 2 586 | 12    | 0 85  | 1     | 17017            | 0.27 | 40 27 |              |
| 200 00-240.00        |               |                | c      | 0.203 | 2 586 |       | 0 85  | 3     | 17.017           |      |       |              |
| T4                   | 0.72          | 1 73           | A      | 0.196 | 2.61  | 12    | 0.85  |       | 21 565           | 1 09 | 54 56 | C            |
| 240.00-220.00        | 0.72          | 1.73           | B      | 0.196 | 2.61  | 12    | 0.85  | 1     | 21.565           | 1 07 | 24 20 | -            |
| 240.00-220.00        |               |                | C      | 0 196 | 261   |       | 0.85  | 11    | 21.565           |      |       | 8            |
| T5                   | 0.72          | 2 33           | A      | 0.151 | 2.768 | 12    | 0 85  | 1     | 21 951           | 1.11 | 55 73 | С            |
| 220.00-200.00        | 0.72          | 2.33           | B      | 0.151 | 2 768 | 1.2   | 0 85  | il    | 21 951           | 3-11 | 20 12 |              |
| 220.00-200.00        |               |                | C      | 0 151 | 2 768 | 1     | 0.85  | 1     | 21.951           |      | -2    |              |
| Т6                   | 0 72          | 3 07           | A      | 0 131 | 2 834 | 11    | 0.85  | 1     | 23.084           | 1 14 | 56 81 | С            |
| 200 00-180 00        | 0.72          | 307            | B      | 0 133 | 2 834 | 1.1   | 0.85  | 1     | 23.084           | 1.14 | 20.01 | -            |
| 200.00-180.00        | 1.0           |                | Č      | 0 133 | 2.834 | - 1 - | 0.85  | 1     | 23.084           |      | -     |              |
| T7                   | 0.72          | 3 15           | A      | 0.12  | 2.834 | 11    | 0.85  | 1     | 24 158           | 1.15 | 57.52 | C            |
|                      | 0.72          | 3 13           | B      | 0.12  | 2.885 | 11    | 0.85  | 1     | 24 158           | 1.13 | 31.32 | -            |
| 180 00-160 00        |               |                | C      | 0.12  | 2.885 |       | 0.85  | 1     | 24 158           |      |       |              |
| 70                   | 0.72          | 2.12           |        |       | 2.892 | 11    | 0.85  |       | 27 714           | 1 22 | 61 06 | С            |
| T8                   | 0.72          | 3 16           | A<br>B | 0.118 |       | 11    | 0.85  | 1     |                  | 1 22 | 01.00 | C            |
| 160 00-140 00        |               |                | 0.0    | 0.118 | 2.892 |       | 0.85  | 1     | 27 714<br>27 714 | 1    |       |              |
| Т9                   | 0.72          | 4 16           | C      | 0.118 | 2.892 | 10    | 0.85  | - 1   | 25 948           | 1.17 | 58.34 | С            |
|                      | 0 /2          | 4 10           | A      |       | 2 95  | 10    | 0.85  |       |                  | 1/17 | 38,34 |              |
| 140 00-120 00        | -             |                | B      | 0.103 |       |       |       | 1     | 25 948<br>25 948 |      |       |              |
| m. ( a)              | 0.774         |                | C      | 0.103 | 2 95  | 10    | 0.85  | 1     |                  | 1.15 | 57.41 | С            |
| T10                  | 0 72          | 4 22           | A      | 0.095 | 2 983 | 10    |       | 1     | 26.508           | 1.15 | 3/41  | C            |
| 120 00-100 00        |               |                | В      | 0.095 | 2 983 |       | 0.85  | 1     | 26.508           |      |       |              |
| 557                  | 10.00         | 25.2.2         | C      | 0.095 | 2.983 | 1.5   | 0.85  | 1     | 26.508           |      |       | -            |
| T11                  | 0 72          | 4 29           | A      | 0.089 | 3.011 | 10    | 0.85  | - 1   | 27.105           | 1.12 | 56 07 | C            |
| 100 00-80.00         |               |                | В      | 0.089 | 3.011 |       | 0.85  | 1     | 27 105           |      | 776   | 11.5         |
| 200                  | 4.50          | 1.22           | C      | 0.089 | 3.011 | -     | 0 85  | 1     | 27 105           |      | ****  | -            |
| T12                  | 0 72          | 4 89           | Α      | 0.086 | 3 021 | 9     | 0.85  | 1     | 28 622           | 1 10 | 55.09 | C            |
| 80 00-60 00          |               |                | В      | 0.086 | 3 021 |       | 0.85  | 1     | 28.622           |      |       |              |
|                      | - Circl       | 2              | C      | 0.086 | 3.021 |       | 0.85  | 1     | 28.622           | 100  | 4     | 1            |
| T13                  | 0.72          | 5 75           | A      | 0.086 | 3.022 | 9     | 0.85  | 1     | 31.457           | 1.09 | 54 45 | C            |
| 60 00-40 00          |               |                | В      | 0 086 | 3 022 |       | 0.85  | 1     | 31 457           |      |       |              |

| Valmont                                                      | Јо <b>b</b> 565090                             | Page 29 of 72             |
|--------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1545 Pidco Dr                                                | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                          | Designed by               |

| Section<br>Elevation | Add<br>Weight | Self<br>Weight | F<br>a<br>c | ę     | $C_F$ | q.<br>psf | $D_F$ | $D_R$ | A <sub>E</sub>    | F     | 34'   | Ctrl<br>Face |
|----------------------|---------------|----------------|-------------|-------|-------|-----------|-------|-------|-------------------|-------|-------|--------------|
| fl                   | K             | K              | е           |       |       |           |       |       | ft²               | K     | plf   |              |
|                      |               |                | C           | 0 086 | 3 022 |           | 0.85  | 1     | 31.457            |       |       |              |
| T14                  | 0.72          | 5.87           | A           | 0 082 | 3 039 | 8         | 0.85  | 1     | 32 244            | 1 00  | 49 86 | C            |
| 40 00-20.00          | 200           |                | В           | 0 082 | 3 039 | 0.00      | 0.85  | 1.    | 32 244            | 100   | 100   |              |
|                      |               |                | C           | 0.082 | 3.039 |           | 0.85  | 1     | 32 244            |       |       |              |
| T15                  | 0 72          | 6 32           | A           | 0.079 | 3.049 | 7         | 0.85  | 1     | 33 531            | 0.89  | 44.35 | C            |
| 20 00-0.00           | 10000         |                | В           | 0.079 | 3 049 |           | 0.85  | 1     | 33 531            | 9-20- | 2010  |              |
|                      |               |                | C           | 0 079 | 3.049 |           | 0.85  | 1     | 33 531            |       |       |              |
| Sum Weight:          | 9.93          | 51.68          |             |       |       |           |       | ОТМ   | 2174.01<br>kip-ft | 15 30 |       |              |

#### Mast Vectors - No Ice

| Section | Section                                 | Wind    | Directionality | F    | $V_{ij}$ | 15    | OTM,    | ОТМ-    | Torque |
|---------|-----------------------------------------|---------|----------------|------|----------|-------|---------|---------|--------|
| No.     | Elevation<br>ft                         | Azimuth |                | K    | K        | K     | kip-ft  | kip-fi  | kip-ft |
| TI      | 290 00-280 00                           | D       | Wind Normal    | 0 92 | 0.00     | -0 92 | -261 33 | 0.16    | -0 46  |
|         | 9-73-0                                  | 30      | Wind 90        | 0.82 | 0.41     | -0.71 | -202 99 | -117.12 | -0 19  |
|         | )                                       | 60      | Wind 60        | 0 74 | 0.64     | -0 37 | -105.70 | -183 16 | 0.04   |
|         |                                         | 90      | Wind 90        | 0.74 | 0.74     | 0.00  | 0.14    | -209 37 | 0.13   |
| - 4     |                                         | 120     | Wind Normal    | 0.83 | 0.72     | 0.41  | 118.37  | -204 61 | 0.33   |
|         |                                         | 150     | Wind 90        | 0.82 | 0.41     | 0.71  | 203 27  | -117 12 | 0.5    |
|         |                                         | 180     | Wind 60        | 0 83 | 0.00     | 0.83  | 236.85  | 0.16    | 0.40   |
|         |                                         | 210     | Wind 90        | 0.82 | -0.41    | 0.71  | 203.27  | 117 44  | 0.19   |
|         |                                         | 240     | Wind Normal    | 0.83 | -0.72    | 0.41  | 118 37  | 204.93  | -0.04  |
|         |                                         | 270     | Wind 90        | 0.74 | -0 74    | 0.00  | 0 14    | 209 69  | -0.13  |
|         |                                         | 300     | Wind 60        | 0.74 | -0 64    | -0.37 | -105.70 | 183 48  | -0 3   |
|         | and the second second                   | 330     | Wind 90        | 0.82 | -0.41    | -0.71 | -202.99 | 117.44  | -0.5   |
| T2      | 280.00-260.00                           | 0       | Wind Normal    | 2 64 | 0.00     | -2 64 | -712 51 | 0.27    | -1.10  |
| 100     | 100000                                  | 30      | Wind 90        | 2.56 | 1 28     | -2 22 | -598.05 | -345 34 | 0.40   |
|         |                                         | 60      | Wind 60        | 2.41 | 2.09     | -1 20 | -324 48 | -562 71 | 1.10   |
|         |                                         | 90      | Wind 90        | 2 30 | 2 30     | 0.00  | 0.56    | -620.63 | 0.6    |
| 1       |                                         | 120     | Wind Normal    | 2.38 | 2 06     | 119   | 321 93  | -556 37 | 0.8    |
|         |                                         | 150     | Wind 90        | 2 39 | 1 19     | 2.07  | 558 57  | 321 90  | 1.5    |
|         |                                         | 180     | Wind 60        | 2 49 | 0.00     | 2.49  | 674.07  | 0 27    | 1.1    |
|         |                                         | 210     | Wind 90        | 2.56 | -1 28    | 2 22  | 599 16  | 345.88  | -0.4   |
|         |                                         | 240     | Wind Normal    | 2 55 | -2 21    | 1 28  | 345 37  | 597 51  | -1.19  |
|         |                                         | 270     | Wind 90        | 2 30 | -2.30    | 0.00  | 0.56    | 621.18  | -0.6   |
|         |                                         | 300     | Wind 60        | 2 23 | -1 93    | -1 12 | -301 05 | 522.66  | -0.8   |
|         |                                         | 330     | Wind 90        | 2 39 | -1 19    | -2 07 | -557 46 | 322 44  | -1.5   |
| T3      | 260.00-240.00                           | 0       | Wind Normal    | 2 95 | 0.00     | -2 95 | -736 70 | 0.27    | -1.2   |
| 96      | 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 30      | Wind 90        | 2 85 | 1 43     | -2 47 | -617 42 | -356 33 | 0.5    |
|         |                                         | 60      | Wind 60        | 2.82 | 2.44     | -141  | -352 42 | -610.53 | 0.8    |
| 4       |                                         | 90      | Wind 90        | 2 85 | 2.85     | 0.00  | 0 22    | -712 92 | -0.4   |
|         |                                         | 120     | Wind Normal    | 2 95 | 2.55     | 1 47  | 368 68  | -637 92 | -0.4   |
|         |                                         | 150     | Wind 90        | 2.85 | 1 43     | 2.47  | 617 87  | -356 33 | 1.2    |
|         |                                         | 180     | Wind 60        | 2.82 | 0.00     | 2.82  | 705.51  | 0.27    | 1.2    |
|         |                                         | 210     | Wind 90        | 2 85 | -1 43    | 2 47  | 617 87  | 356.87  | -0.5   |
|         |                                         | 240     | Wind Normal    | 2 95 | -2 55    | 1.47  | 368 68  | 638 46  | -0.8   |
|         |                                         | 270     | Wind 90        | 2 85 | -2 85    | 0.00  | 0.22    | 713 47  | 0.4    |
|         |                                         | 300     | Wind 60        | 2 82 | -2 44    | -141  | -352 42 | 611.07  | 0.4    |
|         |                                         | 330     | Wind 90        | 2 85 | -1 43    | -2 47 | -617.42 | 356 87  | -12    |
| T4      | 240.00-220.00                           | 0       | Wind Normal    | 3.37 | 0.00     | -3 37 | -775 56 | 0.39    | -1.8   |
| 6.5     |                                         | 30      | Wind 90        | 3.23 | 1.62     | -2.80 | -643 85 | -371 51 | 0.5    |
|         |                                         | 60      | Wind 60        | 3.19 | 2 76     | -1.59 | -366.25 | -634 50 | 1.1    |

## Valmont

1545 Pidco Dr.

Plymouth, IN Phone: (574)-936-4221 FAX: (574)-936-6458

| Job     |                                        | Page              |
|---------|----------------------------------------|-------------------|
|         | 565090                                 | 30 of 72          |
| Project |                                        | Date              |
|         | H-31 x290' SST - US-KY-5135 Fancy Farm | 07:03:40 10/06/22 |
| Client  |                                        | Designed by       |
|         | VB BTS II, LLC                         | JL                |

| Section<br>No. | Section<br>Elevation | Wind<br>Azimuth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Directionality | F    | $V_x$ | T,           | OTM.     | OTM:            | Torque |
|----------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|-------|--------------|----------|-----------------|--------|
|                | ſŧ                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | K    | K     | K            | kip-ft   | kip-ft          | kıp-ft |
|                |                      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wind 90        | 3 23 | 3.23  | 0.00         | 0.31     | -743 41         | -0.4   |
| 1              |                      | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind Normal    | 3.37 | 2 92  | 1.69         | 388 24   | -671 53         | -0.3   |
|                |                      | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3.23 | 1.62  | 2.80         | 644 46   | -371 51         | 1.8    |
|                |                      | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 60        | 3.19 | 0.00  | 3 19         | 733 42   | 0.39            | 1.8    |
|                |                      | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3.23 | -1 62 | 2.80         | 644.46   | 372.30          | -0.5   |
|                |                      | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind Normal    | 3.37 | -2.92 | 1.69         | 388.24   | 672.32          | 41:1   |
|                |                      | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3.23 | -3 23 | 0.00         | 031      | 744 20          | 0.4    |
|                |                      | 7.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |      |       | 16-7-46-76-1 |          | 635.29          | 0.3    |
|                |                      | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 60        | 3 19 | -2.76 | -1.59        | -366.25  |                 |        |
| 97             | colo con plan par    | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3 23 | -1 62 | -2.80        | -643.85  | 372 30          | -1.    |
| T5             | 220.00-200.00        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wind Normal    | 3.61 | 0 00  | -3 61        | -757 73  | 0.49            | -2     |
| 2.0            |                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wind 90        | 3.48 | 1 74  | -3 01        | -632 33. | -364 80         | 0      |
|                |                      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wind 60        | 3 44 | 2.98  | -1 72        | -360.33  | -624.27         | L      |
|                |                      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wind 90        | 3 48 | 3.48  | 0.00         | 0.38     | -730.10         | -0     |
|                |                      | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind Normal    | 3.61 | 3.13  | 181          | 379 43   | -656 04         | -0     |
|                |                      | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3 48 | 1.74  | 3.01         | 633.08   | -364 80         | 2      |
|                |                      | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 60        | 3 44 | 0.00  | 3 44         | 721 79   | 0 49            | 2      |
|                |                      | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3 48 | -1 74 | 3.01         | 633 08   | 365 79          | -0     |
|                |                      | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |      |       | 200          |          |                 |        |
|                |                      | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind Normal    | 3.61 | -3.13 | 1.81         | 379.43   | 657 03          | -1     |
|                |                      | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3.48 | -3.48 | 0.00         | 0 38     | 731 08          | 0      |
|                |                      | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 60        | 3 44 | -2.98 | -1 72        | -360 33  | 625 26          | 0      |
| 200            | William Street, and  | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3 48 | -1.74 | -3 01        | -632 33  | 365 79          | -2     |
| T6             | 200.00-180.00        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wind Normal    | 3 69 | 0.00  | -3 69        | -701 21  | 0.59            | -2     |
|                | 20000 00000          | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wind 90        | 3.55 | 1.77  | -3 07        | -583 11  | -336 32         | 0      |
|                |                      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wind 60        | 3 50 | 3 03  | -1 75        | -331 84  | -574 93         | 1.     |
|                |                      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wind 90        | 3.55 | 3 55  | 0 00         | 0.44     | -673 24         | -0     |
|                |                      | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind Normal    | 3 69 | 3 20  | 1 85         | 351 27   | -607 05         | -0     |
|                |                      | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |      |       |              |          | 100 300 100 200 | 2      |
|                |                      | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3 55 | 1.77  | 3 07         | 584 00   | -336 32         |        |
|                |                      | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 60        | 3 50 | 0.00  | 3 50         | 665 00   | 0.59            | 2      |
| 1              |                      | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3.55 | -1 77 | 3 07         | 584 00   | 337 51          | -0     |
|                |                      | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind Normal    | 3.69 | -3 20 | 1.85         | 351 27   | 608 24          | -1.    |
|                |                      | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3.55 | -3.55 | 0.00         | 0.44     | 674 42          | 0.     |
|                |                      | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 60        | 3.50 | -3 03 | -1 75        | -331 84  | 576 12          | 0.     |
|                |                      | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3.55 | -1.77 | -3.07        | -583 11  | 337 51          | -2.    |
| T7             | 180 00-160 00        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wind Normal    | 3.75 | 0.00  | -3 75        | -637 38  | 0.69            | -3.    |
| 1.1            | 100 00-100 00        | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wind 90        | 3 59 | 1 80  | -3 11        | -528.07  | -304.49         | 0      |
|                |                      | 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wind 60        |      | 3 06  | 90,000       | -300.08  | -519 94         | 1.     |
|                |                      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 3 54 |       | -1 77        |          |                 |        |
|                |                      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wind 90        | 3 59 | 3 59  | 0 00         | 0.51     | -609 66         | -0.    |
|                |                      | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind Normal    | 3 75 | 3 25  | 1.88         | 319 46   | -551.74         | -0.    |
|                |                      | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3 59 | 1.80  | 3 11         | 529 09   | -304 49         | 2.     |
|                |                      | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 60        | 3 54 | 0.00  | 3 54         | 601.68   | 0.69            | 3.     |
|                |                      | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3 59 | -1.80 | 3 11         | 529 09   | 305.87          | -0     |
|                | ľ                    | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind Normal    | 3 75 | -3.25 | 1 88         | 319.46   | 553 12          | -1.    |
|                |                      | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3 59 | -3.59 | 0.00         | 0.51     | 611.04          | 0      |
|                |                      | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 60        | 3.54 | -3 06 | -1 77        | -300.08  | 521 32          | 0.     |
|                |                      | The second secon |                |      |       |              | -528 07  |                 | -2     |
| TO.            | 170.00 140.00        | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3 59 | -1 80 | -3 11        |          | 305 87          |        |
| T8             | 160 00-140.00        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wind Normal    | 4 02 | 0.00  | -4 02        | -602 10  | 0 79            | -3     |
|                |                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wind 90        | 3 81 | 191   | -3 30        | -494 54  | -285.06         | 0      |
|                |                      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wind 60        | 3 74 | 3 24  | -1 87        | -280 03  | -485 21         | 1      |
|                |                      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wind 90        | 3.81 | 3.81  | 0.00         | 0 56     | -570 91         | -0     |
|                |                      | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind Normal    | 4.02 | 3 48  | 201          | 301 90   | -521 13         | -0     |
|                |                      | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3.80 | 1 90  | 3.29         | 493 97   | -284 08         | 3      |
|                |                      | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 60        | 3.74 | 0.00  | 3 74         | 561 19   | 0 79            | 3      |
|                |                      | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3.81 | -1 91 | 3.30         | 495 67   | 286 64          | -0     |
|                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |      |       |              |          |                 | -1     |
|                |                      | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind Normal    | 4 02 | -3 48 | 201          | 302 18   | 523 20          | -1     |
|                |                      | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3.81 | -3.81 | 0.00         | 0.56     | 572 48          | 0      |
|                |                      | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 60        | 3 74 | -3 24 | -1.87        | -279.75  | 486 30          | 0      |
|                |                      | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind 90        | 3 80 | -1.90 | -3.29        | -492 84  | 285 66          | -3     |
| T9             | 140 00-120 00        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wind Normal    | 3 78 | 0.00  | -3 78        | -490 96  | 0.89            | -3     |
| 4.5            |                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wind 90        | 3 64 | 1.82  | -3.15        | -409.41  | -235 83         | 0.     |
|                |                      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wind 60        | 3 59 | 3.11  | -1 80        | -232.79  | -403 33         | 1      |
|                |                      | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 3 64 | 3 64  | 0 00         | 0.58     | -472 54         | -1     |

| Valmont                                                      | Job     | 565090                                 | Page 31 of 72             |
|--------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr.                                               | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by<br>JL         |

| Section<br>No. | Section<br>Elevation | Wind<br>Azımuth | Directionality         | F            | V <sub>x</sub> | 1.5          | OTM <sub>x</sub> | OTM-           | Torque      |
|----------------|----------------------|-----------------|------------------------|--------------|----------------|--------------|------------------|----------------|-------------|
| _              | ſ                    |                 | 107 151 1              | K 170        | K 2.27         | K            | kip-ft           | kip-ft         | kip-ft      |
|                |                      | 120<br>150      | Wind Normal<br>Wind 90 | 3.78<br>3.59 | 3.27<br>1.80   | 189          | 246 36<br>404 86 | -424.81        | -1 I<br>3 3 |
|                |                      |                 |                        |              |                |              | 465.45           | -232 52        | 3 7         |
|                |                      | 180             | Wind 60                | 3.58         | 0.00           | 3 58<br>3 15 | 410.58           | 0 89<br>237 60 | -0.5        |
|                |                      | 210             | Wind 90                | 3.64         | -1 82          |              |                  |                |             |
|                |                      | 240             | Wind Normal            | 3.80         | -3 29          | 1 90         | 247.30           | 428.21         | -1.7        |
|                |                      | 270             | Wind 90                | 3.64         | -3.64          | 0 00         | 0.58             | 474 31         | 1.4         |
|                |                      | 300             | Wind 60                | 3.58         | -3.10          | -1 79        | -231 85          | 403.47         | 1.1         |
| 20.00          | version reducted     | 330             | Wind 90                | 3.59         | -1.80          | -3.11        | -403 70          | 234 30         | -3 3        |
| T10            | 120.00-100.00        | 0               | Wind Normal            | 3 73         | 0.00           | -3 73        | -409 43          | 0 98           | -3.9        |
| -              |                      | 30              | Wind 90                | 3 58         | 1.79           | -3 10        | -340 75          | -196 12        | 0.5         |
|                |                      | 60              | Wind 60                | 3 53         | 3.06           | -1 77        | -193.56          | -335 38        | 1.8         |
|                |                      | 90              | Wind 90                | 3 58         | 3 58           | 0 00         | 0 64             | -393 22        | -15         |
| 1              |                      | 120             | Wind Normal            | 3 73         | 3.23           | 1 86         | 205.68           | -354 15        | -12         |
|                |                      | 150             | Wind 90                | 3.53         | 1.77           | 3 06         | 337 36           | -193 42        | 3.5         |
|                |                      | 180             | Wind 60                | 3 52         | 0 00           | 3 52         | 387 50           | 0.98           | 3.9         |
|                |                      | 210             | Wind 90                | 3 58         | -1 79          | 3 10         | 342 03           | 198 09         | -0.5        |
|                |                      | 240             | Wind Normal            | 3 74         | -3 24          | 187          | 206.45           | 357 45         | -1.8        |
|                |                      | 270             | Wind 90                | 3.58         | -3.58          | 0 00         | 0.64             | 395.19         | 1.5         |
|                |                      | 300             | Wind 60                | 3.52         | -3 05          | -1 76        | -192 79          | 336.02         | 12          |
|                | 340,000              | 330             | Wind 90                | 3.53         | -1 77          | -3 06        | -336 08          | 195 39         | -3.5        |
| T11            | 100.00-80.00         | 0               | Wind Normal            | 3.65         | 0.00           | -3 65        | -327.63          | 1 08           | -4 2        |
|                |                      | 30              | Wind 90                | 3.50         | 1.75           | -3.03        | -272 12          | -156 43        | 0.5         |
|                |                      | 60              | Wind 60                | 3 45         | 2 98           | -1 72        | -154 39          | -267 55        | 1.9         |
|                |                      | 90              | Wind 90                | 3 50         | 3 50           | 0.00         | 0 70             | -313.94        | -1.5        |
| 1              |                      | 120             | Wind Normal            | 3.65         | 3.16           | 1 82         | 164 87           | -283 26        | -1.3        |
|                |                      | 150             | Wind 90                | 3.45         | 1.73           | 2 99         | 269 86           | -154 31        | 3.7         |
|                |                      | 180             | Wind 60                | 3.43         | 0 00           | 3 43         | 309 68           | 1 08           | 4.2         |
|                |                      | 210             | Wind 90                | 3 50         | -1 75          | 3.03         | 273 53           | 158.60         | -0.5        |
|                |                      | 240             | Wind Normal            | 3 66         | -3 17          | 1.83         | 165.48           | 286.48         | -1.9        |
|                |                      | 270             | Wind 90                | 3 50         | -3.50          | 0 00         | 0.70             | 316.11         | 1.5         |
|                |                      | 300             | Wind 60                | 3 43         | -2 97          | -1 72        | -153.78          | 268.67         | 1.3         |
|                |                      | 330             | Wind 90                | 3.45         | -1.73          | -2 99        | -268 45          | 156.48         | -3 7        |
| T12            | 80 00-60 00          | 0               | Wind Normal            | 3.59         | 0.00           | -3 59        | -250.36          | 1.18           | -4.3        |
| 112            | 80 00-00 00          | 30              | Wind 90                | 3 44         | 1.72           | -2 98        | -207 69          | -119.17        | 0.6         |
|                |                      | 60              | Wind 60                | 3 38         | 2 93           | -1 69        | -117 70          | -204 00        | 2.0         |
|                |                      | 90              | Wind 90                | 3.44         | 3.44           | 0.00         |                  | -239 52        | -1.6        |
| 1              |                      |                 |                        |              |                |              | 0.77             |                |             |
|                |                      | 120             | Wind Normal            | 3 59         | 3 11           | 1 79         | 126 33           | -216 30        | -1.3        |
|                |                      | 150             | Wind 90                | 3 39         | 1 70           | 2 94         | 206 52           | -11761         | 3 8         |
|                |                      | 180             | Wind 60                | 3 37         | 0.00           | 3.37         | 236 80           | 1 18           | 4 3         |
|                |                      | 210             | Wind 90                | 3.44         | -1.72          | 2 98         | 209 22           | 121 53         | -0.6        |
|                |                      | 240             | Wind Normal            | 3.60         | -3 12          | 1 80         | 126 77           | 219 44         | -2 0        |
|                |                      | 270             | Wind 90                | 3 44         | -3.44          | 0 00         | 0 77             | 241 88         | 16          |
|                |                      | 300             | Wind 60                | 3 37         | -2 92          | -1.69        | -117.25          | 205.60         | 1.3         |
| 77.00          | as as sais as        | 330             | Wind 90                | 3 39         | -1 70          | -2 94        | -204 98          | 119 97         | -3 8        |
| T13            | 60 00-40 00          | 0               | Wind Normal            | 3 57         | 0 00           | -3 57        | -177 76          | 1 28           | -4 3        |
|                |                      | 30              | Wind 90                | 3 40         | 1 70           | -2 94        | -146 34          | -83 68         | 0.5         |
|                |                      | 60              | Wind 60                | 3 34         | 2 89           | -1 67        | -82 60           | -143 21        | 2 (         |
|                | }                    | 90              |                        | 3.40         | 3 40           | 0.00         | 0.83             | -168.65        | -16         |
|                |                      | 120             | Wind Normal            | 3.57         | 3.09           | 1.79         | 90 12            | -153 38        | -1.3        |
|                |                      | 150             | Wind 90                | 3 36         | 1 68           | 2.91         | 146.19           | -82 65         | 3 3         |
|                |                      | 180             | Wind 60                | 3 33         | 0 00           | 3 33         | 167 08           | 1 28           | 4 :         |
|                |                      | 210             | Wind 90                | 3 40         | -1 70          | 2 94         | 147 99           | 86 25          | -0          |
|                |                      | 240             | Wind Normal            | 3 58         | -3 10          | 1.79         | 90 42            | 156 46         | -2 (        |
|                |                      | 270             | Wind 90                | 3 40         | -3 40          | 0.00         | 0 83             | 171 21         | 1 6         |
|                |                      | 300             | Wind 60                | 3.33         | -2 88          | -1 66        | -82 30           | 145 26         | 1.          |
|                |                      | 330             | Wind 90                | 3.36         | -1 68          | -2 91        | -144 54          | 85 21          | -3          |
| T14            | 40 00-20 00          | 0               | Wind Normal            | 3 28         | 0.00           | -3 28        | -97 44           | 1.38           | -4          |
| -1             |                      | 30              |                        | 3 11         | 1 56           | -2 70        | -79 97           | -45 31         | 0.5         |
|                |                      | 60              | Wind 60                | 3.05         | 2.64           | -1.53        | -44.92           | -77 96         | 1.9         |
|                |                      | 90              |                        | 3 11         | 3 11           | 0 00         | 0.89             | -91.99         | -1.5        |
|                |                      | 120             |                        | 3 28         | 2.84           | 1 64         | 50.05            | -83.77         | -1.3        |

| Valmont                                                      | Job                  | 565090                      | Page 32 of 72             |
|--------------------------------------------------------------|----------------------|-----------------------------|---------------------------|
| 1545 Pidco Dr.                                               | Project H-31 x290' S | SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth. IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client               | VB BTS II, LLC              | Designed by               |

| Section<br>No. | Section<br>Elevation | Wind<br>Azımuth | Directionality | F    | $V_{\star}$ | 17,   | OTM <sub>c</sub> | OTM.   | Torque |  |
|----------------|----------------------|-----------------|----------------|------|-------------|-------|------------------|--------|--------|--|
| 177            | fi                   | 0               |                | K    | K           | K     | kip-ft           | kip-fi | kip-ft |  |
|                |                      | 150             | Wind 90        | 3 08 | 1 54        | 2.66  | 80 78            | -44.75 | 3 76   |  |
|                |                      | 180             | Wind 60        | 3 04 | 0 00        | 3.04  | 92 18            | 1 38   | 4 24   |  |
|                |                      | 210             | Wind 90        | 3.11 | -1.56       | 2.70  | 81 75            | 48.06  | -0.56  |  |
|                |                      | 240             | Wind Normal    | 3.29 | -2.85       | 1 64  | 50.21            | 86 81  | -1.98  |  |
|                |                      | 270             | Wind 90        | 3 11 | -3 11       | 0.00  | 0.89             | 94 75  | 1.59   |  |
|                |                      | 300             | Wind 60        | 3.04 | -2 64       | -1.52 | -44 76           | 80.44  | 1.35   |  |
|                |                      | 330             | Wind 90        | 3 08 | -1 54       | -2.66 | -79.01           | 47.51  | -3.76  |  |
| T15            | 20 00-0 00           | 0               | Wind Normal    | 2.92 | 0.00        | -2 92 | -28 25           | 1 48   | -3 93  |  |
|                |                      | 30              | Wind 90        | 2 77 | 1.38        | -2.40 | -23 03           | -12.36 | 0.52   |  |
| 1              |                      | 60              | Wind 60        | 2.71 | 2 35        | -1.36 | -12 63           | -22.03 | 1.83   |  |
|                |                      | 90              | Wind 90        | 2.77 | 2 77        | 0.00  | 0.95             | -26 20 | -1.47  |  |
| 1              |                      | 120             | Wind Normal    | 2 92 | 2 53        | 1 46  | 15 54            | -23 80 | -1 25  |  |
|                |                      | 150             | Wind 90        | 2.74 | 1.37        | 2 37  | 24 64            | -12 20 | 3 47   |  |
|                |                      | 180             | Wind 60        | 2.71 | 0.00        | 2.71  | 28 00            | 1.48   | 3.93   |  |
|                |                      | 210             | Wind 90        | 2.77 | -1 38       | 2.40  | 24 92            | 15 32  | -0 52  |  |
|                |                      | 240             | Wind Normal    | 2 93 | -2 54       | 1.46  | 15 59            | 26 84  | -1.83  |  |
|                |                      | 270             | Wind 90        | 2.77 | -2 77       | 0.00  | 0.95             | 29 16  | 1 47   |  |
|                |                      | 300             | Wind 60        | 2 71 | -2 34       | -1.35 | -12.58           | 24.91  | 1 25   |  |
|                |                      | 330             | Wind 90        | 2.74 | -1 37       | -2 37 | -22 75           | 15.16  | -3.47  |  |

#### Mast Totals - No Ice

| Wind<br>Azimuth | $V_x$  | V <sub>z</sub> | OTM <sub>x</sub> | OTM <sub>z</sub> | Torque |
|-----------------|--------|----------------|------------------|------------------|--------|
| 0               | K      | K              | kip-fi           | kip-ft           | kip-ft |
| 0               | 0.00   | -49.47         | -6966.35         | 11.93            | -44.97 |
| 30              | 23.67  | -41.00         | -5779 67         | -3329 85         | 8 00   |
| 60              | 40.21  | -23.21         | -3259 71         | -5648 73         | 23 61  |
| 90              | 46.99  | 0.00           | 8.48             | -6576.31         | -13.73 |
| 120             | 42.54  | 24.56          | 3448.22          | -5945 88         | -11 14 |
| 150             | 23.43  | 40 57          | 5734 53          | -3294 00         | 41.38  |
| 180             | 0.00   | 46 51          | 6586.22          | 11 93            | 44 97  |
| 210             | -23.67 | 41.00          | 5796.62          | 3353 72          | -8.00  |
| 240             | -42.77 | 24.69          | 3475.20          | 6016 49          | -23.61 |
| 270             | -46 99 | 0.00           | 8.48             | 6600 18          | 13.73  |
| 300             | -39 98 | -23 08         | -3232.73         | 5625 87          | 11.14  |
| 330             | -23 43 | -40 57         | -5717.58         | 3317.87          | -41 38 |

## Mast Vectors - With Ice

| Section Section No. Elevation | Wind<br>Azimuth | Directionality | F           | $V_{\kappa}$ | $F_z$ | OTM,  | OTM:   | Torque |        |
|-------------------------------|-----------------|----------------|-------------|--------------|-------|-------|--------|--------|--------|
| 1.0.                          | ft              | 0              |             | K            | K     | K     | kip-ft | kip-ft | kip-ft |
| TI                            | 290.00-280.00   | 0              | Wind Normal | 0 15         | 0.00  | -0.15 | -41 36 | 1.07   | -0 05  |
| W 1                           |                 | 30             | Wind 90     | 0 14         | 0 07  | -0 12 | -34 33 | -19 22 | -0 02  |
|                               |                 | 60             | Wind 60     | 0 14         | 0.12  | -0.07 | -18 77 | -32 85 | 0.00   |
|                               |                 | 90             | Wind 90     | 0 14         | 0.14  | 0.00  | 0.81   | -37 91 | 0.02   |
|                               |                 | 120            | Wind Normal | 0 14         | 0.12  | 0.07  | 21 10  | -34 06 | 0 04   |
|                               |                 | 150            | Wind 90     | 0.14         | 0.07  | 0.12  | 35 95  | -19 22 | 0 06   |
|                               |                 | 180            | Wind 60     | 0.14         | 0.00  | 0 14  | 41 57  | 1 07   | 0.05   |
|                               |                 | 210            | Wind 90     | 0 14         | -0.07 | 0 12  | 35 95  | 21 36  | 0 02   |
|                               |                 | 240            | Wind Normal | 0 14         | -0.12 | 0.07  | 21 10  | 36 21  | -0.00  |

| Valmont                                                    | Job     | 565090                                 | Page 33 of 72             |
|------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr                                              | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by<br>JL         |

| ection<br>No. | Section<br>Elevation        | Wind<br>Azimuth | Directionality         | F    | V <sub>e</sub> | $V_x$          | OTM,              | OTM.             | Torque        |
|---------------|-----------------------------|-----------------|------------------------|------|----------------|----------------|-------------------|------------------|---------------|
|               | ſŧ                          | 8               |                        | K    | K              | K              | kip-fi            | kip-ft           | kip-ft        |
|               |                             | 270             | Wind 90                | 0 14 | -0.14          | 0.00           | 0.81              | 40 06            | -0.02         |
|               |                             | 300             | Wind 60                | 0 14 | -0 12          | -0.07          | -18 77            | 34 99            | -0.04         |
| Gr.           | 02312246574                 | 330             | Wind 90                | 0 14 | -0 07          | -0.12          | -34 33            | 21 36            | -0.06         |
| T2            | 280 00-260 00               | 0               | Wind Normal            | 0.38 | 0 00           | -0 38          | -99.69            | 1 82             | -0.14         |
|               |                             | 30              | Wind 90                | 0 38 | 0 19           | -0.33          | -84 77            | -49 13           | 0.00          |
|               |                             | 60              | Wind 60                | 0.37 | 0 32           | -0.18          | -46 14            | -84 11           | 0.10          |
|               |                             | 90              | Wind 90                | 0.36 | 0.36           | 0.00           | 3 47              | -95.40           | 0.11          |
|               |                             | 120             | Wind Normal            | 0 36 | 0 32           | 0 18           | 52 71             | -83 47           | 0.14          |
|               |                             | 150<br>180      | Wind 90<br>Wind 60     | 0 37 | 0 18           | 0 32           | 89.01             | -47 57           | 0.19          |
|               |                             | 210             | Wind 90                | 038  | -0 19          | 0 3 3          | 91.71             | 1 82<br>52 76    | -0.00         |
|               |                             | 240             | Wind Normal            | 0 38 | -0 33          | 0.19           | 54.27             | 89 81            | -0.10         |
|               |                             | 270             | Wind 90                | 0.36 | -0.36          | 0.00           | 3.47              | 99 04            | -0.11         |
|               |                             | 300             | Wind 60                | 0 36 | -0.31          | -0.18          | -44 58            | 85 05            | -0.14         |
|               |                             | 330             | Wind 90                | 037  | -0 18          | -0 32          | -82.07            | 51 21            | -0.19         |
| T3            | 260.00-240.00               | 0               | Wind Normal            | 0.45 | 0 00           | -0.45          | -110.82           | 181              | -0.17         |
| 100           | Local State of Control      | 30              | Wind 90                | 0 44 | 0 22           | -0.38          | -94 56            | -53 45           | -0.0          |
|               |                             | 60              | Wind 60                | 0 44 | 0.38           | -0 22          | -53 87            | -93.48           | 0.06          |
|               |                             | 90              | Wind 90                | 0 44 | 0 44           | 0 00           | 114               | -108 70          | 0.0           |
|               | 110                         | 120             | Wind Normal            | 0.45 | 0 39           | 0 22           | 57.12             | -95 16           | 0.05          |
|               |                             | 150             | Wind 90                | 0.44 | 0 22           | 0.38           | 96 85             | -53.45           | 0.18          |
|               |                             | 180             | Wind 60                | 0.44 | 0.00           | 0 44           | 111.17            | 1.81             | 0.17          |
|               |                             | 210             | Wind 90                | 0 44 | -0 22          | 0 38           | 96 85             | 57 06            | 0.01          |
|               |                             | 240             | Wind Normal            | 0.45 | -0 39          | 0.22           | 57 12             | 98 77            | -0.00         |
|               |                             | 270             | Wind 90                | 0.44 | -0 44          | 0.00           | 1 14              | 112.32           | -0.01         |
|               |                             | 300             | Wind 60                | 0.44 | -0 38          | -0.22          | -53 87            | 97 09            | -0.05         |
| TA            | 240.00.220.00               | 330             | Wind 90                | 0.44 | -0.22          | -0.38          | -94 56            | 57.06            | -0.18         |
| T4            | 240.00-220 00               | 30              | Wind Normal<br>Wind 90 | 0.52 | 0.00           | -0.52<br>-0.44 | -11791            | 3 16             | -0.3<br>-0.04 |
|               |                             | 60              | Wind 60                | 0.51 | 0.26           | -0.44          | -100 07<br>-56 57 | -55 81<br>-98 39 | 0.10          |
|               |                             | 90              | Wind 90                | 0.51 | 0.51           | 0.00           | 2 07              | -114 78          | 0.00          |
|               |                             | 120             | Wind Normal            | 0.52 | 0.45           | 0.26           | 62 06             | -100.74          | 0.13          |
|               |                             | 150             | Wind 90                | 0.51 | 0.26           | 0.44           | 104 21            | -55 81           | 0.33          |
|               |                             | 180             | Wind 60                | 0.51 | 0.00           | 0.51           | 119 34            | 3 16             | 0.31          |
|               |                             | 210             | Wind 90                | 0.51 | -0.26          | 0.44           | 104 21            | 62.14            | 0.04          |
|               |                             | 240             | Wind Normal            | 0.52 | -0.45          | 0.26           | 62 06             | 107.06           | -0.10         |
|               |                             | 270             | Wind 90                | 0.51 | -0.51          | 0.00           | 2 07              | 121 11           | -0 06         |
|               |                             | 300             | Wind 60                | 0.51 | -0.44          | -0 25          | -56 57            | 104.72           | -0 13         |
|               | CONTRACTOR STATES           | 330             | Wind 90                | 0.51 | -0.26          | -0 44          | -100 07           | 62.14            | -0 33         |
| T5            | 220 00-200 00               | 0               | Wind Normal            | 0.58 | 0.00           | -0.58          | -119 73           | 3.91             | -0 35         |
|               | Mary Control of the Control | 30              | Wind 90                | 0.57 | 0.29           | -0.50          | -101 98           | -56.39           | -0.06         |
|               |                             | 60              | Wind 60                | 0.57 | 0.50           | -0.29          | -57.57            | -100 08          | 0.11          |
|               |                             | 90              | Wind 90                | 0.57 | 0.57           | 0 00           | 2 47              | -116.69          | 0.0           |
|               |                             | 120             | Wind Normal            | 0.58 | 0.50           | 0 29           | 63 57             | -101 92          | 0 15          |
|               |                             | 150             | Wind 90                | 0.57 | 0.29           | 0.50           | 106.92            | -56 39           | 0.3           |
|               |                             | 180             | Wind 60<br>Wind 90     | 0.57 | -0.29          | 0 57<br>0 50   | 122.54<br>106.92  | 3.91<br>64.21    | 0 33          |
|               |                             | 210<br>240      | Wind Normal            | 0.58 | -0.29          | 0.29           | 63.57             | 109.74           | -0.1          |
|               |                             | 270             | Wind 90                | 0.58 | -0.57          | 0 00           | 2.47              | 124 51           | -0.07         |
|               |                             | 300             | Wind 60                | 0.57 | -0.50          | -0 29          | -57.57            | 107 90           | -0 15         |
|               |                             | 330             | Wind 90                | 0.57 | -0.29          | -0 50          | -101 98           | 64.21            | -0 37         |
| T6            | 200 00-180.00               | 0               | Wind Normal            | 0.62 | 0.00           | -0 62          | -115.88           | 4 63             | -0 41         |
|               | 220123148898                | 30              | Wind 90                | 0.62 | 0.31           | -0 53          | -98.60            | -53 95           | -0 0          |
|               |                             | 60              | Wind 60                | 0.61 | 0.53           | -0.31          | -55 46            | -96 37           | 0.13          |
|               |                             | 90              | Wind 90                | 0.62 | 0.62           | 0.00           | 2.86              | -112 53          | 0.08          |
|               |                             | 120             | Wind Normal            | 0.62 | 0 54           | 0 31           | 62 22             | -98 19           | 0 17          |
|               |                             | 150             | Wind 90                | 0.62 | 0.31           | 0.53           | 104 32            | -53 95           | 0 43          |
|               |                             | 180             | Wind 60                | 0.61 | 0.00           | 0.61           | 119.49            | 4.63             | 0.41          |
|               |                             | 210             | Wind 90                | 0.62 | -0 31          | 0.53           | 104 32            | 63 21            | 0.07          |
|               |                             | 240             | Wind Normal            | 0.62 | -0 54          | 0.31           | 62 22             | 107 46           | -0.13         |
|               |                             | 270             | Wind 90                | 0.62 | -0.62          | 0.00           | 2.86              | 121.79           | -0.08         |

| Valmont                                                     | Job     | 565090                                 | Page 34 of 72             |
|-------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr                                               | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth. IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by               |

| Section<br>No. | Section<br>Elevation  | Wind<br>Azimuth | Directionality     | F    | $V_{\hat{e}}$ | T's   | OTM <sub>x</sub> | OTM.    | Torque        |
|----------------|-----------------------|-----------------|--------------------|------|---------------|-------|------------------|---------|---------------|
| 11             | ſı                    | 0               |                    | K    | K             | K     | kıp-fi           | kip-ft  | kip-ft        |
|                |                       | 300             | Wind 60            | 0.61 | -0.53         | -0.31 | -55.46           | 105 64  | -0.17         |
| 7-1            | Protect Control       | 330             | Wind 90            | 0.62 | -0.31         | -0 53 | -98.60           | 63 21   | -0.43         |
| T7             | 180 00-160 00         | 0               | Wind Normal        | 0 64 | 0.00          | -0 64 | -105 60          | 5 32    | -0.50         |
|                |                       | 30              | Wind 90            | 0 63 | 0.32          | -0 55 | -89.64           | -48 29  | -0.09         |
|                |                       | 60              | Wind 60            | 0 63 | 0.54          | -0.31 | -50 12           | -87 08  | 0.15          |
|                |                       | 90              | Wind 90            | 0 63 | 0 63          | 0 00  | 3.23             | -101 91 | 0.09          |
|                |                       | 120             | Wind Normal        | 0 64 | 0.55          | 0 32  | 57.65            | -88 93  | 0.20          |
|                |                       | 150             | Wind 90            | 0.63 | 0 32          | 0.55  | 96 10            | -48 29  | 0.52          |
|                |                       | 180             | Wind 60            | 0 63 | 0 00          | 0 63  | 109 93           | 5 32    | 0.50          |
|                |                       | 210             | Wind 90            | 0.63 | -0 32         | 0.55  | 96 10            | 58 94   | 0.09          |
|                |                       | 240             | Wind Normal        | 0.64 | -0.55         | 0 32  | 57 65            | 99 58   | -0.15         |
|                |                       | 270             | Wind 90            | 0.63 | -0.63         | 0.00  | 3 23             | 112 56  | -0.09         |
|                |                       | 300             | Wind 60            | 0.63 | -0.54         | -0.31 | -50 12           | 97 73   | -0.20         |
|                |                       | 330             | Wind 90            | 0.63 | -0 32         | -0 55 | -89 64           | 58 94   | -0.52         |
| 18             | 160.00-140.00         | 0               | Wind Normal        | 0.66 | 0.00          | -0.66 | -95.07           | 5.98    | -0.55         |
|                |                       | 30              | Wind 90            | 0.64 | 0.32          | -0.56 | -80.47           | -42.35  | -0.11         |
|                |                       | 60              | Wind 60            | 0.64 | 0.56          | -0 32 | -44.83           | -77.28  | 0.13          |
|                |                       | 90              | Wind 90            | 0.64 | 0.64          | 0.00  | 3 24             | -90.68  | 0.06          |
|                |                       | 120             | Wind Normal        | 0.66 | 0.57          | 0.33  | 52 39            | -79 16  | 0.20          |
|                |                       | 150             | Wind 90            | 0 64 | 0 32          | 0.56  | 86.65            | -42.18  | 0.56          |
|                |                       | 180             | Wind 60            | 0.64 | 0.00          | 0.64  | 99 04            | 5 98    | 0 55          |
|                |                       | 210             | Wind 90            | 0.64 | -0.32         | 0 56  | 86.94            | 54.30   | 0.11          |
|                |                       | 240             | Wind Normal        | 0.66 | -0.57         | 0 33  | 52.56            | 91.40   | -0 13         |
|                |                       | 270             | Wind 90            | 0 64 | -0 64         | 0.00  | 3 24             | 102.63  | -0.06         |
|                |                       | 300             | Wind 60            | 0.64 | -0 55         | -0 32 | -44.67           | 88.95   | -0 20         |
|                |                       | 330             | Wind 90            | 0.64 | -0 32         | -0 56 | -80 18           | 54 14   | -0.56         |
| 79             | 140 00-120 00         | 0               | Wind Normal        | 0.59 | 0.00          | -0 59 | -73.74           | 6.58    | -0.59         |
|                | 100 M 2 2 1 1 1 1 1 1 | 30              | Wind 90            | 0.58 | 0 29          | -0 50 | -63.06           | -31.24  | -0 17         |
|                |                       | 60              | Wind 60            | 0 58 | 0.50          | -0 29 | -35 35           | -58.87  | 0.04          |
|                |                       | 90              | Wind 90            | 0.58 | 0 58          | 0.00  | 2.43             | -69.05  | -0 03         |
|                |                       | 120             | Wind Normal        | 0.59 | 0.51          | 0 29  | 40.52            | -59.39  | 0.17          |
|                |                       | 150             | Wind 90            | 0 57 | 0 29          | 0.50  | 66 95            | -30.67  | 0.59          |
|                |                       | 180             | Wind 60            | 0.57 | 0.00          | 0 57  | 76.87            | 6 58    | 0.59          |
|                |                       | 210             | Wind 90            | 0.58 | -0 29         | 0.50  | 67 93            | 44 39   | 0.17          |
|                |                       | 240             | Wind Normal        | 0 59 | -0 52         | 0 30  | 41 09            | 73 53   | -0.04         |
|                |                       | 270             | Wind 90            | 0.58 | -0 58         | 0.00  | 2.43             | 82 21   | 0.03          |
|                |                       | 300             | Wind 60            | 0.57 | -0 50         | -0 29 | -34 79           | 71 04   | -0 17         |
|                |                       | 330             | Wind 90            | 0.57 | -0 29         | -0 50 | -62 08           | 43 83   | -0.59         |
| 10             | 120.00-100.00         | 0               | Wind Normal        | 0.58 | 0 00          | -0.58 | -60 70           | 715     | -0 63         |
| . 7            | 195163 113163         | 30              |                    | 0.57 | 0 29          | -0 49 | -51 75           | -24 23  | -0 18         |
|                |                       | 60              | Wind 60            | 0.57 | 0.49          | -0.28 | -28.74           | -47 14  | 0.04          |
|                |                       | 90              | Wind 90            | 0.57 | 0.57          | 0 00  | 2.60             | -55 61  | -0.03         |
|                |                       | 120             | Wind Normal        | 0.58 | 0.50          | 0.29  | 34 25            | -47.67  | 0.18          |
|                |                       | 150             | Wind 90            | 0.56 | 0.28          | 0.49  | 56.15            | -23.77  | 0.63          |
|                | l.                    | 180             | 1. 256.63.73.63.53 | 0 56 | 0.00          | 0.56  | 64 36            | 7.15    | 0.63          |
|                |                       | 210             |                    | 0 57 | -0 29         | 0.49  | 56.95            | 38.53   | 0.18          |
|                |                       | 240             | Wind Normal        | 0.58 | -0.51         | 0 29  | 34 71            | 62 77   | 0.18<br>-0.04 |
|                |                       | 270             |                    | 0.57 | -0 57         | 0.00  | 2.60             | 69.91   | 0.03          |
|                |                       | 300             | Wind 60            | 0.56 | -0 49         | -0 28 | -28.28           | 60 64   | -0.18         |
|                |                       | 330             |                    | 0.56 | -0 28         | -0 49 | -50.95           | 38.07   | -0.63         |
| TIT            | 100 00-80 00          | 0               |                    | 0.56 | 0 00          | -0.56 | -47 68           | 7 66    | -0.66         |
|                | 100 00-00 00          | 30              |                    | 0.55 | 0 28          | -0 48 | -40.50           | -17.31  | -0.19         |
|                |                       | 60              | Wind 60            | 0.55 | 0.48          | -0.28 | -22.18           | -35 51  | 0.04          |
|                |                       | 90              |                    | 0.55 | 0.48          | 0 00  | 2.74             | -42.27  | -0.04         |
|                |                       | 120             |                    | 0 56 | 0 49          | 0 28  | 27 95            | -36.01  | 0.18          |
|                |                       | 150             |                    | 0.55 | 0.27          | 0.47  | 45.36            | -16 94  | 0.65          |
|                |                       | 180             |                    | 0.55 | 0.00          | 0.55  | 51.87            | 7.66    | 0.66          |
|                |                       |                 |                    | 0.55 | 50,000,000    | 0.33  | 45 98            | 32.62   | 0.00          |
|                |                       | 210             |                    |      | -0 28         |       |                  |         | -0 04         |
|                |                       | 240             |                    | 0.57 | -0 49         | 0.28  | 28 32            | 51 95   |               |
|                |                       | 270             |                    | 0.55 | -0 55         | 0.00  | 2 74             | 57.59   | 0.04          |
|                |                       | 300             | Wind 60            | 0.55 | -0 47         | -0 27 | -21.82           | 50.20   | -0.11         |

| Valmont                                                     | Job     | 565090                                 | Page 35 of 72             |
|-------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr.                                              | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by<br>JL         |

| Section No. | Section<br>Elevation | Wind<br>Azimuth | Directionality | F    | V <sub>a</sub> | L.    | OTM <sub>x</sub> | OTM.   | Torque |
|-------------|----------------------|-----------------|----------------|------|----------------|-------|------------------|--------|--------|
|             | ft                   | 0               |                | K    | K              | K     | kip-ft           | kıp-ft | kip-ft |
|             |                      | 330             | Wind 90        | 0.55 | -0 27          | -0 47 | -39 87           | 32.26  | -0.63  |
| T12         | 80.00-60.00          | 0               | Wind Normal    | 0.54 | 0.00           | -0 54 | -34 97           | 8 08   | -0.68  |
|             |                      | 30              | Wind 90        | 0.53 | 0.27           | -0.46 | -29 55           | -10 62 | -0.19  |
| 1           |                      | 60              | Wind 60        | 0.53 | 0 46           | -0 27 | -15 81           | -24 25 | 0.04   |
|             |                      | 90              | Wind 90        | 0.53 | 0 53           | 0.00  | 2.85             | -29 33 | -0 04  |
|             |                      | 120             | Wind Normal    | 0.54 | 0.47           | 0.27  | 21 77            | -24 68 | 0.13   |
| 1           |                      | 150             | Wind 90        | 0 53 | 0.26           | 0.46  | 34 79            | -10 36 | 0.6    |
| 1           |                      | 180             | Wind 60        | 0.53 | 0.00           | 0.53  | 39 66            | 8 0 8  | 0.6    |
|             |                      | 210             | Wind 90        | 0.53 | -0 27          | 0.46  | 35 26            | 26 79  | 0.19   |
|             |                      | 240             | Wind Normal    | 0.55 | -0 47          | 0.27  | 22.04            | 41 31  | -0.04  |
|             |                      | 270             | Wind 90        | 0.53 | -0 53          | 0 00  | 2.85             | 45 50  | 0.0    |
|             |                      | 300             | Wind 60        | 0.53 | -0 46          | -0.26 | -15 55           | 39 95  | -0 18  |
|             |                      | 330             | Wind 90        | 0.53 | -0.26          | -0.46 | -29 08           | 26 52  | -0 6   |
| T13         | 60.00-40.00          | 0               | Wind Normal    | 0 52 | 0.00           | -0.52 | -23.04           | 8.38   | -0 6   |
|             |                      | 30              | Wind 90        | 0.51 | 0 26           | -0.44 | -19 22           | -4 40  | -0 19  |
|             |                      | 60              | Wind 60        | 0.51 | 0 44           | -0.25 | -9 82            | -13 68 | 0.0    |
|             |                      | 90              | Wind 90        | 0.51 | 0.51           | 0.00  | 2 92             | -17 18 | -0.0   |
|             |                      | 120             | Wind Normal    | 0.52 | 0.45           | 0.26  | 15 90            | -14.10 | 0.1    |
|             |                      | 150             | Wind 90        | 0.50 | 0 25           | 0.44  | 24 74            | -4 22  | 0.60   |
|             |                      | 180             | Wind 60        | 0.50 | 0.00           | 0.50  | 28 03            | 8 38   | 0.6    |
|             |                      | 210             | Wind 90        | 0.51 | -0.26          | 0.44  | 25 05            | 21.16  | 0.19   |
|             |                      | 240             | Wind Normal    | 0.53 | -0 46          | 0.26  | 16 07            | 31.17  | -0.0:  |
|             |                      | 270             | Wind 90        | 0.51 | -0 51          | 0.00  | 2 92             | 33 94  | 0.0    |
|             |                      | 300             | Wind 60        | 0.50 | -0 43          | -0.25 | -9 64            | 30.13  | -0.1   |
|             |                      | 330             | Wind 90        | 0.50 | -0.25          | -0 44 | -18.91           | 20.98  | -0.66  |
| T14         | 40 00-20 00          | 0               | Wind Normal    | 0.47 | 0 00           | -0.47 | -11 18           | 8 45   | -0.64  |
|             |                      | 30              | Wind 90        | 0.46 | 0.23           | -0.40 | -9 09            | 1.53   | -0.13  |
|             |                      | 60              | Wind 60        | 0.46 | 0.40           | -0 23 | -4 00            | -3 48  | 0.0.   |
|             |                      | 90              | Wind 90        | 0.46 | 0.46           | 0 00  | 2 89             | -5 39  | -0.0   |
|             |                      | 120             | Wind Normal    | 0.47 | 0.41           | 0 23  | 9.93             | -3 74  | 0.1    |
|             |                      | 150             | Wind 90        | 0.45 | 0.23           | 0 39  | 14.71            | 1.63   | 0.6    |
|             |                      | 180             | Wind 60        | 0.45 | 0.00           | 0 45  | 16.48            | 8 45   | 0.6    |
|             |                      | 210             | Wind 90        | 0.46 | -0.23          | 0 40  | 14 87            | 15.37  | 0.1    |
| - 3         |                      | 240             | Wind Normal    | 0.48 | -0.41          | 0 24  | 10.02            | 20 80  | -0.0   |
| 1           |                      | 270             | Wind 90        | 0.46 | -0.46          | 0 00  | 2 89             | 22 29  | 0.0    |
|             |                      | 300             | Wind 60        | 0.45 | -0.39          | -0 23 | -3.90            | 20 21  | -0.1:  |
|             |                      | 330             | Wind 90        | 0.45 | -0.23          | -0 39 | -8.92            | 15 27  | -0.6   |
| T15         | 20 00-0.00           | 0               | Wind Normal    | 0.40 | 0.00           | -0 40 | -1 39            | 7 89   | -0.5   |
| 000         |                      | 30              | Wind 90        | 0.39 | 0.20           | -0 34 | -0.78            | 5.92   | -0.1   |
|             |                      | 60              | Wind 60        | 0.39 | 0 34           | -0 20 | 0.67             | 4 49   | 0.0    |
|             |                      | 90              | Wind 90        | 0.39 | 0.39           | 0.00  | 2.63             | 3 95   | -0.0   |
|             |                      | 120             | Wind Normal    | 0.40 | 0.35           | 0.20  | 4.64             | 4.41   | 0.13   |
|             |                      | 150             | Wind 90        | 0.39 | 0.19           | 0 34  | 6.00             | 5 95   | 0.5    |
|             |                      | 180             | Wind 60        | 0.39 | 0.00           | 0.39  | 6 50             | 7 89   | 0.5    |
|             |                      | 210             | Wind 90        | 0.39 | -0.20          | 0.34  | 6.05             | 9 86   | 01     |
| 1           |                      | 240             | Wind Normal    | 0.41 | -0 35          | 0 20  | 4 67             | 11.42  | -0 0   |
|             |                      | 270             | Wind 90        | 0.39 | -0 39          | 0 00  | 2.63             | 11 84  | 0.0    |
|             |                      | 300             | Wind 60        | 0.39 | -0.34          | -0.19 | 0.70             | 11.24  | -0.1   |
|             |                      | 330             | Wind 90        | 0.39 | -0 19          | -0.34 | -0 74            | 9 84   | -0.5   |

