COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

In the Matter of:

ELECTRONIC APPLICATION OF)
BLUEGRASS WATER UTILITY)
OPERATING COMPANY, LLC FOR AN) Case No. 2022-00432
ADJUSTMENT OF SEWAGE RATES)

DIRECT TESTIMONY

OF
DYLAN W. D'ASCENDIS
ON BEHALF OF
BLUEGRASS WATER UTILITY OPERATING COMPANY, LLC

FILED: February 27, 2023

DIRECT TESTIMONY

OF

DYLAN W. D'ASCENDIS

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
A. WITNESS IDENTIFICATION 1
B. BACKGROUND AND QUALIFICATIONS 1
II. PURPOSE OF TESTIMONY 2
III. SUMMARY 3
IV. GENERAL PRINCIPLES 5
A. BUSINESS RISK 9
B. FINANCIAL RISK 12
V. BLUEGRASS WATER AND THE UTILITY PROXY GROUP 13
VI. CAPITAL STRUCTURE AND LONG-TERM DEBT COST RATE 16
A. CAPITAL STRUCTURE 16
B. LONG-TERM DEBT COST RATE 17
VII. COMMON EQUITY COST RATE MODELS 17
A. DISCOUNTED CASH FLOW MODEL 19
B. THE RISK PREMIUM MODEL 22

1. The Predictive Risk Premium Model 23
2. The Total Market Approach Risk Premium Model 28
C. THE CAPITAL ASSET PRICING MODEL 38
D. COMMON EQUITY COST RATES FOR A PROXY GROUP OF DOMESTIC, NON-PRICE REGULATED COMPANIES BASED ON THE DCF, RPM, AND CAPM 45
VIII. CONCLUSION OF COMMON EQUITY COST RATE BEFORE ADJUSTMENT 48
IX. ADJUSTMENTS TO THE COMMON EQUITY COST RATE 48
A. BUSINESS RISK ADJUSTMENT 48
X. CONCLUSION 53

OF

DYLAN W. D'ASCENDIS

I. INTRODUCTION

A. WITNESS IDENTIFICATION

Q. Please state your name and business address.
A. My name is Dylan W. D'Ascendis. My business address is 3000 Atrium Way, Suite 200, Mount Laurel, NJ 08054.
Q. By whom are you employed and in what capacity?
A. I am a Partner at ScottMadden, Inc.

B. BACKGROUND AND QUALIFICATIONS

Q. Please summarize your professional experience and educational background.
A. I have offered expert testimony on behalf of investor-owned utilities in 35 state regulatory commissions in the United States, the Federal Energy Regulatory Commission, the Alberta Utility Commission, one American Arbitration Association panel, and the Superior Court of Rhode Island on issues including, but not limited to, common equity cost rate, rate of return, valuation, capital structure, class cost of service, and rate design.

On behalf of the American Gas Association ("AGA"), I calculate the AGA Gas Index, which serves as the benchmark against which the performance of the American Gas Index Fund ("AGIF") is measured on a monthly basis. The AGA Gas Index and AGIF are a market capitalization-weighted index and mutual fund, respectively, comprised of the common stocks of the publicly traded corporate members of the AGA.

Case No. 2022-00432
Application Exhibit 6
Direct Testimony of Dylan W. D'Ascendis

I am a member of the Society of Utility and Regulatory Financial Analysts ("SURFA"). In 2011, I was awarded the professional designation "Certified Rate of Return Analyst" by SURFA, which is based on education, experience, and the successful completion of a comprehensive written examination.

I am also a member of the National Association of Certified Valuation Analysts ("NACVA") and was awarded the professional designation "Certified Valuation Analyst" by the NACVA in 2015.

I am a graduate of the University of Pennsylvania, where I received a Bachelor of Arts degree in Economic History. I have also received a Master of Business Administration with high honors and concentrations in Finance and International Business from Rutgers University.

The details of my educational background and expert witness appearances are included in Appendix A.

II. PURPOSE OF TESTIMONY

Q. What is the purpose of your Direct Testimony in this proceeding?

A. The purpose of my Direct Testimony is to present evidence on behalf of Bluegrass Water Utility Operating Company, LLC ("Bluegrass Water" or the "Company") about the appropriate capital structure and corresponding cost rates the Company should be given the opportunity to earn on its jurisdictional rate base.

Q. Have you prepared any Exhibits in support of your recommendation?

A. Yes. I have prepared Exhibits DWD-1 through DWD-9, which have been prepared by me or under my direct supervision.

Case No. 2022-00432
Application Exhibit 6

Q. What is your recommended cost of capital for Bluegrass Water?

A. I recommend the Kentucky Public Service Commission ("KPSC" or the "Commission") authorize the Company the opportunity to earn an overall rate of return of 9.77% based on the actual capital structure of Bluegrass Water, consisting of 38.84% long-term debt at an embedded cost rate of 6.80%, and 61.16% common equity at my recommended return on common equity ("ROE") of 11.65%. The overall rate of return is summarized on page 1 of Exhibit DWD-1 and in Table 1 below:

Table 1: Summary of Overall Rate of Return

$\underline{\text { Type of Capital }}$	$\underline{\text { Ratios }}$	$\underline{\text { Cost Rate }}$	$\underline{\text { Weighted Cost Rate }}$
Long-Term Debt	38.84%	6.80%	2.64%
Common Equity	$\underline{61.16 \%}$	11.65%	$\underline{7.13 \%}$
Total	$\underline{\underline{100.00 \%}}$		$\underline{\underline{9.77 \%}}$

III. SUMMARY

Q. Please summarize your recommended common equity cost rate.

A. My recommended common equity cost rate of 11.65% is summarized on page 2 of Exhibit DWD-1. I have assessed the market-based common equity cost rates of companies of relatively similar, but not necessarily identical, risk to Bluegrass Water's. Using companies of relatively comparable risk as proxies is consistent with the principles of fair rate of return established in the Hope ${ }^{1}$ and Bluefield 2 Supreme Court cases. No proxy group can be identical in risk to any single company, so there must be an evaluation of

[^0]Case No. 2022-00432
Application Exhibit 6
Direct Testimony of Dylan W. D'Ascendis
Page 3 of 53
relative risk between the company and the proxy group to see if it is appropriate to make adjustments to the proxy group's indicated rate of return.

My recommendation results from the application of several cost of common equity models, specifically the Discounted Cash Flow ("DCF") model, the Risk Premium Model ("RPM"), and the Capital Asset Pricing Model ("CAPM"), to the market data of a proxy group of six water companies ("Utility Proxy Group") whose selection criteria will be discussed below. In addition, I also applied the DCF, RPM, and CAPM to a proxy group of domestic, non-price regulated companies comparable in total risk to the Utility Proxy Group ("Non-Price Regulated Proxy Group").

The results derived from each are as follows:

Table 2: Summary of Common Equity Cost Rate

Discounted Cash Flow Model	9.16%
Risk Premium Model	12.09%
Capital Asset Pricing Model	11.58%
Market Models Applied to Comparable Risk, Non-	$\underline{11.40 \%}$
Price Regulated Companies	
Indicated Range of Common Equity Cost Rates	$10.13 \%-11.13 \%$
Before Adjustments for Company-Specific Risk	1.00%
Business Risk Adjustment	$\underline{\underline{11.13 \%-12.13 \%}}$
Indicated Range of Common Equity Cost Rates after	
Adjustment	$\underline{\underline{11.65 \%}}$
Recommended Cost of Common Equity	

Case No. 2022-00432
Application Exhibit 6
Direct Testimony of Dylan W. D'Ascendis

After analyzing the indicated common equity cost rates derived through these models, the indicated range of common equity cost rates applicable to the Utility Proxy Group is between 10.13% and $11.13 \%{ }^{3}$

The indicated range of common equity cost rates applicable to the Utility Proxy Group was then adjusted upward by 1.00% to reflect Bluegrass Water's greater business risk relative to the Utility Proxy Group. These adjustments result in a Company-specific range of common equity cost rates between 11.13% and 12.13%. From this range of results, I recommend the Commission consider a common equity cost rate of 11.65%, or the approximate midpoint, for use in setting rates for the Company.

IV. GENERAL PRINCIPLES

Q. What general principles have you considered in arriving at your recommended common equity cost rate of $\mathbf{1 1 . 6 5 \%}$?
A. In unregulated industries, the competition of the marketplace is the principal determinant of the price of products or services. For regulated public utilities, regulation must act as a substitute for marketplace competition. Assuring that the utility can provide safe and reliable service at all times to their customers requires a level of earnings sufficient to maintain the integrity of presently invested capital. Sufficient earnings also permit the attraction of needed new capital at a reasonable cost, for which the utility must compete with other firms of comparable risk, consistent with the fair rate of return standards established by the U.S. Supreme Court in the previously cited Hope and Bluefield

[^1]Case No. 2022-00432
decisions. The U.S. Supreme Court affirmed the fair rate of return standards in Hope, when it stated:

The rate-making process under the Act, i.e., the fixing of 'just and reasonable' rates, involves a balancing of the investor and the consumer interests. Thus we stated in the Natural Gas Pipeline Co. case that 'regulation does not insure [sic] that the business shall produce net revenues.' 315 U.S. at page $590,62 \mathrm{~S} . \mathrm{Ct}$. at page 745. But such considerations aside, the investor interest has a legitimate concern with the financial integrity of the company whose rates are being regulated. From the investor or company point of view it is important that there be enough revenue not only for operating expenses but also for the capital costs of the business. These include service on the debt and dividends on the stock. Cf. Chicago \& Grand Trunk R. Co. v. Wellman, 143 U.S. 339, 345, 34612 S.Ct. 400, 402. By that standard the return to the equity owner should be commensurate with returns on investments in other enterprises having corresponding risks. That return, moreover, should be sufficient to assure confidence in the financial integrity of the enterprise, so as to maintain its credit and to attract capital. ${ }^{4}$

In summary, the U.S. Supreme Court has found a return that is adequate to attract capital at reasonable terms enables the utility to provide service while maintaining its financial integrity. As discussed above, and in keeping with established regulatory standards, that return should be commensurate with the returns expected elsewhere for investments of corresponding risk. The Commission's decision in this proceeding, therefore, should provide the Company with the opportunity to earn a return that is: 1) adequate to attract capital at reasonable cost and terms; 2) sufficient to ensure its financial integrity; and 3) commensurate with returns on investments in enterprises having corresponding risks.

In addition, the required return for a regulated public utility is established on a stand-alone basis, i.e., for the utility operating company at issue in a rate case. Parent entities, like other investors, have capital constraints and must look at the attractiveness of the expected risk-adjusted return of each investment alternative in their capital budgeting process. That is, utility holding companies that own many utility operating companies have choices as to where they will invest their limited capital within the holding company family. Therefore, the opportunity cost concept applies regardless of whether the funding source is public or corporate.

When funding is provided by a parent entity, the return still must be sufficient to provide an incentive to allocate equity capital to the subsidiary or business unit rather than other internal or external investment opportunities. That is, the regulated subsidiary must compete for capital with all the parent company's affiliates, and with other similar risk companies, which may include non-utilities. In that regard, investors value corporate entities on a sum-of-the-parts basis and expect each division within the parent company to provide an appropriate risk-adjusted return.

It, therefore, is important that the authorized ROE for the Company reflects the risks and prospects of its operations and supports its financial integrity from a stand-alone perspective.
Q. Within that broad framework, how is the cost of capital estimated in regulatory proceedings?
A. Regulated utilities primarily use common stock and long-term debt to finance their permanent property, plant, and equipment (i.e., rate base). The fair rate of return for a

Case No. 2022-00432
Application Exhibit 6
Direct Testimony of Dylan W. D'Ascendis
regulated utility is based on its weighted average cost of capital, in which, as noted earlier, the costs of the individual sources of capital are weighted by their respective book values.

The cost of capital is the return investors require to make an investment in a firm. Investors will provide funds to a firm only if the return that they expect is equal to, or greater than, the return that they require to accept the risk of providing funds to the firm.

The cost of capital (that is, the combination of the costs of debt and equity) is based on the economic principle of "opportunity costs." The principle of opportunity costs recognizes that investing in any asset (whether debt or equity securities) represents a forgone opportunity to invest in alternative assets. For any investment to be sensible, its expected return must be at least equal to the return expected on alternative investment opportunities with comparable risks. Because investments with like risks should offer similar returns, the opportunity cost of an investment should equal the return available on an investment of comparable risk.

The cost of debt is contractually defined and can be directly observed as the interest rate or yield on debt securities. However, the cost of equity must be estimated based on market data and various financial models. Because the cost of equity is premised on opportunity costs, the models used to determine it are typically applied to a group of "comparable" or "proxy" companies.

In the end, the estimated cost of capital should reflect the return that investors require in light of the subject company's business and financial risks, and the returns available on comparable investments.

Case No. 2022-00432
Application Exhibit 6

A. BUSINESS RISK

Q. Please define business risk and explain why it is important to the determination of a fair rate of return.
A. Business risk is the riskiness of a company's common stock without the use of debt and/or preferred capital. Examples of such general business risks faced by all utilities (i.e., electric, natural gas distribution, and water) include size, the quality of management, the regulatory environment in which utilities operate, customer mix and concentration of customers, service territory growth, and capital intensity. All of these have a direct bearing on earnings.

Consistent with the basic financial principle of risk and return, business risk is important to the determination of a fair rate of return, because the higher the level of risk, the higher the rate of return investors demand.

Q. What business risks do the water and wastewater industries face in general?

A. Water and wastewater utilities have an ever-increasing responsibility to be stewards of the environment from which water supplies are drawn in order to preserve and protect essential natural resources of the United States. This increased environmental stewardship is a direct result of compliance with the Safe Drinking Water Act, as well as a response to continuous monitoring by the Environmental Protection Agency and state and local governments, of the water supply for potential contaminants and their resultant regulations. This, plus aging infrastructure, necessitate additional capital investment in the distribution and treatment of water, exacerbating the pressure on free cash flows arising from increased capital expenditures for infrastructure repair and replacement. The significant amount of capital

Case No. 2022-00432
Application Exhibit 6
investment and, hence, high capital intensity, is a major risk factor for the water and wastewater utility industry.

Value Line Investment Survey ("Value Line") observes the following about the water utility industry:

Members of this group are all in the midst of large ongoing construction programs that ought to take decades to complete. For years, insufficient capital was allocated to upgrading and modernizing the country's water infrastructure. Indeed, the average age of many pipelines is now between 60 and 75 years. As a result, in an era in which water has become scarcer, a large volume of it was leaking and being wasted due to a shoddy transmission system.

To fund the building projects, most utilities have to depend, in part, on external financing. Over the past 15 years, we have been in a low interest rate environment and debt was the preferred source of financing. With interest rates for long-maturity corporate bonds spiking higher, there is a chance that this could change.

While this sector has several positive attributes, it also has a severe limitations [sic]. For one, the returns on equity are determined by an outside entity. Thus, there is a ceiling to each company's profit potential. Furthermore, regulators can be fickle. The water industry has enjoyed positive relations with regulators over the past decade or so, but that was during a time of very low inflation. Passing along the rate hikes needed to finance the replacement of old pipes will likely remain above the level of inflation, which is currently over 6%. ${ }^{5}$

The water and wastewater industry also experiences low depreciation rates.
Depreciation rates are one of the principal sources of internal cash flows for all utilities (through a utility's depreciation expense) and are vital for a company to fund ongoing
replacements and repairs of water and wastewater systems. Water/wastewater utility assets have long lives, and therefore have long capital recovery periods. As such, they face greater risk due to inflation, which results in a higher replacement cost per dollar of net plant. Simply, capital that is retiring today will need to be replaced with capital which is significantly more expensive.

Substantial capital expenditures, as noted by Value Line, will require significant financing. The three sources of financing typically used are debt, equity (common and preferred), and cash flow. All three are intricately linked to the opportunity to earn a sufficient rate of return as well as the ability to achieve that return. Consistent with Hope and Bluefield, the return must be sufficient to maintain credit quality as well as enable the attraction of necessary new capital, be it debt or equity capital. If unable to raise debt or equity capital, the utility must turn to either retained earnings or free cash flow, ${ }^{6}$ both of which are directly linked to earning a sufficient rate of return. The level of free cash flow represents a utility's ability to meet the needs of its debt and equity holders. If either retained earnings or free cash flow is inadequate, it will be nearly impossible for the utility to attract the needed capital for new infrastructure investment necessary to ensure quality service to its customers. An insufficient rate of return can be financially devastating for utilities as well as a public safety issue for their customers.

The water and wastewater utility industry's high degree of capital intensity and low depreciation rates, coupled with the need for substantial infrastructure capital spending, require regulatory support in the form of adequate and timely rate relief, and in particular,

Case No. 2022-00432
a sufficient authorized return on common equity, so that the industry can successfully meet the challenges it faces.

B. FINANCIAL RISK

Q. Please define financial risk and explain why it is important to the determination of a fair rate of return.
A. Financial risk is the additional risk created by the introduction of debt and preferred stock into the capital structure. The higher the proportion of debt and preferred stock in the capital structure, the higher the financial risk (i.e., likelihood of default). Therefore, consistent with the basic financial principle of risk and return, investors demand a higher common equity return as compensation for bearing higher default risk.
Q. Can bond and credit ratings be a proxy for the combined business and financial risk (i.e., investment risk of an enterprise)?
A. Yes, similar bond ratings/issuer credit ratings reflect, and are representative of, similar combined business and financial risks (i.e., total risk) faced by bond investors. ${ }^{7}$ Although specific business or financial risks may differ between companies, the same bond/credit rating indicates that the combined risks are roughly similar, albeit not necessarily equal, as the purpose of the bond/credit rating process is to assess credit quality or credit risk (i.e., the risk of the company not paying its outstanding debt), and not common equity risk (i.e., the risk of the company not paying its outstanding debt, nor compensating its equity investors).

[^2]Q. That being said, do rating agencies reflect company size in their bond ratings?
A. No. Neither S\&P nor Moody's have minimum company size requirements for any given rating level. This means, all else equal, a relative size analysis needs to be conducted for companies with similar bond ratings.

V. BLUEGRASS WATER AND THE UTILITY PROXY GROUP

Q. Are you familiar with the operations of Bluegrass Water?
A. Yes. Bluegrass Water is headquartered in St. Louis, Missouri, and provides service to 20 water and sewer service areas in Kentucky, representing 2,488 wastewater connections. ${ }^{8}$
Q. Why is it necessary to develop a proxy group when estimating the ROE for the Company?
A. Because the Company is not publicly traded and does not have publicly traded equity securities, it is necessary to develop groups of publicly traded, comparable companies to serve as "proxies" for the Company. In addition to the analytical necessity of doing so, the use of proxy companies is consistent with the Hope and Bluefield comparable risk standards, as discussed above. I have selected a proxy group that, in my view, is fundamentally risk-comparable to the Company.

Even when proxy groups are carefully selected, it is common for analytical results to vary from company to company. Despite the care taken to ensure comparability, because no two companies are identical, market expectations regarding future risks and prospects will vary within the proxy group. It therefore is common for analytical results to reflect a seemingly wide range, even for a group of similarly situated companies. At issue is how

Source: See Direct Testimony of Brent Thies.
Case No. 2022-00432
Application Exhibit 6
Direct Testimony of Dylan W. D'Ascendis
to estimate the ROE for the target company from within that range. That determination will be best informed by employing a variety of sound analyses and necessarily must consider the sort of quantitative and qualitative information discussed throughout my Direct Testimony. Additionally, a relative risk analysis between the Company and the Utility Proxy Group must be made to determine whether explicit Company-specific adjustments need to be made to the Utility Proxy Group's indicated results.

My analyses are based on the Utility Proxy Group, containing U.S. water and wastewater utilities. As discussed earlier, utilities must compete for capital with other companies with commensurate risk (including non-utilities) and, to do so, must be provided the opportunity to earn a comparable return to these companies having a commensurate risk. Consequently, it is appropriate to consider the Utility Proxy Group's market data in determining the Company's ROE.

Q. Please explain how you chose your Utility Proxy Group.

A. The basis of selection for the Utility Proxy Group was to select those companies which meet the following criteria:
(i) They are included in the Water Utility Group of Value Line's Standard Edition (January 6, 2023);
(ii) They have 60% or greater of 2021 total operating income or 60% or greater of 2021 total assets attributable to regulated water operations;
(iii) At the time of preparation of this testimony, they had not publicly announced that they were involved in any major merger or acquisition activity (i.e., one publicly traded utility merging with or acquiring another);

Case No. 2022-00432
(iv) They have not cut or omitted their common dividends during the five years ending 2021 or through the time of the preparation of this testimony;
(v) They have Value Line and Bloomberg Professional Services ("Bloomberg") adjusted Beta coefficients ("beta");
(vi) They have a positive Value Line five-year dividends per share ("DPS") growth rate projection; and
(vii) They have Value Line, Zacks or Yahoo! Finance five-year earnings per share ("EPS") growth rate projections.

The following six companies met these criteria: American States Water Company, American Water Works Company, Inc., California Water Service Group, Essential Utilities Inc., Middlesex Water Company, and SJW Group.

Q. Please describe Exhibit DWD-2, page 1.

A. Page 1 of Exhibit DWD-2 contains comparative capitalization and financial statistics for the Utility Proxy Group identified above for the years 2017 to 2021. During the five-year period ending 2021, the historically achieved earnings rate on book common equity for the group averaged 10.40%. The average common equity ratio based on total permanent capital (excluding short-term debt) was 51.78%, and the average dividend payout ratio was 59.46\%.

Total debt to earnings before interest, taxes, depreciation, and amortization for the years 2017 to 2021 ranges between $3.48 x$ and $5.92 x$, with an average of $4.88 x$. Funds from operations to total debt range from 11.39% to 23.56%, with an average of 16.75%.

Case No. 2022-00432
Application Exhibit 6

VI. CAPITAL STRUCTURE AND LONG-TERM DEBT COST RATE

A. CAPITAL STRUCTURE

Q. What capital structure ratio do you recommend be employed in developing an overall fair rate of return appropriate for the Company in this proceeding?
A. I recommend the use of Bluegrass Water's actual capital structure, which consists of 38.84% long-term debt and 61.16% common equity as shown on page 1 of Exhibit DWD1. ${ }^{9}$
Q. How does Bluegrass Water's proposed ratemaking common equity ratio of $\mathbf{6 1 . 1 6 \%}$ compare with the equity ratios maintained by the companies in your Utility Proxy Group?
A. Bluegrass Water's proposed ratemaking common equity ratio of 61.16% is consistent with the range of common equity ratios maintained, on average, by the companies in the Utility Proxy Group on which I base my recommended common equity cost rate. As shown on page 2 of Exhibit DWD-2, the common equity ratios of the Utility Proxy Group range from 40.31% to 62.44%, averaging 49.38% in fiscal year 2021 .

Bluegrass Water's proposed ratemaking equity ratio is also consistent with the equity ratios expected to be maintained by the Utility Proxy Group in the years 2025 to 2027 as published by Value Line. In the years 2025 to 2027, the members of the Utility Proxy Group are expected to maintain equity ratios between 40.00% and $62.50 \%{ }^{10}$

[^3]Case No. 2022-00432
Application Exhibit 6
Direct Testimony of Dylan W. D'Ascendis

B. LONG-TERM DEBT COST RATE

Q. What is your recommendation regarding the appropriate cost of long-term debt for Bluegrass Water in this proceeding?
A. In this proceeding, I recommend a cost of long-term debt of 6.80%, which reflects the actual effective cost of debt for the Company. The calculation of the effective debt cost rate is set forth in page 1 of Exhibit DWD-3.

VII. COMMON EQUITY COST RATE MODELS

Q. Is it important that cost of common equity models be market-based?
A. Yes. A public utility must compete for equity in capital markets along with all other companies of comparable risk, which includes non-utilities. The cost of common equity is thus determined based on equity market expectations for the returns of those comparable risk companies. If individual investors are choosing to invest their capital among companies of comparable risk, they will choose a company providing a higher return over a company providing a lower return.
Q. Are your cost of common equity models market-based models?
A. Yes. The DCF model is market-based because market prices are used in developing the dividend yield component of the model. The RPM is market-based because the bond ratings and expected bond yields used in the application of the RPM reflect the market's assessment of bond/credit risk. In addition, the use of beta (β) to determine the equity risk premium reflects the market's assessment of market/systematic risk, since betas are derived from regression analyses of market prices. The Predictive Risk Premium Model ("PRPM") uses monthly market returns in addition to expectations of the risk-free rate. The CAPM

Case No. 2022-00432
Application Exhibit 6
Direct Testimony of Dylan W. D'Ascendis
is market-based for many of the same reasons that the RPM is market-based (i.e., the use of expected bond yields and beta). Selection of the comparable risk non-price regulated companies is market-based because it is based on statistics which result from regression analyses of market prices and reflect the market's assessment of total risk.

