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Michael Goggin  
 
Education: 

Harvard University class of 2004, B.A. cum laude in Social Studies 
- Wrote thesis “Is it Time for a Change? Science, Policy, and Climate Change” 

 
Experience: 

Grid Strategies                           Vice President    February 2018-present 
- Serve as a consultant on electricity transmission, grid integration, reliability, market, and 

public policy issues for consumer, grid operator, non-profit, and industry clients 
- Have testified before FERC and in over 25 state regulatory commission cases 
 
AWEA           Senior Director of Research, other titles            February 2008-February 2018 
- Led team responsible for all American Wind Energy Association (now American Clean 

Power Association) analysis  
- Served as primary technical and economic expert for market design, transmission, grid 

integration, carbon policy, and other topics 
- Authored regulatory filings at state (IRP and transmission siting cases), regional (ISO 

transmission and market design), and federal levels (FERC transmission, interconnection 
standard, grid integration, and market design cases; EPA carbon policy)  

- Directed economic and power sector modeling to inform AWEA’s policy strategy and 
support advocacy positions 

- Communicated with the press and policy makers about wind energy 
- Authored reports to promote AWEA’s policy agenda, rebut misconceptions about wind 

energy, and explain complex energy topics to lay audiences 
- Other titles included Electric Industry Analyst, Senior Analyst, Manager of Transmission 

Policy, Director of Research 
 
Sentech, Inc.      Research Analyst               October 2005-February 2008 
- Conducted economic analyses of solar, wind, geothermal, and energy storage technologies 

for U.S. Department of Energy officials  
- Provided analytical support for DOE’s renewable energy R&D funding decisions 

 
Union of Concerned Scientists       Clean Energy Intern       May 2005-October 2005 
- Worked with the legislative and field staff to promote the inclusion of pro-renewable 

energy measures in the Energy Policy Act of 2005 
 
State Public Interest Research Groups      Policy Analyst      August 2004-May 2005  
- Analyzed and advocated for clean energy policies at the state and federal level 

 
Publications available at https://gridstrategiesllc.com/articles-2/  
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EXHIBIT MG-2 

Public Company Responses to Data Requests 

Data Requests 

LG&E-KU Response to Sierra Club Request 1-5 
LG&E-KU Response to Sierra Club Request 1-8 
LG&E-KU Response to Sierra Club Request 1-19 
LG&E-KU Response to Sierra Club Request 2-1 
LG&E-KU Response to Sierra Club Request 2-7 
LG&E-KU Response to Sierra Club Request 2-8 
 
LG&E-KU Response to Joint Intervenor Request 1-88 
LG&E-KU Response to Joint Intervenor Request 2-60 
 
LG&E-KU Response to Attorney General Request 1-13 
 
 

004



 

 

KENTUCKY UTILITIES COMPANY 
AND 

LOUISVILLE GAS AND ELECTRIC COMPANY 
 

Response to Sierra Club’s Initial Request for Information 
 Dated February 17, 2023 

 
Case No. 2022-00402 

 
Question No. 1-5 

 
Responding Witness:  Stuart A. Wilson 

 
Q.1-5. Please refer to Exhibit SAW-1, sponsored by Stuart A. Wilson, at page D-12 

(page 127 of the PDF), footnote 14. 
 

a. Provide all documents, analyses, or forecasts that the Companies used to 
“ma[k]e” “adjustments . . . to the neighboring regions’ generating portfolios 
as needed to reflect planned retirements and meet the neighboring regions’ 
target reserve margins.” 

 
b. Describe how KU/LG&E made these adjustments in the reserve margin 

analysis. 
 
A.1-5.  

a. No workpapers were provided for the adjustments because they were made 
via the SERVM interface.  

 
b. For MISO-Indiana, 24,552 MW of the region’s generation resources were 

included to meet its target reserve margin of 18%.  For PJM-West, 40,007 
MW of the region’s generation resources were included to meet its target 
reserve margin of 14.8%.  For TVA, 35,648 MW of the region’s generation 
resources were included to meet its target reserve margin of 17%.  These 
levels were obtained by deactivating existing dispatchable resources in 
SERVM.   
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KENTUCKY UTILITIES COMPANY 
AND 

LOUISVILLE GAS AND ELECTRIC COMPANY 
 

Response to Sierra Club’s Initial Request for Information 
 Dated February 17, 2023 

 
Case No. 2022-00402 

 
Question No. 1-8 

 
Responding Witness:  Stuart A. Wilson 

 
Q.1-8. Please refer to Exhibit SAW-1, sponsored by Stuart A. Wilson, at pages D-20 and 

D-21, figure 8 (pages 135 and 136 of the PDF).  For the referenced SERVM 
scarcity price curve, provide: 

 
a. All input and output files supporting the SERVM analysis (in electronic, 

machine-readable format with formulae intact). 
 

b. For the analysis conducted by SERVM, provide all documents, analyses, or 
forecasts relied upon to calculate responses. 

 
A.1-8.  

a. See 
“\Reliability\SERVM\Inputs\ScarcityPricing\20220831_OperatingReserveD
emandCurve.csv” in Exhibit SAW-2.6 

 
b. See the response to part (a).  The scarcity price curve was jointly developed 

by the Companies and Astrape Consulting, the developer of SERVM.  The 
Companies do not possess any additional responsive documents.   

 
During Winter Storm Elliott on December 23 and 24, the Companies 
purchased power at prices in excess of $3,000/MWh.  These purchases 
corroborate the Companies’ scarcity price curve.   

 
 

 
 

 
6 The public version of this data is available on the Commission’s website in the zip file for Exh. SAW-2 
Vol. 6. 
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Response to Question No. 1-19 
Page 1 of 4 

Bellar / Sinclair 
 

 

KENTUCKY UTILITIES COMPANY 
AND 

LOUISVILLE GAS AND ELECTRIC COMPANY 
 

Response to Sierra Club’s Initial Request for Information 
 Dated February 17, 2023 

 
Case No. 2022-00402 

 
Question No. 1-19 

 
Responding Witness:  Lonnie E. Bellar / David S. Sinclair 

 
Q.1-19. Please refer to the Direct Testimony of Stuart A. Wilson at page 9, stating, 

“Extreme weather conditions drive a need for additional reliability 
considerations”; Exhibit TAJ-1, sponsored by Tim A. Jones, at page 10, stating, 
“customers demand even greater load for a longer duration during extreme 
weather events”; and Exhibit SAW-1, sponsored by Mr. Wilson, at page D-12 
(page 127 of the PDF), stating, “A key aspect in developing a target reserve 
margin is properly considering the likelihood of unit outages during extreme 
weather events.” 

 
a. Please provide documents, analyses, and workpapers sufficient to show the 

scope of service interruptions for KU/LG&E during Winter Storm Elliott in 
December 2022 (including but not limited to interruptions on December 23, 
2022), including: 

 
i. The number and percentage of customers affected hourly by service 

interruptions 
 

ii. The amount and percentage of resources offline each hour on December 
23, 2022, and any other times during Winter Storm Elliott, broken down 
by generation category (coal, NGCC, SCCT, solar, wind, hydro, etc.) 

 
b Please provide documents sufficient to show the amount of power purchased 

hourly from the Midcontinent Independent System Operator (“MISO”), PJM 
Interconnection, and any and all other sources of power external to the 
Companies from December 21, 2022, to December 28, 2022, broken down 
by: 

 
i. Hour 

 
ii. Seller (i.e., MISO, PJM, or other), and 
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Response to Question No. 1-19
Page 2 of 4

Bellar / Sinclair

iii. Generation power source (i.e., coal, NGCC, SCCT, solar, wind, hydro, 
etc.).

A.1-19.  
a. 

i. Between 5:59pm and 10:11pm on December 23, 2022 approximately 54k 
customers were impacted by service interruptions (~5.3%). The highest 
amount of customers impacted by service interruptions at any given time 
was approximately 38k (~3.7%). 
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Response to Question No. 1-19
Page 3 of 4

Bellar / Sinclair

ii. See attached. 

b. (i) - (iii)  See the table below for the power purchased from MISO, PJM, and 
TVA during the period.  There were also 391 MWh in total 
purchases during the period from other parties in the BA footprint 
through the OATT ancillary service schedules. 
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Response to Question No. 1-19 
Page 4 of 4 

Bellar / Sinclair 
 

 

 
 
 

 

Flow Date Hour Ending Total Volume (MWh) Seller Power Source Type
12/23/2022 12:00 75 PJM unknown
12/23/2022 12:00 100 PJM unknown
12/23/2022 12:00 225 PJM unknown
12/23/2022 13:00 266 PJM unknown
12/23/2022 14:00 233 PJM unknown
12/23/2022 15:00 107 PJM unknown
12/23/2022 15:00 119 PJM unknown
12/23/2022 15:00 200 PJM unknown
12/23/2022 15:00 250 PJM unknown
12/23/2022 16:00 142 PJM unknown
12/23/2022 16:00 200 PJM unknown
12/23/2022 16:00 250 PJM unknown
12/23/2022 17:00 123 PJM unknown
12/23/2022 17:00 125 PJM unknown
12/23/2022 17:00 200 TVA unknown
12/23/2022 22:00 100 PJM unknown
12/23/2022 23:00 134 MISO unknown
12/23/2022 24:00 260 MISO unknown
12/23/2022 24:00 600 PJM unknown
12/23/2023 18:00 400 TVA unknown
12/24/2022 1:00 250 MISO unknown
12/24/2022 1:00 250 PJM unknown
12/24/2022 2:00 250 MISO unknown
12/24/2022 2:00 150 PJM unknown
12/24/2022 3:00 188 PJM unknown
12/24/2022 4:00 250 PJM unknown
12/24/2022 5:00 200 MISO unknown
12/24/2022 6:00 50 PJM unknown
12/24/2022 8:00 113 MISO unknown
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Response to Question No 2-1 
Page 1 of 2 

Bellar 
 

 

KENTUCKY UTILITIES COMPANY 
AND  

LOUISVILLE GAS AND ELECTRIC COMPANY 
 

Response to Sierra Club’s Supplemental Request for Information 
 Dated April 14, 2023 

 
Case No. 2022-00402 

 
Question No. 2-1 

 
Responding Witness:  Lonnie E. Bellar 

 
Q.2-1. For each of the Companies’ existing gas generating units, please indicate: 
 

a. The gas line serving that generating unit. 
 

b. Whether the generating unit has dual fuel capability with onsite fuel storage. 
 

c. What percentage of the generating unit’s peak gas consumption is supplied 
via firm gas transportation contracts. 
 

d. The geographic area from which gas supply for that generating unit is 
sourced. 
 

e. What percentage of the generating unit’s peak gas consumption comes from 
supply contracts that are longer than one year in duration. 
 

f. What, if any, impacts were observed on gas supply or transportation to that 
generating unit during Winter Storm Elliott (December 21-27, 2022)? 
 

g. If there were any impacts to that generating unit during the period December 
21- 27, 2022, please quantify the reduction in the generating unit’s output due 
to the disruption to gas supply or transportation, and the start and end time for 
that reduction. 