## Mast Totals - With Ice

| Wind<br>Azimuth | V,   | V <sub>s</sub> | OTM,     | OTM <sub>t</sub> | Torque<br>kip-st |
|-----------------|------|----------------|----------|------------------|------------------|
| 0               | 0.00 | -7.65          | -1058 76 | 81 90            | -6 93            |
| 30              | 3 77 | -6.54          | -898.39  | -458 93          | -1.65            |

| Valmont                                                     | Job 565090                               | Page 36 of 72          |
|-------------------------------------------------------------|------------------------------------------|------------------------|
| 1545 Pidco Dr                                               | Project<br>H-31 x290' SST - US-KY-5135 F | Date 07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                    | Designed by            |

| Wind<br>Azimuth | $V_{\tau}$ | V2.   | OTM.    | OTM <sub>t</sub> | Torque |
|-----------------|------------|-------|---------|------------------|--------|
| o               | K          | K     | kip-ft  | kip-ft           | kip-ft |
| 60              | 6.50       | -3 75 | -498 57 | -848 08          | 1.09   |
| 90              | 7.53       | 0.00  | 38.35   | -993 49          | 0.20   |
| 120             | 6.61       | 3 82  | 583.77  | -862.80          | 2.25   |
| 150             | 3 74       | 6 48  | 968 70  | -455 24          | 7.03   |
| 180             | 0.00       | 7 47  | 1111.08 | 81.90            | 6.93   |
| 210             | -3 77      | 6.54  | 975.09  | 622.72           | 1.65   |
| 240             | -6.67      | 3.85  | 587 46  | 1032.98          | -1.09  |
| 270             | -7.53      | 0.00  | 38 35   | 1157.28          | -0 20  |
| 300             | -6.45      | -3.72 | -494.88 | 1005.48          | -2.25  |
| 330             | -3 74      | -6.48 | -892.00 | 619 03           | -7.03  |

### Mast Vectors - Service

| Elevation ft     | 0<br>30<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>300<br>330 | Wind Normal Wind 90 Wind 60 Wind 90 Wind Normal Wind 90 Wind 60 Wind 90 Wind 90 Wind 90 Wind Normal | 0 29<br>0 26<br>0 24<br>0 24<br>0 27<br>0 26<br>0 27<br>0 26<br>0 27<br>0 26                                        | 0.00<br>0 13<br>0 21<br>0 24<br>0 23<br>0 13<br>0 00<br>-0 13<br>-0 23                                                                                                   | -0 29<br>-0 23<br>-0 12<br>0 00<br>0 13<br>0 23<br>0 27<br>0 23<br>0 13                                                                                                                                                   | kip-ft -83.64 -64.94 -33.77 0.14 38.02 65.22 75.98 65.22                                                                                                                                                                                                                    | 8ip-ft 0 16 -37 42 -58 58 -66 97 -65 45 -37 42 0 16 37 74                                                                                                                                                                                                                                                                                   | kip-ft -0.15 -0.06 0.00 0.01 0.16 0.15                                                                                                                                                                                                                                                                                                                                                                           |
|------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | 30<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>300<br>330      | Wind 90 Wind 60 Wind 90 Wind Normal Wind 90 Wind 60 Wind 90 Wind 90 Wind 90                         | 0 26<br>0 24<br>0 24<br>0 27<br>0 26<br>0 27<br>0 26<br>0 27                                                        | 0 13<br>0 21<br>0 24<br>0 23<br>0 13<br>0 00<br>-0 13<br>-0 23                                                                                                           | -0 23<br>-0 12<br>0 00<br>0 13<br>0 23<br>0 27<br>0 23                                                                                                                                                                    | -64 94<br>-33 77<br>0 14<br>38.02<br>65 22<br>75 98                                                                                                                                                                                                                         | -37.42<br>-58.58<br>-66.97<br>-65.45<br>-37.42<br>0.16                                                                                                                                                                                                                                                                                      | -0 00<br>0 0<br>0 0<br>0 10<br>0 10                                                                                                                                                                                                                                                                                                                                                                              |
| 80.00-260.00     | 60<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>300<br>330            | Wind 60<br>Wind 90<br>Wind Normal<br>Wind 90<br>Wind 60<br>Wind 90<br>Wind Normal<br>Wind 90        | 0 24<br>0 24<br>0 27<br>0 26<br>0 27<br>0 26<br>0 27                                                                | 0 21<br>0 24<br>0 23<br>0 13<br>0 00<br>-0 13<br>-0 23                                                                                                                   | -0 12<br>0 00<br>0 13<br>0 23<br>0 27<br>0 23                                                                                                                                                                             | -33 77<br>0 14<br>38 02<br>65 22<br>75 98                                                                                                                                                                                                                                   | -58 58<br>-66 97<br>-65 45<br>-37 42<br>0 16                                                                                                                                                                                                                                                                                                | 0 0<br>0 0<br>0 1<br>0 1<br>0 1                                                                                                                                                                                                                                                                                                                                                                                  |
| 30.00-260.00     | 90<br>120<br>150<br>180<br>210<br>240<br>270<br>300<br>330                  | Wind 90<br>Wind Normal<br>Wind 90<br>Wind 60<br>Wind 90<br>Wind Normal<br>Wind 90                   | 0 24<br>0 27<br>0 26<br>0 27<br>0 26<br>0 27                                                                        | 0 24<br>0 23<br>0 13<br>0 00<br>-0 13<br>-0 23                                                                                                                           | 0 00<br>0 13<br>0 23<br>0 27<br>0 23                                                                                                                                                                                      | 0 14<br>38.02<br>65 22<br>75.98                                                                                                                                                                                                                                             | -66 97<br>-65 45<br>-37 42<br>0 16                                                                                                                                                                                                                                                                                                          | 0 0<br>0 1<br>0 1<br>0 1                                                                                                                                                                                                                                                                                                                                                                                         |
| 30.00-260.00     | 120<br>150<br>180<br>210<br>240<br>270<br>300<br>330                        | Wind Normal Wind 90 Wind 60 Wind 90 Wind Normal Wind 90                                             | 0 27<br>0 26<br>0 27<br>0 26<br>0 27                                                                                | 0 23<br>0 13<br>0 00<br>-0 13<br>-0 23                                                                                                                                   | 0 13<br>0 23<br>0 27<br>0 23                                                                                                                                                                                              | 38.02<br>65.22<br>75.98                                                                                                                                                                                                                                                     | -65 45<br>-37 42<br>0 16                                                                                                                                                                                                                                                                                                                    | 0 1<br>0 1<br>0 1                                                                                                                                                                                                                                                                                                                                                                                                |
| 80.00-260.00     | 150<br>180<br>210<br>240<br>270<br>300<br>330                               | Wind 90<br>Wind 60<br>Wind 90<br>Wind Normal<br>Wind 90                                             | 0.26<br>0.27<br>0.26<br>0.27                                                                                        | 0 13<br>0 00<br>-0 13<br>-0 23                                                                                                                                           | 0 23<br>0 27<br>0 23                                                                                                                                                                                                      | 65 22<br>75 98                                                                                                                                                                                                                                                              | -37 42<br>0 16                                                                                                                                                                                                                                                                                                                              | 01                                                                                                                                                                                                                                                                                                                                                                                                               |
| 80.00-260.00     | 180<br>210<br>240<br>270<br>300<br>330                                      | Wind 60<br>Wind 90<br>Wind Normal<br>Wind 90                                                        | 0 27<br>0 26<br>0 27                                                                                                | 0 00<br>-0 13<br>-0 23                                                                                                                                                   | 0 27<br>0 23                                                                                                                                                                                                              | 75.98                                                                                                                                                                                                                                                                       | 0.16                                                                                                                                                                                                                                                                                                                                        | 0.1                                                                                                                                                                                                                                                                                                                                                                                                              |
| 80.00-260.00     | 210<br>240<br>270<br>300<br>330                                             | Wind 90<br>Wind Normal<br>Wind 90                                                                   | 0 26<br>0 27                                                                                                        | -0 13<br>-0 23                                                                                                                                                           | 0 23                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 30.00-260.00     | 240<br>270<br>300<br>330                                                    | Wind Normal<br>Wind 90                                                                              | 0.27                                                                                                                | -0 23                                                                                                                                                                    |                                                                                                                                                                                                                           | 65 22                                                                                                                                                                                                                                                                       | 37 74                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 30.00-260.00     | 270<br>300<br>330                                                           | Wind 90                                                                                             | 6.000                                                                                                               |                                                                                                                                                                          | 0.13                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                             | 21.14                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                              |
| 30.00-260.00     | 300<br>330                                                                  |                                                                                                     | 0.24                                                                                                                |                                                                                                                                                                          | 0.15                                                                                                                                                                                                                      | 38 02                                                                                                                                                                                                                                                                       | 65 77                                                                                                                                                                                                                                                                                                                                       | -0 0                                                                                                                                                                                                                                                                                                                                                                                                             |
| 30.00-260.00     | 330                                                                         | Wind 60                                                                                             |                                                                                                                     | -0 24                                                                                                                                                                    | 0 00                                                                                                                                                                                                                      | 0.14                                                                                                                                                                                                                                                                        | 67 29                                                                                                                                                                                                                                                                                                                                       | -0 0                                                                                                                                                                                                                                                                                                                                                                                                             |
| 30.00-260.00     |                                                                             |                                                                                                     | 0 24                                                                                                                | -0 21                                                                                                                                                                    | -0 12                                                                                                                                                                                                                     | -33 77                                                                                                                                                                                                                                                                      | 58.90                                                                                                                                                                                                                                                                                                                                       | -0.1                                                                                                                                                                                                                                                                                                                                                                                                             |
| 30.00-260.00     | 1.00                                                                        | Wind 90                                                                                             | 0 26                                                                                                                | -0 13                                                                                                                                                                    | -0 23                                                                                                                                                                                                                     | -64 94                                                                                                                                                                                                                                                                      | 37 74                                                                                                                                                                                                                                                                                                                                       | -0 1                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | 0                                                                           | Wind Normal                                                                                         | 0.87                                                                                                                | 0.00                                                                                                                                                                     | -0.87                                                                                                                                                                                                                     | -234 91                                                                                                                                                                                                                                                                     | 0.27                                                                                                                                                                                                                                                                                                                                        | -0.3                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | 30                                                                          | Wind 90                                                                                             | 0.85                                                                                                                | 0.42                                                                                                                                                                     | -0.73                                                                                                                                                                                                                     | -197.30                                                                                                                                                                                                                                                                     | -113.96                                                                                                                                                                                                                                                                                                                                     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 60                                                                          | Wind 60                                                                                             | 0 80                                                                                                                | 0 69                                                                                                                                                                     | -0.40                                                                                                                                                                                                                     | -107 09                                                                                                                                                                                                                                                                     | -186 17                                                                                                                                                                                                                                                                                                                                     | 0.3                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 90                                                                          | Wind 90                                                                                             | 0.76                                                                                                                | 0.76                                                                                                                                                                     | 0.00                                                                                                                                                                                                                      | 0 56                                                                                                                                                                                                                                                                        | -205 67                                                                                                                                                                                                                                                                                                                                     | 0.2                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 120                                                                         | Wind Normal                                                                                         | 0.79                                                                                                                | 0.68                                                                                                                                                                     | 0.39                                                                                                                                                                                                                      | 107 03                                                                                                                                                                                                                                                                      | -184 14                                                                                                                                                                                                                                                                                                                                     | 0.2                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 150                                                                         | Wind 90                                                                                             | 0.79                                                                                                                | 0.40                                                                                                                                                                     | 0.68                                                                                                                                                                                                                      | 185.41                                                                                                                                                                                                                                                                      | -106.45                                                                                                                                                                                                                                                                                                                                     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 180                                                                         | Wind 60                                                                                             | 0.83                                                                                                                | 0.00                                                                                                                                                                     | 0.83                                                                                                                                                                                                                      | 223 35                                                                                                                                                                                                                                                                      | 0 27                                                                                                                                                                                                                                                                                                                                        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 210                                                                         | Wind 90                                                                                             | 0.85                                                                                                                | -0.42                                                                                                                                                                    | 0 73                                                                                                                                                                                                                      | 198.41                                                                                                                                                                                                                                                                      | 114.50                                                                                                                                                                                                                                                                                                                                      | -0 1                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | 240                                                                         | Wind Normal                                                                                         | 0.84                                                                                                                | -0.73                                                                                                                                                                    | 0 42                                                                                                                                                                                                                      | 114 53                                                                                                                                                                                                                                                                      | 197 69                                                                                                                                                                                                                                                                                                                                      | -03                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 270                                                                         | Wind 90                                                                                             | 0.76                                                                                                                | -0.76                                                                                                                                                                    | 0.00                                                                                                                                                                                                                      | 0.56                                                                                                                                                                                                                                                                        | 206.21                                                                                                                                                                                                                                                                                                                                      | -0.2                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | 300                                                                         | Wind 60                                                                                             | 0.74                                                                                                                | -0.64                                                                                                                                                                    | -0 37                                                                                                                                                                                                                     | -99 58                                                                                                                                                                                                                                                                      | 173.71                                                                                                                                                                                                                                                                                                                                      | -0.2                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | 330                                                                         | Wind 90                                                                                             | 0 79                                                                                                                | -0 40                                                                                                                                                                    | -0.68                                                                                                                                                                                                                     | -184 30                                                                                                                                                                                                                                                                     | 106 99                                                                                                                                                                                                                                                                                                                                      | -0.5                                                                                                                                                                                                                                                                                                                                                                                                             |
| 60 00-240 00     | 0                                                                           | Wind Normal                                                                                         | 1.00                                                                                                                | 0.00                                                                                                                                                                     | -1 00                                                                                                                                                                                                                     | -248.81                                                                                                                                                                                                                                                                     | 0.27                                                                                                                                                                                                                                                                                                                                        | -0.4                                                                                                                                                                                                                                                                                                                                                                                                             |
| 21/2/4 = 21/11/2 | 30                                                                          | Wind 90                                                                                             | 0 97                                                                                                                | 0.48                                                                                                                                                                     | -0 84                                                                                                                                                                                                                     | -208 86                                                                                                                                                                                                                                                                     | -120.44                                                                                                                                                                                                                                                                                                                                     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 60                                                                          | Wind 60                                                                                             | 0.96                                                                                                                | 0.83                                                                                                                                                                     | -0.48                                                                                                                                                                                                                     | -119 23                                                                                                                                                                                                                                                                     | -206.62                                                                                                                                                                                                                                                                                                                                     | 0.2                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 90                                                                          | Wind 90                                                                                             | 0 97                                                                                                                | 0 97                                                                                                                                                                     | 0 00                                                                                                                                                                                                                      | 0.22                                                                                                                                                                                                                                                                        | -241.16                                                                                                                                                                                                                                                                                                                                     | -0 1                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | 120                                                                         | Wind Normal                                                                                         | 1 00                                                                                                                | 0.86                                                                                                                                                                     | 0.50                                                                                                                                                                                                                      | 124 74                                                                                                                                                                                                                                                                      | -215 39                                                                                                                                                                                                                                                                                                                                     | -0.1                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | 150                                                                         | Wind 90                                                                                             | 0.97                                                                                                                | 0.48                                                                                                                                                                     | 0 84                                                                                                                                                                                                                      | 209 30                                                                                                                                                                                                                                                                      | -120.44                                                                                                                                                                                                                                                                                                                                     | 0.4                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 180                                                                         | Wind 60                                                                                             | 0.96                                                                                                                | 0.00                                                                                                                                                                     | 0 96                                                                                                                                                                                                                      | 239.12                                                                                                                                                                                                                                                                      | 0.27                                                                                                                                                                                                                                                                                                                                        | 0.4                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |                                                                             |                                                                                                     |                                                                                                                     |                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             | -0.1                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  |                                                                             |                                                                                                     |                                                                                                                     |                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             | -0.2                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  |                                                                             |                                                                                                     |                                                                                                                     |                                                                                                                                                                          |                                                                                                                                                                                                                           | 0.22                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |                                                                             |                                                                                                     |                                                                                                                     |                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             | 0 1                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |                                                                             |                                                                                                     |                                                                                                                     |                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             | -0.4                                                                                                                                                                                                                                                                                                                                                                                                             |
| 40.00-220.00     |                                                                             |                                                                                                     |                                                                                                                     |                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             | -0.6                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10.00-420.00     |                                                                             |                                                                                                     |                                                                                                                     |                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             | 0 1                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |                                                                             |                                                                                                     |                                                                                                                     |                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             | 0.3                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |                                                                             |                                                                                                     |                                                                                                                     |                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             | -0 1                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  |                                                                             |                                                                                                     |                                                                                                                     |                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             | -0 1                                                                                                                                                                                                                                                                                                                                                                                                             |
| 40               | 0.00-220.00                                                                 | 210<br>240<br>270<br>300<br>330                                                                     | 210 Wind 90 240 Wind Normal 270 Wind 90 300 Wind 60 330 Wind Normal 30 Wind Normal 30 Wind 90 60 Wind 60 90 Wind 90 | 210 Wind 90 0 97 240 Wind Normal 1 00 270 Wind 90 0 97 300 Wind 60 0 96 330 Wind 90 0 97 0 00-220.00 0 Wind Normal 1 14 30 Wind 90 1 09 60 Wind 60 1 08 90 Wind 90 1 .09 | 210 Wind 90 0 97 -0 48 240 Wind Normal 1 00 -0.86 270 Wind 90 0 97 -0 97 300 Wind 60 0 96 -0.83 330 Wind 90 0 97 -0 48 0.00-220.00 0 Wind Normal 1 14 0 00 30 Wind 90 1 09 0.55 60 Wind 60 1 08 0 93 90 Wind 90 1.09 1 09 | 210 Wind 90 0 97 -0 48 0 84 240 Wind Normal 1 00 -0 86 0 50 270 Wind 90 0 97 -0 97 0 00 300 Wind 60 0 96 -0 83 -0 48 330 Wind 90 0 97 -0 48 -0 84 0 00-220.00 0 Wind Normal 1 14 0 00 -1 14 30 Wind 90 1 09 0 55 -0 95 60 Wind 60 1 08 0 93 -0 54 90 Wind 90 1 09 1 09 0 00 | 210 Wind 90 0 97 -0 48 0 84 209 30 240 Wind Normal 1 00 -0 86 0 50 124 74 270 Wind 90 0 97 -0 97 0 00 0 22 300 Wind 60 0 96 -0 83 -0 48 -119 23 330 Wind 90 0 97 -0 48 -0 84 -208 86 0 00-220.00 0 Wind Normal 1 14 0 00 -1 14 -260 96 30 Wind 90 1 09 0 55 -0 95 -217 05 60 Wind 60 1 08 0 93 -0 54 -123 47 90 Wind 90 1 09 1 09 0 00 0 31 | 210 Wind 90 0 97 -0.48 0.84 209 30 120 99 240 Wind Normal 1 00 -0.86 0.50 124 74 215 94 270 Wind 90 0 97 -0.97 0.00 0.22 241 70 300 Wind 60 0.96 -0.83 -0.48 -119 23 207 16 330 Wind 90 0.97 -0.48 -0.84 -208.86 120 99 0.00-220.00 0 Wind Normal 1 14 0.00 -1 14 -260 96 0.39 30 Wind 90 1 0.9 0.55 -0.95 -217 0.5 -125 10 60 Wind 60 1 0.8 0.93 -0.54 -123 47 -214 00 90 Wind 90 1 0.9 1 0.9 0.00 0.31 -250 60 |

| Valmont                                                     | Job     | 565090                                 | Page 37 of 72          |
|-------------------------------------------------------------|---------|----------------------------------------|------------------------|
| 1545 Pidco Dr                                               | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date 07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by            |

| Section<br>No. | Section<br>Elevation                    | Wind<br>Azimuth | Directionality | F     | $V_{\kappa}$ | 12      | OTM <sub>x</sub> | OTM <sub>2</sub> | Torque |
|----------------|-----------------------------------------|-----------------|----------------|-------|--------------|---------|------------------|------------------|--------|
| -              | fi                                      | 0               |                | K     | K            | K       | kip-ft           | kip-ft           | kip-ft |
|                |                                         | 150             | Wind 90        | 1 09  | 0.55         | 0 95    | 217.67           | -125 10          | 0.58   |
|                |                                         | 180             | Wind 60        | 1.08  | 0.00         | 1.08    | 247 87           | 0.39             | 0.60   |
|                |                                         | 210             | Wind 90        | 1.09  | -0.55        | 0.95    | 217 67           | 125.89           | -0.17  |
|                |                                         | 240             | Wind Normal    | 1.14  | -0 98        | 0.57    | 130.94           | 226.66           | -0.38  |
|                |                                         | 270             | Wind 90        | 1.09  | -1 09        | 0.00    | 0.31             | 251.38           | 0.15   |
|                |                                         | 300             | Wind 60        | 1.08  | -0.93        | -0 54   | -123 47          | 214.79           | 0.11   |
|                | Vanna en el                             | 330             | Wind 90        | 1.09  | -0.55        | -0.95   | -217.05          | 125.89           | -0.58  |
| T5             | 220.00-200 00                           | 0               | Wind Normal    | 1 16  | 0.00         | -1 16   | -242 52          | 0.49             | -0 73  |
|                | 100000000000000000000000000000000000000 | 30              | Wind 90        | 1.11  | 0.56         | -0.97   | -202 34          | -116.55          | 0.19   |
|                |                                         | 60              | Wind 60        | 1.10  | 0.95         | -0.55   | -115.19          | -199.68          | 0.46   |
|                |                                         | 90              | Wind 90        | 1.11  | 1.11         | 0 00    | 0.38             | -233 59          | -0 17  |
|                |                                         | 120             | Wind Normal    | 1.16  | 1.00         | 0.58    | 121.82           | -209.86          | -0 14  |
|                |                                         | 150             | Wind 90        | 1.11  | 0.56         | 0.97    | 203.10           | -116.55          | 0.69   |
|                |                                         | 180             | Wind 60        | 1.10  | 0.00         | 1.10    | 231.52           | 0.49             | 0.73   |
|                |                                         | 210             | Wind 90        | 1.11  | -0 56        | 0 97    | 203 10           | 117.53           | -0 19  |
|                |                                         | 240             | Wind Normal    | 1 16  | -1.00        | 0.58    | 121.82           | 210 85           | -0 46  |
|                |                                         | 270             | Wind 90        | 1.11  | -1.11        | 0 00    | 0 38             | 234 57           | 0 17   |
|                |                                         | 300             | Wind 60        | 1 10  | -0.95        | -0.55   | -115 19          | 200.67           | 0.14   |
|                |                                         | 330             | Wind 90        | 111   | -0 56        | -0 97   | -202 34          | 117.53           | -0 69  |
| T6             | 200 00-180 00                           | 0               | Wind Normal    | 1.18  | 0.00         | -1 18   | -224 36          | 0 59             | -0 86  |
|                | 200 00-100.00                           | 30              | Wind 90        | 1 14  | 0.57         | -0 98   | -186 53          | -107.36          | 0 22   |
|                |                                         | 60              | Wind 60        | 1.12  | 0.97         | -0 56   | -106.02          | -183 81          | 0.53   |
|                |                                         | 90              | Wind 90        | 1 14  | 1 14         | 0 00    | 0 44             | -215 30          | -0 20  |
|                | 120                                     | Wind Normal     | 1.18           | 1.02  | 0.59         | 112 85  | -194.10          | -0 17            |        |
|                | 150                                     | Wind 90         | 1.14           | 0.57  | 0 98         | 187 41  | -107.36          | 0.80             |        |
|                |                                         | 180             | Wind 60        | 1 12  | 0.00         | 1 12    | 213 37           | 0.59             | 0 86   |
|                |                                         | 1/2/2017 CARSES | 100,000,000    |       |              |         | 108 54           | -0 22            |        |
|                |                                         | 210             | Wind 90        | 1 14  | -0.57        | 0.98    | 187.41           |                  | -0.53  |
|                |                                         | 240             | Wind Normal    | 1 18  | -1.02        | 0.59    | 112 85           | 195 28           |        |
|                | 270                                     | Wind 90         | 1 14           | -1 14 | 0.00         | 0 44    | 216.49           | 0 20             |        |
|                | 300                                     | Wind 60         | 1 12           | -0.97 | -0 56        | -106 02 | 184 99           | 0 17             |        |
| 22             | 122.22.122.22                           | 330             | Wind 90        | 1.14  | -0.57        | -0.98   | -186 53          | 108 54           | -0 80  |
| 17             | 180 00-160 00                           | 0               | Wind Normal    | 1 20  | 0.00         | -1 20   | -203.87          | 0.69             | -0 98  |
|                |                                         | 30              | Wind 90        | 1 15  | 0 58         | -1 00   | -168 85          | -97 09           | 0 24   |
|                |                                         | 60              | Wind 60        | 1 13  | 0.98         | -0 57   | -95 80           | -166 12          | 0.60   |
|                |                                         | 90              | Wind 90        | 1.15  | 1.15         | 0.00    | 0.51             | -194 87          | -0 22  |
|                |                                         | 120             | Wind Normal    | 1 20  | 1 04         | 0.60    | 102.70           | -176 31          | -0.20  |
|                |                                         | 150             | Wind 90        | 1.15  | 0.58         | 1 00    | 169 87           | -97 09           | 0 90   |
|                |                                         | 180             | Wind 60        | 1.13  | 0.00         | 1 13    | 193 13           | 0 69             | 0 98   |
|                |                                         | 210             | Wind 90        | 1.15  | -0 58        | 1.00    | 169 87           | 98 47            | -0 24  |
|                |                                         | 240             | Wind Normal    | 1 20  | -1.04        | 0.60    | 102.70           | 177.69           | -0 60  |
|                |                                         | 270             | Wind 90        | 1 15  | -1 15        | 0.00    | 0.51             | 196 25           | 0 22   |
|                |                                         | 300             | Wind 60        | 1 13  | -0 98        | -0 57   | -95 80           | 167 50           | 0.20   |
|                |                                         | 330             | Wind 90        | 1 15  | -0.58        | -1.00   | -168.85          | 98.47            | -0.90  |
| T8             | 160 00-140 00                           | 0               | Wind Normal    | 1.29  | 0.00         | -1 29   | -192 53          | 0.79             | -1 09  |
| 3.00           |                                         | 30              | Wind 90        | 1.22  | 0.61         | -1.06   | -158 07          | -90.80           | 0 23   |
|                |                                         | 60              | Wind 60        | 1 20  | 1 04         | -0 60   | -89.34           | -154.93          | 0.63   |
|                |                                         | 90              |                | 1 22  | 1 22         | 0 00    | 0 56             | -182 38          | -0 29  |
|                |                                         | 120             |                | 1.29  | 1.11         | 0.64    | 97 11            | -166.43          | -0 25  |
|                |                                         | 150             | Wind 90        | 1.22  | 0.61         | 1 05    | 158.65           | -90.48           | 1 00   |
|                |                                         | 180             | Wind 60        | 1 20  | 0 00         | 1 20    | 180 19           | 0.79             | 1 09   |
|                |                                         | 210             | Wind 90        | 1 22  | 16.0-        | 1.06    | 159 19           | 92 37            | -0 23  |
|                | 1                                       | 240             | Wind Normal    | 1 29  | -1 12        | 0.64    | 97.20            | 168 17           | -0 63  |
|                |                                         | 270             | Wind 90        |       |              | 0.00    | 0.56             | 183 96           | 0 29   |
|                |                                         |                 |                | 1 22  | -1 22        |         |                  |                  |        |
|                |                                         | 300             | Wind 60        | 1 20  | -1.04        | -0 60   | -89 25           | 156 35           | 0.25   |
| TO             | 140.00 100.00                           | 330             |                | 1 22  | -0 61        | -1 05   | -157.52          | 92.06            | -1 00  |
| T9             | 140 00-120 00                           | 0               | Wind Normal    | 1 21  | 0.00         | -1.21   | -156 91          | 0.89             | -1.19  |
|                |                                         | 30              |                | 1 17  | 0.58         | -101    | -130 78          | -74 96           | 0 18   |
|                |                                         | 60              |                | 1 15  | 1.00         | -0 58   | -74.19           | -128.63          | 0.56   |
|                |                                         | 90              |                | 1.17  | 1.17         | 0 00    | 0.58             | -150 80          | -0.45  |
|                | 1                                       | 120             | Wind Normal    | 1.21  | 1.05         | 0.61    | 79 33            | -135 51          | -0.37  |
|                |                                         | 150             | Wind 90        | 1.15  | 0.58         | 1 00    | 130 11           | -73 90           | 1.07   |

| Valmont                                                    | Јо <b>ь</b><br>565090                  | Page 38 of 72          |
|------------------------------------------------------------|----------------------------------------|------------------------|
| 1545 Pidco Dr                                              | Project<br>H-31 x290' SST - US-KY-5135 | Date 07:03:40 10/06/22 |
| Plymouth IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                  | Designed by            |

| Section<br>No.    | Section<br>Elevation | Wind<br>Azimuth | Directionality | F     | V,    | I's     | OTM <sub>x</sub> | OTM:    | Torque |
|-------------------|----------------------|-----------------|----------------|-------|-------|---------|------------------|---------|--------|
| 17.00             | ſì                   | 9               |                | K     | K     | K       | kip-fi           | kip-ft  | kip-ft |
|                   |                      | 180             | Wind 60        | 1.15  | 0.00  | 1.15    | 149 53           | 0 89    | 1.     |
|                   |                      | 210             | Wind 90        | 1.17  | -0.58 | 1.01    | 131 95           | 76.73   | -0.    |
|                   |                      | 240             | Wind Normal    | 1 22  | -1 05 | 061     | 79 63            | 137 80  | -0.    |
|                   |                      | 270             | Wind 90        | 1.17  | -1 17 | 0.00    | 0.58             | 152 57  | 0.4    |
|                   |                      | 300             | Wind 60        | 1.15  | -0.99 | -0.57   | -73 89           | 129 87  | 0.     |
| T10 120 00-100.00 | 330                  | Wind 90         | 1.15           | -0.58 | -1.00 | -128 95 | 75.67            | -1,0    |        |
|                   | 0                    | Wind Normal     | 1 19           | 0.00  | -1.19 | -130 74 | 0.98             | -1.3    |        |
|                   | 30                   | Wind 90         | 1.15           | 0.57  | -0 99 | -108.74 | -62 17           | 0       |        |
|                   |                      | 60              | Wind 60        | 1.13  | 0.98  | -0.57   | -61.58           | -106.79 | 0.     |
|                   |                      | 90              | Wind 90        | 1.15  | 1.15  | 0.00    | 0.64             | -125.32 | -0     |
| -                 |                      | 120             | Wind Normal    | 1 19  | 1 03  | 0.60    | 66.34            | -112 80 | -0     |
| 1                 |                      | 150             | Wind 90        | 1.13  | 0.57  | 0 98    | 108.53           | -61 30  | 1      |
| 4                 |                      | 180             | Wind 60        | 1.13  | 0.00  | 1.13    | 124.59           | 0.98    | L.     |
| - 1               |                      | 210             | Wind 90        | 1 15  | -0 57 | 0 99    | 110.03           | 64 14   | -0     |
|                   |                      | 240             | Wind Normal    | 1.20  | -1.04 | 0 60    | 66.58            | 115.20  | -0     |
|                   |                      | 270             | Wind 90        | 1.15  | -1.15 | 0.00    | 0.64             | 127 29  | 0      |
| T11 100.00-80.00  | 300                  | Wind 60         | 1.13           | -0.98 | -0 56 | -61.33  | 108 33           | 0.      |        |
|                   | 330                  | Wind 90         | 1 13           | -0.57 | -0 98 | -107 24 | 63.27            | -1      |        |
|                   | 0                    | Wind Normal     | 1.17           | 0.00  | -1 17 | -104.49 | 1 08             | -1      |        |
|                   |                      | 30              | Wind 90        | 1.12  | 0.56  | -0.97   | -86 71           | -49 38  | 0.     |
|                   |                      | 60              | Wind 60        | 1 10  | 0 96  | -0 55   | -48 99           | -84.99  | 0.     |
|                   |                      | 90              | Wind 90        | 1.12  | 1 12  | 0.00    | 0 70             | -99 85  | -0     |
| Y.                | 120                  | Wind Normal     | 1.17           | 1.01  | 0.58  | 53 30   | -90 02           | -0      |        |
| T.                | 150                  | Wind 90         | 1.11           | 0.55  | 0.96  | 86.94   | -48 71           | 1.      |        |
|                   | 180                  | Wind 60         | 1 10           | 0.00  | 1 10  | 99.70   | 1 08             | 1       |        |
|                   | 210                  | Wind 90         | 1 12           | -0 56 | 0.97  | 88 12   | 51.55            | -0      |        |
|                   | 240                  | Wind Normal     | 117            | -1.02 | 0 59  | 53 50   | 92.52            | -0      |        |
|                   | 270                  | Wind 90         | 1 12           | -1.12 | 0.00  | 0 70    | 102 02           | 0       |        |
|                   | 300                  | Wind 60         | 1 10           | -0 95 | -0.55 | -48 79  | 86 82            | 0       |        |
|                   | 330                  | Wind 90         | 1.11           | -0.55 | -0 96 | -85 53  | 50 87            | -1      |        |
| T12               | 80.00-60.00          | 0               | Wind Normal    | 1.15  | 0.00  | -1.15   | -79 70           | 1.18    | -1     |
|                   |                      | 30              | Wind 90        | 1.10  | 0 55  | -0.95   | -66 02           | -37 38  | 0      |
|                   |                      | 60              | Wind 60        | 1 08  | 0 94  | -0 54   | -37 19           | -64 56  | 0      |
|                   |                      | 90              | Wind 90        | 1 10  | 1.10  | 0.00    | 0.77             | -75 94  | -0     |
|                   | 1                    | 120             | Wind Normal    | 1.15  | 1 00  | 0.57    | 41.00            | -68 50  | -0     |
|                   | ,                    | 150             | Wind 90        | 1 09  | 0 54  | 0 94    | 66 69            | -36 88  | 1      |
| 1                 |                      | 180             | Wind 60        | 1 08  | 0.00  | 1.08    | 76 39            | 1 18    | 1      |
|                   |                      | 210             | Wind 90        | 1.10  | -0.55 | 0.95    | 67 55            | 39 74   | -0     |
|                   |                      | 240             | Wind Normal    | 1.15  | -1.00 | 0.58    | 41.14            | 71.11   | -0     |
|                   |                      | 270             | Wind 90        | 1.10  | -1 10 | 0.00    | 0 77             | 78 30   | 0      |
|                   |                      | 300             | Wind 60        | 1.08  | -0.94 | -0.54   | -37 05           | 66 68   | 0      |
| Person.           | a special series     | 330             | Wind 90        | 1 09  | -0 54 | -0 94   | -65.16           | 39 24   | -1     |
| T13               | 60 00-40 00          | 0               | Wind Normal    | 1.14  | 0.00  | -1 14   | -56.39           | 1.28    | -1     |
| -                 |                      | 30              | Wind 90        | 1.09  | 0.54  | -0 94   | -46.33           | -25 94  | 0      |
|                   |                      | 60              | Wind 60        | 1.07  | 0.93  | -0 53   | -25 90           | -45.01  | 0      |
|                   |                      | 90              | Wind 90        | 1 09  | 1.09  | 0.00    | 0 83             | -53.16  | -0     |
|                   |                      | 120             | Wind Normal    | 1 14  | 0 99  | 0 57    | 29 44            | -48.27  | -0     |
| 3                 |                      | 150             | Wind 90        | 1.08  | 0.54  | 0.93    | 47.40            | -25.61  | 1      |
|                   |                      | 180             | Wind 60        | 1.07  | 0 00  | 1.07    | 54.09            | 1.28    | 1      |
|                   |                      | 210             | Wind 90        | 1.09  | -0.54 | 0 94    | 47 98            | 28.50   | -0     |
|                   |                      | 240             | Wind Normal    | 1.15  | -0 99 | 0.57    | 29 53            | 51.00   | -0     |
|                   |                      | 270             | Wind 90        | 1 09  | -1.09 | 0 00    | 0.83             | 55.73   | 0      |
|                   |                      | 300             | Wind 60        | 1.07  | -0 92 | -0 53   | -25.81           | 47 41   | 0      |
| 2                 | Charles and          | 330             | Wind 90        | 1.08  | -0 54 | -0 93   | -45.75           | 28 17   | -1     |
| T14               | 40 00-20 00          | 0               | Wind Normal    | 1 05  | 0 00  | -1 05   | -30 62           | 1,38    | +1     |
|                   |                      | 30              | Wind 90        | 1 00  | 0.50  | -0.86   | -25.02           | -13 58  | 0      |
|                   |                      | 60              | Wind 60        | 0.98  | 0.85  | -0 49   | -13 79           | -24 04  | 0      |
|                   |                      | 90              | Wind 90        | 1.00  | 1.00  | 0.00    | 0.89             | -28 54  | -0     |
|                   |                      | 120             | Wind Normal    | 1.05  | 0.91  | 0.53    | 16.64            | -25 90  | -0     |
|                   |                      | 150             | Wind 90        | 0.99  | 0.49  | 0.85    | 26.48            | -13 40  | 1      |
|                   |                      | 180             | Wind 60        | 0.98  | 0.00  | 0.98    | 30 14            | 1.38    | 1      |

| Valmont                                                    | Job<br>565090                                  | Page 39 of 72          |
|------------------------------------------------------------|------------------------------------------------|------------------------|
| 1545 Pideo Dr.                                             | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date 07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX (574)-936-6458 | Client VB BTS II, LLC                          | Designed by            |

| Section<br>No. | Section<br>Elevation | Wind<br>Azimuth | Directionality | F    | V <sub>x</sub> | $\Gamma_z$ | OTM <sub>x</sub> | OTM <sub>2</sub> | Torque |  |
|----------------|----------------------|-----------------|----------------|------|----------------|------------|------------------|------------------|--------|--|
| 140-           | ſ                    | 0               |                | K    | K              |            | kip-ft           | kip-fi           | kip-ft |  |
|                |                      | 210             | Wind 90        | 1.00 | -0 50          | 0 86       | 26.79            | 16 34            | -0 18  |  |
|                |                      | 240             | Wind Normal    | 1.05 | -0.91          | 0.53       | 16.69            | 28 75            | -0 63  |  |
|                |                      | 270             | Wind 90        | 1.00 | -1 00          | 0.00       | 0.89             | 31.30            | 0.51   |  |
|                |                      | 300             | Wind 60        | 0 98 | -0.84          | -0 49      | -13.74           | 26.71            | 0.43   |  |
|                |                      | 330             | Wind 90        | 0 99 | -0.49          | -0.85      | -24 71           | 16 16            | -1 20  |  |
| T15 20 00-0 00 | 0                    | Wind Normal     | 0.94           | 0.00 | -0.94          | -8 41      | 1.48             | -1.26            |        |  |
| 100            |                      | 30              | Wind 90        | 0.89 | 0.44           | -0.77      | -6.73            | -2.96            | 0.17   |  |
|                |                      | 60              | Wind 60        | 0.87 | 0.75           | -0 43      | -3.40            | -6 06            | 0 59   |  |
|                |                      | 90              | Wind 90        | 0.89 | 0.89           | 0 00       | 0.95             | -7.39            | -0 47  |  |
|                |                      | 120             | Wind Normal    | 0.94 | 0.81           | 0.47       | 5.62             | -6 62            | -0 40  |  |
|                |                      | 150             | Wind 90        | 0 88 | 0.44           | 0.76       | 8 54             | -2 91            | 1.11   |  |
|                |                      | 180             | Wind 60        | 0.87 | 0.00           | 087        | 9 62             | 1 48             | 1 26   |  |
|                |                      | 210             | Wind 90        | 0.89 | -0.44          | 0.77       | 8.63             | 5 91             | -0.17  |  |
|                |                      | 240             | Wind Normal    | 0 94 | -0 81          | 047        | 5 64             | 9.60             | -0 59  |  |
|                |                      | 270             | Wind 90        | 0.89 | -0.89          | 0.00       | 0 95             | 10 35            | 0 47   |  |
|                |                      | 300             | Wind 60        | 0.87 | -0.75          | -0.43      | -3 39            | 8 99             | 0.40   |  |
|                |                      | 330             | Wind 90        | 0.88 | -0.44          | -0.76      | -6.64            | 5 86             | -1.11  |  |

## Mast Totals - Service

| Wind<br>Azimuth | $V_{\star}$ | V <sub>z</sub> | OTM,     | OTM,     | Torque |
|-----------------|-------------|----------------|----------|----------|--------|
| 0               | K           | K              | kip-ft   | kip-ft   | kip-fi |
| 0               | 0.00        | -15 98         | -2258 85 | 11.93    | -14 41 |
| 30              | 7.65        | -13 25         | -1874 27 | -1075.07 | 2.56   |
| 60              | 13.00       | -7 50          | -1054 95 | -1829.97 | 7.56   |
| 90              | 15 19       | 0.00           | 8.48     | -2131 53 | -4 40  |
| 120             | 13.74       | 7.93           | 1126.87  | -1925.17 | -3 57  |
| 150             | 7.57        | 13.11          | 1871 33  | -1063 58 | 13 26  |
| 180             | 0.00        | 15.04          | 2148 58  | 11.93    | 14 41  |
| 210             | -7.65       | 13.25          | 1891.22  | 1098 94  | -2.56  |
| 240             | -13.82      | 7.98           | 1135 51  | 1964.02  | -7.56  |
| 270             | -15 19      | 0.00           | 8.48     | 2155 40  | 4.40   |
| 300             | -12,92      | -7.46          | -1046.30 | 1838.86  | 3.57   |
| 330             | -7.57       | -13.11         | -1854.38 | 1087.45  | -13.26 |

### Discrete Appurtenance Pressures - No Ice $G_H = 0.850$

| Description                        | Aiming<br>Azimuth | Weight<br>K | Offset <sub>z</sub> | Offset, | 2      | K     | q.  | C <sub>1</sub> 4c<br>Front | C <sub>A</sub> A;<br>Side<br>ft² |
|------------------------------------|-------------------|-------------|---------------------|---------|--------|-------|-----|----------------------------|----------------------------------|
|                                    | 0                 |             |                     |         | fi     |       | psf | fi <sup>2</sup>            |                                  |
| 5/8" x 10' lightning rod           | 240.0000          | 0.02        | -2.50               | 1.44    | 295.00 | 1.589 | 39  | 0.63                       | 0.63                             |
| Beacon                             | 120.0000          | 0.07        | 2.50                | 1.44    | 291 00 | 1.585 | 39  | 2.40                       | 2 40                             |
| OB light                           | 0 0000            | 0 03        | 0.00                | -9 53   | 146 00 | 1371  | 34  | 0.50                       | 0.50                             |
| OB light                           | 120.0000          | 0.03        | 8.25                | 4 76    | 146 00 | 1 371 | 34  | 0.50                       | 0.50                             |
| OB light                           | 240.0000          | 0.03        | -8 25               | 4.76    | 146.00 | 1 371 | 34  | 0.50                       | 0.50                             |
| 40,000 sq in. (277 8 sq ft<br>EPA) | 0.0000            | 4 50        | 0 00                | 0.00    | 285 00 | 1 578 | 39  | 277.80                     | 277 80                           |
| 30,000 sq.in. (208.3 sq ft. EPA)   | 0.0000            | 4.10        | 0 00                | 0.00    | 275.00 | 1.566 | 38  | 208.30                     | 208 30                           |
| 30,000 sq.in (208.3 sq ft.<br>EPA) | 0.0000            | 4.10        | 0.00                | 0.00    | 265 00 | 1 554 | 38  | 208 30                     | 208 30                           |

| Valmont                                                     | Јо <b>в</b> 565090                             | Page 40 of 72             |
|-------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1545 Pidco Dr                                               | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                          | Designed by JL.           |

| Description                                | Aiming<br>Azimuth                     | Weight<br>K           | Offset,      | Offset,       | ž<br>p           | K <sub>i</sub> | q:<br>psf | C <sub>1</sub> Ac<br>Front<br>ft <sup>2</sup> | C <sub>1</sub> A <sub>1</sub><br>Side<br>ft <sup>2</sup> |
|--------------------------------------------|---------------------------------------|-----------------------|--------------|---------------|------------------|----------------|-----------|-----------------------------------------------|----------------------------------------------------------|
| SP1 R5 (Includes<br>4 5"x72" Pipe)         | 240 0000                              | 0.14                  | -3 93        | 2.27          | 240 00           | 1.522          | 37        | 2 85                                          | 3.15                                                     |
| 2-1/2" x 7' Sch. 40<br>2-1/2" x 7' Sch. 40 | 60 0000<br>180 0000<br>Sum<br>Weight: | 0.04<br>0.04<br>13.10 | 1.75<br>0.00 | -1.01<br>2.02 | 240 00<br>240.00 | 1.522<br>1.522 | 37<br>37  | 201                                           | 2 01<br>2 01                                             |

## Discrete Appurtenance Vectors - No Ice

|                 | 7.000 | 5 8'    | x 10' lightning rod - | Elevation 295 - Fre | m Leg C          |        |        |
|-----------------|-------|---------|-----------------------|---------------------|------------------|--------|--------|
| Wind<br>Azimuth | Fo    | $F_{r}$ | Ve                    | V <sub>z</sub>      | OTM <sub>x</sub> | OTM:   | Torque |
| 0               | K     | K       | K                     | K                   | kip-fi           | kip-ft | kip-fi |
| 0               | 0.01  | 0.02    | 0.00                  | -0.02               | -6.06            | 0.06   | -0.05  |
| 30              | 0.02  | 0.01    | 0.01                  | -0.02               | -5.24            | -2 99  | -0.03  |
| 60              | 0.02  | 0.00    | 0.02                  | -0.01               | -3 01            | -5 22  | 0.00   |
| 90              | 0.02  | 0.01    | 0.02                  | 0.00                | 0 03             | -6 03  | 0.03   |
| 120             | 0.01  | 0.02    | 0.02                  | 0.01                | 3 08             | -5.22  | 0.05   |
| 150             | 0.00  | 0.02    | 0.01                  | 0.02                | 5 31             | -2.99  | 0.06   |
| 180             | 0.01  | 0.02    | 0.00                  | 0.02                | 6 12             | 0 06   | 0.05   |
| 210             | 0.02  | 0.01    | -0.01                 | 0.02                | 5.31             | 3 10   | 0.03   |
| 240             | 0.02  | 0.00    | -0.02                 | 0.01                | 3.08             | 5 33   | 0.00   |
| 270             | 0.02  | 0.01    | -0.02                 | 0.00                | 0 03             | 6.15   | -0.03  |
| 300             | 0.01  | 0.02    | -0.02                 | -0.01               | -3 01            | 5 33   | -0.05  |
| 330             | 0.00  | 0.02    | -0.01                 | -0.02               | -5 24            | 3.10   | -0.06  |

|                 |      |       | Reacon - Elevan | on 291 - From Leg I | H      |        |        |  |
|-----------------|------|-------|-----------------|---------------------|--------|--------|--------|--|
| Wind<br>Azimuth | Fa   | $F_s$ | ν.              | V <sub>z</sub>      | OTM,   | OTM:   | Torque |  |
| • K             | K    | K     | K               | K K                 |        | kip-ft | kip-fi |  |
| 0               | 0.04 | 0.07  | 0.00            | -0 08               | -22.90 | -0 18  | 0.20   |  |
| 30              | 0.00 | 0.08  | 0.04            | -0 07               | -19 81 | -11.68 | 0 23   |  |
| 60              | 0.04 | 0.07  | 0.07            | -0.04               | -11.40 | -20 10 | 0.20   |  |
| 90              | 0 07 | 0.04  | 0.08            | 0.00                | 0.11   | -23 18 | 0.11   |  |
| 120             | 0.08 | 0.00  | 0.07            | 0.04                | 11.61  | -20 10 | 0 00   |  |
| 150             | 0.07 | 0.04  | 0.04            | 0.07                | 20.03  | -11.68 | -0.11  |  |
| 180             | 0 04 | 0.07  | 0.00            | 0.08                | 23.11  | -0 18  | -0 20  |  |
| 210             | 0 00 | 0 08  | -0.04           | 0.07                | 20.03  | 11.32  | -0 23  |  |
| 240             | 0 04 | 0.07  | -0.07           | 0.04                | 11.61  | 19 74  | -0 20  |  |
| 270             | 0.07 | 0.04  | -0.08           | 0.00                | 0.11   | 22 82  | -0.11  |  |
| 300             | 0.08 | 0 00  | -0.07           | -0.04               | -11 40 | 19 74  | 0.00   |  |
| 330             | 0.07 | 0.04  | -0.04           | -0.07               | -19.81 | 11.32  | 0 11   |  |

| OB light - Flevation 146 - From Leg A |                |      |      |                   |                  |        |        |  |  |
|---------------------------------------|----------------|------|------|-------------------|------------------|--------|--------|--|--|
| Wind<br>Azimuth                       | F <sub>a</sub> | F.   | V.   | $V_{\varepsilon}$ | OTM <sub>e</sub> | OTM:   | Torque |  |  |
| 0                                     | K              | K    | K    | K                 | kip-ft           | kip-fi | kip-fi |  |  |
| 0                                     | 0.01           | 0.00 | 0.00 | -0.01             | -2 37            | 0.00   | 0.00   |  |  |
| 30                                    | 0.01           | 0.01 | 0.01 | -0.01             | -2.09            | -1 04  | -0.07  |  |  |
| 60                                    | 0.01           | 0.01 | 0.01 | -0.01             | -1 33            | -1.80  | -0.12  |  |  |
| 90                                    | 0.00           | 0.01 | 0.01 | 0.00              | -0 29            | -2 08  | -0.14  |  |  |
| 120                                   | 0.01           | 0.01 | 0.01 | 0.01              | 0.75             | -1.80  | -0.12  |  |  |
| 150                                   | 0 01           | 0.01 | 0.01 | 0.01              | 1.51             | -1 04  | -0.07  |  |  |
| 180                                   | 0.01           | 0.00 | 0.00 | 0.01              | 1 79             | 0 00   | 0.00   |  |  |

| Valmont                                                     | Job     | 565090                                 | Page 41 of 72             |
|-------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr.                                              | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, 1N<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by               |

| OB light - Elevation 146 - From Leg A |              |      |       |                |                  |        |        |  |  |
|---------------------------------------|--------------|------|-------|----------------|------------------|--------|--------|--|--|
| Wind<br>Azimuth                       | $F_{\alpha}$ | F,   | Ve    | V <sub>2</sub> | OTM <sub>x</sub> | OTM:   | Torque |  |  |
| 0                                     | K            | K    | K     | K              | kip-ft           | kip-ft | kip-ft |  |  |
| 210                                   | 0.01         | 0.01 | -0.01 | 0.01           | 1.51             | 1.04   | 0.07   |  |  |
| 240                                   | 0.01         | 0 01 | -0.01 | 0.01           | 0.75             | 1.80   | 0.12   |  |  |
| 270                                   | 0 00         | 0 01 | -0.01 | 0.00           | -0 29            | 2 08   | 0 14   |  |  |
| 300                                   | 0.01         | 0.01 | -0.01 | -0.01          | -1 33            | 1.80   | 0 12   |  |  |
| 330                                   | 0 01         | 0.01 | -0.01 | -0.01          | -2.09            | 1.04   | 0.07   |  |  |

|                 |      |      | OB light - Elevat | ion 146 - From Leg | В      |                  |        |
|-----------------|------|------|-------------------|--------------------|--------|------------------|--------|
| Wind<br>Azimuth | Fa   | Fi   | V <sub>e</sub>    | $V_z$              | OTM,   | OTM <sub>2</sub> | Torque |
| 0               | K    | K    | K                 | K                  | kip-ft | kip-fi           | kip-ft |
| 0               | 0.01 | 0.01 | 0.00              | -0.01              | -1 94  | -0.25            | 0.12   |
| 30              | 0.00 | 0.01 | 0.01              | -0.01              | -1 66  | -1 29            | 0 14   |
| 60              | 0.01 | 0.01 | 0.01              | -0.01              | -0 90  | -2 05            | 0.12   |
| 90              | 0.01 | 0.01 | 0.01              | 0.00               | 0.14   | -2 33            | 0.07   |
| 120             | 0.01 | 0.00 | 0.01              | 0.01               | 1.18   | -2.05            | 0.00   |
| 150             | 0.01 | 0.01 | 0.01              | 0.01               | 1 94   | -1 29            | -0 07  |
| 180             | 001  | 0.01 | 0.00              | 0.01               | 2 22   | -0 25            | -0 12  |
| 210             | 0.00 | 0.01 | -0.01             | 0.01               | 1 94   | 0.79             | -0 14  |
| 240             | 0.01 | 0.01 | -0.01             | 0.01               | 1.18   | 1.55             | -0.12  |
| 270             | 0.01 | 0.01 | -0.01             | 0.00               | 0.14   | 1.83             | -0.07  |
| 300             | 0.01 | 0.00 | -0.01             | -0.01              | -0 90  | 1 55             | 0.00   |
| 330             | 0.01 | 0.01 | -0.01             | -0.01              | -1.66  | 0.79             | 0.07   |

|                 |         |                | OB light - Elevat | ion 146 - From Leg | C      |        |        |
|-----------------|---------|----------------|-------------------|--------------------|--------|--------|--------|
| Wind<br>Azimuth | $F_{u}$ | F <sub>s</sub> | $\nu_{\cdot}$     | V <sub>a</sub>     | ОТМ,   | OTM:   | Torque |
| 0               | K       | K              | A.                | K                  | kip-ft | kip-ft | kip-ft |
| 0               | 0.01    | 0.01           | 0.00              | -0 01              | -1 94  | 0.25   | -0.12  |
| 30              | 0.01    | 0.01           | 0.01              | -0.01              | -1.66  | -0 79  | -0.07  |
| 60              | 0.01    | 0.00           | 0.01              | -0.01              | -0.90  | -1.55  | 0.00   |
| 90              | 0.01    | 0.01           | 0.01              | 0.00               | 0.14   | -1.83  | 0.07   |
| 120             | 100     | 0.01           | 0.01              | 0.01               | 1.18   | -1 55  | 0.12   |
| 150             | 0 00    | 0.01           | 0.01              | 0.01               | 1.94   | -0 79  | 0 14   |
| 180             | 0.01    | 0.01           | 0 00              | 0.01               | 2.22   | 0.25   | 0.12   |
| 210             | 0.01    | 0 01           | -0.01             | 0.01               | 1.94   | 1 29   | 0.07   |
| 240             | 0.01    | 0.00           | -0.01             | 0.01               | 1.18   | 2.05   | 0.00   |
| 270             | 0.01    | 0.01           | -0.01             | 0.00               | 0.14   | 2 33   | -0.07  |
| 300             | 0.01    | 0.01           | -0 01             | -0.01              | -0.90  | 2 0 5  | -0.12  |
| 330             | 0.00    | 0.01           | -0 01             | -0.01              | -1.66  | 1.29   | -0 14  |

|                 |       | 40,00 | 0 sq.m. (277.8 sq.ft | nras - cievation 28 | J = None A |          |        |
|-----------------|-------|-------|----------------------|---------------------|------------|----------|--------|
| Wind<br>Azimuth | $F_a$ | F,    | $\nu_{\epsilon}$     | <i>V</i> _          | OTM,       | OTM:     | Torque |
| ď               | K     | K     | K                    | K                   | kip-ft     | kip-ft   | kip-ft |
| 0               | 911   | 0.00  | 0.00                 | -911                | -2596 13   | 0 00     | 0.00   |
| 30              | 9 1 1 | 0.00  | 4 55                 | -7 89               | -2248 31   | -1298 06 | 0.00   |
| 60              | 9.11  | 0.00  | 7.89                 | -4.55               | -1298 06   | -2248 31 | 0.00   |
| 90              | 9 11  | 0.00  | 9.11                 | 0.00                | 0.00       | -2596.13 | 0.00   |
| 120             | 9.11  | 0.00  | 7.89                 | 4 55                | 1298 06    | -2248 31 | 0.00   |
| 150             | 9.11  | 0.00  | 4.55                 | 7.89                | 2248 31    | -1298.06 | 0.00   |
| 180             | 9.11  | 0.00  | 0 00                 | 9 11                | 2596.13    | 0.00     | 0.00   |
| 210             | 9.11  | 0.00  | -4.55                | 7 89                | 2248 31    | 1298 06  | 0.00   |
| 240             | 9.11  | 0.00  | -7.89                | 4.55                | 1298.06    | 2248.31  | 0.00   |
| 270             | 911   | 0.00  | -9 11                | 0 00                | 0.00       | 2596.13  | 0.00   |

| Valmont                                                      | Job       | 565090                                | Page 42 of 72             |
|--------------------------------------------------------------|-----------|---------------------------------------|---------------------------|
| 1545 Pidco Dr.                                               | Project H | -31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>F4V: (574)-936-6458 | Client    | VB BTS II, LLC                        | Designed by               |

|                 |                | 40,00 | 0 sq in (277,8 sq.ft | EPA) - Elevation 28 | 5 - None A |         |        |
|-----------------|----------------|-------|----------------------|---------------------|------------|---------|--------|
| Wind<br>Azimuth | F <sub>a</sub> | F,    | ν,                   | 1/2                 | OTM,       | OTM:    | Torque |
| 0               | K              | K     | K                    | K                   | kip-ft     | kip-ft  | kip-ft |
| 300             | 9.11           | 0 00  | -7.89                | -4.55               | -1298 06   | 2248 31 | 0.0    |
| 330             | 911            | 0.00  | -4.55                | -7.89               | -2248.31   | 1298 06 | 0.0    |

|                 |      | 30,00 | 0 sq m. (208,3 sq.fr | EFA) - Elevation 2 |          |          |        |
|-----------------|------|-------|----------------------|--------------------|----------|----------|--------|
| Wind<br>Azimuth | Fa   | F.    | V <sub>*</sub>       | $V_z$              | OTM,     | OTM      | Torque |
| o K             | λ*   | A.    | K                    | kip-ft             | kip-ft   | kip-ft   |        |
| 0               | 5,56 | 0.00  | 0.00                 | -5 56              | -1528.69 | 0.00     | 0.00   |
| 30              | 5 56 | 0.00  | 2.78                 | -4 81              | -1323.88 | -764 34  | 0.00   |
| 60              | 5 56 | 0.00  | 4.81                 | -2 78              | -764 34  | -1323.88 | 0.00   |
| 90              | 5.56 | 0.00  | 5.56                 | 0.00               | 0.00     | -1528.69 | 0.00   |
| 120             | 5 56 | 0.00  | 4.81                 | 2 78               | 764.34   | -1323 88 | 0.00   |
| 150             | 5 56 | 0.00  | 2.78                 | 4.81               | 1323.88  | -764 34  | 0.00   |
| 180             | 5 56 | 0.00  | 0.00                 | 5.56               | 1528.69  | 0.00     | 0.00   |
| 210             | 5 56 | 0.00  | -2.78                | 4 81               | 1323 88  | 764 34   | 0.00   |
| 240             | 5 56 | 0.00  | -4.81                | 2.78               | 764.34   | 1323 88  | 0.00   |
| 270             | 5 56 | 0.00  | -5.56                | 0.00               | 0.00     | 1528 69  | 0.00   |
| 300             | 5 56 | 0.00  | -4.81                | -2.78              | -764.34  | 1323.88  | 0.00   |
| 330             | 5 56 | 0.00  | -2.78                | -4 81              | -1323.88 | 764.34   | 0.00   |

|                 |            | 30,00 | 0 sq.in. (208,3 sq.ft. | EPA) Elevation 26 | 5 - None B       | - KA - 4 | 0.0 x 35x |
|-----------------|------------|-------|------------------------|-------------------|------------------|----------|-----------|
| Wind<br>Azimuth | $F_{\phi}$ | F,    | $V_{i}$                | V                 | OTM <sub>s</sub> | OTM;     | Torque    |
| 0               | K          | K     | K                      | K                 | kip-fi           | kip-ft   | kip-ft    |
| 0               | 5.52       | 0.00  | 0.00                   | -5 52             | -1461 66         | 0.00     | 0.00      |
| 30              | 5.52       | 0.00  | 2.76                   | -4.78             | -1265.83         | -730.83  | 0.00      |
| 60              | 5 52       | 0.00  | 4.78                   | -2.76             | -730 83          | -1265.83 | 0.00      |
| 90              | 5.52       | 0.00  | 5.52                   | 0 00              | 0.00             | -1461.66 | 0.00      |
| 120             | 5.52       | 0.00  | 4.78                   | 2.76              | 730 83           | -1265.83 | 0.00      |
| 150             | 5.52       | 0 00  | 2.76                   | 4.78              | 1265 83          | -730.83  | 0.00      |
| 180             | 5 52       | 0.00  | 0.00                   | 5.52              | 1461 66          | 0.00     | 0.00      |
| 210             | 5.52       | 0.00  | -2 76                  | 4.78              | 1265.83          | 730.83   | 0.00      |
| 240             | 5.52       | 0.00  | -4 78                  | 2.76              | 730 83           | 1265.83  | 0.00      |
| 270             | 5 52       | 0 00  | -5 52                  | 0 00              | 0.00             | 1461 66  | 0.00      |
| 300             | 5.52       | 0.00  | -4 78                  | -2.76             | -730.83          | 1265.83  | 0.00      |
| 330             | 5.52       | 0.00  | -2.76                  | -4.78             | -1265 83         | 730.83   | 0.00      |

| Wind<br>Azimuth | Fa   | Fi   | Vx    | V <sub>z</sub> | OTM <sub>x</sub> | OTM:   | Torque |
|-----------------|------|------|-------|----------------|------------------|--------|--------|
| 0               | K    | K    | K     | A.             | kip-ft           | kip-fi | kip-ft |
| 0               | 0.05 | 0.09 | -0.00 | -0 10          | -23.03           | 1.52   | -0.3   |
| 30              | 0 08 | 0.05 | 0.04  | -0 08          | -19.41           | -9 71  | -0.23  |
| 60              | 0 09 | 0.00 | 0.08  | -0 05          | -10.50           | -18 19 | 0.00   |
| 90              | 0.08 | 0.05 | 0.09  | 0.00           | 1.30             | -21.66 | 0.23   |
| 120             | 0.05 | 0.09 | 0.08  | 0.05           | 12.83            | -19 18 | 0.39   |
| 150             | 0.00 | 0.10 | 0.05  | 0.09           | 21.02            | -11.42 | 0.43   |
| 180             | 0.05 | 0.09 | 0.00  | 0.10           | 23.65            | -0 45  | 0.39   |
| 210             | 0.08 | 0.05 | -0.04 | 0.08           | 20 03            | 10 79  | 0.23   |
| 240             | 0 09 | 0.00 | -0.08 | 0.05           | 11.13            | 19 27  | 0.00   |
| 270             | 0.08 | 0.05 | -0.09 | -0 00          | -0.67            | 22 74  | -0.2   |
| 300             | 0.05 | 0.09 | -0.08 | -0.05          | -12 21           | 20 26  | -0.39  |
| 330             | 0.00 | 0 10 | -0.05 | -0 09          | -20 39           | 12 49  | -0 4   |

| Valmont                                                    | Job     | 565090                                 | Page 43 of 72             |
|------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr.                                             | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, 1N<br>Phone (574)-936-4221<br>FAX (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by JL            |

|                 |                | 2.   | ) 2" x 7' Sch, 40 - Et | levation 240 - From | Face B |        |        |
|-----------------|----------------|------|------------------------|---------------------|--------|--------|--------|
| Wind<br>Azimuth | F <sub>a</sub> | F,   | P <sub>x</sub>         | V                   | OTM.   | OTM;   | Torque |
| 0               | K              | K    | K                      | K                   | kip-ft | kip-ft | kip-fi |
| 0               | 0.03           | 0.06 | 0.00                   | -0 06               | -15 32 | -0 07  | 0.1    |
| 30              | 0.06           | 0.03 | 0.03                   | -0.06               | -13.27 | -7.71  | 0.0    |
| 60              | 0.06           | 0.00 | 0.06                   | -0.03               | -7 68  | -13.30 | 0.0    |
| 90              | 0.06           | 0.03 | 0.06                   | 0 00                | -0 04  | -15.35 | -0 0   |
| 120             | 0.03           | 0.06 | 0.06                   | 0.03                | 7 60   | -13 30 | -0 1   |
| 150             | 0.00           | 0.06 | 0.03                   | 0.06                | 13.19  | -7.71  | -0.1   |
| 180             | 0.03           | 0.06 | 0 00                   | 0.06                | 15.23  | -0.07  | -0.1   |
| 210             | 0.06           | 0.03 | -0 03                  | 0.06                | 13.19  | 7.57   | -00    |
| 240             | 0.06           | 0.00 | -0 06                  | 0.03                | 7.60   | 13.16  | 0.0    |
| 270             | 0.06           | 0.03 | -0 06                  | 0.00                | -0.04  | 15 20  | 0.0    |
| 300             | 0.03           | 0.06 | -0.06                  | -0.03               | -7 68  | 13 16  | 0.1    |
| 330             | 0.00           | 0.06 | -0 03                  | -0 06               | -13.27 | 7.57   | 0.1    |

|                 |                | 2-             | 1 2" x 7' Sch. 40 - El | evation 240 - From | Face C |                  |        |
|-----------------|----------------|----------------|------------------------|--------------------|--------|------------------|--------|
| Wind<br>Azimuth | F <sub>a</sub> | F <sub>a</sub> | $\nu_{\epsilon}$       | $V_x$              | OTM,   | OTM <sub>2</sub> | Torque |
| 0               | K              | K              | K                      | K                  | kip-ft | kip-fi           | kip-fi |
| 0               | 0.06           | 0:00           | 0.00                   | -0 06              | -15.19 | 0 00             | 0.00   |
| 30              | 0.06           | 0.03           | 0.03                   | -0.06              | -13.15 | -7.64            | 0.06   |
| 60              | 0.03           | 0.06           | 0.06                   | -0.03              | -7 56  | -13.23           | 0.11   |
| 90              | 0.00           | 0.06           | 0 06                   | 0.00               | 0.08   | -15.28           | 0.13   |
| 120             | 0.03           | 0.06           | 0.06                   | 0.03               | 7.72   | -13.23           | 0.11   |
| 150             | 0.06           | 0.03           | 0.03                   | 0.06               | 13.31  | -7 64            | 0.06   |
| 180             | 0.06           | 0.00           | 0.00                   | 0.06               | 15.36  | 0.00             | 0 00   |
| 210             | 0.06           | 0.03           | -0.03                  | 0.06               | 13.31  | 7.64             | -0 06  |
| 240             | 0.03           | 0.06           | -0 06                  | 0 03               | 7.72   | 13 23            | -0.11  |
| 270             | 0 00           | 0.06           | -0 06                  | 0.00               | 0.08   | 15 28            | -0.13  |
| 300             | 0 03           | 0.06           | -0.06                  | -0.03              | -7.56  | 13.23            | -0 11  |
| 330             | 0.06           | 0.03           | -0.03                  | -0.06              | -13.15 | 7.64             | -0.06  |