Q. What analytical approaches did you use to determine the Company's ROE?

A. As discussed earlier, I have relied on the DCF model, the RPM, and the CAPM, which I apply to the Utility Proxy Group described above. I also applied these same models to a Non-Price Regulated Proxy Group described later in this section.

I rely on these models because reasonable investors use a variety of tools and do not rely exclusively on a single source of information or single model. Moreover, the models on which I rely focus on different aspects of return requirements, and provide different insights to investors' views of risk and return. The DCF model, for example, estimates the investor-required return assuming a constant expected dividend yield and growth rate in perpetuity, while Risk Premium-based methods (i.e., the RPM and CAPM approaches) provide the ability to reflect investors' views of risk, future market returns, and the relationship between interest rates and the Cost of Equity. Just as the use of market data for the Utility Proxy Group adds the reliability necessary to inform expert judgment in arriving at a recommended common equity cost rate, the use of multiple generally accepted common equity cost rate models also adds reliability and accuracy when arriving at a recommended common equity cost rate.

Case No. 2022-00432
Application Exhibit 6
Direct Testimony of Dylan W. D'Ascendis

A. DISCOUNTED CASH FLOW MODEL

Q. What is the theoretical basis of the DCF model?

A. The DCF model is based on the theory that the present value of an expected future stream of net cash flows during the investment holding period can be determined by discounting those cash flows at the cost of capital, or the investors' capitalization rate. Mathematically this is shown as:

$$
P_{0}=\frac{D_{1}}{(1+\mathrm{ke})}+\frac{D_{2}}{(1+\mathrm{ke})^{2}}+\ldots+\frac{D_{t}}{(1+\mathrm{ke})^{t}}
$$

where:

$$
k=\text { the required Return on Common Equity; }
$$

$D_{1 . . .} \mathrm{D}_{t}=$ the future expected dividends; and
$P_{0}=$ the current stock price.
The above equation can be rearranged to form the single-stage constant growth DCF model as such:

$$
K_{e}=\left(D_{0}(1+g)\right) / P+g
$$

where:

$$
\begin{aligned}
& K_{e}=\text { the required Return on Common Equity; } \\
& D_{0}=\text { the annualized Dividend Per Share; } \\
& P=\text { the current stock price; and } \\
& g=\text { the growth rate. }
\end{aligned}
$$

In this form, the required ROE is equal to the expected dividend yield plus an expected long-term growth rate. The constant growth DCF formula is derived from the present value DCF formula.

Case No. 2022-00432
Application Exhibit 6

Under the model's strict assumptions, the growth rate equals the rate of capital appreciation (that is, the growth in the stock price). Given that assumption, it does not matter whether the investor holds the stock in perpetuity, or whether they hold the stock for some period of time, collect the dividends, then sell at the prevailing market price.

Q. Which version of the DCF model did you use?

A. I used the single-stage constant growth DCF model.
Q. Please describe the dividend yield you used in your application of the DCF model.
A. The unadjusted dividend yields are based on the proxy companies' dividends as of January 13, 2023, divided by the average of closing market prices for the 60 trading days ending January 13, 2023. ${ }^{11}$

Q. Please explain your adjustment to the dividend yield.

A. Because dividends are paid periodically (quarterly), as opposed to continuously (daily), an adjustment must be made to the dividend yield. This is often referred to as the discrete, or the Gordon Periodic, version of the DCF model.

DCF theory calls for the use of the full growth rate, or D_{1}, in calculating the dividend yield component of the model. Since the various companies in the Utility Proxy Group increase their quarterly dividend at various times during the year, a reasonable assumption is to reflect one-half the annual dividend growth rate in the dividend yield component, or $\mathrm{D}_{1 / 2}$. Because the dividend should be representative of the next 12 -month period, my adjustment is a conservative approach that does not overstate the dividend yield. Therefore, the actual average dividend yields in Column 1 on page 1 of Exhibit DWD-4

[^4]Case No. 2022-00432
Application Exhibit 6
have been adjusted upward to reflect one-half the average projected growth rate shown in Column 5.
Q. Please explain the basis of the growth rates you applied to the Utility Proxy Group in your DCF model.
A. Investors with more limited resources than institutional investors are likely to rely on widely available financial information services, such as Value Line, Zacks, and Yahoo! Finance. Investors realize that analysts have significant insight into the dynamics of the industries and individual companies they analyze, as well as companies' abilities to effectively manage the effects of changing laws and regulations, and ever-changing economic and market conditions. For these reasons, I used analysts' five-year forecasts of EPS growth in my DCF analysis.

Over the long run, there can be no growth in DPS without growth in EPS. Security analysts' earnings expectations have a more significant influence on market prices than dividend expectations. Thus, the use of earnings growth rates in a DCF analysis provides a better match between investors' market price appreciation expectations and the growth rate component of the DCF.

Q. Please summarize the DCF model results.

A. As shown on page 1 of Exhibit DWD-4, the application of the constant growth DCF model to the Utility Proxy Group results in a wide range of indicated ROEs from 5.81% to 12.92%. The mean result is 9.11%, the median result is 9.21%, and the average of the mean and median results is 9.16% for the Utility Proxy Group.

B. THE RISK PREMIUM MODEL

Q. Please describe the theoretical basis of the RPM.

A. The RPM is based on the fundamental financial principle of risk and return, namely, that investors require greater returns for bearing greater risk. The RPM recognizes that common equity capital has greater investment risk than debt capital, as common equity shareholders are behind debt holders in any claim on a company's assets and earnings. As a result, investors require higher returns from common stocks than from investment in bonds, to compensate them for bearing the additional risk.

While it is possible to directly observe bond returns and yields, investors' required common equity return cannot be directly determined or observed. According to RPM theory, one can estimate a common equity risk premium over bonds (either historically or prospectively) and use that premium to derive a cost rate of common equity. The cost of common equity equals the expected cost rate for long-term debt capital, plus a risk premium over that cost rate, to compensate common shareholders for the added risk of being unsecured and last-in-line for any claim on the corporation's assets and earnings in the event of a liquidation.
Q. Please explain how you derived your indicated cost of common equity based on the RPM.
A. I relied on the results of the application of two risk premium methods. The first method is the PRPM, while the second method is a risk premium model using a total market approach.

Case No. 2022-00432
Application Exhibit 6

1. The Predictive Risk Premium Model

Q. Please explain the PRPM.

A. The PRPM, published in the Journal of Regulatory Economics and The Electricity Journal 12, was developed from the work of Robert F. Engle, who shared the Nobel Prize in Economics in 2003 "for methods of analyzing economic time series with time-varying volatility ("ARCH")". ${ }^{13}$ Engle found that volatility changes over time and is related from one period to the next, especially in financial markets. Engle discovered that the volatility in prices and returns clusters over time and is therefore highly predictable and can be used to predict future levels of risk and risk premiums.

The PRPM estimates the risk / return relationship directly, as the predicted equity risk premium is generated by the prediction of volatility or risk. The PRPM is not based on an estimate of investor behavior, but rather on the evaluation of the results of that behavior (i.e., the variance of historical equity risk premiums).

Q. Please explain your application of the PRPM.

A. The inputs to the model are the historical returns on the common shares of each company in the Utility Proxy Group minus the historical monthly yield on long-term U.S. Treasury securities through December 2022. Using a generalized form of ARCH, known as GARCH, I calculated each Utility Proxy Group company's projected equity risk premium

12 Autoregressive conditional heteroscedasticity. See "A New Approach for Estimating the Equity Risk Premium for Public Utilities", Pauline M. Ahern, Frank J. Hanley and Richard A. Michelfelder, The Journal of Regulatory Economics (December 2011), 40:261-278 and "Comparative Evaluation of the Predictive Risk Premium Model, the Discounted Cash Flow Model and the Capital Asset Pricing Model for Estimating the Cost of Common Equity", Richard A. Michelfelder, Pauline M. Ahern, Dylan W. D'Ascendis, and Frank J. Hanley, The Electricity Journal (May 2013), 84-89.
www.nobelprize.org.
Case No. 2022-00432
Application Exhibit 6
Direct Testimony of Dylan W. D'Ascendis
Page 23 of 53
using Eviews ${ }^{\ominus}$ statistical software. When the GARCH Model is applied to the historical return data, it produces a predicted GARCH variance series ${ }^{14}$ and a GARCH coefficient ${ }^{15}$. Multiplying the predicted monthly variance by the GARCH coefficient, then annualizing it^{16}, produces the predicted annual equity risk premium. I then added the forecasted $30-$ year U.S. Treasury Bond yield, $3.91 \%{ }^{17}$, to each company's PRPM-derived equity risk premium to arrive at an indicated cost of common equity. The 30 -year Treasury yield is a consensus forecast derived from the Blue Chip Financial Forecasts ("Blue Chip") ${ }^{18}$.

Q. What are the results of the PRPM?

A. As shown on page 2 of Exhibit DWD-5, the mean PRPM indicated common equity cost rate for the Utility Proxy Group is 13.05%, the median is 12.23%, and the average of the two is 12.64%. Consistent with my reliance on the average of the median and mean results of the DCF, I relied on the average of the mean and median results of the Utility Proxy Group PRPM to calculate a cost of common equity rate of 12.64%.

Q. Is the PRPM supported by academic literature?

Yes, it is. As is explained above, the PRPM is based on the research of Dr. Robert F. Engle, dating back to the early 1980s. In addition, the GARCH methodology has been well tested by academia since Engle's, et al. research was originally published in 1982, 40 years ago. I use the well-established GARCH methodology to estimate the PRPM model using a

[^5]standard commercial and relatively inexpensive statistical package, Eviews, ${ }^{\text {©19 }}$ to develop a means by which to estimate a predicted equity risk premium which, when added to a bond yield, results in a cost of common equity.

Also, the PRPM is in the public domain, having been published six times in academically peer-reviewed journals: Journal of Economics and Business (June 2011 and April 2015), ${ }^{20}$ The Journal of Regulatory Economics (December 2011), ${ }^{21}$ The Electricity Journal (May 2013 and March 2020), ${ }^{22}$ and Energy Policy (April 2019). ${ }^{23}$ Notably, none of these articles have been rebutted in the academic literature.

Finally, the PRPM has also been presented to a number of utility industry/regulatory/academic groups including the following: The Edison Electric Institute Cost of Capital Working Group; The NARUC Staff Subcommittee on Accounting and Finance; The National Association of Electric Companies Finance/Accounting/Taxation and Rates and Regulations Committees; the NARUC Electric Committee; The Wall Street Utility Group; the Indiana Utility Regulatory Commission Cost of Capital Task Force; the

In addition to Eviews, ${ }^{\circledR}$ the GARCH methodology can be applied and the PRPM derived using other standard
statistical software packages such as SAS, RATS, S-Plus and JMulti, which are not cost-prohibitive. The
software that I used in this proceeding, Eviews, ${ }^{\circledR}$ currently costs $\$ 600-\$ 700$ for a single user commercial
license. In addition, JMulti is a free downloadable software with GARCH estimation applications.
Eugene A. Pilotte and Richard A. Michelfelder, "Treasury Bond Risk and Return, the Implications for the
Hedging of Consumption and Lessons for Asset Pricing", Journal of Economics and Business, June 2011,
$582-604$. and Richard A. Michelfelder, "Empirical Analysis of the Generalized Consumption Asset Pricing
Model: Estimating the Cost of Capital", Journal of Economics and Business, April 2015, 37-50.
Pauline M. Ahern, Frank J. Hanley, and Richard A. Michelfelder, "New Approach to Estimating the Equity
Risk Premium for Public Utilities", The Journal of Regulatory Economics, December 2011, at 40:261-278.
Richard A. Michelfelder, Pauline M. Ahern, Dylan W. D'Ascendis, and Frank J. Hanley, "Comparative
Evaluation of the Predictive Risk Premium Model, the Discounted Cash Flow Model and the Capital Asset
Pricing Model for Estimating the Cost of Common Equity", The Electricity Journal, April 2013, at 84-89;
and Richard A. Michelfelder, Pauline M. Ahern, and Dylan W. D'Ascendis, "Decoupling, Risk Impacts and
the Cost of Capital", The Electricity Journal, January 2020.
Richard A. Michelfelder, Pauline M. Ahern, and Dylan W. D'Ascendis, "Decoupling Impact and Public
Utility Conservation Investment", Energy Policy, April 2019, 311-319.
Case No. 2022-00432
Application Exhibit 6
Direct Testimony of Dylan W. D'Ascendis

Financial Research Institute of the University of Missouri Hot Topic Hotline Webinar; and the Center for Research and Regulated Industries Annual Eastern Conference on two occasions.

Q. Has the PRPM been implicitly accepted by other regulatory commissions?

A. Yes. In Docket No. 2017-292-WS, the Public Service Commission of South Carolina ("PSC SC") accepted Blue Granite Water Company's entire requested ROE, which included the PRPM. The relevant portion states:

The Commission finds Mr. D'Ascendis' arguments persuasive. He provided more indicia of market returns, by using more analytical methods and proxy group calculations. Mr. D'Ascendis' use of analysts' estimates for his DCF analysis is supported by consensus, as is his use of the arithmetic mean. The Commission also finds that Mr. D'Ascendis' non-price regulated proxy group more accurately reflects the total risk faced [by] price regulated utilities and CWS. Furthermore, there is no dispute that CWS is significantly smaller than its proxy group counterparts, and, therefore, it may present a higher risk. An appropriate ROE for CWS is 10.45% to 10.95%. The Company used an ROE of 10.5% in computing its Application, a return on the low end of Mr. D'Ascendis' range, and the Commission finds that ROE is supported by the evidence. ${ }^{24}$

In addition, in Docket No. W-354, Subs 363, 364 and 365, the State of North Carolina Utilities Commission ("NCUC") approved my RPM and CAPM analyses, which used PRPM analyses as presented in this proceeding. The relevant portion of the order states:

In doing so the Commission finds that the DCF (8.81\%), Risk Premium (10.00%) and CAPM (9.29%) model results provided by witness D'Ascendis, as updated to use current rates in D'Ascendis Late-Filed Exhibit No. 1, as well as the risk premium (9.57\%)
analysis of witness Hinton, are credible, probative, and are entitled to substantial weight as set forth below. ${ }^{25}$

Q. Did the Commission reject the PRPM in Case No. 2021-00214 concerning Atmos Energy Corporation?

A. Yes, it did. The Commission stated:

Even though the Commission supports the use and presentation of multiple modelling approaches, the Commission finds that Atmos Kentucky's use of the Predictive Risk Premium Model (PRPM) should be rejected. Though the PRPM model has been published and presented in multiple forums, it has been rejected by this Commission and only been addressed by three other regulatory jurisdictions thus far and is not universally accepted.

Q. Do you have a response to the Commission's statement?

A. Yes, I do. I appreciate the Commission's openness to considering multiple models in its determination of ROEs for the utilities they regulate, but I respectfully disagree with their exclusion of the PRPM in Case No. 2021-00214. As noted above, the theory supporting the model is based on the Nobel Prize winning work of Engle, and the model itself has been published six times in four separate peer-reviewed academic journals, which indicates that it has been thoroughly vetted by the academic community. This, in addition to the fact that the model has not been rebutted in the academic literature in the approximately twenty years since it was presented in 2003 should speak to the model's soundness.

Regarding the amount of times the model has been addressed in final orders; while it is true that only three (now four) regulatory commissions have addressed the PRPM in their final orders, the model has been presented in over 100 regulatory proceedings in over

Case No. 2022-00432
thirty U.S. regulatory jurisdictions and the Alberta Utilities Commission in Canada. This would indicate that while maybe not universally accepted, the model is widely disseminated across the U.S. regulatory landscape.

In view of the above, the soundness of the model, as evidenced in the underlying theory and the academic vetting of the PRPM, and the wide dissemination of the model in the U.S. regulatory landscape should lead the Commission to reconsider use of the PRPM as a modeling methodology.

Q. Have you presented your ROE model results excluding the PRPM?

A. Yes. While I respectfully disagree with the Commission's finding in Case No. 202100214, I have presented my ROE model results including and excluding the PRPM for the Commission's convenience. As can be gleaned from page 2 of Exhibit DWD-1, my recommended ROE of 11.65% is still within the range of ROEs produced by my models without the PRPM, ${ }^{26}$ albeit at the high end of that range.

2. The Total Market Approach Risk Premium Model

Q. Please explain the total market approach RPM.

A. The total market approach RPM adds a prospective public utility bond yield to an average of: 1) an equity risk premium that is derived from a beta-adjusted total market equity risk premium; and 2) an equity risk premium based on the $S \& P$ Utilities Index.

Case No. 2022-00432
Q. Please explain the basis of the expected bond yield of 5.98\% applicable to the Utility Proxy Group.
A. The first step in the total market approach RPM analysis is to determine the expected bond yield. Because both ratemaking and the cost of capital, including common equity cost rate, are prospective in nature, a prospective yield on similarly-rated long-term debt is essential. I rely on a consensus forecast of about 50 economists of the expected yield on Aaa-rated corporate bonds for the six calendar quarters ending with the second calendar quarter of 2024, and the long-term projections for 2024 to 2028, and 2029 to 2033 from Blue Chip. As shown on line 1 of page 3 of Exhibit DWD-5, the average expected yield on Moody's Aaa-rated corporate bonds is 5.05%. In order to derive an expected yield on A2-rated public utility bonds, I make an upward adjustment of 0.83%, which represents a recent spread between Aaa-rated corporate bonds and A2-rated public utility bonds, in order to adjust the expected Aaa-rated corporate bond yield to an equivalent Moody's A2-rated public utility bond. ${ }^{27}$ Adding that recent 0.83% spread to the expected Aaa-rated corporate bond yield of 5.05% results in an expected A2-rated public utility bond of 5.88%.

Since the Utility Proxy Group's average Moody's long-term issuer rating is A3, another adjustment to the expected A2-rated public utility bond yield is needed to reflect the difference in bond ratings. An upward adjustment of 0.10%, which represents onethird of a recent spread between A2- and Baa2-rated public utility bond yields, is necessary to make the A2-rated prospective bond yield applicable to an A3-rated public utility bond. ${ }^{28}$ utility bond yields for A3 rated bonds. As such, it was necessary to estimate the difference between A2 rated and A3 rated public utility bonds. Because there are three steps between Baa2 and A2 (Baa2 to Baa1, Baa1

Case No. 2022-00432

Adding the 0.10% to the 5.88% prospective A2-rated public utility bond yield results in a 5.98\% expected bond yield for the Utility Proxy Group.

Table 3: Summary of the Calculation of the Utility Proxy Group Projected Bond Yield ${ }^{29}$
$\left.\begin{array}{||l|l||}\hline \text { Prospective Yield on Moody's Aaa Rated Corporate Bonds (Blue } & 5.05 \% \\ \hline \begin{array}{l}\text { Chip) }\end{array} \\ \text { Rated Corporate Bonds and Moody's A2 Rated Utility Bonds }\end{array}\right] 0.83 \%$

To develop the indicated ROE using the total market approach RPM, this prospective bond yield is then added to the average of the three different equity risk premiums described below.

Q. Please explain how the beta-derived equity risk premium is determined.

A. The components of the beta-derived risk premium model are: 1) an expected market equity risk premium over corporate bonds, and 2) beta. The derivation of the beta-derived equity risk premium that I applied to the Utility Proxy Group is shown on lines 1 through 9 of page 8 of Exhibit DWD-5. The total beta-derived equity risk premium I applied was based on an average of: 1) Kroll-based equity risk premiums; 2) Value Line-based equity risk premiums; and 3) Bloomberg-based equity risk premiums. Each of these is described in turn.
to A3, and A3 to A2) I assumed an adjustment of one-third of the difference between the A2 rated and Baa2 rated public utility bond yield was appropriate.

Q. How did you derive a market equity risk premium based on long-term historical data?

A. To derive a historical market equity risk premium, I used the most recent holding period returns for the large company common stocks from the Kroll Stocks, Bonds, Bills, and Inflation ("SBBI") 2022 Yearbook ("SBBI - 2022") ${ }^{30}$ less the average historical yield on Moody's Aaa/Aa rated corporate bonds for the period 1928 to 2021. The use of holding period returns over a very long period of time is appropriate because it is consistent with the long-term investment horizon presumed by investing in a going concern, i.e., a company expected to operate in perpetuity.

SBBI's long-term arithmetic mean monthly total return rate on large company common stocks was 12.11% and the long-term arithmetic mean monthly yield on Moody's Aaa/Aa-rated corporate bonds was 5.98% from 1928 to $2021 .{ }^{31}$ As shown on line 1 of page 8 of Exhibit DWD-5, subtracting the mean monthly bond yield from the total return on large company stocks results in a long-term historical equity risk premium of 6.13%.

I used the arithmetic mean monthly total return rates for the large company stocks and yields (income returns) for the Moody's Aaa/Aa-rated corporate bonds, because they are appropriate for the purpose of estimating the cost of capital as noted in $\underline{\mathrm{SBBI}-2022 .}{ }^{32}$ The use of the arithmetic mean return rates and yields is appropriate because historical total returns and equity risk premiums provide insight into the variance and standard deviation of returns needed by investors in estimating future risk when making a current investment.

SBBI-2022 Appendix A Tables: Morningstar Stocks, Bonds, Bills, \& Inflation 1926-2021.
As explained in note 1 on page 8 of Exhibit DWD-5.
SBBI-2022, at 200-201.
Case No. 2022-00432
Application Exhibit 6
Direct Testimony of Dylan W. D'Ascendis

If investors relied on the geometric mean of historical equity risk premiums, they would have no insight into the potential variance of future returns because the geometric mean relates to the change over many periods to a constant rate of change, thereby obviating the year-to-year fluctuations, or variance, which is critical to risk analysis.

Q. Please explain the derivation of the regression-based market equity risk premium.

A. To derive the regression analysis-derived market equity risk premium of 7.26%, shown on line 2 of page 8 of Exhibit DWD-5, I used the same monthly annualized total returns on large company common stocks relative to the monthly annualized yields on Moody's Aaa/Aa-rated corporate bonds as mentioned above. The relationship between interest rates and the market equity risk premium was modeled using the observed monthly market equity risk premium as the dependent variable, and the monthly yield on Moody's Aaa/Aarated corporate bonds as the independent variable. I used a linear Ordinary Least Squares ("OLS") regression, in which the market equity risk premium is expressed as a function of the Moody's Aaa/Aa-rated corporate bond yield:

$$
\mathrm{RP}=\alpha+\beta\left(\mathrm{R}_{\mathrm{Aaa} / \mathrm{Aa}}\right)
$$

where:
$R P=$ the market equity risk premium;
$\alpha=$ the regression intercept coefficient;
$\beta=$ the regression slope coefficient; and
$\mathrm{R}_{\text {Aaa/Aa }}=$ the Moody's Aaa/Aa rated corporate bond yield .
Using the equation generated by the regression, an expected equity risk premium of 7.26% is calculated using the average forecast of Aaa-rated corporate bond yield of 5.05%, as discussed above.

Case No. 2022-00432
Application Exhibit 6

Q. Please explain the derivation of a PRPM equity risk premium.

A. I used the same PRPM approach described previously to develop another equity risk premium estimate. The inputs to the model are the historical monthly returns on large company common stocks minus the monthly yields on Aaa/Aa-rated corporate bonds during the period from January 1928 through December 2022. ${ }^{33}$ Using the previously discussed generalized form of ARCH , known as GARCH, the projected equity risk premium is determined using Eviews ${ }^{\ominus}$ statistical software. The resulting PRPM predicted market equity risk premium is $9.76 \%{ }^{34}$
Q. Please explain the derivation of a projected equity risk premium based on Value Line Summary and Index data for your RPM analysis.
A. As noted previously, because both ratemaking and the cost of capital are prospective, a prospective market equity risk premium is needed. The derivation of the forecasted or prospective market equity risk premium can be found in note 4 on page 8 of Exhibit DWD5. Consistent with the premise that total returns are the sum of capital appreciation and income returns, this prospective market return is derived from an average of the three to five-year median market price appreciation potential by Value Line Summary and Index for the 13 weeks ending January 13, 2023, plus an average of the median estimated dividend yield for the common stocks of the 1,700 firms covered in Value Line's Standard Edition. ${ }^{35}$

The average median expected price appreciation is 68%, which translates to a 13.85% annual appreciation, and when added to the average of Value Line's median expected dividend yields of 2.21%, equates to a forecasted annual total return rate on the market of 16.06%. The forecasted Aaa-rated bond yield of 5.05% is deducted from the total market return of 16.06%, resulting in an equity risk premium of 11.01%, shown on page 8, line 4 of Exhibit DWD-5.
Q. Please explain the derivation of an equity risk premium based on Value Line data for the $\mathbf{S \&} \mathbf{P} 500$ companies.
A. Using data from Value Line, I calculated an expected total return on the S\&P 500 using expected dividend yields as a proxy for income return and long-term growth estimates as a proxy for capital appreciation. The expected total return for the S\&P 500 is 15.52%. Subtracting the prospective yield on Aaa-rated corporate bonds of 5.05% results in a 10.47% projected equity risk premium.
Q. Please explain the derivation of an equity risk premium based on Bloomberg data.
A. Using data from Bloomberg, I calculated an expected total return on the S\&P 500 using expected dividend yields as a proxy for income return and long-term growth estimates as a proxy for capital appreciation, identical to the method described above. The expected total return for the S\&P 500 is 11.23%. Subtracting the prospective yield on Aaa-rated corporate bonds of 5.05% resulted in a 6.18% projected equity risk premium.