 
A.2-1. 

a. The Texas Gas Transmission pipeline serves Cane Run 7, Paddy’s Run 12-
13, and Trimble County 5-10.  Either the Texas Eastern or Tennessee Gas 
pipeline is capable of serving the seven E.W. Brown combustion turbines 
(Brown 5-11).  Haefling 1-2 are connected to the Columbia Gas of Kentucky 
distribution system. 

 
b. Four units at E.W. Brown, Brown 8-11 have dual fuel capability with onsite 

fuel oil storage. 
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KENTUCKY UTILITIES COMPANY 
AND 

LOUISVILLE GAS AND ELECTRIC COMPANY 
 

Response to Sierra Club’s Supplemental Request for Information 
 Dated April 14, 2023 

 
Case No. 2022-00402 

 
Question No. 2-7 

 
Responding Witness:  Stuart A. Wilson 

 
Q.2-7. Please see the capacity contribution analysis described at pages D15-D16 of 

Exhibit SAW-1. 
 

a. Please describe what if any assumptions for forced outage rates or derates 
were used to reduce the estimated capacity contribution of the 480 MW of 
SCCTs. 
 

b. Please describe what if any assumptions for correlations in forced outage rates 
between the 480 MW of SCCTs and the Companies’ other generating units 
were used to reduce the estimated capacity contribution of the 480 MW of 
SCCTs. 

 
A.2-7.  

a. The SCCTs were modeled with a 4.9% forced outage rate.  
 
b. The analysis assumed no correlation between forced outage for these SCCTs 

and other units. 
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KENTUCKY UTILITIES COMPANY 
AND 

LOUISVILLE GAS AND ELECTRIC COMPANY 
 

Response to Sierra Club’s Supplemental Request for Information 
 Dated April 14, 2023 

 
Case No. 2022-00402 

 
Question No. 2-8 

 
Responding Witness:  Stuart A. Wilson 

 
Q.2-8. Please provide any analysis the Companies directed to determine that retiring 

Haefling 1- 2 and Paddy’s Run 12 in 2025 and replacing that capacity with new 
resources was more economic than continuing to operate those units.  If that 
analysis was not conducted, please explain why. 

 
A.2-8. These units are between 53 and 55 years old and operate very infrequently, 

averaging 12 operating hours per unit in 2022.  The Companies have assumed 
that a mechanical failure will occur on these units and that it will likely be 
uneconomical to make the needed repairs, as has been the case in recent years 
with similar small-frame CTs.  For an analysis comparing the retirement and 
repair of Paddy’s Run 11, which LG&E retired in March 2021, see attached.  The 
Companies have not performed a similar analysis for Halfling 1-2 and Paddy’s 
Run 12 because the assumed failures of these units have not occurred.  The 
Companies do not intend to retire these units until such failures occur.  The timing 
and costs of such assumed failures are unknown but are assumed for the purposes 
of this analysis to occur by 2025.   
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Response to Question No. 1.88 
Page 1 of 2 

Wilson 
 

 

KENTUCKY UTILITIES COMPANY 
AND 

LOUISVILLE GAS AND ELECTRIC COMPANY 
 

Response to Metropolitan Housing Coalition, Kentuckians for the Commonwealth, 
Kentucky Solar Energy Society and Mountain Association’s  

 Initial Request for Information 
Dated February 17, 2023 

 
Case No. 2022-00402 

 
Question No. 1.88 

 
Responding Witness:  Stuart A. Wilson 

 
Q-1.88. Please refer to the 2022 RFP Minimum Reserve Margin Analysis, page D-12, 

Footnote 14, which states: “In the reserve margin analysis, adjustments were 
made to the neighboring regions’ generating portfolios as needed to reflect the 
planned retirements and meet the neighboring regions’ target reserve margins.”  

 
a. Please list each adjustment(s) made to the generating portfolios for each of 

the following neighboring regions, as defined at pages D-11 to D-12 of Ex. 
SAW-1: (i) MISO-Indiana; (ii) PJM-West; and (iii) TVA. 

 
b. In the reserve margin analysis, did the Companies make any adjustments for 

the addition of new resources in neighboring regions? If so, please list each 
such adjustment. If not, please explain why not in full. 

 
c. Please explain in full each adjustment used to “meet the neighboring regions’ 

target reserve margins,” for each neighboring region.  
 

d. In the reserve margin analysis, did the Companies make any adjustments to 
account for planned transmission projects in each of the neighboring regions? 
If so, please list each such adjustment. If not, please explain why not in full. 

 
A-1.88.  

a. See the response to SC 1-5(b).   
 
b. No.  See the response to SC 1-5(b).   
 
c. See the response to part (a). 
 
d. No.  Planned transmission projects in neighboring regions are not intended to 

materially impact available transmission capacity (“ATC”) between these 
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Response to Question No. 60 
Page 1 of 6 

Jones / Wilson 
 

 

KENTUCKY UTILITIES COMPANY 
AND 

LOUISVILLE GAS AND ELECTRIC COMPANY 
 

Response to Metropolitan Housing Coalition, Kentuckians for the Commonwealth, 
Kentucky Solar Energy Society and Mountain Association’s  

 Supplemental Request for Information 
Dated April 14, 2023 

 
Case No. 2022-00402 

 
Question No. 60 

 
Responding Witness:  Tim A. Jones / Stuart A. Wilson  

 
Q-60. Regarding the files “20221028_LGELoad2028” and 

“Load2023PlanCC_IRA_DSM_20221026” please answer the following: 
 

a. Please explain why the annual energy requirements in 
“Load2023PlanCC_IRA_DSM_20221026” fall below the energy 
requirements for all the weather years in “20221028_LGELoad2028”. 

 
b. Please explain why 31 of the 49 weather years in “20221028_LGELoad2028” 

contain annual peak values in excess of the 2028 peak contained in 
“Load2023PlanCC_IRA_DSM_20221026”, i.e, why is the distribution of 
load modeled in SERVM distorted to the high side relative to the base load 
forecast? 

 
c. Please provide any workbooks that support your response to the previous 

subparts with all formulas and links intact, changing nothing.  
 

d. Please provide the workbooks with all formulas and links intact, changing 
nothing, that show how the hourly load shapes in “20221028_LGELoad2028” 
were updated from the 2021 IRP to the present docket. 

 
A-60.  

a. Weather year energy requirements inadvertently double counted forecast 
items that are layered onto the hourly forecasts separately due to their unique 
load shape.  These “unique forecast items” include electric vehicle growth, 
distributed solar growth, and most significantly the BlueOval SK load.  
Fortunately, this double counting did not have a material impact on the 
weather year summer and winter peak demands and had no effect on the 
Companies’ optimal resource portfolio or projected revenue requirements, 
which are based on the Companies’ load forecast under normal weather 
conditions and not the weather year forecasts.     
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Response to Question No. 60 
Page 2 of 6 

Jones / Wilson 
 

 

 
The weather year forecast models are specified for each company based on 
load data from 2012 to 2019 and cannot account for class-specific forecast 
trends in the base CPCN load forecast.  In addition, the weather year forecast 
models cannot capture the unique impact of items like electric vehicle growth, 
distributed solar growth, and the addition of the BlueOval SK load.  
Therefore, the initial weather year load forecast results are scaled so that the 
mean of weather year energy requirements equals a version of the normal 
weather CPCN load forecast that excludes these “unique forecast items,” and 
then these items are layered onto the forecast separately (a detailed summary 
of this process is attached as Attachment 1 to this response).  The double 
counting of the BlueOval SK load occurred because the initial weather year 
load forecasts were inadvertently scaled to a version of the CPCN load 
forecast that included these unique forecast items, and then these items were 
effectively layered on a second time.   
 
In the final step of the weather years process, the Companies tie the mean of 
the weather year summer and winter peaks to the CPCN forecast peaks 
through seasonal load factor adjustments that impact the distribution of peak 
demands but do not change total energy.  Thus, the process produced a 
reasonable distribution of peak demands, but average weather year energy 
requirements and load factors were approximately 5.8% too high.  The 
Companies did not detect this problem because an assessment of reliability 
and the calculation of LOLE in SERVM is significantly focused on peak 
events, and the Companies’ review process was therefore focused on summer 
and winter peak demands, not annual energy requirements.  The Companies 
have updated their review process to ensure this kind of error does not occur 
in the future. 
 
Figure 1 compares the original and corrected ranges of peak demands and 
energy requirements at key steps in the weather years process.  After scaling 
the initial weather year forecasts to equal CPCN energy requirements that 
exclude unique forecast items, the corrected ranges of peak demands and 
energy requirements are lower than the original (see “Energy Requirements 
Scaling” step in Figure 1).  For both the original and corrected ranges, the 
impact of layering on the unique forecast items is the same (see “Addition of 
Unique Items” step in Figure 1).  Finally, because of the double counting, the 
seasonal load factor adjustments in the original weather year forecasts are 
greater than in the corrected forecasts (see “Load Factor Adjustment” step in 
Figure 1).  As a result, the corrected distributions of summer and winter peak 
demands are not materially different from the originals, but the corrected 
distribution of energy requirements is approximately 5.8% lower.  Figure 2 
contains the filed and corrected load duration curves for all weather years and 
further demonstrates that the impact of this correction is greater in non-peak 
hours. 
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Response to Question No. 60 
Page 3 of 6 

Jones / Wilson 
 

 

 
Figure 1 – Weather Year Energy Requirements and Peak Demands7

 
 
Figure 2 – All Weather Years Load Duration Curve:  2028 

 

 
7 In Figure 1, the mean is marked with an “X.” 

017



Response to Question No. 60 
Page 4 of 6 

Jones / Wilson 
 

 

 
 
Table 1 compares the original and corrected distributions of peak demands by 
quartile.8  The seasonal load factor adjustment has a greater impact on hourly 
loads that are further from the mean, and a downward adjustment, as seen in 
the last two steps of Figure 1 for the filed version, has the effect of 
compressing the distribution of peak demands.  With a smaller load factor 
adjustment, the corrected peak demand distributions are slightly less 
compressed.  This is why the average of the top quartile demands in the 
corrected distributions are slightly higher than the original distribution.  These 
minor differences are important to understand when assessing the impact of 
the corrected weather year forecasts on the Companies’ analysis.   
 
Table 1 – Weather Year Peak Demands by Quartile (MW) 

Season Quartile Filed Corrected MW 
Change 

in 
Average 

Peak 

% 
Change 

in 
Average 

Peak 
Summer 1 6,751 6,801 50 0.74% 

 2 6,361 6,369 8 0.12% 
 3 6,166 6,148 -18 -0.29% 
 4 6,024 5,987 -36 -0.61% 

Winter 1 6,824 6,889 65 0.95% 
 2 6,151 6,166 15 0.24% 
 3 5,905 5,889 -17 -0.29% 
 4 5,581 5,523 -58 -1.04% 

 
 
Weather year load forecasts are key inputs to the Companies’ minimum 
reserve margin analysis, the analysis to determine capacity contributions for 
limited-duration resources, the Stage Three, Step Two analysis that assesses 
dispatchable DSM and the Brown BESS as a means of increasing reliability, 
the Stage Three, Step Three analysis that assesses early retirement risk for 
OVEC, and the analysis that estimates LOLE for an all-DSM portfolio.  An 
updated version of Exhibit SAW-1 is provided as Attachment 2 to this 
response.  Certain information requested is confidential and proprietary and 
is being provided under seal pursuant to a petition for confidential protection.   
The corrected weather year forecasts impact only selected values in Appendix 
C (All-DSM Portfolio Analysis), Appendix D (Reserve Margin Analysis), 
and the Stage Three analysis.  All updates are highlighted in blue. 

 
8 The 49 peaks for each season were ranked in descending order (the highest value given rank 1) and 
divided into quartiles of 12 with the bottom quartile containing 13 points. The value in the table represents 
the average of the peaks for each quartile. Values in the MW Change column may appear inaccurate due to 
rounding.  
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Response to Question No. 60 
Page 5 of 6 

Jones / Wilson 
 

 

 
As noted earlier, the corrected weather year profiles had no impact on the 
Companies’ optimal portfolio or projected revenue requirements, which are 
based on the Companies’ load forecast under normal weather conditions and 
not the weather year forecasts.  The following provides a summary of why 
this is true:   
 
No Impact to Minimum Reserve Margin Targets   
Minimum reserve margins are determined as the reserve margin at which an 
increase in load would cause the reliability and production cost benefits of 
adding SCCT capacity to exceed the cost of this capacity.  The downward 
shift in the corrected weather year energy requirements reduced production 
costs in all weather year scenarios, but with only minor changes to the 
distributions of peak demands, there was only a small impact on reliability 
costs and no impact on the minimum reserve margin targets (i.e., the reserve 
margin at which SCCT capacity becomes economic).   
 