## Discrete Appurtenance Totals - No Ice

| Wind<br>Azimuth | $V_{\tau}$ | $V_z$  | OTM,     | OTM <sub>z</sub> | Torque |
|-----------------|------------|--------|----------|------------------|--------|
| 0               | K          | K      | kip-ft   | kip-ft           | kip-ft |
| 0               | -0.00      | -20.55 | -5675.21 | 1.33             | -0.13  |
| 30              | 10.27      | -17.80 | -4914 31 | -2836.08         | 0.10   |
| 60              | 17 79      | -10 27 | -2836 50 | -4913 48         | 0.31   |
| 90              | 20 55      | 0.00   | 1.48     | -5674.22         | 0.43   |
| 120             | 17.80      | 10.28  | 2839 19  | -4914.46         | 0.44   |
| 150             | 10 28      | 17 80  | 4916 28  | -2837 79         | 0.33   |
| 180             | 0.00       | 20 55  | 5676 19  | -0.64            | 0.13   |
| 210             | -10.27     | 17 80  | 4915 30  | 2836.77          | -0.10  |
| 240             | -17.79     | 10 27  | 2837 49  | 4914 16          | -0.31  |
| 270             | -20.55     | -0.00  | -0.50    | 5674.90          | -0.43  |
| 300             | -17.80     | -10.28 | -2838 21 | 4915.15          | -0.44  |
| 330             | -10.28     | -17.80 | -4915 30 | 2838 48          | -0 33  |

| Valmont                                                     | Job               | 565090                            | Page 44 of 72             |
|-------------------------------------------------------------|-------------------|-----------------------------------|---------------------------|
| 1545 Pidco Dr                                               | Project<br>H-31 x | (290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client            | VB BTS II, LLC                    | Designed by<br>JL         |

| Description                        | Aiming<br>Azimuth         | Weight        | Offset, | Offset, |        | $K_{\epsilon}$ | q-  | C <sub>t</sub> A <sub>C</sub><br>Front | C <sub>4</sub> A <sub>c</sub><br>Side | $l_{\phi}$ |
|------------------------------------|---------------------------|---------------|---------|---------|--------|----------------|-----|----------------------------------------|---------------------------------------|------------|
|                                    | -0-                       | K             | fi      | ft      | ft     |                | psf | ft <sup>2</sup>                        | ſŕ                                    | in         |
| 5/8" x 10' lightning rod           | 240.0000                  | 0.13          | -2 50   | 1 44    | 295.00 | 1.589          | 3   | 5 17                                   | 5 17                                  | 2 4898     |
| Beacon                             | 120 0000                  | 0 19          | 2 50    | 1 44    | 291.00 | 1 585          | 3   | 3 74                                   | 3 74                                  | 2 4864     |
| OB light                           | 0 0000                    | 0.05          | 0 00    | -9 53   | 146 00 | 1.371          | 3   | 0 96                                   | 0 96                                  | 2 3207     |
| OB light                           | 120.0000                  | 0.05          | 8 25    | 4.76    | 146 00 | 1 371          | 3   | 0 96                                   | 0 96                                  | 2 3207     |
| OB light                           | 240 0000                  | 0.05          | -8 25   | 4.76    | 146 00 | 1.371          | 3   | 0.96                                   | 0.96                                  | 2 3207     |
| 40,000 sq in. (277 8 sq ft         | 0 0000                    | 9 46          | 0 00    | 0 00    | 285.00 | 1 578          | 3   | 622 44                                 | 622 44                                | 2 4812     |
| EPA)                               |                           |               |         |         |        |                |     |                                        |                                       | 100        |
| 30,000 sq in. (208 3 sq ft         | 0.0000                    | 9.54          | 0.00    | 0 00    | 275.00 | 1.566          | 3   | 465 82                                 | 465 82                                | 2 4724     |
| EPA)                               |                           |               |         |         |        | 1000           |     |                                        |                                       |            |
| 30,000 sq in. (208 3 sq ft<br>EPA) | 0 0000                    | 9 52          | 0.00    | 0 00    | 265 00 | 1 554          | 3   | 464 87                                 | 464 87                                | 2 4632     |
| SPI R5 (Includes                   | 240 0000                  | 0.32          | -3.93   | 2.27    | 240 00 | 1 522          | 3   | 5 45                                   | 5.90                                  | 2 4389     |
| 4 5"x72" Pipe)                     | (0.0000                   | 0.12          | 1.00    | 1.01    | 240.00 | 1.500          |     | 4.00                                   | 4.00                                  | 2 4200     |
| 2-1/2" x 7' Sch 40                 | 60 0000                   | 0.17          | 1 75    | -1.01   | 240.00 | 1.522          | 3   | 4 00                                   | 4 00                                  | 2 4389     |
| 2-1/2" x 7' Sch 40                 | 180 0000<br>Sum<br>Weight | 0.17<br>29.65 | 0.00    | 2.02    | 240 00 | 1 522          | 3   | 4.00                                   | 4.00                                  | 2 4389     |

# Discrete Appurtenance Vectors - With Ice

|                 |      | 58'  | 'x 10' lightning rod - | Elevation 295 - Fre | om Leg ( |        |        |
|-----------------|------|------|------------------------|---------------------|----------|--------|--------|
| Wind<br>Azimuth | Fa   | F,   | Vx                     | $\nu_z$             | OTM,     | OTM:   | Torque |
| 0               | K    | K    | K                      | K                   | kip-ft   | kip-ft | kip-ft |
| 0               | 0.01 | 0.01 | 0.00                   | -0.01               | -3 85    | 0.33   | -0.03  |
| 30              | 0.01 | 0.01 | 0.01                   | -0.01               | -3 30    | -1 69  | -0 02  |
| 60              | 0.01 | 0.00 | 0.01                   | -0.01               | -1 83    | -3.16  | 0.00   |
| 90              | 0.01 | 0.01 | 0.01                   | 0.00                | 0.19     | -3.71  | 0.02   |
| 120             | 0.01 | 0.01 | 0.01                   | 0.01                | 2 21     | -3 16  | 0.03   |
| 150             | 0.00 | 0.01 | 10.0                   | 0.01                | 3.69     | -1 69  | 0.04   |
| 180             | 0.01 | 0.01 | 0.00                   | 0.01                | 4 23     | 0.33   | 0.03   |
| 210             | 0.01 | 0.01 | -0 01                  | 0.01                | 3 69     | 2 35   | 0 02   |
| 240             | 0.01 | 0.00 | -0.01                  | 0.01                | 2 21     | 3.83   | 0.00   |
| 270             | 0.01 | 0.01 | -0.01                  | 0.00                | 0.19     | 4.37   | -0.02  |
| 300             | 0.01 | 0 01 | -0.01                  | -0.01               | -1.83    | 3.83   | -0.03  |
| 330             | 0 00 | 0.01 | -0.01                  | -0 01               | -3.30    | 2 35   | -0.04  |

|                 |      |      | Beacon - Elevan | on 291 - From Leg | B      |        |        |
|-----------------|------|------|-----------------|-------------------|--------|--------|--------|
| Wind<br>Azimuth | Fa   | F,   | $\nu_{\star}$   | V <sub>z</sub>    | OTM,   | OTM.   | Torque |
| 0               | K    | K    | K               | K                 | kip-fi | kip-ft | kip-fi |
| 0               | 0.00 | 0 01 | 0.00            | -0.01             | -2.60  | -0.48  | 0.02   |
| 30              | 0.00 | 0.01 | 0.00            | -0.01             | -2.21  | -1 92  | 0.03   |
| 60              | 0.00 | 0.01 | 0.01            | -0.00             | -1.16  | -2 97  | 0.02   |
| 90              | 0.01 | 0.00 | 0.01            | 0.00              | 0.28   | -3.35  | 0.01   |
| 120             | 0.01 | 0.00 | 0.01            | 0.00              | 1.71   | -2 97  | 0.00   |
| 150             | 0.01 | 0.00 | 0.00            | 0.01              | 2.77   | -1 92  | -0.01  |
| 180             | 0.00 | 0.01 | 0.00            | 0.01              | 3 15   | -0 48  | -0.02  |
| 210             | 0.00 | 0.01 | -0.00           | 0.01              | 2 77   | 0 96   | -0.03  |
| 240             | 0.00 | 0.01 | -0.01           | 0.00              | 1.71   | 2 01   | -0.02  |
| 270             | 0.01 | 0.00 | -0.01           | 0.00              | 0.28   | 2 39   | -0.01  |
| 300             | 0.01 | 0.00 | -0.01           | -0 00             | -1 16  | 2 01   | 0.00   |
| 330             | 0.01 | 0.00 | -0.00           | -0.01             | -2.21  | 0.96   | 0.01   |

| Valmont                                                     | Job 565090                                     | Page 45 of 72          |
|-------------------------------------------------------------|------------------------------------------------|------------------------|
| 1545 Pidco Dr                                               | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date 07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                          | Designed by<br>JL      |

|                 |      |      | OB light - Elevat | ion 146 - From Leg | A      |                  |        |
|-----------------|------|------|-------------------|--------------------|--------|------------------|--------|
| Wind<br>Azimuth | Fu   | F,   | V.                | $\nu_{z}$          | OTM,   | OTM <sub>=</sub> | Torque |
| 0.              | K    | A'   | K                 | K                  | kip-fi | kip-ft           | kip-ft |
| 0               | 0.00 | 0.00 | 0.00              | -0.00              | -0.83  | 0.00             | 0.00   |
| 30              | 0.00 | 0.00 | 0.00              | -0 00              | -0.78  | -0 16            | -0.01  |
| 60              | 0.00 | 0.00 | 0.00              | -0 00              | -0 67  | -0 28            | -0.02  |
| 90              | 0.00 | 0.00 | 0.00              | 0.00               | -0.51  | -0 32            | -0.02  |
| 120             | 0.00 | 0.00 | 0.00              | 0 00               | -0 35  | -0 28            | -0.02  |
| 150             | 0.00 | 0.00 | 0.00              | 0.00               | -0 23  | -0 16            | -0.01  |
| 180             | 0.00 | 0.00 | 0.00              | 0 00               | -0 19  | 0 00             | 0.00   |
| 210             | 0.00 | 0.00 | -0.00             | 0.00               | -0 23  | 0 16             | 0.01   |
| 240             | 0.00 | 0.00 | -0.00             | 0 00               | -0.35  | 0.28             | 0.02   |
| 270             | 0.00 | 0.00 | -0.00             | 0 00               | -0.51  | 0 32             | 0.02   |
| 300             | 0.00 | 0.00 | -0.00             | -0 00              | -0.67  | 0 28             | 0.02   |
| 330             | 0.00 | 0.00 | -0.00             | -0 00              | -0.78  | 0.16             | 0.01   |

| 21.8            | N-1  |         | OB light - Elevat | ion 146 - From Leg | B                |                  |        |
|-----------------|------|---------|-------------------|--------------------|------------------|------------------|--------|
| Wind<br>Azimuth | Fa   | $F_{i}$ | V <sub>x</sub>    | V.                 | OTM <sub>x</sub> | OTM <sub>2</sub> | Torque |
| 0               | K    | K       | K                 | K                  | kip-ft           | kip-ft           | kip-ft |
| 0               | 0.00 | 0.00    | 0.00              | -0.00              | -0 07            | -0 44            | 0.02   |
| 30              | 0.00 | 0.00    | 0.00              | -0.00              | -0.02            | -0 60            | 0.02   |
| 60              | 0.00 | 0.00    | 0.00              | -0.00              | 0.09             | -0.72            | 0.02   |
| 90              | 0.00 | 0.00    | 0.00              | 0.00               | 0.25             | -0.76            | 0.01   |
| 120             | 0.00 | 0.00    | 0.00              | 0.00               | 0 41             | -0 72            | 0.00   |
| 150             | 0.00 | 0.00    | 0.00              | 0.00               | 0.53             | -0 60            | -0 01  |
| 180             | 0.00 | 0.00    | 0.00              | 0.00               | 0.57             | -0.44            | -0.02  |
| 210             | 0.00 | 0.00    | -0.00             | 0.00               | 0.53             | -0 28            | -0.02  |
| 240             | 0.00 | 0.00    | -0.00             | 0.00               | 0 41             | -0.16            | -0 02  |
| 270             | 0.00 | 0.00    | -0.00             | 0.00               | 0 25             | -0.12            | -0 01  |
| 300             | 0.00 | 0.00    | -0.00             | -0.00              | 0 09             | -0.16            | 0.00   |
| 330             | 0.00 | 0.00    | -0.00             | -0.00              | -0 02            | -0 28            | 0.01   |

|                 |      |                | OB light - Elevat | ion 146 - From Leg | C                |        |        |
|-----------------|------|----------------|-------------------|--------------------|------------------|--------|--------|
| Wind<br>Azimuth | Fa   | F <sub>1</sub> | ν,                | V <sub>z</sub>     | OTM <sub>x</sub> | OTM:   | Torque |
| 9               | K    | K              | K                 | K                  | kip-fi           | kip-fi | kip-ft |
| 0               | 0.00 | 0.00           | 0.00              | -0.00              | -0.07            | 0.44   | -0.02  |
| 30              | 0.00 | 0.00           | 0.00              | -0.00              | -0.02            | 0.28   | -0.01  |
| 60              | 0.00 | 0.00           | 0.00              | -0.00              | 0.09             | 0 16   | 0.00   |
| 90              | 0.00 | 0.00           | 0 00              | 0.00               | 0.25             | 0 12   | 0.01   |
| 120             | 0.00 | 0.00           | 0.00              | 0.00               | 0 41             | 0.16   | 0.02   |
| 150             | 0.00 | 0.00           | 0.00              | 0.00               | 0.53             | 0 28   | 0.02   |
| 180             | 0.00 | 0.00           | 0.00              | 0.00               | 0.57             | 0.44   | 0.02   |
| 210             | 0.00 | 0.00           | -0.00             | 0.00               | 0.53             | 0 60   | 0.01   |
| 240             | 0.00 | 0.00           | -0.00             | 0.00               | 0.41             | 0 72   | 0.00   |
| 270             | 0.00 | 0.00           | -0.00             | 0.00               | 0.25             | 0 76   | -0 01  |
| 300             | 0.00 | 0.00           | -0.00             | -0 00              | 0.09             | 0.72   | -0.02  |
| 330             | 0.00 | 0.00           | -0.00             | -0.00              | -0.02            | 0.60   | -0 02  |

| Wind    | F <sub>a</sub> | F <sub>a</sub> | 0 sq m. (277.8 sq ft.<br>V. | P <sub>2</sub> | OTM.               | OTM;            | Torque |
|---------|----------------|----------------|-----------------------------|----------------|--------------------|-----------------|--------|
| Azimuth | K              | К              | K                           | K              | kip-ft             | kip-fi          | kıp-fi |
| 0<br>30 | 1.63<br>1.63   | 0.00           | 0.00<br>0.82                | -1 63<br>-1.42 | -465 93<br>-403 51 | 0.00<br>-232 97 | 0.0    |

| Valmont                                                      | Job     | 565090                                 | Page 46 of 72             |
|--------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pideo Dr                                                | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by               |

| Wind<br>Azımuth | $F_{o}$ | F,   | V <sub>x</sub> | $V_z$ | OTM <sub>r</sub> | OTM-    | Torque |
|-----------------|---------|------|----------------|-------|------------------|---------|--------|
| o o             | K       | K    | K              | K     | kip-fi           | kip-ft  | kip-ft |
| 60              | 1 63    | 0.00 | 1.42           | -0.82 | -232 97          | -403 51 | 0.00   |
| 90              | 1.63    | 0.00 | 1.63           | 0.00  | 0.00             | -465.93 | 0.00   |
| 120             | 1 63    | 0.00 | 1.42           | 0.82  | 232 97           | -403 51 | 0.00   |
| 150             | 1.63    | 0.00 | 0.82           | 1.42  | 403 51           | -232.97 | 0.00   |
| 180             | 1.63    | 0.00 | 0.00           | 1.63  | 465 93           | 0.00    | 0.00   |
| 210             | 1.63    | 0.00 | -0.82          | 1.42  | 403 51           | 232 97  | 0.00   |
| 240             | 1.63    | 0.00 | -1.42          | 0.82  | 232 97           | 403.51  | 0.00   |
| 270             | 1.63    | 0.00 | -1.63          | 0.00  | 0.00             | 465 93  | 0.00   |
| 300             | 1.63    | 0.00 | -1.42          | -0.82 | -232 97          | 403 51  | 0.00   |
| 330             | 1.63    | 0.00 | -0.82          | -1.42 | -403 51          | 232 97  | 0.00   |

|                 |      | 30,00 | 0 sq.in. (208.3 sq.ft. | EPA) - Elevation 27. | 5 - None C       |         |        |
|-----------------|------|-------|------------------------|----------------------|------------------|---------|--------|
| Wind<br>Azimuth | Fu   | F.    | V.                     | V <sub>2</sub>       | OTM <sub>x</sub> | OTM:    | Torque |
| 0               | K    | K     | K                      | K                    | kip-ft           | kip-fi  | kip-fi |
| 0               | 1.00 | 0.00  | 0.00                   | -1.00                | -273 83          | 0.00    | 0.00   |
| 30              | 1.00 | 0.00  | 0.50                   | -0.86                | -237 14          | -136.91 | 0.00   |
| 60              | 1.00 | 0.00  | 0.86                   | -0.50                | -136 91          | -237 14 | 0.00   |
| 90              | 1.00 | 0.00  | 1.00                   | 0.00                 | 0.00             | -273 83 | 0.00   |
| 120             | 1.00 | 0.00  | 0.86                   | 0.50                 | 136.91           | -237 14 | 0.00   |
| 150             | 1.00 | 0.00  | 0.50                   | 0.86                 | 237.14           | -136 91 | 0.00   |
| 180             | 1.00 | 0.00  | 0.00                   | 1.00                 | 273.83           | 0.00    | 0.00   |
| 210             | 1.00 | 0.00  | -0 50                  | 0.86                 | 237.14           | 136 91  | 0.00   |
| 240             | 1.00 | 0.00  | -0 86                  | 0.50                 | 136.91           | 237 14  | 0.00   |
| 270             | 1.00 | 0.00  | -1.00                  | 0.00                 | 0.00             | 273 83  | 0.00   |
| 300             | 1.00 | 0.00  | -0.86                  | -0.50                | -136.91          | 237 14  | 0.00   |
| 330             | 1.00 | 0.00  | -0.50                  | -0.86                | -237.14          | 136 91  | 0.00   |

|                 |      | 30,00 | 0 sq.m. (208,3 sq.ft ) | EPA) - Elevation 26 | 5 - None B |         |        |
|-----------------|------|-------|------------------------|---------------------|------------|---------|--------|
| Wind<br>Azimuth | Fa   | F,    | $V_{\epsilon}$         | V.                  | OTM,       | OTM:    | Torque |
| ٥               | K    | K     | K                      | K                   | kip-ft     | kip-ft  | kip-fi |
| 0               | 0.99 | 0.00  | 0.00                   | -0.99               | -261 29    | 0.00    | 0.00   |
| 30              | 0 99 | 0.00  | 0.49                   | -0.85               | -226 28    | -130 64 | 0.00   |
| 60              | 0 99 | 0.00  | 0.85                   | -0.49               | -130 64    | -226 28 | 0.00   |
| 90              | 0 99 | 0.00  | 0.99                   | 0.00                | 0.00       | -261 29 | 0.00   |
| 120             | 0.99 | 0.00  | 0.85                   | 0.49                | 130.64     | -226 28 | 0.00   |
| 150             | 0.99 | 0.00  | 0.49                   | 0.85                | 226 28     | -130.64 | 0.00   |
| 180             | 0.99 | 0.00  | 0.00                   | 0.99                | 261 29     | 0 00    | 0.00   |
| 210             | 0.99 | 0.00  | -0.49                  | 0.85                | 226.28     | 130.64  | 0.00   |
| 240             | 0 99 | 0 00  | -0 85                  | 0 49                | 130.64     | 226.28  | 0.00   |
| 270             | 0 99 | 0.00  | -0 99                  | 0.00                | 0.00       | 261.29  | 0.00   |
| 300             | 0.99 | 0.00  | -0 85                  | -0.49               | -130.64    | 226.28  | 0.00   |
| 330             | 0.99 | 0.00  | -0 49                  | -0.85               | -226 28    | 130.64  | 0.00   |

| Wind<br>Azimuth | $F_a$ | F,   | Vx    | $V_{z}$ | OTM,   | OTM:   | Torque |
|-----------------|-------|------|-------|---------|--------|--------|--------|
| a               | K     | K    | K     | K       | kip-ft | kip-ft | kip-ft |
| 0               | 0.01  | 0.01 | -0:00 | -0 01   | -2.80  | 1.37   | -0.06  |
| 30              | 0.01  | 0.01 | 0.01  | -0.01   | -2.27  | -0 34  | -0 03  |
| 60              | 0.01  | 0.00 | 0.01  | -0 01   | -0.94  | -1.62  | 0.00   |
| 90              | 0.01  | 0.01 | 0.01  | 0.00    | 0.84   | -2 13  | 0.03   |
| 120             | 0.01  | 0.01 | 10.0  | 0.01    | 2.58   | -1 74  | 0.06   |

| Valmont                                                     | Job     | 565090                                 | Page 47 of 72          |
|-------------------------------------------------------------|---------|----------------------------------------|------------------------|
| 1545 Pidco Dr                                               | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date 07:03:40 10/06/22 |
| Plymouth IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by<br>JL      |

| Wind<br>Azimuth | $F_o$ | F <sub>3</sub> | ν,    | V <sub>2</sub> | OTM,   | OTM:   | Torque |
|-----------------|-------|----------------|-------|----------------|--------|--------|--------|
| 0               | K     | K              | K     | K              | kip-ft | kıp-ft | kip-fi |
| 150             | 0.00  | 0.01           | 0.01  | 0.01           | 3.83   | -0.54  | 0.07   |
| 180             | 0.01  | 0.01           | 0.00  | 0.01           | 4 24   | 1.13   | 0.06   |
| 210             | 0.01  | 0.01           | -0.01 | 0.01           | 3.71   | 2.84   | 0 03   |
| 240             | 0.01  | 0.00           | -0.01 | 0.01           | 2.38   | 4 12   | 0.00   |
| 270             | 0.01  | 0.01           | -0.01 | -0.00          | 061    | 4.64   | -0 03  |
| 300             | 0.01  | 0.01           | -0.01 | -0.01          | -1 14  | 4.24   | -0.06  |
| 330             | 0.00  | 0.01           | -0.01 | -0.01          | -2 38  | 3.05   | -0 07  |

|                 |      | 2-   | 1 2"x 7" Sch. 40 - El | evotion 240 - From | Face B           |        |        |
|-----------------|------|------|-----------------------|--------------------|------------------|--------|--------|
| Wind<br>Azimuth | Fa   | F,   | ν,                    | V <sub>2</sub>     | OTM <sub>r</sub> | OTM:   | Torque |
| 0               | K    | K    | K                     | K                  | kip-ft           | kip-ft | kip-fi |
| 0               | 0.01 | 0.01 | 0.00                  | -0.01              | -2 60            | -0 29  | 0.02   |
| 30              | 0.01 | 0.01 | 0.01                  | -0.01              | -2 27            | -1.51  | 0.01   |
| 60              | 0.01 | 0.00 | 0.01                  | -0.01              | -1 38            | -2 40  | 0.00   |
| 90              | 0.01 | 0.01 | 10.0                  | 0.00               | -0.17            | -2 72  | -0.01  |
| 120             | 0.01 | 0.01 | 0.01                  | 0.01               | 1.05             | -2 40  | -0.02  |
| 150             | 0.00 | 0.01 | 0.01                  | 0.01               | 1.94             | -1.51  | -0.02  |
| 180             | 0.01 | 0.01 | 0.00                  | 0.01               | 2.27             | -0.29  | -0.02  |
| 210             | 0.01 | 0.01 | -0.01                 | 0.01               | 1.94             | 0.93   | -0.01  |
| 240             | 0.01 | 0 00 | -0.01                 | 0.01               | 1.05             | 1 82   | 0.00   |
| 270             | 0.01 | 0.01 | -0.01                 | 0.00               | -0.17            | 2 14   | 0.01   |
| 300             | 0.01 | 0.01 | -0 01                 | -0 01              | -1.38            | 1 82   | 0.02   |
| 330             | 0 00 | 0.01 | -0.01                 | -0 01              | -2.27            | 0.93   | 0.02   |

|                 | -     | 2-   | 1 2" x 7' Seh. 40 - Et | evation 240 - From | Face C           |        |        |
|-----------------|-------|------|------------------------|--------------------|------------------|--------|--------|
| Wind<br>Azımuth | Fo    | F,   | ν,                     | ν-                 | OTM <sub>x</sub> | OTM:   | Torque |
| 0               | K     | K    | Α-                     | K                  | kip-ft           | kip-ft | kip-ft |
| 0               | 0.01  | 0.00 | 0.00                   | -0.01              | -2.10            | 0.00   | 0.00   |
| 30              | 0.01  | 0.01 | 0.01                   | -0.01              | -1.77            | -1.22  | 0.01   |
| 60              | 0.01  | 0.01 | 0.01                   | -0.01              | -0 88            | -2 11  | 0.02   |
| 90              | 0.00  | 0 01 | 0.01                   | 0.00               | 0.33             | -2.43  | 0.02   |
| 120             | 0 0 1 | 0.01 | 0.01                   | 0.01               | 1 55             | -2.11  | 0.02   |
| 150             | 0.01  | 0.01 | 0.01                   | 0.01               | 2 44             | -1.22  | 0.01   |
| 180             | 0.01  | 0.00 | 0.00                   | 0.01               | 2.77             | 0.00   | 0.00   |
| 210             | 0.01  | 0.01 | -0.01                  | 0.01               | 2 44             | 1.22   | -0.01  |
| 240             | 0.01  | 0.01 | -0.01                  | 0.01               | 1.55             | 2 11   | -0.02  |
| 270             | 0.00  | 0.01 | -0.01                  | 0.00               | 0.33             | 2.43   | -0 02  |
| 300             | 0.01  | 0.01 | -0.01                  | -0.01              | -0 88            | 2 11   | -0.02  |
| 330             | 0.01  | 0.01 | -0 01                  | -0.01              | -1 77            | 1 22   | -0.01  |

## Discrete Appurtenance Totals - With Ice

| Wind<br>Azımuth | V <sub>x</sub> K | V.    | OTM,<br>kip-ft | OTM <sub>t</sub> kip-fi | Torque<br>kip-ft |
|-----------------|------------------|-------|----------------|-------------------------|------------------|
| 0               | -0 00            | -3 68 | -1015 95       | 0.93                    | -0.05            |
| 30              | 1 84             | -3 19 | -879.60        | -507 67                 | -0.00            |
| 60              | 3 19             | -1 84 | -507 19        | -880 03                 | 0.04             |
| 90              | 3 68             | 0 00  | 1 48           | -1016.36                | 0 08             |
| 120             | 3.19             | 1 84  | 510.11         | -880 14                 | 0.09             |

| Valmont                                                      | Job     | 565090                                 | Page 48 of 72             |
|--------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr.                                               | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by               |

| Wind<br>Azimuth | V <sub>x</sub> | V <sub>i</sub> | OTM,<br>kip-ft | OTM <sub>2</sub><br>kip-ft | Torque<br>kip-ft |
|-----------------|----------------|----------------|----------------|----------------------------|------------------|
| 150             | 1.84           | 3 19           | 882.43         | -507.88                    | 0.08             |
| 180             | 0.00           | 3 68           | 1018 67        | 0.69                       | 0.05             |
| 210             | -1 84          | 3 19           | 882.31         | 509 30                     | 0.00             |
| 240             | -3 19          | 1 84           | 509.91         | 881.65                     | -0 04            |
| 270             | -3 68          | -0 00          | 1 24           | 1017.98                    | -0 08            |
| 300             | -3 19          | -1 84          | -507.40        | 881.77                     | -0.09            |
| 330             | -1 84          | -3.19          | -879.72        | 509 50                     | -0.08            |

#### Discrete Appurtenance Pressures - Service $G_H = 0.850$

| Description                        | Aiming<br>Azimuth          | Weight        | Offset, | Offset: | z .    | K.    | q.  | C <sub>1</sub> A <sub>1</sub><br>Front | C <sub>A</sub> A <sub>U</sub><br>Side |
|------------------------------------|----------------------------|---------------|---------|---------|--------|-------|-----|----------------------------------------|---------------------------------------|
|                                    | 0                          | K             | ft      | ft      | fi     |       | psf | fi <sup>2</sup>                        | ſť                                    |
| 5/8" x 10' lightning rod           | 240.0000                   | 0.02          | -2 50   | 1.44    | 295 00 | 1 589 | 12  | 0.63                                   | 0 63                                  |
| Beacon                             | 120.0000                   | 0 07          | 2.50    | 1.44    | 291 00 | 1 585 | 12  | 2 40                                   | 2.40                                  |
| OB light                           | 0 0000                     | 0 03          | 0 00    | -9.53   | 146 00 | 1 371 | -11 | 0.50                                   | 0.50                                  |
| OB light                           | 120 0000                   | 0.03          | 8 25    | 4.76    | 146 00 | 1 371 | 111 | 0 50                                   | 0.50                                  |
| OB light                           | 240 0000                   | 0 03          | -8 25   | 4 76    | 146 00 | 1 371 | 111 | 0.50                                   | 0.50                                  |
| 40,000 sq in (277 8 sq ft EPA)     | 0 0000                     | 4 50          | 0.00    | 0.00    | 285 00 | 1 578 | 12  | 277 80                                 | 277.80                                |
| 30,000 sq in (208 3 sq ft EPA)     | 0 0000                     | 4 10          | 0.00    | 0.00    | 275 00 | 1 566 | 12  | 208 30                                 | 208.30                                |
| 30,000 sq.in (208 3 sq.ft<br>EPA)  | 0 0000                     | 4.10          | 0.00    | 0.00    | 265 00 | 1 554 | 12  | 208 30                                 | 208.30                                |
| SPI R5 (Includes<br>4.5"x72" Pipe) | 240 0000                   | 0 14          | -3 93   | 2.27    | 240.00 | 1 522 | 12  | 2 85                                   | 3.15                                  |
| 2-1/2" x 7' Sch 40                 | 60 0000                    | 0.04          | 1 75    | -1 01   | 240.00 | 1 522 | 12  | 2.01                                   | 2.01                                  |
| 2-1/2" x 7' Sch 40                 | 180 0000<br>Sum<br>Weight: | 0.04<br>13.10 | 0 00    | 2 02    | 240 00 | 1 522 | 12  | 2.01                                   | 201                                   |

## Discrete Appurtenance Vectors - Service

|                 |      | 5.8" | x 10' lightning rod | Flevation 295 Fra | ım Leg C         |        |        |
|-----------------|------|------|---------------------|-------------------|------------------|--------|--------|
| Wind<br>Azımuth | Fa   | F,   | Ve                  | ν.                | OTM <sub>e</sub> | OTM;   | Torque |
| 0               | K    | K    | K                   | K                 | kip-ft           | kip-fi | kip-ft |
| 0               | 0.00 | 0.01 | 0.00                | -0.01             | -1.92            | 0.06   | -0.0   |
| 30              | 0.01 | 0.00 | 0.00                | -0 01             | -1 66            | -0 92  | -00    |
| 60              | 0.01 | 0.00 | 0.01                | -0 00             | -0.94            | -1 63  | 0.00   |
| 90              | 0.01 | 0.00 | 0.01                | 0 00              | 0.03             | -1.89  | 0.0    |
| 120             | 0 00 | 0.01 | 0.01                | 0 00              | 1.01             | -1.63  | 0.03   |
| 150             | 0.00 | 0.01 | 0.00                | 0.01              | 1.72             | -0 92  | 0.02   |
| 180             | 0 00 | 0.01 | 0.00                | 0.01              | 1.98             | 0.06   | 0.02   |
| 210             | 0.01 | 0.00 | -0 00               | 0.01              | 1 72             | 1 03   | 0.01   |
| 240             | 0.01 | 0.00 | -0.01               | 0.00              | 101              | 1 75   | 0.00   |
| 270             | 0.01 | 0.00 | -0.01               | 0.00              | 0.03             | 2.01   | -0.0   |
| 300             | 0.00 | 0.01 | -0 01               | -0.00             | -0 94            | 1 75   | -0.02  |
| 330             | 0.00 | 0.01 | -0.00               | -0.01             | -1.66            | 1 03   | -0 02  |

Beacon - Elevation 291 - From Leg E

| Valmont                                                    | doL     | 565090                                 | Page 49 of 72             |
|------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr.                                             | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by               |

| Wind<br>Azimuth | Fu   | F,   | $\nu_*$ | $V_s$ | OTM.   | OTM <sub>z</sub> | Torque |
|-----------------|------|------|---------|-------|--------|------------------|--------|
| 0               | K    | K    | K       | K     | kip-fi | kip-ft           | kip-ft |
| 0               | 0.01 | 0.02 | 0.00    | -0 03 | -7.26  | -0 18            | 0.00   |
| 30              | 0.00 | 0.03 | 0.01    | -0 02 | -6.28  | -3.87            | 0.0    |
| 60              | 0.01 | 0.02 | 0.02    | -0.01 | -3.58  | -6.56            | 0.00   |
| 90              | 0 02 | 0.01 | 0.03    | 0 00  | 0.11   | -7 55            | 0.04   |
| 120             | 0.03 | 0.00 | 0.02    | 0.01  | 3.79   | -6 56            | 0.00   |
| 150             | 0.02 | 0.01 | 0.01    | 0.02  | 6.49   | -3.87            | -0.0   |
| 180             | 001  | 0 02 | 0.00    | 0 03  | 7 48   | -0.18            | -0.00  |
| 210             | 0.00 | 0 03 | -0.01   | 0 02  | 6.49   | 3 50             | -0.0   |
| 240             | 0.01 | 0.02 | -0.02   | 0.01  | 3 79   | 6.20             | -0.0   |
| 270             | 0 02 | 0.01 | -0.03   | 0.00  | 0.11   | 719              | -0.0   |
| 300             | 0 03 | 0.00 | -0.02   | -0.01 | -3 58  | 6 20             | 0.0    |
| 330             | 0.02 | 0.01 | -0.01   | -0.02 | -6.28  | 3.50             | 0.0    |

|                 |      |      | OB light - Elevat | ion 146 - From Leg. | Ä      |        |        |
|-----------------|------|------|-------------------|---------------------|--------|--------|--------|
| Wind<br>Azimuth | Fa   | F,   | V                 | V2                  | OTM,   | OTM:   | Torque |
| 0               | K    | K    | A.                | K                   | kip-ft | kip-fi | kip-ft |
| 0               | 0 00 | 0.00 | 0.00              | -0.00               | -0 95  | 0.00   | 0.00   |
| 30              | 0 00 | 0.00 | 0.00              | -0.00               | -0 86  | -0 33  | -0 02  |
| 60              | 0.00 | 0.00 | 0.00              | -0.00               | -0.62  | -0.58  | -0 04  |
| 90              | 0.00 | 0.00 | 0.00              | 0.00                | -0 29  | -0 67  | -0 04  |
| 120             | 0.00 | 0.00 | 0.00              | 0.00                | 0.05   | -0 58  | -0 04  |
| 150             | 0.00 | 0.00 | 0.00              | 0.00                | 0 29   | -0.33  | -0 02  |
| 180             | 0.00 | 0.00 | 0.00              | 0.00                | 0.38   | 0.00   | 0.00   |
| 210             | 0.00 | 0.00 | -0 00             | 0.00                | 0.29   | 0 33   | 0.02   |
| 240             | 0.00 | 0.00 | -0 00             | 0.00                | 0.05   | 0.58   | 0.04   |
| 270             | 0.00 | 0.00 | -0.00             | 0.00                | -0 29  | 0.67   | 0.04   |
| 300             | 0.00 | 0.00 | -0 00             | -0.00               | -0 62  | 0.58   | 0.04   |
| 330             | 0.00 | 0.00 | -0.00             | -0.00               | -0.86  | 0.33   | 0.02   |

|                 |      |      | OB light - Elevat | ion 146 - From Leg | В                |        |        |
|-----------------|------|------|-------------------|--------------------|------------------|--------|--------|
| Wind<br>Azimuth | Fa   | F,   | $V_x$             | V.                 | OTM <sub>x</sub> | OTM;   | Torque |
| 6               | K    | K    | K                 | K                  | kip-fi           | kip-ft | kip-ft |
| 0               | 0.00 | 0.00 | 0.00              | -0.00              | -0.52            | -0 25  | 0.0    |
| 30              | 0.00 | 0.00 | 0.00              | -0.00              | -0.43            | -0.58  | 0.0    |
| 60              | 0.00 | 0.00 | 0.00              | -0 00              | -0.19            | -0 82  | 0.0    |
| 90              | 0.00 | 0.00 | 0.00              | 0.00               | 0.14             | -0 91  | 0.0    |
| 120             | 0.00 | 0.00 | 0.00              | 0.00               | 0.48             | -0 82  | 0.0    |
| 150             | 0.00 | 0.00 | 0.00              | 0 00               | 0.72             | -0.58  | -00    |
| 180             | 0.00 | 0.00 | 0.00              | 0 00               | 0.81             | -0.25  | -0 0   |
| 210             | 0.00 | 0.00 | -0.00             | 0.00               | 0.72             | 0.09   | -00    |
| 240             | 0.00 | 0.00 | -0.00             | 0 00               | 0.48             | 0 33   | -00    |
| 270             | 0.00 | 0.00 | -0.00             | 0.00               | 0.14             | 0.42   | -00    |
| 300             | 0.00 | 0.00 | -0.00             | -0.00              | -0.19            | 0.33   | 0.0    |
| 330             | 0.00 | 0.00 | -0.00             | -0.00              | -0 43            | 0 09   | 0.0    |

| Wind<br>Azimuth | F <sub>a</sub> | F,   | V <sub>x</sub> K | V:    | OTM <sub>s</sub> | OTM:<br>kip-fi | Torque<br>kıp-fi |
|-----------------|----------------|------|------------------|-------|------------------|----------------|------------------|
| 0               | 0.00           | 0.00 | 0 00             | -0 00 | -0.52            | 0.25           | -00              |
| 30              | 0.00           | 0.00 | 0.00             | -0.00 | -0 43            | -0 09          | -0.0             |
| 60              | 0.00           | 0.00 | 0.00             | -0.00 | -0 19            | -0 33          | 0.0              |
| 90              | 0 00           | 0.00 | 0.00             | 0.00  | 0.14             | -0.42          | 0.03             |

| Valmont                                                     | Јо <b>ь</b><br>565090                          | Page 50 of 72             |
|-------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1545 Pidco Dr                                               | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX. (574)-936-6458 | Client VB BTS II, LLC                          | Designed by<br>JL         |

|                 |      |      | ()B light - Eleval | ion 146 - From Leg | (      |        |        |
|-----------------|------|------|--------------------|--------------------|--------|--------|--------|
| Wind<br>Azimuth | Fa   | F,   | $V_{\tau}$         | $V_{\tau}$         | OTM,   | OTM:   | Torque |
| 0               | K    | K    | K                  | K                  | kip-ft | kip-ft | kip-fi |
| 120             | 0.00 | 0.00 | 0.00               | 0.00               | 0.48   | -0 33  | 0 04   |
| 150             | 0 00 | 0.00 | 0.00               | 0.00               | 0.72   | -0 09  | 0.04   |
| 180             | 0 00 | 0.00 | 0.00               | 0.00               | 0.81   | 0.25   | 0 04   |
| 210             | 0.00 | 0 00 | -0 00              | 0 00               | 0.72   | 0.58   | 0 02   |
| 240             | 0.00 | 0.00 | -0.00              | 0.00               | 0 48   | 0 82   | 0 00   |
| 270             | 0 00 | 0 00 | -0.00              | 0 00               | 0 14   | 0 91   | -0 02  |
| 300             | 0.00 | 0 00 | -0.00              | -0 00              | -0 19  | 0 82   | -0.04  |
| 330             | 0.00 | 0.00 | -0.00              | -0 00              | -0 43  | 0.58   | -0 04  |

| Wind<br>Azimuth | Fu   | F,   | $V_{\mathfrak{r}}$ | V.    | OTM <sub>t</sub> | OTM:    | Torque |
|-----------------|------|------|--------------------|-------|------------------|---------|--------|
| o o             | K    | K    | K                  | K     | kip-fi           | kip-fi  | kip-ft |
| 0               | 2.92 | 0.00 | 0.00               | -2.92 | -831 80          | 0.00    | 0.0    |
| 30              | 2.92 | 0.00 | 1.46               | -2 53 | -720 36          | -415 90 | 0.0    |
| 60              | 2.92 | 0.00 | 2.53               | -1.46 | -415 90          | -720 36 | 0.0    |
| 90              | 2.92 | 0.00 | 2.92               | 0.00  | 0.00             | -831 80 | 0.0    |
| 120             | 2 92 | 0.00 | 2 53               | 1.46  | 415 90           | -720 36 | 0.0    |
| 150             | 2.92 | 0.00 | 1 46               | 2 53  | 720 36           | -415 90 | 0.0    |
| 180             | 2.92 | 0.00 | 0.00               | 2 92  | 831.80           | 0 00    | 0.0    |
| 210             | 2 92 | 0.00 | -1 46              | 2.53  | 720.36           | 415.90  | 0.0    |
| 240             | 2 92 | 0.00 | -2 53              | 1 46  | 415.90           | 720 36  | 0.0    |
| 270             | 2.92 | 0.00 | -2.92              | 0.00  | 0.00             | 831 80  | 0.0    |
| 300             | 2 92 | 0.00 | -2 53              | -1.46 | -415.90          | 720.36  | 0.0    |
| 330             | 2 92 | 0.00 | -1 46              | -2 53 | -720 36          | 415.90  | 0.0    |

| Wind<br>Azimuth | Fu   | F.   | Ve    | V <sub>z</sub> | OTM <sub>x</sub> | OTM:    | Torque |
|-----------------|------|------|-------|----------------|------------------|---------|--------|
| 0               | K    | K    | K     | K              | kip-fi           | kip-ft  | kip-fi |
| 0               | 1.78 | 0.00 | 0.00  | -1.78          | -489.79          | 0.00    | 0.00   |
| 30              | 1.78 | 0.00 | 0.89  | -1.54          | -424.17          | -244 90 | 0.00   |
| 60              | 1.78 | 0.00 | 1 54  | -0 89          | -244 90          | -424 17 | 0.00   |
| 90              | 1.78 | 0 00 | 1 78  | 0.00           | 0.00             | -489 79 | 0.00   |
| 120             | 1 78 | 0.00 | 1.54  | 0.89           | 244 90           | -424.17 | 0.00   |
| 150             | 1.78 | 0.00 | 0.89  | 1 54           | 424 17           | -244 90 | 0.00   |
| 180             | 1 78 | 0.00 | 0.00  | 1 78           | 489 79           | 0.00    | 0.00   |
| 210             | 1.78 | 0.00 | -0 89 | 1.54           | 424 17           | 244 90  | 0.00   |
| 240             | 1 78 | 0.00 | -1.54 | 0.89           | 244.90           | 424 17  | 0.00   |
| 270             | 1.78 | 0 00 | -1 78 | 0 00           | 0.00             | 489 79  | 0.00   |
| 300             | 1.78 | 0 00 | -1.54 | -0.89          | -244 90          | 424 17  | 0.00   |
| 330             | 1.78 | 0.00 | -0 89 | -1.54          | -424 17          | 244 90  | 0.00   |

|         |           | 30,00 | 0 sq.m. (208.3 sq.ft. | EPA) - Elevanon 26 | 5 - None B |         |        |
|---------|-----------|-------|-----------------------|--------------------|------------|---------|--------|
| Wind    | $F_{\mu}$ | F,    | V <sub>k</sub>        | V.,                | OTM.       | OTM:    | Torque |
| Azimuth | K         | K     | K                     | K                  | kip-fi     | kip-ft  | kip-ft |
| 0       | 1.77      | 0.00  | 0.00                  | -1 77              | -468.31    | 0.00    | 0.0    |
| 30      | 177       | 0.00  | 0.88                  | -1 53              | -405.57    | -234 16 | 0.0    |
| 60      | 177       | 0.00  | 1.53                  | -0 88              | -234.16    | -405 57 | 0.     |
| 90      | 1 77      | 0.00  | 1.77                  | 0.00               | 0.00       | -468.31 | 0.     |
| 120     | 1 77      | 0.00  | 1.53                  | 0 88               | 234 16     | -405 57 | 0.     |
| 150     | 177       | 0.00  | 0.88                  | 1.53               | 405 57     | -234 16 | 0.     |
| 180     | 1 77      | 0.00  | 0.00                  | 1.77               | 468 31     | 0.00    | 0.     |

| Valmont                                                      | Job     | 565090                                 | Page 51 of 72             |
|--------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr.                                               | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by               |

| Wind<br>Azimuth | F <sub>a</sub><br>K | F,<br>K | V <sub>x</sub> | V <sub>2</sub> | OTM <sub>x</sub> | OTM:<br>kip-ft | Torque<br>kip-fi |
|-----------------|---------------------|---------|----------------|----------------|------------------|----------------|------------------|
| 210             | 1.77                | 0.00    | -0.88          | 1.53           | 405 57           | 234 16         | 0.00             |
| 240             | 1.77                | 0.00    | -1.53          | 0.88           | 234 16           | 405.57         | 0.00             |
| 270             | 1.77                | 0.00    | -1.77          | 0.00           | 0.00             | 468.31         | 0.00             |
| 300             | 1 77                | 0 00    | -1 53          | -0.88          | -234 16          | 405 57         | 0.00             |
| 330             | 1.77                | 0.00    | -0.88          | ~1.53          | -405 57          | 234.16         | 0.00             |

| Wind    | E I  | 7     | Includes 4.5"x72" P | 1     | OTM,    | OTM    | Towner |
|---------|------|-------|---------------------|-------|---------|--------|--------|
| Wind    | Fa   | $F_s$ | $\nu_{\star}$       | 1/2   | O'I M's | OTM:   | Torque |
| Azimuth | K    | К     | K                   | K     | kip-ft  | kip-ft | kip-fi |
| 0       | 0.01 | 0 03  | -0.00               | -0.03 | -7.17   | 0.85   | -0.13  |
| 30      | 0.03 | 0 02  | 0.01                | -0.03 | -6 01   | -2.74  | -0.07  |
| 60      | 0.03 | 0 00  | 0.03                | -0.01 | -3 15   | -5 46  | 0.00   |
| 90      | 0.03 | 0.02  | 0.03                | 0.00  | 0.63    | -6.57  | 0.07   |
| 120     | 0.01 | 0.03  | 0.03                | 0.02  | 4 32    | -5 78  | 0 13   |
| 150     | 0.00 | 0.03  | 0.02                | 0.03  | 6.95    | -3.29  | 0 14   |
| 180     | 0.01 | 0.03  | 0.00                | 0.03  | 7 79    | 0.22   | 0 13   |
| 210     | 0.03 | 0.02  | -0.01               | 0.03  | 6 6 3   | 3.82   | 0 07   |
| 240     | 0.03 | 0.00  | -0 03               | 0.01  | 3.78    | 6.54   | 0 00   |
| 270     | 0.03 | 0.02  | -0.03               | -0.00 | -0 00   | 7 65   | -0.07  |
| 300     | 0.01 | 0.03  | -0 03               | -0.02 | -3.70   | 6.86   | -0 13  |
| 330     | 0.00 | 0.03  | -0 02               | -0.03 | -6.32   | 4.37   | -0 14  |

|                 |                | 2-    | 1 2"x 7' Sch. 40 - FI | evation 240 - From | Face B           |        |                  |
|-----------------|----------------|-------|-----------------------|--------------------|------------------|--------|------------------|
| Wind<br>Azimuth | F <sub>u</sub> | F. F. | Ve                    | V <sub>=</sub>     | OTM <sub>e</sub> | OTM:   | Torque<br>kıp-fi |
| 0               | K              | K     | K                     | K                  | kip-fi           | kip-ft |                  |
| 0               | 0.01           | 0.02  | 0.00                  | -0.02              | -4.94            | -0 07  | 0 04             |
| 30              | 0 02           | 0.01  | 0.01                  | -0 02              | -4.28            | -2 52  | 0.02             |
| 60              | 0 02           | 0.00  | 0.02                  | -0.01              | -2.49            | -4.31  | 0.00             |
| 90              | 0 02           | 0.01  | 0.02                  | 0.00               | -0.04            | -4 97  | -0.02            |
| 120             | 0.01           | 0.02  | 0.02                  | 0.01               | 2.41             | -4.31  | -0.04            |
| 150             | 0 00           | 0 02  | 0.01                  | 0.02               | 4 20             | -2.52  | -0.04            |
| 180             | 0.01           | 0.02  | 0.00                  | 0.02               | 4.85             | -0 07  | -0.04            |
| 210             | 0.02           | 0.01  | -0.01                 | 0.02               | 4.20             | 2 38   | -0.02            |
| 240             | 0.02           | 0.00  | -0.02                 | 0.01               | 2.41             | 4.17   | 0.00             |
| 270             | 0.02           | 0.01  | -0.02                 | 0.00               | -0.04            | 4 82   | 0.02             |
| 300             | 0.01           | 0.02  | -0.02                 | -0.01              | -2.49            | 4.17   | 0.04             |
| 330             | 0.00           | 0.02  | -0.01                 | -0.02              | -4.28            | 2.38   | 0.04             |

|                 |      | 2-   | 1 2" x 7' Sch. 40 - El | evation 240 - From . | Face C           |        |        |  |
|-----------------|------|------|------------------------|----------------------|------------------|--------|--------|--|
| Wind<br>Azimuth | Fa   | F,   | V.                     | $\nu_{\cdot}$        | OTM <sub>x</sub> | OTM:   | Torque |  |
| 0               | K    | K    | K                      | K                    | kip-fi           | kip-ft | kip-ft |  |
| 0               | 0.02 | 0.00 | 0.00                   | -0.02                | -4 81            | 0.00   | 0.00   |  |
| 30              | 0.02 | 0.01 | 0.01                   | -0 02                | -4 16            | -2 45  | 0.02   |  |
| 60              | 0.01 | 0.02 | 0.02                   | -0.01                | -2 37            | -4.24  | 0.04   |  |
| 90              | 0.00 | 0.02 | 0.02                   | 0.00                 | 0 08             | -4.89  | 0.04   |  |
| 120             | 0.01 | 0.02 | 0.02                   | 0.01                 | 2 53             | -4 24  | 0.04   |  |
| 150             | 0 02 | 0.01 | 0.01                   | 0.02                 | 4.32             | -2.45  | 0.02   |  |
| 180             | 0.02 | 0.00 | 0.00                   | 0.02                 | 4.98             | 0.00   | 0.00   |  |
| 210             | 0.02 | 0.01 | -0.01                  | 0 02                 | 4 32             | 2 45   | -0.02  |  |
| 240             | 0.01 | 0.02 | -0.02                  | 0.01                 | 2.53             | 4.24   | -0 04  |  |
| 270             | 0 00 | 0.02 | -0.02                  | 0 00                 | 0.08             | 4.89   | -0 04  |  |

| Valmont                                                    | Јов<br>565090                                  | Page 52 of 72             |
|------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1545 Pidco Dr                                              | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX (574)-936-6458 | Client VB BTS II, LLC                          | Designed by JL            |

|                 |                | 2-   | 1 2" x 7" Sch. 40 - Ei | levation 240 - From | Face C |        |        |
|-----------------|----------------|------|------------------------|---------------------|--------|--------|--------|
| Wind<br>Azimuth | F <sub>u</sub> | F.   | V.                     | V <sub>2</sub>      | OTM,   | OTM.   | Torque |
| 0               | K              | K    | K                      | K                   | kip-ft | kip-ft | kip-fi |
| 300             | 0.01           | 0.02 | -0.02                  | -0 01               | -2 37  | 4 24   | -0 04  |
| 330             | 0.02           | 0.01 | -0.01                  | -0.02               | -4.16  | 2.45   | -0.02  |