Case No. 2022-00432
Application Exhibit 6
Q. What is your conclusion of a beta-derived equity risk premium for use in your RPM analysis?
A. I gave equal weight to the six equity risk premiums in arriving at my conclusion of $8.47 \% .{ }^{36}$

Table 4: Summary of the Calculation of the Equity Risk Premium Using Total Market Returns ${ }^{37}$

Historical Spread Between Total Returns of Large Stocks and Aaa and Aa2 Rated Corporate Bond Yields (1928-2021)	6.13%
Regression Analysis on Historical Data	7.26%
PRPM Analysis on Historical Data	9.76%
Prospective Equity Risk Premium using Total Market Returns from Value Line Summary \& Index less Projected Aaa Corporate Bond Yields	11.01%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Value Line for the S\&P 500 less Projected Aaa Corporate Bond Yields	10.47%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Bloomberg Professional Services for the S\&P 500 less Projected Aaa Corporate Bond Yields	$\underline{6.18 \%}$
Average	$\underline{\underline{8.47 \%}}$

After calculating the average market equity risk premium of 8.47%, I adjusted it by beta to account for the risk of the Utility Proxy Group. As discussed below, the beta is a meaningful measure of prospective relative risk to the market as a whole and is a logical means by which to allocate a company's, or proxy group's, share of the market's total equity risk premium relative to corporate bond yields. As shown on page 1 of Exhibit DWD-6, the average of the mean and median beta for the Utility Proxy Group is 0.77 . Multiplying the beta of the Utility Proxy Group of 0.77 by the market equity risk premium of 8.47% resulted in a beta-adjusted equity risk premium of 6.52% for the Utility Proxy Group.
Q. How did you derive the equity risk premium based on the S\&P Utility Index and Moody's A2-rated public utility bonds?
A. I estimated three equity risk premiums based on S\&P Utility Index holding returns, and two equity risk premiums based on the expected returns of the S\&P Utilities Index, using Value Line and Bloomberg data, respectively. Turning first to the S\&P Utility Index holding period returns, I derived a long-term monthly arithmetic mean equity risk premium between the S\&P Utility Index total returns of 10.74% and monthly A2-rated public utility bond yields of 6.46% from 1928 to 2021 , to arrive at an equity risk premium of $4.28 \% .{ }^{38}$ I then used the same historical data to derive an equity risk premium of 4.80% based on a regression of the monthly equity risk premiums. The final S\&P Utility Index holding period equity risk premium involved applying the PRPM using the historical monthly equity risk premiums from January 1928 to December 2022 to arrive at a PRPM-derived equity risk premium of 5.56% for the S\&P Utility Index.

I then derived expected total returns on the S\&P Utilities Index of 9.45% and 10.57% using data from Value Line and Bloomberg, respectively, and subtracted the prospective A2-rated public utility bond yield $(5.88 \%)^{39}$, which results in risk premiums of 3.57% and 4.69%, respectively. As with the market equity risk premiums, I averaged each risk premium to arrive at my utility-specific equity risk premium of 4.58%.

Table 5: Summary of the Calculation of the Equity Risk Premium Using S\&P Utility Index Holding Returns ${ }^{40}$

Historical Spread Between Total Returns of the S\&P Utilities Index and A2 Rated Utility Bond Yields (1928-2021)	4.28%
Regression Analysis on Historical Data	4.80%
PRPM Analysis on Historical Data	5.56%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Value Line for the S\&P Utilities Index less Projected A2 Utility Bond Yields	3.57%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Bloomberg Professional Services for the S\&P Utilities Index less Projected A2 Utility Bond Yields	$\underline{4.69 \%}$
Average	$\underline{\underline{4.58 \%}}$

Q. What is your conclusion of an equity risk premium for use in your total market approach RPM analysis?
A. The equity risk premium I applied to the Utility Proxy Group is 5.55%, which is the average of the beta-derived and the S\&P utility equity risk premiums of 6.52% and 4.58%, respectively. ${ }^{41}$
Q. What is the indicated RPM common equity cost rate based on the total market approach?
A. As shown on line 7 of Exhibit DWD-5, page 3, I calculated a common equity cost rate of 11.53% for the Utility Proxy Group based on the total market approach of the RPM.

[^6]Case No. 2022-00432
Application Exhibit 6
Direct Testimony of Dylan W. D'Ascendis

Table 6: Summary of the Total Market Return Risk Premium Model ${ }^{\mathbf{4 2}}$

Prospective Moody's A3-Rated Utility Bond Applicable to the Utility Proxy Group	5.98%
Prospective Equity Risk Premium	$\underline{5.55 \%}$
Indicated Cost of Common Equity	$\underline{\underline{11.53 \%}}$

Q. What are the results of your application of the PRPM and the total market approach RPM?
A. As shown on page 1 of Exhibit DWD-5, the indicated RPM-derived common equity cost rate is 12.09%, which gives equal weight to the PRPM (12.64\%) and the adjusted market approach results (11.53\%).

C. THE CAPITAL ASSET PRICING MODEL

Q. Please explain the theoretical basis of the CAPM.

A. CAPM theory defines risk as the co-variability of a security's returns with the market's returns as measured by beta (β). A beta of less than 1.0 indicates lower variability than the market as a whole, while a beta greater than 1.0 indicates greater variability than the market.

The CAPM assumes that all other risk (i.e., all non-market or unsystematic risk) can be eliminated through diversification. The risk that cannot be eliminated through diversification is called market, or systematic, risk. In addition, the CAPM presumes that investors require compensation only for systematic risk, which is the result of macroeconomic and other events that affect the returns on all assets. The model is applied by adding a risk-free rate of return to a market risk premium, which is adjusted
proportionately to reflect the systematic risk of the individual security relative to the total market, as measured by beta. The traditional CAPM model is expressed as:

$$
\text { Where: } \quad \begin{array}{ll}
\mathrm{R}_{\mathrm{s}} & =\mathrm{R}_{\mathrm{f}}+\beta\left(\mathrm{R}_{\mathrm{m}}-\mathrm{R}_{\mathrm{f}}\right) \\
\mathrm{R}_{\mathrm{s}} & =\quad \text { Return rate on the common stock; } \\
\mathrm{R}_{\mathrm{f}} & =\text { Risk-free rate of return; } \\
\mathrm{R}_{\mathrm{m}} & =\quad \text { Return rate on the market as a whole; and } \\
\beta & =\begin{array}{l}
\text { Adjusted beta (volatility of the } \\
\text { security relative to the market as a whole) } .
\end{array}
\end{array}
$$

Numerous tests of the CAPM have measured the extent to which security returns and beta are related as predicted by the CAPM, confirming its validity. The empirical CAPM ("ECAPM") reflects the reality that while the results of these tests support the notion that beta is related to security returns, the empirical Security Market Line ("SML") described by the CAPM formula is not as steeply sloped as the predicted SML. ${ }^{43}$ The ECAPM reflects this empirical reality. Fama and French clearly state regarding Figure 2, below, that "[t]he returns on the low beta portfolios are too high, and the returns on the high beta portfolios are too low." 44

Case No. 2022-00432
Application Exhibit 6

Figure 2 htpp//pubs.aeaweb.org/doi/pdfplus/10.1257/0895330042162430
Average Annualized Monthly Return versus Beta for Value Weight Portfolios
Formed on Prior Beta, 1928-2003

In addition, Morin observes that while the results of these tests support the notion that beta is related to security returns, the empirical SML described by the CAPM formula is not as steeply sloped as the predicted SML. Morin states:

With few exceptions, the empirical studies agree that ... low-beta securities earn returns somewhat higher than the CAPM would predict, and high-beta securities earn less than predicted. ${ }^{45}$

Therefore, the empirical evidence suggests that the expected return on a security is related to its risk by the following approximation:

$$
K=R_{F}+x \beta\left(R_{M}-R_{F}\right)+(1-x) \beta\left(R_{M}-R_{F}\right)
$$

where x is a fraction to be determined empirically. The value of x that best explains the observed relationship [is] Return $=0.0829+0.0520 \beta$ is between 0.25 and 0.30 . If $x=0.25$, the equation becomes:

$$
\mathrm{K}=\mathrm{R}_{\mathrm{F}}+0.25\left(\mathrm{R}_{\mathrm{M}}-\mathrm{R}_{\mathrm{F}}\right)+0.75 \beta\left(\mathrm{R}_{\mathrm{M}}-\mathrm{R}_{\mathrm{F}}\right)^{46}
$$

Fama and French provide similar support for the ECAPM when they state:
The early tests firmly reject the Sharpe-Lintner version of the CAPM. There is a positive relation between beta and average return, but it is too 'flat.'... The regressions consistently find that the intercept is greater than the average risk-free rate... and the coefficient on beta is less than the average excess market return... This is true in the early tests... as well as in more recent cross-section regressions tests, like Fama and French (1992). ${ }^{47}$

Finally, Fama and French further note:
Confirming earlier evidence, the relation between beta and average return for the ten portfolios is much flatter than the Sharpe-Linter CAPM predicts. The returns on low beta portfolios are too high, and the returns on the high beta portfolios are too low. For example, the predicted return on the portfolio with the lowest beta is 8.3 percent per year; the actual return as 11.1 percent. The predicted return on the portfolio with the highest beta is 16.8 percent per year; the actual is 13.7 percent. ${ }^{48}$

Clearly, the justification from Morin, Fama, and French along with their reviews of other academic research on the CAPM, validate the use of the ECAPM. In view of theory and practical research, I have applied both the traditional CAPM and the ECAPM to the companies in the Utility Proxy Group and averaged the results.

Q. What beta did you use in your CAPM analysis?

A. With respect to beta, I considered two methods of calculation: 1) the average beta of the Utility Proxy Group companies reported by Bloomberg Professional Services; and 2) the average beta of the Utility Proxy Group companies as reported by Value Line. While both
of those services adjust their calculated (or "raw") betas to reflect the tendency of beta to regress to the market mean of 1.00 , Value Line calculates beta over a five-year period, while Bloomberg's calculation is based on two years of data.

Q. Please describe your selection of a risk-free rate of return.

A. As shown in Exhibits DWD-5 and DWD-6, the risk-free rate adopted for applications of the RPM and CAPM is 3.91%. This risk-free rate of 3.91% is based on the average of the Blue Chip consensus forecast of the expected yields on 30-year U.S. Treasury bonds for the six quarters ending with the second calendar quarter of 2024, and long-term projections for the years 2024 to 2028 and 2029 to 2033.

Q. Why do you use the 30-year Treasury yield in your analyses?

A. The yield on long-term U.S. Treasury Bonds is almost risk-free, and its term is consistent with the long-term cost of capital to public utilities measured by the yields on A2 rated public utility bonds, the long-term investment horizon inherent in utilities' common stocks, and the long-term life of the jurisdictional rate base to which the allowed fair rate of return (i.e., cost of capital) will be applied. In contrast, short-term U.S. Treasury yields are more volatile and largely a function of Federal Reserve monetary policy.
Q. Please explain the estimation of the expected risk premium for the market used in your CAPM analyses.
A. The basis of the market risk premium is explained in detail in note 1 on page 2 of Exhibit DWD-6. As discussed previously, the market risk premium is derived from an average of:
(i) Ibbotson-based market risk premiums;
(ii) Value Line data-based market risk premiums; and

Case No. 2022-00432
Application Exhibit 6
(iii) Bloomberg data-based market risk premiums.

The long-term income return on U.S. Government Securities of 5.02% was deducted from the SBBI-2022 monthly historical total market return of 12.37%, which results in a historical market equity risk premium of $7.35 \%{ }^{49}$ I applied a linear OLS regression to the monthly annualized historical returns on the S\&P 500 relative to historical yields on long-term U.S. Government Securities from SBBI - 2022. That regression analysis yielded a market equity risk premium of 8.71%. The PRPM market equity risk premium is 10.86% and is derived using the PRPM relative to the yields on long-term U.S. Treasury securities from January 1926 through December 2022.

The Value Line Summary and Index-derived forecasted total market equity risk premium is derived by deducting the forecasted risk-free rate of 3.91%, discussed above, from the Value Line Summary and Index projected total annual market return of 16.06%, resulting in a forecasted total market equity risk premium of 12.15%. The S\&P 500 projected market equity risk premium using Value Line data is derived by subtracting the projected risk-free rate of 3.91% from the projected total return of the S\&P 500 of 15.52%. The resulting market equity risk premium is 11.61%.

The S\&P 500 projected market equity risk premium using Bloomberg data is derived by subtracting the projected risk-free rate of 3.91% from the projected total return of the $\mathrm{S} \& \mathrm{P} 500$ of 11.23%. The resulting market equity risk premium is 7.32%.

These six market risk premiums, when averaged, resulted in an average total market equity risk premium of 9.67%.
$49 \quad$ SBBI - 2022, at 256-258, 274-276.
Case No. 2022-00432

Table 7: Summary of the Calculation of the Market Risk Premium for Use in the CAPM ${ }^{50}$

Historical Spread Between Total Returns of Large Stocks and Long-Term Government Bond Yields (1926-2021)	7.35%
Regression Analysis on Historical Data	8.71%
PRPM Analysis on Historical Data	10.86%
Prospective Equity Risk Premium using Total Market Returns from Value Line Summary \& Index less Projected 30-Year Treasury Bond Yields	12.15%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Value Line for the S\&P 500 less Projected 30-Year Treasury Bond Yields	11.61%
Prospective Equity Risk Premium using Measures of Capital Appreciation and Income Returns from Bloomberg Professional Services for the S\&P 500 less Projected 30-Year Treasury Bond Yields	$\underline{\underline{7.32 \%}}$
Average	$\underline{\underline{9.67 \%}}$

Q. What are the results of your application of the traditional and empirical CAPM to the Utility Proxy Group?
A. As shown on page 1 of Exhibit DWD-6, the mean result of my CAPM/ECAPM analysis is 11.77%, the median is 11.38%, and the average of the two is 11.58%. Consistent with my reliance on the average of mean and median DCF results discussed above, the indicated common equity cost rate using the CAPM/ECAPM is 11.58%.

D. COMMON EQUITY COST RATES FOR A PROXY GROUP OF DOMESTIC, NON-PRICE REGULATED COMPANIES BASED ON THE DCF, RPM, AND CAPM

Q. Why did you also consider a proxy group of domestic, non-price regulated companies?
A. In the Hope and Bluefield cases, the U.S. Supreme Court did not specify that comparable risk companies had to be utilities. Since the purpose of rate regulation is to be a substitute for the competition of the marketplace, non-price regulated firms operating in the competitive marketplace make an excellent proxy if they are comparable in total risk to the Utility Proxy Group being used to estimate the cost of common equity. The selection of such domestic, non-price regulated competitive firms theoretically and empirically results in a proxy group which is comparable in total risk to the Utility Proxy Group.
Q. How did you select non-price regulated companies that are comparable in total risk to the Utility Proxy Group?
A. In order to select a proxy group of domestic, non-price regulated companies similar in total risk to the Utility Proxy Group, I relied on beta and related statistics derived from Value Line regression analyses of weekly market prices over the most recent 260 weeks (i.e., five years). Using these selection criteria resulted in a proxy group of 20 domestic, non-price regulated firms comparable in total risk to the Utility Proxy Group. Total risk is the sum of non-diversifiable market risk and diversifiable company-specific risks. The following criteria were used in the selection of the domestic, non-price regulated firms:
(i) They must be covered by Value Line;
(ii) They must be domestic, non-price regulated companies, i.e., non-utilities;

Case No. 2022-00432
Application Exhibit 6
Direct Testimony of Dylan W. D'Ascendis
(iii) Their beta must lie within plus or minus two standard deviations of the average unadjusted beta of the Utility Proxy Group; and
(iv) The residual standard errors of the Value Line regressions which gave rise to the unadjusted betas must lie within plus or minus two standard deviations of the average residual standard error of the Utility Proxy Group.

Betas are a measure of market or systematic risk, which is not diversifiable. The residual standard errors of the regressions were used to measure each firm's companyspecific, diversifiable risk. Companies that have similar betas and similar residual standard errors resulting from the same regression analyses have similar total investment risk.
Q. Have you prepared an exhibit which shows the data from which you selected the 20 domestic, non-price regulated companies that are comparable in total risk to the Utility Proxy Group?
A. Yes, the basis of my selection, and both proxy groups' regression statistics, are shown in Exhibit DWD-7.
Q. Did you calculate common equity cost rates using the DCF, RPM, and CAPM for the Non-Price Regulated Proxy Group?
A. Yes. Because the DCF, RPM, and CAPM have been applied in an identical manner as described above, I will not repeat the details of the rationale and application of each model. One exception is in the application of the RPM, where I did not use public utility-specific equity risk premiums, nor did I apply the PRPM to the individual companies.

Case No. 2022-00432
Application Exhibit 6
Direct Testimony of Dylan W. D'Ascendis

Page 2 of Exhibit DWD-8 contains the derivation of the DCF cost rates. As shown, the indicated common equity cost rate using the DCF for the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group, is 9.54%.

Pages 3 through 5 of Exhibit DWD-8 contain the data and calculations that support the 12.40% RPM cost rate. As shown on line 1 of page 3 of Exhibit DWD-8, the consensus prospective yield on Moody's Baa2-rated corporate bonds for the six quarters ending in the second quarter of 2024 , and for the years 2024 to 2028 and 2029 to 2033 , is $6.05 \% .{ }^{51}$ Since the Non-Price Regulated Proxy Group has an average Moody's long-term issuer rating of Baa1, a 0.17% downward adjustment of the prospective Baa2-rated corporate bond yield is necessary to reflect a difference in ratings. ${ }^{52}$

When the beta-adjusted risk premium of $6.52 \%{ }^{53}$ relative to the Non-Price Regulated Proxy Group is added to the adjusted prospective Baa1-rated corporate bond yield of 5.88%, the indicated RPM cost rate is 12.40%.

Page 6 contains the inputs and calculations that support my indicated CAPM/ECAPM cost rate of 11.61%.

Q. What is the cost rate of common equity based on the Non-Price Regulated Proxy

 Group comparable in total risk to the Utility Proxy Group?A. As shown on page 1 of Exhibit DWD-8, the results of the DCF, RPM, and CAPM applied to the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group are $9.54 \%, 12.40 \%$, and 11.61%, respectively. The average of the mean and median

51 Blue Chip Financial Forecasts, December 2, 2022, at p. 14 and January 1, 2023 at p. 2.
The 0.17% downward adjustment is equal to one-third of the spread between A2 and Baa2 corporate bond yields, as illustrated in note 2 on page 3 of Exhibit DWD-8. Derived on page 5 of Exhibit DWD-8.

Case No. 2022-00432
of these models is 11.40%, which I used as the indicated common equity cost rate for the Non-Price Regulated Proxy Group.

VIII. CONCLUSION OF COMMON EQUITY COST RATE BEFORE ADJUSTMENT

Q. What is the indicated range of common equity cost rates before adjustments?

A. Based on the results of the application of multiple cost of common equity models to the Utility Proxy Group, my recommended range of ROEs attributable to the Utility Proxy Group is between 10.13% and 11.13%. The indicated range is equal to 50 basis points above and below the midpoint of my results.

I used multiple cost of common equity models as primary tools in arriving at my recommended common equity cost rate, because no single model is so inherently precise that it can be relied on solely to the exclusion of other theoretically sound models. The use of multiple models adds reliability to the estimation of the common equity cost rate, and the prudence of using multiple cost of common equity models is supported in both the financial literature and regulatory precedent.

As discussed previously, after determining the indicated range of ROE attributable to a comparable group, there must be an evaluation of relative risk between that group and the target company to determine whether it is appropriate to apply adjustments to the comparable group's indicated ROE to better reflect the target company's specific risks.

IX. ADJUSTMENTS TO THE COMMON EQUITY COST RATE

A. BUSINESS RISK ADJUSTMENT

Q. Does Bluegrass Water have increased business risk compared with your Utility Proxy Group?

Case No. 2022-00432
Application Exhibit 6
Direct Testimony of Dylan W. D'Ascendis
A. Yes, it does. Bluegrass Water faces extraordinary operating risks because of its acquisition of mainly troubled water and wastewater systems, which is only exacerbated by its small size.

Q. Please summarize the extraordinary business risk that faces Bluegrass Water.

A. As described in detail in Messrs. Cox and Freeman's direct testimonies, the Company faces significant risks due to its acquisition of troubled water and wastewater systems, often at the behest of the Commonwealth. These acquired systems often have significant challenges in all phases of service to their existing customers and Bluegrass Water must invest significant capital to ensure safe and reliable service. While rehabilitating troubled systems is generally a small portion of the operations of the companies that comprise my Utility Proxy Group, it is the majority of the operations of Bluegrass Water. As such, the Company's increased business risk as compared to the Utility Proxy Group should be reflected in its authorized ROE.
Q. Does Bluegrass Water's smaller size compared with the Utility Proxy Group increase its business risk?
A. Yes. Bluegrass Water's smaller size relative to the Utility Proxy Group companies indicates greater relative business risk for the Company because, all else being equal, size has a material bearing on risk.

Size affects business risk because smaller companies generally are less able to cope with significant events that affect sales, revenues, and earnings. For example, smaller companies face more risk exposure to business cycles and economic conditions, both nationally and locally. Additionally, the loss of revenues from a few larger customers

Case No. 2022-00432
Application Exhibit 6
would have a greater effect on a small company than on a bigger company with a larger, more diverse, customer base.

As further evidence illustrates that smaller firms are riskier, investors generally demand greater returns from smaller firms to compensate for less marketability and liquidity of their securities. Duff \& Phelps' (now Kroll) discusses the nature of the smallsize phenomenon, providing an indication of the magnitude of the size premium based on several measures of size. In discussing "Size as a Predictor of Equity Premiums," Kroll states:

The size effect is based on the empirical observation that companies of smaller size are associated with greater risk and, therefore, have greater cost of capital [sic]. The "size" of a company is one of the most important risk elements to consider when developing cost of equity capital estimates for use in valuing a business simply because size has been shown to be a predictor of equity returns. In other words, there is a significant (negative) relationship between size and historical equity returns - as size decreases, returns tend to increase, and vice versa. (footnote omitted) (emphasis in original) ${ }^{54}$

Furthermore, in "The Capital Asset Pricing Model: Theory and Evidence," Fama and French note size is indeed a risk factor which must be reflected when estimating the cost of common equity. On page 38 , they note:
. . . the higher average returns on small stocks and high book-to-market stocks reflect unidentified state variables that produce undiversifiable risks (covariances) in returns not captured in the market return and are priced separately from market betas. ${ }^{55}$

Based on this evidence, Fama and French proposed their three-factor model which includes a size variable in recognition of the effect size has on the cost of common equity.

Also, it is a basic financial principle that the use of funds invested, and not the source of funds, is what gives rise to the risk of any investment. ${ }^{56}$ Eugene Brigham, a wellknown authority, states:

> A number of researchers have observed that portfolios of small-firms (sic) have earned consistently higher average returns than those of large-firm stocks; this is called the "small-firm effect." On the surface, it would seem to be advantageous to the small firms to provide average returns in a stock market that are higher than those of larger firms. In reality, it is bad news for the small firm; what the small-firm effect means is that the capital market demands higher returns on stocks of small firms than on otherwise similar stocks of the large firms. (emphasis added) ${ }^{57}$

Consistent with the financial principle of risk and return discussed above, increased relative risk due to small size must be considered in the allowed rate of return on common equity. Therefore, the Commission's authorization of a cost rate of common equity in this proceeding must appropriately reflect the unique risks of Bluegrass Water, including its small size, which is justified and supported above by evidence in the financial literature.

Q. Is there a way to quantify a relative risk adjustment due to Bluegrass Water's greater

 business risk relative to the Utility Proxy Group?A. Yes. In the absence of other empirical methods, I compared Bluegrass Water's and the Utility Proxy Group's relative size, as measured by an estimated market capitalization of common equity for Bluegrass Water.

Table 8: Size as Measured by Market Capitalization for the Company and the Utility Proxy Group

Case No. 2022-00432

	Market Capitalization* (\$ Millions)	Times Greater Than the Company
Bluegrass Water	$\$ 15.374$	
Utility Proxy Group Median	$\$ 3,439.009$	320.8 x
*From page 1 of Exhibit DWD-9.		

The Company's estimated market capitalization was at $\$ 15.374$ million as of January 13, 2023, compared with the median market capitalization of the Utility Proxy Group of $\$ 3.44$ billion as of January 13, 2023. The Utility Proxy Group's market capitalization is 223.7 times the size of Bluegrass Water's estimated market capitalization.