Immaterial Impact to Capacity Contributions 
Table 2 summarizes the impact of the corrected weather year forecasts on the 
capacity contributions for limited-duration resources.  Capacity contribution 
for a limited-duration resource is computed as the ratio of that resource’s 
impact on LOLE to the impact of a like-amount of SCCT capacity.  With the 
corrected weather year forecasts, LOLE for the Reference portfolio is lower 
(i.e., LOLE for the Reference portfolio is 21.32 versus 25.13), but the capacity 
contributions of 4-hour and 8-hour battery storage are mostly unchanged.  
Unlike battery storage, the capacity contribution of dispatchable DSM is 
notably lower because the availability of dispatchable DSM is limited to only 
100 hours and the top quartile of peak demands in the corrected weather year 
forecasts are slightly higher.  Because the updated capacity contributions are 
immaterially lower for battery storage and because dispatchable DSM was 
not selected by PLEXOS in the Stage One or Stage Two analyses, the updated 
capacity contributions will have no impact on the rest of the Companies’ 
analysis.   
 

Table 2 – Filed and Corrected Capacity Contributions 
 

LOLE (Days in 10 
Years) 

LOLE Reduction 
(Days in 10 

Years) 
Capacity 

Contribution 
 Filed Corrected Filed Corrected Filed Corrected 
1: Reference 25.13 21.32 NA NA NA NA 
2: Reference + SCCT 3.87 3.57 21.26 17.75 NA NA 
3: Reference + 4-hr BESS 6.98 6.72 18.15 14.60 0.85 0.82 
4: Reference + 8-hr BESS 5.13 4.88 20.00 16.44 0.94 0.93 
5: Reference + Disp. DSM 10.49 15.14 14.64 6.18 0.69 0.35 
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Response to Question No. 60 
Page 6 of 6 

Jones / Wilson 
 

 

 
Dispatchable DSM Remains the Most Economical Means of Enhancing 
Reliability 
The Stage One and Two analyses and the analysis of capacity contributions 
summarized in Table 2 above demonstrate that dispatchable DSM is not a 
cost-effective means of meeting minimum reserve margin targets or 
customers’ significant need for energy resulting from the retirement of coal 
units.  However, at higher reserve margins where LOLE is lower and 
explained by fewer peak events, the limited availability of dispatchable DSM 
is less of a concern and dispatchable DSM continues to be a more cost-
effective resource for improving reliability than SCCT or battery storage. 
 
No Change in Conclusions to OVEC or All-DSM Analyses 
As seen in Section 4.6.3 and Appendix C of the updated Exhibit SAW-1, the 
corrected weather year profiles have no impact on the conclusions reached 
regarding the implications of an early OVEC retirement or an all-DSM 
portfolio.  The recommended portfolio will provide excellent reliability if 
OVEC retires early.  Furthermore, with no replacement resources other than 
the proposed 2024-2030 DSM-EE Program Plan’s dispatchable DSM 
programs, the Companies’ LOLE is unacceptably high.  

 
b. For the base load forecast, the Companies model peaks by season.  Under 

normal peak weather conditions, the annual peak is expected to occur during 
the summer.  However, from a load risk perspective, the Companies’ system 
is dual peaking.  Thirty-one of the 49 weather years contain annual peaks in 
excess of the 2028 summer peak demand under normal weather conditions 
because a number of the annual peaks are winter peaks.  When evaluated on 
a seasonal basis, more than 50% of summer and winter weather year peaks 
are less than the 2028 summer and winter peak demands under normal 
weather conditions.  Figure 1 provided in part (a) shows that for peaks in each 
season of each version of the weather year forecast, the median is below the 
mean, supporting the statement above that more than 50% of peaks in the 
distributions are below the mean. 

 
c. See attached.  Certain responsive files are too large for the Companies to 

upload to the Commission’s website and are the subject of a Motion to 
Deviate being filed with these responses.  Also, certain information requested 
is confidential and proprietary and is being provided under seal pursuant to a 
petition for confidential protection. 

 
d. For any confidential workpapers relating to the IRP weather years forecast, 

see the response to Question No. 63.  The public workpapers the Companies 
provided in response to JI 1-3 in Case No. 2021-00393 are available at 
https://highq.in/ous6sqhwi9. 
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Attachment 2 to Response to JI-2 Question No. 60(a)

Page 1 of 104 
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1 Executive Summary 
Louisville Gas & Electric Company (“LG&E”) and Kentucky Utilities Company’s (“KU”) (collectively 
“Companies”) Generation Planning & Analysis group conducted this 2022 Resource Assessment to ensure 
the Companies could continue to provide safe, reliable, and low-cost service to their customers while 
complying with the U.S. Environmental Protection Agency’s (“EPA”) recent Good Neighbor Plan across a 
variety of possible future fuel price and carbon price scenarios. 

1.1 Good Neighbor Plan and Upcoming Capital Investments Require Revised Portfolio 
The EPA promulgated the Good Neighbor Plan in April 2022.  As drafted, the Good Neighbor Plan would 
effectively require two of the Companies’ large coal-fired units, the 297 MW Mill Creek Unit 2 (“Mill Creek 
2” or “MC2”) and the 485 MW Ghent Unit 2 (“Ghent 2” or “GH2”) to cease operating during the ozone 
season (May through September) each year beginning in 2026 unless the Companies install selective 
catalytic reduction (“SCR”) equipment on the units to reduce the units’ nitrogen oxides (“NOx”) emissions.  
SCRs have significant capital costs: $110 million for Mill Creek 2 and $126 million for Ghent 2.   

Although unaffected by the Good Neighbor Plan, the 412 MW Brown Unit 3 (“Brown 3” or “BR3”) is the 
Companies’ coal unit with the highest operating costs and will require a $26 million overhaul in 2027 to 
operate safely beyond 2028.   

Collectively, these units have a total capacity of 1,194 MW and typically produce 15% or more of 
customers’ annual energy requirements, and they produce just over half of their annual energy during 
non-daylight hours.  Simply retiring these units without reliably replacing their energy production or 
decreasing demand for the energy they supply would almost certainly result in unserved energy 
requirements—in other words, blackouts or brownouts.   

Because such service would be unacceptable to customers and contrary to the Companies’ obligation to 
provide safe, reliable, and low-cost service, the Companies conducted a holistic, comprehensive 
assessment of customers’ anticipated needs and the available demand- and supply-side means of serving 
those needs.  The result of this resource assessment is a reliability-, risk-, and cost-optimized portfolio of 
demand- and supply-side resources to meet customers’ projected energy needs.       

1.2 A Comprehensive Resource Assessment Results in an Optimal Portfolio 
The Companies’ Resource Assessment made the best use of the Companies’ own experience and expertise 
and state-of-the-art modeling tools and techniques, including sophisticated portfolio development and 
screening, hourly dispatch, and reliability modeling software platforms. 

The assessment began with: 

• A fully updated thirty-year hourly load forecast, which accounted for the BlueOval SK Battery Park 
load (almost 260 MW summer, about 225 MW winter, almost 90% load factor),1 the effects of the 
Inflation Reduction Act (“IRA”), and the energy efficiency effects of the Companies’ proposed 
2024-2030 DSM-EE Program Plan. 

 
1 As noted in the 2022 Load Forecast, Exhibit TAJ-1, the stated peak load figures represent BlueOval’s non-coincident, 
peak hourly usage projections grossed up by a transmission loss factor of 1.02827.  BlueOval’s anticipated summer 
billing demand is 254 MW. 
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• Supply-side options resulting from the Companies’ June 2022 RFP, which also accounted for IRA 
impacts and resulted in 22 respondents providing 101 proposals across 39 projects (which were 
later sub-divided into 110 proposals), including solar, wind, pumped hydro, battery energy 
storage, and natural gas units. 

• Economic demand response programs and components from the Companies’ 2024-2030 
Demand-Side Management and Energy Efficiency (“DSM-EE”) Program Plan. 

• A full accounting of current environmental requirements, including the draft Good Neighbor Plan. 

After screening the RFP responses for economics and practicability, 43 options proceeded to the 
assessment, in which the Companies evaluated the demand- and supply-side options in three basic stages: 

1. Creating an economically optimal portfolio consistent with minimum reliability and 
environmental compliance.  This stage involved using models to develop and screen optimal 
portfolios across six fuel price scenarios.   
 
Result: Retiring Mill Creek 2, Ghent 2, and Brown 3 and replacing them with 2 natural gas 
combined cycle (“NGCC”) units, namely the 621 MW Mill Creek Unit 5 (“Mill Creek NGCC” or 
“MC5”) and the 621 MW Brown Unit 12 (“Brown NGCC” or “BR12”), and 637 MW of solar power 
purchase agreements (“PPAs”) is economically optimal at minimum reliability. 
 

2. Stress-testing the economically optimal portfolio.  This stage involved comparing the 
economically optimal portfolio to nine other possible portfolios across six fuel price scenarios and 
three CO2 price scenarios to compare their economics and reliability.   
 
Result: Confirmation that retiring Mill Creek 2, Ghent 2, and Brown 3 and replacing them with 
Mill Creek NGCC, Brown NGCC, and 637 MW of solar PPAs remains economically optimal at 
minimum reliability. 
 

3. Fine tuning the portfolio to account for solar PPA execution risk, enhance reliability, and ensure 
reliability if OVEC retires early.  This stage consisted of three distinct fine-tuning analyses: 
 

a. Solar PPA execution risk analysis.  The Companies’ own experience with executed solar 
PPAs, negotiations of PPAs from the June 2022 RFP, and the state of the solar market 
broadly demonstrates there is real risk that PPA projects might not be built, at least not 
in a timely manner, at the agreed price.  This analysis demonstrates the prudence of 
adding 240 MW of Companies-owned solar capacity to the optimal portfolio.  
 

b. Analysis of reliability enhancements.  This analysis demonstrates that adding the 
dispatchable DSM programs in the Companies’ proposed 2024-2030 DSM-EE Program 
Plan is a cost-effective reliability enhancement to the optimal portfolio.  It further 
demonstrates that including the proposed Brown battery energy storage system (“Brown 
BESS”) in the optimal portfolio adds reliability and notes that Brown BESS could offer 
quantifiable operational benefits, including possible reductions in required spinning 
reserves and reduced wear on fast-ramping units.  
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c. Analysis of possible early retirement of Ohio Valley Electric Corp.’s (“OVEC”) coal units.  
This analysis demonstrates that the optimal portfolio maintains adequate reliability if 
OVEC retires as early as 2028 without replacement capacity. 

 
Result: Retiring Mill Creek 2, Ghent 2, and Brown 3 and replacing them with Mill Creek NGCC, 
Brown NGCC, 637 MW of solar PPAs, 240 MW of Companies-owned solar capacity, the 2024-
2030 DSM-EE Program Plan, and the Brown BESS is the portfolio that best optimizes reliability, 
cost, and risk-mitigation, and it positions the Companies to gain vital experience with utility-
scale battery technology that is likely key to future large-scale renewable generation 
integration. 