## Discrete Appurtenance Totals - Service

| Wind<br>Azimuth | $V_{\tau}$ | V <sub>2</sub> | OTM <sub>e</sub> | OTM <sub>2</sub> | Torque |
|-----------------|------------|----------------|------------------|------------------|--------|
| 0               | K          | K              | kip-fl           | kip-fi           | kip-ft |
| 0               | -0.00      | -6 58          | -1818 00         | 0 66             | -0 04  |
| 30              | 3.29       | -5.70          | -1574 21         | -908 44          | 0 03   |
| 60              | 5.70       | -3.29          | -908 48          | -1574 04         | 0.10   |
| 90              | 6.58       | 0.00           | 0.81             | -1817.78         | 0 14   |
| 120             | 5.70       | 3 29           | 910.01           | -1574.35         | 0.14   |
| 150             | 3.29       | 5.70           | 1575.50          | -908.99          | 0.11   |
| 180             | 0.00       | 6.58           | 1818 98          | 0.03             | 0.04   |
| 210             | -3.29      | 5 70           | 1575 19          | 909 13           | -0 03  |
| 240             | -5 70      | 3 29           | 909.46           | 1574.72          | -0 10  |
| 270             | -6.58      | -0.00          | 0 17             | 1818.46          | -0.14  |
| 300             | -5 70      | -3 29          | -909 03          | 1575 04          | -0 14  |
| 330             | -3 29      | -5.70          | -1574 52         | 909 68           | -0 1   |

#### Dish Pressures - No Ice

| Elevation | Dish        | Aiming                    | Weight       | Offset, | Offset: | К.    | A,i             | q <sub>T</sub> |
|-----------|-------------|---------------------------|--------------|---------|---------|-------|-----------------|----------------|
| ft        | Description | Azimuth                   | K            | ft      | ft      |       | fi <sup>2</sup> | psf            |
| 240.00    | 6' НР       | 240 0000<br>Sum<br>Weight | 0 30<br>0 30 | -4.37   | 2 52    | 1.522 | 28 27           | 37             |

### Dish Vectors - No Ice

|                 | - 0       |           |           | 6' HP -        | Elevation 2 | 40 - From Le | g C   |                | lan a   |                |                  |
|-----------------|-----------|-----------|-----------|----------------|-------------|--------------|-------|----------------|---------|----------------|------------------|
| Wind<br>Azimuth | Cr        | ('3       | Cs Cu     | F <sub>4</sub> | Fs          | Fu           | Vt    | T <sub>2</sub> | OTM.    | OTM:<br>kip-ft | Inrque<br>kip fi |
|                 |           |           |           |                | K           | kip-fi       | K     | K              | kip-fi  |                |                  |
| 0               | 0.002420  | -0.000940 | 0.000022  | 0.85           | -0.33       | 0.05         | 0.57  | -0.71          | -168.90 | -134.96        | -161             |
| 30              | 0.003100  | -0.000600 | 0 000133  | 1 08           | -0.21       | 0.28         | 0.83  | -0 72          | -172.71 | -198 57        | -0.78            |
| 60              | 0.003230  | 0.000000  | 0.000000  | 1.13           | 0.00        | 0.00         | 0 98  | -0.56          | -134 61 | -233 15        | 0.00             |
| 90              | 0.003100  | 0.000600  | -0.000133 | 1 08           | 0.21        | -0.28        | 1 04  | -0 36          | -85.61  | -248.86        | 0.78             |
| 120             | 0.002420  | 0.000940  | -0.000022 | 0 85           | 0.33        | -0.05        | 0 90  | -0 14          | -32 43  | -213 75        | 1.61             |
| 150             | -0.000280 | 0.001600  | 0 000251  | -0 10          | 0.56        | 0.53         | 0 19  | 0.53           | 128.63  | -45 42         | 3.34             |
| 180             | -0.001820 | 0.001120  | 0.000266  | -0.64          | 0.39        | 0.56         | -0 35 | 0.66           | 158 33  | 86.48          | 2.53             |
| 210             | -0.002450 | 0.000450  | 0.000158  | -0.86          | 0.16        | 0.33         | -0.66 | 0.56           | 136 10  | 160.29         | 1 12             |
| 240             | -0.002600 | 0.000000  | 0.000000  | -0.91          | 0.00        | 0.00         | -0.79 | 0.45           | 109.72  | 190.04         | 0.00             |
| 270             | -0.002450 | -0,000450 | -0 000158 | -0 86          | -0.16       | -0.33        | -0 82 | 0.29           | 70.77   | 198.01         | -1.12            |
| 300             | -0.001820 | -0.001120 | -0.000266 | -0.64          | -0.39       | -0.56        | -0.75 | -0.02          | -4.27   | 180.36         | -2.53            |
| 330             | -0.000280 | -0.001600 | -0.000251 | -0.10          | -0.56       | -0.53        | -0.36 | -0.44          | -103,65 | 88.69          | -3.34            |

| Valmont                                                      | Job 565090                               | Page 53 of 72          |
|--------------------------------------------------------------|------------------------------------------|------------------------|
| 1545 Pidco Dr                                                | Project<br>H-31 x290' SST - US-KY-5135 F | Date 07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                    | Designed by JL         |

### Dish Totals - No Ice

| Wind<br>Azimuth | $V_{\rm v}$ | ν,    | OTM,    | OTM,    | Torque |  |
|-----------------|-------------|-------|---------|---------|--------|--|
| •               | K           | K     | kip-ft  | kip-ft  | kip-fi |  |
| 0               | 0.57        | -0.71 | -168 90 | -134 96 | -1.61  |  |
| 30              | 0.83        | -0.72 | -172 71 | -198 57 | -0.78  |  |
| 60              | 0 98        | -0.56 | -134.61 | -233 15 | 0.00   |  |
| 90              | 1.04        | -0.36 | -85 61  | -248 86 | 0.78   |  |
| 120             | 0.90        | -0.14 | -32 43  | -213 75 | 1.61   |  |
| 150             | 0.19        | 0.53  | 128 63  | -45.42  | 3.34   |  |
| 180             | -0 35       | 0 66  | 158 33  | 86.48   | 2.53   |  |
| 210             | -0.66       | 0.56  | 136 10  | 160.29  | 1.12   |  |
| 240             | -0.79       | 0.45  | 109 72  | 190.04  | 0.00   |  |
| 270             | -0.82       | 0.29  | 70.77   | 198.01  | -1:12  |  |
| 300             | -0 75       | -0.02 | -4 27   | 180.36  | -2.53  |  |
| 330             | -0.36       | -0 44 | -103 65 | 88 69   | -3.34  |  |

#### Dish Pressures - With Ice

| Elevation   | Dish        | Aiming                     | Weight       | Offset. | Offset: | K <sub>∓</sub> | A <sub>A</sub>  | q:  | t <sub>s</sub> |
|-------------|-------------|----------------------------|--------------|---------|---------|----------------|-----------------|-----|----------------|
| ft          | Description | Azimuth                    | K            | ft      | ft      |                | ft <sup>2</sup> | psf | in             |
| 240.00 6' I | {P          | 240 0000<br>Sum<br>Weight: | 1.37<br>1.37 | -4.37   | 2.52    | 1.522          | 32.13           | 3   | 2 4389         |

#### Dish Vectors - With Ice

|                 |           |           |           | 6' HP -           | Elevation 2 | 10 - From Les | 3 C   |                |        |                  |        |
|-----------------|-----------|-----------|-----------|-------------------|-------------|---------------|-------|----------------|--------|------------------|--------|
| Wind<br>Azimuth | Ca        | Cs        | Cu        | $F_{\mathcal{A}}$ | Fs          | FM            | ν,    | V <sub>z</sub> | OTM:   | OTM <sub>2</sub> | Torque |
| 0               |           |           |           | K                 | K           | kip-fi        | K     | K              | kip-fi | kip-fi           | kip-ft |
| 0               | 0.002420  | -0.000940 | 0.000022  | 0.08              | -0.03       | 0.00          | 0.05  | -0.06          | -11.98 | -6.41            | -0.15  |
| 30              | 0.003100  | -0.000600 | 0.000133  | 0.10              | -0.02       | 0.03          | 0.08  | -0.07          | -12.33 | -12 20           | -0.07  |
| 60              | 0.003230  | 0.000000  | 0.000000  | 0.10              | 0.00        | 0.00          | 0.09  | -0.05          | -8.86  | -15 35           | 0.00   |
| 90              | 0.003100  | 0.000600  | -0.000133 | 0.10              | 0.02        | -0.03         | 0.09  | -0.03          | -4.40  | -16.78           | 0.03   |
| 120             | 0.002420  | 0.000940  | -0.000022 | 0.08              | 0.03        | -0.00         | 0.08  | -0.01          | 0.44   | -13.59           | 0.15   |
| 150             | -0.000280 | 0.001600  | 0.000251  | -0.01             | 0.05        | 0.05          | 0.02  | 0.05           | 15 10  | 1.74             | 0.30   |
| 180             | -0.001820 | 0.001120  | 0.000266  | -0.06             | 0.04        | 0.05          | -0.03 | 0.06           | 17 81  | 13.75            | 0.23   |
| 210             | -0.002450 | 0.000450  | 0.000158  | -0.08             | 0.01        | 0.03          | -0.06 | 0.05           | 15 78  | 20.47            | 0.10   |
| 240             | -0.002600 | 0.000000  | 0.000000  | -0.08             | 0.00        | 0.00          | -0.07 | 0.04           | 13 38  | 23.18            | 0.00   |
| 270             | -0 002450 | -0.000450 | -0.000158 | -0.08             | -0.01       | -0.03         | -0.07 | 0.03           | 9.84   | 23.90            | -0.10  |
| 300             | -0.001820 | -0.001120 | -0.000266 | -0.06             | -0.04       | -0.05         | -0.07 | -0.00          | 3.00   | 22.30            | -0.23  |
| 330             | -0.000280 | -0.001600 | -0.000251 | -0.01             | -0.05       | -0.05         | -0.03 | -0.04          | -6.04  | 13.95            | -0.30  |

#### Dish Totals - With Ice

| Wind<br>Azimuth | V <sub>r</sub> | V <sub>a</sub><br>K | OTM <sub>v</sub> | OTM <sub>2</sub> | Torque<br>kip-ft |
|-----------------|----------------|---------------------|------------------|------------------|------------------|
| 0               | 0.05           | -0.06               | -11.98           | -6 41            | -0.15            |
| 30              | 0.08           | -0.07               | -12 33           | -12.20           | -0.07            |

| Valmont                                                     | Job     | 565090                                 | Page 54 of 72             |
|-------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr                                               | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by               |

| Wind<br>Azimuth | $V_{\epsilon}$ | $V_{z}$ | OTM,   | OTM <sub>e</sub> | Torque |  |
|-----------------|----------------|---------|--------|------------------|--------|--|
| 0               | K              | K       | kıp-ft | kıp-fi           | kip-ft |  |
| 60              | 0.09           | -0.05   | -8 86  | -15.35           | 0.00   |  |
| 90              | 0 09           | -0 03   | -4 40  | -16 78           | 0 07   |  |
| 120             | 0.08           | -0.01   | 0.44   | -13 59           | 0 15   |  |
| 150             | 0.02           | 0.05    | 15.10  | 1.74             | 0.30   |  |
| 180             | -0.03          | 0 06    | 17.81  | 13.75            | 0.23   |  |
| 210             | -0 06          | 0.05    | 15.78  | 20.47            | 0.10   |  |
| 240             | -0.07          | 0.04    | 13 38  | 23 18            | 0.00   |  |
| 270             | -0 07          | 0.03    | 9 84   | 23.90            | -0.10  |  |
| 300             | -0 07          | -0.00   | 3 00   | 22 30            | -0 23  |  |
| 330             | -0.03          | -0.04   | -6.04  | 13.95            | -0.30  |  |

#### Dish Pressures - Service

| Elevation | Dish        | Ainung                    | Weight       | Offset, | Offset- | Κ.    | A <sub>1</sub>  | q:  |
|-----------|-------------|---------------------------|--------------|---------|---------|-------|-----------------|-----|
| ft        | Description | Azımuth                   | K            | fi      | ft      |       | ft <sup>2</sup> | psf |
| 240 00    | 6' HP       | 240 0000<br>Sum<br>Weight | 0 30<br>0 30 | -4.37   | 2.52    | 1 522 | 28.27           | 12  |

### Dish Vectors - Service

|                 |           |           |           | 6' HP - | Elevation 2 | 40 - From Ley | g('   |       |        |        |        |
|-----------------|-----------|-----------|-----------|---------|-------------|---------------|-------|-------|--------|--------|--------|
| Wind<br>Azimuth | Cit       | Cs        | Csy       | $F_A$   | Fs          | $F_M$         | ν.    | Va    | OTM,   | OTM.   | Torque |
| ٥               |           |           |           | K       | K           | kip-ji        | K 1   | K     | kip-fi | kip-fi | kip-ft |
| 0               | 0.002420  | -0.000940 | 0.000022  | 0.27    | -0.11       | 0.01          | 0.18  | -0.23 | -53.60 | -42 35 | -0.52  |
| 30              | 0.003100  | -0.000600 | 0.000133  | 0.35    | -0.07       | 0.09          | 0.27  | -0.23 | -54 82 | -62 73 | -0.25  |
| 60              | 0.003230  | 0.000000  | 0.000000  | 0.36    | 0.00        | 0.00          | 0.31  | -0 18 | 42 61  | -73.81 | 0.00   |
| 90              | 0.003100  | 0.000600  | -0.000133 | 0.35    | 0.07        | -0.09         | 0.33  | -0.12 | -26.91 | -78.84 | 0.25   |
| 120             | 0.002420  | 0.000940  | -0.000022 | 0.27    | 0.11        | -0.01         | 0.29  | -0.04 | -9.88  | -67 59 | 0.52   |
| 150             | -0.000280 | 0.001600  | 0.000251  | -0.03   | 0.18        | 0.17          | 0.06  | 0.17  | 41 73  | -13.66 | 1.07   |
| 180             | -0.001820 | 0.001120  | 0.000266  | -0.20   | 0.13        | 0.18          | -0.11 | 0.21  | 51 24  | 28 60  | 0.81   |
| 210             | -0.002450 | 0.000450  | 0.000158  | -0.27   | 0.05        | 0.11          | -0.21 | 0 18  | 44.12  | 52 25  | 0.36   |
| 240             | -0 002600 | 0.000000  | 0.000000  | -0.29   | 0.00        | 0.00          | -0.25 | 0.15  | 35 67  | 61.78  | 0.00   |
| 270             | -0.002450 | -0.000450 | -0.000158 | -0.27   | -0.05       | -0.11         | -0.26 | 0.09  | 23 19  | 64 33  | -0.36  |
| 300             | -0.001820 | -0.001120 | -0.000266 | -0.20   | -0.13       | -0.18         | -0.24 | -0.01 | -0.85  | 58 68  | -0.81  |
| 330             | -0.000280 | -0,001600 | -0.000251 | -0.03   | -0.18       | -0.17         | -0.12 | -0 14 | -32.70 | 29.31  | -1.07  |

### Dish Totals - Service

| Wind<br>Azimuth | $V_{\epsilon}$ | V <sub>z</sub> | OTM,   | OTM <sub>z</sub> | Torque |
|-----------------|----------------|----------------|--------|------------------|--------|
| 0               | K              | K              | kip-ft | kip-ft           | kip-ft |
| 0               | 0.18           | -0.23          | -53.60 | -42.35           | -0.52  |
| 30              | 0.27           | -0.23          | -54.82 | -62.73           | -0.25  |
| 60              | 0.31           | -0.18          | -42.61 | -73.81           | 0.00   |
| 90              | 0.33           | -0.12          | -26.91 | -78.84           | 0.25   |
| 120             | 0.29           | -0.04          | -9.88  | -67.59           | 0.52   |
| 150             | 0.06           | 0.17           | 41.73  | -13.66           | 1.07   |
| 180             | -0.11          | 0.21           | 51.24  | 28 60            | 0.81   |
| 210             | -0.21          | 0.18           | 44.12  | 52.25            | 0.36   |

| Valmont                                                      | Job     | 565090                                 | Page 55 of 72             |
|--------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr.                                               | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by               |

| Wind<br>Azimuth | V <sub>x</sub> K | V:<br>K | OTM,<br>kip-fi | OTM <sub>s</sub><br>kip-ft | Torque<br>kip-st |
|-----------------|------------------|---------|----------------|----------------------------|------------------|
| 240             | -0.25            | 0.15    | 35.67          | 61 78                      | 0.00             |
| 270             | -0.26            | 0.09    | 23.19          | 64 33                      | -0.36            |
| 300             | -0.24            | -0.01   | -0.85          | 58 68                      | -0.81            |
| 330             | -0.12            | -0.14   | -32 70         | 29 31                      | -1.07            |

### Force Totals

| Load<br>Case                                 | Vertical<br>Forces | Sum of<br>Forces<br>X | Sum of<br>Forces<br>Z                   | Sum of<br>Overturning<br>Moments, M <sub>x</sub> | Sum of<br>Overturning<br>Moments, M <sub>2</sub> | Sum of Torques |
|----------------------------------------------|--------------------|-----------------------|-----------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------|
|                                              | K                  | K                     | K                                       | kip-ft                                           | kip-fi                                           | kip-ft         |
| Leg Weight                                   | 35.35              |                       |                                         |                                                  |                                                  |                |
| Bracing Weight                               | 16.33              |                       |                                         | 0.72                                             | 12.50                                            |                |
| Total Member Self-Weight                     | 51.68              | - 535                 |                                         | 9.72<br>9.72                                     | 13.59<br>13.59                                   |                |
| Total Weight                                 | 75.02              | 0.56                  | -70.72                                  | -12810.45                                        | -121.70                                          |                |
| Wind 0 deg - No Ice                          |                    | 34.77                 | -59.52                                  | -12810.45                                        | -6364 50                                         |                |
| Wind 30 deg - No Ice                         |                    | 58.98                 | -34.05                                  | -6230.83                                         | -10795 36                                        | 0.50           |
| Wind 60 deg - No Ice<br>Wind 90 deg - No Ice | A                  | 68.58                 | -0.36                                   | -75.66                                           | -10793 38                                        |                |
| Wind 120 deg - No Ice                        | 1                  | 61 23                 | 34.70                                   | 6254 98                                          | -11074.09                                        |                |
|                                              |                    | 33 90                 | 58.91                                   | 10779.44                                         | -6177.21                                         |                |
| Wind 150 deg - No Ice                        | 3                  | -0.35                 | 67.72                                   |                                                  | 97.77                                            | 1 VET VIET     |
| Wind 180 deg - No Ice                        |                    | -34 60                |                                         | 12420 74                                         |                                                  | 1,000,000      |
| Wind 210 deg - No Ice                        |                    | -61.34                | 59.36                                   | 10848.02<br>6422.41                              | 6350 78                                          |                |
| Wind 240 deg - No Ice                        |                    | -68.36                | 35.42<br>0.29                           | 78 75                                            | 11120.69<br>12473.09                             |                |
| Wind 270 deg - No Ice                        |                    |                       | E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | -6075 21                                         |                                                  |                |
| Wind 300 deg - No Ice                        |                    | -58.52<br>-34.07      | -33.38                                  |                                                  | 10721 37<br>6245 04                              |                |
| Wind 330 deg - No Ice                        | 114.85             | -34.07                | -58.81                                  | -10736 53                                        | 6243.04                                          | -45.06         |
| Member Ice                                   |                    |                       |                                         | 42.17                                            | 88.70                                            |                |
| Total Weight Ice                             | 266.31             | 0.05                  | 11.40                                   | 43 17                                            |                                                  |                |
| Wind 0 deg - Ice                             | 10                 | 0.05                  | -11 40<br>-9 79                         | -2086 69                                         | 76.41<br>-978.81                                 | -1 72          |
| Wind 30 deg - Ice                            |                    | 5.69                  |                                         | -1790 32                                         |                                                  |                |
| Wind 60 deg - Ice                            |                    | 9.78                  | -5.65                                   | -1014.63                                         | -1743.45                                         |                |
| Wind 90 deg - Ice                            |                    | 11.30                 | -0.03                                   | 35 43                                            | -2026.63                                         |                |
| Wind 120 deg - Ice                           |                    | 9.88                  | 5 64                                    | 1094 33                                          | -1756.53                                         |                |
| Wind 150 deg - Ice                           |                    | 5.60                  | 9.72                                    | 1866 24                                          | -961.38                                          |                |
| Wind 180 deg - Ice                           |                    | -0.03                 | 11 21                                   | 2147 56                                          | 96.34                                            |                |
| Wind 210 deg - Ice                           |                    | -5.68                 | 9 78                                    | 1873 19                                          | 1152 49                                          |                |
| Wind 240 deg - Ice                           | 1                  | -9.93                 | 5.73                                    | 1110.75                                          | 1937.81                                          | -1.13          |
| Wind 270 deg - Ice                           |                    | -11.28                | 0.03                                    | 49 43                                            | 2199.17                                          |                |
| Wind 300 deg - Ice                           |                    | -9.70                 | -5 56                                   | -999 27                                          | 1909.54                                          |                |
| Wind 330 deg - Ice                           | 77.00              | -5.62                 | -9.71                                   | -1777.76                                         | 1142.48                                          |                |
| Total Weight                                 | 75.02              | 0.10                  | 22.50                                   | 9.72                                             | 13.59                                            |                |
| Wind 0 deg - Service                         |                    | 0 18                  | -22 79                                  | -4138 92                                         | -41.69                                           | [ (300)101)    |
| Wind 30 deg - Service                        |                    | 11.21                 | -19 18                                  | -3511 78                                         | -2058.18                                         |                |
| Wind 60 deg - Service                        |                    | 19 01                 | -10.98                                  | -2014 52                                         | -3489.75                                         |                |
| Wind 90 deg - Service                        |                    | 22 11                 | -0 11                                   | -26 11                                           | -4040.09                                         |                |
| Wind 120 deg - Service                       |                    | 19 73                 | 11 18                                   | 2018 52                                          | -3579.06                                         |                |
| Wind 150 deg - Service                       |                    | 10.93                 | 18 99                                   | 3480 08                                          | -1998.17                                         |                |
| Wind 180 deg - Service                       |                    | -0 11                 | 21 83                                   | 4010 32                                          | 28.63                                            |                |
| Wind 210 deg - Service                       | V                  | -11.15                | 19 13                                   | 3502.05                                          | 2048.38                                          |                |
| Wind 240 deg - Service                       |                    | -19.77                | 11.41                                   | 2072.16                                          | 3588.58                                          |                |
| Wind 270 deg - Service                       |                    | -22 03                | 0 09                                    | 23 36                                            | 4026.26                                          | 1.000          |
| Wind 300 deg - Service                       | 1                  | -18.86                | -10.76                                  | -1964.66                                         | 3460.64                                          |                |
| Wind 330 deg - Service                       |                    | -10.98                | -18.96                                  | -3470.07                                         | 2014.50                                          | -14.44         |

| Valmont                                                     | Job        | 565090                                 | Page 56 of 72             |
|-------------------------------------------------------------|------------|----------------------------------------|---------------------------|
| 1545 Pidco Dr                                               | Project  - | I-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client     | VB BTS II, LLC                         | Designed by               |

# **Load Combinations**

| Comb | Description                                                            |  |
|------|------------------------------------------------------------------------|--|
| No.  | D:-10-1-                                                               |  |
| 1 2  | Dead Only                                                              |  |
| 2    | 1.2 Dead+1.0 Wind 0 deg - No Ice                                       |  |
| 3    | 0 9 Dead+1 0 Wind 0 deg - No Ice                                       |  |
| 4    | 1.2 Dead+1.0 Wind 30 deg - No Ice                                      |  |
|      | 0 9 Dead+1 0 Wind 30 deg - No Ice                                      |  |
| 6    | 1.2 Dead+1.0 Wind 60 deg - No Ice                                      |  |
|      | 0 9 Dead+1 0 Wind 60 deg - No Ice                                      |  |
| 8    | 1.2 Dead+1.0 Wind 90 deg - No Ice<br>0.9 Dead+1.0 Wind 90 deg - No Ice |  |
| 10   | 1.2 Dead+1.0 Wind 120 deg - No Ice                                     |  |
| 11   | 0 9 Dead+1 0 Wind 120 deg - No Ice                                     |  |
| 12   | 1 2 Dead+1 0 Wind 150 deg - No ice                                     |  |
| 13   | 0.9 Dead+1.0 Wind 150 deg - No Ice                                     |  |
| 14   | 12 Dead+1 0 Wind 180 deg - No Ice                                      |  |
| 15   | 0 9 Dead+1 0 Wind 180 deg - No Ice                                     |  |
| 16   | 1 2 Dead+1 0 Wind 210 deg - No Ice                                     |  |
| 17   | 0.9 Dead+1.0 Wind 210 deg = No Ice                                     |  |
| 18   | 1.2 Dead+1.0 Wind 240 deg - No Ice                                     |  |
| 19   | 0 9 Dead+1 0 Wind 240 deg - No Ice                                     |  |
| 20   | 1 2 Dead+1 0 Wind 270 deg - No Ice                                     |  |
| 21   | 0.9 Dead+1 0 Wind 270 deg - No Ice                                     |  |
| 22   | 1 2 Dead+1 0 Wind 300 deg - No Ice                                     |  |
| 23   | 0 9 Dead+1 0 Wind 300 deg - No Ice                                     |  |
| 24   | 1 2 Dead+1 0 Wind 330 deg - No Ice                                     |  |
| 25   | 0.9 Dead+1.0 Wind 330 deg - No Ice                                     |  |
| 26   | 1.2 Dead+1 0 Ice+1.0 Temp                                              |  |
| 27   | 1.2 Dead+1.0 Wind 0 deg+1.0 Ice+1.0 Temp                               |  |
| 28   | 1.2 Dead+1 0 Wind 30 deg+1 0 Ice+1 0 Temp                              |  |
| 29   | 1.2 Dead+1.0 Wind 60 deg+1.0 Ice+1.0 Temp                              |  |
| 30   | 1.2 Dead+1.0 Wind 90 deg+1.0 Ice+1.0 Temp                              |  |
| 31   | 1 2 Dead+1 0 Wind 120 deg+1 0 Ice+1 0 Temp                             |  |
| 32   | 1 2 Dead+1 0 Wind 150 deg+1.0 Ice+1 0 Temp                             |  |
| 33   | 1 2 Dead+1 0 Wind 180 deg+1 0 Ice+1 0 Temp                             |  |
| 34   | 1.2 Dead+1.0 Wind 210 deg+1.0 Ice+1.0 Temp                             |  |
| 35   | 1.2 Dead+1.0 Wind 240 deg+1.0 lce+1.0 Temp                             |  |
| 36   | 1.2 Dead+1.0 Wind 270 deg+1.0 Ice+1.0 Temp                             |  |
| 37   | 1 2 Dead+1 0 Wind 300 deg+1 0 Ice+1 0 Temp                             |  |
| 38   | 1 2 Dead+1 0 Wind 330 deg+1 0 Ice+1 0 Temp                             |  |
| 39   | Dead+Wind 0 deg - Service                                              |  |
| 40   | Dead+Wind 30 deg - Service                                             |  |
| 41   | Dead+Wind 60 deg - Service                                             |  |
| 42   | Dead+Wind 90 deg - Service                                             |  |
| 43   | Dead+Wind 120 deg - Service                                            |  |
| 44   | Dead+Wind 150 deg - Service                                            |  |
| 45   | Dead+Wind 180 deg - Service                                            |  |
| 46   | Dead+Wind 210 deg - Service                                            |  |
| 47   | Dead+Wind 240 deg - Service                                            |  |
| 48   | Dead+Wind 270 deg - Service                                            |  |
| 49   | Dead+Wind 300 deg - Service                                            |  |
| 50   | Dead+Wind 330 deg - Service                                            |  |

| Valmont                                                      | Јо <b>ь</b> 565090                             | Page 57 of 72          |
|--------------------------------------------------------------|------------------------------------------------|------------------------|
| 1545 Pideo Dr                                                | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date 07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                          | Designed by<br>JL      |

| lection<br>No. | Elevation<br>ft | Component<br>Type | Condition        | Gov.<br>Load<br>Comb. | Axıal<br>K | Major Axis<br>Moment<br>kip-fi | Minor Axis<br>Moment<br>kip-fi |
|----------------|-----------------|-------------------|------------------|-----------------------|------------|--------------------------------|--------------------------------|
| TI             | 290 - 280       | Leg               | Max Tension      | 15                    | 5.07       | 0.01                           | -0.31                          |
|                | 230 - 200       | Leg               | Max Compression  | 18                    | -7.59      | -0.28                          | 0 17                           |
|                |                 |                   | Max. Mx          | 20                    | -2 00      | -0.56                          | 0.02                           |
|                |                 |                   |                  |                       | -7 51      | -0 02                          | 0.58                           |
|                |                 |                   | Max. My          | 2                     |            |                                |                                |
|                |                 |                   | Max Vy           | 20                    | -3 05      | 0.26                           | -0 12                          |
|                |                 |                   | Max. Vx          | 2                     | -3.07      | -0.01                          | 0.34                           |
|                |                 | Diagonal          | Max Tension      | 20                    | 4 42       | 0.00                           | 0 00                           |
|                |                 |                   | Max Compression  | 8                     | -5.00      | 0.00                           | 0 00                           |
|                |                 |                   | Max Mx           | 14                    | -0 49      | -0.05                          | 0.00                           |
|                |                 |                   | Max My           | 20                    | -4.99      | -0.01                          | 0.02                           |
|                |                 |                   | Max Vy           | 38                    | -0 03      | 0.02                           | 0 00                           |
|                |                 |                   | Max Vx           | 20                    | 0.01       | 0.00                           | 0.00                           |
|                |                 | Top Gut           | Max Tension      | 22                    | 1.13       | 0.00                           | 0.00                           |
|                |                 | 2,00              | Max Compression  | 18                    | -1.34      | 0.00                           | 0.00                           |
|                |                 |                   | Max Mx           | 26                    | 0.07       | -0.08                          | 0 00                           |
|                |                 |                   | Max My           | 12                    | -0.23      | 0.00                           | 0.00                           |
|                |                 |                   | Max Vy           | 26                    | 0 07       | 0 00                           | 0 00                           |
|                |                 |                   | Max Vx           | 12                    | -0.00      | 0 00                           | 0.00                           |
| -              | 280 - 260       | 1.44              | Max Tension      | 15                    | 69 91      | -0 02                          | 0 60                           |
| 12             | 200 - 200       | Leg               |                  |                       |            |                                |                                |
|                |                 |                   | Max Compression  | 2                     | -78.36     | -0 11                          | 2.53                           |
|                |                 |                   | Max Mx           | 8                     | 32 64      | -2 50                          | 0 23                           |
|                |                 |                   | Max My           | 14                    | 39.07      | 0 04                           | -2.62                          |
|                |                 |                   | Max Vy           | 20                    | -1.90      | 1 92                           | -0 65                          |
|                |                 |                   | Max Vx           | 2                     | -2.00      | -0.03                          | 2.31                           |
|                |                 | Diagonal          | Max Tension      | 20                    | 1231       | 0.12                           | -0.01                          |
|                |                 |                   | Max Compression  | 8                     | -12 84     | 0.00                           | 0.00                           |
|                |                 |                   | Max. Mx          | 17                    | -5 10      | -0.14                          | -0.01                          |
|                |                 |                   | Max My           | 20                    | -9.54      | -0.06                          | 0.05                           |
|                |                 |                   | Max Vy           | 35                    | -0 05      | 0.08                           | -0.00                          |
|                |                 |                   | Max Vx           | 20                    | 0.01       | 0.00                           | 0.00                           |
| 3              | 260 - 240       | Leg               | Max Tension      | 15                    | 136 21     | -0.18                          | -0.02                          |
| 3              | 200 - 240       | LEE               |                  | 2                     | -148.35    | 2.47                           | -0.04                          |
|                |                 |                   | Max Compression  |                       |            |                                |                                |
|                |                 |                   | Max Mx           | 2                     | -107.69    | 3.52                           | 0.04                           |
|                |                 |                   | Max My           | 12                    | -6 30      | -0.00                          | -2 29                          |
|                |                 |                   | Max Vv           | 2                     | -0 80      | 3.52                           | 0.04                           |
|                |                 |                   | Max Vx           | 12                    | 0.50       | -0.00                          | -2.29                          |
|                |                 | Diagonal          | Max Tension      | 8                     | 7.60       | 0.04                           | -0 00                          |
|                |                 |                   | Max Compression  | 20                    | -8.44      | 0.00                           | 0.00                           |
|                |                 |                   | Max Mx           | 17                    | -4 16      | -0.07                          | 0.00                           |
|                |                 |                   | Max My           | 2                     | -8 26      | -0.04                          | 0.01                           |
|                |                 |                   | Max Vv           | 35                    | -0.04      | 0.04                           | -0 00                          |
|                |                 |                   | Max Vx           | 2                     | -0 00      | 0.00                           | 0.00                           |
| 14             | 240 - 220       | Leg               | Max Tension      | 15                    | 181 29     | -3 78                          | 0.00                           |
|                | 東下の 事業が         |                   | Max. Compression | 18                    | -197 25    | -5 73                          | 0 02                           |
|                |                 |                   |                  | 18                    | -197 25    | -5 73                          | 0.02                           |
|                |                 |                   | Max Mx<br>Max My |                       |            | -0 09                          | -2.87                          |
|                |                 |                   | Max My           | 4                     | -7 27      |                                |                                |
|                |                 |                   | Max Vy           | 18                    | 1 54       | 4 18                           | 0 02                           |
|                |                 | W-1112            | Max Vx           | 12                    | -0 57      | 0.12                           | -0.85                          |
|                |                 | Diagonal          | Max Tension      | 2                     | 7.77       | 0.00                           | 0.00                           |
|                |                 |                   | Max Compression  | 14                    | -7 72      | 0.00                           | 0.00                           |
|                |                 |                   | Max. Mx          | 16                    | 2.37       | 0.11                           | 0.00                           |
|                |                 |                   | Max My           | 14                    | -7.71      | -0.01                          | -0.04                          |
|                |                 |                   | Max. Vy          | 34                    | 0.05       | 0.05                           | -0.01                          |
|                |                 |                   | Max Vx           | 14                    | 0.01       | 0.00                           | 0.00                           |
| 15             | 220 - 200       | Leg               | Max Tension      | 15                    | 208 95     | -5 89                          | 0 17                           |
| 1.2            | 240 - 200       | 24.0              | Max Compression  | 18                    | -226 56    | 10.50                          | 0 18                           |
|                |                 |                   | Max Mx           |                       |            | 13.67                          | 0 15                           |
|                |                 |                   |                  | 18                    | -210 72    |                                |                                |
|                |                 |                   | Max My           | 12                    | -9 77      | 0.04                           | -11.58                         |
|                |                 |                   | Max Vy           | 18                    | -2 31      | 13.67                          | 0 15                           |
|                |                 | 120000            | Max Vx           | 12                    | 1.70       | 0.04                           | -11 58                         |
|                |                 | Diagonal          | Max Tension      | 14                    | 6 82       | 0.00                           | 0.00                           |

| Valmont                                                      | Job     | 565090                                 | Page 58 of 72             |
|--------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr                                                | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, 1N<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by               |

| Section<br>No. | Elevation<br>ft | Component<br>Type | Condition        | Gov.<br>Load | Axial<br>v | Major Axis<br>Moment | Minor Ax<br>Moment |
|----------------|-----------------|-------------------|------------------|--------------|------------|----------------------|--------------------|
|                |                 |                   |                  | Comb.        | K          | kip-ft               | kıp-fi             |
|                |                 |                   | Max. Compression | 2            | -7 89      | 0.00                 | 0 00               |
|                |                 |                   | Max Mx           | 35           | 101        | 0 10                 | -0.01              |
|                |                 |                   | Max My           | 27           | 0 20       | 0.07                 | 0 01               |
|                |                 |                   | Max Vy           | 33           | 0 06       | 0.09                 | 0.01               |
| -25            | . C. C. 122.2   | 0.44              | Max, Vx          | 35           | 0.00       | 0.00                 | 0.00               |
| T6             | 200 - 180       | Leg               | Max Tension      | 7            | 239.43     | -4.90                | 0.08               |
|                |                 |                   | Max Compression  | 18           | -261 49    | 9 22                 | 0.11               |
|                |                 |                   | Max Mx           | 18           | -245.76    | 10.62                | 0.12               |
|                |                 |                   | Max My           | 12           | -1191      | 0 00                 | -7 82              |
|                |                 |                   | Max Vy           | 2            | -0 90      | 10.62                | 0 30               |
|                |                 |                   | Max Vx           | 24           | -0 42      | 0.00                 | 7.82               |
|                |                 | Diagonal          | Max Tension      | 2            | 6.51       | 0 00                 | 0.00               |
|                |                 |                   | Max Compression  | 2            | -7 07      | 0 00                 | 0.00               |
|                |                 |                   | Max Mx           | 35           | 0.79       | 0.12                 | 0.02               |
|                |                 |                   | Max My           | 27           | 0.06       | 0.10                 | 0.02               |
|                |                 |                   | Max Vy           | 33           | 0.08       | 0.12                 | 0 02               |
|                |                 |                   | Max Vx           | 35           | 0.01       | 0 00                 | 0 00               |
| 17             | 180 - 160       | Leg               | Max Tension      | 7            | 266 90     | -4.68                | 0.05               |
|                |                 |                   | Max Compression  | 18           | -292 70    | 6.93                 | 0.06               |
|                |                 |                   | Max Mx           | 18           | -277.47    | 9 07                 | 0 10               |
|                |                 |                   | Max My           | 4            | -14.22     | -0 13                | -8.11              |
|                |                 |                   | Max Vy           | 2            | -0.61      | 9 06                 | 0.25               |
|                |                 |                   | Max Vx           | 24           | -0 42      | -0.17                | 8 09               |
|                |                 | Diagonal          | Max Tension      | 2            | 6.57       | 0 00                 | 0.00               |
|                |                 |                   | Max Compression  | 8            | -7.06      | 0.00                 | 0.00               |
|                |                 |                   | Max Mx           | 35           | 1.10       | 0.15                 | -0.02              |
|                |                 |                   | Max. My          | 27           | 0.12       | 0.13                 | 0.02               |
|                |                 |                   | Max Vy           | 33           | 0.09       | 0.15                 | 0 02               |
|                |                 |                   | Max. Vx          | 35           | 0.01       | 0.00                 | 0.00               |
| T8             | 160 - 140       | Leg               | Max Tension      | 7            | 293.09     | -5.70                | 0.06               |
|                |                 |                   | Max Compression  | 18           | -322 99    | 5.47                 | 0 26               |
|                |                 |                   | Max Mx           | 18           | -306 81    | 9 75                 | 0 04               |
|                |                 |                   | Max My           | 12           | -15.34     | -0.20                | -7.42              |
|                |                 |                   | Max Vy           | 2            | -0 74      | 9 73                 | 0.09               |
|                |                 |                   | Max Vx           | 24           | -0 69      | -0 20                | 7.42               |
|                |                 | Diagonal          | Max Tension      | 2            | 7.74       | 0.00                 | 0 00               |
|                |                 |                   | Max Compression  | 2            | -7 90      | 0.00                 | 0 00               |
|                |                 |                   | Max Mx           | 33           | 0.89       | 0 19                 | -0 03              |
|                |                 |                   | Max My           | 14           | -761       | 0.01                 | -0.03              |
|                |                 |                   | Max Vy           | 33           | 0.11       | 0 19                 | -0.03              |
|                |                 |                   | Max Vx           | 32           | -0 01      | 0.00                 | 0.00               |
| 79             | 140 - 120       | Leg               | Max Tension      | 7            | 308 42     | 0.42                 | 0.04               |
|                | 110 120         | 2.0               | Max Compression  | 18           | -339.90    | 13 72                | 0.30               |
|                |                 |                   | Max Mx           | 2            | -339 19    | 13.72                | 0.67               |
|                |                 |                   | Max My           | 12           | -16 80     | 011                  | -10.16             |
|                |                 |                   | Max Vy           | 3            | -0.96      | 13.68                | 0.67               |
|                |                 |                   | Max Vx           | 24           | -0 67      | 0.11                 | 10.16              |
|                |                 | Diagonal          | Max Tension      | 15           | 10 28      | 0.00                 | 0.00               |
|                |                 | 13 rafform        | Max Compression  | 2            | -11.77     | 0.00                 | 0.00               |
|                |                 |                   |                  |              |            | -0.45                | 0.08               |
|                |                 |                   | Max Mx           | 33           | 0.71       |                      |                    |
|                |                 |                   | Max My           | 33           | -1 97      | -0 42                | 0.09               |
|                |                 |                   | Max Vy           | 33           | -0.17      | -0 45                | -0.08              |
| TOLY           | 100 100         | F 400             | Max Vx           | 38           | -0.01      | 0.00                 | 0.00               |
| T10            | 120 - 100       | Leg               | Max Tension      | 7            | 334.87     | 0.84                 | 0 16               |
|                |                 |                   | Max Compression  | 18           | -371 60    | 12 31                | 031                |
|                |                 |                   | Max Mx           | 2            | -370 78    | 12 32                | 0.67               |
|                |                 |                   | Max My           | 12           | -19.39     | -0 01                | -8 18              |
|                |                 |                   | Max Vy           | 2            | -0 93      | 12 32                | 0.67               |
|                |                 | 22000             | Max Vx           | 24           | -0 36      | -0.01                | 8 18               |
|                |                 | Diagonal          | Max Tension      | 2            | 10 26      | 0.00                 | 0 00               |
|                |                 |                   | Max Compression  | 14           | -10.46     | 0.00                 | 0.00               |

| Valmont                                                      | Job       | 565090                                | Page 59 of 72             |
|--------------------------------------------------------------|-----------|---------------------------------------|---------------------------|
| 1545 Pidco Dr                                                | Project H | -31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Cilent    | VB BTS II, LLC                        | Designed by               |

| Section No. | Elevation<br>ft | Component<br>Type | Condition       | Gov.<br>Load | Axial   | Major Axis<br>Moment | Minor Axi.<br>Moment |
|-------------|-----------------|-------------------|-----------------|--------------|---------|----------------------|----------------------|
|             |                 |                   |                 | Comb         | K       | kip-fi               | kip-fi               |
|             |                 |                   | Max. Mx         | 33           | 1.20    | -0.53                | -0 08                |
|             |                 |                   | Max My          | 27           | -0 41   | -0 52                | -0.09                |
|             |                 |                   | Max Vy          | 33           | -0 19   | -0 53                | -0 08                |
|             |                 |                   | Max Vx          | 35           | -0.01   | 0.00                 | 0.00                 |
| TH          | 100 - 80        | Leg               | Max Tension     | 7            | 354.96  | -1.89                | 0.10                 |
|             |                 |                   | Max Compression | 18           | -396 17 | 11.15                | 0.23                 |
|             |                 |                   | Max. Mx         | 2            | -395 26 | 11.15                | 0.52                 |
|             |                 |                   | Max. My         | 12           | -20.92  | 0.11                 | -7.48                |
|             |                 |                   | Max Vy          | 3            | -0.71   | 11.11                | 0.52                 |
|             |                 |                   | Max Vx          | 24           | -0 53   | 0.11                 | 7.48                 |
|             |                 | Diagonal          | Max Tension     | 15           | 10.02   | 0.00                 | 0.00                 |
|             |                 |                   | Max Compression | 2            | -1149   | 0.00                 | 0 00                 |
|             |                 |                   | Max Mx          | 33           | 1 25    | -0.59                | -0.09                |
|             |                 |                   | Max. My         | 27           | -0.07   | -0 58                | -0.09                |
|             |                 |                   | Max. Vy         | 33           | -0.21   | -0.59                | -0.09                |
|             |                 |                   | Max Vx          | 27           | -0 01   | 0.00                 | 0 00                 |
| T12         | 80 - 60         | Leg               | Max Tension     | 7            | 377 92  | -0.09                | 011                  |
| 112         | 00 - 00         | Lieb              | Max Compression | 18           | -424.77 | 10.83                | 0 30                 |
|             |                 |                   | Max Mx          | 19           | -417.72 | 10.85                | 0.30                 |
|             |                 |                   | Max My          | 12           | -23 54  | -0.16                | -9 22                |
|             |                 |                   | Max Vy          | 6            | 0.79    | -10.59               | -0 29                |
|             |                 |                   | Max Vx          | 24           | -0.53   | -0.16                | 9 22                 |
|             |                 | Discount          |                 |              |         |                      | 0.00                 |
|             |                 | Diagonal          | Max Tension     | 2            | 10 31   | 0.00                 |                      |
|             |                 |                   | Max Compression | 4            | -10.51  | 0 00                 | 0 00                 |
|             |                 |                   | Max Mx          | 33           | 0.59    | -0.69                | -0 10                |
|             |                 |                   | Max My          | 27           | -0.96   | -0.68                | -0.11                |
|             |                 |                   | Max Vy          | 33           | -0.22   | -0.69                | -0 10                |
|             | 80 30           |                   | Max Vx          | 27           | -0 01   | 0 00                 | 0 00                 |
| T13         | 60 - 40         | Leg               | Max Tension     | 7            | 397 27  | -2.46                | 0.02                 |
|             |                 |                   | Max Compression | 18           | -449 05 | 11.05                | 0.19                 |
|             |                 |                   | Max Mx          | 18           | -449 05 | 11.05                | 0 19                 |
|             |                 |                   | Max My          | 4            | -25.30  | -0 36                | -5 15                |
|             |                 |                   | Max Vy          | 3            | -0 66   | 10.93                | 0.40                 |
|             |                 |                   | Max Vx          | 12           | -0 31   | -0 36                | -5.07                |
|             |                 | Diagonal          | Max Tension     | 15           | 10.60   | 0 00                 | 0 00                 |
|             |                 |                   | Max Compression | 2            | -12.21  | 0 00                 | 0.00                 |
|             |                 |                   | Max Mx          | 33           | 1 74    | -091                 | -0 13                |
|             |                 |                   | Max My          | 27           | 0 37    | -0.89                | -0 13                |
|             |                 |                   | Max Vy          | 33           | -0 29   | -0.91                | -0.13                |
|             |                 |                   | Max. Vx         | 27           | -0 02   | 0 00                 | 0.00                 |
| T14         | 40 - 20         | Leg               | Max Tension     | 7            | 418.66  | -1 92                | 0.07                 |
|             |                 |                   | Max Compression | 18           | -477 13 | 7.99                 | 0 18                 |
|             |                 |                   | Max Mx          | 6            | 412.04  | -8.34                | -0.19                |
|             |                 |                   | Max My          | 12           | -28 72  | -0.38                | -12 09               |
|             |                 |                   | Max Vy          | 35           | -0 57   | -4 12                | -0 01                |
|             |                 |                   | Max Vx          | 12           | 0.76    | -0 38                | -12 09               |
|             |                 | Diagonal          | Max Tension     | 2            | 11 29   | 0.00                 | 0.00                 |
|             |                 | - mBorimi         | Max Compression | 14           | -11 06  | 0.00                 | 0.00                 |
|             |                 |                   | Max Mx          | 37           | -0.48   | -1.06                | -0.15                |
|             |                 |                   | Max My          | 38           | -2 76   | -1.03                | -0.16                |
|             |                 |                   |                 | 37           | -0 31   | -1.06                | -0.15                |
|             |                 |                   | Max Vy          | 38           | -0.02   | 0.00                 | 0 00                 |
| THE         | 20 - 0          | 1                 | Max Vx          |              |         |                      |                      |
| T15         | 20 - 11         | l.eg              | Max Tension     | 7            | 436.01  | -2.39                | 0.04                 |
|             |                 |                   | Max Compression | 18           | -499 88 | 4.39                 | 0.11                 |
|             |                 |                   | Max Mx          | 18           | -499 88 | 4 39                 | 0 11                 |
|             |                 |                   | Max My          | 4            | -30.80  | -0 72                | -8 80                |
|             |                 |                   | Max Vy          | 10           | -0.32   | 4 38                 | 0.03                 |
|             |                 |                   | Max Vx          | 12           | -0.60   | -0 73                | -8 63                |
|             |                 | Diagonal          | Max Tension     | 15           | 11.73   | 0.00                 | 0 00                 |
|             |                 |                   | Max Compression | 2            | -13.55  | 0 00                 | 0.00                 |
|             |                 |                   | Max Mx          | 36           | 2.40    | -1 02                | 0 13                 |

| Valmont                              | Job     | 565090                                 | Page 60 of 72             |  |
|--------------------------------------|---------|----------------------------------------|---------------------------|--|
| 1545 Pidco Dr.                       | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |  |
| Plymouth IN<br>Phone: (574)-936-4221 | Client  | VB BTS II, LLC                         | Designed by               |  |

| Section<br>No. | Elevation<br>ft | Component<br>Type | Condition | Gov.<br>Load | Axial  | Major Axis<br>Moment | Minor Axis<br>Moment |
|----------------|-----------------|-------------------|-----------|--------------|--------|----------------------|----------------------|
|                |                 |                   | Comb.     | K            | kip-ft | kip-fi               |                      |
|                |                 |                   | Max My    | 27           | 1.92   | -1.02                | -0.14                |
|                |                 |                   | Max Vy    | 36           | -0 30  | -1 02                | 0 13                 |
|                |                 |                   | Max Vx    | 27           | -0 02  | 0.00                 | 0.00                 |

#### **Maximum Reactions**

| Location | Condition          | Gov<br>Load<br>Comb | Vertical<br>K | Horizonial, X<br>K | Horizontal, 2<br>K |
|----------|--------------------|---------------------|---------------|--------------------|--------------------|
| Leg C    | Max Vert           | 18                  | 513.42        | 40.83              | -23 06             |
| 2.25     | Max H <sub>x</sub> | 18                  | 513.42        | 40.83              | -23 06             |
|          | Max H              | 7                   | -445 44       | -35 68             | 20 08              |
|          | Min Vert           | 7                   | -445 44       | -35.68             | 20 08              |
|          | Min H.             | 7                   | -445.44       | -35 68             | 20 08              |
|          | Min H              | 18                  | 513 42        | 40 83              | -23 06             |
| Leg B    | Max Vert           | 10                  | 508 57        | -40.26             | -23 41             |
|          | Max H              | 23                  | -440.03       | 34 97              | 20 38              |
|          | Max. H.            | 23                  | -440.03       | 34 97              | 20.38              |
|          | Min Vert           | 23                  | -440.03       | 34 97              | 20 38              |
|          | Min. H.            | 10                  | 508 57        | -40 26             | -23 41             |
|          | Min H.             | 10                  | 508 57        | -40 26             | -23 41             |
| Leg A    | Max Vert           | 2                   | 512.04        | -0 88              | 46.81              |
| 100      | Max H,             | 21                  | 19.74         | 2.89               | 1.45               |
|          | Max. H.            | 2                   | 512 04        | -0 88              | 46.81              |
|          | Min Vert           | 15                  | -443 71       | 0.89               | -40.71             |
|          | Min He             | 9                   | 25.54         | -2.91              | 1 88               |
|          | Min H              | 15                  | -443 71       | 0.89               | -40 71             |

### **Tower Mast Reaction Summary**

| Load<br>Combination           | l'ertical | Shear, | Shear- | Overturning<br>Moment Me | Overturning<br>Moment, Mz | Torque |
|-------------------------------|-----------|--------|--------|--------------------------|---------------------------|--------|
|                               | K         | K      | K      | kip-ft                   | kip-fi                    | kip-ft |
| Dead Only                     | 75.02     | 0.00   | -0.00  | 9.57                     | 13.40                     | -0.00  |
| 1 2 Dead+1 0 Wind 0 deg - No  | 90.02     | 0.56   | -70 72 | -12941.06                | -119.60                   | -46 94 |
| Ice                           |           |        |        |                          |                           |        |
| 0 9 Dead+1 0 Wind 0 deg - No  | 67.52     | 0.56   | -70 72 | -12909.96                | -123 39                   | -46 88 |
| Ice                           |           |        |        |                          |                           |        |
| 1 2 Dead+1 0 Wind 30 deg - No | 90 02     | 34.77  | -59 51 | -10975 57                | -6432 11                  | 7.47   |
| Ice                           |           |        |        |                          |                           |        |
| 0 9 Dead+1 0 Wind 30 deg - No | 67 52     | 34 77  | -59.51 | -10949 52                | -6419 05                  | 7.47   |
| Ice                           |           |        |        |                          |                           |        |
| 1.2 Dead+1.0 Wind 60 deg - No | 90.02     | 58 97  | -34 05 | -6293 54                 | -10905 56                 | 23 95  |
| lce                           |           |        |        |                          |                           |        |
| 0 9 Dead+1 0 Wind 60 deg - No | 67.52     | 58.97  | -34.05 | -6279 78                 | -10880 70                 | 23 94  |
| Ice                           |           |        |        |                          |                           |        |
| 1.2 Dead+1 0 Wind 90 deg - No | 90.02     | 68 58  | -0.36  | -78 75                   | -12626.65                 | -12 57 |
| Ice                           |           |        |        |                          |                           |        |
| 0 9 Dead+1 0 Wind 90 deg - No | 67 52     | 68 58  | -0.36  | -81 35                   | -12597 37                 | -12 60 |
| Ice                           |           |        |        |                          |                           |        |
| 1 2 Dead+1.0 Wind 120 deg -   | 90.02     | 61 23  | 34 70  | 6321 63                  | -11185.76                 | -8.82  |
| No Ice                        |           |        |        |                          |                           |        |
| 0.9 Dead+1.0 Wind 120 deg -   | 67.52     | 61 23  | 34 70  | 6302.08                  | -11160.49                 | -8.89  |

#### Valmont

1545 Pidco Dr.

Plymouth, IN Phone (574)-936-4221 FAX (574)-936-6458

| Job     | 565090                                 | Page 61 of 72             |
|---------|----------------------------------------|---------------------------|
| Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Client  | VB BTS II, LLC                         | Designed by               |

| Load<br>Combination                                     | l'ertical      | Shear, | Shear, | Overturning Moment M. | Overturning<br>Moment, M <sub>z</sub> | Torque |
|---------------------------------------------------------|----------------|--------|--------|-----------------------|---------------------------------------|--------|
|                                                         | K              | K      | K      | kip-fi                | kip-ft                                | kip-ft |
| No Ice<br>I 2 Dead+1 0 Wind 150 deg -                   | 90 02          | 33 90  | 58.90  | 10896 37              | -6234 35                              | 45.5   |
| No Ice                                                  | 90 02          | 32 70  | 36.70  | 10070 37              | -0234 33                              | 43,3   |
| 9 Dead+1 0 Wind 150 deg -                               | 67.52          | 33 90  | 58.90  | 10864.47              | -6222.09                              | 45.4   |
| No Ice                                                  |                |        |        |                       |                                       |        |
| 1 2 Dead+1 0 Wind 180 deg -                             | 90 02          | -0 35  | 67.72  | 12552 56              | 102 22                                | 47.8   |
| No Ice<br>0 9 Dead+1 0 Wind 180 deg -                   | 67.52          | -0.35  | 67.72  | 12516 24              | 97.82                                 | 47.7   |
| No Ice                                                  | 07.32          | -0.33  | 01.12  | 12310 24              | 71.02                                 | 4.7.7  |
| 1 2 Dead+1 0 Wind 210 deg -                             | 90.02          | -34 60 | 59.36  | 10965 33              | 6415 76                               | -7 1   |
| No Ice                                                  |                |        |        |                       |                                       |        |
| 9 Dead+1 0 Wind 210 deg -                               | 67.52          | -34 60 | 59.36  | 10933 26              | 6394 78                               | -71    |
| No Ice                                                  | 90.02          | -61 34 | 35.42  | 6491.21               | 11238 18                              | -23.9  |
| 1.2 Dead+1.0 Wind 240 deg -<br>No Ice                   | 90.02          | -01 34 | 33.42  | 0491.21               | 11238 18                              | -23.9  |
| 9 Dead+1 0 Wind 240 deg -                               | 67.52          | -61 34 | 35.42  | 6471 19               | 11204 53                              | -23 9  |
| No Ice                                                  |                |        |        |                       |                                       |        |
| 1 2 Dead+1 0 Wind 270 deg -                             | 90.02          | -68 36 | 0.29   | 77 39                 | 12605 62                              | 12.2   |
| No Ice                                                  | 20.00          |        | 2.22   | 21.72                 | 10500 10                              | 100    |
| 0.9 Dead+1 0 Wind 270 deg -                             | 67 52          | -68 36 | 0.29   | 74.36                 | 12568 18                              | 12 2   |
| No Ice<br>I 2 Dead+1 0 Wind 300 deg -                   | 90.02          | -58.52 | -33 38 | -6136.48              | 10836.11                              | 7.9    |
| No Ice                                                  | 70.02          | -50.52 | -33.30 | -0130.40              | 10050.11                              | 11.2   |
| 9 Dead+1.0 Wind 300 deg -                               | 67.52          | -58 52 | -33 38 | -6123.16              | 10803 24                              | 8.0    |
| No Ice                                                  |                | 0.173  |        |                       |                                       |        |
| 2 Dead+1 0 Wind 330 deg -                               | 90.02          | -34 06 | -58 81 | -10843 85             | 6317.37                               | -45 5  |
| No Ice<br>0 9 Dead+1 0 Wind 330 deg -                   | 67.52          | -34 07 | -58.81 | -10818 15             | 6296 38                               | -45 4  |
| No Ice                                                  | 01.32          | -34.07 | -30.01 | -1001013              | 0270 38                               | -43 4  |
| 1 2 Dead+1 0 Ice+1 0 Temp                               | 281.31         | 0.00   | -0 00  | 47.03                 | 94 41                                 | -0.0   |
| 1 2 Dead+1 0 Wind 0 deg+1 0                             | 281 31         | 0.05   | -1140  | -2154 09              | 81 91                                 | -73    |
| lce+1 0 Temp                                            | 444.45         | - 200  |        | - 00/200              |                                       | -      |
| 1 2 Dead+1 0 Wind 30 deg+1 0                            | 281.31         | 5 69   | -9 79  | -1847 87              | -1008 76                              | -1.8   |
| lce+1 0 Temp<br>I 2 Dead+1 0 Wind 60 deg+1 0            | 281 31         | 9.78   | -5 65  | -1046 15              | -1799 06                              | (1)    |
| Ice+1 0 Temp                                            | 20131          | 2.75   | -5.05  | 104015                | 1722.00                               |        |
| 1 2 Dead+1 0 Wind 90 deg+1 0                            | 28131          | 11 30  | -0 03  | 39 13                 | -2091 69                              | 0 4    |
| Ice+1 0 Temp                                            |                |        |        |                       |                                       |        |
| 1.2 Dead+1.0 Wind 120                                   | 281 31         | 9.88   | 5 64   | 1133.51               | -1812 43                              | 27     |
| deg+1 0 lce+1 0 Temp                                    | 281 31         | 5.60   | 9 72   | 1931 50               | -990 72                               | 7.6    |
| 1.2 Dead+1.0 Wind 150<br>deg+1.0 Ice+1.0 Temp           | 201 31         | 2.00   | 9 12   | 1931 30               | -990 72                               | 7.6    |
| 1 2 Dead+1 0 Wind 180                                   | 281 31         | -0.03  | 11.21  | 2222 32               | 102.52                                | 74     |
| deg+1 0 lce+1 0 Temp                                    |                |        |        |                       |                                       |        |
| 1.2 Dead+1.0 Wind 210                                   | 281 31         | -5 67  | 9.78   | 1938 62               | 1194 10                               | 1.8    |
| deg+1 0 lce+1 0 Temp                                    | 201.01         | 0.00   | 2.00   | 1100.00               | 2005.00                               |        |
| 1 2 Dead+1 0 Wind 240<br>deg+1 0 Ice+1 0 Temp           | 281 31         | -9 92  | 5.73   | 1150 47               | 2005 60                               | -1.1   |
| 1.2 Dead+1.0 Wind 270                                   | 281.31         | -11 28 | 0.03   | 53 62                 | 2275.88                               | -0.5   |
| deg+1 0 Ice+1 0 Temp                                    |                | 1.40   | 0.03   | 25 02                 |                                       |        |
| 1.2 Dead+1.0 Wind 300                                   | 281 31         | -9 70  | -5 56  | -1030 30              | 1976.65                               | -2.7   |
| deg+1 0 Ice+1 0 Temp                                    |                |        |        |                       |                                       |        |
| 1 2 Dead+1 0 Wind 330                                   | 281.31         | -5 62  | -9.71  | -1834 94              | 1183.83                               | -7.6   |
| deg+1 0 Ice+1 0 Temp                                    | 75.02          | 0.18   | -22 79 | -4166.39              | -29 99                                | -150   |
| Dead+Wind 0 deg - Service<br>Dead+Wind 30 deg - Service | 75.02<br>75.02 | 11.21  | -19 18 | -3533.93              | -29 99                                | 2.3    |
| Dead+Wind 60 deg - Service                              | 75.02          | 1901   | -10 98 | -2023 60              | -3508 32                              | 7.6    |
| Dead+Wind 90 deg - Service                              | 75.02          | 22.11  | -0.11  | -17.83                | -4063 36                              | -3.9   |
| Dead+Wind 120 deg - Service                             | 75.02          | 19 73  | 11 18  | 2044 62               | -3598 13                              | -2.8   |
| Dead+Wind 150 deg - Service                             | 75.02<br>75.02 | 10.93  | 18 99  | 3519 18               | -2003 55                              | 14.5   |
| Dead+Wind 180 deg - Service                             | 75.02          | -0.11  | 21.83  | 4054.09               | 40.96                                 | 15 3   |

| Valmont                                                   | Job     | 565090                                 | Page 62 of 72             |  |
|-----------------------------------------------------------|---------|----------------------------------------|---------------------------|--|
| 1545 Pidco Dr                                             | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |  |
| Plymouth 1N<br>Phone (574)-936-4221<br>FAX (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by               |  |

| Load<br>Combination         | Vertical | Shear, | Shear: | Overturning<br>Moment, M. | Overturning<br>Moment, M. | Torque |
|-----------------------------|----------|--------|--------|---------------------------|---------------------------|--------|
|                             | K        | K      | K      | kip-ft                    | kip-ft                    | kip-ft |
| Dead+Wind 210 deg - Service | 75.02    | -11.15 | 19.13  | 3541.31                   | 2078.32                   | -2.22  |
| Dead+Wind 240 deg - Service | 75.02    | -19 77 | 11.41  | 2098 77                   | 3631 84                   | -7 68  |
| Dead+Wind 270 deg - Service | 75.02    | -22 03 | 0.09   | 32.09                     | 4073 50                   | 3 86   |
| Dead+Wind 300 deg - Service | 75.02    | -18.86 | -10.76 | -1973.29                  | 3503.02                   | 2 55   |
| Dead+Wind 330 deg - Service | 75.02    | -10.98 | -18 96 | -3491 85                  | 2044 27                   | -14 52 |