As a result, it is necessary to upwardly adjust the indicated range of common equity cost rates to reflect Bluegrass Water's greater risk due to its smaller relative size. The determination is based on the size premiums for portfolios of New York Stock Exchange, American Stock Exchange, and NASDAQ listed companies ranked by deciles for the 1926 to 2021 period. The average size premium for the Utility Proxy Group with a market capitalization of $\$ 3.44$ billion falls in the $5^{\text {th }}$ decile, while Bluegrass Water's market capitalization of $\$ 15.374$ million places the Company in the $10^{\text {th }}$ decile. The size premium spread between the $5^{\text {th }}$ decile and the $10^{\text {th }}$ decile is 3.91%. Even though a 3.91% upward size adjustment is indicated, I applied a size premium of 1.00% to Bluegrass Water's indicated range of common equity cost rates.
Q. What is the indicated range of common equity cost rates after adjustment for the Bluegrass Water's smaller size relative to the Utility Proxy Group?

Case No. 2022-00432
Application Exhibit 6
Direct Testimony of Dylan W. D'Ascendis
A. After applying the 1.00% size adjustment to the indicated range of common equity cost rates between 10.13% and 11.13%, based on the Utility Proxy Group results, a range of common equity cost rates between 11.13% and 12.13% is applicable to Bluegrass Water.

X. CONCLUSION

Q. Using the fair, just and reasonable standard applicable in utility rate cases, what is your recommended return on investor-supplied capital for Bluegrass Water?
A. Given the Company's actual capital structure which consists of 38.84% long-term debt at an embedded debt cost rate of 6.80% and 61.16% common equity at my recommended ROE of 11.65%, I conclude that an appropriate return on investor-supplied capital for the Company is 9.77%. A common equity cost rate of 11.65% is consistent with the Hope and Bluefield standard of a fair, just and reasonable return which ensures the integrity of presently invested capital and enables the attraction of needed new capital on reasonable terms. It also ensures that Bluegrass Water will be able to continue providing safe, adequate, and reliable service to the benefit of its customers. Thus, it balances the interests of both customers and the Company.

Q. Does this conclude your Direct Testimony?

A. Yes, it does.

Case No. 2022-00432
Application Exhibit 6
Direct Testimony of Dylan W. D'Ascendis
Page 53 of 53

STATE OF NEW JERSEY

AFFIDAVIT OF DYLAN W. D'ASCENDIS

BEFORE ME, the undersigned authority, on this day personally appeared Dylan W.
D'Ascendis, who having been placed under oath by me did depose as follows:

1. "My name is Dylan W. D'Ascendis. I am of sound mind and capable of making this affidavit. The facts stated herein are true and correct based on my personal knowledge. My current position is Partner at ScottMadden, Inc.
2. I have prepared the foregoing direct testimony and the information contained in this document is true and correct to the best of my knowledge."

Further affiant sayeth not.

SUBSCRIBED AND SWORN TO BEFORE ME by the said Dylan W. D'Ascendis on this 3 rd day of Fe 10., 2023.

Notary Public, State of New Jersey

My commission expires:

APPENDIX A

Summary

Dylan is an experienced consultant and a Certified Rate of Return Analyst (CRRA) and Certified Valuation Analyst (CVA). Dylan joined ScottMadden in 2016 and has become a leading expert witness with respect to cost of capital and capital structure. He has served as a consultant for investor-owned and municipal utilities and authorities for 14 years. Dylan has testified as an expert witness on over 125 occasions regarding rate of return, cost of service, rate design, and valuation before more than 35 regulatory jurisdictions in the United States and Canada, an American Arbitration Association panel, and the Superior Court of Rhode Island. He also maintains the benchmark index against which the Hennessy Gas Utility Mutual Fund performance is measured. Dylan holds a B.A. in economic history from the University of Pennsylvania and an M.B.A. with concentrations in finance and international business from Rutgers University.

Areas of Specialization

\author{

- Regulation and Rates
 - Rate of Return
 - Valuation
 - Mutual Fund Benchmarking
 - Capital Market Risk
 - Regulatory Strategy
 - Cost of Service
}

Recent Expert Testimony Submission/Appearance

- Regulatory Commission of Alaska - Capital Structure
- Federal Energy Regulatory Commission - Rate of Return
- Public Utility Commission of Texas - Return on Equity
- Hawaii Public Utilities Commission - Cost of Service / Rate Design
- Pennsylvania Public Utility Commission - Valuation

Recent Assignments

- Provided expert testimony on the cost of capital for ratemaking purposes before numerous state utility regulatory agencies
- Sponsored valuation testimony for a large municipal water company in front of an American Arbitration Association Board to justify the reasonability of their lease payments to the City
- Co-authored a valuation report on behalf of a large investor-owned utility company in response to a new state regulation which allowed the appraised value of acquired assets into rate base

Recent Articles and Speeches

- Co-Author of: "Decoupling, Risk Impacts and the Cost of Capital", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. The Electricity Journal, March, 2020
- Co-Author of: "Decoupling Impact and Public Utility Conservation Investment", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. Energy Policy Journal, 130 (2019), 311-319
- "Establishing Alternative Proxy Groups", before the Society of Utility and Regulatory Financial Analysts: 51st Financial Forum, April 4, 2019, New Orleans, LA
- "Past is Prologue: Future Test Year", Presentation before the National Association of Water Companies 2017 Southeast Water Infrastructure Summit, May 2, 2017, Savannah, GA.
- Co-author of: "Comparative Evaluation of the Predictive Risk Premium Model ${ }^{\text {TM }}$, the Discounted Cash Flow Model and the Capital Asset Pricing Model", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University, Pauline M. Ahern, and Frank J. Hanley, The Electricity Journal, May, 2013
- "Decoupling: Impact on the Risk and Cost of Common Equity of Public Utility Stocks", before the Society of Utility and Regulatory Financial Analysts: 45th Financial Forum, April 17-18, 2013, Indianapolis, IN

Dylan W. D'Ascendis, CRRA, CVA

scottmadden
MANAGEMENT CONSULTANTS

Sponsor	Date	Case/Applicant	Docket No.	Subject
Regulatory Commission of Alaska				
ENSTAR Natural Gas Company	08/22	ENSTAR Natural Gas Company	Docket No. TA334-4	Rate of Return
Cook Inlet Natural Gas Storage Alaska, LLC	07/21	Cook Inlet Natural Gas Storage Alaska, LLC	Docket No. TA45-733	Capital Structure
Alaska Power Company	09/20	Alaska Power Company; Goat Lake Hydro, Inc.; BBL Hydro, Inc.	Tariff Nos. TA886-2; TA6-521; TA4-573	Capital Structure
Alaska Power Company	07/16	Alaska Power Company	Docket No. TA857-2	Rate of Return
Alberta Utilities Commission				
AltaLink, L.P., and EPCOR Distribution \& Transmission, Inc.	01/20	AltaLink, L.P., and EPCOR Distribution \& Transmission, Inc.	2021 Generic Cost of Capital, Proceeding ID. 24110	Rate of Return
Arizona Corporation Commission				
Arizona Water Company	12/22	Arizona Water Company - Eastern Group	Docket No. W-01445A-22-0286	Rate of Return
EPCOR Water Arizona, Inc.	08/22	EPCOR Water Arizona, Inc.	Docket No. WS-01303A-22- 0236	Rate of Return
EPCOR Water Arizona, Inc.	06/20	EPCOR Water Arizona, Inc.	Docket No. WS-01303A-200177	Rate of Return
Arizona Water Company	12/19	Arizona Water Company - Western Group	Docket No. W-01445A-19-0278	Rate of Return
Arizona Water Company	08/18	Arizona Water Company - Northern Group	Docket No. W-01445A-18-0164	Rate of Return
Arkansas Public Service Commission				
Southwestern Electric Power Co.	07/21	Southwestern Electric Power Co.	Docket No. 21-070-U	Return on Equity
CenterPoint Energy Resources Corp.	05/21	CenterPoint Arkansas Gas	Docket No. 21-004-U	Return on Equity
Colorado Public Utilities Commission				
Atmos Energy Corporation	08/22	Atmos Energy Corporation	Docket No. 22AL-0348G	Rate of Return
Summit Utilities, Inc.	04/18	Colorado Natural Gas Company	Docket No. 18AL-0305G	Rate of Return
Atmos Energy Corporation	06/17	Atmos Energy Corporation	Docket No. 17AL-0429G	Rate of Return
Delaware Public Service Commission				
Delmarva Power \& Light Co.	01/22	Delmarva Power \& Light Co.	Docket No. 22-002 (Gas)	Return on Equity
Delmarva Power \& Light Co.	11/20	Delmarva Power \& Light Co.	Docket No. 20-0149 (Electric)	Return on Equity
Delmarva Power \& Light Co.	10/20	Delmarva Power \& Light Co.	Docket No. 20-0150 (Gas)	Return on Equity
Tidewater Utilities, Inc.	11/13	Tidewater Utilities, Inc.	Docket No. 13-466	Capital Structure
Public Service Commission of the District of Columbia				
Washington Gas Light Company	04/22	Washington Gas Light Company	Formal Case No. 1169	Rate of Return
Washington Gas Light Company	09/20	Washington Gas Light Company	Formal Case No. 1162	Rate of Return
Federal Energy Regulatory Commission				
LS Power Grid California, LLC	10/20	LS Power Grid California, LLC	Docket No. ER21-195-000	Rate of Return
Florida Public Service Commission				
Tampa Electric Company	04/21	Tampa Electric Company	Docket No. 20210034-El	Return on Equity
Peoples Gas System	09/20	Peoples Gas System	Docket No. 20200051-GU	Rate of Return
Utilities, Inc. of Florida	06/20	Utilities, Inc. of Florida	Docket No. 20200139-WS	Rate of Return
Hawail Public Utilities Commission				
Launiupoko Irrigation Company, Inc.	12/20	Launiupoko Irrigation Company, Inc.	Docket No. 2020-0217 I Transferred to 2020-0089	Capital Structure

MANAGEMENT CONSULTANTS

Sponsor	Date	Case/Applicant	Docket No.	Subject
Lanai Water Company, Inc.	12/19	Lanai Water Company, Inc.	Docket No. 2019-0386	Cost of Service I Rate Design
Manele Water Resources, LLC	08/19	Manele Water Resources, LLC	Docket No. 2019-0311	Cost of Service / Rate Design
Kaupulehu Water Company	02/18	Kaupulehu Water Company	Docket No. 2016-0363	Rate of Return
Aqua Engineers, LLC	05/17	Puhi Sewer \& Water Company	Docket No. 2017-0118	Cost of Service / Rate Design
Hawaii Resources, Inc.	09/16	Laie Water Company	Docket No. 2016-0229	Cost of Service / Rate Design
Illinois Commerce Commission				
Utility Services of Illinois, Inc.	02/21	Utility Services of Illinois, Inc.	Docket No. 21-0198	Rate of Return
Ameren Illinois Company d/b/a Ameren Illinois	07/20	Ameren Illinois Company d/b/a Ameren Illinois	Docket No. 20-0308	Return on Equity
Utility Services of Illinois, Inc.	11/17	Utility Services of Illinois, Inc.	Docket No. 17-1106	Cost of Service / Rate Design
Aqua Illinois, Inc.	04/17	Aqua Illinois, Inc.	Docket No. 17-0259	Rate of Return
Utility Services of Illinois, Inc.	04/15	Utility Services of Illinois, Inc.	Docket No. 14-0741	Rate of Return
Indiana Utility Regulatory Commission				
Aqua Indiana, Inc.	03/16	Aqua Indiana, Inc. Aboite Wastewater Division	Docket No. 44752	Rate of Return
Twin Lakes, Utilities, Inc.	08/13	Twin Lakes, Utilities, Inc.	Docket No. 44388	Rate of Return
Kansas Corporation Commission				
Atmos Energy Corporation	07/19	Atmos Energy Corporation	19-ATMG-525-RTS	Rate of Return
Kentucky Public Service Commission				
Water Service Corporation of KY	06/22	Water Service Corporation of KY	2022-00147	Rate of Return
Atmos Energy Corporation	07/21	Atmos Energy Corporation	2021-00304	PRP Rider Rate
Atmos Energy Corporation	06/21	Atmos Energy Corporation	2021-00214	Rate of Return
Duke Energy Kentucky, Inc.	06/21	Duke Energy Kentucky, Inc.	2021-00190	Return on Equity
Bluegrass Water Utility Operating Company	10/20	Bluegrass Water Utility Operating Company	2020-00290	Return on Equity
Louisiana Public Service Commission				
Utilities, Inc. of Louisiana	05/21	Utilities, Inc. of Louisiana	Docket No. U-36003	Rate of Return
Southwestern Electric Power Company	12/20	Southwestern Electric Power Company	Docket No. U-35441	Return on Equity
Atmos Energy	04/20	Atmos Energy	Docket No. U-35535	Rate of Return
Louisiana Water Service, Inc.	06/13	Louisiana Water Service, Inc.	Docket No. U-32848	Rate of Return
Maine Public Utilities Commission				
Summit Natural Gas of Maine, Inc.	03/22	Summit Natural Gas of Maine, Inc.	Docket No. 2022-00025	Rate of Return
The Maine Water Company	09/21	The Maine Water Company	Docket No. 2021-00053	Rate of Return
Maryland Public Service Commission				
Washington Gas Light Company	08/20	Washington Gas Light Company	Case No. 9651	Rate of Return
FirstEnergy, Inc.	08/18	Potomac Edison Company	Case No. 9490	Rate of Return
Massachusetts Department of Public Utilities				
Unitil Corporation	12/19	Fitchburg Gas \& Electric Co. (Elec.)	D.P.U. 19-130	Rate of Return
Unitil Corporation	12/19	Fitchburg Gas \& Electric Co. (Gas)	D.P.U. 19-131	Rate of Return
Liberty Utilities	07/15	Liberty Utilities d/b/a New England Natural Gas Company	Docket No. 15-75	Rate of Return
Minnesota Public Utilities Commission				

MANAGEMENT CONSULTANTS

Sponsor	Date	Case/Applicant	Docket No.	Subject
Northern States Power Company	11/01	Northern States Power Company	Docket No. G002/GR-21-678	Return on Equity
Northern States Power Company	10/21	Northern States Power Company	Docket No. E002/GR-21-630	Return on Equity
Northern States Power Company	11/20	Northern States Power Company	Docket No. E002/GR-20-723	Return on Equity
Mississippi Public Service Commission				
Great River Utility Operating Co.	07/22	Great River Utility Operating Co.	Docket No. 2022-UN-86	Rate of Return
Atmos Energy	03/19	Atmos Energy	Docket No. 2015-UN-049	Capital Structure
Atmos Energy	07/18	Atmos Energy	Docket No. 2015-UN-049	Capital Structure
Missouri Public Service Commission				
Spire Missouri, Inc.	12/20	Spire Missouri, Inc.	Case No. GR-2021-0108	Return on Equity
Indian Hills Utility Operating Company, Inc.	10/17	Indian Hills Utility Operating Company, Inc.	Case No. SR-2017-0259	Rate of Return
Raccoon Creek Utility Operating Company, Inc.	09/16	Raccoon Creek Utility Operating Company, Inc.	Case No. SR-2016-0202	Rate of Return
Public USillities Commission of Nevada				
Southwest Gas Corporation	09/21	Southwest Gas Corporation	Docket No. 21-09001	Return on Equity
Southwest Gas Corporation	08/20	Southwest Gas Corporation	Docket No. 20-02023	Return on Equity
New Hampshire Public Utilitites Commission				
Aquarion Water Company of New Hampshire, Inc.	12/20	Aquarion Water Company of New Hampshire, Inc.	Docket No. DW 20-184	Rate of Return
New Jersey Board of Public Utilifities				
Middlesex Water Company	05/21	Middlesex Water Company	Docket No. WR21050813	Rate of Return
Atlantic City Electric Company	12/20	Atlantic City Electric Company	Docket No. ER20120746	Return on Equity
FirstEnergy	02/20	Jersey Central Power \& Light Co.	Docket No. ER20020146	Rate of Return
Aqua New Jersey, Inc.	12/18	Aqua New Jersey, Inc.	Docket No. WR18121351	Rate of Return
Middlesex Water Company	10/17	Middlesex Water Company	Docket No. WR17101049	Rate of Return
Middlesex Water Company	03/15	Middlesex Water Company	Docket No. WR15030391	Rate of Return
The Atlantic City Sewerage Company	10/14	The Atlantic City Sewerage Company	Docket No. WR14101263	Cost of Service / Rate Design
Middlesex Water Company	11/13	Middlesex Water Company	Docket No. WR1311059	Capital Structure
New Mexico Public Regulation Commission				
Southwestern Public Service Co.	01/21	Southwestern Public Service Co.	Case No. 20-00238-UT	Return on Equity
North Carolina Utilities Commission				
Carolina Water Service, Inc.	07/22	Carolina Water Service, Inc.	Docket No. W-354 Sub 400	Rate of Return
Aqua North Carolina, Inc.	06/22	Aqua North Carolina, Inc.	Docket No. W-218 Sub 573	Rate of Return
Carolina Water Service, Inc.	07/21	Carolina Water Service, Inc.	Docket No. W-354 Sub 384	Rate of Return
Piedmont Natural Gas Co., Inc.	03/21	Piedmont Natural Gas Co., Inc.	Docket No. G-9, Sub 781	Return on Equity
Duke Energy Carolinas, LLC	07/20	Duke Energy Carolinas, LLC	Docket No. E-7, Sub 1214	Return on Equity
Duke Energy Progress, LLC	07/20	Duke Energy Progress, LLC	Docket No. E-2, Sub 1219	Return on Equity
Aqua North Carolina, Inc.	12/19	Aqua North Carolina, Inc.	Docket No. W-218 Sub 526	Rate of Return
Carolina Water Service, Inc.	06/19	Carolina Water Service, Inc.	Docket No. W-354 Sub 364	Rate of Return
Carolina Water Service, Inc.	09/18	Carolina Water Service, Inc.	Docket No. W-354 Sub 360	Rate of Return
Aqua North Carolina, Inc.	07/18	Aqua North Carolina, Inc.	Docket No. W-218 Sub 497	Rate of Return
North Dakota Public Service Commission				
Northern States Power Company	09/21	Northern States Power Company	Case No. PU-21-381	Rate of Return
Northern States Power Company	11/20	Northern States Power Company	Case No. PU-20-441	Rate of Return
Public Utilities Commission of Ohio				
Duke Energy Ohio, Inc.	10/21	Duke Energy Ohio, Inc.	Case No. 21-887-EL-AIR	Return on Equity

MANAGEMENT CONSULTANTS

Sponsor	Date	Case/Applicant	Docket No.	Subject
Aqua Ohio, Inc.	07/21	Aqua Ohio, Inc.	Case No. 21-0595-WW-AIR	Rate of Return
Aqua Ohio, Inc.	05/16	Aqua Ohio, Inc.	Case No. 16-0907-WW-AIR	Rate of Return
Pennsylvania Public Utility Commission				
Borough of Ambler	06/22	Borough of Ambler - Bureau of Water	Docket No. R-2022-3031704	Rate of Return
Citizens' Electric Company of Lewisburg	05/22	C\&T Enterprises	Docket No. R-2022-3032369	Rate of Return
Valley Energy Company	05/22	C\&T Enterprises	Docket No. R-2022-3032300	Rate of Return
Community Utilities of Pennsylvania, Inc.	04/21	Community Utilities of Pennsylvania, Inc.	Docket No. R-2021-3025207	Rate of Return
Vicinity Energy Philadelphia, Inc.	04/21	Vicinity Energy Philadelphia, Inc.	Docket No. R-2021-3024060	Rate of Return
Delaware County Regional Water Control Authority	02/20	Delaware County Regional Water Control Authority	Docket No. A-2019-3015173	Valuation
Valley Energy, Inc.	07/19	C\&T Enterprises	Docket No. R-2019-3008209	Rate of Return
Wellsboro Electric Company	07/19	C\&T Enterprises	Docket No. R-2019-3008208	Rate of Return
Citizens' Electric Company of Lewisburg	07/19	C\&T Enterprises	Docket No. R-2019-3008212	Rate of Return
Steelton Borough Authority	01/19	Steelton Borough Authority	Docket No. A-2019-3006880	Valuation
Mahoning Township, PA	08/18	Mahoning Township, PA	Docket No. A-2018-3003519	Valuation
SUEZ Water Pennsylvania Inc.	04/18	SUEZ Water Pennsylvania Inc.	Docket No. R-2018-000834	Rate of Return
Columbia Water Company	09/17	Columbia Water Company	Docket No. R-2017-2598203	Rate of Return
Veolia Energy Philadelphia, Inc.	06/17	Veolia Energy Philadelphia, Inc.	Docket No. R-2017-2593142	Rate of Return
Emporium Water Company	07/14	Emporium Water Company	Docket No. R-2014-2402324	Rate of Return
Columbia Water Company	07/13	Columbia Water Company	Docket No. R-2013-2360798	Rate of Return
Penn Estates Utilities, Inc.	12/11	Penn Estates, Utilities, Inc.	Docket No. R-2011-2255159	Capital Structure / Long-Term Debt Cost Rate
South Carolina Public Service Commission				
Blue Granite Water Co.	12/19	Blue Granite Water Company	Docket No. 2019-292-WS	Rate of Return
Carolina Water Service, Inc.	02/18	Carolina Water Service, Inc.	Docket No. 2017-292-WS	Rate of Return
Carolina Water Service, Inc.	06/15	Carolina Water Service, Inc.	Docket No. 2015-199-WS	Rate of Return
Carolina Water Service, Inc.	11/13	Carolina Water Service, Inc.	Docket No. 2013-275-WS	Rate of Return
United Utility Companies, Inc.	09/13	United Utility Companies, Inc.	Docket No. 2013-199-WS	Rate of Return
Utility Services of South Carolina, Inc.	09/13	Utility Services of South Carolina, Inc.	Docket No. 2013-201-WS	Rate of Return
Tega Cay Water Services, Inc.	11/12	Tega Cay Water Services, Inc.	Docket No. 2012-177-WS	Capital Structure
South Dakota Public Service Commission				
Northern States Power Company	06/22	Northern States Power Company	Docket No. EL22-017	Rate of Return
Tennessee Public Utility Commission				
Piedmont Natural Gas Company	07/20	Piedmont Natural Gas Company	Docket No. 20-00086	Return on Equity
Public Utility Commission of Texas				
Oncor Electric Delivery Co. LLC	05/22	Oncor Electric Delivery Co. LLC	Docket No. 53601	Return on Equity
Southwestern Public Service Co.	02/21	Southwestern Public Service Co.	Docket No. 51802	Return on Equity
Southwestern Electric Power Co.	10/20	Southwestern Electric Power Co.	Docket No. 51415	Rate of Return
Virginia State Corporation Commission				
Washington Gas Light Company	06/22	Washington Gas Light Company	PUR-2022-00054	Return on Equity
Virginia Natural Gas, Inc.	04/21	Virginia Natural Gas, Inc.	PUR-2020-00095	Return on Equity

Resume and Testimony Listing of: Dylan W. D'Ascendis, CRRA, CVA

Date	Case/Applicant	Docket No.	Subject
$12 / 20$	Massanutten Public Service Corporation	PUE-2020-00039	Return on Equity
$07 / 20$	Aqua Virginia, Inc.	PUR-2020-00106	Rate of Return
$07 / 18$	Washington Gas Light Company	PUR-2018-00080	Rate of Return
$05 / 18$	Atmos Energy Corporation	PUR-2018-00014	Rate of Return
$07 / 17$	Aqua Virginia, Inc.	PUR-2017-00082	Rate of Return
$08 / 14$	Massanutten Public Service Corp.	PUE-2014-00035	Rate of Return / Rate Design

Public Service Commission of West Virginia

Monongahela Power Company and The Potomac Edison Company	$12 / 21$	Monongahela Power Company and The Potomac Edison Company	Case No. 21-0857-E-CN (ELG)	Return on Equity
Monongahela Power Company and The Potomac Edison Company	$11 / 21$	Monongahela Power Company and The Potomac Edison Company	Case No. 21-0813-E-P (Solar)	Return on Equity

Bluegrass Water (KY) Utility Operating Company, Inc.

Table of Contents
Supporting Exhibits Accompanying the Direct Testimony of of Dylan W. D'Ascendis, CRRA, CVA
Exhibit
Recommended Capital Structure and Cost ofDWD-1Capital Rates
Financial Profile of and Capital Structures of DWD-2the Proxy Group of Six Water Companies
Calculation of the Effective Long-Term Debt DWD-3
Cost Rate
Application of the Discounted Cash Flow Model (DCF) DWD-4 to the Proxy Group of Six Water Companies
Application of the Risk Premium Model (RPM) DWD-5to the Proxy Group of Six Water Companies
Application of the Capital Asset Pricing Model (CAPM) DWD-6to the Proxy Group of Six Water Companies
Basis of Selection for the Non-Price Regulated Companies DWD-7Comparable in Total Risk to the Proxy Group of SixWater Companies
Cost of Common Equity Models Applied to the DWD-8Comparable Risk Non-Price Regulated Companies
Estimated Market Capitalization for Bluegrass Water (KY) DWD-9 and the Proxy Group of Six Water Companies

EXHIBIT 1

Bluegrass Water (KY) Utility Operating Company, Inc.
Recommended Capital Structure and Cost Rates for Ratemaking Purposes

Type Of Capital	Ratios (1)	Cost Rate		Weighted Cost Rate
Long-Term Debt	38.84\%	6.80\%	(2)	2.64\%
Common Equity	61.16\%	11.65\%	(3)	7.13\%
Total	100.00\%			9.77\%

Notes:
(1) Company provided.
(2) From page 1 of Exhibit DWD-3.
(2) From page 2 of this Exhibit.