 

1.3 A No-Regrets Portfolio for Serving Customers Now and for Decades to Come 
As discussed at length herein, the resource portfolio this Resource Assessment recommends optimally 
blends the reliability, cost, and lower-CO2-emission benefits of NGCC units, the energy- and CO2-cost 
hedging benefits of solar generation, and the demand-reducing and reliability-enhancing benefits of 
dispatchable DSM from the 2024-2030 DSM-EE Program Plan.  It also hedges against the risks of the 
current solar market—namely that prices are rising and relatively few projects are actually being built—
by including a mix of solar PPAs and solar capacity to be owned by the Companies.  Finally, it includes 
Kentucky’s first utility-scale battery energy storage system to provide additional reliability benefits and 
give the Companies invaluable first-hand experience with owning and operating at true utility scale an 
energy storage technology that will be vital to growing renewable energy generation in the decades to 
come. 
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2 Objective: Reliably and Cost-Effectively Serving Customers’ Projected Needs 
The objective of this Resource Assessment is to develop a resource portfolio to ensure ongoing safe and 
reliable service at the lowest reasonable cost.  An optimal resource portfolio must be able to serve 
customers’ needs reliably at all times and in all seasons, weather, and daylight conditions.  Achieving that 
objective begins with an understanding of customers’ projected needs, as well as the reserve margins 
necessary to provide reliable service.   

2.1 Customers’ Projected Needs: The 2022 CPCN Load Forecast 
The Companies’ 2022 CPCN Load Forecast projects customers’ energy and demand requirements.2  
Notably, the 2022 CPCN Load Forecast takes full account of IRA impacts, as well as the energy efficiency 
effects of the Companies’ proposed 2024-2030 DSM-EE Program Plan.  As shown in the annual energy 
requirements forecast below, the Companies project customers will require significantly more energy 
through 2050 than they have recently, due in large part to the BlueOval SK Battery Park to be located in 
KU’s service territory in Glendale, Kentucky: 

Figure 1: Annual Energy Requirements History and Forecast (exc. Departed Municipal Customers) 

 

The Companies are also forecasting marked increases in seasonal peak demands, again largely driven by 
BlueOval, though the seasonal peaks converge over time as projected increases in electric heating load 
gradually increase winter peaks while increasing end-use efficiencies (including DSM-EE programs) and 
distributed solar generation steadily decrease summer peak load:  

 
2 Sponsored by Tim A. Jones as Exhibit TAJ-1. 
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Figure 2: Forecasted Seasonal Peaks 

 

 

As shown in the following figures, customers will also continue to require significant amounts of energy 
in every hour and season, during daylight and non-daylight hours: 

Figure 3: 2028 Proportion of Energy Consumed During Daylight and Non-Daylight Hours 
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Figure 4: LG&E and KU 2028 Hourly Load 

 

These figures show that an optimal resource portfolio must be able to serve customers’ considerable 
energy requirements in all hours, seasons, and weather and daylight conditions.  Notably, the Companies 
developed the figures above and the 2022 CPCN Load Forecast assuming normal weather.  Extreme 
weather conditions drive a need for additional reliability considerations.  

2.2 Serving Customers Reliably: Minimum Reserve Margins 
To ensure reliable service, the Companies reanalyzed their reserve margins for this Resource Assessment.  
The full reserve margin analysis is Appendix D to this document.  It demonstrates that the Companies’ 
minimum reserve margins are 17% in the summer and 24% in the winter.  This is consistent with the much 
greater variability of winter peak demands, as Figure 5 below shows: 
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Figure 5: Distributions of Summer and Winter Peak Demands, 2028 

 

 

Note that the minimum reserve margins assume a mix of resources that are fully dispatchable for long 
durations and resources that are intermittent or can be dispatched for only limited durations (primarily 
solar and DSM).  For example, the total summer minimum reserve margin assumes a 12% reserve margin 
that is fully dispatchable and a 5% reserve margin comprising intermittent and limited-duration resources.  
Therefore, any portfolio that achieves a total summer reserve margin of 17% but includes significantly less 
than a 12% reserve margin consisting of fully dispatchable resources raises reliability concerns.     

2.3 Clarifying the Objective: Make Only the Decisions that Must Be Made Today 
Finally, it is helpful to bear in mind that this is not the last time the Companies will make resource 
decisions.  Thus, the objective of this Resource Assessment is not to prescribe the ideal resource mix 
through 2050, but rather to provide an optimal portfolio to address the decisions that must be made 
today due to upcoming environmental regulatory constraints (the Good Neighbor Plan) and major capital 
investments needed for Brown 3 to continue operating reliably in 2028 and beyond.  It is inadvisable to 
attempt to prescribe today the resource portfolio for the entire period this Resource Assessment 
addresses; developments in resource technology and applicable regulations can and will affect resource 
decisions to be made five, ten, or even twenty years from now. 

Therefore, the objective of this Resource Assessment is to formulate an optimal resource portfolio to 
meet customers’ projected needs and address resource decisions that must be made today, but also to 
do so in a way that does not prejudice future resource decisions.   
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Technology 

Number of Proposals  
by Start Year 

Nameplate 
Capacity 

(MW) Price <=2026 2027 2028+ 

Solar 32 2 3 35-685 

Solar w/ 4-hr Battery 
Option 26 16 - 100-750 

Solar + 4-hr Battery 2 - - 200 

2-hr Battery 3 1 - 120-300 

4-hr Battery 11 1 - 100-300 

Pumped Hydro - - 1 287 
Wind 1 - - 143 
NGCC - 4 2 643-1,285 
SCCT 2 1 - 556 

Solar Asset Development 2 - - 120-685 

 

 

 
3 The testimony of Charles R. Schram addresses the RFP at length, and it includes the RFP itself and all RFP responses 
as Exhibits CRS-1 and CRS-2, respectively. 

CONFIDENTIAL INFORMATION REDACTED

3  Meeting the Objective: Available Demand-  and Supply-Side Resources
To  meet  customers’  forecasted  demand  and  energy  requirements  discussed  above  reliably  and 
economically, the Companies gathered information about available supply-  and demand-side resources 
in addition to their existing resources.  They accomplished this on  the supply side through a request for 
proposals  (“RFP”).  On the demand side, the Companies accomplished this through their own research 
and  experience,  engagement  with  a  third-party  consultant  (Cadmus),  and  the  Companies’  DSM-EE 
Advisory Group.  The result was  a large array  of potential supply-side resources and  dispatchable  DSM 
programs  that  advanced for further analysis in this Resource Assessment.

3.1  Supply Side:  RFP  Responses and Review
The Companies issued an RFP for new generation capacity and  energy in June 2022.3  In total, 22 parties 
responded  to  the  RFP  with  101  proposals  across  39  different  projects,  some  of  which  the  Companies 
subdivided into a total of 110 proposals.  Due to the timing of the responses relative to the passage of the 
federal Inflation Reduction Act, the Companies asked all respondents to update their responses to account 
for  the  IRA.   The  majority  indicated  they  had  already  accounted  for  it  or  did  not  need  to  adjust  their 
responses;  five respondents provided updated information.

Appendix B contains a full listing of the 110 proposals;  Table  1  below summarizes them by technology:

Table  1: Summary of RFP Responses
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The majority of the responses to the RFP were for solar PPAs or solar PPAs with battery storage options.  
The Companies’ Project Engineering group submitted solar and battery storage proposals, as well as the 
only simple-cycle combustion turbine (“SCCT”) and NGCC proposals.   

The Companies reviewed the RFP responses and screened them to create a more manageable set of 
alternatives for modeling based on several factors, reducing the number of proposals evaluated to 43:   

• For PPA proposals covering the same project but with different pricing options due to PPA term, 
start date, and price escalation, the Companies selected the proposal with the lowest levelized 
cost per MWh.  For PPA proposals with similar levelized costs and flat or escalating price options, 
the Companies selected the proposals with flat prices.   
 

• Certain of the Companies’ self-build NGCC and SCCT proposals for the E.W. Brown Generating 
Station (“Brown”) would have required additional land acquisitions.  The Companies excluded 
those proposals due to the development risk associated with land acquisition.   
 

• The NGCC proposals included both single units and sets of two units at both Brown and the Mill 
Creek Generating Station (“Mill Creek”).  The Companies excluded sets of two NGCC units at each 
site due to the anticipated transmission capacity investment that would be required to 
accommodate two units at a single site and to allow for gas pipeline diversity among potential 
new NGCC units. 
 

• The Companies excluded proposals for the purchase or development of solar and battery storage 
assets from advancing to the modeling analysis due to the economics of the proposals.  The 
Companies revisited these proposals in Stage Three of the analysis described below. 
 

• The Companies excluded a non-conforming self-build 35 MW solar proposal at Trimble County 
(note that the Companies considered all other non-conforming proposals).   
 

• Some respondents rescinded certain proposals after submitting them.  The Companies did not 
consider rescinded proposals. 

The full set of 43 proposals that advanced for modeling analysis is also included in Appendix B.  Two 
important observations concerning the RFP review and screening process are: 

• Solar PPA prices have increased significantly.  The most competitive solar PPA proposals were 
priced at $36 to $40/MWh, which is 30 to 40 percent higher than the pricing in the Rhudes Creek 
and Ragland PPAs the Companies executed in 2019 and 2021, respectively.  These pricing 
increases are consistent with broader market indicators, such as the LevelTen Energy PPA Price 
Index for the third quarter of 2022, indicating that its Solar P25 Market-Averaged National Index 
rose to $42.21/MWh, up 30.3% ($9.82/MWh) year over year.4   
 

 
4 See LevelTen Energy “Q3 2022 PPA Price Index Executive Summary North America” at 7, available at: 
https://www.leveltenenergy.com/ppa. 
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• The Companies’ Muhlenberg Self-Build Solar Proposal Relocated to Mercer County.  One RFP 
response proposed to sell the Companies a solar project already in advanced stages of 
development, but not construction, located in Mercer County.5  Because the proposal was not for 
a commercially executable transaction for a PPA or to acquire a solar facility per se, the 
Companies’ Project Engineering group reviewed it and determined it would be a more suitable 
self-build solar site than their originally proposed site in Muhlenberg County, which had become 
problematic due to land acquisition issues.  The Companies’ Project Engineering group therefore 
revised their self-build proposal to suit the proposal at the Mercer County site, resulting in a 120 
MW self-build solar proposal in Mercer County rather than a 145 MW self-build solar proposal in 
Muhlenberg County.   

 

3.2 Demand Side: DSM Resources 
Working with their DSM-EE Advisory Group and their outside expert consultant, Cadmus, the Companies 
formulated a proposed 2024-2030 DSM-EE Program Plan for which the Companies are seeking approval 
in this proceeding.  As noted above, the Companies’ 2022 CPCN Load Forecast fully accounts for the energy 
efficiency effects of the proposed 2024-2030 DSM-EE Program Plan.  The dispatchable DSM portion of the 
2024-2030 DSM-EE Program Plan, including the existing dispatchable DSM programs the Companies 
currently have in place, advanced for further analysis to determine their role in the optimal resource 
portfolio.  A full listing of the dispatchable DSM programs and their relevant parameters are in Table 2 
below, which is also located in Appendix B.  