### **Solution Summary**

|       |        | n of Applied Forces |        | Sum of Reaction | S      |        |        |
|-------|--------|---------------------|--------|-----------------|--------|--------|--------|
| Load  | PX     | PY                  | PY PZ  | PX              | PY     | PZ     | % Erro |
| Comb. | K      | K                   | K      | K               | K      | K      |        |
| 1     | 0.00   | -75.02              | 0.00   | -0.00           | 75.02  | 0.00   | 0.001% |
| 2 3   | 0.56   | -90.02              | -70 72 | -0.56           | 90.02  | 70 72  | 0.002% |
| 3     | 0.56   | -67,52              | -70 72 | -0 56           | 67.52  | 70 72  | 0.002% |
| 4     | 34.77  | -90.02              | -59.52 | -34 77          | 90.02  | 59 51  | 0 002% |
| 5     | 34.77  | -67.52              | -59.52 | -34.77          | 67.52  | 59.51  | 0.002% |
| 6     | 58.98  | -90.02              | -34.05 | -58 97          | 90.02  | 34 05  | 0.002% |
| 7     | 58.98  | -67.52              | -34.05 | -58 97          | 67.52  | 34 05  | 0.002% |
| 8     | 68.58  | -90.02              | -0 36  | -68 58          | 90.02  | 0.36   | 0.002% |
| 9     | 68.58  | -67.52              | -0 36  | -68 58          | 67.52  | 0.36   | 0.002% |
| 10    | 61.23  | -90.02              | 34 70  | -61 23          | 90.02  | -34.70 | 0.002% |
| 11    | 61.23  | -67.52              | 34 70  | -61 23          | 67.52  | -34 70 | 0 002% |
| 12    | 33.90  | -90 02              | 58 91  | -33 90          | 90 02  | -58 90 | 0.002% |
| 13    | 33.90  | -67.52              | 58 91  | -33 90          | 67.52  | -58.90 | 0.002% |
| 14    | -0.35  | -90 02              | 67 72  | 0.35            | 90.02  | -67.72 | 0.002% |
| 15    | -0.35  | -67 52              | 67 72  | 0.35            | 67.52  | -67 72 | 0.002% |
| 16    | -34.60 | -90.02              | 59 36  | 34 60           | 90.02  | -59 36 | 0.002% |
| 17    | -34 60 | -67.52              | 59 36  | 34 60           | 67.52  | -59.36 | 0.002% |
| 18    | -61 34 | -90 02              | 35 42  | 61 34           | 90 02  | -35.42 | 0.002% |
| 19    | -61 34 | -67.52              | 35 42  | 61 34           | 67.52  | -35 42 | 0.002% |
| 20    | -68 36 | -90.02              | 0 29   | 68.36           | 90 02  | -0.29  | 0.002% |
| 21    | -68 36 | -67 52              | 0.29   | 68 36           | 67.52  | -0.29  | 0.002% |
| 22    | -58 52 | -90 02              | -33 38 | 58 52           | 90 02  | 33.38  | 0.002% |
| 23    | -58 52 | -67 52              | -33.38 | 58.52           | 67.52  | 33.38  | 0.002% |
| 24    | -34 07 | -90.02              | -58.81 | 34 06           | 90.02  | 58.81  | 0.002% |
| 25    | -34 07 | -67.52              | -58 81 | 34 07           | 67.52  | 58.81  | 0.002% |
| 26    | 0.00   | -281.31             | 0.00   | -0.00           | 281.31 | 0.00   | 0.000% |
| 27    | 0.05   | -281.31             | -11 40 | -0.05           | 281 31 | 11.40  | 0.000% |
| 28    | 5 69   | -281 31             | -9.79  | -5.69           | 281 31 | 9.79   | 0.000% |
| 29    | 9.78   | -281 31             | -5.65  | -9 78           | 281 31 | 5.65   | 0.000% |
| 30    | 11.30  | -281 31             | -0.03  | -11 30          | 281 31 | 0.03   | 0.000% |
| 31    | 9.88   | -281 31             | 5 64   | -9.88           | 281 31 | -5.64  | 0.000% |
| 32    | 5.60   | -281 31             | 9 72   | -5.60           | 281 31 | -9.72  | 0.000% |
| 33    | -0.03  | -281 31             | 11.21  | 0.03            | 281.31 | -11.21 | 0.000% |
| 34    | -5 68  | -281 31             | 9.78   | 5 67            | 281 31 | -9.78  | 0.000% |
| 35    | -9.93  | -281 31             | 5 73   | 9 92            | 281 31 | -5.73  | 0.000% |
| 36    | -11 28 | -281 31             | 0.03   | 11 28           | 281 31 | -0.03  | 0.000% |
| 37    | -9 70  | -281 31             | -5 56  | 9.70            | 281 31 | 5 56   | 0.000% |
| 38    | -5 62  | -281 31             | -9 71  | 5 62            | 281 31 | 9.71   | 0 000% |
| 39    | 0.18   | -75.02              | -22 79 | -0.18           | 75.02  | 22.79  | 0 000% |
| 40    | 11.21  | -75.02              | -19 18 | -11.21          | 75.02  | 19 18  | 0 001% |
| 41    | 19.01  | -75 02<br>-75 02    | -10 98 | -19 01          | 75.02  | 10 98  | 0.001% |
|       | 22.11  |                     | -0 11  | -19 01          | 75.02  | 0 11   | 0 001% |
| 42    |        | -75.02<br>75.02     | 11.18  | -19 73          | 75.02  | -11.18 | 0.001% |
| 43    | 19 73  | -75.02<br>75.02     |        |                 |        |        |        |
| 44    | 10 93  | -75 02<br>76 03     | 18 99  | -10 93          | 75 02  | -18 99 | 0 001% |
| 45    | -0.11  | -75 02<br>75 03     | 21 83  | 0.11            | 75 02  | -21 83 | 0 001% |
| 46    | -11 15 | -75 02              | 19 13  | 11.15           | 75.02  | -19 13 | 0 001% |
| 47    | -19 77 | -75 02              | 11.41  | 19.77           | 75 02  | -11 41 | 0 001% |

| Valmont                                                     | Job     | 565090                                 | Page 63 of 72             |  |
|-------------------------------------------------------------|---------|----------------------------------------|---------------------------|--|
| 1545 Pidco Dr                                               | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |  |
| Plymouth 1N<br>Phone. (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by<br>JL         |  |

|       | Sui    | n of Applied Force. | s      |       | 5     |       |         |
|-------|--------|---------------------|--------|-------|-------|-------|---------|
| Load  | PX     | PY                  | PZ     | PX    | PY    | PZ    | % Error |
| Comb. | K      | K                   | K      | K     | K     | K     |         |
| 48    | -22 03 | -75.02              | 0.09   | 22.03 | 75 02 | -0.09 | 0.001%  |
| 49    | -18.86 | -75 02              | -10.76 | 18 86 | 75 02 | 10.76 | 0.001%  |
| 50    | -10.98 | -75 02              | -18.96 | 10.98 | 75 02 | 18.96 | 0.001%  |

## Non-Linear Convergence Results

| Load        | Converged? | Number    | Displacement | Force      |
|-------------|------------|-----------|--------------|------------|
| Combination |            | of Cycles | Tolerance    | Tolerance  |
| 1           | Yes        | 6         | 0.00000001   | 0.00014355 |
| 2           | Yes        | 14        | 0 00003009   | 0 00007784 |
| 3           | Yes        | 14        | 0 00002591   | 0 00006759 |
| 4           | Yes        | 14        | 0.00003229   | 0.00008276 |
| 5           | Yes        | 14        | 0 00002793   | 0.00007219 |
| 6           | Yes        | 14        | 0 00003398   | 0 00008666 |
| 7           | Yes        | 14        | 0 00002948   | 0 00007582 |
| 8           | Yes        | 14        | 0 00003227   | 0.00008270 |
| 9           | Yes        | 14        | 0 00002791   | 0.00007215 |
| 10          | Yes        | 14        | 0.00003011   | 0 00007786 |
| 11          | Yes        | 14        | 0.00002592   | 0.00006761 |
| 12          | Yes        | 14        | 0 00003229   | 0.00008275 |
| 13          | Yes        | 14        | 0 00002793   | 0 00007217 |
| 14          | Yes        | 14        | 0.00003400   | 0 00008668 |
| 15          | Yes        | 14        | 0.00002949   | 0.00007583 |
| 16          | Yes        | 14        | 0.00003223   | 0.00008261 |
| 17          | Yes        | 14        | 0.00002787   | 0 00007205 |
| 18          | Yes        | 14        | 0.00003009   | 0.00007783 |
| 19          | Yes        | 14        | 0.00002591   | 0.00006758 |
| 20          | Yes        | 14        | 0.00003220   | 0 00008255 |
| 21          | Yes        | 14        | 0.00002785   | 0.00007200 |
| 22          | Yes        | 14        | 0.00003397   | 0.00008660 |
| 23          | Yes        | 14        | 0 00002947   | 0 00007576 |
| 24          | Yes        | 14        | 0 00003229   | 0 00008274 |
| 25          | Yes        | 14        | 0.00002792   | 0 00007216 |
| 26          | Yes        | 11        | 0 00000001   | 0 00008862 |
| 27          | Yes        | 14        | 0 00000001   | 0 00010924 |
| 28          | Yes        | 14        | 0.00000001   | 0 00010829 |
| 29          | Yes        | 14        | 0.00000001   | 0 00010840 |
| 30          | Yes        | 14        | 0 00000001   | 0.00010839 |
| 31          | Yes        | 14        | 0.00000001   | 0.00010963 |
| 32          | Yes        | 14        | 0 00000001   | 0 00011230 |
| 33          | Yes        | 14        | 0.00000001   | 0 00011499 |
| 34          | Yes        | 14        | 0 00000001   | 0 00011567 |
| 35          | Yes        | 14        | 0 00000001   | 0 00011554 |
| 36          | Yes        | 14        | 0.00000001   | 0.00011505 |
| 37          | Yes        | 14        | 0.00000001   | 0.00011409 |
| 38          | Yes        | 14        | 0.00000001   | 0.00011155 |
| 39          | Yes        | 14        | 0.00000001   | 0.00007291 |
| 40          | Yes        | 14        | 0.00000001   | 0.00007433 |
| 41          | Yes        | 14        | 0.00000001   | 0.00007560 |
| 42          | Yes        | 14        | 0.00000001   | 0 00007428 |
| 43          | Yes        | 14        | 0.00000001   | 0 00007289 |
| 44          | Yes        | 14        | 0 00000001   | 0 00007435 |
| 45          | Yes        | 14        | 0 00000001   | 0.0000756  |
| 46          | Yes        | 14        | 0 00000001   | 0 00007433 |
| 47          | Yes        | 14        | 0 00000001   | 0.00007294 |
| 48          | Yes        | 14        | 0 00000001   | 0 00007427 |

| Valmont                                                      | Job       | 565090                                 | Page 64 of 72             |
|--------------------------------------------------------------|-----------|----------------------------------------|---------------------------|
| 1545 Pidco Dr.                                               | Project I | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client    | VB BTS II, LLC                         | Designed by               |

| 50 | Yes | 14 | 0.00000001 | 0 00007433 |
|----|-----|----|------------|------------|
| 49 | Yes | 14 | 0.00000001 | 0 00007559 |

# **Maximum Tower Deflections - Service Wind**

| Section<br>No. | Elevation | Horz.<br>Deflection | Gov.<br>Load | Tilt   | Twist     |  |
|----------------|-----------|---------------------|--------------|--------|-----------|--|
|                | fi        | in                  | Comb.        | 0      | 0         |  |
| TI             | 290 - 280 | 19 359              | 47           | 0.7164 | 0.0464    |  |
| T2             | 280 - 260 | 17 861              | 47           | 0.7132 | 0.0461    |  |
| T3             | 260 - 240 | 14 777              | 47           | 0.6504 | 0 0420    |  |
| T4             | 240 - 220 | 12.019              | 47           | 0.5627 | 0.0358    |  |
| T5             | 220 - 200 | 9 779               | 47           | 0.4792 | 0 0277    |  |
| T6             | 200 - 180 | 7.683               | 47           | 0.4030 | 0 0213    |  |
| T7             | 180 - 160 | 5.965               | 47           | 0.3465 | 0.0173    |  |
| T8             | 160 - 140 | 4.537               | 47           | 0.2895 | 0.0137    |  |
| T9             | 140 - 120 | 3.367               | 47           | 0.2334 | 0 0 1 0 2 |  |
| T10            | 120 - 100 | 2.382               | 47           | 0 1928 | 0 0081    |  |
| TII            | 100 - 80  | 1.598               | 47           | 0 1526 | 0.0063    |  |
| T12            | 80 - 60   | 0.994               | 47           | 0 1133 | 0 0045    |  |
| T13            | 60 - 40   | 0.545               | 47           | 0.0828 | 0 0029    |  |
| T14            | 40 - 20   | 0.238               | 47           | 0.0528 | 0.0019    |  |
| T15            | 20 - 0    | 0.054               | 47           | 0.0231 | 0 0009    |  |

# Critical Deflections and Radius of Curvature - Service Wind

| Elevation | Appurtenance                    | Gov.<br>Load | Deflection | Tilt   | Twist  | Radius of<br>Curvature |
|-----------|---------------------------------|--------------|------------|--------|--------|------------------------|
| ſŧ        |                                 | Comb         | in         | 0      | 0      | fi                     |
| 290 00    | 5/8" x 10' lightning rod        | 47           | 19 359     | 0 7164 | 0 0464 | 31165                  |
| 285 00    | 40,000 sq in. (277.8 sq ft EPA) | 47           | 18.615     | 0.7165 | 0.0464 | 31165                  |
| 275 00    | 30,000 sq in (208 3 sq ft EPA)  | 47           | 17 092     | 0.7040 | 0.0455 | 35777                  |
| 265 00    | 30,000 sq in (208 3 sq ft EPA)  | 47           | 15 539     | 0.6710 | 0 0433 | 21926                  |
| 240.00    | 6' HP                           | 47           | 12.019     | 0.5627 | 0 0358 | 7287                   |
| 145.00    | OB light                        | 47           | 3.640      | 0.2462 | 0.0110 | 26137                  |
|           |                                 |              |            |        |        |                        |

# **Maximum Tower Deflections - Design Wind**

| Section | Elevation | Horz.            | Gov           | Tilt   | Twist  |
|---------|-----------|------------------|---------------|--------|--------|
| No.     | ft        | Deflection<br>in | Load<br>Comb. | 0      | 6      |
| TI      | 290 - 280 | 59 840           | 18            | 2.2174 | 0.1457 |
| T2      | 280 - 260 | 55 206           | 18            | 2 2076 | 0.1448 |
| T3      | 260 - 240 | 45 664           | 18            | 20121  | 0 1319 |
| T4      | 240 - 220 | 37.135           | 18            | 1.7390 | 0.1123 |
| T5      | 220 - 200 | 30.215           | 18            | 1 4806 | 0.0871 |
| T6      | 200 - 180 | 23.741           | 18            | 1 2451 | 0.0671 |
| T7      | 180 - 160 | 18 435           | 18            | 1 0703 | 0.0545 |
| T8      | 160 - 140 | 14 022           | 18            | 0.8945 | 0.0431 |
| T9      | 140 - 120 | 10.409           | 18            | 0.7210 | 0.0319 |
| T10     | 120 - 100 | 7.365            | 18            | 0.5957 | 0.0254 |

| Valmont                                                      | Јо <b>Б</b> 565090                             | Page 65 of 72             |
|--------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1545 Pidco Dr.                                               | Project H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client VB BTS II, LLC                          | Designed by<br>JL         |

| Section | Elevation | Horz.      | Gov: | Tih    | Twist  |
|---------|-----------|------------|------|--------|--------|
| No.     |           | Deflection | Load |        |        |
|         | ſt        | in         | Comb | 9      | 'n     |
| TII     | 100 - 80  | 4.942      | 18   | 0.4716 | 0.0196 |
| T12     | 80 - 60   | 3 075      | 18   | 0.3502 | 0.0142 |
| T13     | 60 - 40   | 1 686      | 18   | 0.2560 | 0.0091 |
| T14     | 40 - 20   | 0.736      | 18   | 0 1633 | 0 0060 |
| T15     | 20 - 0    | 0.168      | 18   | 0 0716 | 0 0029 |

# Critical Deflections and Radius of Curvature - Design Wind

| Elevation | Appurtenance                     | Gov.<br>Load | Deflection | Tili      | Twist  | Radius of<br>Curvature |
|-----------|----------------------------------|--------------|------------|-----------|--------|------------------------|
| fi        |                                  | Comb.        | in         | 0         | 0      | fi                     |
| 290.00    | 5/8" x 10' lightning rod         | 18           | 59 840     | 2 2 1 7 4 | 0 1457 | 10103                  |
| 285.00    | 40,000 sq in. (277 8 sq ft. EPA) | 18           | 57.538     | 2.2178    | 0 1456 | 10103                  |
| 275.00    | 30,000 sq in (208 3 sq ft EPA)   | 18           | 52.825     | 2 1788    | 0.1428 | 11714                  |
| 265.00    | 30,000 sq in. (208 3 sq ft. EPA) | 18           | 48 021     | 2 0764    | 0.1361 | 6982                   |
| 240.00    | 6' HP                            | 18           | 37 135     | 1.7390    | 0.1123 | 2348                   |
| 145.00    | OB light                         | 18           | 11.252     | 0.7605    | 0 0343 | 8438                   |

# **Bolt Design Data**

| Section<br>No. | Elevation<br>ft | Component<br>Type | Bolt<br>Grade | Bolt Size | Number<br>Of<br>Bolts | Maximum<br>Load<br>per Bolt | Allowable<br>Load<br>per Bolt | Rati<br>Loa<br>Allow | d    | Allowable<br>Ratio | Criteria              |
|----------------|-----------------|-------------------|---------------|-----------|-----------------------|-----------------------------|-------------------------------|----------------------|------|--------------------|-----------------------|
|                |                 |                   |               |           |                       | K                           | K                             | 4 4 4 4 4 4 4        | 2772 |                    |                       |
| TI             | 290             | Leg               | A325N         | 0.7500    | 4                     | 1.27                        | 29.82                         | 0 043                | V    | 1                  | Bolt Tension          |
|                |                 | Diagonal          | A325N         | 0.7500    | 1                     | 4.42                        | 7 46                          |                      | V    | 1                  | Member Block<br>Shear |
|                |                 | Top Girt          | A325N         | 0.7500    | T-                    | 1 13                        | 12 62                         | 0 090                | V    | 1                  | Gusset Bearing        |
| T2             | 280             | Leg               | A325N         | 0.7500    | 6                     | 11.65                       | 29.82                         | 0 391                | V    | 1                  | Bolt Tension          |
|                |                 | Diagonal          | A325N         | 0 7500    | Ţ                     | 12 31                       | 12 62                         | 0 976                | V    | 1                  | Gusset Bearing        |
| T3             | 260             | Leg               | A325N         | 0 7500    | 8                     | 17 03                       | 29.82                         | 0 571                | V    | 1                  | Bolt Tension          |
|                |                 | Diagonal          | A325N         | 0.7500    | 1                     | 7.60                        | 11.20                         | 0.678                | V    | J.                 | Member Block<br>Shear |
| T4             | 240             | Leg               | A325N         | 1.0000    | 6                     | 30.22                       | 53 01                         | 0.570                | V    | 1                  | Bolt Tension          |
|                |                 | Diagonal          | A325N         | 0 7500    | Ţ                     | 7 77                        | 13 48                         | 0.577                | 1    | į.                 | Member Block<br>Shear |
| T5             | 220             | Leg               | A325N         | 1 0000    | 6                     | 34 82                       | 53 01                         | 0.657                | V    | 1                  | Bolt Tension          |
|                |                 | Diagonal          | A325N         | 1 0000    | T                     | 6 82                        | 13.03                         | 0 524                | V    | 1                  | Member Block<br>Shear |
| Т6             | 200             | Leg               | A325N         | 1 2500    | 6                     | 3991                        | 82 83                         | 0 482                | V    | 1                  | Bolt Tension          |
|                |                 | Diagonal          | A325N         | 1.0000    | 1                     | 651                         | 17.37                         | 0 375                | 1    | 1.                 | Member Block<br>Shear |
| T7             | 180             | Leg               | A325N         | 1.2500    | 6                     | 44 48                       | 82.83                         | 0 537                | V    | 1.                 | <b>Bolt Tension</b>   |
|                |                 | Diagonal          | A325N         | 1.0000    | 1                     | 6.57                        | 17.37                         | 0 378                | 1    | 1                  | Member Block<br>Shear |
| T8             | 160             | Leg               | A325N         | 1.2500    | 6                     | 48.85                       | 82 83                         | 0 590                | V    | 1                  | Bolt Tension          |
|                |                 | Diagonal          | A325N         | 1 0000    | 1                     | 7 74                        | 14.17                         | 0 547                | V    | Ţ                  | Member Block          |

| Valmont                                                                                | Job     | 565090                                 | Page 66 of 72             |
|----------------------------------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr.                                                                         | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth. IN<br>Phone (5 <sup>-4</sup> 4)-936-4221<br>FAX: (5 <sup>7</sup> 4)-936-6458 | Client  | VB BTS II, LLC                         | Designed by JL            |

| Section<br>No. | Elevation<br>ft | Component<br>Type | Bolt<br>Grade | Bolt Size | Number<br>Of<br>Bolts | Maximum<br>Load<br>per Bolt | Allowable<br>Load<br>per Bolt | Rat<br>Loa<br>Allow | nd | Allowable<br>Ratio | Criteria              |
|----------------|-----------------|-------------------|---------------|-----------|-----------------------|-----------------------------|-------------------------------|---------------------|----|--------------------|-----------------------|
|                | 1111            |                   |               |           |                       | K                           | K                             |                     |    |                    |                       |
| T9             | 140             | Leg               | A325N         | 1 0000    | 12                    | 25 70                       | 53.01                         | 0.485               | V  | 1                  | Shear<br>Bolt Tension |
|                |                 | Diagonal          | A325N         | 0 8750    | 1                     | 10.28                       | 24.68                         | 0416                | ~  | 1                  | Member Block<br>Shear |
| TIO            | 120             | Leg               | A325N         | 1 0000    | 12                    | 27.91                       | 53.01                         | 0.526               | V  | 1                  | Bolt Tension          |
|                |                 | Diagonal          | A325N         | 0.8750    | 1                     | 10.26                       | 24.68                         | 0.416               | ~  | 1                  | Member Block<br>Shear |
| T11            | 100             | Leg               | A325N         | 1 0000    | 12                    | 29.58                       | 53.01                         | 0.558               | V  | 1                  | Bolt Tension          |
|                |                 | Diagonal          | A325N         | 0.8750    | 1                     | 10,02                       | 24 68                         | 0.406               |    | 1                  | Member Block<br>Shear |
| T12            | 80              | Leg               | A325N         | 1.0000    | 12                    | 31.49                       | 53.01                         | 0.594               | V  | 1                  | Bolt Tension          |
|                |                 | Diagonal          | A325N         | 0 8750    | 1                     | 10 31                       | 24 68                         | 0 418               | 1  | 1                  | Member Block<br>Shear |
| T13            | 60              | Leg               | A325N         | 1.0000    | 12                    | 33 11                       | 53 01                         | 0.624               | V  | 1                  | Bolt Tension          |
|                |                 | Diagonal          | A325N         | 0 8750    | 1                     | 10 60                       | 36.98                         | 0 287               | V  | 1                  | Gusset Bearing        |
| T14            | 40              | Leg               | A325N         | 1.0000    | 12                    | 34 89                       | 53 01                         | 0.658               | V  | 1                  | Bolt Tension          |
|                |                 | Diagonal          | A325N         | 0.8750    | 1                     | 11 29                       | 36.98                         | 0 305               | V  | 1                  | Gusset Bearing        |
| T15            | 20              | Leg               | F1554-10      | 1.7500    | 4                     | 109.00                      | 169 12                        | 0.645               | V  | T.                 | Bolt Tension          |
|                |                 | Diagonal          | A325N         | 0 8750    | 1                     | 11 73                       | 36.98                         | 0317                | V  | 1                  | Gusset Bearing        |
|                |                 |                   |               |           |                       |                             |                               |                     |    |                    |                       |

# Compression Checks

# Leg Design Data (Compression)

| Section<br>No. | Elevation | Size                                                          | L     | $L_{\epsilon}$ | Kl/r            | A         | $P_n$   | φP_    | Ratio<br>P <sub>n</sub> |
|----------------|-----------|---------------------------------------------------------------|-------|----------------|-----------------|-----------|---------|--------|-------------------------|
|                | ft        |                                                               | fi    | ft             |                 | $m^2$     | K       | K      | φP <sub>n</sub>         |
| TI             | 290 - 280 | P- 2 50" - 0.75" conn10"<br>-C-(Pirod 226172)                 | 10.00 | 4.79           | 60 7<br>K=1.00  | 1 7040    | -7 59   | 58.58  | 0.130                   |
| T2             | 280 - 260 | P- 4.00"- 0.75" conn -20'<br>-C-Trans-6B-4B-(Pirod<br>226184) | 20.00 | 6 67           | 53 ()<br>K=1 00 | 3.1741    | -78.36  | 116 32 | 0 674                   |
| Т3             | 260 - 240 | P- 5.00"- 0.75"<br>connTrans-20' -C-(Pirod<br>226200)         | 20.03 | 6 68           | 42 7<br>K=1 00  | 4.2999    | -148 35 | 169 37 | 0 876                   |
| T4             | 240 - 220 | P- 6 00"- 0 75"<br>connHBD-Trans-20'<br>-C-(Ptrod 229377)     | 20 03 | 6.68           | 35.7<br>K=1.00  | 5 5813    | -197 25 | 228 83 | 0 862                   |
| T5             | 220 - 200 | #12ZG-58 - 1.50" - 1.00"<br>conn (Pirod 194651)               | 20.03 | 10.02          | 35 7<br>K=1.00  | 5 3014    | -226.56 | 248 43 | 0.912                   |
| T6             | 200 - 180 | #12ZG-58 - 1 75" - 1 00"<br>connTR1-(Pirod 195213)            | 20.03 | 10 02          | 30 6<br>K-1 00  | 7.2158    | -261.49 | 347 96 | 0.751                   |
| 17             | 180 - 160 | #12ZG-58 - 1 75" - 1 00"<br>conn. (Pirod 195217)              | 20.03 | 10.02          | 30 6<br>K=1.00  | 7 2 1 5 8 | -292 70 | 347 96 | 0 841                   |
| T8             | 160 - 140 | #12ZG-58 - 1 75" - 1 00"                                      | 20 03 | 10.02          | 30 6            | 72158     | -322 99 | 347 96 | 0 928                   |

# Valmont

1545 Pidco Dr.

Plymouth, IN Phone: (574)-936-4221 FAX: (574)-936-6458

| Job     |                                           | Page              |
|---------|-------------------------------------------|-------------------|
|         | 565090                                    | 67 of 72          |
| Project | P. C. | Date              |
|         | H-31 x290' SST - US-KY-5135 Fancy Farm    | 07:03:40 10/06/22 |
| Client  | 200 DOLD 200 A                            | Designed by       |
|         | VB BTS II, LLC                            | JL                |

| Section<br>No. | Elevation | Size                                                        | L     | L     | Kl/r           | A       | $P_{\scriptscriptstyle \rm M}$ | $\phi P_n$ | Ratio<br>P,, |
|----------------|-----------|-------------------------------------------------------------|-------|-------|----------------|---------|--------------------------------|------------|--------------|
|                | fi        |                                                             | fi    | st    |                | in'     | K                              | K          | $\Phi P_n$   |
|                |           | conn (Pirod 195217)                                         |       |       | K=1 00         |         |                                |            | V            |
| T9             | 140 - 120 | #12ZG-58 -2 00" - 0.875"<br>connTR3-(Pirod 195637)          | 20 03 | 20 03 | 48.8<br>K=1.00 | 9 4248  | -339 90                        | 401 94     | 0.846        |
| TIO            | 120 - 100 | #12ZG-58 -2.00" - 0.875"<br>conn. (Pirod 195639)            | 20 03 | 20 03 | 48.8<br>K=1.00 | 9 4248  | -371 60                        | 401 94     | 0.925        |
| TII            | 100 - 80  | #12ZG-58 -2 00" - 0 875"<br>conn (Pirod 195639)             | 20.03 | 20.03 | 48.8<br>K=1 00 | 9 4248  | -396.17                        | 401 94     | 0.986        |
| T12            | 80 - 60   | #12ZG-58 -2 25" - 0 875"<br>conn (Pirod 195960)             | 20 03 | 20.03 | 48.8<br>K=1.00 | 11 9282 | -424 77                        | 508 98     | 0.835        |
| T13            | 60 - 40   | #12ZG-58 -2 25" - 0 875"<br>conn (Pirod 195960)             | 20.03 | 20.03 | 48 8<br>K=1 00 | 11 9282 | -449 05                        | 508 98     | 0.882        |
| T14            | 40 - 20   | #12ZG-58 -2 25" - 0.875"<br>conn (Pirod 195960)             | 20.03 | 20.03 | 48 8<br>K=1.00 | 11 9282 | -477 13                        | 508.98     | 0.937        |
| T15            | 20 - 0    | #12ZG-58 BASE - 2.50" -<br>0.875" connTR4-(Pirod<br>281171) | 20 03 | 20 03 | 48 7<br>K=1 00 | 14.7262 | -499,88                        | 628.76     | 0.795        |

<sup>1</sup> P , / \phi P , controls

|                |                 |               | Truss-               | Leg D | iagon                    | al Data | 1        |                |                 |
|----------------|-----------------|---------------|----------------------|-------|--------------------------|---------|----------|----------------|-----------------|
| Section<br>No. | Elevation<br>fi | Diagonal Size | L <sub>J</sub><br>fi | Kl/r  | φ <i>P<sub>n</sub> K</i> | A<br>m² | ľ'.<br>K | $\phi V_n$ $K$ | Stress<br>Ratio |
| T5             | 220 - 200       | 0.5           | 1.42                 | 95 2  | 276 74                   | 0.1963  | 231      | 4 57           | 0 507           |
| Т6             | 200 - 180       | 0.5           | 1.40                 | 94 4  | 376.67                   | 0.1963  | 0.90     | 461            | 0 196           |
| T7             | 180 - 160       | 0.5           | 1.40                 | 94 4  | 376.67                   | 0.1963  | 0.62     | 4.61           | 0.135           |
| T8             | 160 - 140       | 0.5           | 1 40                 | 94,4  | 376.67                   | 0 1963  | 0 74     | 461            | 0 163           |
| Т9             | 140 - 120       | 0.5           | 1.39                 | 93.2  | 491.97                   | 0.1963  | 0 96     | 4.67           | 0 208           |
| T10            | 120 - 100       | 0.5           | 1 39                 | 93.2  | 491.97                   | 0.1963  | 0 93     | 4.67           | 0 201           |
| TH             | 100 - 80        | 0.5           | 1 39                 | 93 2  | 491 97                   | 0 1963  | 0.72     | 4 67           | 0 155           |
| T12            | 80 - 60         | 0.5           | 1.38                 | 92.4  | 622.65                   | 0 1963  | 0.80     | 4.71           | 0.171           |
| T13            | 60 - 40         | 0.5           | 1 38                 | 92 4  | 622.65                   | 0 1963  | 0.67     | 4.71           | 0.144           |
| T14            | 40 - 20         | 0.5           | 1.38                 | 92 4  | 622.65                   | 0 1963  | 0 76     | 471            | 0.175           |
| T15            | 20 - 0          | 0.5           | 1.34                 | 90.2  | 768.71                   | 0.1963  | 0.56     | 4.87           | 0.129           |

# Diagonal Design Data (Compression)

| Valmont                                                      | Job<br>56                     | 65090                | Page 68 of 72             |
|--------------------------------------------------------------|-------------------------------|----------------------|---------------------------|
| 1545 Pidco Dr                                                | Project<br>H-31 x290' SST - U | S-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone: (574)-936-4221<br>FAX: (574)-936-6458 | Client VB B                   | TS II, LLC           | Designed by               |

| Section<br>No. | Elevation | Size              | L     | $L_{\nu}$ | Kl/r            | A               | $P_{u}$ | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|-------------------|-------|-----------|-----------------|-----------------|---------|------------|-------------------------|
|                | fi        |                   | ft    | ft        |                 | in <sup>2</sup> | K       | K          | $\phi P_n$              |
| TI             | 290 - 280 | L2x2x1/8          | 5.75  | 2.69      | 90 8<br>K=1.12  | 0.4844          | -5.00   | 11 03      | 0 453                   |
| T2             | 280 - 260 | L2 1/2x2 1/2x3/16 | 7 17  | 3 40      | 91.8<br>K=1.11  | 0 9020          | -12.84  | 21 92      | 0.586                   |
| Т3             | 260 - 240 | L2x2x3/16         | 7.24  | 3.66      | 113 6<br>K=1 02 | 0 7150          | -8 44   | 12 51      | 0 675                   |
| T4             | 240 - 220 | L2 1/2x2 1/2x3/16 | 9.60  | 4 80      | 117.2<br>K=1.01 | 0.9020          | -7 72   | 14 82      | 0 521                   |
| T5             | 220 - 200 | L2 1/2x2 1/2x3/16 | 12 65 | 6.42      | 155.5<br>K=1 00 | 0.9020          | -7 89   | 8.42       | 0.937                   |
| T6             | 200 - 180 | L2 1/2x2 1/2x1/4  | 14 10 | 7.12      | 174 1<br>K=1 00 | 1 1900          | -7 07   | 8.87       | 0.797                   |
| T7             | 180 - 160 | 1,2 1/2x2 1/2x1/4 | 15 67 | 7.90      | 193.0<br>K=1.00 | 1 1900          | -7 06   | 7.22       | 0.978                   |
| T8             | 160 - 140 | L3x3x3/16         | 17 33 | 8.72      | 175.6<br>K=1.00 | 1 0900          | -7 64   | 7.99       | 0.957                   |
| Т9             | 140 - 120 | 2L3x3x3/16        | 25 03 | 13 04     | 166 7<br>K=1.00 | 2 1800          | -11 77  | 17.73      | 0.664                   |
| T10            | 120 - 100 | 2L3x3x3/16        | 26.36 | 13,67     | 174 7<br>K=1.00 | 2.1800          | -10 46  | 16.14      | 0.648                   |
| TH             | 100 - 80  | 2L3x3x3/16        | 27.77 | 14.35     | 183.4<br>K=1.00 | 2.1800          | -11.49  | 14.65      | 0 784                   |
| T12            | 80 - 60   | 2L3x3x3/16        | 29 25 | 15.07     | 192.5<br>K=1.00 | 2.1800          | -10 51  | 13 29      | 0 791                   |
| T13            | 60 - 40   | 2L3 1/2x3 1/2x1/4 | 30 78 | 15.82     | 173 9<br>K=1 00 | 3 3750          | -12 21  | 25 21      | 0 484                   |
| T14            | 40 - 20   | 2L3 1/2x3 1/2x1/4 | 32.37 | 16.60     | 182 5<br>K=1 00 | 3 3750          | -11.06  | 22 89      | 0 483                   |
| T15            | 20 - 0    | 2L3 1/2x3 1/2x1/4 | 34.01 | 17 40     | 191 3<br>K=1 00 | 3 3750          | -13.55  | 20.82      | 0.651                   |

 $P_n / \phi P_n$  controls

| Top Girt Design Data (Compression) |           |          |      |         |                 |                 |         |               | -                       |
|------------------------------------|-----------|----------|------|---------|-----------------|-----------------|---------|---------------|-------------------------|
| Section<br>No.                     | Elevation | Size     | L    | $L_{i}$ | Kl/r            | A               | $P_{u}$ | φ <i>P</i> ., | Ratio<br>P <sub>u</sub> |
|                                    | fi        |          | ſŧ   | ſì      |                 | in <sup>J</sup> | K       | K             | $\phi P_m$              |
| TI                                 | 290 - 280 | L3x3x1/4 | 5.00 | 4.49    | 105.5<br>K=1.16 | 1 4400          | -1 34   | 28 72         | 0.047                   |

 $<sup>^{1}</sup>$  P  $_{u}$  /  $\phi$ P $_{u}$  controls

# **Tension Checks**

# Valmont

1545 Pidco Dr.

Plymouth, IN Phone: (574)-936-4221 FAX: (574)-936-6458

| Job     |                                        | Page              |
|---------|----------------------------------------|-------------------|
|         | 565090                                 | 69 of 72          |
| Project |                                        | Date              |
|         | H-31 x290' SST - US-KY-5135 Fancy Farm | 07:03:40 10/06/22 |
| Client  | Construe Parker Anna                   | Designed by       |
|         | VB BTS II, LLC                         | 11                |

# Leg Design Data (Tension)

| Section<br>No. | Elevation | Size                                                        | L     | Lu    | Klir | A         | $P_{\kappa}$ | $\phi P_n$ | Ratio<br>P <sub>u</sub> |
|----------------|-----------|-------------------------------------------------------------|-------|-------|------|-----------|--------------|------------|-------------------------|
|                | fi        |                                                             | ſi    | ft    |      | $ua^2$    | K            | K          | φP.,                    |
| Tl             | 290 - 280 | P- 2.50" - 0.75" conn10"<br>-C-(Pirod 226172)               | 10 00 | 4 79  | 60.7 | 1,7040    | 5.07         | 76,68      | 0 066                   |
| T2             | 280 - 260 | P- 4.00"- 0.75" conn20'<br>-C-Trans-6B-4B-(Pirod<br>226184) | 20 00 | 6 67  | 53 0 | 3,1741    | 69.91        | 142 83     | 0 489                   |
| Т3             | 260 - 240 | P- 5 00"- 0 75"<br>connTrans-20' -C-(Pirod<br>226200)       | 20 03 | 6 68  | 42.7 | 4.2999    | 136.21       | 193 49     | 0 704                   |
| T4             | 240 - 220 | P- 6.00"- 0.75"<br>connHBD-Trans-20'<br>-C-(Pirod 229377)   | 20.03 | 6.68  | 35.7 | 5 5813    | 181 29       | 251 16     | 0 722                   |
| T5             | 220 - 200 | #12ZG-58 - 1.50" - 1.00"<br>conn (Pirod 194651)             | 20.03 | 10 02 | 35 7 | 5 3014    | 208 95       | 276 74     | 0.755                   |
| T6             | 200 - 180 | #12ZG-58 - 1.75" - 1.00"<br>connTR1-(Pirod 195213)          | 20.03 | 10.02 | 30.6 | 72158     | 239.43       | 376.67     | 0.636                   |
| T7             | 180 - 160 | #12ZG-58 - 1 75" - 1.00"<br>conn. (Pirod 195217)            | 20.03 | 10.02 | 30.6 | 7 2 1 5 8 | 266.90       | 376.67     | 0.709                   |
| Т8             | 160 - 140 | #12ZG-58 - 1.75" - 1.00"<br>conn. (Pirod 195217)            | 20.03 | 10 02 | 30 6 | 72158     | 293.09       | 376 67     | 0.778                   |
| Т9             | 140 - 120 | #12ZG-58 -2 00" - 0 875"<br>conn -TR3-(Pirod 195637)        | 20.03 | 20.03 | 48 8 | 9 4248    | 308.42       | 491 97     | 0.627                   |
| TIO            | 120 - 100 | #12ZG-58 -2 00" - 0.875"<br>conn. (Pirod 195639)            | 20 03 | 20.03 | 48 8 | 9 4248    | 334 87       | 491 97     | 0 681                   |
| T11            | 100 - 80  | #12ZG-58 -2 00" - 0 875"<br>conn. (Pirod 195639)            | 20 03 | 20.03 | 488  | 9 4248    | 354 96       | 491 97     | 0 722                   |
| T12            | 80 - 60   | #12ZG-58 -2 25" - 0.875"<br>conn. (Pirod 195960)            | 20 03 | 20.03 | 48.8 | 11 9282   | 377 92       | 622 65     | 0 607                   |
| T13            | 60 - 40   | #12ZG-58 -2 25" - 0.875"<br>conn. (Pirod 195960)            | 20 03 | 20.03 | 48.8 | 11 9282   | 397 27       | 622 65     | 0 638                   |
| T14            | 40 - 20   | #12ZG-58 -2 25" - 0.875"<br>conn (Pirod 195960)             | 20 03 | 20 03 | 48.8 | 11 9282   | 418.66       | 622.65     | 0.672                   |
| TIS            | 20 - 0    | #12ZG-58 BASE - 2.50" -<br>0.875" connTR4-(Pirod<br>281171) | 20 03 | 20 03 | 48.7 | 14.7262   | 436.01       | 768 71     | 0 567                   |

 $P_u / \phi P_n$  controls

# Truss-Leg Diagonal Data

| Section No. | Elevation<br>fi | Diagonal Size | L.j<br>ft | Kl/r | $\phi P_n$ $K$ | A<br>in² | ľ,<br>K | φν.<br>Κ | Stress<br>Ratio |
|-------------|-----------------|---------------|-----------|------|----------------|----------|---------|----------|-----------------|
| T5          | 220 ~ 200       | 0.5           | 1 42      | 95 2 | 276 74         | 0 1963   | 231     | 4.57     | 0.507           |
| T6          | 200 - 180       | 0.5           | 1 40      | 94 4 | 376 67         | 0 1963   | 0 90    | 461      | 0 196           |
| T7          | 180 - 160       | 0.5           | 1.40      | 94.4 | 376.67         | 0.1963   | 0.62    | 4.61     | 0.135           |
| T8          | 160 - 140       | 0 5           | 1 40      | 94.4 | 376.67         | 0 1963   | 0.74    | 461      | 0 163           |

|     |     |   |    | -1 |
|-----|-----|---|----|----|
| 100 | m   | 0 | 34 | ø  |
| 668 | 776 | U | r. | ø. |

1545 Pidco Dr.

Plymouth, IN Phone: (574)-936-4221 FAX: (574)-936-6458

| Jop     | 565090                                 | Page 70 of 72             |
|---------|----------------------------------------|---------------------------|
| Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Client  | VB BTS II, LLC                         | Designed by<br>JL         |

| Section<br>No. | Elevation<br>ft | Diagonal Size | L,i<br>fi | Klr  | φP <sub>n</sub><br>K | A<br>in | I' <sub>n</sub><br>K | φV <sub>n</sub><br>K | Stress<br>Ratio |
|----------------|-----------------|---------------|-----------|------|----------------------|---------|----------------------|----------------------|-----------------|
|                |                 |               |           |      | 1.00                 |         | 10.5                 |                      | V               |
| T9             | 140 - 120       | 0.5           | 1 39      | 93.2 | 491 97               | 0.1963  | 0 96                 | 4 67                 | 0.208           |
| T10            | 120 - 100       | 0.5           | 1.39      | 93.2 | 491.97               | 0 1963  | 0 93                 | 4 67                 | 0.201           |
| TII            | 100 - 80        | 0.5           | 1 39      | 93.2 | 491 97               | 0 1963  | 0 72                 | 4.67                 | 0.155           |
| T12            | 80 - 60         | 0.5           | 1 38      | 92 4 | 622 65               | 0 1963  | 0.80                 | 471                  | 0 171           |
| T13            | 60 - 40         | 0.5           | 1.38      | 92 4 | 622.65               | 0 1963  | 0.67                 | 4.71                 | 0 144           |
| T14            | 40 - 20         | 0.5           | 1 38      | 92 4 | 622.65               | 0 1963  | 0.76                 | 4.71                 | 0 175           |
| T15            | 20 - 0          | 0.5           | 1 34      | 90 2 | 768 71               | 0 1963  | 0 56                 | 4.87                 | 0 129           |

| Diagonal | Design | Data | (Tension) |
|----------|--------|------|-----------|
| Diagonai | Pesign | PRIL | 11011011  |

| Section<br>No. | Elevation | Size              | L     | $L_{\mu}$ | Kl/r  | A      | $P_n$ | $\phi P_n$ | Ratio<br>P <sub>*</sub> |
|----------------|-----------|-------------------|-------|-----------|-------|--------|-------|------------|-------------------------|
|                | fi        |                   | fi    | fi        |       | ın²    | K     | K          | $\phi P_n$              |
| Tt             | 290 - 280 | L2x2x1/8          | 5 75  | 2 69      | 55.1  | 0.2813 | 4 42  | 13.71      | 0 322                   |
| T2             | 280 - 260 | L2 1/2x2 1/2x3/16 | 7.17  | 3 40      | 55 3  | 0 5535 | 1231  | 26 98      | 0 456                   |
| Т3             | 260 - 240 | L2x2x3/16         | 7 24  | 3 66      | 74 8  | 0.4132 | 7 60  | 20 14      | 0.377                   |
| T4             | 240 - 220 | L2 1/2x2 1/2x3/16 | 9 60  | 4.80      | 76.9  | 0 5535 | 7 77  | 26 98      | 0 288 1                 |
| TS             | 220 - 200 | L2 1/2x2 1/2x3/16 | 12 65 | 6.42      | 102 2 | 0 5183 | 6.82  | 25.27      | 0.270 1                 |
| T6             | 200 - 180 | L2 1/2x2 1/2x1/4  | 13 35 | 6.76      | 108.7 | 0 6816 | 651   | 33 23      | 0 196 1                 |
| T7             | 180 - 160 | L2 1/2x2 1/2x1/4  | 15 67 | 7 90      | 126 5 | 0 6816 | 6.57  | 33 23      | 0 198 1                 |
| Т8             | 160 - 140 | L3x3x3/16         | 17.33 | 8 72      | 114 1 | 0.6593 | 7.74  | 32 14      | 0.241                   |
| T9             | 140 - 120 | 2L3x3x3/16        | 25.03 | 13.04     | 168 8 | 1 3537 | 10 28 | 66.00      | 0 156 1                 |
| T10            | 120 - 100 | 2L3x3x3/16        | 26.36 | 13.67     | 176.8 | 1.3537 | 10 26 | 66.00      | 0.156                   |
| TU             | 100 - 80  | 2L3x3x3/16        | 27 77 | 14.35     | 185 5 | 1 3537 | 10.02 | 66.00      | 0 152                   |
| T12            | 80 - 60   | 2L3x3x3/16        | 29.25 | 15.07     | 194.7 | 1 3537 | 10.31 | 66.00      | 0 156 '                 |
| T13            | 60 - 40   | 2L3 1/2x3 1/2x1/4 | 30 78 | 15 82     | 175 8 | 2.1563 | 10.60 | 105.12     | 0 101 1                 |
| T14            | 40 - 20   | 2L3 1/2x3 1/2x1/4 | 32 37 | 16 60     | 184.3 | 2 1563 | 11.29 | 105 12     | 0 107                   |
| TIS            | 20 - 0    | 2L3 1/2x3 1/2x1/4 | 34 01 | 17.40     | 193.2 | 2.1563 | 11 73 | 105.12     | 0.112                   |

#### Page Job 71 of 72 565090 Project Date H-31 x290' SST - US-KY-5135 Fancy Farm 07:03:40 10/06/22 Plymouth, IN Phone: (574)-936-4221 FAX: (574)-936-6458 Client Designed by VB BTS II, LLC JL

| Section<br>No. | Elevation | Size | L  | $L_{\nu}$ | Kl/r | A               | $P_w$ | $\phi P_n$ | Ratio<br>P., |
|----------------|-----------|------|----|-----------|------|-----------------|-------|------------|--------------|
| 3.45           | ſŧ        |      | ſì | ſŧ        |      | in <sup>2</sup> | K     | K          | $\phi P_n$   |
|                |           |      |    |           |      |                 |       |            | V            |

P , / \phi P , controls

Valmont

1545 Pidco Dr.

|                |           | To       | p Girt [ | )esigi | n Data | a (Tens         | ion) |            | initial and  |
|----------------|-----------|----------|----------|--------|--------|-----------------|------|------------|--------------|
| Section<br>No. | Elevation | Size     | L        | L      | Kl/r   | A               | Pin  | $\phi P_n$ | Ratio<br>P., |
| 110.           | ft        |          | ſŧ       | fi     |        | in <sup>2</sup> | K    | K          | $\phi P_n$   |
| TI             | 290 - 280 | L3x3x1/4 | 5.00     | 4 49   | 614    | 0.9159          | 1 13 | 44 65      | 0.025        |

<sup>&</sup>lt;sup>1</sup>  $P_u / \phi P_u$  controls

| Section | Capa       | city        | Table                 |
|---------|------------|-------------|-----------------------|
|         | - 60 lo 40 | The same in | It also note, if you, |

| Section<br>No. | Elevation<br>ft | Component<br>Type | Size                                                          | Critical<br>Element | P<br>K  | ØP <sub>allow</sub><br>K | %<br>Capacity | Pass<br>Fail |
|----------------|-----------------|-------------------|---------------------------------------------------------------|---------------------|---------|--------------------------|---------------|--------------|
| Tì             | 290 - 280       | Leg               | P- 2 50" - 0 75" conn -10'<br>-C-(Pirod 226172)               | 1                   | -7.59   | 58.58                    | 13.0          | Pass         |
| T2             | 280 - 260       | Leg               | P- 4 00"- 0 75" conn -20'<br>-C-Trans-6B-4B-(Pirod 226184)    | 21                  | -78 36  | 116.32                   | 674           | Pass         |
| T3             | 260 - 240       | Leg               | P- 5 00"- 0 75" conn -Trans-20'<br>-C-(Pirod 226200)          | 42                  | -148 35 | 169 37                   | 87.6          | Pass         |
| T4             | 240 - 220       | Leg               | P- 6.00"- 0.75"<br>conn -HBD-Trans-20' -C-(Pirod<br>229377)   | 61                  | -197 25 | 228 83                   | 86.2          | Pass         |
| T5             | 220 - 200       | Leg               | #12ZG-58 - 1 50" - 1.00" conn<br>(Pirod 194651)               | 82                  | -226.56 | 248 43                   | 912           | Pass         |
| T6             | 200 - 180       | Leg               | #12ZG-58 - 1 75" - 1 00"<br>connTR1-(Pirod 195213)            | 97                  | -261 49 | 347.96                   | 75 1          | Pass         |
| T7             | 180 - 160       | Leg               | #12ZG-58 - 1.75" - 1.00" conn<br>(Pirod 195217)               | 112                 | -292.70 | 347.96                   | 84 1          | Pass         |
| T8             | 160 - 140       | Leg               | #12ZG-58 - 1.75" - 1.00" conn.<br>(Pirod 195217)              | 127                 | -322 99 | 347 96                   | 92 8          | Pass         |
| T9             | 140 - 120       | Leg               | #12ZG-58 -2 00" - 0 875<br>conn -TR3-(Pirod 195637)           | 142                 | -339 90 | 401 94                   | 84.6          | Pass         |
| T10            | 120 - 100       | Leg               | #12ZG-58 -2 00" - 0 875" conn<br>(Pirod 195639)               | 151                 | -371.60 | 401 94                   | 92.5          | Pass         |
| TH             | 100 - 80        | Leg               | #12ZG-58 -2 00" - 0 875" conn<br>(Pirod 195639)               | 160                 | -396 17 | 401 94                   | 98.6          | Pass         |
| T12            | 80 - 60         | Leg               | #12ZG-58 -2.25" - 0.875" conn<br>(Pirod 195960)               | 169                 | -424 77 | 508 98                   | 83.5          | Pass         |
| T13            | 60 - 40         | Leg               | #12ZG-58 -2.25" - 0 875" conn<br>(Pirod 195960)               | 178                 | -449 05 | 508 98                   | 88.2          | Pass         |
| T14            | 40 - 20         | Leg               | #12ZG-58 -2 25" - 0 875" conn<br>(Pirod 195960)               | 187                 | -477 13 | 508 98                   | 93.7          | Pass         |
| T15            | 20 - 0          | Leg               | #12ZG-58 BASE - 2.50" -<br>0.875" conn -TR4-(Pirod<br>281171) | 196                 | -499 88 | 628 76                   | 79 5          | Pass         |
| TI             | 290 - 280       | Diagonal          | L2x2x1/8                                                      | 8                   | -5.00   | 11.03                    | 45.3          | Pass         |

| Valmont                                                     | Job     | 565090                                 | Page 72 of 72             |
|-------------------------------------------------------------|---------|----------------------------------------|---------------------------|
| 1545 Pidco Dr                                               | Project | H-31 x290' SST - US-KY-5135 Fancy Farm | Date<br>07:03:40 10/06/22 |
| Plymouth, IN<br>Phone (574)-936-4221<br>FAX: (574)-936-6458 | Client  | VB BTS II, LLC                         | Designed by<br>JL         |

| Section<br>No. | Elevation<br>ft | Component<br>Type | Size               | Critical<br>Element | P<br>K  | oP <sub>allow</sub> | %<br>Capacity    | Pass<br>Fail |
|----------------|-----------------|-------------------|--------------------|---------------------|---------|---------------------|------------------|--------------|
|                |                 |                   |                    | 172                 | - J. L. | Park and            | 59.2 (b)         |              |
| T2             | 280 - 260       | Diagonal          | L2 1/2x2 1/2x3/16  | 23                  | -12 84  | 21 92               | 58.6             | Pass         |
| T3             | 260 - 240       | Diagonal          | L2x2x3/16          | 55                  | -8 44   | 12 51               | 97.6 (b)<br>67.5 | Pass         |
| 13             | 200 - 240       | Diagonal          | L2X2X3/10          | 33                  | -0.44   | 14 31               | 67.8 (b)         | £ 435        |
| T4             | 240 - 220       | Diagonal          | L2 1/2x2 1/2x3/16  | 69                  | -7.72   | 14.82               | 52.1             | Pass         |
|                |                 |                   |                    | - 77                | 40:02   |                     | 577(b)           | 2000         |
| T5             | 220 - 200       | Diagonal          | 1,2 1/2x2 1/2x3/16 | 89                  | -7.89   | 8.42                | 93.7             | Pass         |
| T6             | 200 - 180       | Diagonal          | L2 1/2x2 1/2x1/4   | 104                 | -7 07   | 8.87                | 79 7             | Pass         |
| T7             | 180 - 160       | Diagonal          | L2 1/2x2 1/2x1/4   | 116                 | -7 06   | 7 22                | 978              | Pass         |
| T8             | 160 - 140       | Diagonal          | L3x3x3/16          | 135                 | -7.64   | 7.99                | 95 7             | Pass         |
| T9             | 140 - 120       | Diagonal          | 2L3x3x3/16         | 149                 | -11,77  | 17.73               | 66.4             | Pass         |
| TIO            | 120 - 100       | Diagonal          | 2L3x3x3/16         | 159                 | -10 46  | 16.14               | 64.8             | Pass         |
| T11            | 100 - 80        | Diagonal          | 2L3x3x3/16         | 167                 | -11.49  | 14.65               | 78 4             | Pass         |
| T12            | 80 - 60         | Diagonal          | 2L3x3x3/16         | 176                 | -10.51  | 13.29               | 79 1             | Pass         |
| T13            | 60 - 40         | Diagonal          | 2L3 1/2x3 1/2x1/4  | 185                 | -12.21  | 25.21               | 484              | Pass         |
| T14            | 40 - 20         | Diagonal          | 2L3 1/2x3 1/2x1/4  | 195                 | -11 06  | 22.89               | 483              | Pass         |
| T15            | 20 - 0          | Diagonal          | 2L3 1/2x3 1/2x1/4  | 203                 | -13.55  | 20.82               | 65 1             | Pass         |
| TI             | 290 - 280       | Top Girt          | L3x3x1/4           | 5                   | -1 34   | 28.72               | 4.7              | Pass         |
|                |                 |                   |                    |                     |         |                     | 9.0 (b)          |              |
|                |                 |                   |                    |                     |         |                     | Summary          |              |
|                |                 |                   |                    |                     |         | Leg (TII)           | 986              | Pass         |
|                |                 |                   |                    |                     |         | Diagonal<br>(T7)    | 978              | Pass         |
|                |                 |                   |                    |                     |         | Top Girt<br>(T1)    | 9.0              | Pass         |
|                |                 |                   |                    |                     |         | Bolt Checks         | 976              | Pass         |
|                |                 |                   |                    |                     |         | RATING =            | 98.6             | Pass         |

Program Version 8 I 1 0 - 6/3/2021 File Z /Documents/565/565090 VB BTS II - US-KY-5180 Fancy Farm/02 Tower Calcs/565090 eri



# GRAVES COUNTY, KENTUCKY VERIZON WIRELESS SITE NAME: EV FANCY FARMS

# **EXISTING TOWER LEGEND**

(GRANTED) FCC REGISTRATION #: 1018328 SUN MEDIA INC dba = WRIK RADIO LAT: 36° 45' 09.0"N LONG: 88° 29' 58.0"W

FCC REGISTRATION #: 1039661 B1 TEXAS GAS 11..... LAT: 36° 33' 26.0"N TEXAS GAS TRANSMISSION, LLC

LONG: 88° 38' 54.0"W

FCC REGISTRATION #: 1039661 GRAVES CO....
LAT: 36° 44' 07.0"N **GRAVES COUNTY CO-OP** 

LONG: 88° 39' 05.0"W

FCC REGISTRATION #: 1041880 BELLSOUTH (D1) TELECOMMUNICATIONS, LLC LAT: 36° 33′ 30.0″N

FCC REGISTRATION #: 1043138 MELVIN N SHOLAR LAT: 36° 45' 19.2"N LONG: 88° 39' 36.8"W

LONG: 88° 35' 22.0"W

FCC REGISTRATION #: 1043916 BRISTOL BROADCASTING (**F1**) COMPANY, INC. LAT: 36° 45′ 37.0″N LONG: 88° 38' 20.0"W

FCC REGISTRATION #: 1043917 **BRISTOL BROADCASTING** (**G1**) COMPANY, INC. LAT: 36° 45′ 58.0″N LONG: 88° 38' 50.0"W

FCC REGISTRATION #: 1044036 KENTUCKY AUTHORITY FOR EDUCATIONAL TELEVISION dba = MKMU LAT: 36° 41′ 34.0″N LONG: 88° 32' 11.0"W

FCC REGISTRATION #: 1044824 COMMONWEALTH OF KENTUCKY dba = EMERGENCY WARNING SYSTEM KEWS

FCC REGISTRATION #: 1201350 WEST KENTUCKY RURAL TELEPHONE COOP CORP INC LAT: 36° 53′ 08.0″N LONG: 88° 40' 29.0"W

LAT: 36° 51′ 17.0″N

LONG: 88° 39' 40.0"W

FCC REGISTRATION #: 1201356 WEST KENTUCKY RURAL (K1) TELEPHONE COOP CORP INC LAT: 36° 38′ 35.0″N LONG: 88° 35' 58.0"W

FCC REGISTRATION #: 1202399 KENTUCKY RSA NO. 1 PARTNERSHIP L1 KENTUCKY K5A NO. 1 LAT: 36° 34' 49.2"N LONG: 88° 31' 45.2"W

FCC REGISTRATION #: 1213964 CROWN CASTLE SOUTH LLC LAT: 36° 53' 53.3"N LONG: 88° 40' 32.2"W

FCC REGISTRATION #: 1215493 (N1) CROWN CASTLE SOUTH LLC LAT: 36° 36' 41.4"N LONG: 88° 47' 03.9"W

FCC REGISTRATION #: 1215862 O1 SBA PROPERTIES, LLC LAT: 36° 38' 28.6"N LONG: 88° 45' 21.4"W

FCC REGISTRATION #: 1215910 P1 SBA PROPERTIES, LLC LAT: 36° 50' 15.7"N LONG: 88° 40' 02.5"W

SBA PROPERTIES, LLC LAT: 36° 43' 02.0"N LONG: 88° 37' 10.0"W

FCC REGISTRATION #: 1217408

FCC REGISTRATION #: 1222179 SBA PROPERTIES, LLC LAT: 36° 45' 51.9"N LONG: 88° 38' 42.5"W

FCC REGISTRATION #: 1223176 CROWN CASTLE SOUTH LLC LAT: 36° 45' 23.0"N LONG: 88° 39' 36.1"W

FCC REGISTRATION #: 1223623 SBA PROPERTIES, LLC LAT: 36° 55' 55.2"N LONG: 88° 39' 19.1"W

(GRANTED) FCC REGISTRATION #: 1244198 FCC REGISTRATION #: 1314081 (U1) KENTUCKY RSA NO. 1 PARTNERSHIP LAT: 36° 41′ 12.0″N (C2) KENTUCKY RSA NO. 1 PARTNERSHIP LAT: 36° 51′ 39.0″N LONG: 88° 39' 33.5"W

FCC REGISTRATION #: 1261078 KENTUCKY RSA NO. 1 PARTNERSHIP LAT: 36° 46' 00.1"N LONG: 88° 38' 51.9"W

FCC REGISTRATION #: 1264848 MAYFIELD ELECTRIC & WATER LAT: 36° 43' 45.5"N

LONG: 88° 38' 57.2"W

FCC REGISTRATION #: 1266082 SBA TOWERS III LLC LAT: 36° 47' 54.5"N LONG: 88° 30' 22.2"W

(GRANTED) FCC REGISTRATION #: 1320153 (F2) TILLMAN INFRASTRUCTURE, LLC LAT: 36° 38, 16.2"N LONG: 88° 36' 09.6"W

FCC REGISTRATION #: 1271762

FCC REGISTRATION #: 1277402

FCC REGISTRATION #: 1287188

KENTUCKY RSA NO. 1 PARTNERSHIP LAT: 36° 55' 12.8"N

FCC REGISTRATION #: 1305782

B2 TILLMAN INFRASTRUCTURE, LLC LAT: 36° 55' 07.1"N

LONG: 88° 30' 26.8"W

LONG: 88° 31' 07.0"W

LAT: 36° 50′ 23.7″N

LONG: 88° 40' 32.7"W

LONG: 88° 36' 52.8"W

FCC REGISTRATION #: 1315881

(**D2**) VERTICAL BRIDGE DEVELOPMENT, LLC

FCC REGISTRATION #: 1317446

VERTICAL BRIDGE DEVELOPMENT, LLC LAT: 36° 46' 38.0"N

(GRANTED)

WEST KENTUCKY RURAL ELECTRIC LAT: 36° 42' 59.9"N

LONG: 88° 40' 13.0"W

LONG: 88° 32' 02.2"W

AMERICAN TOWERS LLC LAT: 36° 40' 56.3"N

LONG: 88° 44' 18.6"W



PREPARED FOR:

# **REVISIONS**

| REV. | DATE    | DESCRIPTION       |
|------|---------|-------------------|
| Α    | 9.14.22 | ISSUED FOR REVIEW |
|      |         |                   |
|      |         |                   |
|      |         |                   |
|      |         |                   |
|      |         |                   |
|      |         |                   |

SITE INFORMATION:

**EV FANCY FARM KENTUCKY HIGHWAY 80** FANCY FARM, KY 42039 **GRAVES COUNTY** 

**TAX PARCEL NUMBER:** 006.00.00.005.00

**PROPERTY OWNER:** KM & K FARMS LLC P O BOX 48035 COON RAPIDS, MN 55448

SOURCE OF TITLE: DEED BOOK 506, PAGE 639

22-123884 POD NUMBER: DRAWN BY: DAP MEP CHECKED BY: SURVEY DATE: 6.24.20 PLAT DATE: 9.14.22

SHEET TITLE:

**TOWER GRID MAP** 

SHEET NUMBER: (1 page)

**L**-.





Mail Processing Center
Federal Aviation Administration
Southwest Regional Office
Obstruction Evaluation Group
10101 Hillwood Parkway
Fort Worth, TX 76177

Issued Date: 01/06/2023

Network Regulatory Cellco Partnership 5055 North Point Pkwy NP2NE Network Engineering Alpharetta, GA 30022

## \*\* DETERMINATION OF NO HAZARD TO AIR NAVIGATION \*\*

The Federal Aviation Administration has conducted an aeronautical study under the provisions of 49 U.S.C., Section 44718 and if applicable Title 14 of the Code of Federal Regulations, part 77, concerning:

Structure: Antenna Tower EV Fancy Farm (16207023)

Location: Fancy Farm, KY

Latitude: 36-48-09.61N NAD 83

Longitude: 88-47-54.21W

Heights: 431 feet site elevation (SE)

295 feet above ground level (AGL) 726 feet above mean sea level (AMSL)

This aeronautical study revealed that the structure does not exceed obstruction standards and would not be a hazard to air navigation provided the following condition(s), if any, is(are) met:

Emissions from this site must be in compliance with the parameters set by collaboration between the FAA and telecommunications companies and reflected in the FAA 5G C band compatibility evaluation process (such as power, frequencies, and tilt angle). Operational use of this frequency band is not objectionable provided the Wireless Providers (WP) obtain and adhere to the parameters established by the FAA 5G C band compatibility evaluation process. **Failure to comply with this condition will void this determination of no hazard.** 

As a condition to this Determination, the structure is to be marked/lighted in accordance with FAA Advisory circular 70/7460-1 M, Obstruction Marking and Lighting, a med-dual system-Chapters 4,8(M-Dual),&15.