Bluegrass Water (KY) Utility Operating Company, Inc. Brief Summary of Common Equity Cost Rate

Line No.	Principal Methods	Proxy Group of Six Water Companies	Proxy Group of Six Water Companies ex PRPM
1.	Discounted Cash Flow Model (DCF) (1)	9.16\%	9.16\%
2.	Risk Premium Model (RPM) (2)	12.09\%	11.31\%
3.	Capital Asset Pricing Model (CAPM) (3)	11.58\%	11.39\%
4.	Market Models Applied to Comparable Risk, Non-Price Regulated Companies (4)	11.40\%	11.24\%
5.	Indicated Common Equity Cost Rate before Adjustment for Unique Risk	10.13\%-11.13\%	9.74\%-10.74\%
6.	Business Risk Adjustment (5)	1.00\%	1.00\%
7.	Indicated Common Equity Cost Rate after Adjustment	11.13\%-12.13\%	10.74\%-11.74\%
8.	Recommended Common Equity Cost Rate	11.65\%	

Notes: (1) From page 1 of Exhibit DWD-4.
(2) From page 1 of Exhibit DWD-5.
(3) From page 1 of Exhibit DWD-6.
(4) From page 1 of Exhibit DWD-8.
(5) Business risk adjustment to reflect Bluegrass Water's unique risk compared to the Utility Proxy Group as detailed in the accompanying Direct Testimony.

EXHIBIT 2

Proxy Group of Six Water Companies
CAPITALIZATION AND FINANCIAL STATISTICS (1) 2017-2021, Inclusive

[^7]
Capital Structure Based upon Total Permanent Capital for the

Proxy Group of Six Water Companies
2017-2021, Inclusive

	$\underline{2021}$	$\underline{2020}$	$\underline{2019}$	$\underline{2018}$	$\underline{2017}$	$\begin{gathered} \underline{5 \text { YEAR }} \\ \text { AVERAGE } \end{gathered}$
American States Water Company						
Long-Term Debt	37.56 \%	40.72 \%	31.87 \%	36.54 \%	37.75 \%	36.89 \%
Preferred Stock	0.00	0.00	0.00	0.00	0.00	0.00
Common Equity	62.44	59.28	68.13	63.46	62.25	63.11
Total Capital	100.00 \%	$\underline{100.00}$ \%	$\underline{100.00}$ \%	$\underline{100.00}$ \%	100.00 \%	$\underline{100.00}$ \%
American Water Works Company, Inc.						
Long-Term Debt	58.75 \%	59.93 \%	58.59 \%	56.55 \%	55.81 \%	57.93 \%
Preferred Stock	0.02	0.02	0.03	0.05	0.07	0.04
Common Equity	41.23	40.05	41.38	43.40	44.12	42.03
Total Capital	100.00 \%	100.00 \%	$\underline{100.00}$ \%	100.00 \%	100.00 \%	$\underline{100.00} \%$
California Water Service Group						
Long-Term Debt	47.28 \%	46.04 \%	50.90 \%	52.74 \%	43.40 \%	48.07 \%
Preferred Stock	0.00	0.00	0.00	0.00	0.00	0.00
Common Equity	52.72	53.96	49.10	47.26	56.60	51.93
Total Capital	$\underline{100.00}$ \%					
Essential Utilities Inc.						
Long-Term Debt	53.28 \%	54.42 \%	44.23 \%	56.06 \%	52.26 \%	52.05 \%
Preferred Stock	0.00	0.00	0.00	0.00	0.00	0.00
Common Equity	46.72	45.58	55.77	43.94	47.74	47.95
Total Capital	100.00 \%	100.00 \%	$\underline{100.00}$ \%	100.00 \%	100.00 \%	$\underline{100.00}$ \%
Middlesex Water Company						
Long-Term Debt	46.87 \%	44.61 \%	42.20 \%	38.94 \%	38.65 \%	42.25 \%
Preferred Stock	0.30	0.33	0.37	0.59	0.64	0.45
Common Equity	52.83	55.06	57.43	60.47	60.71	57.30
Total Capital	100.00 \%	$\underline{100.00}$ \%				
SJW Group						
Long-Term Debt	59.69 \%	59.79 \%	59.05 \%	32.67 \%	48.20 \%	51.88 \%
Preferred Stock	0.00	0.00	0.00	0.00	0.00	0.00
Common Equity	40.31	40.21	40.95	67.33	51.80	48.12
Total Capital	100.00 \%	$\underline{100.00}$ \%	100.00 \%	100.00 \%	$\underline{100.00}$ \%	$\underline{100.00}$ \%

Proxy Group of Six Water Companies
Long-Term Debt
Preferred Stock
Common Equity
Total Capital

50.57 \%	50.92 \%	47.81 \%	45.58 \%	46.01 \%	48.18 \%
0.05	0.06	0.06	0.11	0.12	0.08
49.38	49.02	52.13	54.31	53.87	51.74
100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%	100.00 \%

Source of Information
Annual Forms 10-K

EXHIBIT 3

Bluegrass Water (KY) Utility Operating Company, Inc. Calculation of the Effective Cost Rate of Long-Term Debt by Issuance

Notes:
(1) Company provided.
(2) Loan amount less issuance expenses.
(3) Net proceeds divided by loan amount.
(4) Calculated based upon projected cash flows throughout the life of the debt issue.

EXHIBIT 4

Bluegrass Water (KY) Utility Operating Company, Inc.
Indicated Common Equity Cost Rate Using the Discounted Cash Flow Model for the

 Average of Mean and Median
$\sqrt{\boxed{2}}$

$\stackrel{\sim}{4}$

Proxy Group of Six Water Companies
American States Water Company
American Water Works Company, Inc.
California Water Service Group
Essential Utilities Inc.
Middlesex Water Company
SJW Group

(SMILL.)			
Cash Assets	36.7	5.0	2.3
Accts Receivable	29.2	34.4	31.8
Other	91.2	98.7	104.7
Current Assets	157.1	138.1	138.8
Accts Payable	63.8	65.9	70.0
Debt Due	. 4	31.4	238.9
Other	54.4	58.3	64.3
Current Liab.	118.6	155.6	373.2

ANNUAL RATES of change (per sh) Revenues "Cash Flow" Earnings Dividends Book Value		$\begin{array}{r} \text { Past } \\ 10 \text { Yrs. } \\ 2.5 \% \\ 5.5 \% \\ 9.0 \% \\ 9.5 \% \\ 5.5 \% \end{array}$	$\begin{array}{lc} \text { Past } & \text { Est'd '19-'21 } \\ 5 \text { Yrs. } & \text { to '25-' } 27 \end{array}$			
			\%	5\%		
			\%	5\%		
			\%	5\%		
Calendar	QUARTERLY REVENUES (\$ mill.) Mar. 31 Jun. 30 Sep. 30 Dec. 31				Full Year	
2019	101.7		124.7	134.5	113.0	473.9
2020	109.1		121.3	133.6	124.2	488.2
2021	117.1		128.4	136.8	116.6	498.9
2022	108.6		122.6	135.0	143.8	510
2023	112	130	145	138	525	
Calendar	EARNINGS PER SHARE A Mar. 31 Jun. 30 Sep. 30 Dec. 31				Full Year	
2019	. 35	. 72	. 76	. 45	2.28	
2020	. 38	. 69	. 72	. 54	2.33	
2021	. 52	. 72	. 76	. 55	2.55	
2022	. 38	. 54	. 69	. 49	2.10	
2023	. 67	. 88	. 75	. 55	2.85	
Calendar	QUARTERLY DIVIDENDS PAID Bı				Full Year	
	Mar. 31	Jun. 30	Sep. 30	Dec. 31		
2018	. 255	. 255	. 275	. 275	1.06	
2019	. 275	. 275	. 305	. 305	1.16	
2020	. 305	. 305	. 335	. 335	1.28	
2021	. 335	. 335	. 365	. 365	1.40	
2022	. 365	. 365	. 3975	. 3975		

BUSINESS: American States Water Co. operates as a holding company. Through its principal subsidiary, Golden State Water Co., it supplies water to 262,770 customers in 10 California counties. Service areas include the metropolitan areas of Los Angeles and Orange Counties. The company also provides electricity to 24,656 customers in Big Bear Lake and San Bernardino Cnty. Provides
American States Water's bottom line continues to be hurt by a delay in a regulatory ruling. For the third-straight quarter, the water utility posted negative year-over-year earnings comparisons. This can be attributed to the California Public Utility Commission (CPUC) not having decided upon a request for higher rates. The company's subsidiary, Golden States Water, filed for the increase in tariffs in 2020. Indeed, the utility reached an agreement on what hikes water users would receive with the state's Public Advocates Office (POA). Typically, reaching a deal with the POA is the hardest part of the negotiations. In any case, without the new rates, we think American State's profits slumped again in the December interim, and its 2022 share net declined 18%, to $\$ 2.10$.
In 2023, we think the company may achieve record profits. When the CPUC finally makes a ruling, Golden States will receive the hike retroactively to January 1, 2021. So, these revenues ought to be recognized this year. This should lead to share earnings climbing to $\$ 2.85$, or 26% above last year's expected poor showing.
Nonutility operations could be a cata-
water \& wastewater services to U.S. military bases through its ASUS subsidiary. Sold Chaparral City Wtr. of AZ. (6/11). Employs 808. BlackRock, Inc. owns 17.7% of out. shares; State St., 13.7\%; off. \& dir., 0.9\% (4/22 Proxy). Chairman: Lloyd Ross. Pres. \& CEO: Robert Sprowls. Inc: CA. Address: 630 East Foothill Blvd., San Dimas, CA 91773. Tel.: 909-394-3600. Internet: www.aswater.com.
lyst for earnings growth. ASUS is an unregulated business segment that provides water services to United States military installations. The army is in the process of privatizing its water and waste systems to outside entities. Requests for proposals for 50 -year contracts are being made public for bidders. ASUS has been successful in winning a fare share of these and we expect that to continue. Because the business isn't under the jurisdiction of regulators, it offers the capability of earning much higher returns on investment. It also carries more risk. Through the first nine months of 2022, ASUS was responsible for 17% of the company's net income. These shares offer very little appeal, at this juncture. The stock is ranked (3: Average) for relative year-ahead performance. Moreover, capital appreciation potential over the next 18 -month period is unattractive. And, over the pull to 20252027, despite good dividend growth prospects, AWR's total return potential is well below the Value Line median. In fact, the equity is trading near the top of our Target Price Range.
get Price Range
James A. Flood
Company's Financial Strength Stock's Price Stability Price Growth Persistence
Price Growh Persistence
Earnings Predictability

(A) Primary earnings. Excludes nonrecurring gains/(losses):; '06, 3¢; '08, (14¢); '10, (23¢¢); 11, 10¢. Next earnings report due mid February. | | (C) In millions, adjusted for split. |
| :--- | :--- |

© 2022 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's own, non-commercial, internal use. No part of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or product

Cash Assets	576	136	104
Accts Receivable	321	271	358
Other	1009	1147	555
Current Assets	1906	1554	1017
Accts Payable	189	235	220
Debt Due	1611	641	899
Other	1081	1265	1011
Current Liab.	2881	2141	2130

ANNUAL RATES	Past	Past	Est'd '19-'21
of change (per sh)	10 Yrs.	5 Yrs.	to '25-'27
Revenues	3.5%	3.5%	4.5%
"Cash Flow"	9.0%	10.0%	3.5%
Earnings	12.0%	13.5%	3.0%
Dividends	9.5%	10.0%	8.5%
Book Value	4.5%	5.0%	8.0%

Cal- endar	QUARTERLY REVENUES (\$ mill.) Mar. 31 Jun. 30 Sep. 30 Dec. 31				Full Year
2019	813	882	1013	902	3610
2020	844	931	1079	923	3777
2021	888	999	1082	951	3920
2022	842	937	1082	939	3800
2023	900	1000	1165	1010	4075
$\begin{array}{\|c} \text { Cal- } \\ \text { endar } \\ \hline \end{array}$	EARNINGS PER SHARE A Mar. 31 Jun. 30 Sep. 30 Dec. 31				Full Year
2019	. 62	. 94	1.33	. 54	3.43
2020	. 68	. 97	1.46	. 80	3.91
2021	. 73	1.14	1.53	3.55	6.95
2022	. 87	1.20	1.63	. 75	4.45
2023	. 88	1.30	1.75	. 82	4.75
Calendar	QUARTERLY DIVIDENDS PAID ${ }^{\text {B }}$				Full Year
2018	. 415	. 455	. 455	. 455	1.78
2019	. 455	. 50	. 50	. 50	1.96
2020	. 50	. 55	. 55	. 55	2.15
2021	. 55	. 6025	5. 6025	. 6025	2.36
2022	. 6025	. 655	. 655	. 655	

BUSINESS: American Water Works Company, Inc. is the largest investor-owned water and wastewater utility in the U.S., providing services to approximately 14 million people in 24 states. Nonregulated business assists municipalities and military bases with the maintenance and upkeep as well. Regulated operations made up 86% of 2021 revenues. Pennsylvania is its largest market account-
American Water Works will likely increase its dividend by $8 \%-9 \%$ at its next board meeting. As expected, the water utility declared a share payout of $\$ 0.655$ in December. (The ex and record dates are in February, with the payment due March 1st.) Leadership has emphasized that its goal is to raise the annual distribution $7 \%-10 \%$ through 2025-2027. This is among the highest projected growth rates in the industry.
Meanwhile, the company posted better-than-expected third-quarter earnings. However, we are maintaining our previous full-year share estimate of \$4.45. Excluding an unusual \$2.70-a-share gain recorded last year, American Water's share net would have increased 5%. Based on our assumption of good to fair treatment by regulators, the company's share earnings should rise 7% in 2023.
Capital expenditures ought to be enormous. Management expects to spend a total of $\$ 14$ billion to $\$ 15$ billion from 2023 to 2027 on upgrading, expanding, and replacing its aging pipelines and wastewater facilities.
ing for 21.5\% of regulated revenues; New Jersey, 20.3\%; Missouri, 13.9%. Has 6,400 employees. Vanguard owns 11.8% of outstanding shares; BlackRock, 8.9\%; State St., 5.4%; officers \& directors, less than 1.0\% (4/22 Proxy). President \& CEO: Susan N. Story. Chairman: George MacKenzie. Address: 1 Water Street, Camden, NJ 08102. Tel.: 856-346-8200. Internet: www.amwater.com.
key to the company's long-term growth. There are thousands of small municipally run water districts in the United States. American Water Works has been gradually buying some of these and integrating them into its existing operations. In the water utility industry, mergers do produce major improvements in margins. They also add to the company's net plant, on which it earns a return.
External financing will be required. To fund its ambitious building and takeover program, American Water will have to issue new debt. The long-term debt-to-total capital is nearing 60%, but the utility remains financially sound due to it solid and predictable cash flow.
We think all of the company's positive attributes are reflected in the recent stock quote. The equity has performed well since our last report. As a result, it has below-average return potential over the next three- to five-year period. Indeed, the shares are trading within our estimated Target Price Range. Moreover, AWK is only expected to track the market averages in the year ahead.

January 6, 2023

$C A$	F	N		E	NYS	CWT		$\begin{aligned} & \text { ECCENT } \\ & \text { RICE } \end{aligned}$	61.7	P/E RATIO	032	$2\left(\begin{array}{l} \text { Trai } \\ \mathrm{Mec} \end{array}\right.$	$\begin{aligned} & \text { Ig: } 41.7 \\ & \text { n: } 27.0 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { RELAT } \\ \text { P/E R } \end{array}$	1.9	$\begin{aligned} & \hline \text { DIV'D } \\ & \text { YLD } \end{aligned}$			$\begin{aligned} & \text { JALUE } \\ & \text { LINE } \end{aligned}$		
TIMELIN	$\text { NESS } 3$	Raised 10	$28 / 22$	High: Low:	19.4 16.7	19.3 16.8	23.4 18.4	26.4 20.3	26.0 19.5	$\begin{aligned} & 36.8 \\ & 22.5 \end{aligned}$	$\begin{aligned} & 46.2 \\ & 32.4 \end{aligned}$	$\begin{aligned} & 49.1 \\ & 35.3 \end{aligned}$	$\begin{aligned} & 57.5 \\ & 44.6 \end{aligned}$	$\begin{aligned} & 57.4 \\ & 39.7 \end{aligned}$	$\begin{aligned} & 72.1 \\ & 51.0 \end{aligned}$	$\begin{aligned} & 72.0 \\ & 48.5 \end{aligned}$			Target Price 2025 2026	Range 2027	
SAFET		Lowered	727/07	LEGEN	NDS															-120	
TECHN	AL	Raised			ed by	st Rate														-100	
				$\cdots \mathrm{F}$	tive	trength														80	
				Otot	$s^{6 / 11}$															64	
18-Mon	th Targe	et Price	Range	Shaded	ea ind	recession								\|t	my	,	101912-				48
Low-Hig	Midp	point (\%	Mid)																		
\$51-\$95	\$73	(20\%)								, ا"1m\|										32 24	
							"110	Tr1min	\|l												20
			$\begin{aligned} & \text { nn } \\ & n^{\prime} \text { I } \end{aligned}$	$T_{1 い}$	'י'י1II	ハ!	\\|11													16	
	Price		turn																	-12	
$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \text { Low } \end{array}$	$\begin{aligned} & 75 \\ & 50 \\ & (+i \end{aligned}$	$\begin{aligned} & +20 \% \\ & -20 \%) \end{aligned}$	$\begin{gathered} 7 \% \\ -3 \% \end{gathered}$													" ${ }^{\prime}$					
Institut	tional D	Decision																	THIS VET VL ARITH*		
	102022	202022	302022	Percent															stock		
to Buy to Sell	152	$\begin{aligned} & 121 \\ & 141 \end{aligned}$	140 102	shares														1 yr. 3 yr.	4.9 -4.6 32.3 40.0		
Hld's(000)	43279	43653	43549															5 yr .	54.249 .4		
2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023		JE LINE PUB. LLC	5-27	
8.10	8.88	9.90	10.82	11.05	12.00	13.34	12.23	12.50	12.29	12.70	13.89	14.53	14.72	15.78	14.72	15.45	16.70	Revenu	sper sh	18.70	
1.36	1.56	1.86	1.93	1.93	2.07	2.32	2.21	2.47	2.22	2.34	3.00	3.11	3.14	3.88	3.91	3.10	3.65	"Cash	low" per sh	4.15	
. 67	. 75	. 95	. 98	. 91	. 86	1.02	1.02	1.19	. 94	1.01	1.40	1.36	1.31	1.97	1.96	1.65	2.15	Earning	per sh A	2.55	
. 58	. 58	. 59	. 59	. 60	. 62	. 63	. 64	. 65	. 67	. 69	. 72	. 75	. 79	. 85	. 92	1.00	1.08	Div'd D	cl'd per sh ${ }^{\text {B }}$ -	1.25	
2.14	1.84	2.41	2.66	2.97	2.83	3.04	2.58	2.76	3.69	4.77	5.40	5.65	5.64	5.93	5.46	5.85	6.00	Cap'I	ending per sh	6.45	
9.07	9.25	9.72	10.13	10.45	10.76	11.28	12.54	13.11	13.41	13.75	14.44	15.19	16.07	18.30	21.92	23.45	24.55	Book V	lue per sh c	27.30	
41.31	41.33	41.45	41.53	41.67	41.82	41.98	47.74	47.81	47.88	47.97	48.01	48.07	48.53	50.33	53.72	54.75	53.00	Comm	Shs Outst'g ${ }^{\text {D }}$	50.00	
29.2	26.1	19.8	19.7	20.3	21.3	17.9	20.1	19.7	24.8	29.6	26.9	30.3	39.3	24.9	30.5	35.4		Avg A	'I P/E Ratio	24.0	
1.58	1.39	1.19	1.31	1.29	1.34	1.14	1.13	1.04	1.25	1.55	1.35	1.64	2.09	1.28	1.67	2.02		Relativ	P/E Ratio	1.30	
2.9\%	3.0\%	3.1\%	3.1\%	3.2\%	3.4\%	3.5\%	3.1\%	2.8\%	2.9\%	2.3\%	1.9\%	1.8\%	1.5\%	1.7\%	1.5\%	1.7\%		Avg An	'I Div'd Yield	2.0\%	
CAPITAL STRUCTURE as of 9/30/22 Total Debt $\$ 1129.7$ mill. Due in 5 Yrs $\$ 357.0$ mill. LT Debt $\$ 1053.9$ mill. LT Interest $\$ 40.0$ mill. (Total interest coverage: 7.8 x) (47\% of Cap'l)						560.0	584.1	597.5	588.4	609.4	666.9	698.2	714.6	794.3	790.9	845	885	Reven	(\$mill) ${ }^{\text {E }}$	935	
						42.6	47.3	56.7	45.0	48.7	67.2	65.6	63.1	96.8	101.1	90.5	114	Net Pro	it (\$mill)	128	
						37.5\%	30.3\%	33.0\%	36.0\%	35.5\%	30.1\%	24.5\%	19.1\%	11.1\%	20.1\%	21.0\%	21.0\%	Income	Tax Rate	21.0\%	
						8.0\%	4.3\%	2.7\%	4.3\%	6.1\%	3.5\%	3.1\%	5.8\%	3.3\%	1.7\%	4.0\%	5.0\%	AFUDC	\% to Net Profit	5.0\%	
Pension Assets-12/21 $\begin{aligned} \text { \$810.5 mill. } \\ \text { Oblig. } \$ 887.5\end{aligned}$						47.8\%	41.6\%	40.1\%	44.4\%	44.6\%	42.7\%	49.3\%	50.2\%	45.9\%	47.3\%	42.5\%	41.0\%	Long-T	m Debt Ratio	37.5\%	
						52.2\%	58.4\%	59.9\%	55.6\%	55.4\%	57.3\%	50.7\%	49.8\%	54.1\%	52.7\%	57.5\%	59.0\%	Comm	Equity Ratio	62.5\%	
Pfd Stock None						908.2	1024.9	1045.9	1154.4	1191.2	1209.3	1440.2	1566.7	1702.4	2233.4	2235	2200	Total	pital (\$mill)	2190	
Common Stock $54,824,000$ shs.						1457.1	1515.8	1590.4	1701.8	1859.3	2048.0	2232.7	2406.4	2650.6	2846.9	3000	3025	Net Pla	(\$mill)	3075	
						6.3\%	6.0\%	6.3\%	5.2\%	5.5\%	7.1\%	5.9\%	5.5\%	7.0\%	5.5\%	4.5\%	6.0\%	Return	n Total Cap'l	6.5\%	
						9.0\%	7.9\%	9.1\%	7.0\%	7.4\%	9.7\%	9.0\%	8.1\%	10.5\%	8.6\%	7.0\%	9.0\%	Return	n Shr. Equity	9.5\%	
						9.0\%	7.9\%	9.1\%	7.0\%	7.4\%	9.7\%	9.0\%	8.1\%	10.5\%	8.6\%	7.0\%	9.0\%	Return	Com Equity	9.5\%	
MARKET CAP: $\$ 3.4$ billion (Mid Cap)						$\begin{aligned} & 3.4 \% \\ & 62 \% \end{aligned}$	3.4\%	4.1\%	2.0\%	2.4\%	4.7\%	4.0\%	3.2\%	6.0\%	4.6\%	3.0\%	4.5\%	Retain	to Com Eq	5.0\%	
CURRENT POSITION(SMILL.)			2020	2021 9/30/22			56\%	55\%	71\%	68\%	51\%	55\%	60\%	43\%	47\%	60\%	50\%	All Div'	s to Net Prof	49\%	