 
5 See Response No. 110 in Table 43 in Appendix B. 
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Table 2: Dispatchable DSM Program Options 

No. 
Program 
Name 

Variable Costs 
$/kWh 

Time-
Dependent 
Characteristic 2024 2025 2026 2027 2028 2029 2030 Winter Summer 

1 Peak Time 
Rebates 2.00 2.00 

Summer 
Capacity MW - 4 9 17 31 31 31 

Winter 
Capacity MW - 4 9 17 31 31 31 

Fixed Cost 
$/kW-Year -6 344 52 38 32 37 32 

2 DLC-Water 
Heaters 2.50 2.50 

Summer 
Capacity MW 3 3 3 2 2 2 2 

Winter 
Capacity MW 3 3 3 2 2 2 2 

Fixed Cost 
$/kW-Year 9 12 11 13 14 16 18 

3 DLC-AC7 - 1.68 

Summer 
Capacity MW 121 109 98 88 79 71 64 

Winter 
Capacity MW - - - - - - - 

Fixed Cost 
$/kW-Year 9 12 11 13 14 16 18 

4 BYOD-Smart 
Thermostats 4.17 4.93 

Summer 
Capacity MW 1 3 6 10 17 23 29 

Winter 
Capacity MW 0.4 1 2 3 4 6 7 

Fixed Cost 
$/kW-Year 740 218 140 109 105 90 86 

5 

Non-
residential 
Demand 
Response 

7.55 7.55 

Summer 
Capacity MW 29 36 45 56 67 79 79 

Winter 
Capacity MW 29 36 45 56 67 79 79 

Fixed Cost 
$/kW-Year 45 39 29 25 21 18 13 

 
 
  

 
6 The Peak Time Rebates program is projected to cost $250,000 in 2024 before realizing demand reductions starting 
in 2025. 
7 Summer capacity values are design-day values.  Expected load reductions are lower on an average peak day.   
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3.3 The Companies’ Existing Resources 
The Companies have a suite of existing supply- and demand-side resources that would continue to serve 
the bulk of customers’ demand and energy requirements over the Resource Assessment analysis period.  
This includes, for example, the Companies’ interruptible load under their Curtailable Service Riders.  To 
focus this analysis on the decision immediately at hand—namely, whether to retire and replace one or 
more of Mill Creek 2, Ghent 2, and Brown 3—the Companies have assumed that all of their existing 
resources will continue to operate throughout the analysis period with these exceptions: Mill Creek Unit 
1 will retire as planned in 2024, Paddy’s Run Unit 12 and Haefling Units 1-2 will retire in 2025, and OVEC 
will retire as planned in 2040.8   

Also, as noted above, the Companies did not assume that existing dispatchable DSM programs would 
automatically continue for the entire Resource Assessment period; rather, those measures advanced for 
analysis in the Resource Assessment.  Ultimately, those measures proved to be beneficial for reliability 
and are included in the optimal resource portfolio. 

Finally, it is important to note the potential impact of retiring Mill Creek 2, Ghent 2, and Brown 3.  
Collectively, these units have a total capacity of 1,194 MW and typically produce 15% or more of 
customers’ annual energy requirements, and they produce just over half of their annual energy during 
non-daylight hours:   

Table 3: Operational Data for Mill Creek 2, Ghent 2, and Brown 3 

Year 

Total 
Energy 
(GWh) % Night % Day 

Max Hourly 
Output 
(MW) 

Average 
Hourly 
Output 
(MW) 

% of Total 
Energy 

Requirements 
2017 5,698 52% 48% 1,235 772 17% 
2018 6,230 51% 49% 1,238 842 18% 
2019 5,407 51% 49% 1,250 785 16% 
2020 4,512 52% 48% 1,229 729 15% 
2021 4,610 51% 49% 1,219 752 15% 

 

Filling the energy gap these units will leave if they retire requires careful, thoughtful analysis to ensure 
the Companies have sufficient resources to continue to serve customers reliably and economically.  

Appendix A contains a full discussion of existing resource assumptions.   

 
8 Due to their age and relative inefficiency, the Companies do not perform major maintenance on their small-frame 
simple-cycle combustion turbines (“SCCTs”), Paddy’s Run Unit 12 and Haefling Units 1-2, but continue to operate 
them until they are uneconomic to repair.  This analysis assumes that they will be retired in 2025 for planning 
purposes.  
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4 Meeting the Objective: Analysis to Achieve an Optimal Resource Portfolio 
The Companies’ Resource Assessment analysis described below brought together their 2022 CPCN Load 
Forecast, their existing resources, the 43 RFP proposals that advanced from the RFP review and screening, 
and all dispatchable DSM programs from the 2024-2030 DSM-EE Program Plan to achieve an optimal 
portfolio for meeting the potential capacity need in 2028.  The Companies’ analysis: 

• Ensured compliance with the Good Neighbor Plan and other applicable environmental 
requirements while maintaining required reliability; 
 

• Accounted for key uncertainties, such as fuel and CO2 pricing; and 
 

• Used a combination of sophisticated modeling tools (including PLEXOS, PROSYM, and SERVM), as 
well as the Companies’ own expertise and experience. 

The Companies conducted their analysis in three stages:  

• Stage One: Economic Optimization.  First, the Companies created an economically optimized 
portfolio across six fuel price cases that assured minimum reliability and Good Neighbor Plan 
compliance. 
 

o Stage One Result: An economically optimized portfolio of the 621 MW Mill Creek NGCC, 
the 621 MW Brown NGCC, and 637 MW of solar PPAs. 

 
• Stage Two: Stress Testing.  Next, the Companies stress-tested the results of the first stage by 

comparing the economically optimized portfolio to nine other portfolios, each of which the 
Companies designed to test whether adjusting in a particular way might improve the results (e.g., 
a portfolio that could replace any retired coal generation with only DSM, renewable energy 
resources, and battery storage).  The Companies also tested the portfolios across all three CO2 
pricing scenarios and all six fuel price scenarios, all while maintaining minimum reliability. 
 

o Stage Two Result: The economically optimized portfolio of the Mill Creek NGCC, Brown 
NGCC, and 637 MW of solar PPAs remained optimal and resulted in lower CO2 emissions 
than other tested portfolios. 
 

• Stage Three: Fine Tuning.  Third, the Companies fine-tuned the economically optimal portfolio 
to address three issues: 
 

o Stage Three, Step One: Solar PPA Execution Risk.  The Companies’ own experience with 
solar PPAs, as well as the broader market experience in recent years, is that it is 
increasingly difficult for contracted solar facilities to be built on time or at all, at least at 
the contracted price.  To address this risk, the Companies demonstrate that adding two 
Companies-owned solar facilities to the portfolio helps address the risk that, given the 
current solar market, none of the solar PPAs might come to fruition, at least by 2028. 
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 Stage Three, Step One Result: Optimal portfolio of the Mill Creek NGCC, Brown 
NGCC, 240 MW of Companies-owned solar, and 637 MW of solar PPAs. 
 

o Stage Three, Step Two: Reliability Enhancement.  In this step, the Companies analyzed 
the value of adding reliability using dispatchable DSM from the 2024-2030 DSM-EE 
Program Plan, battery energy storage systems, and SCCT capacity.  The Companies 
concluded that adding all of the dispatchable DSM in the 2024-2030 DSM-EE Program 
Plan provides cost-effective reliability.  They further concluded that adding the proposed 
125 MW, 500 MWh Brown BESS, though not as economical as SCCT, would further 
enhance reliability and provide the Companies valuable experience with battery 
technology at utility scale, which will likely be instrumental in reliably integrating large 
quantities of renewable generation in the future.  In addition, Brown BESS might have 
quantifiable benefits that the Companies have not attempted to quantify here, such as 
reducing fast-ramping wear on gas turbine units and the ability to carry less spinning 
reserves.  
 
 Stage Three, Step Two Result: Optimal portfolio of the Mill Creek NGCC, Brown 

NGCC, 240 MW of Companies-owned solar, 637 MW of solar PPAs, 2024-2030 
DSM-EE Program Plan, and Brown BESS. 
 

o Stage Three, Step Three: OVEC early retirement:  The final consideration was whether 
an early retirement of the OVEC coal units would reduce reliability such that the 
Companies would need additional resources solely to address the early retirement.  
Particularly because the Companies cannot unilaterally control the operation or 
retirement of OVEC’s units, this was an important uncertainty to analyze.  The results 
indicate that an OVEC early retirement, even in 2028, would not require additional 
resources (assuming no significant changes in actual versus forecasted load). 
 
 Stage Three, Step Three Result:  Optimal portfolio remains the Mill Creek NGCC, 

Brown NGCC, 240 MW of Companies-owned solar, 637 MW of solar PPAs, 2024-
2030 DSM-EE Program Plan, and Brown BESS. 

The result is a resource portfolio that appropriately balances economics, reliability, and risk; provides 
valuable experience with new technologies to accommodate greater renewable power generation in the 
future; and reduces CO2 emissions considerably, more than other portfolios analyzed, which reduces 
future regulatory risk and potential cost related to CO2 emissions. It is a no-regrets portfolio: 

• Low load or increased efficiencies, no regrets.  If actual load is materially lower than projected 
load for any reason, including if technological advances or economic changes result in additional 
energy and demand savings (through DSM-EE programs or otherwise), retiring additional aging 
coal capacity would likely be the most economical option, further reducing CO2 emissions.  
 

• High load, no regrets.  If actual load is materially higher than projected load, nothing in the 
Companies’ proposed portfolio precludes adding demand- or supply-side resources to address 
the need.  If the increased load results from electric space heating or electric vehicle charging, the 
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proposed NGCC units could prove to be particularly valuable given their ability to economically 
produce energy at night.   
 

• Increased renewable generation or CO2 constraints, no regrets.  The proposed portfolio’s fast-
ramping NGCC units and Brown BESS well position the Companies to provide reliable service if 
renewable energy generation increases, and the lower CO2 emissions of NGCCs and zero 
emissions of solar and DSM-EE all improve the Companies’ positioning to address any CO2 
emissions pricing or regulations that might eventuate. 

4.1 Key Constraints and Uncertainties of Analysis  
The Companies’ Resource Assessment analysis included addressing a number of important constraints 
and uncertainties. 

4.1.1 Key Constraints   
All stages of the Resource Assessment’s analysis assumed that compliance with the Good Neighbor Plan 
and all other environmental requirements and maintaining minimum reserve margins were absolute 
constraints.  As proposed, the Good Neighbor Plan effectively requires installing SCR to operate Mill Creek 
2 and Ghent 2 during the ozone season (May through September) beginning in 2026.  But because 
replacement generation may not be available by 2026, the Companies have asked the EPA to extend the 
compliance deadline in the event that retiring and replacing a resource is lower cost than physical 
compliance with SCR.  To achieve Good Neighbor Plan compliance, the Companies assumed in the 
Resource Assessment that non-SCR-equipped coal units could not operate during the ozone season 
beginning in 2026 unless the units were scheduled to be replaced.  Specifically, the Companies assumed 
they could avoid the cost of installing SCR in 2026 if the non-SCR-equipped unit was replaced by the 2028 
ozone season. 

4.1.2 Key Uncertainty: Fuel Prices   
Fuel prices are an important uncertainty in this analysis.  To address it, the Companies used six different 
fuel price scenarios in which natural gas prices were the primary price setting factor, with coal prices 
derived from gas prices beginning in 2028 based on different historical coal-to-gas (“CTG”) price ratios.   

The Companies’ three natural gas price cases (low, mid, and high) derive from Henry Hub forward prices 
in the near term (2023-2025), then interpolate to the Energy Information Administration’s 2022 Annual 
Energy Outlook’s corresponding natural gas price forecasts: High Oil and Gas Supply case (low gas price), 
Reference case (mid gas price), and Low Oil and Gas Supply case (high gas price).   