Any failure or malfunction that lasts more than thirty (30) minutes and affects a top light or flashing obstruction light, regardless of its position, should be reported immediately to (877) 487-6867 so a Notice to Airmen (NOTAM) can be issued. As soon as the normal operation is restored, notify the same number.

It is required that FAA Form 7460-2, Notice of Actual Construction or Alteration, be e-filed any time the project is abandoned or:

|    | At least 10 days prior to start of construction (7460-2, Part 1)                 |    |
|----|----------------------------------------------------------------------------------|----|
| X_ | Within 5 days after the construction reaches its greatest height (7460-2, Part 2 | .) |

## See attachment for additional condition(s) or information.

This determination expires on 07/06/2024 unless:

- (a) the construction is started (not necessarily completed) and FAA Form 7460-2, Notice of Actual Construction or Alteration, is received by this office.
- (b) extended, revised, or terminated by the issuing office.
- (c) the construction is subject to the licensing authority of the Federal Communications Commission (FCC) and an application for a construction permit has been filed, as required by the FCC, within 6 months of the date of this determination. In such case, the determination expires on the date prescribed by the FCC for completion of construction, or the date the FCC denies the application.

NOTE: REQUEST FOR EXTENSION OF THE EFFECTIVE PERIOD OF THIS DETERMINATION MUST BE E-FILED AT LEAST 15 DAYS PRIOR TO THE EXPIRATION DATE. AFTER RE-EVALUATION OF CURRENT OPERATIONS IN THE AREA OF THE STRUCTURE TO DETERMINE THAT NO SIGNIFICANT AERONAUTICAL CHANGES HAVE OCCURRED, YOUR DETERMINATION MAY BE ELIGIBLE FOR ONE EXTENSION OF THE EFFECTIVE PERIOD.

This determination is based, in part, on the foregoing description which includes specific coordinates, heights, frequency(ies) and power. Any changes in coordinates, heights, and frequencies or use of greater power, except those frequencies specified in the Colo Void Clause Coalition; Antenna System Co-Location; Voluntary Best Practices, effective 21 Nov 2007, will void this determination. Any future construction or alteration, including increase to heights, power, or the addition of other transmitters, requires separate notice to the FAA. This determination includes all previously filed frequencies and power for this structure.

If construction or alteration is dismantled or destroyed, you must submit notice to the FAA within 5 days after the construction or alteration is dismantled or destroyed.

This determination does include temporary construction equipment such as cranes, derricks, etc., which may be used during actual construction of the structure. However, this equipment shall not exceed the overall heights as indicated above. Equipment which has a height greater than the studied structure requires separate notice to the FAA.

This determination concerns the effect of this structure on the safe and efficient use of navigable airspace by aircraft and does not relieve the sponsor of compliance responsibilities relating to any law, ordinance, or regulation of any Federal, State, or local government body.

A copy of this determination will be forwarded to the Federal Communications Commission (FCC) because the structure is subject to their licensing authority.

If we can be of further assistance, please contact our office at (817) 222-5928, or chris.smith@faa.gov. On any future correspondence concerning this matter, please refer to Aeronautical Study Number 2022-ASO-27278-OE.

Signature Control No: 542760464-567380305 (DNE)

Chris Smith Specialist

Attachment(s)
Additional Information
Frequency Data
Map(s)

cc: FCC

## Additional information for ASN 2022-ASO-27278-OE

At a distance of 15.9 nautical miles from the site emissions from the 2496-2690 MHz transmitters must be less than -155 dBm in the 2700-3100 MHz Surveillance Radar frequency band.

Additionally, Part 77 authorizes the FAA to evaluate a structure or object's potential electromagnetic effects on air navigation, communication facilities, and other surveillance systems. It also authorizes study of impact on arrival, departure, and en route procedures for aircraft operating under visual or instrument flight rules, as well as the impact on airport traffic capacity at existing public use airports. Broadcast in the 3.7 to 3.98 GHz frequency (5G C band) currently causes errors in certain aircraft radio altimeters and the FAA has determined they cannot be relied upon to perform their intended function when experiencing interference from wireless broadband operations in the 5G C band. The FAA has adopted Airworthiness Directives for all transport and commuter category aircraft equipped with radio altimeters that prohibit certain operations when in the presence of 5G C band.

This determination of no hazard is based upon those mitigations implemented by the FAA and operators of transport and commuter category aircraft, and helicopters operating in the vicinity of your proposed location. It is also based on telecommunication industry and FAA collaboration on acceptable power levels and other parameters as reflected in the FAA 5G C band evaluation process.

The FAA 5G C band compatibility evaluation is a data analytics system used by FAA to evaluate operational hazards related to aircraft design. The FAA 5G C band compatibility evaluation process refers to the process in which the telecommunication companies and the FAA have set parameters, such as power output, locations, frequencies, and tilt angles for antenna that mitigate the hazard to aviation. As the telecommunication companies and FAA refine the tools and methodology, the allowable frequencies and power levels may change in the FAA 5G C band compatibility evaluation process. Therefore, your proposal will not have a substantial adverse effect on the safe and efficient use of the navigable airspace by aircraft provided the equipment and emissions are in compliance with the parameters established through the FAA 5G C band compatibility evaluation process.

Any future changes that are not consistent with the parameters listed in the FAA 5G C band compatibility evaluation process will void this determination of no hazard.

| FREQUENCY   FREQUENCY   UNIT   ERP   UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOW       | HIGH      | FREQUENCY |      | ERP  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|------|------|
| 6 7 GHz 42 dBW 10 11.7 GHz 55 dBW 10 11.7 GHz 42 dBW 17.7 19.7 GHz 55 dBW 17.7 19.7 GHz 55 dBW 17.7 19.7 GHz 42 dBW 21.2 23.6 GHz 42 dBW 21.2 23.6 GHz 55 dBW 21.2 23.6 GHz 42 dBW 21.2 23.6 GHz 42 dBW 614 698 MHz 2000 W 614 698 MHz 1000 W 698 806 MHz 1000 W 806 824 MHz 500 W 806 901 MHz 500 W 824 849 MHz 500 W 851 866 MHz 500 W 851 866 MHz 500 W 851 866 MHz 500 W 869 894 MHz 500 W 879 932 MHz 7 W 899 932 MHz 7 W 901 902 MHz 3500 W 901 902 MHz 7 W 901 902 MHz 3500 W 901 901 MHz 3500 W 901 902 MHz 3500 W 901 900 MHz 1000 W 901 901 MHz 500 W 901 902 MHz 1000 W 901 903 903 MHz 1000 W 904 904 MHz 1000 W 905 905 MHz 1000 W 906 906 MHz 1000 W 907 907 MHz 1000 W 908 908 MHz 1000 W 909 MHz 1000 MHz 1000 W 909 MHz 1000 MHz 10000 MHz 1000 MHz 10000 MHz 1000 MHz 10000 MHz 10000 MHz 10000 MHz 10000 MHz 10000 MHz 10000 M | FREQUENCY | FREQUENCY | UNIT      | ERP  | UNIT |
| 6 7 GHz 42 dBW 10 11.7 GHz 55 dBW 10 11.7 GHz 42 dBW 17.7 19.7 GHz 55 dBW 17.7 19.7 GHz 55 dBW 17.7 19.7 GHz 42 dBW 21.2 23.6 GHz 42 dBW 21.2 23.6 GHz 55 dBW 21.2 23.6 GHz 42 dBW 21.2 23.6 GHz 42 dBW 614 698 MHz 2000 W 614 698 MHz 1000 W 698 806 MHz 1000 W 806 824 MHz 500 W 806 901 MHz 500 W 824 849 MHz 500 W 851 866 MHz 500 W 851 866 MHz 500 W 851 866 MHz 500 W 869 894 MHz 500 W 879 932 MHz 7 W 899 932 MHz 7 W 901 902 MHz 3500 W 901 902 MHz 7 W 901 902 MHz 3500 W 901 901 MHz 3500 W 901 902 MHz 3500 W 901 900 MHz 1000 W 901 901 MHz 500 W 901 902 MHz 1000 W 901 903 903 MHz 1000 W 904 904 MHz 1000 W 905 905 MHz 1000 W 906 906 MHz 1000 W 907 907 MHz 1000 W 908 908 MHz 1000 W 909 MHz 1000 MHz 1000 W 909 MHz 1000 MHz 10000 MHz 1000 MHz 10000 MHz 1000 MHz 10000 MHz 10000 MHz 10000 MHz 10000 MHz 10000 MHz 10000 M | _         | _         |           |      |      |
| 10         11.7         GHz         55         dBW           10         11.7         GHz         42         dBW           17.7         19.7         GHz         42         dBW           17.7         19.7         GHz         42         dBW           21.2         23.6         GHz         55         dBW           21.2         23.6         GHz         42         dBW           614         698         MHz         2000         W           614         698         MHz         1000         W           698         806         MHz         1000         W           806         824         MHz         1000         W           806         824         MHz         500         W           806         901         MHz         500         W           824         849         MHz         500         W           851         866         MHz         500         W           869         894         MHz         500         W           896         901         MHz         500         W           929         932         MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |           |           |      |      |
| 10 11.7 GHz 42 dBW 17.7 19.7 GHz 55 dBW 17.7 19.7 GHz 42 dBW 21.2 23.6 GHz 55 dBW 21.2 23.6 GHz 55 dBW 21.2 23.6 GHz 42 dBW 614 698 MHz 2000 W 614 698 MHz 1000 W 698 806 824 MHz 1000 W 806 824 MHz 500 W 8806 991 MHz 500 W 8851 866 MHz 500 W 8851 866 MHz 500 W 8851 866 MHz 500 W 8869 894 MHz 500 W 8860 901 MHz 500 W 8860 901 MHz 500 W 8860 MHz 500 W 8860 MHz 500 W 8860 MHz 500 W 8851 866 MHz 500 W 8860 MHz 500 W 8660 MHz 500 MHz 500 W 8660 MHz 500 MHz 500 MHz 500 W 8660 MHz 500 MHz |           |           |           |      |      |
| 17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |           |           |      |      |
| 17.7         19.7         GHz         42         dBW           21.2         23.6         GHz         55         dBW           614         698         MHz         2000         W           614         698         MHz         1000         W           614         698         MHz         1000         W           698         806         MHz         1000         W           806         824         MHz         500         W           806         824         MHz         500         W           806         901         MHz         500         W           824         849         MHz         500         W           851         866         MHz         500         W           869         894         MHz         500         W           896         901         MHz         500         W           901         902         MHz         7         W           930         931         MHz         3500         W           931         932         MHz         3500         W           932         932.5         MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |           |           |      |      |
| 21.2         23.6         GHz         55         dBW           21.2         23.6         GHz         42         dBW           614         698         MHz         2000         W           614         698         MHz         1000         W           698         806         MHz         1000         W           806         824         MHz         500         W           806         901         MHz         500         W           806         901         MHz         500         W           824         849         MHz         500         W           851         866         MHz         500         W           869         894         MHz         500         W           896         901         MHz         500         W           901         902         MHz         7         W           930         931         MHz         3500         W           931         932         MHz         3500         W           932         932.5         MHz         17         dBW           940         MHz         1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |           |           |      |      |
| 21.2         23.6         GHz         42         dBW           614         698         MHz         2000         W           614         698         MHz         1000         W           614         698         MHz         1000         W           698         806         MHz         1000         W           806         824         MHz         500         W           806         901         MHz         500         W           824         849         MHz         500         W           851         866         MHz         500         W           869         894         MHz         500         W           896         901         MHz         7         W           929         932         MHz         7         W           930         931         MHz         3500         W           931         932         MHz         3500         W           932         932.5         MHz         17         dBW           935         940         MHz         1000         W           940         941         MHz <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |           |      |      |
| 614 698 MHz 2000 W 614 698 MHz 1000 W 698 806 MHz 1000 W 806 824 MHz 1000 W 806 824 MHz 500 W 806 901 MHz 500 W 824 849 MHz 500 W 851 866 MHz 500 W 8896 901 MHz 500 W 896 901 MHz 500 W 897 8984 MHz 500 W 8986 901 MHz 500 W 898 901 MHz 77 W 901 902 MHz 7 W 929 932 MHz 3500 W 931 MHz 3500 W 932 932.5 MHz 3500 W 932 932.5 MHz 17 dBW 935 940 MHz 17 dBW 940 941 MHz 1000 W 940 941 MHz 500 W 1670 1675 MHz 500 W 1710 1755 MHz 500 W 1850 1910 MHz 1640 W 1850 1990 MHz 1640 W 1930 1990 MHz 1640  |           |           |           |      |      |
| 614 698 MHz 1000 W 698 806 MHz 1000 W 806 824 MHz 500 W 806 901 MHz 500 W 824 849 MHz 500 W 824 849 MHz 500 W 851 866 MHz 500 W 869 894 MHz 500 W 896 901 MHz 500 W 896 901 MHz 500 W 896 901 MHz 500 W 901 902 MHz 7 W 929 932 MHz 3500 W 931 MHz 3500 W 931 932 MHz 3500 W 931 932 MHz 3500 W 932 932.5 MHz 3500 W 935 940 MHz 17 dBW 940 941 MHz 3500 W 1670 1675 MHz 500 W 1710 1755 MHz 500 W 1850 1910 MHz 1640 W 1850 1990 MHz 1640 W 1850 1990 MHz 1640 W 1990 2025 MHz 500 W 2110 2200 MHz 500 W 2305 2310 MHz 500 W 2315 2360 MHz 500 W 2496 2690 MHz 2000 W 2496 2690 MHz 2000 W 257500 28350 MHz 500 W 25100 29250 MHz 500 W 25100 29250 MHz 500 W 25100 3880 MHz 500 W 25100 3880 MHz 500 W 25100 3880 MHz 5500 W 25100 3880 MHz 5500 W 25100 29250 MHz 5500 W 25100 3880 MHz 5500 W 25100 3880 MHz 5500 W 25100 3880 MHz 5500 W 25100 29250 MHz 5500 W 25100 29250 MHz 5500 W 25100 3880 MHz 5500 W 25100 3880 MHz 5500 W 25100 29250 MHz 5500 W 25100 29250 MHz 5500 W 25100 29250 MHz 5500 W 25100 3880 MHz 5500 W 25100 3980 MHz 5500 W 25100 29250 MHz 5500 W 25100 5500 MHz 5500 W 25100 5500 MHz 5500 MHz 5500 W 25100 5500 MHz 5500  |           |           |           |      |      |
| 698         806         MHz         1000         W           806         824         MHz         500         W           806         901         MHz         500         W           824         849         MHz         500         W           851         866         MHz         500         W           869         894         MHz         500         W           896         901         MHz         500         W           901         902         MHz         7         W           929         932         MHz         3500         W           930         931         MHz         3500         W           931         932         MHz         3500         W           931         932         MHz         3500         W           932         932.5         MHz         17         dBW           935         940         MHz         1000         W           940         941         MHz         3500         W           1670         1675         MHz         500         W           1850         1910         MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |           |           |      |      |
| 806         824         MHz         500         W           806         901         MHz         500         W           824         849         MHz         500         W           851         866         MHz         500         W           869         894         MHz         500         W           896         901         MHz         500         W           901         902         MHz         7         W           929         932         MHz         3500         W           930         931         MHz         3500         W           931         932         MHz         3500         W           932         932.5         MHz         17         dBW           935         940         MHz         1000         W           940         941         MHz         3500         W           1670         1675         MHz         500         W           1710         1755         MHz         500         W           1850         1910         MHz         1640         W           1850         1990         MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |           | MHz       |      |      |
| 806         901         MHz         500         W           824         849         MHz         500         W           851         866         MHz         500         W           869         894         MHz         500         W           896         901         MHz         500         W           991         902         MHz         7         W           929         932         MHz         3500         W           930         931         MHz         3500         W           931         932         MHz         3500         W           932         932.5         MHz         17         dBW           935         940         MHz         1000         W           940         941         MHz         3500         W           1670         1675         MHz         500         W           1710         1755         MHz         500         W           1850         1910         MHz         1640         W           1930         1990         MHz         1640         W           1930         1990         MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 698       | 806       | MHz       | 1000 | W    |
| 824       849       MHz       500       W         851       866       MHz       500       W         869       894       MHz       500       W         896       901       MHz       500       W         901       902       MHz       7       W         929       932       MHz       3500       W         930       931       MHz       3500       W         931       932       MHz       3500       W         932       932.5       MHz       17       dBW         935       940       MHz       1000       W         940       941       MHz       3500       W         1670       1675       MHz       500       W         1710       1755       MHz       500       W         1850       1910       MHz       1640       W         1880       1990       MHz       1640       W         1930       1990       MHz       1640       W         1990       2025       MHz       500       W         2305       2310       MHz       2000       W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 806       | 824       | MHz       | 500  | W    |
| 851       866       MHz       500       W         869       894       MHz       500       W         896       901       MHz       500       W         901       902       MHz       7       W         929       932       MHz       3500       W         930       931       MHz       3500       W         931       932       MHz       3500       W         932       932.5       MHz       17       dBW         935       940       MHz       1000       W         940       941       MHz       3500       W         1670       1675       MHz       500       W         1710       1755       MHz       500       W         1850       1910       MHz       1640       W         1850       1990       MHz       1640       W         1930       1990       MHz       1640       W         1990       MHz       500       W         2310       200       MHz       500       W         2305       2310       MHz       2000       W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 806       | 901       | MHz       | 500  | W    |
| 869       894       MHz       500       W         896       901       MHz       500       W         901       902       MHz       7       W         929       932       MHz       3500       W         930       931       MHz       3500       W         931       932       MHz       3500       W         932       932.5       MHz       17       dBW         935       940       MHz       1000       W         940       941       MHz       3500       W         1670       1675       MHz       500       W         1710       1755       MHz       500       W         1850       1910       MHz       1640       W         1850       1990       MHz       1640       W         1930       1990       MHz       1640       W         1990       2025       MHz       500       W         2110       2200       MHz       500       W         2305       2310       MHz       2000       W         2345       2360       MHz       2000       W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 824       | 849       | MHz       | 500  | W    |
| 896       901       MHz       7       W         901       902       MHz       7       W         929       932       MHz       3500       W         930       931       MHz       3500       W         931       932       MHz       3500       W         932       932.5       MHz       17       dBW         935       940       MHz       1000       W         940       941       MHz       1000       W         1670       1675       MHz       500       W         1710       1755       MHz       500       W         1850       1910       MHz       1640       W         1930       1990       MHz       1640       W         1990       MHz       1640       W         1990       MHz       500       W         2110       2200       MHz       500       W         2305       2310       MHz       2000       W         2345       2360       MHz       2000       W         2496       2690       MHz       47       dBm         3700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 851       | 866       | MHz       | 500  | W    |
| 901         902         MHz         7         W           929         932         MHz         3500         W           930         931         MHz         3500         W           931         932         MHz         3500         W           932         932.5         MHz         17         dBW           935         940         MHz         1000         W           940         941         MHz         3500         W           1670         1675         MHz         500         W           1710         1755         MHz         500         W           1850         1910         MHz         1640         W           1850         1990         MHz         1640         W           1930         1990         MHz         1640         W           1990         2025         MHz         500         W           2305         2310         MHz         500         W           2305         2360         MHz         2000         W           2345         2360         MHz         500         W           2496         2690 <td< td=""><td>869</td><td>894</td><td>MHz</td><td>500</td><td>W</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 869       | 894       | MHz       | 500  | W    |
| 929         932         MHz         3500         W           930         931         MHz         3500         W           931         932         MHz         3500         W           932         932.5         MHz         17         dBW           935         940         MHz         1000         W           940         941         MHz         3500         W           1670         1675         MHz         500         W           1710         1755         MHz         500         W           1850         1910         MHz         1640         W           1850         1990         MHz         1640         W           1930         1990         MHz         1640         W           1990         2025         MHz         500         W           2110         2200         MHz         500         W           2305         2310         MHz         2000         W           2345         2360         MHz         500         W           2496         2690         MHz         500         W           3550         3700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 896       | 901       | MHz       | 500  | W    |
| 930 931 MHz 3500 W 931 932 MHz 3500 W 932 932.5 MHz 17 dBW 935 940 MHz 1000 W 940 941 MHz 3500 W 1670 1675 MHz 500 W 1710 1755 MHz 500 W 1880 1910 MHz 1640 W 1850 1990 MHz 1640 W 1930 1990 MHz 1640 W 1930 1990 MHz 1640 W 1990 2025 MHz 500 W 2110 2200 MHz 500 W 2305 2310 MHz 500 W 2305 2360 MHz 2000 W 2305 2360 MHz 2000 W 2345 2360 MHz 2000 W 2345 2360 MHz 2000 W 2345 2360 MHz 500 W 23550 3700 MHz 500 W 3550 3700 MHz 500 W 3550 3700 MHz 500 W 3550 3700 MHz 500 W 3700 3980 MHz 3280 W 37500 28350 MHz 3280 W 37500 28350 MHz 75 dBm 31000 31300 MHz 75 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 901       | 902       | MHz       | 7    | W    |
| 931       932       MHz       3500       W         932       932.5       MHz       17       dBW         935       940       MHz       1000       W         940       941       MHz       3500       W         1670       1675       MHz       500       W         1710       1755       MHz       500       W         1850       1910       MHz       1640       W         1850       1990       MHz       1640       W         1930       1990       MHz       1640       W         1990       2025       MHz       500       W         2110       2200       MHz       500       W         2305       2310       MHz       2000       W         2305       2360       MHz       2000       W         2345       2360       MHz       2000       W         2496       2690       MHz       500       W         3550       3700       MHz       47       dBm         3700       3980       MHz       3280       W         27500       28350       MHz       75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 929       | 932       | MHz       | 3500 | W    |
| 932         932.5         MHz         17         dBW           935         940         MHz         1000         W           940         941         MHz         3500         W           1670         1675         MHz         500         W           1710         1755         MHz         500         W           1850         1910         MHz         1640         W           1850         1990         MHz         1640         W           1930         1990         MHz         1640         W           1990         2025         MHz         500         W           2110         2200         MHz         500         W           2305         2310         MHz         2000         W           2305         2360         MHz         2000         W           2345         2360         MHz         500         W           2496         2690         MHz         500         W           3550         3700         MHz         47         dBm           3700         3980         MHz         3280         W           27500         28350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 930       | 931       | MHz       | 3500 | W    |
| 935         940         MHz         1000         W           940         941         MHz         3500         W           1670         1675         MHz         500         W           1710         1755         MHz         500         W           1850         1910         MHz         1640         W           1850         1990         MHz         1640         W           1930         1990         MHz         1640         W           1990         2025         MHz         500         W           2110         2200         MHz         500         W           2305         2310         MHz         2000         W           2305         2360         MHz         2000         W           2345         2360         MHz         2000         W           2496         2690         MHz         500         W           3550         3700         MHz         47         dBm           3700         3980         MHz         3280         W           27500         28350         MHz         75         dBm           31000         31300 </td <td>931</td> <td>932</td> <td>MHz</td> <td>3500</td> <td>W</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 931       | 932       | MHz       | 3500 | W    |
| 940       941       MHz       3500       W         1670       1675       MHz       500       W         1710       1755       MHz       500       W         1850       1910       MHz       1640       W         1850       1990       MHz       1640       W         1930       1990       MHz       1640       W         1990       2025       MHz       500       W         2110       2200       MHz       500       W         2305       2310       MHz       2000       W         2305       2360       MHz       2000       W         2345       2360       MHz       2000       W         2496       2690       MHz       500       W         3550       3700       MHz       47       dBm         3700       3980       MHz       3280       W         27500       28350       MHz       75       dBm         31000       31300       MHz       75       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 932       | 932.5     | MHz       | 17   | dBW  |
| 1670       1675       MHz       500       W         1710       1755       MHz       500       W         1850       1910       MHz       1640       W         1850       1990       MHz       1640       W         1930       1990       MHz       1640       W         1990       2025       MHz       500       W         2110       2200       MHz       500       W         2305       2310       MHz       2000       W         2305       2360       MHz       2000       W         2345       2360       MHz       2000       W         2496       2690       MHz       500       W         3550       3700       MHz       47       dBm         3700       3980       MHz       3280       W         27500       28350       MHz       75       dBm         31000       31300       MHz       75       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 935       | 940       | MHz       | 1000 | W    |
| 1710       1755       MHz       500       W         1850       1910       MHz       1640       W         1850       1990       MHz       1640       W         1930       1990       MHz       1640       W         1990       2025       MHz       500       W         2110       2200       MHz       500       W         2305       2310       MHz       2000       W         2305       2360       MHz       2000       W         2345       2360       MHz       2000       W         2496       2690       MHz       500       W         3550       3700       MHz       47       dBm         3700       3980       MHz       3280       W         27500       28350       MHz       75       dBm         29100       29250       MHz       75       dBm         31000       31300       MHz       75       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 940       | 941       | MHz       | 3500 | W    |
| 1850       1910       MHz       1640       W         1850       1990       MHz       1640       W         1930       1990       MHz       1640       W         1990       2025       MHz       500       W         2110       2200       MHz       500       W         2305       2310       MHz       2000       W         2305       2360       MHz       2000       W         2345       2360       MHz       2000       W         2496       2690       MHz       500       W         3550       3700       MHz       47       dBm         3700       3980       MHz       3280       W         27500       28350       MHz       75       dBm         31000       31300       MHz       75       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1670      | 1675      | MHz       | 500  | W    |
| 1850       1990       MHz       1640       W         1930       1990       MHz       1640       W         1990       2025       MHz       500       W         2110       2200       MHz       500       W         2305       2310       MHz       2000       W         2305       2360       MHz       2000       W         2345       2360       MHz       2000       W         2496       2690       MHz       500       W         3550       3700       MHz       47       dBm         3700       3980       MHz       3280       W         27500       28350       MHz       75       dBm         29100       29250       MHz       75       dBm         31000       31300       MHz       75       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1710      | 1755      | MHz       | 500  | W    |
| 1930       1990       MHz       1640       W         1990       2025       MHz       500       W         2110       2200       MHz       500       W         2305       2310       MHz       2000       W         2305       2360       MHz       2000       W         2345       2360       MHz       2000       W         2496       2690       MHz       500       W         3550       3700       MHz       47       dBm         3700       3980       MHz       3280       W         27500       28350       MHz       75       dBm         29100       29250       MHz       75       dBm         31000       31300       MHz       75       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1850      | 1910      | MHz       | 1640 | W    |
| 1930       1990       MHz       1640       W         1990       2025       MHz       500       W         2110       2200       MHz       500       W         2305       2310       MHz       2000       W         2305       2360       MHz       2000       W         2345       2360       MHz       2000       W         2496       2690       MHz       500       W         3550       3700       MHz       47       dBm         3700       3980       MHz       3280       W         27500       28350       MHz       75       dBm         29100       29250       MHz       75       dBm         31000       31300       MHz       75       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1850      | 1990      | MHz       | 1640 | W    |
| 2110       2200       MHz       500       W         2305       2310       MHz       2000       W         2305       2360       MHz       2000       W         2345       2360       MHz       2000       W         2496       2690       MHz       500       W         3550       3700       MHz       47       dBm         3700       3980       MHz       3280       W         27500       28350       MHz       75       dBm         29100       29250       MHz       75       dBm         31000       31300       MHz       75       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1930      | 1990      | MHz       | 1640 |      |
| 2305       2310       MHz       2000       W         2305       2360       MHz       2000       W         2345       2360       MHz       2000       W         2496       2690       MHz       500       W         3550       3700       MHz       47       dBm         3700       3980       MHz       3280       W         27500       28350       MHz       75       dBm         29100       29250       MHz       75       dBm         31000       31300       MHz       75       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1990      | 2025      | MHz       | 500  | W    |
| 2305       2360       MHz       2000       W         2345       2360       MHz       2000       W         2496       2690       MHz       500       W         3550       3700       MHz       47       dBm         3700       3980       MHz       3280       W         27500       28350       MHz       75       dBm         29100       29250       MHz       75       dBm         31000       31300       MHz       75       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2110      | 2200      | MHz       | 500  | W    |
| 2345       2360       MHz       2000       W         2496       2690       MHz       500       W         3550       3700       MHz       47       dBm         3700       3980       MHz       3280       W         27500       28350       MHz       75       dBm         29100       29250       MHz       75       dBm         31000       31300       MHz       75       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2305      | 2310      | MHz       | 2000 | W    |
| 2496       2690       MHz       500       W         3550       3700       MHz       47       dBm         3700       3980       MHz       3280       W         27500       28350       MHz       75       dBm         29100       29250       MHz       75       dBm         31000       31300       MHz       75       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2305      | 2360      | MHz       | 2000 | W    |
| 3550       3700       MHz       47       dBm         3700       3980       MHz       3280       W         27500       28350       MHz       75       dBm         29100       29250       MHz       75       dBm         31000       31300       MHz       75       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2345      | 2360      | MHz       | 2000 | W    |
| 3550       3700       MHz       47       dBm         3700       3980       MHz       3280       W         27500       28350       MHz       75       dBm         29100       29250       MHz       75       dBm         31000       31300       MHz       75       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |           |           |      | W    |
| 3700       3980       MHz       3280       W         27500       28350       MHz       75       dBm         29100       29250       MHz       75       dBm         31000       31300       MHz       75       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3550      |           |           |      |      |
| 27500       28350       MHz       75       dBm         29100       29250       MHz       75       dBm         31000       31300       MHz       75       dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |           |           |      |      |
| 29100 29250 MHz 75 dBm<br>31000 31300 MHz 75 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |           |           |      |      |
| 31000 31300 MHz 75 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |           |           |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |           |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |           |      |      |

# $TOPO\ Map\ for\ ASN\ 2022\text{-}ASO\text{-}27278\text{-}OE$







« OE/AAA

#### Circle Search for Cases Results Form 7460-1 for ASN 2022-ASO-27278-OE

| Overview |
|----------|
|          |

Study (ASN): 2022-ASO-27278-OE

**Prior Study:** 

Status: Determined

Letters: Determination

Supplemental Form 7460-2: Please login to add a Supplemental Form 7460-2.

**Completion Date:** 01/06/2023 **Expiration Date:** 07/06/2024

07/13/2022

07/13/2022

Map: View Map

#### **Sponsor Information**

Sponsor: Cellco Partnership
Attention Of: Network Regulatory
Address: 5055 North Point Pkwy
Address2: NP2NE Network Engineering

City: Alpharetta
State: GA
Postal Code: 30022
Country: US

**Phone:** 210-488-2623 **Fax:** 770-797-1034

,,,,,

## Sponsor's Representative Information

Representative:

Received Date:

Entered Date:

Attention Of: Network Regulatory
Address: 5055 North Point Pkwy
Address2: NP2NE Network Engineering

City: Alpharetta
State: GA
Postal Code: 30022
Country: US

**Phone:** 770-797-1070

Fax:

#### **Construction Info**

Notice Of: CONSTR

**Duration:** PERM (Months: 0 Days: 0)

Work Schedule:

Date Built:

## **Structure Summary**

Structure Type: Antenna Tower

Structure Name: EV Fancy Farm (16207023)

FCC Number: 1324370

FCC ASR Registration

## Structure Details

| Latitude (NAD 83):  | 36° 48' 09.61" N             |
|---------------------|------------------------------|
| Longitude (NAD 83): | 88° 47' 54.21" W             |
| Horizontal Datum:   | NAD 83                       |
| Survey Accuracy:    | 1A                           |
| Marking/Lighting:   | Dual-red and medium intensit |

Other Description:

Current Marking/Lighting: N/A Proposed Structure
Current Marking/Lighting Other Description:

Fancy Farm

63732.99 feet

N of State Rt 80 between Carrico Rd and Elder Rd

Proposing new 295 ft lattice tower owned by Sponsor of this study. Emissions from this site will adhere to parameters set by collaboration between the FAA and telecomm companies and reflected in the FAA 5G C-Band compatibility evaluation process. Questions to juliane.madsen@vzw.com

Graves

M25

No

280.94°

Name:
City:
State:
Nearest County:
Nearest Airport:
Distance to Structure:
On Airport:

Direction to Structure:
Description of Location:
Description of Proposal:

Description of Proposal:

## **Height and Elevation**

|                      | Proposed | DNE | DET |
|----------------------|----------|-----|-----|
| Site Elevation:      | 431      |     |     |
| Structure Height:    | 295      | 0   | 295 |
| Total Height (AMSL): | 726      | 0   | 726 |

#### Frequencies

| rrequenc | ies       |      |      |      |  |
|----------|-----------|------|------|------|--|
| Low Freq | High Freq | Unit | ERP  | Unit |  |
| 6        | 7         | GHz  | 55   | dBW  |  |
| 6        | 7         | GHz  | 42   | dBW  |  |
| 10       | 11.7      | GHz  | 55   | dBW  |  |
| 10       | 11.7      | GHz  | 42   | dBW  |  |
| 17.7     | 19.7      | GHz  | 55   | dBW  |  |
| 17.7     | 19.7      | GHz  | 42   | dBW  |  |
| 21.2     | 23.6      | GHz  | 55   | dBW  |  |
| 21.2     | 23.6      | GHz  | 42   | dBW  |  |
| 614      | 698       | MHz  | 2000 | W    |  |
| 614      | 698       | MHz  | 1000 | W    |  |
| 698      | 806       | MHz  | 1000 | W    |  |
| 806      | 824       | MHz  | 500  | W    |  |
| 806      | 901       | MHz  | 500  | W    |  |
| 824      | 849       | MHz  | 500  | W    |  |
| 851      | 866       | MHz  | 500  | W    |  |
| 869      | 894       | MHz  | 500  | W    |  |
| 896      | 901       | MHz  | 500  | W    |  |
| 901      | 902       | MHz  | 7    | W    |  |
| 929      | 932       | MHz  | 3500 | W    |  |
| 930      | 931       | MHz  | 3500 | W    |  |
| 931      | 932       | MHz  | 3500 | W    |  |
| 932      | 932.5     | MHz  | 17   | dBW  |  |
| 935      | 940       | MHz  | 1000 | W    |  |
| 940      | 941       | MHz  | 3500 | W    |  |

| 1670  | 1675  | MHz | 500  | w   |
|-------|-------|-----|------|-----|
| 1710  | 1755  | MHz | 500  | w   |
| 1850  | 1910  | MHz | 1640 | W   |
| 1850  | 1990  | MHz | 1640 | W   |
| 1930  | 1990  | MHz | 1640 | w   |
| 1990  | 2025  | MHz | 500  | W   |
| 2110  | 2200  | MHz | 500  | W   |
| 2305  | 2310  | MHz | 2000 | W   |
| 2305  | 2360  | MHz | 2000 | W   |
| 2345  | 2360  | MHz | 2000 | W   |
| 2496  | 2690  | MHz | 500  | W   |
| 3550  | 3700  | MHz | 47   | dBm |
| 3700  | 3980  | MHz | 3280 | W   |
| 27500 | 28350 | MHz | 75   | dBm |
| 29100 | 29250 | MHz | 75   | dBm |
| 31000 | 31300 | MHz | 75   | dBm |
| 38600 | 40000 | MHz | 75   | dBm |

Previous Back to Search Result

Next



## KENTUCKY TRANSPORTATION CABINET

TC 55-2 Rev. 06/2020

## KENTUCKY AIRPORT ZONING COMMISSION

Page 2 of 2

| APPLIC                                              | ATION FOR             | PERMIT TO COM                         | <b>NSTRUCT OR AL</b>                  | TER A STRU      | CTURE                      |
|-----------------------------------------------------|-----------------------|---------------------------------------|---------------------------------------|-----------------|----------------------------|
| APPLICANT (name)                                    |                       | PHONE                                 | FAX                                   |                 | TICAL STUDY #              |
| Vertical Bridge REIT, LLC                           |                       | 561-406-4015                          | ,                                     |                 | THE STORY IF               |
| ADDRESS (street)                                    |                       | CITY                                  |                                       | STATE           | ZIP                        |
| 750 Park of Commerce Dr                             | rive, Suite 200       | Boca Raton                            |                                       | FL              | 33487                      |
| APPLICANT'S REPRESENT                               |                       |                                       | FAX                                   |                 |                            |
| Gretchen Blanton                                    |                       | 704-472-0374                          |                                       |                 | •                          |
| ADDRESS (street)                                    |                       | CITY                                  | · · · · · · · · · · · · · · · · · · · | STATE           | ZIP                        |
| 750 Park of Commerce Dr                             | rive, Suite 200       | Boca Raton                            |                                       | FL              | 33487                      |
| APPLICATION FOR 🔀                                   | New Construct         | ion Alteration                        | Existing                              | WORK SCHED      |                            |
| <b>DURATION</b> Nermar                              | ient 🔲 Tem            | porary (months                        | days )                                | Start E         | nd                         |
|                                                     | Building              | MARKING/PAINTIN                       | G/LIGHTING PREFE                      | RRED            |                            |
| Antenna Tower                                       |                       | Red Lights & Pai                      | nt White- med                         | ium intensity   | White- high intensity      |
| Power Line Wate                                     | er Tank               | 🔀 Dual- red & med                     | lium intensity white                  |                 | & high intensity white     |
| Landfill Othe                                       | ∍r                    | Other                                 |                                       | <del>_</del>    | ,                          |
| LATITUDE                                            |                       | LONGITUDE                             |                                       | DATUM 🛛         | NAD83 NAD27                |
| 36°48'09.61"                                        |                       | -88 <sup>0</sup> 47′54.21″            |                                       | Other           |                            |
| NEAREST KENTUCKY                                    |                       | <b>NEAREST KENTUCK</b>                | Y PUBLIC USE OR M                     | LITARY AIRPO    | RT                         |
| City Fancy Farm County G                            |                       | M25 Mayfield Grave                    | es County                             |                 |                            |
| SITE ELEVATION (AMSL, fo                            | eet)                  | TOTAL STRUCTURE                       | HEIGHT (AGL, feet)                    | CURRENT (FA     | A aeronautical study #)    |
| 431                                                 |                       | 295                                   |                                       | 2022-ASO-272    |                            |
| OVERALL HEIGHT (site ele                            | vation plus tot       | al structure height, j                | feet)                                 | PREVIOUS (FA    | A aeronautical study #)    |
| 726                                                 |                       | · · · · · · · · · · · · · · · · · · · |                                       |                 |                            |
| DISTANCE (from nearest h                            | (entucky public       | use or Military airpo                 | ort to structure)                     | PREVIOUS (K)    | ' aeronautical study #)    |
| 10.48 Nautical Miles                                |                       | **                                    |                                       |                 |                            |
| DIRECTION (from nearest                             | Kentucky publi        | ic use or Military airp               | oort to structure)                    |                 |                            |
| WNW                                                 |                       |                                       | · · · · · · · · · · · · · · · · · · · |                 |                            |
| DESCRIPTION OF LOCATION                             | <b>ON</b> (Attach USC | 3S 7.5 minute quadro                  | angle map or an airp                  | ort layout drai | ving with the precise site |
| marked and any certified                            | survey.)              |                                       |                                       |                 |                            |
| See attached                                        |                       |                                       |                                       |                 |                            |
| DESCRIPTION OF PROPOS                               |                       |                                       |                                       |                 |                            |
| DESCRIPTION OF PROPOS<br>295' AGL Lattice Cell Towe | · · · -               |                                       |                                       |                 |                            |
| 295 AGL Lattice Cell Towe                           | ar<br>ar              |                                       |                                       |                 |                            |
| <b></b>                                             |                       |                                       |                                       |                 | ····                       |
| FAA Form 7460-1 (Has the                            | e "Notice of Co       | nstruction or Alterat                 | ion" been filed with                  | the Federal Avi | ation Administration?)     |
|                                                     |                       | termined 01/06/202                    |                                       |                 |                            |
| CERTIFICATION (I hereby                             | certify that all t    | the above entries, m                  | ade by me, are true,                  | complete, and   | correct to the best of     |
| my knowledge and belief.                            | ,                     |                                       |                                       |                 |                            |
| PENALITIES (Persons failing                         | ig to comply wi       | th KRS 183.861 to 18                  | 83.990 and 602 KAR                    | 050 are liable  | for fines and/or           |
| imprisonment as set forth                           |                       |                                       | with FAA regulation                   |                 | further penalties.)        |
| I 1"                                                | ITLE                  | SIGNATURE                             | Alanto 1                              | DATE            |                            |
| Gretchen Blanton P                                  | roject Manage         | r Gretzbeni                           | - Junior                              | 06/07/2023      |                            |
| COMMISSION ACTION                                   |                       | Chairperson,                          |                                       |                 |                            |
|                                                     |                       | Administrato                          | or, KAZC                              | •               |                            |
| Approved Si                                         | IGNATURE              |                                       |                                       | DATE            | •                          |
| Disapproved                                         |                       |                                       |                                       |                 |                            |

**Exhibit H** 

Date: March 23, 2022 POD Job Number: 20-64965

## **GEOTECHNICAL REPORT**

## **EV FANCY FARM**

36° 48′ 09.611674″ N 88° 47′ 54.207499″ W

Kentucky Highway 80, Fancy Farm, KY 42039

Prepared For:



Prepared By:





March 23, 2022

Ms. Jackie Straight Verizon Wireless 2902 Ring Road Elizabethtown, KY 42701

Re: Geotechnical Report – PROPOSED 290' SELF-SUPPORT TOWER w/ 5' LIGHTNING ARRESTOR

Site Name: EV FANCY FARM

Site Address: Kentucky Highway 80, Fancy Farm, Graves County, Kentucky

Coordinates: N36° 48′ 09.611674″, W88° 47′ 54.207499″

POD Project No. 20-64965

Dear Ms. Straight:

Attached is our geotechnical engineering report for the referenced project. This report contains our findings, an engineering interpretation of these findings with respect to the available project characteristics, and recommendations to aid design and construction of the tower and equipment support foundations.

We appreciate the opportunity to be of service to you on this project. If you have any questions regarding this report, please contact our office.

MANAMANAN

Cordially,

Mark Patterson, P.E. Project Engineer

License No.: KY 16300

Copies submitted: (3) Ms. Jackie Straight

EV FANCY FARM March 23, 2022

## **LETTER OF TRANSMITTAL**

## **TABLE OF CONTENTS**

|    |       |                                                  | <u>Page</u> |
|----|-------|--------------------------------------------------|-------------|
| 1. | PUR   | POSE AND SCOPE                                   | 1           |
| 2. | PRO   | JECT CHARACTERISTICS                             | 1           |
| 3. | SUB   | SURFACE CONDITIONS                               | 1           |
| 4. | FOU   | NDATION DESIGN RECOMMENDATIONS                   | 2           |
|    | 4.1.  | Proposed Tower                                   | 2           |
|    | 4.1.1 | 1. Drilled Piers                                 | 3           |
|    | 4.1.2 | 2. Mat Foundation                                | 3           |
|    | 4.2.  | EQUIPMENT PLATFORM                               | 4           |
|    | 4.3.  | EQUIPMENT SLAB                                   | 4           |
|    | 4.4.  | EQUIPMENT BUILDING                               | 4           |
|    | 4.5.  | Drainage and Groundwater Considerations          | 5           |
| 5. | GEN   | ERAL CONSTRUCTION PROCEDURES AND RECOMMENDATIONS | 5           |
|    | 5.1   | Drilled Piers                                    | 5           |
|    | 5.2   | FILL COMPACTION                                  | 6           |
|    | 5.3   | CONSTRUCTION DEWATERING                          | 6           |
| 6  | FIEL  | D INVESTIGATION                                  | 7           |
| 7  | WAF   | RRANTY AND LIMITATIONS OF STUDY                  | 7           |

## **APPENDIX**

BORING LOCATION PLAN BORING LOGS SOIL SAMPLE CLASSIFICATION

EV FANCY FARM March 23, 2022

Geotechnical Report

PROPOSED 290' SELF-SUPPORT TOWER w/ 5' LIGHTNING ARRESTOR

Site Name: EV FANCY FARM

Kentucky Highway 80, Fancy Farm, Graves County, Kentucky

N36° 48′ 09.611674″, W88° 47′ 54.207499″

1. PURPOSE AND SCOPE

The purpose of this study was to determine the general subsurface conditions at the site of the proposed tower by

drilling three borings and to evaluate this data with respect to foundation concept and design for the proposed

tower and shelter. Also included is an evaluation of the site with respect to potential construction problems and

recommendations dealing with quality control during construction.

2. PROJECT CHARACTERISTICS

Verizon Wireless is proposing to construct a self-support tower and either an equipment shelter, slab, or platform

at N36° 48' 09.611674", W88° 47' 54.207499", Kentucky Highway 80, Fancy Farm, Graves County, Kentucky. The

site is located in a farm field next to a water tower on Kentucky Highway 80 on the northwest side of Fancy Farm.

The proposed lease area will be 10,000 square feet and will be accessed along an existing gravel road from

Kentucky Highway 80 north to the proposed lease area. The elevation at the proposed tower location is about EL

431 and there is about 4-feet of change in elevation across the proposed lease area. The development will also

include a small equipment shelter near the base of the tower. The proposed tower location is shown on the Boring

Location Plan in the Appendix.

3. SUBSURFACE CONDITIONS

The subsurface conditions were explored by drilling three test borings near the base of the proposed tower. The

Geotechnical Soil Test Boring Logs, which are included in the Appendix, describes the materials and conditions

encountered. A sheet defining the terms and symbols used on the boring logs is also included in the Appendix. The

general subsurface conditions disclosed by the test borings are discussed in the following paragraphs.

According to the Kentucky Geological Survey, Kentucky Geologic Map Information Services, the site is underlain by

Loess and the Roxanal Silt with clay, sand, and chert. There is no karst activity in this area.

The borings encountered between 7 and 8 inches of topsoil at the existing ground surface. Below the topsoil, the

borings encountered clayey silt (ML) of low plasticity. The SPT N-values in the silty soil were between 3 to 32 blows per

foot (bpf) that increased with depth generally indicating a soft to hard consistency. Samples with more than 40 percent

1

EV FANCY FARM March 23, 2022

chert fragments were much higher. Between 18.5 and 22 feet, the borings encountered very fine sand (SP) that was

medium to very dense with SPT N-values ranging from 24 to 62. The borings were terminated at the scheduled depths

of 20 and 40 feet in the fine sand.

Observations made at the completion of soil drilling operations indicated the boring to be dry. It must be noted,

however, that short-term water readings in test borings are not necessarily a reliable indication of the actual

groundwater level. Furthermore, it must be emphasized that the groundwater level is not stationary but will fluctuate

seasonally.

Based on the limited subsurface conditions encountered at the site and using Table 1615.1.1 of the 2018 Kentucky

Building Code, the site class is considered "C". Seismic design requirements for telecommunication towers are given in

section 1622 of the code. A detailed seismic study was beyond the scope of this report.

4. FOUNDATION DESIGN RECOMMENDATIONS

The following design recommendations are based on the previously described project information, the subsurface

conditions encountered in our borings, the results of our laboratory testing, empirical correlations for the soil

types encountered, our analyses, and our experience. If there is any change in the project criteria or structure

location, you should retain us to review our recommendations so that we can determine if any modifications are

required. The findings of such a review can then be presented in a supplemental report or addendum.

We recommend that the geotechnical engineer be retained to review the near-final project plans and

specifications, pertaining to the geotechnical aspects of the project, prior to bidding and construction. We

recommend this review to check that our assumptions and evaluations are appropriate based on the current

project information provided to us, and to check that our foundation and earthwork recommendations were

properly interpreted and implemented.

4.1. Proposed Tower

Our findings indicate that the proposed self-support can be supported on drilled piers or on a common mat foundation.

2

Geotechnical Report EV FANCY FARM March 23, 2022

## 4.1.1. Drilled Piers

The following table summarizes the recommended values for use in analyzing lateral and frictional resistance for the various strata encountered at the test boring. It is important to note that these values are estimated based on the standard penetration test results and soil types and were not directly measured. The all values provided are ultimate values and appropriate factors of safety should be used in conjunction with these values. If the piers will bear deeper than about 40 feet, a deeper boring should be drilled to determine the nature of the deeper material.

| Depth Below Ground Surface,        | 0-3 | 3 - 13  | 13 - 20  | 20 - 40               |
|------------------------------------|-----|---------|----------|-----------------------|
| feet                               |     |         |          |                       |
| Ultimate Bearing Pressure (psf)    |     | 8,300   | 11,000   | 16,500                |
| С                                  | 500 | 1500    | 2000     | 0                     |
| Undrained Shear Strength, psf      |     |         |          |                       |
| Ø                                  | 0   | 0       | 0        | 32°                   |
| Angle of Internal Friction degrees |     |         |          |                       |
| Total Unit Weight, pcf             | 110 | 120     | 120      | 90                    |
| Soil Modulus Parameter             | 30  | 750     | 750      | 90                    |
| k, pci                             |     |         |          |                       |
| Passive Soil Pressure,             |     | 1,000 + | 1,340 +  | 360 (D <sup>2</sup> ) |
| psf/one foot of depth              |     | 40(D-3) | 40(D-13) |                       |
| Side Friction, psf                 | 100 | 400     | 500      | 2,500                 |

Note: D = Depth below ground surface (in feet) to point at which the passive pressure is calculated.

It is important that the drilled piers be installed by an experienced, competent drilled pier contractor who will be responsible for properly installing the piers in accordance with industry standards nd generally accepted methods, without causing deterioration of the subgrade. The recommendations contained herein relate only to the soil-pier interaction and do not account for the structural design of the piers.

#### 4.1.2. Mat Foundation

The tower could be supported on a common mat foundation bearing on the clay at a minimum of 4 feet can be designed using an allowable soil pressure of 3,500 pounds per square foot may be used. This value may be increased by 30 percent for the maximum edge pressure under transient loads. A friction value of 0.30 may be used between the

EV FANCY FARM March 23, 2022

concrete and the silt soil. The passive pressures given for the drilled pier foundation may be used to resist lateral

forces.

It is important that the mat be designed with an adequate factor of safety with regard to overturning under the

maximum design wind load.

4.2. Equipment Platform

An equipment platform may be supported on shallow piers bearing in the natural clay and designed for a net allowable

soil pressure of 2,500 pounds per square foot. The piers should bear at a depth of at least 30 inches to minimize the

effects of frost action. All existing topsoil or soft natural soil should be removed beneath footings.

4.3. Equipment Slab

A concrete slab supporting the equipment must be supported on at least 6-inch layer of relatively clean granular

material such as gravel or crushed stone containing not more than 10 percent material that passes through a No. 4

sieve. This is to help distribute concentrated loads and equalize moisture conditions beneath the slab. Provided

that a minimum of 6 in. of granular material is placed below the slab, a modulus of subgrade reaction (k30) of 110

lbs/cu.in. can be used for design of the slab. All existing topsoil or soft natural soil should be removed beneath

crushed stone layer.

4.4. Equipment Building

If an equipment building support on a slab is chosen in place of the equipment platform, it may be supported on

shallow spread footings bearing in the natural clay soil and designed for a net allowable soil pressure of 2,500 pounds

per square foot.

The footings should be at least ten inches wide. If the footings bear on soil, they should bear at a depth of at least 30

inches to minimize the effects of frost action. All existing topsoil or soft natural soil should be removed beneath

footings.