ANNUAL RATES of change (per sh) Revenues "Cash Flow" Earnings Dividends Book Value		Past P 10 Yrs. 5 3.0% 6.5% 9 6.5% 1 3.5% 5 6.0%		$\begin{aligned} & \text { st } \\ & \text { rst'd } \\ & \text { rs. } \\ & \text { to } \end{aligned}$	$\begin{aligned} & 19-21 \\ & \hline 5 \cdot 27 \end{aligned}$		
		0\%	.5\%				
		0\%	0\%				
		0\%	5\%				
		0\%					
		0\%					
Calendar	QUARTERLY REVENUES (\$ mill.) ${ }^{\text {E }}$				$\begin{aligned} & \text { Full } \\ & \text { Year } \\ & \hline \end{aligned}$		
	Mar. 31 Jun. 30 Sep. 30 Dec. 31						
2019	126.1			179.0	232.6	176.9	714.6
2020	125.6			175.5	304.1	189.1	794.3
2021	147.7			213.1	256.7	173.4	790.9
2022	173.0			206.2	266.3	199.5	845
2023	180			220	280	205	885
$\begin{gathered} \begin{array}{c} \text { Cal- } \\ \text { endar } \end{array} \\ \hline \end{gathered}$					Full Year		
	EARNINGS PER SHARE AMar. 31 Jun. 30 Sep. 30 Dec. 31						
2019	d. 16	. 35	. 88	. 24	1.31		
2020	d. 42	. 11	1.94	. 31	1.97		
2021	d. 06	. 75	1.20	. 07	1.96		
2022	. 02	. 36	1.03	. 24	1.65		
2023	. 10	. 55	1.15	. 35	2.15		
Calendar	QUARTERLY DIVIDENDS PAID ${ }^{\text {® }}$				Full Year		
	Mar. 31	Jun. 30	Sep. 30	Dec. 31			
2018	. 1875	. 1875	. 1875	. 1875	75		
2019	. 1975	. 1975	. 1975	. 1975	. 79		
2020	. 2125	. 2125	. 2125	. 2125	85		
2021	. 230	. 230	. 230	. 230	. 92		
2022	. 250	. 250	. 250	. 250			

| (A) Basic EPS. Excl. nonrecurring gain (loss): | $\begin{array}{l}\text { available. } \\ \text { '11, 4c. Next earnings report duu late Feb. } \\ \text { (C) Incl. intangible assets. In '21 : } \$ 36.8 \text { mill., }\end{array}$ |
| :--- | :--- | (B) Dividends historically paid in late Feb.,

quired Rio Grande Corp; West Hawaii Utilities (9/08). Revenue breakdown, '21: residential, 69%; business, 19\%; industrial, 3%; public authorities, 5%; other 4%. Off. and dir. own 1% of common stock (4/22 proxy). Has 1,184 employees. Pres. and CEO: Martin A. Kropelnicki. Inc.: DE. Addr.: 1720 North First St., San Jose, CA 95112-4598. Tel.: 408-367-8200. Internet: www.calwatergroup.com.
and cumulative rate hikes ought to support recovering operating margins. On balance, our model suggests that share earnings are slated to dip to $\$ 1.65$ this year, before rebounding to $\$ 2.15$ in 2023.
The long-term picture holds several bright spots. First, modest annual revenue expansion ought to be underpinned by periodic customer rate hikes, assuming limited hiccups on the approval front from the California Public Utilities Commission. These potential price increases are likely to be prompted by accelerating infrastructure-related spending by California Water in an effort to maintain and upgrade deteriorating water delivery systems, pipelines, and treatment plants. To note, the company is eligible to recoup qualifying costs associated with infrastructure upgrades via approved rate hikes. Finally, an improved economic backdrop augurs well for customer water usage.
But from an investment standpoint, the stock leaves much to be desired at the recent quotation. Neutrally ranked CWT shares offer limited price upside three to five years hence. Nicholas Patrikis
© 2022 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind THE PUBLISHER IS NOT RESPONSIBLE FOR ANY ERRORS OR OMISSIONS HEREIN. This publication is strictly for subscriber's own, non-commercial, internal use. No part

Cash Assets Inventory (Avg Other
Current Asset
Accts Payable Debt Due Other
Current Liab.
4.8
154.8
58.4
162.2

ANNUAL RATES P

of change (per sh)
Revenues
"Cash Flow"
Earnings
Dividends

1263.8	285.1	$\begin{array}{ll} 1 & 363.2 \\ 1 & 267.3 \end{array}$
603.9	675.	.1 848.1
Past	Past E	Est'd '19-'21
10 Yrs .	5 Yrs .	to '25-'27
3.5\%	5.0\%	7.5\%
5.0\%	3.0\%	10.0\%
6.0\%	1.0\%	10.0\%
7.5\%	7.0\%	8.0\%
11.0\%	14.0\%	6.0\%

QUARTERLY REVENUES (\$ mill.) Cal-

BUSINESS: Essential Utilities, Inc. became the new name for
Aqua America on Feb. 3, 2020, to reflect the acquisition of Peoples, a natural gas utility, which occurred in 3/20. In 2021, Aqua Amer. provided water and wastewater services to about 5 million people in PA, OH, TX, IL, NC, NJ, IN, VA NS WS. Employs 3,211. Acquired AquaSource, 7/13; N. Maine Util., 7/15; and others. Water respn.

Essential Utilities probably closed out

 2022 on a positive note. In the third quarter, the water and natural gas utility posted share earnings of $\$ 0.26$, much higher than the depressed year-earlier figure and our $\$ 0.22$ estimate. Despite operating costs rising over 9%, rate increases granted by several state regulators allowed revenue growth to outpace expenses by a comfortable margin. In the December interim, we think the company's share net rose a solid 7%, to \$0.47.The positive profit momentum ought to continue into this year. When the previously granted rate relief is combined with some new higher tariffs that are scheduled to be implemented in 2023, we think that Essential's share earnings can increase 8%. The utility's acquisition policy (more below) will also contribute to the bottom line and help offset the impact of having more shares outstanding.
Essential is one of the main members in this group that is improving its profitability by merging with smaller entities. Just like industry giant, American Water Works, it has been purchasing independent water districts that operate
for 52% of revenues in 2021; residential, 30%; commercial, 8.0%; industrial, wastewater \& other, 14%. Gas 46%; other, 2.0%. Off. \& dir. own less than 1% of the common stock; BlackRock, 10.6\%; Vanguard, 9.7\%; Can. Pen. Plan 8.6\% (3/22 proxy). Pres. \& CEO: Christopher Franklin. Inc.: PA Addr.: 762 W Lancaster Ave., Bryn Mawr, PA 19010. Tel.: 610-525-1400. Int.: www.essential.co.
in the same states as it does. Due to the inherent inefficiencies that face these water districts, they make good acquisition targets, as substantial cost savings can be achieved.
The construction budget is large. In addition to the takeovers, the company is spending heavily to modernize its pipelines, wastewater facilities, and other assets. Annual outlays will likely average about $\$ 1$ billion.
New equity is being issued. The company announced that it has authorized a $\$ 500$ million at-the-market (ATM) program to raise funds. The ATM method provides management with more discretion over when it sells shares. Instead of flooding the market all at once, it can wait until conditions are favorable and sell them in smaller portions.
All of our metrics suggest that investors can find better selections elsewhere. The equity is ranked to underperform in the year ahead. Moreover, the stock's prospects are below the Value Line median for both the next 18 -month and 3 to 5 -year periods.
James A. Flood
January 6, 2023
(A) Diluted egs. Excl. nonrec. gains: '12, 18c. \quad outstanding in the Dec. period. Next earnings \quad available (5\% discount). Excl. gain from disc. operations: '12, 7¢;' '13, 9¢; '14, 114. Quarterly EPS do not add in '19 due to a large change in the number of share June, Sept., \& Dec. - Div'd. reinvestment plan bill./\$4.87 a share.

MDDE ECEX WATER NDQ-MSEX							$\begin{aligned} & \text { RECENT } \\ & \text { PRICE } \end{aligned}$		6.0	$\begin{aligned} & \text { PPE } \\ & \text { RATIO } 34.8\binom{\text { Trailing: }}{\text { Median: } 24.0} \end{aligned}$				$\begin{aligned} & \text { RELATIVE } 2,12 \\ & \text { PIE RATIO } \end{aligned}$		$2 \left\lvert\, \begin{aligned} & \text { DIV'D } \\ & \text { YLD } \end{aligned}\right.$	1.5%		$\begin{aligned} & \text { VALUE } \\ & \text { LINE } \end{aligned}$					
TIMELINESS $\mathbf{3}$ Lowered $1219 / 22$ SAFETY $\mathbf{2}$ New $1021 / 1 / 11$ TECHNICAL 3 Reised $116 / 23$ BETA .70 (1.00 = Market)				High: Low:	$\begin{array}{r} 19.4 \\ 16.5 \\ \hline \end{array}$	$\begin{array}{r} 19.6 \\ 17.5 \\ \hline \end{array}$	22.5 18.6	$\begin{array}{l\|} \hline 23.7 \\ 19.1 \end{array}$	$\begin{aligned} & 28.0 \\ & 21.2 \end{aligned}$	$\begin{aligned} & 44.5 \\ & 25.0 \end{aligned}$	$\begin{aligned} & 46.7 \\ & 32.2 \end{aligned}$	$\begin{aligned} & 60.3 \\ & 34.0 \end{aligned}$	$\begin{aligned} & \hline 67.7 \\ & 51.0 \end{aligned}$	$\begin{aligned} & 76.1 \\ & 48.8 \end{aligned}$	$\begin{array}{r} 121.4 \\ 67.1 \\ \hline \end{array}$	$\begin{array}{r} 121.1 \\ 74.2 \end{array}$			Target Price 2025 2026	Range 2027				
																120								
18-Month Target Price Range Low-High Midpoint (\% to Mid) $\$ 75-\$ 160$ $\$ 118(35 \%)$																								
													係\|+1		隹						60 50			
																				40				
2025-27 PROJECTIONS Price Gain Ann'I Iotal High Return How 75 $(+10 \%)$ 4% Low (-20%) -3%																								30
													\cdots		$\cdots+0 \cdot \cdots \cdot 0 \cdot \ldots$					30				
										$\because \because$										-15				
Institutional Decisions				Percen shares traded															THETURN THISK TTOCK VLARITH. INDEX					
to Buy	82	90	82															1 1 3 yr	$\begin{array}{ll}-8.1 & -4.6 \\ 54.4 & 4.0\end{array}$					
	$\begin{array}{r} 90 \\ 13008 \end{array}$	93 11842																	$\begin{array}{rr}54.4 & 40.0 \\ 118.3 & 49.4\end{array}$					
2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	${ }^{\circ} \mathrm{VAL}$	UE LINE PUB. LLC	25-27				
6.16	6.50	6.79	6.75	6.60	6.50	6.98	7.19	7.26	7.77	8.16	8.00	8.42	7.72	8.10	8.17	9.30	9.90	Reve	es per sh	10.85				
1.33	1.49	1.53	1.40	1.55	1.46	1.56	1.72	1.84	1.97	2.17	2.24	2.89	2.90	3.25	3.28	3.45	3.70	"Cash	low" per sh	4.10				
. 82	. 87	. 89	. 72	. 96	. 84	. 90	1.03	1.13	1.22	1.38	1.38	1.96	2.01	2.18	2.07	2.50	2.70	Earning	sper sh ${ }^{\text {A }}$	3.00				
. 68	. 69	. 70	. 71	. 72	. 73	. 74	. 75	. 76	. 78	. 81	. 86	. 91	. 98	1.04	1.11	1.18	1.28	Div'd D	ecl'd per sh ${ }^{\text {Br }}$	1.50				
2.31	1.66	2.12	1.49	1.90	1.50	1.36	1.26	1.40	1.59	2.91	3.08	4.40	5.11	6.04	4.53	5.00	5.25	Cap'IS	ending per sh	6.00				
9.52	10.05	10.03	10.33	11.13	11.27	11.48	11.82	12.24	12.74	13.40	14.02	15.17	18.57	19.81	20.99	22.55	22.70	Book V	lue per sh	22.80				
13.17	13.25	13.40	13.52	15.57	15.70	15.82	15.96	16.12	16.23	16.30	16.35	16.40	17.43	17.47	17.52	17.75	17.85	Commo	Shs Outst'g ${ }^{\text {c }}$	18.00				
22.7	21.6	19.8	21.0	17.8	21.7	20.8	19.7	18.5	19.1	25.6	28.4	22.2	29.7	30.1	44.3	36.9		Avg An	'I P/E Ratio	28.0				
1.23	1.15	1.19	1.40	1.13	1.36	1.32	1.11	. 97	. 96	1.34	1.43	1.20	1.58	1.55	2.43	2.11		Relative	P/E Ratio	1.30				
3.7\%	3.7\%	4.0\%	4.7\%	4.2\%	4.0\%	4.0\%	3.7\%	3.7\%	3.3\%	2.3\%	2.2\%	2.1\%	1.6\%	1.6\%	1.2\%	1.3\%		Avg An	'l Div'd Yield	1.8\%				
CAPITAL STRUCTURE as of 9/30/22 Total Debt $\$ 308.8$ mill. Due in 5 Yrs $\$ 43.7$ mill. LT Debt $\$ 301.2$ mill. LT Interest $\$ 7.5$ mill. (Total interest coverage: $9.3 x$) (45% of Cap')						110.4	114.8	117.1	126.0	132.9	130.8	138.1	134.6	141.6	143.1	165	177	Revenu	es (\$mill)	195				
						14.4	16.6	18.4	20.0	22.7	22.8	32.5	33.9	38.4	36.5	44.5	48.0	Net Pro	it (\$mill)	54.0				
						33.9\%	34.1\%	35.0\%	34.5\%	34.0\%	32.7\%	2.8\%		2.8\%	2.8\%	21.0\%	21.0\%	Income	Tax Rate	21.0\%				
						3.4\%	1.9\%	1.7\%	1.9\%	2.7\%	3.1\%	1.4\%	3.4\%	3.9\%	3.9\%	2.5\%	2.5\%	AFUDC	\% to Net Profit	2.5\%				
						41.5\%	40.4\%	40.5\%	39.4\%	37.9\%	37.5\%	37.8\%	41.5\%	44.0\%	45.3\%	43.0\%	43.0\%	Long-T	rm Debt Ratio	42.0\%				
Pension Assets-12/21 \$100.8 mill. Oblig. $\$ 113.7$ mill. Pfd Stock $\$ 2.4$ mill. Pfd Div'd: $\$.1$ mill.						57.4\%	58.7\%	58.8\%	59.8\%	61.5\%	61.8\%	61.6\%	58.2\%	55.7\%	54.4\%	56.5\%	56.5\%	Commo	Equity Ratio	57.5\%				
						316.5	321.4	335.8	345.4	355.4	370.7	404.1	556.7	621.5	676.3	705	715	Total C	pital (\$mill)	715				
						435.2	446.5	465.4	481.9	517.8	557.2	618.5	705.7	796.6	865.4	900	915	Net Pla	(\$mill)	945				
Common Stock 17,639,000 shs. as of $10 / 28 / 22$						5.4\%	5.9\%	6.3\%	6.6\%	7.1\%	6.9\%	8.9\%	6.7\%	6.8\%	6.0\%	6.5\%	7.0\%	Return	on Total Cap'I	8.0\%				
						7.8\%	8.7\%	9.2\%	9.6\%	10.3\%	9.8\%	12.9\%	10.4\%	11.0\%	9.9\%	11.0\%	12.0\%	Return	on Shr. Equity	13.0\%				
						7.8\%	8.7\%	9.3\%	9.6\%	10.3\%	9.9\%	13.0\%	10.4\%	11.1\%	9.9\%	11.0\%	12.0\%	Return	on Com Equity	13.0\%				
MARKET CAP: $\mathbf{\$ 1 . 5}$ billion (Small Cap)						1.4\%	2.4\%	3.1\%	3.5\%	4.3\%	3.8\%	7.0\%	5.4\%	5.8\%	4.6\%	6.0\%	6.5\%	Retaine	to Com Eq	6.5\%				
						83\%	73\%	67\%	63\%	58\%	62\%	46\%	48\%	48\%	53\%	47\%	47\%	All Div'	s to Net Prof	50\%				

CURRENT POSITION (SMILL.)			2020	2021	9/30/22
Cash Assets			4.5	3.5	2.9
Other			29.6	30.9	38.6
Current Assets			34.1	34.4	41.5
Accts Payable			30.4	21.1	25.9
Debt Due			9.3	6.7	7.6
Other			17.1	28.8	59.5
Current Liab.			56.8	56.6	93.0
ANNUAL RATES of change (per sh) Revenues "Cash Flow" Earnings Dividends Book Value		Past Past Est'd 10 Yrs. 5 Yrs. to			Past Est'd '19-'21 5 Yrs. to $25-27$
		10 Yrs. 5		. 5%	5.0\%
		2.0\%8.0%		9.5\%	4.5\%
		8.5\% 91		1.0\%	6.0\%
		3.5\%		6.0\%	6.0\%6.0%
		6.0\%	6.0\% 9.0\%		
Calendar	QUARTERLY REVENUES (\$ mill.) Mar. 31 Jun. 30 Sep. 30 Dec. 31				Full
					Year
$\begin{aligned} & 2019 \\ & 2020 \end{aligned}$	30.7	33.4	37.8	32.7	134.6
	31.8	35.3	39.9	34.6	141.6
2021	32.5	36.7	39.9	34.0	143.1
2022	36.2	39.7	47.7	41.4	165
2023	42.0	43.0	50.0	42.0	177
$\begin{gathered} \text { Cal- } \\ \text { endar } \end{gathered}$	EARNINGS PER SHARE A Mar. 31 Jun. 30 Sep. 30 Dec. 31				Full Year
2019	. 39	49	. 66	. 46	2.01
2020	. 44	. 55	. 72	. 47	2.18
2021	. 39	. 62	. 65	. 41	2.07
2022	. 68	. 50	. 80	. 52	2.50
2023	. 53	. 62	. 90	. 65	2.70
Calendar	QUARTERLY DIVIDENDS PAID ${ }^{\text {ma }}$				
	Mar. 31	Jun. 30	Sep. 30	Dec. 31	Year
2018	. 22375	. 22375	. 22375	. 24	91
2019	. 24	. 24	. 24	. 2562	. 98
2020	. 2562	. 2562	. 2562	. 2725	1.04
2021	. 2725	. 2725	. 2725		1.11
2022	. 29	. 29	. 29	. 3125	

BUSINESS: Middlesex Water Company engages in the ownership and operation of regulated water utility systems in New Jersey, Delaware, and Pennsylvania. It also operates water and wastewater systems under contract on behalf of municipal and private clients in NJ and DE. Its Middlesex System provides water services to 61,000 retail customers, primarily in Middlesex County, New Jersey. In
Middlesex Water's September-period financial results received a considerable boost from a recent regulatory rate hike approval. Notably, the New Jersey Board of Public Utilities signed off on a base rate increase earlier this year, specifically relating to its Middlesex operations. In combination with an uptick in customer water consumption, thirdquarter revenues jumped nearly 20% year over year, despite a slight reduction in customer rates across its Delaware water system (effective September 1st). Meanwhile, earnings rose 23% from the previous-year tally, to $\$ 0.80$ per share, reflecting strong revenue expansion that more than offset modestly higher operating expenses.
We are lifting our 2022 and 2023 topand bottom-line estimates accordingly. For this year, we are adding $\$ 10$ million and $\$ 0.05$ to our revenue and earnings calls, to $\$ 165$ million and $\$ 2.50$ per share, respectively. We envision respectable high single-digit growth in 2023, as well. Revenues are likely to expand 7%, to $\$ 177$ million (up from our previous estimate of
$\$ 160$ million), while net income is poised

2021, the Middlesex System accounted for 59% of operating revenues. At 12/31/21, the company had 347 employees. Incorporated: NJ. President, CEO, and Chairman: Dennis W. Doll. Officers \& directors own 2.0% of the com. stock; BlackRock Inst. Trust Co., 7.8\% (4/22 proxy). Add.: 485 C Route 1 South, Suite 400, Iselin, NJ 08830. Telephone: 732-634-1500. Int.: www.middlesexwater.com.
for an 8% annual advance, to $\$ 2.70$ per share (up from \$2.50).
The board of directors recently raised the quarterly dividend payout 8%, to just over \$0.31 per share. That was brought about by the company's healthy capital position and solid financial growth prospects subsequent to the abovementioned rate approval. Furthermore, we expect steady annual increases in the distribution over the 3 - to 5 -year stretch, which ought to peg the payout ratio, on average, to around 50%, over that time frame.
Spending on upgrading aging infrastructure and outdated water systems ought to be a main headline over the pull to mid-decade. Indeed, in the years to come, capital is apt to be allocated to water main repairs, pipeline replacements, treatment facility upgrades, and operating technology enhancements.
Neutrally ranked Middlesex stock is currently trading firmly within our 3to 5 -year Target Price Range. Thus, we advise subscribers to remain on the sidelines until a more-attractive entry point is available.
Nicholas Patrikis

SJW GROUP NYSE-SJW								$\begin{aligned} & \text { RECENT } \\ & \text { PRICE } \end{aligned}$	81.0	$\begin{aligned} & \text { P/E } \\ & \text { RATIO 34.5 } 5\binom{\text { Trailing: } 42.2}{\text { Median: } 23.0} \end{aligned}$				$\begin{aligned} & \text { RELATIVE } 2,10 \\ & \text { P/E RATIO } 10 \end{aligned}$		$\begin{array}{ll} \hline \text { DVV'D } & 1.8 \% \\ \text { YLD } & 8 \% \end{array}$			$\begin{aligned} & \text { VALUE } \\ & \text { LINE } \end{aligned}$					
TIMELINESS $\mathbf{3}$ Lowered $1 / 6 / 23$ SAFETY $\mathbf{3}$ New 4 $122 / 11$ TECHNICAL 3 Ralised $12 / 2122$ BETA .80 (1.00 = Market)				High: Low:	26.8 20.9	26.9 22.6	30.1 24.5	33.7 25.5	$\begin{aligned} & \hline 35.7 \\ & 27.5 \end{aligned}$	$\begin{aligned} & 56.9 \\ & 28.6 \end{aligned}$	69.3 45.4	$\begin{array}{l\|} \hline 68.4 \\ 51.3 \end{array}$	74.5 53.9	$\begin{aligned} & 75.0 \\ & 45.6 \end{aligned}$	$\begin{aligned} & 73.7 \\ & 58.0 \end{aligned}$	$\begin{aligned} & 81.3 \\ & 55.7 \end{aligned}$			Target Price 2025 2026	Range 2027				
				LEGENDS $42.00 \times$ Dividends p sh divided by Interest Rate Relative Price Strength Options: Yes Shaded area indicates recession																-160				
																120 -100								
18-Month Target Price Range Low-High Midpoint (\% to Mid) \$58-\$100 \$79 (0\%)																								80
												11914		\| ${ }^{1}$		1-				60				
												1,1								50				
																				40				
	7 PRO	ECTIO	NS							111										30				
				11		1		\|,1,11												20				
High		$10 \%)$	5\%							$\bullet . .0$										-15				
Institutional Decisions																		\% TO	THETURN $11 / 22$ VLARITH:*					
	102022	202022	302022																STOCK INDEX 13.4 -4.6					
to Buy to Sell	$\begin{aligned} & 93 \\ & 80 \end{aligned}$	$\begin{array}{r} 78 \\ 104 \\ \hline \end{array}$																$1 \mathrm{yr}$. $3 \mathrm{yr}$. 5 ar.	$\begin{array}{ll} 13.4 & -4.6 \\ 11.7 & 40.0 \end{array}$					
Hid's(000)	21360	21790	22026					析										5 yr .	$20.5 \quad 49.4$					
2006	2007	2008	2009	2010	2011		2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	\bigcirc	E LINE PUB. LLC	5-27				
10.35	11.25	12.12	11.68	11.62	12.85	14.01	13.73	15.76	14.97	16.61	18.97	14.00	14.78	19.77	19.01	20.00	20.85	Revenu	sper sh	22.15				
2.38	2.30	2.44	2.21	2.38	2.80	2.97	2.90	4.42	3.86	4.76	5.24	3.29	3.13	5.28	5.13	3.70	4.20	"Cash	ow" per sh	4.90				
1.19	1.04	1.08	. 81	. 84	1.11	1.18	1.12	2.54	1.85	2.57	2.86	1.82	. 82	2.14	2.03	2.05	2.55	Earning	per sh A	3.25				
. 57	. 61	. 65	. 66	. 68	. 69	. 71	. 73	. 75	. 78	. 81	1.04	1.12	1.20	1.28	1.36	1.44	1.52	Div'd D	cl'd per sh Br	1.76				
3.87	6.62	3.79	3.17	5.65	3.75	5.67	4.68	5.02	5.24	6.95	7.26	5.08	6.25	7.44	8.32	7.50	8.00	Cap'I S	ending per sh	8.75				
12.48	12.90	13.99	13.66	13.75	14.20	14.71	15.92	17.75	18.83	20.61	22.57	31.31	31.27	32.12	34.28	36.65	39.15	Book V	lue per sh	40.85				
18.28	18.36	18.18	18.50	18.55	18.59	18.67	20.17	20.29	20.38	20.46	20.52	28.40	28.46	28.56	30.18	30.00	30.00	Commo	Shs Outst'g ${ }^{\text {c }}$	30.00				
23.5	33.4	26.2	28.7	29.1	21.2	20.4	24.3	11.2	16.6	15.7	18.8	32.7	NMF	30.0	32.9	32.3		Avg An	IP/E Ratio	23.0				
1.27	1.77	1.58	1.91	1.85	1.33	1.30	1.37	. 59	. 84	. 82	. 95	1.77	NMF	1.54	1.80	1.85		Relative	P/E Ratio	1.30				
2.0\%	1.7\%	2.3\%	2.8\%	2.8\%	2.9\%	3.0\%	2.7\%	2.6\%	2.5\%	2.0\%	1.9\%	1.9\%	1.9\%	2.0\%	2.0\%	2.2\%		Avg An	Div'd Yield	2.3\%				
CAPITAL STRUCTURE as of 9/30/22 Total Debt $\$ 1458.0$ mill. Due in 5 Yrs $\$ 39.0$ mill. LT Debt $\$ 1453.7$ mill. LT Interest $\$ 50.0$ mill. (LT Interest Coverage: 5.8x) (59\% of Cap’)						261.5	276.9	319.7	305.1	339.7	389.2	397.7	420.5	564.5	573.7	600	625	Revenu	(\$mill)	665				
						22.3	23.5	51.8	37.9	52.8	59.2	38.8	23.4	61.5	60.5	61.5	76.5	Net Pro	(\$mill)	98.0				
						41.1\%	38.7\%	32.5\%	38.1\%	38.8\%	36.7\%	20.6\%	26.4\%	12.0\%	12.2\%	21.5\%	21.0\%	Income	Tax Rate	21.0\%				
														2.0\%	1.5\%	1.5\%	1.5\%	AFUDC	\% to Net Profit	1.5\%				
						55.0\%	51.1\%	51.6\%	49.8\%	50.7\%	48.2\%	32.7\%	59.1\%	58.4\%	59.1\%	57.5\%	54.0\%	Long-T	m Debt Ratio	45.0\%				
						45.0\%	48.9\%	48.4\%	50.2\%	49.3\%	51.8\%	67.3\%	40.9\%	41.6\%	40.9\%	42.5\%	46.0\%	Commo	Equity Ratio	55.0\%				
Pension Assets-12/21 \$310.2 mill. Oblig $\$ 3838$ mill						610.2	656.2	744.5	764.6	855.0	894.3	1320.7	2173.6	2204.7	2527.5	2575	2550	Total C	pital (\$mill)	2225				
						831.6	898.7	963.0	1036.8	1146.4	1239.3	1328.8	2206.5	2334.9	2497.5	2600	2685	Net Pla	(\$mill)	2825				
Pfd Stock None.						5.0\%	5.0\%	8.3\%	6.3\%	7.4\%	7.9\%	3.9\%	1.8\%	4.0\%	3.5\%	3.0\%	3.5\%	Return	Total Cap'I	5.0\%				
						8.1\%	7.3\%	14.4\%	9.9\%	12.5\%	12.8\%	4.4\%	2.6\%	6.7\%	5.8\%	5.5\%	6.5\%	Return	Shr. Equity	8.0\%				
						8.1\%	7.3\%	14.4\%	9.9\%	12.5\%	12.8\%	4.4\%	2.6\%	6.7\%	5.8\%	5.5\%	6.5\%	Return	Com Equity	8.0\%				
MARKET CAP: $\mathbf{\$ 2 . 5}$ billion (Mid-Cap)						3.3\%	2.8\%	10.2\%	5.7\%	8.6\%	8.2\%	1.8\%	NMF	2.7\%	2.0\%	1.5\%	2.5\%	Retain	to Com Eq	3.5\%				
CURRENT POSITION(SMILL.)			2020	2021 9/30/22		59\%	62\%	29\%	42\%	31\%	36\%	60\%	NMF	59\%	66\%	70\%	60\%	All Div'	to Net Prof	54\%				