In the first three fuel price scenarios the Companies analyzed, coal prices predominantly varied with gas 
prices by a ten-year average ratio of coal and gas prices.  These cases are the most likely to occur over a 
long planning period and are called “Low Gas, Mid CTG Ratio,” “Mid Gas, Mid CTG Ratio,” and “High Gas, 
Mid CTG Ratio.”  Note that the Mid coal-to-gas price ratio approximates the ratio of NGCC and coal energy 
costs.  Therefore, it is plausible to expect coal-to-gas price ratios to revert to this ratio over the long term, 
which is why the Companies refer to it as the “Expected CTG Price Ratio.”  Figure 6 below shows these 
three fuel price cases in nominal dollars per MMBtu through 2050: 
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The other three fuel price scenarios involve relationships between gas and coal prices that would be 
atypical for an extended time horizon, essentially as sensitivity cases: (1) low gas prices with a historically 
high coal-to-gas ratio (“Low Gas, High CTG Ratio”); (2) high gas prices with a historically low coal-to-gas 
ratio (“High Gas, Low CTG Ratio”); and (3) high gas prices with the current, historically aberrant coal-to-
gas ratio (“High Gas, Current CTG Ratio”). Figure 7 below illustrates these three fuel price cases in nominal 
dollars per MMBtu through 2050: 

CONFIDENTIAL INFORMATION REDACTED

Figure  6: Coal and Natural Gas Price Scenarios with a Mid Coal-to-Gas Price Ratio
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A full description of the formulation of these gas and coal prices and coal-to-gas price ratios is in the Coal 
and Natural Gas Prices discussion in Appendix A, as well as Appendix E. 

4.1.3 Key Uncertainty: CO2 Prices   
The future of CO2 regulation is a key uncertainty in this analysis.  To address it, the Companies considered 
three different CO2 prices as proxies for different possible CO2 regulations, in accordance with the CO2 
prices Commission Staff asked the Companies to model in the 2021 IRP proceeding: $0/ton, $15/ton, and 
$25/ton.9  These pricing cases are also reasonable based on prices in CO2 markets like the Regional 
Greenhouse Gas Initiative (“RGGI”) and others, as discussed in the CO2 Prices discussion in Appendix A.   

4.1.4 Key Uncertainty: Solar PPA Execution   
The Companies’ own experience with solar PPAs demonstrates the reality of solar PPA execution risk (i.e., 
the risk that a contracted facility will not be built on time or at all), as does the experience of the broader 
solar market in recent years.  The Companies were able to execute two attractively priced PPAs (Rhudes 
Creek and Ragland) with reputable solar developers in 2019 and 2021, respectively.  To date, neither 
project has obtained all necessary approvals to begin construction.  Even if they were able to obtain 
necessary approvals, market prices of polysilicon needed for solar panels and related constraints on panel 
availability (owing largely to prohibitions on the ability to use certain solar panels made in China) make it 

 
9 See Case No. 2021-00393, Companies’ Response to PSC 1-1(b) (Mar. 25, 2022). 

CONFIDENTIAL INFORMATION REDACTED

Figure  7:  Coal and Natural Gas Price Scenarios with  Atypical  Long-Term  Coal-to-Gas Price Ratios
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unlikely the developers could obtain financing to build the projects at all, and certainly not at the prices 
prescribed in the PPAs.10  The Companies address this risk in their analysis below. 

But a solar risk the Companies do not directly address is solar intermittency: cloud risk.  The modeling the 
Companies performed in this Resource Assessment took solar to be a resource with a fixed production 
profile.  Although it is a reasonable profile and is correlated with the weather and solar irradiance 
underlying the load forecast, the models assume solar will reliably and consistently produce according to 
its profile.   

4.1.5 Key Uncertainty: Early OVEC Retirement   
A final key uncertainty the Companies’ analysis considers is the possibility that the OVEC coal units that 
provide the Companies over 150 MW of dispatchable capacity might retire prior to the currently expected 
retirement date of 2040.  At the end of the analysis below, the Companies evaluate the impact of OVEC 
retirement in 2028 on the reliability of the Companies’ optimal resource portfolio. 

4.2 Modeling Tools Used in the Analysis: PLEXOS, PROSYM, Financial Model, SERVM 
The Companies used four primary software tools to aid them in their analysis: 

• Portfolio Development and Screening: PLEXOS.  The Companies used PLEXOS to develop least-
cost resource portfolios over a range of fuel price scenarios.  Using simplifying assumptions to 
increase speed, PLEXOS models and evaluate thousands of resource portfolios to determine which 
one minimizes the cost of serving customers’ load while meeting minimum total summer and total 
winter reserve margin constraints.  Notably, as the Companies use PLEXOS, although it evaluates 
thousands of possible resource portfolios in each run, its output for each run is only the least-cost 
portfolio for the assumptions entered; it does not provide a ranked listing or other comparison of 
runner-up portfolios. (Largely due to this limitation, Stage Two of the Companies’ analysis 
involved comparing PLEXOS-selected portfolios to other portfolios formulated by the Companies 
to examine their relative reliability and economics.) 
 

• Production Cost Modeling: PROSYM.  Because production costs are an important component of 
total costs, after PLEXOS identifies which resources to include in a resource portfolio, the 
Companies modeled the portfolio’s generation production costs in detail using PROSYM, an hourly 
chronological dispatch model.  PLEXOS and PROSYM use the same inputs (e.g., they use the same 
natural gas and coal prices), but the Companies used PROSYM rather than PLEXOS for detailed 
production cost modeling because they have used and configured PROSYM over a number of 
years to do such modeling relatively quickly.   
 

• Present Value of Revenue Requirements (“PVRR”): Excel Financial Model.  The Companies used 
a Financial Model built in Excel to calculate and compare PVRR values for various portfolios.  
Inputs to the Financial Model include capital and fixed operating costs for new and existing 
resources as well as generation production costs.  Table 4 below lists the primary costs included 

 
10 See, e.g., “Polysilicon Prices Remain High, No Moderation Until 2023”, EnergyTrend, September 2, 2022, available 
at: https://m.energytrend.com/news/20220902-29845.html#:~:text=While future polysilicon prices are,per 
kilogram polysilicon price drop. 
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in the Financial Model.  Production costs are developed in PROSYM; the costs for new and existing 
resources are the same costs modeled in PLEXOS and used to develop the least-cost portfolio. 

Table 4:  Financial Model Costs 
Cost Item Description 
Generation 
Production Costs 

Variable fuel and reagent costs associated with power generation. Includes 
costs of purchased power such as OVEC and solar PPAs.  

Existing Unit Stay-
Open Costs Ongoing capital and fixed O&M associated with existing generation assets. 

Environmental 
Compliance Costs 

Capital and O&M associated with compliance costs for new regulations, such 
as SCRs to comply with the Good Neighbor Plan. 

New Generation 
Capital and Stay-
Open Costs 

Capital and O&M associated with new generation assets. 

 

• Reliability Analysis: SERVM.  The Companies used SERVM to evaluate portfolios’ reliability across 
a wide range of weather and unit availability scenarios.  Specifically, the Companies used SERVM 
to model generation production costs, reliability costs, and loss of load expectation (“LOLE”) over 
49 load scenarios and 300 unit availability scenarios.  The load scenarios were developed based 
on the weather in each of the last 49 years.  This allows the Companies to evaluate the economics 
of improving reliability considering the historical frequency and likelihood of extreme weather 
events.   

4.3 Analytical Framework: Three Stages to Achieve an Optimal Resource Portfolio 
As discussed above, the Companies conducted three stages of analysis using the 2022 CPCN Load Forecast, 
existing resources, RFP responses, dispatchable DSM programs from the 2024-2030 DSM-EE Program 
Plan, and modeling tools to address the potential retirements of Mill Creek 2, Ghent 2, and Brown 3, as 
well as the key uncertainties and risks also discussed above, and arrive at an optimal resource portfolio.  

4.4 Stage One: Economic Optimization to Achieve Minimum Reliability 
The objective of Stage One is an economically optimal resource portfolio across six fuel-price cases 
consistent with meeting minimum reserve margin requirements and complying with Good Neighbor Plan.  
All steps of this stage assumed a CO2 price of zero; Stage Two analyzed other CO2 prices. 

4.4.1 Stage One, Step One: Portfolio Development and Screening with PLEXOS 
The first step of Stage One consisted of allowing PLEXOS to create optimal resource portfolios for each of 
the Companies’ six fuel price cases.  

In this step, PLEXOS: 

• Took the Companies’ existing resources to be fixed (except Mill Creek 1 retiring by the end of 
2024, the small-frame SCCTs retiring in 2025, OVEC retiring in 2040, and existing dispatchable 
DSM programs could be retained or retired);  

• Could choose to add SCR to or retire either or both of Mill Creek 2 and Ghent 2;  
• Could make the $26 million investment to continue operating Brown 3 or retire the unit; and 
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• Could add any RFP response or dispatchable DSM resource from the 2024-2030 DSM-EE Program 
Plan at any time, regardless of the operation date specified in the RFP response.   

Table 5 below provides the portfolios PLEXOS selected with these assumptions for each fuel price 
scenario.  As mentioned previously, as the Companies use PLEXOS, it provides only the economically 
optimal portfolio for each model run. 

Table 5:  Portfolio Development and Screening Results by Fuel Price Scenario 
 

Fuel Price Scenario 
(Gas, CTG Price Ratio) 

Least-Cost Resource Portfolio 

Changes to Dispatchable 
Resources by 2028 

Total New 
Renewables 

by 2028 (MW) 

Total New 
Renewables 

by 2035 (MW) 

Ex
pe

ct
ed

 C
TG

 

Low Gas, Mid CTG Ratio Replace MC2, GH2, BR3 
w/ MC5 and BR12 N/A N/A 

Mid Gas, Mid CTG Ratio Replace MC2, GH2, BR3 
w/ MC5 and BR12 104 Solar 384 Solar 

High Gas, Mid CTG Ratio Replace MC2, BR3 
w/ MC5; Add SCR at GH2 637 Solar 2,322 Solar 

At
yp

ic
al

 C
TG

 Low Gas, High CTG Ratio Replace MC2, GH2, BR3 
w/ MC5 and BR12 N/A N/A 

High Gas, Low CTG Ratio Replace MC2, BR3 
w/ MC5; Add SCR at GH2 384 Solar 2,322 Solar 

High Gas, Current CTG Ratio Replace MC2, GH2, BR3 
w/ MC5 and BR12 2,322 Solar 2,717 Solar 

143 Wind 

 

Important observations from these results: 

• Adding NGCC capacity is optimal in all fuel price cases.  In four of the six fuel price cases, PLEXOS 
retired Mill Creek 2, Ghent 2, and Brown 3 and added Mill Creek NGCC and Brown NGCC.  In two 
of the high gas price cases, PLEXOS chose to retire only Mill Creek 2 and Brown 3, add Mill Creek 
NGCC, and add SCR to Ghent 2.  The level of fuel prices does not materially impact the need for 
resources that can economically produce large amounts of energy at night.   
 

• The desirability of solar predictably correlates with fossil fuel prices.  Only in the two low gas 
price cases did PLEXOS add no renewable generation, and it added more in the high gas price 
cases than it did in the mid gas price case.  A significant amount of solar is added after 2028 in 
two of the three high gas price cases.     
 

• PLEXOS did not select DSM or batteries in any of the fuel-price cases.  This likely results from the 
cost of these resources relative to their limited duration, making them uneconomical to achieve 
minimum reliability and meet the significant need for energy created by coal unit retirements.  
Also, batteries do not produce energy, but rather move it in time. 
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Response 

No. in 
Appx. B Respondent Project Start Date 

Term 
(Years) 

Price 
($/MWh) 

Capacity 
(MW) 

Cumulative 
Capacity 

(MW) 
7 

70 
45 
29 
34 
39 
37 

74 

56 
36 

 

The Companies then created 11 PPA combination options, the first of which had 0 MW solar, with each 
subsequent PPA combination option adding the next most economical PPA from Table 6 above, resulting 
in each subsequent PPA combination having more cumulative PPA capacity that prior combinations, all 
the way to the 11th combination with 2,322 MW cumulative PPA capacity.   