The floor slab for the new equipment building can be supported on firm natural soils or on new compacted

structural fill. Floor slabs must be supported on at least 4-inch layer of relatively clean granular material such as

gravel or crushed stone containing not more than 10 percent material that passes through a No. 4 sieve. This is to

help distribute concentrated loads and equalize moisture conditions beneath the slab. Provided that a minimum of

4

Geotechnical Report EV FANCY FARM March 23, 2022

4 in. of granular material is placed below the slab, a modulus of subgrade reaction (k30) of 110 lbs/cu.in. can be used for design of the floor slabs.

#### 4.5. Drainage and Groundwater Considerations

Good site drainage must be provided. Surface run-off water should be drained away from the tower and platform and not allowed to pond. It is recommended that all foundation concrete be placed the same day the excavation is made.

At the time of this investigation, groundwater was not encountered and no special provisions regarding groundwater control are considered necessary for shallow foundations. Any seepage should be able to be pumped with sumps.

#### 5. GENERAL CONSTRUCTION PROCEDURES AND RECOMMENDATIONS

It is possible that variations in subsurface conditions will be encountered during construction. Although only minor variations that can be readily evaluated and adjusted for during construction are anticipated, it is recommended the geotechnical engineer, or a qualified representative be retained to perform continuous inspection and review during construction of the soils-related phases of the work. This will permit correlation between the test boring data and the actual soil conditions encountered during construction.

#### 5.1 Drilled Piers

The following recommendations are recommended for drilled pier construction:

- All piers must be poured the same day drilling is completed so that any shale is not allowed to swell. Clean the foundation bearing area so it is nearly level or suitably benched and is free of ponded water or loose material.
- Make provisions for ground water removal from the drilled shaft excavation. While the borings were dry at completion and significant seepage is not anticipated, the drilled pier contractor should have pumps on hand to remove water in the event seepage into the drilled pier is encountered.
- Specify concrete slumps ranging from 4 to 7 inches for the drilled shaft construction. These slumps are recommended to fill irregularities along the sides and bottom of the drilled hole, displace water as it is placed, and permit placement of reinforcing cages into the fluid concrete.
- Retain the geotechnical engineer to observe foundation excavations after the bottom of the hole is leveled, cleaned of any mud or extraneous material, and dewatered.

Geotechnical Report EV FANCY FARM March 23, 2022

■ Install a temporary protective steel casing to prevent side wall collapse, prevent excessive mud

and water intrusion in the drilled shaft.

The protective steel casing may be extracted as the concrete is placed provided a sufficient head of concrete is maintained inside the steel casing to prevent soil or water intrusion into the newly

placed concrete.

Direct the concrete placement into the drilled hole through a centering chute to reduce side flow

or segregation.

5.2 Fill Compaction

All engineered fill placed adjacent to and above the tower foundation should be compacted to a dry density of at

least 95 percent of the standard Proctor maximum dry density (ASTM D-698). This minimum compaction

requirement should be increased to 98 percent for any fill placed below the tower foundation bearing elevation.

Any fill placed beneath the tower foundation should be limited to well-graded sand and gravel or crushed stone.

The compaction should be accomplished by placing the fill in about 8 inch (or less) loose lifts and mechanically

compacting each lift to at least the specified minimum dry density. Field density tests should be performed on

each lift as necessary to ensure that adequate moisture conditioning and compaction is being achieved.

Compaction by flooding is not considered acceptable. This method will generally not achieve the desired

compaction and the large quantities of water will tend to soften the foundation soils.

5.3 Construction Dewatering

If groundwater is encountered in the shallow foundations, it should be minor and can be handled by conventional

dewatering methods such as pumping from sumps.

If groundwater is encountered in the drilled pier excavations, it may be more difficult since pumping directly from

the excavations could cause a deterioration of the bottom of the excavation. If the pier excavations are not

dewatered, concrete should be placed by the tremie method. If groundwater sits on the bottom of the

6

foundation for longer than an hour, the bottom should be cleaned again before the pier is poured.

EV FANCY FARM March 23, 2022

## **6 FIELD INVESTIGATION**

Three soil test borings were drilled near the base of the proposed tower. Split-spoon samples were obtained by the Standard Penetration Test (SPT) procedure (ASTM D1586) in all test borings. The borings were terminated at the scheduled depths of 20 and 40 feet. The split-spoon samples were inspected and visually classified by a geotechnical engineer. Representative portions of the soil samples were sealed in plastic bags and returned to our laboratory.

The boring logs are included in the Appendix along with a sheet defining the terms and symbols used on the logs and an explanation of the Standard Penetration Test (SPT) procedure. The logs present visual descriptions of the soil strata encountered, Unified System soil classifications, groundwater observations, sampling information, laboratory test results, and other pertinent field data and observations.

#### 7 WARRANTY AND LIMITATIONS OF STUDY

Our professional services have been performed, our findings obtained, and our recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. This warranty is in lieu of all other warranties, either express or implied. POD Group is not responsible for the independent conclusions, opinions or recommendations made by others based on the field exploration and laboratory test data presented in this report.

A geotechnical study is inherently limited since the engineering recommendations are developed from information obtained from test borings, which depict subsurface conditions only at the specific locations, times and depths shown on the logs. Soil conditions at other locations may differ from those encountered in the test borings, and the passage of time may cause the soil conditions to change from those described in this report.

The nature and extent of variation and change in the subsurface conditions at the site may not become evident until the course of construction. Construction monitoring by the geotechnical engineer or a representative is therefore considered necessary to verify the subsurface conditions and to check that the soils connected construction phases are properly completed. If significant variations or changes are in evidence, it may then be necessary to reevaluate the recommendations of this report. Furthermore, if the project characteristics are altered significantly from those discussed in this report, if the project information contained in this report is incorrect, or if additional information becomes available, a review must be made by this office to determine if any modification in the recommendations will be required.

## **APPENDIX**

BORING LOCATION PLAN
BORING LOGS
SOIL SAMPLE CLASSIFICATION





# **Boring Log**

Boring: B-1

Page 1 of 1

**Project: EV Fancy Farm** City, State Fancy Farm, KY

H.S.A. Boring Date: **Location: Proposed Tower Center** Method: 10-Mar-22

| Section   Commonwealth Drilling   Note: About 7 inches of topsoil were encountered at the ground surface   Commonwealth Drilling   Note: About 7 inches of topsoil were encountered at the ground surface   Commonwealth Drilling   Commonwealth Dri | nside Diameter: 2 1/4" Drill Rig Type |       |                   |                      |          | 7822 DT (ATV) Hammer Type: Auto |                     |             |       |                     |           |               |             |                        |                     |                         |                         |                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------|-------------------|----------------------|----------|---------------------------------|---------------------|-------------|-------|---------------------|-----------|---------------|-------------|------------------------|---------------------|-------------------------|-------------------------|---------------------------|
| From   To   Material Description   12.25   15   18   15   18   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | roundwater: DRY                       |       |                   |                      |          |                                 |                     | •           |       |                     |           |               |             | · •                    |                     |                         |                         |                           |
| 1-2.5   SS   1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ler: Con                              | nmonv | vealth Drilling   | }                    | Note: A  | Abou                            | ıt 7 inches         | of to       | opsoi | l wer               | e enc     | ountere       | d at th     | e groun                | d surfac            | е                       |                         |                           |
| 1-2.5   SS   1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |       | Mater             | ial Description      |          |                                 | sample Depth<br>ft) | sample Type | -     | slows per<br>5-inch | increment | Recovery (in) | SPT-N value | Sock Quality<br>RQD,%) | Atterberg<br>.imits | Moisture<br>Content (%) | % Fines<br>clay & silt) | Unconfined<br>Compressive |
| 3.0 - stiff, slighty moist, brown and tan mottled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |       |                   |                      |          |                                 | 0) (                | 0,          |       |                     |           |               | 0,          | н )                    | 1                   |                         | 6                       |                           |
| mottled    6-7.5   SS   3, 5, 7   18   12,   17%     12.0   -with fine sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |       | CLAYEY SILT (N    | ИL) - soft, moist, I | brown    |                                 | 1-2.5               | SS          | 1,    | 1,                  | 2         | 15            | 3,          |                        |                     | 29%                     |                         | 2.                        |
| 8.5 - 10   SS   5, 7, 8   18   15,   20%     13.5   - very stiff   13.5 - 15   SS   9, 11, 21   18   32,   10%     18.5   - hard with chert fragments   18.5 - 20   SS   25, 24, 14   18   38,   10%     22.0   40.0   SAND (SP) - dense, dry, very fine grained, light gray and tan   23.5 - 25   SS   5, 15, 15   18   30,   7%     28.5   - medium dense   28.5 - 30   SS   9, 12, 15   18   27,   3%     33.5 - 35   SS   8, 11, 13   18   24,   7%     38.5   - very dense   38.5 - 40   SS   11, 25, 37   18   62,   4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 3.0   | - stiff, slighty  |                      | d tan    |                                 | 3.5 - 5             | SS          | 2,    | 6,                  | 9         | 18            | 15,         |                        |                     | 23%                     |                         | 3.                        |
| 12.0 - with fine sand  13.5 - very stiff  13.5-15 SS 9, 11, 21 18 32, 10%  18.5 - hard with chert fragments  18.5-20 SS 25, 24, 14 18 38, 10%  22.0 40.0 SAND (SP) - dense, dry, very fine grained, light gray and tan  23.5-25 SS 5, 15, 15 18 30, 7%  28.5 - medium dense  28.5-30 SS 9, 12, 15 18 27, 3%  38.5 - very dense  38.5-40 SS 11, 25, 37 18 62, 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |       |                   |                      |          |                                 | 6 - 7.5             | SS          | 3,    | 5,                  | 7         | 18            | 12,         |                        |                     | 17%                     |                         | 3.                        |
| 18.5 - hard with chert fragments  18.5-20 SS 25, 24, 14 18 38, 10%  22.0 40.0 SAND (SP) - dense, dry, very fine grained, light gray and tan  23.5-25 SS 5, 15, 15 18 30, 7%  28.5 - medium dense  28.5-30 SS 9, 12, 15 18 27, 3%  33.5-35 SS 8, 11, 13 18 24, 7%  38.5 - very dense  38.5-40 SS 11, 25, 37 18 62, 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | 12.0  | - with fine sand  |                      |          |                                 | 8.5 - 10            | SS          | 5,    | 7,                  | 8         | 18            | 15,         |                        |                     | 20%                     |                         | 4.                        |
| 22.0 40.0 SAND (SP) - dense, dry, very fine grained, light gray and tan  23.5-25 SS 5, 15, 15 18 30, 7%  28.5 - medium dense  28.5-30 SS 9, 12, 15 18 27, 3%  33.5-35 SS 8, 11, 13 18 24, 7%  38.5 - very dense  38.5-40 SS 11, 25, 37 18 62, 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 13.5  | - very stiff      |                      |          |                                 | 13.5-15             | SS          | 9,    | 11,                 | 21        | 18            | 32,         |                        |                     | 10%                     |                         |                           |
| Section   Sect |                                       | 18.5  | - hard with chert | fragments            |          |                                 | 18.5-20             | SS          | 25,   | 24,                 | 14        | 18            | 38,         |                        |                     | 10%                     |                         |                           |
| 33.5-35 SS 8, 11, 13 18 24, 7%  38.5 - very dense 38.5-40 SS 11, 25, 37 18 62, 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.0                                  | 40.0  |                   |                      | grained, |                                 | 23.5-25             | SS          | 5,    | 15,                 | 15        | 18            | 30,         |                        |                     | 7%                      |                         |                           |
| 38.5 - very dense 38.5-40 SS 11, 25, 37 18 62, 4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 28.5  | - medium dense    |                      |          |                                 | 28.5-30             | SS          | 9,    | 12,                 | 15        | 18            | 27,         |                        |                     | 3%                      |                         |                           |
| 30.0 10 00 12, 12, 13, 07, 120 02, 17, 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |       |                   |                      |          |                                 | 33.5-35             | SS          | 8,    | 11,                 | 13        | 18            | 24,         |                        |                     | 7%                      |                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 38.5  | -                 | rminated at 40 fe    | et       |                                 | 38.5-40             | SS          | 11,   | 25,                 | 37        | 18            | 62,         |                        |                     | 4%                      |                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |       |                   |                      |          |                                 |                     |             |       |                     |           |               |             |                        |                     |                         |                         |                           |



# **Boring Log**

**Boring: B-2** 

Page 1 of 1

**Project: EV Fancy Farm** City, State Fancy Farm, KY

H.S.A. Boring Date: Location: 20' NW of Proposed Tower Center Method: 10-Mar-22

|                                         | iou.             |            | 11.5.A.           | borning Dutc.                                                  |                                                                          |      | 10 11101             |             |          |                     |           |               |             |                         | лторс               |                         |                          |                                              |
|-----------------------------------------|------------------|------------|-------------------|----------------------------------------------------------------|--------------------------------------------------------------------------|------|----------------------|-------------|----------|---------------------|-----------|---------------|-------------|-------------------------|---------------------|-------------------------|--------------------------|----------------------------------------------|
| Inside Diameter: 2 1/4" Drill Rig Type: |                  |            |                   | 7822 DT (ATV)                                                  |                                                                          |      |                      |             |          | Hammer Type: Auto   |           |               |             |                         |                     |                         |                          |                                              |
| -                                       | Groundwater: DRY |            |                   |                                                                | Weather: bout 8 inches of topsoil were encountered at the ground surface |      |                      |             |          |                     |           |               |             |                         |                     |                         |                          |                                              |
| Drille                                  | r: Con           | nmonv      | vealth Drilling   |                                                                | Note: /                                                                  | Abou |                      | of to       | opsoi    | l wer               | e enc     | ountere       | d at th     | e groun                 | d surfac            | е                       |                          |                                              |
|                                         | From<br>(ft)     | To<br>(ft) | Mater             | ial Description                                                |                                                                          |      | Sample Depth<br>(ft) | Sample Type |          | Blows per<br>6-inch | increment | Recovery (in) | SPT-N value | Rock Quality<br>(RQD,%) | Atterberg<br>Limits | Moisture<br>Content (%) | % Fines<br>(clay & silt) | Unconfined<br>Compressive<br>Strength, (ksf) |
|                                         | 0.7              | 18.5       | CLAYEY SILT (M    | L) - medium stiff,<br>n-tan mottled                            | moist,                                                                   |      | 1-2.5                |             |          |                     |           |               |             |                         | , –                 |                         |                          |                                              |
|                                         |                  | 3.0        | - very stiff      | ir tail mottled                                                |                                                                          |      | 3.5 - 5              | SS          | 1,<br>4, | 2,                  | 3<br>9    | 15<br>18      | 5,<br>17,   |                         |                     | 26%<br>22%              |                          | 4.0                                          |
|                                         |                  |            |                   |                                                                |                                                                          |      | 6 - 7.5              | SS          | 3,       | 4,                  | 4         | 18            | 8,          |                         |                     | 23%                     |                          | 1.5                                          |
|                                         |                  | 8.5        | - stiff           |                                                                |                                                                          |      | 8.5 - 10             |             |          | 5,                  | 8         | 18            | 13,         |                         |                     | 18%                     |                          | 3.2                                          |
|                                         |                  | 13.5       | - hard with chert |                                                                |                                                                          |      | 13.5-15              | SS          | 17,      | 27,                 | 40        | 18            | 67,         |                         |                     | 9%                      |                          |                                              |
|                                         | 18.5             | 20.0       |                   | (SP) - very dense<br>h trace silt and clar<br>minated at 20 fe | ay                                                                       |      | 18.5-20              | SS          | 15,      | 22,                 | 23        | 18            | 45,         |                         |                     | 7%                      |                          |                                              |
|                                         |                  |            |                   |                                                                |                                                                          |      |                      |             |          |                     |           |               |             |                         |                     |                         |                          |                                              |



# **Boring Log**

Boring: B-3

Page 1 of 1

Project: City, State **EV Fancy Farm** Fancy Farm, KY

Boring Date: Method: H.S.A. 10-Mar-22 **Location: 20' SW of Proposed Tower Center** 

|                                         | iou:         |    |            | п.э.А.            | boring Date:                                         |          | 10-ivia              |             |      |                     |           | <del> </del>  |             | 0 SW 01                 |                     | seu 10v                 | ver cen                  | tei                                          |
|-----------------------------------------|--------------|----|------------|-------------------|------------------------------------------------------|----------|----------------------|-------------|------|---------------------|-----------|---------------|-------------|-------------------------|---------------------|-------------------------|--------------------------|----------------------------------------------|
| Inside Diameter: 2 1/4" Drill Rig Type: |              |    |            |                   | 7822 DT (ATV) Hammer Type: Auto                      |          |                      |             |      |                     |           |               |             |                         |                     |                         |                          |                                              |
| Groundwater: DRY                        |              |    |            |                   |                                                      |          |                      |             |      |                     | Weath     |               |             |                         |                     |                         |                          |                                              |
| Drille                                  | r: Co        | mr | nonv       | vealth Drilling   | g Note                                               | : Abc    | ut 8 inche           | es of       | tops | oil we              | re en     | counter       | ed at t     | he grou                 | nd surfa            | ce                      |                          |                                              |
|                                         | From<br>(ft) |    | To<br>(ft) | Mater             | rial Description                                     |          | Sample<br>Depth (ft) | Sample Type |      | Blows per<br>6-inch | increment | Recovery (in) | SPT-N value | Rock Quality<br>(RQD,%) | Atterberg<br>Limits | Moisture<br>Content (%) | % Fines<br>(clay & silt) | Unconfined<br>Compressive<br>Strength, (ksf) |
|                                         | 0.7          |    | 19.0       |                   | IL) - medium stiff, slight<br>oist, brown            | <i>'</i> | 1-2.5                | SS          | -    | 2,                  | 3         | 14            | 5,          |                         |                     | 28%                     |                          | 2.0                                          |
|                                         |              |    | 3.0        | - very stiff      |                                                      |          | 3.5 - 5              | SS          | 4,   | 7,                  | 8         | 18            | 15,         |                         |                     | 24%                     |                          | 3.2                                          |
|                                         |              |    | 6.0        | - medium stiff, m | oist                                                 |          | 6 - 7.5              | SS          | 2,   | 3,                  | 4         | 16            | 7,          |                         |                     | 23%                     |                          | 1.8                                          |
|                                         |              |    |            |                   |                                                      |          | 8.5 - 10             | SS          | 5,   | 6,                  | 8         | 0             | 14,         |                         |                     |                         |                          |                                              |
|                                         |              |    | 13.5       | •                 | t, reddish brown with ve<br>fine sand                | ry       | 13.5-15              | SS          | 4,   | 8,                  | 12        | 15            | 20,         |                         |                     | 12%                     |                          |                                              |
|                                         |              |    | 18.5       | - hard with chert |                                                      |          |                      |             |      |                     |           |               |             |                         |                     |                         |                          |                                              |
|                                         | 19.0         |    | 20.0       |                   | : (SP) - very dense, reddi<br>:h trace silt and clay | sh       | 18.5-20              | SS          | 23,  | 23,                 | 38        | 13            | 61,         |                         |                     | 8%                      |                          |                                              |
|                                         |              |    |            | Boring Te         | rminated at 20 feet                                  |          |                      |             |      |                     |           |               |             |                         |                     |                         |                          |                                              |
|                                         |              |    |            |                   |                                                      |          |                      |             |      |                     |           |               |             |                         |                     |                         |                          |                                              |

|          | FINE AND COARSE GRAINED SOIL INFORMATION |          |                                 |                      |               |                                 |  |  |  |
|----------|------------------------------------------|----------|---------------------------------|----------------------|---------------|---------------------------------|--|--|--|
|          | RAINED SOILS<br>& GRAVELS)               |          | NE GRAINED SO<br>(SILTS & CLAYS |                      | PARTICLE SIZE |                                 |  |  |  |
| <u>N</u> | Relative Density                         | <u>N</u> | Consistency                     | Qu, KSF<br>Estimated | Boulders      | Greater than 300 mm (12 in)     |  |  |  |
| 0-4      | Very Loose                               | 0-1      | Very Soft                       | 0-0.5                | Cobbles       | 75 mm to 300 mm (3 to 12 in)    |  |  |  |
| 5-10     | Loose                                    | 2-4      | Soft                            | 0.5-1                | Gravel        | 4.74 mm to 75 mm (3/16 to 3 in) |  |  |  |
| 11-20    | Firm                                     | 5-8      | Firm                            | 1-2                  | Coarse Sand   | 2 mm to 4.75 mm                 |  |  |  |
| 21-30    | Very Firm                                | 9-15     | Stiff                           | 2-4                  | Medium Sand   | 0.425 mm to 2 mm                |  |  |  |
| 31-50    | Dense                                    | 16-30    | Very Stiff                      | 4-8                  | Fine Sand     | 0.075 mm to 0.425 mm            |  |  |  |
| Over 50  | Very Dense                               | Over 31  | Hard                            | 8+                   | Silts & Clays | Less than 0.075 mm              |  |  |  |

The **STANDARD PENETRATION TEST** as defined by ASTM D 1586 is a method to obtain a disturbed soil sample for examination and testing and to obtain relative density and consistency information. A standard 1.4-inch I.D./2-inch O.D. split-barrel sampler is driven three 6-inch increments with a 140 lb. hammer falling 30 inches. The hammer can either be of a trip, free-fall design, or actuated by a rope and cathead. The blow counts required to drive the sampler the final two increments are added together and designate the N-value defined in the above tables.

## **ROCK PROPERTIES**

| ROCK QUA    | LITY DESIGNATION (RQD) |            | ROCK HARDNESS                                                                                                    |
|-------------|------------------------|------------|------------------------------------------------------------------------------------------------------------------|
| Percent RQD | <u>Quality</u>         | Very Hard: | Rock can be broken by heavy hammer blows.                                                                        |
| 0-25        | Very Poor              | Hard:      | Rock cannot be broken by thumb pressure, but can be broken by moderate hammer blows.                             |
| 25-50       | Poor                   | Moderately | Small pieces can be broken off along sharp edges by considerable                                                 |
| 50-75       | Fair                   | Hard:      | hard thumb pressure; can be broken with light hammer blows.                                                      |
| 75-90       | Good                   | Soft:      | Rock is coherent but breaks very easily with thumb pressure at sharp edges and crumbles with firm hand pressure. |
| 90-100      | Excellent              | Very Soft: | Rock disintegrates or easily compresses when touched; can be hard to very hard soil.                             |
|             |                        |            |                                                                                                                  |

| Recovery = | <u>Length of Rock Core Recovered</u><br>Length of Core Run | X100 | 63 REC<br>NQ | Core Diameter<br>BQ<br>NQ | Inches<br>1-7/16<br>1-7/8 |
|------------|------------------------------------------------------------|------|--------------|---------------------------|---------------------------|
| RQD =      | Sum of 4 in. and longer Rock Pieces Recovered              | X100 | 43 RQD<br>00 | HQ                        | 2-1/2                     |

Length of Core Run

## **SYMBOLS**

## **KEY TO MATERIAL TYPES**

| SOILS      |             |                                                                                               |  |  |
|------------|-------------|-----------------------------------------------------------------------------------------------|--|--|
| Gro<br>Sym | oup<br>bols | Typical Names                                                                                 |  |  |
| GW         |             | Well graded gravel - sand mixture, little or no fines                                         |  |  |
| GP         |             | Poorly graded gravels or gravel - sand<br>mixture, little or no fines                         |  |  |
| GM         |             | Silty gravels, gravel - sand silt mixtures                                                    |  |  |
| GC         |             | Clayey gravels, gravel - sand - clay mixtures                                                 |  |  |
| sw         |             | Well graded sands, gravelly sands, little or no fines                                         |  |  |
| SP         |             | Poorly graded sands or gravelly sands, little or no fines                                     |  |  |
| SM         |             | Silty sands, sand - silt mixtures                                                             |  |  |
| SC         |             | Clayey sands, sand - clay mixtures                                                            |  |  |
| ML         |             | Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts  |  |  |
| OL         |             | Organic silts and organic silty clays of low plasticity                                       |  |  |
| CL         |             | Inorganic clays of low range plasticity, gravelly clays, sandy clays, silty clays, lean clays |  |  |
| МН         |             | Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts           |  |  |
| СН         |             | Inorganic clays of high range plasticity, fat clays                                           |  |  |

| ROCKS   |                       |  |
|---------|-----------------------|--|
| Symbols | Typical Names         |  |
|         | Limestone or Dolomite |  |
|         | Shale                 |  |
|         | Sandstone             |  |

| N:               | _                                                 | OIL PROPERTY SYMBOLS Indard Penetration, BPF |  |  |  |  |
|------------------|---------------------------------------------------|----------------------------------------------|--|--|--|--|
| M:               | Мо                                                | Moisture Content, %                          |  |  |  |  |
| LL:              | Liq                                               | Liquid Limit, %                              |  |  |  |  |
| PI:              | Pla                                               | Plasticity Index, %                          |  |  |  |  |
| Qp:              | Po                                                | Pocket Penetrometer Value, TSF               |  |  |  |  |
| Qu:              | Unconfined Compressive Strength Estimated Qu, TSF |                                              |  |  |  |  |
| γ                | Dry Unit Weight, PCF                              |                                              |  |  |  |  |
| D:<br>F:         | Fin                                               | Fines Content                                |  |  |  |  |
| SAMPLING SYMBOLS |                                                   |                                              |  |  |  |  |
|                  | SS                                                | Split Spoon Sample                           |  |  |  |  |
|                  | an                                                | Relatively Undisturbed<br>Sample             |  |  |  |  |
|                  | Core 1                                            | Rock Core Sample                             |  |  |  |  |

**Exhibit I** 

## **DIRECTIONS FOR SITE**

FROM GRAVES COUNTY COURT CLERK, 101 E SOUTH ST #2, MAYFIELD, KY 42066: HEAD EAST ON E SOUTH ST TOWARD S 6TH ST (190 FT). TURN LEFT AT THE 1ST CROSS STREET ONTO S 6TH ST (361 FT). TURN LEFT ONTO E BROADWAY (2.4 MI). CONTINUE ONTO KY-80 W (7.8 MI). TURN RIGHT ONTO KY-339 N/KY-80 W (249 FT). TURN LEFT ONTO KY-80 W (0.4 MI). SITE WILL BE LOCATED ON RIGHT (NORTH) SIDE OF ROAD.

Prepared by Power of Design Group, LLC – 502-437-5252

ş

SITE NAME: EV Fancy Farm LOC CODE: 495686 ATTY/DATE: GJ

## LAND LEASE AGREEMENT

This Land Lease Agreement (the "Agreement") made this 20 day of 500 day of 500, 2022, between KM & K Farms, LLC, a Kentucky limited liability company with a mailing address of P.O. Box 65, Fancy Farm, Kentucky 42039, hereinafter designated LESSOR and Kentucky RSA No. 1 Partnership with its principal offices at One Verizon Way, Mail Stop 4AW100, Basking Ridge, New Jersey 07920 (telephone number 866-862-4404), hereinafter designated LESSEE, LESSOR and LESSEE are at times collectively referred to hereinafter as the "Parties" or Individually as the "Party."

## WITNESSETH

In consideration of the mutual covenants contained herein and intending to be legally bound hereby, the Parties hereto agree as follows:

- 1. <u>GRANT.</u> In accordance with this Agreement, LESSOR hereby grants to LESSEE the right to install, maintain and operate communications equipment ("Use") upon the Premises (as hereinafter defined), which are a part of that real property owned, leased or controlled by LESSOR at or near Kentucky Highway 80, Fancy Farm, Kentucky 42039 (the "Property"). The Property is legally described on Exhibit "A" attached hereto and made a part hereof. The Premises are a portion of the Property and are approximately 10,000 square feet and are shown in detail on Exhibit "B" attached hereto and made a part hereof. LESSEE may survey the Premises. Upon completion, the survey shall replace Exhibit "B" in its entirety.
- 2, <u>INITIAL TERM.</u> This Agreement shall be effective as of the date of execution by both Parties ("Effective Date"). The initial term of the Agreement shall be for 5 years beginning on the first day of the month following the Commencement Date (as hereinafter defined). The "Commencement Date" shall be the first day of the month after LESSEE begins installation of LESSEE's communications equipment.
- 3. <u>EXTENSIONS.</u> This Agreement shall automatically be extended for 5 additional 5 year terms unless Lessee terminates it at the end of the then current term by giving LESSOR written notice of the intent to terminate at least 3 months prior to the end of the then current term. The initial term and all extensions shall be collectively referred to herein as the "Term".

## 4. RENTAL,

- a. Rental payments shall begin on the Commencement Date and be due at a total annual rental of in advance, to LESSOR at P.O. BOX 05, Fancy Farm, Kentucky 42039 or to such other person, firm, or place as LESSOR may, from time to time, designate in writing at least 30 days in advance of any rental payment date by notice given in accordance with Paragraph 20 below. LESSOR and LESSEE acknowledge and agree that the initial rental payment shall not be delivered by LESSEE until 60 days after the Commencement Date. Upon agreement of the Parties, LESSEE may pay rent by electronic funds transfer and in such event, LESSOR agrees to provide to LESSEE bank routing information for such purpose upon request of Lessee.
- b. For any party to whom rental payments are to be made, LESSOR or any successor in interest of LESSOR hereby agrees to provide to LESSEE (i) a completed, current version of internal Revenue Service Form W-9, or equivalent; (ii) complete and fully executed state and local withholding

forms if required; and (iii) other documentation to verify LESSOR's or such other party's right to receive rental as is reasonably requested by LESSEE. Rental shall accrue in accordance with this Agreement, but LESSEE shall have no obligation to deliver rental payments until the requested documentation has been received by LESSEE. Upon receipt of the requested documentation, LESSEE shall deliver the accrued rental payments as directed by LESSOR. The annual rental for each five (5) year extension term shall be equal to one hundred ten percent (110%) of the annual rental payable with respect to the immediately preceding five (5) year term.

- c. In consideration for the execution of this Agreement and as a signing bonus contemplating potential delay of the Commencement Date, LESSEE agrees to make a one-time payment to LESSOR in the amount of ("Additional Payment"). The Additional Payment shall be due within sixty (60) days following the date of full execution of this Agreement and shall be due and payable regardless of whether LESSEE commences the Agreement.
- 5. ACCESS. LESSEE shall have the non-exclusive right of ingress and egress from a public right-of-way, 7 days a week, 24 hours a day, over the Property to and from the Premises for the purpose of installation, operation and maintenance of LESSEE's communications equipment over or along a thirty (30) foot wide right-of-way ("Easement"), which is described on Exhibit "A" and shall be depicted on Exhibit "B". LESSEE may use the Easement for the installation, operation and maintenance of wires, cables, conduits and pipes for all necessary electrical, telephone, fiber and other similar support services. In the event it is necessary, LESSOR agrees to grant LESSEE or the provider the right to install such services on, through, over and/or under the Property, provided the location of such services shall be reasonably approved by LESSOR. During the term of this Agreement, LESSEE shall, at LESSEE's cost, promptly repair or replace all physical damage over said Easement proximately caused by the construction, operation, maintenance or use of said facilities by LESSEE. Notwithstanding anything to the contrary, the Premises shall include such additional space sufficient for LESSEE's radio frequency signage and/or barricades as are necessary to ensure LESSEE's compliance with Laws (as defined in Paragraph 27).
- 6. <u>CONDITION OF PROPERTY</u>. LESSOR shall deliver the Premises to LESSEE in a condition ready for LESSEE's Use and clean and free of debris. LESSOR represents and warrants to LESSEE that as of the Effective Date, the Premises (a) in compliance with all Laws; and (b) in compliance with all EH&S Laws (as defined in Paragraph 24).
- 7. IMPROVEMENTS. The communications equipment including, without limitation, the tower structure, antennas, conduits, fencing and other screening, and other improvements shall be at LESSEE's expense and installation shall be at the discretion and option of LESSEE. LESSEE shall have the right to replace, repair, add or otherwise modify its communications equipment, tower structure, antennas, conduits, fencing and other screening, or other improvements or any portion thereof and the frequencies over which the communications equipment operates, whether or not any of the communications equipment, antennas, conduits or other improvements are listed on any exhibit. Any improvements to the roadway comprising the portion of the Easement that shall be used exclusively by LESSEE, its successor, assigns or subtenants, shall be at the LESSEE's expense and shall be at the discretion and option of LESSEE. Notwithstanding the foregoing, nothing contained herein shall prevent the LESSOR or the Fancy Farm Water District from accessing, improving, or maintaining that portion of the Easement which provides access to the water tower depicted on Exhibit "B".

- 8. <u>GOVERNMENT APPROVALS</u>. LESSEE's Use is contingent upon LESSEE obtaining all of the certificates, permits and other approvals (collectively the "Government Approvals") that may be required by any Federal, State or Local authorities (collectively, the "Government Entities") as well as a satisfactory soll boring test, environmental studies, or any other due diligence LESSEE chooses that will permit LESSEE's Use. LESSOR shall cooperate with LESSEE in its effort to obtain such approvals and shall take no action which would adversely affect the status of the Property with respect to LESSEE's Use.
- 9. <u>TERMINATION</u>. LESSEE may, unless otherwise stated, immediately terminate this Agreement upon written notice to LESSOR in the event that (I) any applications for such Government Approvals should be finally rejected; (II) any Government Approval Issued to LESSEE is canceled, expires, lapses or is otherwise withdrawn or terminated by any Government Entity; (III) LESSEE determines that such Government Approvals may not be obtained in a timely manner; (IV) LESSEE determines any structural analysis is unsatisfactory; (V) LESSEE, in its sole discretion, determines the Use of the Premises is obsolete or unnecessary; (VII) with 3 months prior notice to LESSOR, upon the annual anniversary of the Commencement Date; or (VIII) at any time before the Commencement Date for any reason or no reason in LESSEE's sole discretion.

;

- 10, INDEMNIFICATION. Subject to Paragraph 11, each Party shall indemnify and hold the other harmless against any claim of liability or loss from personal injury or property damage resulting from or arising out of the negligence or willful misconduct of the indemnifying Party, its employees, contractors or agents, except to the extent such claims or damages may be due to or caused by the negligence or willful misconduct of the other Party, or its employees, contractors or agents. The indemnified Party will provide the indemnifying Party with prompt, written notice of any claim covered by this indemnification: provided that any failure of the indemnified Party to provide any such notice, or to provide it promptly, shall not relieve the indemnifying Party from its indemnification obligation in respect of such claim, expect to the extent the indemnifying Party can establish actual prejudice and direct damages as a result thereof. The indemnified Party will cooperate appropriately with the indemnifying Party in connection with the indemnifying Party's defense of such claim. The indemnifying Party shall defend any indemnified Party, at the indemnissed Party's request, against any claim with counsel reasonably satisfactory to the Indemnified Party. The indemnifying Party shall not settle or compromise any such claim or consent to the entry of any judgment without the prior written consent of each indemnified Party and without an unconditional release of all claims by each claimant or plaintiff in favor of each indemnified Party.
- 11. INSURANCE. The Parties agree that at their own cost and expense, each will maintain commercial general liability insurance with limits not less than \$2,000,000 for injury to or death of one or more persons in any one occurrence and \$2,000,000 for damage or destruction in any one occurrence. The Parties agree to include the other Party as an additional insured. The Parties hereby waive and release any and all rights of action for negligence against the other which may hereafter arise on account of damage to the Premises or the Property, resulting from any fire, or other casualty which is insurable under "Causes of Loss Special Form" property damage insurance or for the kind covered by standard fire insurance policies with extended coverage, regardless of whether or not, or in what amounts, such insurance is now or hereafter carried by the Parties, even if any such fire or other casualty shall have been caused by the fault or negligence of the other Party. These waivers and releases shall apply between the Parties and they shall also apply to any claims under or through either Party as a result of any asserted right of subrogation. All such policies of insurance obtained by either Party concerning the Premises or the Property shall waive the insurer's right of subrogation against the other Party.

12. <u>LIMITATION OF LIABILITY</u>. Except for indemnification pursuant to Paragraphs 10 and 24, a violation of Paragraph 29, or a violation of law, neither Party shall be liable to the other, or any of their respective agents, representatives, or employees for any lost revenue, lost profits, loss of technology, rights or services, incidental, punitive, indirect, special or consequential damages, loss of data, or interruption or loss of use of service, even if advised of the possibility of such damages, whether under theory of contract, tort (including negligence), strict liability or otherwise.

## 13. INTERFERENCE.

- a. LESSEE agrees that LESSEE will not cause interference that is measurable in accordance with industry standards to LESSOR's equipment. LESSOR agrees that LESSOR and other occupants of the Property will not cause interference that is measurable in accordance with industry standards to the then existing equipment of LESSEE.
- b. Without limiting any other rights or remedies, if interference occurs and continues for a period in excess of 48 hours following notice to the interfering party via telephone to LESSEE'S Network Operations Center (at (800) 852-2671/(800) 621-2622) or to LESSOR (at 763-248-2538), the interfering party shall or shall require any other user to reduce power or cease operations of the interfering equipment until the interference is cured.
- c. The Parties acknowledge that there will not be an adequate remedy at law for noncompliance with the provisions of this Paragraph and therefore the Parties shall have the right to equitable remedies such as, without limitation, injunctive relief and specific performance.
- 14. <u>REMOVAL AT END OF TERM.</u> Upon expiration or within 90 days of earlier termination, LESSEE shall remove LESSEE's Communications Equipment (except footings) and restore the Premises to its original condition, reasonable wear and tear and casualty damage excepted. LESSOR agrees and acknowledges that the communications equipment shall remain the personal property of LESSEE and LESSEE shall have the right to remove the same at any time during the Term, whether or not said items are considered fixtures and attachments to real property under applicable laws. If such time for removal causes LESSEE to remain on the Premises after termination of the Agreement, LESSEE shall pay rent at the then existing monthly rate or on the existing monthly pro-rata basis if based upon a longer payment term, until the removal of the communications equipment is completed.
- 15. HOLDOVER. If upon expiration of the Term the Parties are negotiating a new lease or a lease extension, then this Agreement shall continue during such negotiations on a month to month basis at the rental in effect as of the date of the expiration of the Term. In the event that the Parties are not in the process of negotiating a new lease or lease extension and LESSEE holds over after the expiration or earlier termination of the Term, then LESSEE shall pay rent at the then existing monthly rate or on the existing monthly pro-rate basis if based upon a longer payment term, until the removal of the communications equipment is completed rental.
- 16. <u>RIGHT OF FIRST REFUSAL</u>. If at any time after the Effective Date, LESSOR receives an offer or letter of Intent from any person or entity that is in the business of owning, managing or operating communications facilities or is in the business of acquiring landlord interests in agreements relating to communications facilities, to purchase fee title, an easement, a lease, a license, or any other interest in the Premises or any portion thereof or to acquire any interest in this Agreement, or an option for any of the foregoing, LESSOR shall provide written notice to LESSEE of said offer ("LESSOR's Notice"), LESSOR's Notice shall include the prospective buyer's name, the purchase price being offered, any other

consideration being offered, the other terms and conditions of the offer, a description of the portion of and interest in the Premises and/or this Agreement which will be conveyed in the proposed transaction, and a copy of any letters of Intent or form agreements presented to LESSOR by the third party offeror, LESSEE shall have the right of first refusal to meet any bona fide offer of sale or transfer on the terms and conditions of such offer or by effectuating a transaction with substantially equivalent financial terms, if LESSEE falls to provide written notice to LESSOR that LESSEE intends to meet such bona fige offer within thirty (30) days after receipt of LESSOR's Notice, LESSOR may proceed with the proposed transaction in accordance with the terms and conditions of such third party offer, in which event this Agreement shall continue in full force and effect and the right of first refusal described in this Paragraph shall survive any such conveyance to a third party. If LESSEE provides LESSOR with notice of LESSEE's intention to meet the third party offer within thirty (30) days after receipt of LESSOR's Notice, then if LESSOR's Notice describes a transaction involving greater space than the Premises, LESSEE may elect to proceed with a transaction covering only the Premises and the purchase price shall be pro-rated on a square footage basis. Further, LESSOR acknowledges and agrees that If LESSEE exercises this right of first refusal, LESSEE may require a reasonable period of time to conduct due diligence and effectuate the closing of a transaction on substantially equivalent financial terms of the third-party offer. LESSEE may elect to amend this Agreement to effectuate the proposed financial terms of the third party offer rather than acquiring fee simple title or an easement interest in the Premises. For purposes of this Paragraph, any transfer, bequest or devise of LESSOR's interest in the Property as a result of the death of LESSOR, whether by will or intestate succession, or any conveyance to LESSOR's family members by direct conveyance or by conveyance to a trust for the benefit of family members shall not be considered a sale for which LESSEE has any right of first refusal.

ì

- 17. <u>RIGHTS UPON SALE</u>. Should LESSOR, at any time during the Term, decide (i) to sell or otherwise transfer all or any part of the Property, or (ii) to grant to a third party by easement or other legal instrument an interest in and to any portion of the Premises, such sale, transfer, or grant of an easement or interest therein shall be under and subject to this Agreement and any such purchaser or transferee shall recognize LESSEE's rights hereunder. In the event that LESSOR completes any such sale, transfer, or grant described in this Paragraph without executing an assignment of the Agreement whereby the third party agrees in writing to assume all obligations of LESSOR under this Agreement, then LESSOR shall not be released from its obligations to LESSEE under this Agreement, and LESSEE shall have the right to look to LESSOR and the third party for the full performance of the Agreement.
- 18. <u>LESSOR'S TITLE.</u> LESSOR covenants that LESSEE, on paying the rent and performing the covenants herein, shall peaceably and quietly have, hold and enjoy the Premises. LESSOR represents and warrants to LESSEE as of the Effective Date and covenants during the Term that LESSOR has full authority to enter into and execute this Agreement and that there are no liens, judgments, covenants, easement, restrictions or other impediments of title that will adversely affect LESSEE's Use.
- 19. <u>ASSIGNMENT</u>. Subject to the terms of Paragraph 16, without any approval or consent of the other Party, this Agreement may be sold, assigned or transferred by either Party to any other third party. LESSEE may sublet the Premises in LESSEE's sole discretion.
- 20. NOTICES. Except for notices permitted via telephone in accordance with Paragraph 13, all notices hereunder must be in writing and shall be deemed validly given if sent by certified mail, return receipt requested or by commercial courier, provided the courier's regular business is delivery service and provided further that it guarantees delivery to the addressee by the end of the next business day following

the courier's receipt from the sender, addressed as follows (or any other address that the Party to be notified may have designated to the sender by like notice):

LESSOR: KM & K Farms, LLC

Attn: Keith Hayden 352 Carrico Road Fancy Farm, KY 42039

LESSEE: Kentucky RSA No. 1 Partnership

180 Washington Valley Road Bedminster, New Jersey 07921 Attention: Network Real Estate

Notice shall be effective upon actual receipt or refusal as shown on the receipt obtained pursuant to the foregoing.

- SUBORDINATION AND NON-DISTURBANCE. Within 15 days of the Effective Date, LESSOR shall obtain a Non-Disturbance Agreement, as defined below, from its existing mortgagee(s), ground lessors and master lessors, if any, of the Property. At LESSOR's option, this Agreement shall be subordinate to any future master lease, ground lease, mortgage, deed of trust or other security interest (a "Mortgage") by LESSOR which from time to time may encumber all or part of the Property; provided, however, as a condition precedent to LESSEE being required to subordinate its interest in this Agreement to any future Mortgage covering the Property, LESSOR shall obtain for LESSEE's benefit a non-disturbance and attornment agreement for LESSEE's benefit in the form reasonably satisfactory to LESSEE, and containing the terms described below (the "Non-Disturbance Agreement"), and shall recognize LESSEE's rights under this Agreement. The Non-Disturbance Agreement shall include the encumbering party's ("Lender's") agreement that, if Lender or its successor-in-interest or any purchaser of Lender's or its successor's interest (a "Purchaser") acquires an ownership interest in the Property, Lender or such successor-in-interest or Purchaser will honor all of the terms of the Agreement. Such Non-Disturbance Agreement must be binding on all of Lender's participants in the subject loan (if any) and on all successors and assigns of Lender and/or its participants and on all Purchasers. In return for such Non-Disturbance Agreement, LESSEE will execute an agreement for Lender's benefit in which LESSEE (1) confirms that the Agreement is subordinate to the Mortgage or other real property interest in favor of Lender, (2) agrees to attorn to Lender if Lender becomes the owner of the Property and (3) agrees to accept a cure by Lender of any of LESSOR's defaults, provided such cure is completed within the deadline applicable to LESSOR. In the event LESSOR defaults in the payment and/or other performance of any mortgage or other real property interest encumbering the Property, LESSEE may, at its sole option and without obligation, cure or correct LESSOR's default and upon doing so, LESSEE shall be subrogated to any and all rights, titles, liens and equities of the holders of such mortgage or other real property interest and LESSEE shall be entitled to deduct and setoff against all rents that may otherwise become due under this Agreement the sums paid by LESSEE to cure or correct such defaults.
- 22. <u>DEFAULT</u>. It is a "Default" if (i) either Party falls to comply with this Agreement and does not remedy the fallure within 30 days after written notice by the other Party or, if the fallure cannot reasonably be remedied in such time, if the failing Party does not commence a remedy within the allotted 30 days and diligently pursue the cure to completion within 90 days after the initial written notice, or (ii) LESSOR falls to comply with this Agreement and the failure interferes with LESSEE's Use and LESSOR does

not remedy the failure within 5 days after written notice from LESSEE or, if the failure cannot reasonably be remedied in such time, if LESSOR does not commence a remedy within the allotted 5 days and diligently pursue the cure to completion within 15 days after the initial written notice. The cure periods set forth in this Paragraph 22 do not extend the period of time in which either Party has to cure interference pursuant to Paragraph 13 of this Agreement.

- 23. <u>REMEDIES</u>. In the event of a Default, without limiting the non-defaulting Party in the exercise of any right or remedy which the non-defaulting Party may have by reason of such default, the non-defaulting Party may terminate this Agreement and/or pursue any remedy now or hereafter available to the non-defaulting Party under the Laws or judicial decisions of the state in which the Property is located. Further, upon a Default, the non-defaulting Party may at its option (but without obligation to do so), perform the defaulting Party's duty or obligation. The costs and expenses of any such performance by the non-defaulting Party shall be due and payable by the defaulting Party upon invoice therefor. If LESSEE undertakes any such performance on LESSOR's behalf and LESSOR does not pay LESSEE the full undisputed amount within 30 days of its receipt of an invoice setting forth the amount due, LESSEE may offset the full undisputed amount due against all fees due and owing to LESSOR under this Agreement until the full undisputed amount is fully relimbursed to LESSEE.
- 24. ENVIRONMENTAL. LESSEE shall conduct its business in compliance with all applicable laws governing the protection of the environment or employee health and safety ("EH&S Laws"). LESSEE shall indemnify and hold harmless LESSOR from claims to the extent resulting from LESSEE's violation of any applicable EH&S Laws or to the extent that LESSEE causes a release of any regulated substance to the environment. LESSOR shall indemnify and hold harmless LESSEE from all claims resulting from the violation of any applicable EH&S Laws or a release of any regulated substance to the environment except to the extent resulting from the activities of LESSEE. The Parties recognize that LESSEE is only leasing a small portion of LESSOR's property and that LESSEE shall not be responsible for any environmental condition or issue except to the extent resulting from LESSEE's specific activities and responsibilities. In the event that LESSEE encounters any hazardous substances that do not result from its activities, LESSEE may relocate its facilities to avoid such hazardous substances to a mutually agreeable location or, if LESSEE desires to remove at its own cost all or some the hazardous substances or materials (such as soil) containing those hazardous substances, LESSOR agrees to sign any necessary waste manifest associated with the removal, transportation and/or disposal of such substances.
- 25. <u>CASUALTY</u>. If a fire or other casualty damages the Property or the Premises and Impairs LESSEE's Use, rent shall abate until LESSEE'S Use is restored. If LESSEE's Use is not restored within 45 days, LESSEE may terminate this Agreement.
- 26. <u>CONDEMNATION</u>. If a condemnation of any portion of the Property or Premises Impairs LESSEE's Use, Lessee may terminate this Agreement. LESSEE may on its own behalf make a claim in any condemnation proceeding involving the Premises for losses related to LESSEE's communications equipment, relocation costs and, specifically excluding loss of LESSEC's leasehold interest, any other damages LESSEE may incur as a result of any such condemnation. LESSOR shall be entitled to receive any such condemnation proceeds to which LESSOR is entitled to receive as fee simple owner of the Property or Premises.
- 27. <u>APPLICABLE LAWS</u>. During the Term, LESSOR shall maintain the Property in compliance with all applicable laws, EH&S Laws, rules, regulations, ordinances, directives, covenants, easements, consent decrees, zoning and land use regulations, and restrictions of record, permits, building codes, and

the requirements of any applicable fire insurance underwriter or rating bureau, now in effect or which may hereafter come into effect (including, without limitation, the Americans with Disabilities Act and laws regulating hazardous substances) (collectively "Laws"). LESSEE shall, in respect to the condition of the Premises and at LESSEE's sole cost and expense, comply with (I) all Laws relating solely to LCSSEE's specific and unique nature of use of the Premises; and (II) all building codes requiring modifications to the Premises due to the improvements being made by LESSEE in the Premises. It shall be LESSOR's obligation to comply with all Laws relating to the Property, without regard to specific use (including, without limitation, modifications required to enable LESSEE to obtain all necessary building permits).

## 28, TAXES.

- a. LESSOR shall involce and LESSEE shall pay any applicable transaction tax (including sales, use, gross receipts, or excise tax) imposed on LESSEE and required to be collected by LESSOR based on any service, rental space, or equipment provided by LESSOR to LESSEE. LESSEE shall pay all personal property taxes, fees, assessments, or other taxes and charges imposed by any Government Entity that are imposed on LESSEE and required to be paid by LESSEE that are directly attributable to LESSEE's equipment or LESSEE's use and occupancy of the Premises. Payment shall be made by LESSEE within 60 days after presentation of a receipted bill and/or assessment notice which is the basis for such taxes or charges. LESSOR shall pay all ad valorem, personal property, real estate, sales and use taxes, fees, assessments or other taxes or charges that are attributable to LESSOR's Property or any portion thereof imposed by any Government Entity.
- b. LESSEE shall have the right, at its sole option and at its sole cost and expense, to appeal, challenge or seek modification of any tax assessment or billing for which LESSEE is wholly or partly responsible for payment. LESSOR shall reasonably cooperate with LESSEE at LESSEE's expense in filling, prosecuting and perfecting any appeal or challenge to taxes as set forth in the preceding sentence, including but not limited to, executing any consent, appeal or other similar document. In the event that as a result of any appeal or challenge by LESSEE, there is a reduction, credit or repayment received by LESSOR for any taxes previously paid by LESSEE, LESSOR agrees to promptly reimburse to LESSEE the amount of said reduction, credit or repayment. In the event that LESSEE does not have the standing rights to pursue a good faith and reasonable dispute of any taxes under this paragraph, LESSOR will pursue such dispute at LESSEE's sole cost and expense upon written request of LESSEE.
- 29. <u>NON-DISCLOSURE</u>. The Parties agree this Agreement and any Information exchanged between the Parties regarding the Agreement are confidential. The Parties agree not to provide copies of this Agreement or any other confidential information to any third party without the prior written consent of the other or as required by law, except the Parties shall be permitted to disclose information regarding this Agreement to their respective legal counsel, accountants, and other professional advisors and agents who shall be advised of this nondisclosure provision. If a disclosure is required by law, prior to disclosure, the Party shall notify the other Party and cooperate to take lawful steps to resist, narrow, or eliminate the need for that disclosure.
- 30. MOST FAVORED LESSEE. LESSOR represents and warrants that the rent, benefits and terms and conditions granted to LESSEE by LESSOR hereunder are now and shall be, during the Term, no less favorable than the rent, benefits and terms and conditions for substantially the same or similar tenancies or licenses granted by LESSOR to other parties. If at any time during the Term LESSOR shall offer more favorable rent, benefits or terms and conditions for substantially the same or similar tenancies or licenses as those granted hereunder, then LESSOR shall, within 30 days after the effective date of such

offering, notify LESSEE of such fact and offer LESSEE the more favorable offering. If LESSEE chooses, the Parties shall then enter into an amendment that shall be effective retroactively to the effective date of the more favorable offering, and shall provide the same rent, benefits or terms and conditions to LESSEE. LESSEE shall have the right to decline to accept the offering. LESSOR's compliance with this requirement shall be subject, at LESSEE's option, to independent verification.

31. MISCELLANEOUS. This Agreement contains all agreements, promises and understandings between LESSOR and LESSEE regarding this transaction, and no oral agreement, promises or understandings shall be binding upon either LESSOR or LESSEE in any dispute, controversy or proceeding. This Agreement may not be amended or varied except in a writing signed by all Parties. This Agreement shall extend to and bind the heirs, personal representatives, successors and assigns hereto. The failure of either Party to insist upon strict performance of any of the terms or conditions of this Agreement or to exercise any of its rights hereunder shall not waive such rights, and such Party shall have the right to enforce such rights at any time. The performance of this Agreement shall be governed, interpreted, construed and regulated by the laws of the state in which the Premises is located without reference to its choice of law rules. Except as expressly set forth in this Agreement, nothing in this Agreement shall grant, suggest or imply any authority for one Party to use the name, trademarks, service marks or trade names of the other for any purpose whatsoever. LESSOR agrees to execute a Memorandum of this Agreement, which LESSEE may record with the appropriate recording officer. The provisions of the Agreement relating to indemnification from one Party to the other Party shall survive any termination or expiration of this Agreement. Time is of the essence with respect to all provisions, covenants, terms, and conditions of this Agreement.

IN WITNESS WHEREOF, the Parties hereto have set their hands and affixed their respective seals the day and year first above written.

| and year first above written. |                                                                                                                                                                                     |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | LESSOR:                                                                                                                                                                             |
| On in land                    | KM & K Farms, LLC  By: W. K. C.                                                                                                                 |
| WITNESS                       | Name: 6.16. Hayotal  Date: 12/3/2026                                                                                                                                                |
| Danice C.Miller               | Date:/2/3/2626 LESSEE:                                                                                                                                                              |
|                               | Kentucky RSA No. 1 Partnership d/b/a Verizon Wireless; By: Cellco Partnership d/b/a Verizon Wireless, Its General Partner By: Name:  Bd Maher  Director - Network Field Engineering |
| Ibigail Ball                  | Date: 9 70 1                                                                                                                                                                        |

## EXHIBIT "A"

## **DESCRIPTION OF PROPERTY AND PREMISES**

Description of Property:

ALL THAT PARCEL OF LAND IN THE IN THE COUNTY OF GRAVES AND COMMONWBALTH OF KENTUCKY AS MORE FULLY DESCRIBED IN DEED DATED DECEMBER 12, 2016 AND RECORDED IN THE GRAVES COUNTY CLERK'S OFFICE IN DEED BOOK 506, PAGE 639

## LEGAL DESCRIPTIONS

## Proposed lease area

THE FOLLOWING IS A DESCRIPTION OF THE PROPOSED LEASE AREA TO BE LEASED FROM THE PROPERTY CONVEYED TO XINS & I. FARMAS LLC AS RECORDED BY DEED BOOK 506, PAGE 639 OF RECORD HE THE OFFICE OF THE CLERK OF GRAVES COUNTY, RENTUCKY, PARCEL ID: 006.03 03.035.00, WHICH IS MORE PARTICULARLY DESCRIBED AS FOLLOWS.

BEARING DATUM USED HEREIN IS BASED UPON RENTUCKY STATE PLANE COORDINATE SYSTEM, SINGLE ZONE, MAD 81, FROM A REAL TIME KHIEMATIC GLOBAL POSITIONING SYSTEM OBSTRYATION USING THE YENTUCKY TRAILSPORTATION CABINET REAL TIME GPS HETWORK COMPETTED DICTURE 14: 2020

COMMERCING AT A FOUND S/B" REBAR WITH A YELLOW CAP STAMPED 'RT CARTER PLS' AT THE SOUTHWEST CORNER OF THE PARCEL CONSTRUCT TO JASON S & KAYLA HERISON AS DESCRIBED IN DEED BOOK 4-17, PAGE 52, PARCEL ID: 006.00.00.007 CO, AND BEIRG IN THE HORTH RIGHT OF WAY LINE OF KENTUCKY HIGHWAY 60; FOR REFERENCE, SAID COMMENCEMENT POINT IS 564'00Y 14"E 904 95" FROM A FOUND 17.7" REBAR WITH NO CAP IN THE SOUTHWAY 60; FOR REFERENCE, SAID COMMENCEMENT POINT IS 564'00Y 14"E 904 95" FROM A FOUND 17.7" REBAR WITH NO CAP IN THE SOUTHWAY 60 THE HORTH RIGHT OF WAY LINE OF SAID LENTUCKY HIGHWAY 60, THERICE HIGHWOY 14" W 275 99" TO A POINT ON THE HORTH RIGHT OF WAY LINE OF SAID KENTUCKY HIGHWAY 60, THERICE HIGHWOY 16" AND LINE HORTH RIGHT OF WAY LINE OF SAID KENTUCKY HIGHWAY 60, THERICE HIGHWOY 16" SOUTH LINE OF SAID KAN & KFARMS LIC, THERICE LEAVING SAID LINE HIS-159"/46" & 234,23" TO A SET 17.1" REBAR, 18" LONG, CAPPED "PATTERSON PLS 1136", HERCAFTER REFERRED TO AS A "SET 1PC", AT THE SOUTHWEST CORNER OF THE PROPOSED LEASE AREA AND BEING THE TRUE POINT OF BEGINNING HIGHWEST CORNER OF THE PROPOSED LEASE AREA AND BEING THE TRUE POINT OF BEGINNING CONTAINING 10,000,000 SQUARE FEET AS PER SURVEY BY WARK E. PATTERSON, PLS 113136 DATED JUHE 24, 2020.

## PROPOSED 30' / VARIABLE WIDTH ACCESS & UTILITY EASEMENT

THE FOLLOWING IS A DESCRIPTION OF THE PROPOSED BY / VARIABLE WINDTH ACCESS MID UTILITY EASEMENT TO BE GRANTED FROM THE PROPERTY CONVEYED TO KIM & K FARMS LIC AS RECORDED IN GEED BOOK SU6, PAGE 639 OF RECORD IN THE OFFICE OF THE CLERK OF GRAYES COUNTY, KENTUCKY, PARCEL ID. 806 63 00.003,00, WHICH IS MORE PARTICULARLY DESCRIBED AS FOLLOWS:

ECARING DATUM USED HEREIN IS BASED UPON KENTUCKY STATE PLANE COORDINATE SYSTEM, SINGLE ZONE, NAD 83, FROM A REAL TIME HINEMATIC GLOBAL POSITIONING SYSTEM OBSERVATION USING THE LENTUCKY TRANSPORTATION CABINET REAL TIME GPS HETWORK COMPLETED ON WHIC 14, 2010.