CURRENT POSITION (\$MILL.)	2020	2021	9/30/22
Cash Assets	9.3	10.9	13.2
Accts Receivable	58.1	53.7	71.1
Other	59.9	69.5	73.6
Current Assets	127.3	134.1	157.9
Accts Payable	34.2	30.4	29.8
Debt Due	76.2	39.1	4.3
Other	240.4	133.8	284.6
Current Liab.	350.8	203.3	318.7

BUSINESS: SJW Group engages in the production, purchase, storage, purification, distribution, and retail sale of water. It provides water service to approximately 231,000 connections with a total population of roughly one million people in the San Jose area and 16,000 connections that reach about 49,000 residents in the region between San Antonio and Austin, Texas. The company merged
SJW Group delivered third-quarter financial results on par with our expectations. Revenues of $\$ 176$ million improved 5\% year over year, while earnings jumped 28%, to $\$ 0.82$ per share. A combination of cumulative rate hikes, favorable memorandum account adjustments, and modest new customer additions helped offset a decline in customer water usage during the period. That said, operating expenses, including water production, energy, labor, and administrative, registered slight annual increases in the September quarter.
The pending California general rate case decision is imminent. At this time, financial results are derived from the 2021 base rate. Upon approval of higher 2022 rates, SJW will realize prorated revenues for the prior nine months of operations. Our presentation, however, does not factor this in, as there is some ambiguity around the final determination.
Our outlook for healthy infrastructure-related investment spending over the long haul remains intact. For starters, the latest general
with Connecticut Water (10/19) which provides service to approx. 138,000 connections with a total population of 450,000 people. Has 751 employees. Officers and directors own about 8.0% of outstanding shares ($3 / 22$ proxy). Chairman \& CEO: Eric Thornburg. Incorporated: California. Address: 110 West Taylor Street, San Jose, CA 95110. Telephone: (408) 279-7800. Internet: www.jjwater.com.
sity for increased water system investment to ensure reliable, clean drinking water. Specifically, a newly proposed three-year capital budget of $\$ 350$ million is likely to be allocated across the company's operating footprint with the purpose of replacing aging pipelines and water mains, upgrading water treatment facilities, and accelerating its technologically advanced water monitoring initiatives. All told, SJW ought to build up a steady backlog of recoverable revenues while executing on plans to invest more than $\$ 1$ billion on infrastructure upgrades by late decade.
Despite holding a rank of 3 (average) for Timeliness, we think the equity has some appeal. SJW shares have advanced more than 30% in value over the past three months, etching a fresh all-time high water mark in the process. We are bullish on the stock's near-term price prospects as we head into the new year. That said, appreciation potential over the 18month and 3 - to 5 -year windows is limited at recent levels. In sum, the stock is best suited for investors looking to ride the recent price momentum.
Nicholas Patrikis
January 6, 2023

[^8]
EXHIBIT 5

Bluegrass Water (KY) Utility Operating Company, Inc. Summary of Risk Premium Models for the Proxy Group of Six Water Companies

	Proxy Group of Six
Proxy Group of Six	
Water Companies	Pampanies ex

Predictive Risk
Premium Model
(PRPM) (1)

	12.64 \%	NA
	11.53	11.31
Average	12.09 \%	11.31

Notes:
(1) From page 2 of this Exhibit.
(2) From page 3 of this Exhibit.
Bluegrass Water (KY) Utility Operating Company, Inc.
Derived by the Predictive Risk Premium Model (1)

$$
\begin{aligned}
& \text { Average } \\
& \overline{\% \text { \%9ZI }}
\end{aligned}
$$

NMF=Not Meaningful Figure

> The Predictive Risk Premium Model uses historical data to generate a predicted variance and a GARCH coefficient. The historical data used are the equity risk premiums for the first available trading month as reported by Bloomberg Professional Services.

> Recommended variance based on the long-term average predicted variance. (1+(Column [3] * Column [4]) ${ }^{\wedge 12}$) - 1

> From note 2 on page 2 of Exhibit DWD-6.
> Column [5] + Column [6].

> Notes:
> 꺼코

Bluegrass Water (KY) Utility Operating Company, Inc.
Indicated Common Equity Cost Rate
Through Use of a Risk Premium Model
Using an Adjusted Total Market Approach

Line No.

1. $\quad \begin{aligned} & \text { Prospective Yield on Aaa Rated } \\ & \text { Corporate Bonds (1) }\end{aligned}$

	Proxy Group of Six Water
Proxy Group of Six	Companies ex
Water Companies	PRPM

2. Adjustment to Reflect Yield Spread Between Aaa Rated Corporate Bonds and A2 Rated Public Utility Bonds (2)

0.83	0.83
$\%$	
0.88	5.88%
0.10	0.10
5.98%	5.98%
5.55	5.33

7. Risk Premium Derived Common
Equity Cost Rate

Notes: (1) Consensus forecast of Moody's Aaa Rated Corporate bonds from Blue Chip Financial Forecasts (see pages 9 and 10 of this Exhibit).
(2) The average yield spread of A2 rated public utility bonds over Aaa rated corporate bonds of 0.83% from page 4 of this Exhibit.
(3) Adjustment to reflect the A3 Moody's LT issuer rating of the Utility Proxy Group as shown on page 5 of this Exhibit. The 0.10% upward adjustment is derived by taking $1 / 3$ of the spread between A2 and Baa2 Public Utility Bonds ($1 / 3 * 0.30 \%=0.10 \%$) as derived from page 4 of this Exhibit.
(4) From page 7 of this Exhibit.

Bluegrass Water (KY) Utility Operating Company, Inc.
Interest Rates and Bond Spreads for Moody's Corporate and Public Utility Bonds

Selected Bond Yields

	[1]	[2]	[3]
	Aaa Rated Corporate Bond	A2 Rated Public Utility Bond	Baa2 Rated Public Utility Bond
Dec-2022	4.41 \%	5.27 \%	5.56 \%
Nov-2022	4.90	5.75	6.05
Oct-2022	5.10	5.88	6.18
Average	4.80 \%	5.63 \%	5.93 \%

Selected Bond Spreads

A2 Rated Public Utility Bonds Over Aaa Rated Corporate Bonds:

$$
0.83 \%(1)
$$

Baa2 Rated Public Utility Bonds Over A2 Rated Public Utility Bonds:

$$
0.30 \%(2)
$$

Notes:
(1) Column [2] - Column [1].
(2) Column [3] - Column [2].

Source of Information:
Bloomberg Professional Services

Bluegrass Water (KY) Utility Operating Company, Inc.
Comparison of Long-Term Issuer Ratings for Proxy Group of Six Water Companies

	Moody's		Standard \& Poor's	
	Long-Term Issuer Rating		Long-Term Issuer Rating	
	January 2023		January 2023	
Proxy Group of Six Water Companies	Long- Term Issuer Rating	Numerical Weighting (1)	LongTerm Issuer Rating	Numerical Weighting (1)
American States Water Company (2)	A2	6.0	A+	5.0
American Water Works Company, Inc. (3)	A3	7.0	A	6.0
California Water Service Group	NR	--	A+	5.0
Essential Utilities Inc. (4)	Baa1	8.0	A	6.0
Middlesex Water CompanySJW Group (5)	NR	--	A	6.0
	NR	--	A-	7.0
Average	A3	7.0	A	5.8
Notes:				
(1) From page 6 of this Exhibit.				
(2) Ratings that of Golden State Water Company.				
(3) Ratings that of New Jersey American Water Co., and Pennsylvania American Water Co.				
(4) Ratings that of PNG Companies and Aqua Pennsylvania, Inc. (S\&P).				
(5) Ratings are that of San Jose Water Company, Connecticut Water Inc. and				
Source Information:	oody's	s Service s Global Utilitie	Service	

Numerical Assignment for
Moody's and Standard \& Poor's Bond Ratings

Moody's Bond Rating	Numerical Bond Weighting	 Poor's Bond Rating
Aaa	1	AAA
Aa1	2	AA+
Aa2	3	AA
Aa3	4	AA-
A1	5	A+
A2	6	A
A3	7	A-
Baa1	8	BBB+
Baa2	9	BBB
Baa3	10	BBB-
Ba1	11	BB+
Ba2	12	BB
Ba3	13	BB-
B1	14	B+
B2	15	B
B3	16	B-

Bluegrass Water (KY) Utility Operating Company, Inc.
Judgment of Equity Risk Premium for the Proxy Group of Six Water Companies

$\begin{gathered} \text { Line } \\ \text { No. } \\ \hline \end{gathered}$		Proxy Group of Six Water Companies	Proxy Group of Six Water Companies ex PRPM
1.	Calculated equity risk premium based on the total market using the beta approach (1)	6.52 \%	6.32 \%
2.	Mean equity risk premium based on a study using the holding period returns of public utilities with A2 rated bonds (2)	4.58	4.34
3.	Average equity risk premium	5.55 \%	5.33 \%

Notes: (1) From page 8 of this Exhibit.
(2) From page 11 of this Exhibit.

Bluegrass Water (KY) Utility Operating Company, Inc. Derivation of Equity Risk Premium Based on the Total Market Approach
 Using the Beta for the
 Proxy Group of Six Water Companies

Line No.	Equity Risk Premium Measure	Proxy Group of Six Water Companies	Proxy Group of Six Water Companies ex PRPM
1.	Kroll Equity Risk Premium (1)	6.13 \%	6.13 \%
2.	Regression on Kroll Risk Premium Data (2)	7.26	7.26
3.	Kroll Equity Risk Premium based on PRPM (3)	9.76	NA
4.	Equity Risk Premium Based on Value Line Summary and Index (4)	11.01	11.01
5.	Equity Risk Premium Based on Value Line S\&P 500 Companies (5)	10.47	10.47
6.	Equity Risk Premium Based on Bloomberg S\&P 500 Companies (6)	6.18	6.18
7.	Conclusion of Equity Risk Premium	8.47 \%	8.21 \%
8.	Adjusted Beta (7)	0.77	0.77
9.	Forecasted Equity Risk Premium	6.52 \%	6.32 \%

Notes:
(1) Based on the arithmetic mean historical monthly returns on large company common stocks from Kroll 2022 SBBI® Yearbook minus the arithmetic mean monthly yield of Moody's average Aaa and Aa2 corporate bonds from 1928-2021.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of large company common stocks relative to Moody's average Aaa and Aa2 rated corporate bond yields from 1928-2021 referenced in Note 1 above.
(3) The Predictive Risk Premium Model (PRPM) is discussed in the accompanying direct testimony. The Kroll equity risk premium based on the PRPM is derived by applying the PRPM to the monthly risk premiums between Kroll large company common stock monthly returns and average Aaa and Aa2 corporate monthly bond yields, from January 1928 through December 2022.
(4) The equity risk premium based on the Value Line Summary and Index is derived by subtracting the average consensus forecast of Aaa corporate bonds of 5.05\% (from page 3 of this Exhibit) from the projected 3-5 year total annual market return of 16.06% (described fully in note 1 on page 2 of Exhibit DWD-6).
(5) Using data from Value Line for the S\&P 500, an expected total return of 15.52% was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of 5.05% results in an expected equity
(6) Using data from the Bloomberg Professional Services for the S\&P 500, an expected total return of 11.23% was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of 5.05% results in an expected equity risk premium of 6.18%.
(7) Average of mean and median beta from Exhibit DWD-6.

Sources of Information:
Kroll 2022 SBBI® Yearbook
Industrial Manual and Mergent Bond Record Monthly Update.
Value Line Summary and Index
Blue Chip Financial Forecasts, December 2, 2022 and January 1, 2023
Bloomberg Professional Services

Consensus Forecasts of U.S. Interest Rates and Key Assumptions

Interest Rates									Consensus Forecasts-Quarterly Avg.					
									1Q	2 Q	3Q	4Q	1 Q	2Q
	$\underline{\text { Dec } 23}$	Dec 16	$\underline{\text { Dec } 9}$	$\underline{\text { Dec } 2}$	Nov	Oct	Sep	4Q 2022*	$\underline{2023}$	2023	$\underline{2023}$	2023	$\underline{2024}$	$\underline{2024}$
Federal Funds Rate	4.33	3.83	3.83	3.83	3.78	3.08	2.56	3.59	4.7	5.0	4.9	4.7	4.4	4.0
Prime Rate	7.50	7.00	7.00	7.00	6.95	6.25	5.73	6.76	7.8	8.1	8.0	7.8	7.5	7.2
SOFR	4.30	4.01	3.80	3.81	3.73	3.04	2.50	3.55	4.6	4.9	4.8	4.6	4.4	4.1
Commercial Paper, 1-mo.	4.28	4.23	4.15	4.00	3.88	3.28	2.80	3.71	4.8	5.1	4.9	4.6	4.4	4.0
Treasury bill, 3-mo.	4.35	4.34	4.32	4.37	4.32	3.87	3.22	4.17	4.8	4.9	4.8	4.6	4.3	3.9
Treasury bill, 6-mo.	4.68	4.71	4.72	4.69	4.61	4.31	3.71	4.53	4.9	5.0	4.8	4.5	4.3	4.0
Treasury bill, 1 yr .	4.64	4.66	4.72	4.73	4.73	4.43	3.89	4.61	4.9	4.9	4.7	4.4	4.2	3.9
Treasury note, 2 yr .	4.25	4.25	4.33	4.37	4.50	4.38	3.86	4.39	4.5	4.4	4.2	3.9	3.8	3.5
Treasury note, 5 yr.	3.78	3.67	3.72	3.79	4.06	4.18	3.70	4.00	4.0	4.0	3.9	3.7	3.6	3.4
Treasury note, 10 yr .	3.67	3.51	3.52	3.63	3.89	3.98	3.52	3.82	3.8	3.8	3.7	3.6	3.6	3.5
Treasury note, 30 yr .	3.73	3.53	3.51	3.71	4.00	4.04	3.56	3.89	4.0	4.0	3.9	3.9	3.8	3.8
Corporate Aaa bond	4.88	4.66	4.68	4.87	5.23	5.41	4.87	5.15	5.1	5.2	5.2	5.1	4.9	4.8
Corporate Baa bond	5.56	5.34	5.38	5.57	5.95	6.22	5.64	5.90	6.1	6.3	6.2	6.1	5.9	5.8
State \& Local bonds	4.24	4.18	4.19	4.26	4.50	4.62	4.31	4.46	4.3	4.4	4.3	4.3	4.3	4.2
Home mortgage rate	6.27	6.31	6.33	6.49	6.81	6.90	6.11	6.69	6.5	6.5	6.3	6.2	6.0	5.8
				--Hist						nsens	S For	casts-	Quarte	
	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2 Q	3Q	4Q	1 Q	2 Q
Key Assumptions	$\underline{2021}$	$\underline{2021}$	$\underline{2021}$	$\underline{2021}$	$\underline{2022}$	$\underline{2022}$	$\underline{2022}$	2022**	$\underline{2023}$	2023	2023	2023	2024	$\underline{2024}$
Fed's AFE \$ Index	103.4	102.9	105.0	107.0	108.4	113.7	119.0	120.6	118.7	118.1	117.6	117.1	116.8	116.9
Real GDP	6.3	7.0	2.7	7.0	-1.6	-0.6	3.2	1.0	-0.2	-0.7	0.3	0.9	1.3	1.7
GDP Price Index	5.2	6.3	6.2	6.8	8.3	9.0	4.4	4.3	3.6	3.0	2.7	2.5	2.3	2.2
Consumer Price Index	4.1	8.2	6.7	7.9	9.2	10.5	5.7	4.5	3.4	3.1	2.9	2.6	2.4	2.3
PCE Price Index	4.5	6.4	5.6	6.2	7.5	7.3	4.3	4.2	3.2	2.8	2.6	2.5	2.4	2.2

Forecasts for interest rates and the Federal Reserve's Advanced Foreign Economies Index represent averages for the quarter. Forecasts for Real GDP, GDP Price Index, CPI and PCE Price Index are seasonally-adjusted annual rates of change (saar). Individual panel members' forecasts are on pages 4 through 9 . Historical data: Treasury rates from the Federal Reserve Board's H.15; AAA-AA and A-BBB corporate bond yields from Bank of America-Merrill Lynch and are 15+ years, yield to maturity; State and local bond yields from Bank of America-Merrill Lynch, A-rated, yield to maturity; Mortgage rates from Freddie Mac, 30-year, fixed; SOFR from the New York Fed. *Interest rate data for 4Q 2022 based on historical data through the week ended December 23. **Data for 4Q 2022 for the Fed's AFE \$ Index based on data through the week ended December 23. Figures for 4Q 2022 Real GDP, GDP Chained Price Index, Consumer Price Index, and PCE Price Index are consensus forecasts from the December 2022 survey.

Long-Range Survey:

The table below contains the results of our twice-annual long-range CONSENSUS survey. There are also Top 10 and Bottom 10 averages for each variable. Shown are consensus estimates for the years 2024 through 2028 and averages for the five-year periods 2024-2028 and 2029-2033. Apply these projections cautiously. Few if any economic, demographic and political forces can be evaluated accurately over such long time spans.

		------------------------ Average For The Year --------------------------					Five-Year Averages	
		2024	2025	2026	2027	2028	2024-2028	2029-2033
1. Federal Funds Rate	consensus	3.7	2.9	2.8	2.8	2.7	3.0	2.8
	Top 10 Average	4.5	3.7	3.6	3.5	3.4	3.7	3.4
	Bottom 10 Average	2.7	2.2	2.2	2.2	2.2	2.3	2.3
2. Prime Rate	consensus	6.8	6.1	5.9	5.9	5.9	6.1	5.9
	Top 10 Average	7.6	6.8	6.7	6.6	6.5	6.8	6.5
	Bottom 10 Average	5.9	5.3	5.3	5.3	5.3	5.4	5.3
3. SOFR	consensus	3.7	2.9	2.8	2.8	2.7	3.0	2.8
	Top 10 Average	4.4	3.6	3.4	3.3	3.2	3.6	3.3
	Bottom 10 Average	3.0	2.3	2.2	2.2	2.2	2.4	2.2
4. Commercial Paper, 1-Mo	consensus	3.7	3.1	3.0	2.9	2.9	3.1	2.9
	Top 10 Average	4.4	3.6	3.5	3.4	3.3	3.6	3.3
	Bottom 10 Average	3.2	2.6	2.5	2.4	2.4	2.6	2.5
5. Treasury Bill Yield, 3-Mo	CONSENSUS	3.7	3.0	2.9	2.8	2.8	3.0	2.8
	Top 10 Average	4.4	3.7	3.6	3.5	3.4	3.7	3.4
	Bottom 10 Average	2.9	2.2	2.3	2.2	2.2	2.4	2.3
6. Treasury Bill Yield, 6-Mo	consensus	3.7	3.0	3.0	3.0	2.9	3.1	3.0
	Top 10 Average	4.4	3.7	3.7	3.6	3.5	3.8	3.5
	Bottom 10 Average	3.1	2.4	2.4	2.4	2.4	2.5	2.4
7. Treasury Bill Yield, 1-Yr	CONSENSUS	3.8	3.1	3.1	3.1	3.0	3.2	3.1
	Top 10 Average	4.4	3.8	3.7	3.6	3.5	3.8	3.6
	Bottom 10 Average	3.1	2.5	2.5	2.5	2.5	2.6	2.6
8. Treasury Note Yield, 2-Yr	consensus	3.6	3.2	3.2	3.1	3.1	3.2	3.1
	Top 10 Average	4.4	3.9	3.8	3.8	3.7	3.9	3.8
	Bottom 10 Average	2.7	2.5	2.6	2.6	2.6	2.6	2.6
9. Treasury Note Yield, $5-\mathrm{Yr}$	CONSENSUS	3.6	3.3	3.4	3.4	3.3	3.4	3.4
	Top 10 Average	4.4	4.0	4.0	4.0	3.9	4.1	3.9
	Bottom 10 Average	2.9	2.7	2.7	2.8	2.8	2.8	2.9
10. Treasury Note Yield, $10-\mathrm{Yr}$	CONSENSUS	3.7	3.5	3.6	3.6	3.6	3.6	3.7
	Top 10 Average	4.4	4.2	4.4	4.4	4.3	4.3	4.3
	Bottom 10 Average	3.0	2.9	2.8	2.9	3.0	2.9	3.0
11. Treasury Bond Yield, $30-\mathrm{Yr}$	CONSENSUS	4.0	3.9	3.9	4.0	3.9	3.9	4.0
	Top 10 Average	4.6	4.5	4.7	4.6	4.6	4.6	4.7
	Bottom 10 Average	3.4	3.3	3.3	3.3	3.3	3.3	3.3
12. Corporate Aaa Bond Yield	CONSENSUS	5.1	4.9	5.0	5.0	5.0	5.0	5.1
	Top 10 Average	5.7	5.5	5.6	5.6	5.6	5.6	5.7
	Bottom 10 Average	4.6	4.4	4.4	4.4	4.5	4.4	4.5
13. Corporate Baa Bond Yield	consensus	6.2	5.9	5.9	6.0	5.9	6.0	6.0
	Top 10 Average	6.6	6.4	6.5	6.5	6.5	6.5	6.6
	Bottom 10 Average	5.7	5.3	5.3	5.4	5.4	5.4	5.5
14. State \& Local Bonds Yield	CONSENSUS	4.4	4.2	4.3	4.3	4.3	4.3	4.4
	Top 10 Average	4.8	4.7	4.8	4.7	4.7	4.7	4.8
	Bottom 10 Average	3.9	3.7	3.8	3.9	3.9	3.9	3.9
15. Home Mortgage Rate	CONSENSUS	5.9	5.5	5.5	5.5	5.5	5.6	5.5
		6.6	6.2	6.2	6.2	6.2	6.3	6.2
	Bottom 10 Average	5.3	4.8	4.8	4.8	4.8	4.9	4.9
A. Fed's AFE Nominal \$ Index	CONSENSUS	117.6	116.0	114.5	113.5	112.2	114.8	110.7
	Top 10 Average	120.7	119.3	118.5	118.0	117.9	118.9	116.7
	Bottom 10 Average	115.1	112.9	110.7	109.2	107.2	111.0	105.4
		--------	---- Ye	-Year,	ge ----	-------	Five-Yea	verages
		2024	2025	2026	2027	2028	2024-2028	2029-2033
B. Real GDP	CONSENSUS	1.4	2.2	2.1	2.0	2.0	1.9	1.9
	Top 10 Average	2.2	2.6	2.6	2.4	2.4	2.5	2.3
	Bottom 10 Average	0.5	1.8	1.7	1.7	1.7	1.5	1.6
C. GDP Chained Price Index	consensus	2.3	2.1	2.1	2.1	2.1	2.1	2.1
	Top 10 Average	2.7	2.4	2.3	2.3	2.3	2.4	2.2
	Bottom 10 Average	2.0	1.9	1.9	1.9	1.9	1.9	1.9
D. Consumer Price Index	consensus	2.4	2.2	2.2	2.2	2.2	2.2	2.1
	Top 10 Average	2.8	2.5	2.4	2.3	2.3	2.5	2.3
	Bottom 10 Average	2.0	2.0	2.0	2.0	2.0	2.0	2.0
E. PCE Price Index	CONSENSUS	2.3	2.1	2.1	2.1	2.1	2.1	2.1
	Top 10 Average	2.6	2.4	2.4	2.3	2.2	2.4	2.2
	Bottom 10 Average	1.9	1.9	1.9	1.9	2.0	1.9	1.9