The Companies then used the 11 PPA combinations to create 22 total portfolios for detailed production 
cost runs in PROSYM.  As shown in Table 7 below, each portfolio was a combination of one of the two 
NGCC combinations from the PLEXOS modeling (i.e., Mill Creek NGCC plus Brown NGCC and Mill Creek 
NGCC plus Ghent 2 with SCR) and one of the 11 PPA combinations described above (2 NGCC options x 11 
PPA combinations = 22 portfolios to analyze). 

 

 
11 Note that only the first four proposals are at or below the $42.21/MWh P25 price for solar PPAs as reported by 
LevelTen and discussed in Section 3.1.  Despite the higher price of the remaining proposals, they were evaluated in 
this step of the analysis. 

CONFIDENTIAL INFORMATION REDACTED

4.4.2  Stage One, Step  Two:  Portfolio  Optimization with  Detailed Production Costs
The first step of Stage One revealed that only two basic combinations  of retirements and replacement 
resources would be economically optimal  in 2028: (1) retiring  Mill Creek 2, Ghent 2, and Brown  3  and 
adding  the  Mill  Creek  NGCC,  Brown  NGCC,  and  solar  PPAs;  and  (2)  retiring  Mill  Creek  2  and  Brown  3,
adding SCR to Ghent  2, and adding  the Mill Creek NGCC  and solar  PPAs.

In the second step of Stage One, the Companies sought to optimize the  portfolio  by evaluating actionable 
alternatives  based on  the  results  of Stage  One, Step  One.

To achieve this, the Companies identified all of the solar PPA proposals that PLEXOS selected by 2028 (a
total of 2,322 MW), listed below in  Table  6  in order of increasing PPA price per MWh:11

Table  6:  Solar PPAs Selected in Portfolio Optimization
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Table 7:  Resource Portfolios Evaluated in Detailed Production Cost Analysis 
Portfolios Where MC2, GH2, BR3 

Replaced w/ MC5 and BR12 
Portfolios Where MC2, BR3 

Replaced w/ MC5; SCR Added to GH2 
MC5/BR12; 0 Solar MC5/GH2 SCR; 0 Solar 

MC5/BR12; 104 Solar MC5/GH2 SCR; 104 Solar 
MC5/BR12; 384 Solar MC5/GH2 SCR; 384 Solar 
MC5/BR12; 499 Solar MC5/GH2 SCR; 499 Solar 
MC5/BR12; 637 Solar MC5/GH2 SCR; 637 Solar 

MC5/BR12; 1,322 Solar MC5/GH2 SCR; 1,322 Solar 
MC5/BR12; 1,522 Solar MC5/GH2 SCR; 1,522 Solar 
MC5/BR12; 1,622 Solar MC5/GH2 SCR; 1,622 Solar 
MC5/BR12; 1,722 Solar MC5/GH2 SCR; 1,722 Solar 
MC5/BR12; 2,222 Solar MC5/GH2 SCR; 2,222 Solar 
MC5/BR12; 2,322 Solar MC5/GH2 SCR; 2,322 Solar 

 

The Companies then conducted detailed production cost runs in PROSYM for each of these 22 portfolios 
across all six fuel price cases (a total of 132 runs).  Unlike the PLEXOS modeling, in this part of the analysis 
each solar contract was assumed to begin on its RFP-specified start date.  Table 8 below lists the least-
cost portfolio for each fuel price scenario. 

Table 8:  Portfolio Optimization Results 
 Fuel Price Scenario 

(Gas, CTG Price Ratio) Least-Cost Resource Portfolio 

Ex
pe

ct
ed

 
CT

G 

Low Gas, Mid CTG Ratio MC5/BR12; 104 Solar 
Mid Gas, Mid CTG Ratio MC5/BR12; 637 Solar 
High Gas, Mid CTG Ratio MC5/BR12; 2,322 Solar 
Average Low, Mid, High Gas w/ Mid CTG Ratio MC5/BR12; 637 Solar 

At
yp

ic
al

 C
TG

 Low Gas, High CTG Ratio MC5/BR12; 104 Solar 
High Gas, Low CTG Ratio MC5/GH2 SCR; 2,222 Solar 
High Gas, Current CTG Ratio MC5/BR12; 2,322 Solar 
Average Excluding High Gas, Current CTG Ratio MC5/BR12; 637 Solar 
Average All Fuel Prices MC5/BR12; 1,322 Solar 

 

Important observations from these results: 

• Mill Creek NGCC and Brown NGCC portfolio appears optimal.  With detailed production cost 
modeling, only in the atypical fuel price scenario most favorable to coal (High Gas, Low Coal-to-
Gas Ratio) is retiring only Mill Creek 2 and Brown 3, adding Mill Creek NGCC, and adding SCR to 
Ghent 2 least-cost.   
 

• Solar PPA capacity of 637 MW is optimal.  The three fuel price scenarios with a Mid coal-to-gas 
price ratio had an average optimal amount of solar of four PPAs totaling 637 MW.  The Mid coal-
to-gas price ratio is consistent with history and appears most likely to persist over a long analysis 
period.  In addition, the most expensive of these PPAs is $40.02/MWh, which is consistent with 
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broader solar PPA market pricing of solar.12  Therefore, 637 MW of solar PPAs is the optimal 
amount to pursue given the responses to the RFP and current solar market conditions. 

4.4.3 Stage One, Step Three: Ghent 2 SCR PVRR Analysis 
The third step of Stage One built on the results of the previous two steps and sought to determine how 
long Ghent 2 would have to operate to justify equipping it with an SCR in the single fuel price case in which 
it was least cost.  This would provide a more precise sense of the economics of adding SCR to Ghent 2.  

To do this, the Companies evaluated cases where, after being retrofitted with SCR in 2028, Ghent 2 is 
replaced with the Brown NGCC later in the analysis period.  The Companies’ generation portfolio after 
Ghent 2 is replaced with the Brown NGCC is the same as the portfolio with the Mill Creek NGCC and Brown 
NGCC in 2028; the only material differences in revenue requirements after Ghent 2 is replaced result from 
the later-commissioned Brown NGCC having higher capital revenue requirements than commissioning it 
in 2028.   

Table 9 compares the difference in PVRR between the portfolio with the Mill Creek NGCC, Ghent 2 with 
SCR, and 637 MW of solar (“MC5/GH2 SCR; 637 Solar”) and the portfolio with the Mill Creek NGCC, Brown 
NGCC, and 637 MW of solar (“MC5/BR12; 637 Solar”) over all six fuel price cases and four different 
eventual retirement dates for Ghent 2 with SCR.13  Positive values in Table 9 indicate that the portfolio 
with the Ghent 2 SCR is more expensive.       

Table 9:  PVRR Difference; “MC5/GH2 SCR; 637 Solar” less “MC5/BR12; 637 Solar” ($M, 2022 Dollars) 
 
 

Fuel Price Scenario (Gas Price, 
CTG Price Ratio) 

Year of GH2 Retirement 
in “MC5/GH2 SCR; 637 Solar” Portfolio 

SCR Break-
Even Year 2035 2040 2045 

Indefinite 
Operation 

Ex
pe

ct
ed

 
CT

G 

Low Gas, Mid CTG Ratio 77 121 107 96 N/A 
Mid Gas, Mid CTG Ratio 71 110 94 64 N/A 
High Gas, Mid CTG Ratio 75 116 104 91 N/A 

At
yp

ic
al

 
CT

G 

Low Gas, High CTG Ratio 95 149 144 163 N/A 
High Gas, Low CTG Ratio 33 52 20 -77 2049 
High Gas, Current CTG Ratio 373 595 738 1,390 N/A 

 

This analysis shows there are high costs to adding SCR to Ghent 2 in five of six fuel price scenarios and 
that adding SCR is unfavorable even in the fuel price scenario most favorable to coal (High Gas, Low CTG 
Ratio) unless Ghent 2 can continue to operate until at least 2049—all assuming no CO2 pricing or other 
constraint.  On balance, Stage One, Step Three indicates that the Mill Creek NGCC and Brown NGCC plus 

 
12 See LevelTen Energy “Q3 2022 PPA Price Index Executive Summary North America” at 7 (showing current LevelTen 
Energy PPA Price Index for third quarter of 2022, Solar P25 Market-Averaged National Index is at $42.21/MWh), 
available at: https://www.leveltenenergy.com/ppa. 
13 Focusing solely on the resource portfolio with the Mill Creek NGCC and SCR at Ghent 2, the optimal amount of 
solar over the fuel price scenarios with a Mid coal-to-gas price ratio is also 637 MW.    
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637 MW of solar PPAs is the economically optimal portfolio that satisfies both the Good Neighbor Plan 
and minimum reserve margin requirements. 

4.5 Stage Two: Stress-Testing the Economically Optimal Portfolio 
As noted above, the results of Stage One of the Companies’ analysis strongly indicated that retiring Mill 
Creek 2, Ghent 2, and Brown 3 and adding the Mill Creek NGCC, Brown NGCC, and 637 MW of solar PPAs 
would be economically optimal based on fuel price scenario analysis alone. 

In Stage Two, the Companies sought to stress-test the Stage One results in two ways simultaneously: (1) 
by evaluating different CO2 price scenarios and (2) by comparing the apparently optimal portfolio to other 
portfolios created by the Companies to test whether certain portfolio constructs might offer additional 
insights.  Particularly because PLEXOS, as the Companies use it, does not provide a listing or ranking of all 
the portfolios it evaluates, the Companies thought it was particularly important to explicitly evaluate other 
portfolios and compare their economics. 

4.5.1 Stage Two, Step One: Portfolio Creation 
As shown in Table 10 below, the Companies developed ten total portfolios to evaluate in Stage Two.  The 
first two are familiar: Portfolio 1 is the apparently economically optimal portfolio from Stage One (Mill 
Creek NGCC, Brown NGCC, and 637 MW of solar PPAs); Portfolio 2 is the other potentially optimal 
portfolio from Stage One (Mill Creek NGCC, Ghent 2 with SCR, and 637 MW of solar PPAs).  The other eight 
portfolios have varying levels of NGCC, coal unit retirements, SCR, dispatchable DSM from the 2024-2030 
DSM-EE Program Plan, SCCT, and renewables, as well as options to operate non-SCR-equipped coal units 
only in non-ozone-season months.  The Companies’ reasoning for the other eight portfolios follows the 
table below. 
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Table 10:  Stress Testing (Portfolios 1-10) 
Port 
Num Portfolio Name Description 

NGCC 
Units 

Coal 
Units 

New 
SCR 

1 MC5 & BR12 
Replace MC2 in 2027 w/ MC5 
Replace BR3 & GH2 in 2028 with 1 NGCC at E.W. Brown 
Add 637 MW of solar 

+2 -3 0 

2 MC5/GH2 SCR 
Replace MC2 in 2027 w/ MC5 
Add SCR at GH2 and retire BR3 in 2028 
Add 637 MW of solar 

+1 -2 +1 

3 MC5; 
Non-Ozone GH2 

Replace MC2 in 2027 w/ MC5 
No GH2 SCR; Operate GH2 in non-ozone season only 
Add optimal portfolio of renewables, battery storage, and 
dispatchable DSM 

+1 -1 0 

4 
MC5; 
Non-Ozone GH2 
Retire BR3 

Replace MC2 in 2027 w/ MC5 
No GH2 SCR; Operate GH2 in non-ozone season only 
Add optimal portfolio of renewables, battery storage, and 
dispatchable DSM 
Retire BR3 

+1 -2 0 

5 MC2/GH2 SCR 

No coal retirements 
Add SCR at MC2 and GH2 in 2026 
Complete BR3 overhaul in 2027 
Add 637 MW of solar14 

0 0 +2 

6 Non-Ozone 
MC2/GH2 

No SCRs and no coal retirements 
Operate MC2 and GH2 in non-ozone season only 
Complete BR3 overhaul in 2027 
Add optimal portfolio of renewables, battery storage, and 
dispatchable DSM 

0 0 0 

7 
Non-Ozone 
MC2/GH2; 
Retire BR3 

No SCRs; Retire BR3 
Operate MC2 and GH2 in non-ozone season only 
Add optimal portfolio of renewables, battery storage, and 
dispatchable DSM 

0 -1 0 

8 All Renewables Replace MC2, BR3, and GH2 with optimal portfolio of 
renewables, battery storage, and dispatchable DSM 0 -3 0 

9 SCCT + Renewables Replace MC2, BR3, and GH2 with optimal portfolio of 
renewables, battery storage, dispatchable DSM, and SCCT 0 -3 0 

10 DSM Only Retire MC2, BR3, and GH2 
Meet energy and capacity shortfall with DSM 0 -3 0 

 

As noted in Table 10, Portfolios 3, 4, and 6-9 all required further specification of the renewable, 
dispatchable DSM from the 2024-2030 DSM-EE Program Plan, and battery resources to be added to 
address anticipated energy shortfalls (Portfolio 9 also included SCCT as an option).  To do that optimally 
and meet the portfolio specifications, the Companies conducted a PLEXOS run for each portfolio in the 
high gas price, mid coal-to-gas price ratio case, which tends to favor renewables.  As in Stage One, these 
PLEXOS runs included a zero CO2 price and attempted to meet minimum reserve margin requirements.   