## EXHIBIT "B"

## SURVEY OF THE PREMISES

(see attached)



THIS SURVEY DOES NOT CONSTITUTE A TITLE SEARCH BY PODO GROUP, LLC AND AS SUCH WE ARE NOT RESPONSIBLE FOR THE INVESTIGATION OR INDEPENDENT SAME FOR EAST INVESTIGATION OR SECRETARY CONFERENCE OF SECRETARY INVESTIGATION OF SECRETARY CONFERENCE THE PROPERTY LINESCORDED BY DESCRIPTION OF SECRETARY INVESTIGATION OF SECRETARY OF SECRETARY INVESTIGATION OF SECRETARY INVESTIGATION OF SECRETARY CONFESSION OF SECRETARY INVESTIGATION OF SECRETARY OF SECRETARY INVESTIGATION OF SECRETARY OF

## SCHEDULE B SECTION II (EXCEPTIONS)

- DESCTE, LINKS, DILLINGUAVEZS, ACCESSE CLANS GROTHER MATTEKS, E ANY, CESATE), RETA JAPSANINS IN THE PUBLIC RECORDS OB ATTACHING SERVENUENT TO THE EFFECTIVE DATE AND FROM TOTA CHAT THE APPROCEDUA INCLUDES ACCUMENTED HE OF RECORD HE STATE OR INTEREST OR MONTEMEET THEREON COVERED BY THIS COMMATINESSET (POWER OF DESIGN GROUP, LLC., DID NOT DAMBINE OR ADDRESS THE ITEM.)
- TAXES OR SPECIAL ASSESSABITS WHICH ARE NOT SHOWN AS DISTING UBBS BY THE PUBLIC RECORDS. (NOT A LAND SURVEYING MATTER, THEREFORE POWER OF DESIGN GROUP, LIC., DID NOT EXAMINE OR ADDRESS THIS ITEM,)
- ANY BUCROACHMENT, BUCHMBRANCE, VIGLATION, VARIATION, OR ADVERSE CHOLMSTANCE AFFECTING THE TITLE THAT WOULD BE DUCLOSED BY AN ACQUANTE AND CONPELTE LAND SURVEY OF THE LIVEL (NO ENCOCHOMENTS WISE OBSERVED ON THE AREA OF THE PREMISES, OR ESSENBEIT POWERS OF BESSEN BOOK DROOMS ALL THEFORE, THE SHOULD NOT BE CONSTRUED AS NO BUCHDACHMENTS EXST.)
- RIGHTS OR DAING OF PARTIES IN POSSESSION NOT SHOWN BY THE PUBLIC RECEIRDS. (FIGHTS OR CLAIMS ARE NOT A LAND SURVEYING MATTER. THEREFORE POWER OF DESIGN GROUP, LLC, DID NOT EXAMINE ORADOREST THE TIENA!
- ANY LIEN OR RIGHT TO A LIEN, FOR SERVICES, LAGOR, OR NATERIAL HERETOFORE OR HEREATER FURNISHED, RAPOSED BY LAW AND NOT SHOWN BY THE PUBLIC RECORDS, (INOT A LAND SURVEYING MATTER, THEREFORE POWER OF DESIGN GROUP, LLC, DID NOT EXAMINE OR ADDRESS THIS HEIM.)
- Excenditior claims of excenents, not shown by the public records, ipower of dexian group, i.e., did not damne or address that teal)

TAXES, OR SPECIAL ASSESSMENTS, IF ANY, NOT SHOWN AS DESTING LENS BY THE PUBLIC RECORDS.

PARCEL ID # 005,00.00,005.00
COMMENTS, PARENT PARCEL
PERI
2019 GTY & COUNTY ANN

ANNUAL TAX AMOUNT. SOLOO PENALTY: AMOUNT DUE STATUS N/A DATE SOOD THRU DATE,

NANCELID POSCODIZIOSSIZI.

PANCELID POSCODIZIOSSIZI.

COMMONTIS, ESCRIPCID PANCELI.

PERSOD TAX, AMOUNT PESMITT. AMOUNT DUE STATIS. DUE DATE, COOD TRRU DATE,
CODE OTTA COUNTY ANNUAL SUSSA.

SOCIO NA.

PAUD TAX COUNTY ANNUAL SUSSA.

(NOTA LAMO SUPERING AMOTER, THESEFORE POWER OF DESMI GROUP, LLC, DO NOT DUANNE OR ADDRESS THE CITAL)

## CORTGAGE

NONE OF RECORD.

JENS/JUDGEMENTS

NONE OF RECORD.

- SUBLETTO EXEMPENT IN DEED FROM ALBERT ENESTIE GOATHS AND WHITE LAWF VERBON GOATHS, TO CHAINT TOOK AND WITE, "ADOLE TOOK
  AND BEFORE AND RECORDED IN PROOF, 150, PABLE CTAT, DRAWET COUNTING RECORDED, [DASHMENT IN DEED AS RECORDED IN BOOK 250,
  PAGE 477 DOES NOT AFFECT THE PARENT PANCEL ON THE ACCESS & UTILITY ENCOMENT.]
- SUBJECT OF ASSANDAT FOR POWEST UNES AND WATER METERS IN DEED PERM LAMES AL FLUOTT TRUSTEE OF THE LAMES AL FLUOTT DECLARATION OF TRUST TO THOMAS H, ELLIOTT DATED LIDE/SUBSE AND RECORDED DID/12/2058 IN BOOK 157, DAKE TOA, DANNES COLUMT BECORDE, DESEMBNT AS RECORDED IN BOOK 2577, PAGE TOD DOES NOT AFFECT THE PARASTY PARKEZ, ORTHE ACCESS & UTILITY EXSENDENT AND IS SHOWN HERSON).
- IN SUBSETT OF ESCHART OF SO COST MOSE STRIP OF LIKED PORKERSY LISED AS A DAMAN PERSENCETH RESEN FROM HAIM STREET MAKE IT THAT THE ANAMALI MOSE COSTEDED THE STREET STREET AND RESENCE THE SECRET OF THE SECRET HAVEN HAD WITH THE COST OF THE COST OF THE SECRET HAVEN HAD WITH THE COST OF THE COST OF THE SECRET HAVEN HAVEN
- 11. SUBECTTO DED OF EASHERT FROM ALGERE GOATED, AND WITE, MAIT VERWON GOATEN TO FANCY FRAM WATER & SEMPE DISTRICT DATED 6/20/12956 AND RECORDED 6/30/12959 IN BOOK 355, PAGE DO GRAMES COUNTY RECORDED, (BUSDMENT AS RECORDED NA BOOK 356, PAGE DO GRAMES COUNTY RECORDED, (BUSDMENT AS RECORDED NA BOOK 356, PAGE DO BOOK 356
- 12. SHRED TO ANY MATTERS AS MAY RE SHOWN ON PAIT OF QUALL HOLLOW SHROWS DEPONS ON PRIVES RECORDED 1272/2016 IN PLAY FROME P. PAGE 75. GRAVES COLUMN PRECENTS. (THIS YORDS THE SAGRANGH SHOWN ON PAIR AND THE ACT THIS YORD HOLD ESS. PAGE 639) (PANTIES AS SHOWN IN PAUT IN DOOR ESS. PAGE 639) (PANTIES AS SHOWN IN PAUT IN DOOR ESS. PAGE 639) (PANTIES AS SHOWN IN PAUT IN DOOR ESS. PAGE 639) (PANTIES AS SHOWN IN PAUT IN DOOR ESS. PAGE 639) (PANTIES AS SHOWN IN PAUT IN DOOR ESS. PAGE 639) (PANTIES AS SHOWN IN PAUT IN DOOR ESS. PAGE 639) (PANTIES AS SHOWN IN PAUT IN PAUT OF THE ACTES AS THE PAGE 639).

## LEGAL DESCRIPTIONS

PROPOSED LEASE AREA.
THE PROPOSED LEASE AREA.
THE PROJUMING S.A DESCRIPTION OF THE PRODUCED LEASE AREA. TO BE LEASED REAM THE PRODUCETY COMMENTS
TO THAT BE K REAM'S LEAS RECURSED IN SEED BOOK SAC, PAGE 259 OF RECURS ON THE OFFICE OF THE CLERK OF
CANCES COMPTE, NEXT THE OFFICE OF ADJACANSEAN, WHICH IS MORE PARTICULARY DESCRIBED AS
FOLLOWS.

POD NWRGO DOWN

DEADNE CARTUM LISTO HERINI ES BASED UPOM KINTUCKYSTATT PLANS COORDINANT STITEM SINGEI ZOME, MAD 55. PROMA REAL THRE KURRANTE CARDEM L'ESTIDANNES STITEMA ORESIONATION LISTING THE KONTUCKY TRANSPORTATION CABINET REAL THRE GE'S NETWORK COMPULTED ON JUNE 24, 2020.

# PROPOSED 30" / VARIABLE WIDTH ACCESS & UTILITY EASEMENT

THE CALLOWING SA DESCRIPTION OF THE REPORTED BY A VARIABLE WIDTH ACCESS AND UTLIFF ESCHARIT TO BE CHARIT TO THE PROPERTY CHARICETED TO MAKE A FLANKE LIGH. RECORDED BY DESCRIPTION FOR A PROPERTY CHARICETED TO MAKE A FLANKE LIGH. RECORDED BY DESCRIPTION FOR THE CERROF GAMES COUNTY, ESTITUCH, PARTEL BY CREATION SECOND WHICH IS NOT THE CERROF GAMES COUNTY, ESTITUCH, PARTEL BY CREATION SECOND WHICH IS NOT THE CERROF GAMES COUNTY, ESTITUCH, PARTEL BY CREATION SECOND WHICH IS NOT THE CERROF GAMES COUNTY, ESTITUCH, PARTEL BY CREATION SECOND WHICH IS NOT THE CERROF WHICH WHICH IS NOT THE CERROF WHICH IS NOT THE CERROF WHICH IS NOT

BEARIS DATUM USED HEISIN SEASED DIPON KOTINDOY STAT PLANS COCRONALTE STATA, SINGLE DINS, NAD 53. PROM A REAL THAIL RUIDANTE GEDAM, MOSTITONING STATIM OBSTRATION USING THE KERTUCKY TRANSPORTATION COMBINET KOM, THAIL GO'S INSTINUTACIONADITED ON DIVIEZA, 2020.

PARENT PARCE, LEGAL DESCRIPTION, DEED BOOK 506, PAGE 639 (NOT FIELD SURVEYED)
ALL THAT PARCE, OF LAND BYTHE BYTHE COLAFITY OF GRAVES AND COMMONWALUTH OF ERVITIONS AS MORE
FULLY RECYCLIED AND BOCK ONCE PAGE 639 AND PARCE, AND COMMONMALUTH OF ERVITIONS AS MORE
BEING DROWN AND DESIGNATED AS:

OUE TO THE MINESDUS PRICE CUTSLIS REFERENCED IN THE CHREDIT VESTING DEED AND BACK DEED, A SURVEY IS REQUIRED IN ORDER TO DETERMINE WHAT THE CURRENT, CORRECT LEGAL DESCRITTON OF THE SURVEY PROPERTY E.

# PARCEL NUMBER: 006,00,00,005,00 AND 006,00,001,005.02

Beng the same property acquired by ema k kadors, inc. a edynocy idmited ilmenty company by deed Of wellimi eltit matdem atka, m keith haydon, single, amd erh e mydem atka, kort matdem and monch matdem, hisdemo and whe, dated 12/12/2014 and recholde 12/12/2014 in cock/ page 306/ 639

F

KENTUCKY RSA PARTNERSHIP

1

PROPERTY OWNER
NA 2 K FARMS LLC
P O BOX ARDS
COON RUPIDS, MM SS448
SOURCE OF TITLE
DEED BOOK 506, PAGE 639 EV FANCY FARM
XENTUCKY HORMAY 20
FANCY FARM, XY 42029
GRAVES COUNTY MUNINATURE OFFERS TAX PARCEL NUMBER: DATE DESCRIPTION SITE SURVEY

POD NUMBER: ORAWN SY: CHECKED BY: SURVEY DATE: PLAT DATE. 224.20 624.20 624.20

SITE SURVEY
THE DOES NOT REPRESENT A
BOUNDARY SURVEY OF THE
PARENT PARCEL

HEET NUMBER (2 pages)

B-1.1





## **Exhibit L**

## **EV Fancy Farm Notification List**

KM & FARMS LLC PO BOX 65 FANCY FARM, KY 42039

MARTIN BRENT WELDON & LYNN ASHLEY 1521 C R 1106 FANCY FARM, KY 42039

MARTIN BRENT WELDON & LYNN ASHLEY 1521 C R 1106 FANCY FARM, KY 42039

MILLS ROBERT & SUSAN & MILLS JOHN D & JOAN 2051 SULLIVAN RD MAYFIELD, KY 42066

ELDER PHILIP L II & JENNIFER B 271 ELDER RD FANCY FARM, KY 42039

WILLETT WILLIAM MERRETT 11443 VALMONT LN ALPHARETTA, GA 30004

R E C PROPERTIES LLC 9965 STATE RT 80 WEST FANCY FARM, KY 42040

NEWTON ANTHONY ALLEN & RENAE MARIE 7555 STATE RT 80 EAST ARLINGTON, KY 42021

WILSON PAMELA A 87 ELDER RD FANCY FARM, KY 42039

CISSELL DAVID 612 OLD DUBLIN RD MAYFIELD, KY 42066

THOMPSON JAMES BROWN & RUTH ANN

10622 STATE RT 80 W FANCY FARM, KY 42039

ELLIOTT THOMAS H c/o KYLA ELLIOTT 5632 NO. KARLOV CHICAGO, IL 60646

HAYDEN FARMS & AG LLC 77 CLAUDE RD MAYFIELD, KY 42066

FANCY FARM WATER DISTRICT PO BOX 329 MAYFIELD, KY 42066

HENSON JASON S & KAYLA 10678 STATE RT 80 W FANCY FARM, KY 42039

SLAYBOUGH CHARLES R & BRENDA K 183 CARRICO RD FANCY FARM, KY 42039

MURPHY BRIAN G & TAMMY M 301 CARRICO RD FANCY FARM, KY 42039

CARRICO SUSAN 391 CARRICO RD FANCY FARM, KY 42039

WILSON PHILLIP & JOYCE 388 CARRICO RD FANCY FARM, KY 42039

WILSON MATTHEW ALBERT 18 BARRIGNTON CIRCLE PADUCAH, KY 42003

THOMAS DANIEL A & JENNIFER 282 CYPRESS HILL RD FANCY FARM, KY KEMP NICHOLAS C & ANDREA E 159 EWING DR FANCY FARM, KY 42039

THORNSBROUGH TROY & DANIELLE 152 EWING LN FANCY FARM, KY 42039

WOOD RUTHIE 872 STATE RT 339 S FANCY FARM, KY 42039

WHITLOCK AUTUMN & JULIE 226 PENDEL ST FANCY FARM, KY 42039

CURTSINGER THOMAS A JR & COLMENARES PATRICIA PAYNE BEVERLY & CURSTSINGER MARY JO 177 HAYDEN ST FANCY FARM, KY 42039

PERKINS, RANDALL & OLIF 55 HALL ST FANCY FARM, KY 42039

TRUELOVE ALEX P & AUDREY F 77 CARRICO RD FANCY FARM, KY 42039

CHAPMAN JACKIE & CHAPMAN JACKSON 1004 SOUTH 10TH ST MAYFIELD, KY 42066

BRADFORD PRESTON EUGENE & TAYLOR PAIGE 77 CARRICO RD FANCY FARM, KY 42039

## **Exhibit M**



www.clarkquinnlaw.com

Russell L. Brown Attorney at Law rbrown@clarkquinnlaw.com 320 N. Meridian St., Ste. 1100 Indianapolis, IN 46204 (317) 637-1321 main (317) 687-2344 fax

April 21, 2023

## Notice of Proposed Construction of Wireless Communications Facility Site Name: Fancy Farm

Cellco Partnership, d/b/a Verizon Wireless and VB BTS II, LLC / Vertical Bridge is filing an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located on Kentucky Highway 80, Fancy Farm, Kentucky 42039, (North Latitude: (36° 48' 09.61, West Longitude 88° 47' 54.21"). The proposed facility will include a 290-foot tall antenna tower, plus a 5-foot lightning arrestor and related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

This notice is being sent to you because the County Property Valuation Administrator's records indicate that you may own property that is within a 500' radius of the proposed tower site or contiguous to the property on which the tower is to be constructed. You have a right to submit testimony to the Kentucky Public Service Commission ("PSC"), either in writing or to request intervention in the PSC's proceedings on the application. You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2023-00133 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. Applicant's radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us at 317-637-1321 if you have any comments or questions about this proposal.

Sincerely,

Russell L. Brown

Attorney for Applicant

RLB/jdj enclosure

## Site Location Map







9589 0710 5270 0167 3920 45



MARTIN BRENT WELDON & LYNN ASHLEY 1525 C R 1106 FANCY FARM, KY 42039



## **CERTIFIED MAIL**



9589 0710 5270 0167 3920 52

FIRST-CLASS

US POSTAGE MIPITNEY BOW

21P 46204 \$ 008.1(
02 7H
0006035028 APR 21 20

KM & FARMS LLC PO BOX 65 FANCY FARM, KY 42039



## **CERTIFIED MAIL**



9589 0710 5270 0167 3920 38





MARTIN BRENT WELDON & LYNN ASHLEY 1521 C R 1106 FANCY FARM, KY 42039





9589 0710 5270 0167 3912 08



US POSTAGE MIPITNEY BOWES

21P 46204 \$ 008.100
02 7H
0006035028 APR 21 2023

MILLS ROBERT & SUSAN & MILLS JOHN D & JOAN 2051 SULLIVAN RD MAYFIELD, KY 42066



## **CERTIFIED MAIL**



9589 0710 5270 0167 3911 92

FIRST-CLASS

ELDER PHILIP L II & JENNIFER B 271 ELDER RD FANCY FARM, KY 42039

## Clark Quinn 1rk, Quinn, Moses, Scott & Grahn, LLP

## **CERTIFIED MAIL**



9589 0710 5270 0167 3911 85

FIRST. CLASS

US POSTAGE MIPITNEY BOWES

ZIP 46204 \$ 008.100
02 7H
0006035028 APR 21 2023

WILLETT WILLIAM MERRETT 11443 VALMONT LN ALPHARETTA, GA 30004







US POSTAGE IMPITNEY BOWES

UL 2

ZIP 46204 \$ 008.100
02 7H
0006035028 APR 21 2023

R E C PROPERTIES LLC 9965 STATE RT 80 WEST FANCY FARM, KY 42040

ClarkQuinn

## **CERTIFIED MAIL**



9589 0710 5270 0167 3911 61

FIRST-CLASS

US POSTAGE MIPITNEY BOWES

(1) 46204 \$ 008.100
02 7H
0006035028 APR 21 2023

NEWTON ANTHONY ALLEN & RENAE MARIE 7555 STATE RT 80 EAST ARLINGTON, KY 42021



## CERTIFIED MAIL



9589 0710 5270 0167 3911 54

FIRST-CLASS

WILSON PAMELA A 87 ELDER RD FANCY FARM, KY 42039





0710 5270 0167





CISSELL DAVID 612 OLD DUBLIN RD MAYFIELD, KY 42066

## Clark Quinn ark, Quinn, Moses, Scott & Grahn, LLP

## **CERTIFIED MAIL®**



9589 0710 5270 0167 3911 30

FIRST-CLASS

THOMPSON JAMES BROWN & RUTH ANN 10622 STATE RT 80 W FANCY FARM, KY 42039

## Clark Quinn ark, Quinn, Moses, Scott & Grahn, LLP

## **CERTIFIED MAIL**



9589 0710 5270 0167 3911 23

FIRST-CLASS

US POSTAGE MIPITNEY BOWES

VIP 46204
02 7H
0006035028

APR 21 2023

ELLIOTT THOMAS H & KYLA ELLIOTT 5632 NO. KARLOV CHICAGO, IL 60646



## **CERTIFIED MAIL**



9589 0710 5270 0167 3911 09

US POSTAGE IMIPITNEY BOWES

APR 21 2023

HAYDEN FARMS & AG LLC 77 CLAUDE RD MAYFIELD, KY 42066



Russell L. Brown Attorney at Law rbrown@clarkquinnlaw.com 320 N. Meridian St., Ste. 1100 Indianapolis, IN 46204 (317) 637-1321 main (317) 687-2344 fax

June 6, 2023

Notice of Proposed Construction of Wireless Communications Facility Site Name: Fancy Farm

Cellco Partnership, d/b/a Verizon Wireless and VB BTS II, LLC / Vertical Bridge is filing an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located on Kentucky Highway 80, Fancy Farm, Kentucky 42039, (North Latitude: (36° 48' 09.61, West Longitude 88° 47' 54.21"). The proposed facility will include a 290-foot tall antenna tower, plus a 5-foot lightning arrestor and related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

This notice is being sent to you because the County Property Valuation Administrator's records indicate that you may own property that is within a 500' radius of the proposed tower site or contiguous to the property on which the tower is to be constructed. You have a right to submit testimony to the Kentucky Public Service Commission ("PSC"), either in writing or to request intervention in the PSC's proceedings on the application. You may contact the PSC for additional information concerning this matter at: Kentucky Public Service Commission, Executive Director, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2023-00133 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. Applicant's radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us at 317-637-1321 if you have any comments or questions about this proposal.

Sincerely,

Russell L. Brown

Attorney for Applicant

RLB/mnw enclosure

Site Location Map







가득하다 되는 나를 보고 사가스테



9589 0710 5270 0167 3920 83

FIRST-CLASS

MILLS ROBERT & SUSAN & MILLS JOHN D & JOAN 2051 SULLIVAN RD MAYFIELD, KY 42066

## Clark Quinn 1rk, Quinn, Moses, Scott & Grahn, LLP

## **CERTIFIED MAIL**



9589 0710 5270 0167 3920 90

FIRST-CLASS

WILLETT WILLIAM MERRETT 11443 VALMONT LN ALPHARETTA, GA 30004

## ClarkQuinn ark, Quinn, Moses, Scott & Grahn, LLP

## **CERTIFIED MAIL**



9589 0710 5270 0167 3921 06





ELLIOTT THOMAS H c/o KYLA ELLIOTT 5632 NO. KARLOV CHICAGO, IL 60646



9589 0710 5270 0167 3921 13

FIRST-CLASS

FANCY FARM WATER DISTRICT PO BOX 329 MAYFIELD, KY 42066

## Clark Quinn ark, Quinn, Moses, Scott & Grahn, LLP

## **CERTIFIED MAIL**



9589 0710 5270 0167 3921 20

FIRST-CLASS

HENSON JASON S & KAYLA 10678 STATE RT 80 W FANCY FARM, KY 42039

## Clark Quinn lark, Quinn, Moses, Scott & Grahn, LLP

## **CERTIFIED MAIL**



9589 0710 5270 0167 3921 37

FIRST-CLASS

US POSTAGE MIPITNEY BOWES

(1)

ZIP 46204 \$ 008.10°

02 7H

SLAYBOUGH CHARLES R & BRENDA K 183 CARRICO RD FANCY FARM, KY 42039





FIRST-CLASS

MURPHY BRIAN G & TAMMY M 301 CARRICO RD FANCY FARM, KY 42039

## Clark Quinn ark, Quinn, Moses, Scott & Grahn, LLP

## **CERTIFIED MAIL**



9589 0710 5270 0167 3921 51

FIRST-CLASS

CARRICO SUSAN 391 CARRICO RD FANCY FARM, KY 42039

## Clark Quinn lark, Quinn, Moses, Scott & Grahn, LLP

## **CERTIFIED MAIL**



9589 0710 5270 0167 3921 68

FIRST-CLASS

US POSTAGE MIPITNEY BOWES

(2)

ZIP 46204 \$ 008.100
02 7H
0006035028 JUN 06 2023

WILSON PHILLIP & JOYCE 388 CARRICO RD FANCY FARM, KY 42039



9589 0710 5270 0167 3921

FIRST-CLASS

US POSTAGE MIPITNEY BOWES

WILSON MATTHEW ALBERT **18 BARRIGNTON CIRCLE** PADUCAH, KY 42003

## Slark Quinn ark, Quinn, Moses, Scott & Grahn, LLP

## **CERTIFIED MAIL®**



9589 0710 5270 0167 3921 82

FIRST-CLASS

THOMAS DANIEL A & JENNIFER 282 CYPRESS HILL RD **FANCY FARM, KY** 

## ark, Quinn, Moses, Scott & Grahn, LLP

## FIED MAIL



9589 0710 5270 0167 3921 99

FIRST-CLASS

US POSTAGE IMIPITNEY BOWES ZIP 46204 02 7H 0006035028

KEMP NICHOLAS C & ANDREA E 159 EWING DR FANCY FARM, KY 42039





FIRST-CLASS

US POSTAGE IMIPITNEY BOWES

VIP 46204 \$ 008.100
02.7H
0006035028 JUN 06 2023

THORNSBROUGH TROY & DANIELLE 152 EWING LN

Clark Quinn

ark, Quinn, Moses, Scott & Grahn, LLP

## **CERTIFIED MAIL**

FANCY FARM, KY 42039



9589 0710 5270 0167 3922 12

FIRST-CLASS

US POSTAGE MIPITNEY BOWES

ZIP 46204 \$ 008.100
02 7H
0006035028 | UIN 06.2023

WOOD RUTHIE 872 STATE RT 339 S FANCY FARM, KY 42039

Clark Quinn
ark, Quinn, Moses, Scott & Grahn, LLP

## **CERTIFIED MAIL**



9589 0710 5270 0167 3922 29

公益 数语

FIRST-CLASS

US POSTAGE MIPITNEY BOWES

ZIP 46204 \$ 008.100
02 7H
0006035028 JUN 06 2023

WHITLOCK AUTUMN & JULIE 226 PENDEL ST FANCY FARM, KY 42039

.......







9589 0710 5270 0167 3922 36

FIRST-CLASS

US POSTAGE IMIPITNEY BOWES

CURTSINGER THOMAS A JR & COLMENARES PATRICIA PAYNE BEVERLY & CURSTSINGER MARY JO 177 HAYDEN ST FANCY FARM, KY 42039

## ark, Quinn, Moses, Scott & Grahn, LLP

## CERTIFIED MAIL



9589 0710 5270 0167 3922 43

FIRST-CLASS

PERKINS, RANDALL & OLIF 55 HALL ST FANCY FARM, KY 42039

## ark, Quinn, Moses, Scott & Grahn, LLP

## IFIED MAIL



9589 0710 5270 0167 3922 50

FIRST-CLASS

US POSTAGE IMIPITNEY BOWES ZIP 46204 02 7H 0006035028

TRUELOVE ALEX P & AUDREY F 77 CARRICO RD FANCY FARM, KY 42039





9589 0710 5270 0167 3922 67

FIRST-CLASS

US POSTAGE MIPITNEY BOWES

ZIP 46204 \$ 008.100
02.7H
02.7H
02.7H
02.7H
02.7H
02.7H
02.7H
02.7H
02.7H

CHAPMAN JACKIE & CHAPMAN JACKSON 1004 SOUTH 10TH ST MAYFIELD, KY 42066



## CERTIFIED MAIL



9589 0710 5270 0167 3922 74

FIRST-CLASS

US POSTAGE IMIPITNEY BOWES

(1)

ZIP 46204 \$ 008.100
02.7H
0006035028 JUN 06 2023

BRADFORD PRESTON EUGENE & TAYLOR PAIGE 77 CARRICO RD FANCY FARM, KY 42039

| <ul> <li>Complete items 1, 2, and 3.</li> <li>Print your name and address on the reverse so that we can return the card to you.</li> <li>Attach this card to the back of the mailpiece, or on the front if space permits.</li> <li>1. Article Addressed to:</li> </ul>                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| so that we can return the card to you.  Attach this card to the back of the mailpiece, or on the front if space permits.                                                                                                                                                                                                                              | A. Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Attach this card to the back of the mailpiece, or on the front if space permits.                                                                                                                                                                                                                                                                      | X (1) ( . Agent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| or on the front if space permits.                                                                                                                                                                                                                                                                                                                     | B. Received by (Printed Name) C. Date of Deliver                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Article Addressed to:                                                                                                                                                                                                                                                                                                                                 | W/tay 14-24-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                       | D. Is delivery address different from item 1? Yes If YES, enter delivery address below:                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MAA 9 FADAACII.C                                                                                                                                                                                                                                                                                                                                      | 11 120, dillot dell'oly approve below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| KM & FARMS LLC                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PO BOX 65                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FANCY FARM, KY 42039                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                       | 2 Consider Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                       | 3. Service Type ☐ Priority Mail Express® ☐ Adult Signature ☐ Registered Mail™                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                       | Adult Signature Restricted Delivery Registered Mail Restrict Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9590 9402 8129 2349 7944 64                                                                                                                                                                                                                                                                                                                           | ☐ Certified Mail Restricted Delivery ☐ Signature Confirmation ☐ Collect on Delivery ☐ Signature Confirmation                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2. Article Number (Transfer from service label)                                                                                                                                                                                                                                                                                                       | Collect on Delivery Restricted Delivery Restricted Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9589 0710 5270 0167 3920                                                                                                                                                                                                                                                                                                                              | Mail Restricted Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PS Form 3811, July 2020 PSN 7530-02-000-9053                                                                                                                                                                                                                                                                                                          | Domestic Return Receip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SENDER: COMPLETE THIS SECTION                                                                                                                                                                                                                                                                                                                         | COMPLETE THIS SECTION ON DELIVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Complete items 1, 2, and 3.                                                                                                                                                                                                                                                                                                                           | A. Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Print your name and address on the reverse                                                                                                                                                                                                                                                                                                            | X Lynne Asle Mana Addresse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| so that we can return the card to you.                                                                                                                                                                                                                                                                                                                | B. Received by (Printed Name) C. Date of Delive                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Attach this card to the back of the mailpiece, or on the front if space permits.                                                                                                                                                                                                                                                                      | Ashley Martin 4/24/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1. Article Addressed to:                                                                                                                                                                                                                                                                                                                              | D. Is delivery address different from item 1? Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MARTIN BRENT WELDON                                                                                                                                                                                                                                                                                                                                   | If YES, enter delivery address below: No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| & LYNN ASHLEY                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1525 C R 1106                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FANCY FARM, KY 42039                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TAINET TAINN, KT 42033                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1: N 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                            | 3. Service Type ☐ Priority Mail Express® ☐ Adult Signature ☐ Registered Mail™                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                       | Adult Signature Restricted Delivery Registered Mail Restrict Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9590 9402 8129 2349 7944 57                                                                                                                                                                                                                                                                                                                           | ☐ Certified Mail Restricted Delivery ☐ Signature Confirmation ☐ Collect on Delivery ☐ Signature Confirmation                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2. Article Number (Transfer from service label)                                                                                                                                                                                                                                                                                                       | ☐ Collect on Delivery Restricted Delivery Restricted Delivery ☐ Insured Mail                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9589 0710 5270 0167 3920                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PS Form 3811, July 2020 PSN 7530-02-000-9053                                                                                                                                                                                                                                                                                                          | Domestic Return Receip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SENDER: COMPLETE THIS SECTION                                                                                                                                                                                                                                                                                                                         | COMPLETE THIS SECTION ON DELIVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| OZNOZIN. COM ZETE THIC OCCITOR                                                                                                                                                                                                                                                                                                                        | A. Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>Complete items 1, 2, and 3.</li> <li>Print your name and address on the reverse</li> </ul>                                                                                                                                                                                                                                                   | X L KLL L Agent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>Complete items 1, 2, and 3.</li> <li>Print your name and address on the reverse so that we can return the card to you.</li> </ul>                                                                                                                                                                                                            | X Lynne Khley / Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>Complete items 1, 2, and 3.</li> <li>Print your name and address on the reverse so that we can return the card to you.</li> <li>Attach this card to the back of the mailpiece,</li> </ul>                                                                                                                                                    | B. Received by (Printed Name) C. Date of Delive                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>Complete items 1, 2, and 3.</li> <li>Print your name and address on the reverse so that we can return the card to you.</li> </ul>                                                                                                                                                                                                            | B. Received by (Printed Name)  C. Date of Delive  All Marks  D. Is delivery address different from item 1?   Yes                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>Complete items 1, 2, and 3.</li> <li>Print your name and address on the reverse so that we can return the card to you.</li> <li>Attach this card to the back of the mailpiece, or on the front if space permits.</li> </ul>                                                                                                                  | B. Received by (Printed Name)  Ashla Martin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>Complete items 1, 2, and 3.</li> <li>Print your name and address on the reverse so that we can return the card to you.</li> <li>Attach this card to the back of the mailpiece, or on the front if space permits.</li> <li>Article Addressed to:</li> <li>MARTIN BRENT WELDON</li> </ul>                                                      | B. Received by (Printed Name)  C. Date of Delive  All Marks  D. Is delivery address different from item 1?   Yes                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>Complete items 1, 2, and 3.</li> <li>Print your name and address on the reverse so that we can return the card to you.</li> <li>Attach this card to the back of the mailpiece, or on the front if space permits.</li> <li>Article Addressed to:</li> <li>MARTIN BRENT WELDON</li> <li>&amp; LYNN ASHLEY</li> </ul>                           | B. Received by (Printed Name)  C. Date of Deliver  All a Margin  D. Is delivery address different from Item 1?   Yes                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>Complete items 1, 2, and 3.</li> <li>Print your name and address on the reverse so that we can return the card to you.</li> <li>Attach this card to the back of the mailpiece, or on the front if space permits.</li> <li>1. Article Addressed to:</li> <li>MARTIN BRENT WELDON</li> <li>&amp; LYNN ASHLEY</li> <li>1521 C R 1106</li> </ul> | B. Received by (Printed Name)  C. Date of Delive  All Marks  D. Is delivery address different from item 1?   Yes                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>Complete items 1, 2, and 3.</li> <li>Print your name and address on the reverse so that we can return the card to you.</li> <li>Attach this card to the back of the mailpiece, or on the front if space permits.</li> <li>Article Addressed to:</li> <li>MARTIN BRENT WELDON</li> <li>&amp; LYNN ASHLEY</li> </ul>                           | B. Received by (Printed Name)  C. Date of Deliver  All La Margin  D. Is delivery address different from Item 1?   Yes                                                                                                                                                                                                                                                                                                                                                                                                      |
| Complete items 1, 2, and 3.  Print your name and address on the reverse so that we can return the card to you.  Attach this card to the back of the mailpiece, or on the front if space permits.  1. Article Addressed to:  MARTIN BRENT WELDON  & LYNN ASHLEY  1521 C R 1106                                                                         | B. Received by (Printed Name)  C. Date of Delivery Address different from item 1?  D. Is delivery address different from item 1?  If YES, enter delivery address below:  No  3. Service Type                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Complete items 1, 2, and 3.</li> <li>Print your name and address on the reverse so that we can return the card to you.</li> <li>Attach this card to the back of the mailpiece, or on the front if space permits.</li> <li>1. Article Addressed to:</li> <li>MARTIN BRENT WELDON</li> <li>&amp; LYNN ASHLEY</li> <li>1521 C R 1106</li> </ul> | B. Received by (Printed Name)  Alth Mar 1:0  D. Is delivery address different from item 1? Yes If YES, enter delivery address below: No  3. Service Type  Adult Signature  Adult Signature Restricted Delivery  Adult Signature Restricted Delivery                                                                                                                                                                                                                                                                        |
| <ul> <li>Complete items 1, 2, and 3.</li> <li>Print your name and address on the reverse so that we can return the card to you.</li> <li>Attach this card to the back of the mailpiece, or on the front if space permits.</li> <li>1. Article Addressed to:</li> <li>MARTIN BRENT WELDON</li> <li>&amp; LYNN ASHLEY</li> <li>1521 C R 1106</li> </ul> | B. Received by (Printed Name)  Address  B. Received by (Printed Name)  C. Date of Delivery  D. Is delivery address different from item 1?  Yes  If YES, enter delivery address below:  No  3. Service Type  Adult Signature  Adult Signature Restricted Delivery  Certified Mail®  Certified Mail Restricted Delivery  Signature Confirmation  Signature Confirmation                                                                                                                                                      |
| Complete items 1, 2, and 3.  Print your name and address on the reverse so that we can return the card to you.  Attach this card to the back of the mailpiece, or on the front if space permits.  Article Addressed to:  MARTIN BRENT WELDON  & LYNN ASHLEY  1521 C R 1106  FANCY FARM, KY 42039                                                      | B. Received by (Printed Name)  Although Mar 1:0  D. Is delivery address different from item 1? Yes If YES, enter delivery address below: No  3. Service Type  Adult Signature  Adult Signature Restricted Delivery Certified Mail®  Certified Mail Restricted Delivery Collect on Delivery  Collect on Delivery  Collect on Delivery  Collect on Delivery                                                                                                                                                                  |
| Complete items 1, 2, and 3.  Print your name and address on the reverse so that we can return the card to you.  Attach this card to the back of the mailpiece, or on the front if space permits.  Article Addressed to:  MARTIN BRENT WELDON  & LYNN ASHLEY  1521 C R 1106  FANCY FARM, KY 42039                                                      | B. Received by (Printed Name)  Alth Mar In C. Date of Delivery  D. Is delivery address different from item 1? Yes If YES, enter delivery address below: No  3. Service Type Adult Signature Adult Signature Adult Signature Restricted Delivery Certified Mail® Certified Mail® Certified Mail Restricted Delivery Collect on Delivery Collect on Delivery Restricted Delivery Restricted Delivery |

| SENDER: COMPLETE THIS SECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COMPLETE THIS SECTION ON DELIVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Complete items 1, 2, and 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A. Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Print your name and address on the reverse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X Annu In E Agent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| so that we can return the card to you.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Addresse Li Addresse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Attach this card to the back of the mailpiece,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B. Begelved by (Printed Name) C. Date of Deliver,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| or on the front if space permits.  1. Article Addressed to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1. Article Addressed to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D. Is delivery address different from item 1? Yes If YES, enter delivery address below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ELDER PHILIP L II & JENNIFER B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 271 ELDER RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FANCY FARM, KY 42039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. Service Type ☐ Priority Mall Express®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Adult Signature ☐ Registered Mail™ ☐ Adult Signature Restricted Delivery ☐ Registered Mail Restrict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0500 0400 0400 0040 7044 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Certified Mail® Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9590 9402 8129 2349 7944 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ☐ Certified Mail Restricted Delivery ☐ Signature Confirmation ☐ Collect on Delivery ☐ Signature Confirmation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2. Article Number (Transfer from service label)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Collect on Delivery Restricted Delivery     Mail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9589 0710 5270 0167 3911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92 Mail Restricted Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PS Form 3811, July 2020 PSN 7530-02-000-9053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Domestic Return Receip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7 FO FORM OOF 1, July 2020 FOR 7550-02-000-3055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Domestic Hetain Necelp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SENDER: COMPLETE THIS SECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COMPLETE THIS SECTION ON DELIVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Complete items 1, 2, and 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A. Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Print your name and address on the reverse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X Y / / Agent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| so that we can return the card to you.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Addresse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Attach this card to the back of the mailpiece,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1124.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| or on the front if space permits.  1. Article Addressed to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D is delivery address different from item 12  Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1. Article Addressed to.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D. Is delivery address different from item 1? Yes If YES, enter delivery address below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| R E C PROPERTIES LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9965 STATE RT 80 WEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FANCY FARM, KY 42040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DER MERCHE AND ENDE DE LA PROPRIE DE DE LA PROPRIE DE LA PROPRIED DE LA PROPRIE DE LA  | 3. Service Type □ Priority Mail Express®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Adult Signature ☐ Registered Mail™ ☐ Registered Mail™ ☐ Registered Mail Restrict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9590 9402 8129 2349 7944 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Certified Mail® Delivery  □ Certified Mail Restricted Delivery □ Signature Confirmation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Collect on Delivery ☐ Signature Confirmation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2. Article Number (Transfer from service label)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Innuend Mail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9589 0710 5270 0167 3911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 6 fail Restricted Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PS Form 3811, July 2020 PSN 7530-02-000-9053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Domestic Return Receip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SENDER: COMPLETE THIS SECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COMPLETE THIS SECTION ON DELIVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ■ Complete items 1, 2, and 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A. Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ■ Print your name and address on the reverse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X Kin in A Agent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| so that we can return the card to you.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LI Addresser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Attach this card to the back of the mailpiece,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B. Received by (Printed Name) C. Date of Deliver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| or on the front if space permits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D. Is delivery address different from item 1? Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1. Article Addressed to:  NEWTOW ANTHONY ALLEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D. Is delivery address different from item 1? Yes If YES, enter delivery address below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second secon |
| & RENAE MARIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7555 STATE RT 80 EAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ARLINGTON, KY 42021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Antinoton, Ki 12022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. Service Type ☐ Priority Mall Express®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Adult Signature ☐ Registered Mail™                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Adult Signature Restricted Delivery Registered Mail Restrict Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9590 9402 8129 2349 7943 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ☐ Certified Mail Restricted Delivery ☐ Signature Confirmation <sup>™</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2. Article Number (Transfer from service label)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Collect on Delivery ☐ Signature Confirmation ☐ Collect on Delivery Restricted Delivery Restricted Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mail Restricted Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ישבויכייים בייים ביים בייים בי | (over \$500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PS Form 3811, July 2020 PSN 7530-02-000-9053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Domestic Return Receip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| SENDER: COMPLETE THIS SECTION                                                                    | COMPLETE THIS SECTION ON DELIVERY                                                                                                        |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| ■ Complete items 1, 2, and 3.                                                                    | A. Signature                                                                                                                             |
| ■ Print your name and address on the reverse                                                     | X Cllex also Address                                                                                                                     |
| so that we can return the card to you.  Attach this card to the back of the mailpiece,           | B. Received by (Printed Name) C. Date of Delive                                                                                          |
| or on the front if space permits.                                                                | 14 X W (Un 4137                                                                                                                          |
| 1. Article Addressed to:                                                                         | D. Is delivery address different from item 1? Yes If YES, enter delivery address below:                                                  |
| WILSON PAMELA A                                                                                  |                                                                                                                                          |
| 87 ELDER RD                                                                                      |                                                                                                                                          |
| FANCY FARM, KY 42039                                                                             |                                                                                                                                          |
|                                                                                                  | TV Sharp of the Carlot Special                                                                                                           |
| DI MILATURE RUDOL INDIA DI LUCA DI SULLA DI MILA MERMILI DI MILA                                 | 3. Service Type ☐ Priority Mall Express®                                                                                                 |
|                                                                                                  | □ Adult Signature □ Adult Signature Restricted Delivery □ Certified Mail® □ Registered Mail™ □ Registered Mail Restri                    |
| 9590 9402 8129 2349 7943 89                                                                      | ☐ Certified Mail Restricted Delivery ☐ Signature Confirmation                                                                            |
| 2. Article Number (Transfer from service label)                                                  | Collect on Delivery     Collect on Delivery Restricted Delivery     Restricted Delivery                                                  |
| 9589 0710 5270 0167 3911                                                                         | 5 4 fail Restricted Delivery                                                                                                             |
| PS Form 3811, July 2020 PSN 7530-02-000-9053                                                     | Domestic Return Recei                                                                                                                    |
|                                                                                                  |                                                                                                                                          |
| SENDER: COMPLETE THIS SECTION                                                                    | COMPLETE THIS SECTION ON DELIVERY                                                                                                        |
|                                                                                                  | A. Signature                                                                                                                             |
| Complete items 1, 2, and 3.  Print your name and address on the reverse                          | Agent                                                                                                                                    |
| so that we can return the card to you.                                                           | Address  Received by (Printed Name)  C. Date of Delive                                                                                   |
| Attach this card to the back of the mailpiece,<br>or on the front if space permits.              | DRUD CASTLE 4/24/2                                                                                                                       |
| 1. Article Addressed to:                                                                         | D. Is delivery address different from item 1? Yes                                                                                        |
| CISSELL DAVID                                                                                    | If YES, enter delivery address below:                                                                                                    |
| 612 OLD DUBLIN RD                                                                                |                                                                                                                                          |
| MAYFIELD, KY 42066                                                                               |                                                                                                                                          |
| WATFIELD, NT 42000                                                                               |                                                                                                                                          |
|                                                                                                  | 3. Service Type ☐ Priority Mail Express®                                                                                                 |
|                                                                                                  | □ Adult Signature □ Adult Signature Restricted Delivery □ Certified Mail® □ Registered Mail™ □ Registered Mail™ □ Registered Mail Restri |
| 9590 9402 8129 2349 7943 72                                                                      | Certified Mail Restricted Delivery                                                                                                       |
| Article Number (Transfer from service label)                                                     | ☐ Collect on Delivery ☐ Signature Confirmation ☐ Collect on Delivery Restricted Delivery ☐ Restricted Delivery                           |
| 9589 0710 5270 0167 3911                                                                         | Mail Mail Restricted Delivery                                                                                                            |
| PS Form 3811, July 2020 PSN 7530-02-000-9053                                                     | Domestic Return Rece                                                                                                                     |
|                                                                                                  |                                                                                                                                          |
| CENDED, COLUMN STEETH OF STREET                                                                  | COMPLETE THIS SECTION ON DELIVERY                                                                                                        |
| SENDER: COMPLETE THIS SECTION                                                                    | A. Signature                                                                                                                             |
| <ul><li>Complete items 1, 2, and 3.</li><li>Print your name and address on the reverse</li></ul> | TAGENT DAGENT                                                                                                                            |
| so that we can return the card to you.                                                           | 2 Well I Maddress                                                                                                                        |
| Attach this card to the back of the mailpiece,<br>or on the front if space permits.              | B Beceived by (Printed Name) C/Date of Delive                                                                                            |
| Article Addressed to:                                                                            | D. Is delivery address different from term 1?  Yes                                                                                       |
| THOMPSON JAMES BROWN                                                                             | If YES, enter delivery address below: No                                                                                                 |
| & RUTH ANN                                                                                       |                                                                                                                                          |
| 10622 STATE RT 80                                                                                |                                                                                                                                          |
| W FANCY FARM, KY 42039                                                                           |                                                                                                                                          |
|                                                                                                  | 3 Service Type                                                                                                                           |
|                                                                                                  | 3. Service Type ☐ Priority Mail Express® ☐ Adult Signature ☐ Registered Mail™ ☐ Registered Mail™                                         |
| 9590 9402 8129 2349 7943 65                                                                      | ☐ Adult Signature Restricted Delivery ☐ Certified Mail® ☐ Certified Mail Restricted Delivery ☐ Signature Confirmation                    |
|                                                                                                  | ☐ Collect on Delivery Restricted Delivery ☐ Signature Confirmatic ☐ Collection Delivery Restricted Delivery Restricted Delivery          |
| 2. Article Number (Transfer from service label)                                                  | Inchred Mail                                                                                                                             |
| 9589 0710 5270 0167 3911                                                                         | 500)                                                                                                                                     |
| PS Form 3811, July 2020 PSN 7530-02-000-9053                                                     | Domestic Return Rece                                                                                                                     |

| A CONTRACTOR OF THE CONTRACTOR |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SENDER: COMPLETE THIS SECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COMPLETE THIS SECTION ON DELIVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>Complete items 1, 2, and 3.</li> <li>Print your name and address on the reverse so that we can return the card to you.</li> <li>Attach this card to the back of the mailpiece, or on the front if space permits.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A. Signature  X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. Article Addressed to: HAYDEN FARMS & AG LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D. Is delivery address different from item 1? Yes If YES, enter delivery address below: No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 77 CLAUDE RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The state of the s |
| MAYFIELD, KY 42066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | an colonia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. Service Type ☐ Priority Mail Express®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9590 9402 8129 2349 7943 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | □ Adult Signature □ Adult Signature Restricted Delivery □ Certified Mail Restricted Delivery □ Certified Mail Restricted Delivery □ Collect on Delivery □ Signature Confirmatio □ Signature Confirmatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2. Article Number (Transfer from service label)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Collect on Delivery Restricted Delivery Restricted Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9589 0710 5270 0167 3911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | // All Restricted Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PS Form 3811, July 2020 PSN 7530-02-000-9053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Domestic Return Rece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



www.clarkquinnlaw.com

Russell L. Brown Attorney at Law rbrown@clarkquinnlaw.com 320 N. Meridian St., Ste. 1100 Indianapolis, IN 46204 (317) 637-1321 main (317) 687-2344 fax

April 21, 2023

Via Certified Mail, Return Receipt Requested

Hon. Jesse Perry Graves County Judge/Executive 101 East South Street Mayfield, KY 42066

RE: Notice of Proposal to Construct Wireless Communications Facility Kentucky Public Service Commission Docket No. 2023-00133 Site Name: Fancy Farm

Dear Judge Perry:

Cellco Partnership, d/b/a Verizon Wireless and VB BTS II, LLC / Vertical Bridge is filing an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located on the north side of Kentucky Highway 80, Fancy Farm, Kentucky 42039, (North Latitude: (36° 48' 09.61, West Longitude 88° 47' 54.21"). The proposed facility will include a 290-foot tall antenna tower, plus a 5-foot lightning arrestor and related ground facilities. This facility is needed to provide improved coverage for wireless communications in the area.

You have a right to submit comments to the PSC or to request intervention in the PSC's proceedings on the application. You may contact the PSC at: Executive Director, Public Service Commission, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2023-00133 in any correspondence sent in connection with this matter.

We have attached a map showing the site location for the proposed tower. Verizon Wireless' radio frequency engineers assisted in selecting the proposed site for the facility, and they have determined it is the proper location and elevation needed to provide quality service to wireless customers in the area. Please feel free to contact us with any comments or questions you may have.

Sincerely,

Russell L. Brown

Attorney for Applicant

## Site Location Map





9589 0710 5270 0167 3920 76





Hon. Jesse Perry Graves County Judge/Executive 101 East South Street Mayfield, KY 42066

| SENDER: COMPLETE THIS SECTION                                                                                                                                                                                                        | COMPLETE THIS SECTION ON DELIVERY                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Complete items 1, 2, and 3.</li> <li>Print your name and address on the reverse so that we can return the card to you.</li> <li>Attach this card to the back of the mailpiece, or on the front if space permits.</li> </ul> | A. Signature  X  Let Vell  Agent  Agent  B. Received by (Printed Name)  C. Date of Deliver  C. Date of Deliver |
| 1. Article Addressed to:  Hon: Jesse Perry Graves County Judge/Executive 101 East South Street Mayfield, KY 42066                                                                                                                    | D. Is delivery address different from item 1? ☐ Yes If YES, enter delivery address below: ☐ No                                                                                                                                                                                                                                                                 |
| 9590 9402 8129 2349 7944 71  2. Article Number (Transfer from service label) 9589 0710 5270 0167 3920                                                                                                                                | 3. Service Type  ☐ Adult Signature ☐ Adult Signature Restricted Delivery ☐ Certified Mail® ☐ Collect on Delivery ☐ Collect on Delivery ☐ Collect on Delivery ☐ Mail  Mail Restricted Delivery ☐ Mail  Mail Restricted Delivery  Restricted Delivery ☐ Restricted Delivery ☐ Restricted Delivery ☐ Restricted Delivery                                          |
| PS Form 3811, July 2020 PSN 7530-02-000-9053                                                                                                                                                                                         | Domestic Return Recei                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                |

# SITE NAME: Fancy Farm NOTICE SIGNS

The signs are at least (2) feet by four (4) feet in size, of durable material, with the text printed in black letters at least one (1) inch in height against a white background, except for the word "tower," which is at least four (4) inches in height.

Cellco Partnership, d/b/a Verizon Wireless proposes to construct a telecommunications **tower** on this site. If you have questions, please contact Clark, Quinn, Moses, Scott & Grahn, LLP, 320 N. Meridian Street, Indianapolis, IN 46204; 317-637-1321, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2023-00133 in your correspondence.

Cellco Partnership, d/b/a Verizon Wireless proposes to construct a telecommunications **tower** on this site. If you have questions, please contact Clark, Quinn, Moses, Scott & Grahn, LLP, 320 N. Meridian Street, Indianapolis, IN 46204; 317-637-1321, or the Executive Director, Public Service Commission, 211 Sower Boulevard, PO Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2023-00133 in your correspondence.



VIA EMAIL: classifieds@messenger-inquirer.com

**Exhibit P** 

Robert B. Scott
Charles R. Grahn
Frank D. Otte\*
John "Bart" Herriman
William W. Gooden\*\*
Michael P. Maxwell
Russell L. Brown\*\*
Jennifer F. Perry
Keith L. Beall
N. Davey Neal
Travis W. Cohron
Maggie L. Sadler
Kristin A. McIlwain
Olivia A. Hess

Land Use Consultant Elizabeth Bentz Williams, AICP

> \*Also admitted in Montana †Also admitted in Kentucky

Registered Civil Mediator

Benton, KY 42025

Mayfield Messenger

86A Commerce Blvd.

RE: Legal Notice Advertisement

Site Name: Fancy Farm

To Whom It May Concern,

Please publish the following legal notice advertisement in the next available edition of the Mayfield Messenger Publication:

#### NOTICE

Cellco Partnership, d/b/a Verizon Wireless is filing an application with the Kentucky Public Service Commission ("PSC") to construct a new wireless communications facility on a site located on the north side of Kentucky Highway 80, Fancy Farm, Kentucky 42039, (North Latitude: (36° 48' 09.61, West Longitude 88° 47' 54.21"). The proposed facility will include a 290-foot tall antenna tower, plus a 5-foot lightning arrestor and related ground facilities. You have a right to submit comments to the PSC or to request intervention in the PSC's proceedings on the application. You may contact the PSC at: Executive Director, Public Service Commission, 211 Sower Boulevard, P.O. Box 615, Frankfort, Kentucky 40602. Please refer to docket number 2023-00133 in any correspondence sent in connection with this matter.

After this advertisement has been published, please forward a tearsheet copy, affidavit of publication, and invoice to Clark, Quinn, Moses, Scott & Grahn, LLC, 320 N. Meridian Street, Indianapolis, IN 46204 or by email to ebw@clarkquinnlaw.com. Please call me on my cell with any questions at 317-902-2187 if you have any questions. Thank you for your assistance.

Sincerely,

Thinksh But William

Elizabeth Bentz Williams, AICP

Search Area Map
MK & K Farms LLC - EV Fancy Farm





Tuesday, September 20, 2022

RE: Proposed Verizon Wireless Communications Facility

Site Name: EV Fancy Farm.

Type of Tower: 290' self-support Tower.

Location: HIGHWAY 80 FANCY FARM, KY 42039.

#### To Whom It May Concern:

As a radio frequency engineer for Verizon Wireless, I am providing this letter to state the need for a Verizon Wireless site called **EV Fancy Farm**.

The EV Fancy Farm site is proposed with the below objectives:

- 1. Offload 4G traffic from busy site to the northwest.
- 2. Offload 4G traffic from busy site to the northeast.
- 3. Improve 4G throughput to existing heavy data users.
- Improve 4G network reliability by increasing the amount of time our customers operate on 4G instead of 3G.

Currently the area is experiencing high demand for wireless high-speed data. Growth forecasts have triggered the need for an additional site in the area. The tower is needed to provide all Verizon customers in the area with the best experience on their 4G wireless devices.

Raw Land – Design plans for a new tower would provide tower height of **290'**. The new structure height was decided upon to best cover the offload area and interact with the existing Verizon sites. If we are limited to building a structure less than the proposed height, another tower would be needed in the vicinity in the near future. In addition, building a structure that is too short can cause existing taller sites to shoot over the proposed site and building a site that is too tall can cause the proposed site to shoot over existing sites. Both situations create a poor experience from a user perspective. The new structure will be placed near the center of the area with high traffic demand and offload the surrounding sites greatly. The new tower design meets stated objectives.

Verizon Wireless cares about the communities as well as the environment and prefers to collocate on existing structures when available. It can be noticed from any map that Verizon Wireless is currently collocated on many existing structures in the area. We prefer collocation due to reduced construction costs, faster deployment, and environment protection. However, Verizon Wireless was unable to find a suitable structure within the center of demand area to collocate the proposed **EV Fancy Farm** site.



Verizon Wireless design engineers establish search area criteria in order to effectively meet coverage objectives as well as offload existing Verizon cell sites. When met, the criterion also reduces the need for a new site to cover the area in the immediate future. Each cellular site covers a limited area, depending on site configuration and the surrounding terrain. Cell sites are built in an interconnected network; which means each cell site must be located so that their respective coverage areas are contiguous. This provides uninterrupted communications throughout the coverage area.

Since collocation is generally the most cost-effective means for prompt deployment of new facilities, Verizon Wireless makes every effort to investigate the feasibility for using existing towers or other tall structures for collocation when designing a new site or system expansion. However, collocation on an existing tower or tall structure is not always feasible due to location of existing cell sites. Cell sites are placed in a way so they provide smooth hand off to each other and are placed at some distance from each other to eliminate too much overlap. Too much overlap may result in a waste of resources and raise a system capacity overload concern.

This cell site has been designed, and shall be constructed and operated in a manner that satisfies regulations and requirements of all applicable governmental agencies that have been charged with regulating tower specifications, operation, construction, and placement, including the FAA and FCC.

Sincerely,

Michael Fahim.

RF Engineer, Verizon Wireless

Michael



STATE OF INDIANA

COUNTY OF HAMILTON

Subscribed and sworn to before me this 20th day of 4FFT., 2022.

**Notary Public** 

THOMAS E KROH Notary Public - Seal Hamilton County - State of Indiana Commission Number NP0732024 My Commission Expires Feb 28, 2029 Printed THOMAS E. KROH

County of Residence HAM CTON

My Commission expires:

The second secon

,

### **Exhibit Ra**



Tuesday, September 20, 2022

**RE: GRAVES County Zoning Plots** 

Site Name: EV Fancy Farm.

To Whom It May Concern:

This map is not a guarantee of coverage and may contain areas with no service. This map reflects a depiction of predicted and approximate wireless coverage of the network and is intended to provide a relative comparison of coverage. The depictions of coverage do not guarantee service availability as there are many factors that can influence coverage and service availability. These factors vary from location to location and change over time. The coverage areas may include locations with limited or no coverage. Even within a coverage area shown, there are many factors, including but not limited to, usage volumes, service, outage, and customer's equipment, and terrain, proximity to buildings, foliage, and weather that may impact service.

The proposed site is needed to offload capacity from existing sites. This map reflects the predicted coverage area that will be offloaded from existing sites and transferred to the proposed site.

Michael Fahim.

RF Engineer, Verizon Wireless



## **EV Fancy Farm Pre**



| Legend:                |   |
|------------------------|---|
| Existing Verizon Sites | 0 |
| Proposed Verizon Site  |   |
| Future Verizon Site    | 0 |
| County Border          |   |
|                        |   |



## **EV Fancy Farm Post**



| Legend:                |   |
|------------------------|---|
| Existing Verizon Sites | 0 |
| Proposed Verizon Site  |   |
| Future Verizon Site    | 0 |
| County Border          |   |
|                        |   |

# verizon /



## **Exhibit S List and Identity and Qualifications of Professionals**

Mark E. Patterson Professional Land Surveyor Kentucky License 3136 Power of Design Group, LLC 11490 Bluegrass Parkway Louisville, KY 40299

Mark E. Patterson Professional Engineer Kentucky License 16300 Power of Design Group, LLC 11490 Bluegrass Parkway Louisville, KY 40299

Nathan Andrew Ross Professional Engineer Kentucky License 35794 Valmont 1545 Pidco Dr. Plymouth, IN 46563

Vince Caprino Construction Manager Verizon Wireless 2421 Holloway Road Louisville, KY 40299

Michael Fahim RF Engineer Verizon Wireless 2421 Holloway Road Louisville, KY 40299 STATE OF INDIANA )
) SS:
COUNTY OF MARION )

### AFFIDAVIT OF CERTIFICATION COMMONWEALTH OF KENTUCKY PUBLIC SERVICE COMMISSION

I Russell L. Brown, attorney for Cellco Partnership, d/b/a Verizon Wireless do hereby certify that as the person supervising the preparation of this application that the all statements and information contained herein are true and accurate to the best of that person's knowledge, information, and belief formed after a reasonable inquiry for all information within this application.

Russell L. Brown

Attorney, for Cellco Partnership, d/b/a Verizon Wireless

STATE OF INDIANA, COUNTY OF MARION, SS:

Subscribed and sworn to before me this 6th day of June 202

(Notary Public

Printed Name of Notary: Elizabeth Bentz Williams

My commission expires: November 18, 2028

My County of Residence: Marion

Commission #: <u>0639620</u>