Bluegrass Water (KY) Utility Operating Company, Inc.
Derivation of Mean Equity Risk Premium Based Studies
Using Holding Period Returns and
Projected Market Appreciation of the S\&P Utility Index

Line No.		Implied Equity Risk Premium	Proxy Group of Six Water Companies ex PRPM
1.	Historical Equity Risk Premium (1)	4.28 \%	4.28 \%
2.	Regression of Historical Equity Risk Premium (2)	4.80	4.80
3.	Forecasted Equity Risk Premium Based on PRPM (3)	5.56	NA
4.	Forecasted Equity Risk Premium based on Projected Total Return on the S\&P Utilities Index (Value Line Data) (4)	3.57	3.57
5.	Forecasted Equity Risk Premium based on Projected Total Return on the S\&P Utilities Index (Bloomberg Data) (5)	4.69	4.69
6.	Average Equity Risk Premium (6)	4.58 \%	4.34 \%

Notes: (1) Based on S\&P Public Utility Index monthly total returns and Moody's Public Utility Bond average monthly yields from 1928-2021. Holding period returns are calculated based upon income received (dividends and interest) plus the relative change in the market value of a security over a one-year holding period.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of the S\&P Utility Index relative to Moody's A2 rated public utility bond yields from 1928-2021 referenced in note 1 above.
(3) The Predictive Risk Premium Model (PRPM) is applied to the risk premium of the monthly total returns of the S\&P Utility Index and the monthly yields on Moody's A2 rated public utility bonds from January 1928 - December 2022.
(4) Using data from Value Line for the S\&P Utilities Index, an expected return of 9.45% was derived based on expected dividend yields and long-term growth estimates as a proxy for market appreciation. Subtracting the expected A2 rated public utility bond yield of 5.88%, calculated on line 3 of page 3 of this Exhibit results in an equity risk premium of 3.57%. $(9.45 \%-5.88 \%=3.57 \%)$
(5) Using data from Bloomberg Professional Services for the S\&P Utilities Index, an expected return of 10.57% was derived based on expected dividend yields and long-term growth estimates as a proxy for market appreciation. Subtracting the expected A2 rated public utility bond yield of 5.88\%, calculated on line 3 of page 3 of this Exhibit results in an equity risk premium of 4.69\%. (10.57% $5.88 \%=4.69 \%)$
(6) Average of lines 1 through 5.

EXHIBIT 6

Σ

			80 $\stackrel{9}{2}$ $\stackrel{i}{i}$	

$\frac{\text { Bluegrass Water (KY) Utility Operating Company, Inc. }}{\text { Indicated Common Equity Cost Rate Through Use }}$
of the Traditional Capital Asset Pricing Model (CAPM) and Empirical Capital Asset Pricing Model (ECAPM)
[6]

 ,
CAPM/ECAPM Results Excluding the PRPM MRP

Proxy Group of Six Water Companies
American States Water Company
American Water Works Company, Inc.
California Water Service Group
Essential Utilities Inc.
Middlesex Water Company
SJW Group
Mean
Median

Bluegrass Water (KY) Utility Operating Company, Inc.
Notes to Accompany the Application of the CAPM and ECAPM

Notes:

(1) The market risk premium (MRP) is derived by using six different measures from three sources: Kroll, Value Line, and Bloomberg as illustrated below:

Measure 1: Kroll Arithmetic Mean MRP (1926-2021)
Arithmetic Mean Monthly Returns for Large Stocks 1926-2021: 12.37 \%
Arithmetic Mean Income Returns on Long-Term Government Bonds:
MRP based on Kroll Historical Data:

5.02

Measure 2: Application of a Regression Analysis to Kroll Historical Data (1926-2021)
8.71 \%

Measure 3: Application of the PRPM to Kroll Historical Data:
(January 1926 - December 2022)
10.86 \%

Measure 4: Value Line Projected MRP (Thirteen weeks ending January 13, 2023)
Total projected return on the market 3-5 years hence*: Projected Risk-Free Rate (see note 2):
MRP based on Value Line Summary \& Index:
16.06
3.91 ${ }^{12.15} \%$
*Forcasted 3-5 year capital appreciation plus expected dividend yield
Measure 5: Value Line Projected Return on the Market based on the S\&P 500
Total return on the Market based on the S\&P 500:
15.52 \%

Projected Risk-Free Rate (see note 2):
MRP based on Value Line data
$\frac{11.61}{}^{3.91} \%$
Measure 6: Bloomberg Projected MRP
Total return on the Market based on the S\&P 500: Projected Risk-Free Rate (see note 2):

	11.23
	3.91
MRP based on Bloomberg data	7.32
Average of Value Line, Kroll, and Bloomberg MRP:	9.67
Average MRP Excluding the PRPM MRP:	9.43

(2) For reasons explained in the Direct Testimony, the appropriate risk-free rate for cost of capital purposes is the average forecast of 30 year Treasury Bonds per the consensus of nearly 50 economists reported in Blue Chip Financial Forecasts. (See pages 9 and 10 of Exhibit DWD-5.) The projection of the risk-free rate is illustrated below:

First Quarter 2023	4.00%
Second Quarter 2023	4.00
Third Quarter 2023	3.90
Fourth Quarter 2023	3.90
First Quarter 2024	3.80
Second Quarter 2024	3.80
2024-2028	3.90
2029-2033	$\underline{\underline{4.00}} \%$

(3) Average of Column 6 and Column 7.

Sources of Information:
Value Line Summary and Index
Blue Chip Financial Forecasts, December 2, 2022 and January 1, 2023
Kroll 2022 SBBI® Yearbook
Bloomberg Professional Services

EXHIBIT 7

Bluegrass Water (KY) Utility Operating Company, Inc. Basis of Selection of the Group of Non-Price Regulated Companies Comparable in Total Risk to the Utility Proxy Group

The criteria for selection of the proxy group of twenty non-price regulated companies was that the non-price regulated companies be domestic and reported in Value Line Investment Survey (Standard Edition).

The Non-Price Regulated Proxy Group were then selected based on the unadjusted beta range of $0.48-0.78$ and residual standard error of the regression range of 2.7426-3.2710 of the Utility Proxy Group.

These ranges are based upon plus or minus two standard deviations of the unadjusted beta and standard error of the regression. Plus or minus two standard deviations captures 95.50% of the distribution of unadjusted betas and residual standard errors of the regression.

The standard deviation of the Utility Proxy Group's residual standard error of the regression is 0.1321 . The standard deviation of the standard error of the regression is calculated as follows:

Standard Deviation of the Std. Err. of the Regr. $=$ Standard Error of the Regression

$$
\sqrt{2 N}
$$

where: $N=\quad$ number of observations. Since Value Line betas are derived from weekly price change observations over a period of five years, $\mathrm{N}=259$

$$
\text { Thus, } 0.1321=\frac{3.0068}{\sqrt{518}}=\frac{3.0068}{22.7596}
$$

Source of Information: Value Line, Inc., December 2022
Value Line Investment Survey (Standard Edition)

Bluegrass Water (KY) Utility Operating Company, Inc.
Basis of Selection of Comparable Risk
Domestic Non-Price Regulated Companies

	[1]	[2]	[3]	[4]
Proxy Group of Six Water Companies	Value Line Adjusted Beta	Unadjusted Beta	Residual Standard Error of the Regression	Standard Deviation of Beta
American States Water Company	0.65	0.42	2.3839	0.0593
American Water Works Company, Inc.	0.85	0.75	3.1906	0.0794
California Water Service Group	0.70	0.47	3.0022	0.0747
Essential Utilities Inc.	0.95	0.91	2.7036	0.0673
Middlesex Water Company	0.70	0.52	3.3913	0.0844
SJW Group	0.80	0.68	3.3691	0.0839
Average	0.78	0.63	3.0068	0.0748
Beta Range (+/-2 std. Devs. of Beta)	0.48	0.78		
2 std. Devs. of Beta	0.15			
Residual Std. Err. Range (+/-2 std.				
Devs. of the Residual Std. Err.)	2.7426	3.2710		
Std. dev. of the Res. Std. Err.	0.1321			
2 std. devs. of the Res. Std. Err.	0.2642			

Bluegrass Water (KY) Utility Operating Company, Inc.
 Proxy Group of Non-Price Regulated Companies
 Comparable in Total Risk to the
 Proxy Group of Six Water Companies

	[1]	[2]	[3]	[4]
Proxy Group of Twenty Non-Price Regulated Companies	Value Line Adjusted Beta	Unadjusted Beta	Residual Standard Error of the Regression	Standard Deviation of Beta
Adobe Inc.	0.75	0.55	3.2558	0.0810
Amgen	0.75	0.56	2.7921	0.0695
Becton, Dickinson	0.75	0.59	2.9628	0.0738
Bristol-Myers Squibb	0.85	0.76	3.0330	0.0755
Broadridge Fin'l	0.85	0.70	2.7610	0.0687
Check Point Software	0.75	0.57	2.8358	0.0706
C.H. Robinson	0.75	0.56	3.0116	0.0750
CSG Systems Int'l	0.75	0.58	3.1079	0.0774
Quest Diagnostics	0.80	0.69	3.0218	0.0752
Heartland Express	0.75	0.55	2.9497	0.0734
Henry (Jack) \& Assoc	0.85	0.70	2.8821	0.0717
Kimberly-Clark	0.70	0.51	2.8091	0.0699
Lancaster Colony	0.70	0.50	2.9638	0.0738
McCormick \& Co.	0.80	0.66	2.8331	0.0705
Monster Beverage	0.85	0.73	3.0556	0.0761
Northrop Grumman	0.85	0.74	2.9186	0.0727
Progressive Corp.	0.75	0.60	2.8617	0.0712
RLI Corp.	0.80	0.66	2.8575	0.0711
Rollins, Inc.	0.85	0.72	2.9831	0.0743
Tyler Technologies	0.75	0.56	3.2280	0.0804
Average	0.78	0.62	2.9562	0.0736
Proxy Group of Six Water Companies	0.78	0.63	3.0068	0.0748

EXHIBIT 8

Bluegrass Water (KY) Utility Operating Company, Inc.
Summary of Cost of Equity Models Applied to Proxy Group of Twenty Non-Price Regulated Companies
Comparable in Total Risk to the
Proxy Group of Six Water Companies

Principal Methods		Proxy Group of Twenty Non-Price Regulated Companies	Proxy Group of Twenty Non-Price Regulated $\underline{\text { Companies ex PRPM }}$
Discounted Cash Flow Model (DCF) (1)		9.54 \%	9.54 \%
Risk Premium Model (RPM) (2)		12.40	12.20
Capital Asset Pricing Model (CAPM) (3)		11.61	11.42
	Mean	11.18 \%	11.05 \%
	Median	11.61 \%	11.42 \%
	Median	11.40 \%	11.24 \%

Notes:

(1) From page 2 of this Exhibit.
(2) From page 3 of this Exhibit.
(3) From page 6 of this Exhibit.

	[1]	[2]	[3]	[4]	[6]	[7]	[8]
Proxy Group of Twenty Non-Price Regulated Companies	Average Dividend Yield	Value Line Projected Five Year Growth in EPS	Zack's Five Year Projected Growth Rate in EPS	Yahoo! Finance Projected Five Year Growth in EPS	Average Projected Five Year Growth Rate in EPS	Adjusted Dividend Yield	Indicated Common Equity Cost Rate (1)
Adobe Inc.	\%	13.50 \%	13.20 \%	13.56 \%	13.42 \%	\%	NA \%
Amgen	3.11	5.50	7.70	6.25	6.48	3.21	9.69
Becton, Dickinson	1.51	4.50	9.50	5.50	6.50	1.56	8.06
Bristol-Myers Squibb	3.00	NA	5.70	3.88	4.79	3.07	7.86
Broadridge Fin'l	2.06	9.50	NA	11.80	10.65	2.17	12.82
Check Point Software	-	8.50	7.30	7.02	7.61	-	NA
C.H. Robinson	2.58	8.50	9.00	3.83	7.11	2.67	9.78
CSG Systems Int'1	1.79	12.00	NA	7.00	9.50	1.88	11.38
Quest Diagnostics	1.78	4.00	NA	(15.60)	4.00	1.82	5.82
Heartland Express	0.51	8.50	NA	13.30	10.90	0.54	11.44
Henry (Jack) \& Assoc	1.07	8.00	9.00	9.00	8.67	1.12	9.79
Kimberly-Clark	3.53	5.50	6.40	6.90	6.27	3.64	9.91
Lancaster Colony	1.72	3.50	NA	3.00	3.25	1.75	5.00
McCormick \& Co.	1.89	4.50	5.30	1.00	3.60	1.92	5.52
Monster Beverage	-	10.50	11.40	14.12	12.01	-	NA
Northrop Grumman	1.32	6.50	2.40	3.00	3.97	1.35	5.32
Progressive Corp.	0.31	6.50	19.90	27.12	13.20	0.33	13.53
RLI Corp.	0.80	12.00	NA	9.80	10.90	0.84	11.74
Rollins, Inc.	1.33	10.50	NA	8.20	9.35	1.39	10.74
Tyler Technologies	-	12.00	NA	7.20	9.60	-	NA
						Mean	9.28 \%
						Median	9.79 \%
					Average of	and Median	9.54 \%

[^9]
$\mathrm{NA}=$ Not Available

(1) The application of the DCF model to the domestic, non-price regluated comparable risk companies is identical to the application of the DCF to the utility
 Line, www.zacks.com, and www.yahoo.com (excluding any negative growth rates) and then adding that growth rate to the adjusted dividend yield.

[^10]Bluegrass Water (KY) Utility Operating Company, Inc.
Indicated Common Equity Cost Rate
Through Use of a Risk Premium Model
Using an Adjusted Total Market Approach

Line No.

Proxy Group of	Proxy Group of Twenty
Twenty Non-Price	Non-Price Regulated
Regulated Companies	Companies ex PRPM

1. Prospective Yield on Baa2 Rated
Corporate Bonds (1) 6.05% \% 6.05%
2. Adjustment to Reflect Bond rating Difference of Non-Price Regulated Companies (2)
3.

Adjusted Prospective Bond Yield

(0.17)	(0.17)
$\%$	5.88%
6.88%	6.32

5. Risk Premium Derived Common Equity Cost Rate
12.40 \%
12.20%
Notes: (1) Average forecast of Baa2 corporate bonds based upon the consensus of nearly 50 economists reported in Blue Chip Financial Forecasts dated December 2, 2022 and January 1, 2023 (see pages 9 and 10 of Exhibit DWD-5). The estimates are detailed below.

First Quarter 2023	6.10%
Second Quarter 2023	6.30
Third Quarter 2023	6.20
Fourth Quarter 2023	6.10
First Quarter 2024	5.90
Second Quarter 2024	5.80
2024-2028	6.00
2029-2033	6.00
Average	$\boxed{ }$

(2) The average yield spread of Baa rated corporate bonds over A corporate bonds for the three months ending December 2022. To reflect the Baa1 average rating of the non-utility proxy group, the prosepctive yield on Baa corporate bonds must be adjusted by $1 / 3$ of the spread between A and Baa corporate bond yields as shown below:

	A Corp. Bond Yield		Baa Corp. Bond Yield	Spread
Dec-22	5.10	$\%$	5.58	$\%$
Nov-22	5.58	6.07		0.48
Oct-22	5.74	6.26		0.49
	Average yield spread		0.52	
		$1 / 3$ of spread		0.50

(3) From page 5 of this Exhibit.

Bluegrass Water (KY) Utility Operating Company, Inc.
Comparison of Long-Term Issuer Ratings for the
Proxy Group of Twenty Non-Price Regulated Companies of Comparable risk to the
Proxy Group of Six Water Companies

Moody's
Long-Term Issuer Rating
January 2023

Standard \& Poor's
Long-Term Issuer Rating
January 2023

Proxy Group of Twenty Non- Price Regulated Companies	Long-Term Issuer Rating	Numerical Weighting (1)	Long-Term Issuer Rating	Numerical Weighting (1)
Adobe Inc.	A2	6.0	A+	5.0
Amgen	Baa1	8.0	BBB+	8.0
Becton, Dickinson	Baa2	13.0	BBB	12.0
Bristol-Myers Squibb	A2	6.0	A+	5.0
Broadridge Fin'l	Baa1	8.0	BBB+	8.0
Check Point Software	NA	--	NA	--
C.H. Robinson	Baa2	9.0	BBB+	8.0
CSG Systems Int'l	NA	--	BB+	11.0
Quest Diagnostics	Baa2	9.0	BBB+	8.0
Heartland Express	NA	--	NA	--
Henry (Jack) \& Assoc	NA	--	NA	--
Kimberly-Clark	A2	6.0	A	6.0
Lancaster Colony	NA	--	NA	--
McCormick \& Co.	Baa2	9.0	BBB	9.0
Monster Beverage	NA	--	NA	--
Northrop Grumman	Baa1	8.0	BBB+	8.0
Progressive Corp.	A2	6.0	A	6.0
RLI Corp.	Baa2	9.0	BBB	9.0
Rollins, Inc.	NA	--	NA	--
Tyler Technologies	NA	--	NA	--
Average	Baa1	8.1	BBB+	7.9

Notes:
(1) From page 6 of Exhibit DWD-5.

Source of Information:
Bloomberg Professional Services

Bluegrass Water (KY) Utility Operating Company, Inc. Derivation of Equity Risk Premium Based on the Total Market Approach

Using the Beta for Proxy Group of Twenty Non-Price Regulated Companies of Comparable risk to the Proxy Group of Six Water Companies

$\underline{\text { Line No. }}$	Equity Risk Premium Measure	Proxy Group of Twenty Non-Price Regulated Companies	Proxy Group of Twenty Non-Price Regulated Companies ex PRPM
1.	Kroll Equity Risk Premium (1)	6.13 \%	6.13 \%
2.	Regression on Kroll Risk Premium Data (2)	7.26	7.26
3.	Kroll Equity Risk Premium based on PRPM (3)	9.76	NA
4.	Equity Risk Premium Based on Value Line Summary and Index (4)	11.01	11.01
5	Equity Risk Premium Based on Value Line S\&P 500 Companies (5)	10.47	10.47
6.	Equity Risk Premium Based on Bloomberg S\&P 500 Companies (6)	6.18	6.18
7.	Conclusion of Equity Risk Premium	8.47 \%	8.21 \%
8.	Adjusted Beta (7)	0.77	0.77
9.	Forecasted Equity Risk Premium	6.52 \%	6.32 \%

Notes:
(1) From note 1 of page 8 of Exhibit DWD-5.
(2) From note 2 of page 8 of Exhibit DWD-5.
(3) From note 3 of page 8 of Exhibit DWD-5.
(4) From note 4 of page 8 of Exhibit DWD-5.
(5) From note 5 of page 8 of Exhibit DWD-5.
(6) From note 6 of page 8 of Exhibit DWD-5.
(7) Average of mean and median beta from page 6 of this Exhibit.

Sources of Information:
Kroll 2022 SBBI® Yearbook
Value Line Summary and Index
Blue Chip Financial Forecasts, December 2, 2022 and January 1, 2023
Bloomberg Professional Services

Bluegrass Water (KY) Utility Operating Company, Inc.
Traditional CAPM and ECAPM Results for the Proxy Group of Non-Price-Regulated Companies Comparable in Total Risk to the

Traditional CAPM and ECAPM Results Excluding the PRPM MRP for the Proxy Group of Non-Price-Regulated Companies Comparable in Total Risk to the

Proxy Group of Six Water Companies

(2) Average of CAPM and ECAPM cost rates.

EXHIBIT 9

Bluegrass Water (KY) Utility Operating Company, Inc.
Kroll Associates' Size Premia for the Decile Portfolios of the NYSE/AMEX/NASDAQ

[^11]Bluegrass Water (KY) Utility Operating Company, Inc.
Market Capitalization of Bluegrass Water (KY) Utility Operating Company, Inc. and the

Source of Information: 2021 Annual Forms 10K
Bloomberg Financial Services

[^0]: 1 Federal Power Commission v. Hope Natural Gas Co., 320 U.S. 591 (1944). ("Hope")
 2 Bluefield Water Works Improvement Co. v. Public Serv. Comm'n, 262 U.S. 679 (1922). ("Bluefield")

[^1]: ${ }^{3}$ The indicated range of ROEs applicable to the Utility Proxy Group excluding the Predictive Risk Premium Model ("PRPM") is 9.74% to 10.74%.

[^2]: 7 Risk distinctions within S\&P's bond rating categories are recognized by a plus or minus, i.e., within the A category, an S\&P rating can be at A+, A, or A-. Similarly, risk distinctions for Moody's ratings are distinguished by numerical rating gradations, i.e., within the A category, a Moody's rating can be A1, A2 and A3.

 Case No. 2022-00432
 Application Exhibit 6
 Direct Testimony of Dylan W. D'Ascendis

[^3]: 9 See, Kentucky Public Service Commission, Case No. 2020-00290, Order (August 2, 2021), at 101.
 Value Line Investment Survey, January 6, 2023.

[^4]: 11 See Exhibit DWD-4, page 1, Column 1.

[^5]: 14
 15

[^6]: 40
 41
 As shown on page 11 of Exhibit DWD-5.
 As shown on page 7 of Exhibit DWD-5.

[^7]: Notes: company in the group, and are based upon financial statements as originally reported in each year.
 (2) Computed by relating actual total debt interest or preferred stock dividends booked to average of be
 (2) Computed by relating actual total debt interest or preferred stock dividends booked to average of beginning and ending total
 debt or preferred stock reported to be outstanding.
 debt or preferred stock reported to be outstanding.
 (3) Total debt relative to EBITDA (Earnings before Inter
 (4) Funds from operations (sum of net income, depreciation, amortization, net deferred income tax and investment tax credits, less
 total AFUDC) plus interest charges as a percentage of total debt.

[^8]: (A) Diluted earnings. Excludes nonrecurring
 not add due to rounding.
 losses: '06, $\$ 16.36$; '08, $\$ 1.22 ; 10, \$ 0.46$.
 (B) Dividends historically paid in early March, (C) In millions.

 GAAP accounting report due early February. Quarterly egs. may vestment plan available.
 © 2022 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind.
 of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic pubbication, service or product

[^9]: Bluegrass Water (KY) Utility Operating Company, Inc.
 DCF Results for the Proxy Group of Non-Price-Regulated Companies Comparable in Total Risk to the

[^10]: Value Line Investment Survey
 www.zacks.com Downloaded on 01/13/2023
 www.yahoo.com Downloaded on 01/13/2023

[^11]: (1) Gleaned from Columns [B] and [C] on the bottom of this page. The appropriate decile (Column [A]) corresponds to the market capitalization of the proxy group, which is found in Column [1].
 (4) Line No. 1 Column [3] - Line No. 2 Column [3]. For example, the 3.91% in Column [4], Line No. 2 is derived as follows (4) Line No. $3.91 \%=4.8 \%-0.89 \%$.

