Gas Conversion Considerations Mill Creek 1, 2 and Brown 3

PPL companies

E.W. Brown Station Mill Creek Station Generation Engineering

Attachment 3 to Response to JI-1 Question No. 1(c)

R)

Bellar

Case No. 2022-00402

Gas Conversion Study Driver

Bridge the generation gap between coal unit retirements and construction of new generation by converting Brown 3, Mill Creek 1 and/or Mill Creek 2 from coal to natural gas fuel.

Gas Conversion Considerations

- Gas Supply
 - Piping System Capacity
 - Gas Burner Design and Installation
- NFPA Review
 - Required modifications
- Unit Capacity and Efficiency Impacts
- Impact of Steam Conditions on the Turbine
- Impact to Emissions
- Impact to O&M Costs
- Capital Costs

Case No. 2022-00402

Gas Supply Considerations

Brown 3

- Gas Supply
 - Piping System Capacity
 - Branch from existing pipeline to plant
 - High pressure regulating, metering and heating station, low pressure regulating station
 - Gas Burner Design and Installation
 - NFPA compliant gas supply piping system at the boiler

Mill Creek 1 and 2

- Gas Supply
 - Piping System Capacity
 - Current capacity is 1,327 Mcfh @ lowest inlet gas transmission pressure
 - Changing orifice plate size will permit
 2,400 Mcfh
 - Gas regulation equipment capacity is 3,000 Mcfh
 - Mill Creek 1 and 2 require 3,000 Mcfh each to convert to natural gas (not considering startup gas for Units 3&4)
 - Gas Burner Design and Installation
 - NFPA compliant gas supply piping system at the boiler

Gas Conversion Impact to Performance

Brown 3

- Capacity and Efficiency Impacts
 - 23.7 MW reduction in full load capacity with no increase in fuel burn rate
 - Boiler efficiency reduction of 3%
 - Unit Net Heat Rate Increase of 390 Btu/kWh
 - Increased turndown
- Impact of Steam Conditions on Turbine
 - Main steam temperature decrease of 52°F
 - Hot reheat steam temperature decrease of 87°F

EW Brown Unit 3			
	Coal	Gas	
Target Gross Turbine Generator Load, MW	448.03	448.03	
Turbine Derate, MW	0	23.7	
Turbine Derate, %	NA	5.3	
Maximum Gross Turbine Output, MW	448.03	424.33	
Boiler Efficiency, % (HHV)	87.36	84.36	
Net Plant Heat Rate, Btu/kWh	10696	11086	
Boler Heat Input, Mbtu/hr	4562.77	4820.68	
Coal Flow Rate, ton/hr	202.57		
Natural Gas Flow Rate, kcfm		75.5	
Main Steam Outlet Temperature, °F	968	916	
Hot Reheat Steam Outlet Temperature, °F	997	910	
Economizer Flue Gas Outlet Temperature, °F	746.5	714.8	
Air Heater Flue Gas Outlet Temperature, °F	317.2	292.1	

Gas Conversion Impact to Performance

Mill Creek 1 and 2

- Capacity and Efficiency Impacts
 - Potential reduction in full load capacity with no increase in fuel burn rate
 - Boiler efficiency reduction
 - Unit Net Heat Rate Increase
 - Increased turndown
- Impact of Steam Conditions on Turbine
 - Main steam temperature decrease
 - Hot reheat steam temperature decrease

Gas Conversion Impacts to Emissions

Brown 3

7

- Emissions of SO₂ and particulate matter will decrease, permitting the unit to operate without the WFGD or PJFF.
- NOx emission rate exiting boiler will decrease, permitting operation of the SCR at a lower removal efficiency, with less ammonia.
- CO₂ emissions will decrease.
- CO emissions will increase. Potentially requiring CO catalyst, which could be installed in the existing SCR
- MATS will no longer apply
- NSR Increased CO and VOC could result in NSR requirements. If generation increases, NOx tons may increase, resulting in NSR requirements.

EW Brown Unit 3			
	Coal	Gas	
CO ₂ , lb/hr	927,437	563,200	
CO, lb/Mbtu	*	0.15	
NOx, lb/Mbtu	0.04	0.08 - 0.12 1	
*Baseline emissions were based on an emission factor of 0.5 lb-CO per			
ton coal burned			
1) Based on natural gas burners with overfire air, no SCR. Case No. 2022-00402			

Attachment 3 to Response to JI-1 Question No. 1(

Gas Conversion Impacts to Emissions

Mill Creek 1 and 2

- Emissions of SO₂ and particulate matter will decrease, permitting the unit to operate without the WFGD or PJFF.
- NOx emission rate exiting boiler will decrease, unclear if this will comply with NAAQS regulations going forward
- CO₂ emissions will decrease.
- CO emissions will increase.
- MATS will no longer apply
- NSR Increased CO and VOC could result in NSR requirements. If generation increases, NOx tons may increase, resulting in NSR requirements.