The Companies’ reasoning in creating Portfolios 3-10 follows: 

 
14 Portfolio 5 has the same amount of solar as Portfolios 1 and 2 because the economics of replacing generation that 
can economically serve nighttime energy requirements are not materially impacted by solar. 
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• Portfolios 3, 4, 6, and 7 explored different combinations of retaining Ghent 2 or Mill Creek 2 and 
Ghent 2 to serve only during non-ozone season months, with or without Brown 3.  The purpose 
of these portfolios was to explore the relative reliability and economics of retaining one or both 
of these units without investing in SCR. 

• Portfolio 5 tested the economics and reliability of investing in SCR for Mill Creek 2 and Ghent 2 
and conducting the major overhaul of Brown 3, i.e., the reliability and economics of retaining all 
current coal units (other than Mill Creek Unit 1, which is already scheduled to retire by the end of 
2024). 

• Portfolio 8 tested the economics and reliability of retiring Mill Creek 2, Ghent 2, and Brown 3 and 
replacing their energy as needed with only renewables, batteries, and dispatchable DSM from the 
2024-2030 DSM-EE Program Plan.  The purpose was to test the reliability and economics of a 
replacement portfolio for complying with the Good Neighbor Plan that excluded all fossil fuel 
options.  

• Portfolio 9 had the same retirements as Portfolio 8 but added SCCT to Portfolio 8’s potential 
replacement resources.  This was to test the impact of SCCT as a reliability resource in a 
replacement portfolio otherwise devoid of fossil fuel units. 

• Portfolio 10 retires Mill Creek 2, Ghent 2, and Brown 3 and adds all dispatchable DSM from the 
2024-2030 DSM-EE Program Plan for the purpose of assessing the reliability of the portfolio with 
no replacement resources other than DSM.15   

Table 11 below summarizes the total generation changes (i.e., retirements and resource additions) in all 
ten portfolios: 

Table 11:  Stress Testing (Portfolios 1-10); Generation Changes by 2028 (Net Summer MW) 
 

Portfolio Name NGCC Coal SCCT Solar Wind DSM16 
Battery 

Storage17 
1 MC5 & BR12 +1,242 -1,194 - +637 - -46 - 
2 MC5/GH2 SCR +621 -709 - +637 - -46 - 
3 MC5; Non-Ozone GH2 +621 -78218 - +637 - -46 - 
4 MC5; Non-Ozone GH2; Ret BR3 +621 -1,19419 - +637 - -46 - 
5 MC2/GH2 SCR - - - +637 - -46 - 
6 Non-Ozone MC2/GH2 - -78220 - +637 - -46 - 
7 Non-Ozone MC2/GH2; Ret BR3 - -1,19421 - +1,422 +143 -46 +400 
8 All Renewables - -1,194 - +1,972 +143 -46 +1,270 
9 SCCT + Renewables - -1,194 +972 +1,522 - -46 - 

10 DSM Only - -1,194 - - - +102 - 
 

 
15 Note that all portfolios effectively assume the full deployment of all non-dispatchable programs and measures in 
the 2024-2030 DSM-EE Program Plan because those effects are embedded in the 2022 Load Forecast. 
16 Values reflect expected load reductions under normal peak weather conditions. 
17 In Portfolio 7, battery storage consists of 300 MW of 2-hour duration batteries and 100 MW of 4-hour duration 
batteries.  In Portfolio 8, all battery storage consists of 4-hour duration batteries. 
18 In Portfolio 3, MC2 is retired.  GH2 is available only in the non-ozone season. 
19 In Portfolio 4, MC2 and BR3 are retired. GH2 is available only in the non-ozone season. 
20 In Portfolio 6, MC2 and GH2 are available only in the non-ozone season. 
21 In Portfolio 7, BR3 is retired.  MC2 and GH2 are available only in the non-ozone season. 
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The reserve margins achieved by these portfolios are important to observe, which are shown in Table 12 
below (note that “fully dispatchable resources” exclude intermittent and limited-duration resources):    

Table 12:  Stress Testing (Portfolios 1-10); 2028 Summer and Winter Reserve Margins 
 Summer Winter 
Minimum Reserve Margin Target 17% 24% 
 
Fully Dispatchable Reserve Margin   
  Portfolio 1:  MC5 & BR12 15.7% 25.1% 
  Portfolio 2:  MC5/GH2 SCR 13.6% 22.6% 
  Portfolio 3:  MC5; Non-Ozone GH2 12.4% 29.4% 
  Portfolio 4:  MC5; Non-Ozone GH2; Retire BR3 5.9% 22.6% 
  Portfolio 5:  MC2/GH2 SCR 15.0% 23.7% 
  Portfolio 6:  Non-Ozone MC2/GH2 2.6% 23.7% 
  Portfolio 7:  Non-Ozone MC2/GH2; Retire BR3 -3.9% 16.9% 
  Portfolio 8:  All Renewables -3.9% 4.1% 
  Portfolio 9:  SCCT + Renewables 11.4% 21.0% 
  Portfolio 10:  DSM Only -3.9% 4.1% 

 
Total Reserve Margin   
  Portfolio 1:  MC5 & BR12 30.1% 28.4% 
  Portfolio 2:  MC5/GH2 SCR 28.0% 25.8% 
  Portfolio 3:  MC5; Non-Ozone GH2 26.8% 32.6% 
  Portfolio 4:  MC5; Non-Ozone GH2; Retire BR3 20.3% 25.8% 
  Portfolio 5:  MC2/GH2 SCR 29.4% 27.0% 
  Portfolio 6:  Non-Ozone MC2/GH2 17.0% 27.0% 
  Portfolio 7:  Non-Ozone MC2/GH2; Retire BR3 27.1% 27.5% 
  Portfolio 8:  All Renewables 47.7% 28.9% 
  Portfolio 9:  SCCT + Renewables 36.9% 24.3% 
  Portfolio 10:  DSM Only 4.9% 9.2% 

 

Important observations concerning these results: 

• Dispatchable DSM from the 2024-2030 DSM-EE Program Plan is again uneconomical to meet 
minimum reserve margins.  PLEXOS again did not select any dispatchable DSM from the 2024-
2030 DSM-EE Program Plan in any portfolio; rather, it retired existing dispatchable DSM in every 
portfolio it created as an uneconomical means of satisfying minimum reserve margins.  To obtain 
dispatchable DSM in Portfolio 10, the Companies had to add it outside PLEXOS.  
 

• Some portfolios rely heavily on intermittent and limited-duration resources to meet reserve 
margins.  The non-ozone-operation portfolios and the renewables-only portfolio rely heavily on 
intermittent and limited-duration resources to meet summer reserve margins, and the 
renewables-only portfolio relies heavily on intermittent and limited-duration resources to meet 
winter reserve margins.  Although these portfolios meet minimum reserve margin constraints in 
total, the differences in their fully dispatchable reserve margins indicate that the reliability of 
these portfolios is very different.  As previously discussed, there is real risk to this approach, 
including solar execution risk and intermittency (cloud) risk.   
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• Portfolio 10 (all DSM) did not meet any reserve margin requirement.  With no replacement 
resources other than the proposed 2024-2030 Program Plan’s dispatchable DSM programs, 
Portfolio 10 does not meet any reserve margin requirement.  The Companies’ loss-of-load 
expectation with this portfolio increases to more than 130 days in ten years.  Thus, Portfolio 10 
did not advance to the next step of the Stage 2 analysis; if Mill Creek 2, Ghent 2, and Brown 3 are 
retired, the Companies must procure resources in addition to dispatchable DSM from the 2024-
2030 DSM-EE Program Plan to reliably serve load.  A further discussion of this portfolio is in 
Appendix C.   

 

4.5.2 Stage Two, Step Two: CO2 Pricing Analysis 
Next, the Companies conducted detailed production cost modeling with PROSYM and developed revenue 
requirements for each of the nine portfolios that advanced from the first step of Stage 2.  They performed 
PROSYM runs and developed revenue requirements for each portfolio across the six fuel price cases 
previously discussed and three CO2 pricing cases ($0/MWh, $15/MWh, and $25/MWh) for a total of 18 
cases analyzed per portfolio. 

Table 13 below summarizes the differences in PVRR for Portfolios 1-9.  Note that non-zero CO2 prices 
begin in 2028 and that these results do not include all potential transmission system upgrade costs, which 
tends to favor Portfolios 3, 4, and 6 through 9.22  As in Stage One, detailed production costs were modeled 
only for the renewables added in PLEXOS by 2028.  For each fuel price scenario, the PVRR differences are 
presented as differences from the least-cost portfolio.   

 
22 To this point in the analysis, the Companies considered only transmission system upgrade costs associated with 
the fully dispatchable replacement resources (NGCCs and SCCTs at the Mill Creek and Brown stations).  Due to the 
volume of RFP responses, it was not practical to evaluate transmission system upgrade costs for all proposals and 
potential retirements.  Therefore, the evaluated transmission system upgrade costs for the other resources (e.g., 
solar, wind, and battery storage) was zero.   
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Table 13:  Stress Testing Results (PVRR Difference from Best Case, $M, 2022 Dollars) 

Fuel Price Scenario 
(Gas, CTG Price 
Ratio) 

CO2 
Price 

Difference from Best Case (PVRR, $M, 2023-2050) 
1 2 3 4 5 6 7 8 9 

MC5 
and 

BR12; 
637 

Solar 

MC5 & 
GH2 
SCR; 
637 

Solar 

MC5; 
Non-

Ozone 
GH2 

MC5; 
Non-

Ozone 
GH2; 

Ret BR3 

MC2/ 
GH2 
SCR 

Non-
Ozone 
MC2/ 
GH2 

Non-
Ozone 
MC2/ 
GH2 

Ret BR3 
All 

Renew 
SCCT+ 
Renew 

Low Gas, Mid CTG 0 0 96 561 117 604 697 1,019 2,375 1,568 
Mid Gas, Mid CTG 0 0 64 540 126 583 728 844 2,096 1,580 
High Gas, Mid CTG 0 0 91 499 218 571 844 428 1,521 1,712 
Low Gas, High CTG 0 0 163 627 181 749 835 1,116 2,439 1,653 
High Gas, Low CTG 0 77 0 372 166 265 599 216 1,301 1,620 
High Gas, Curr CTG 0 0 1,390 1,885 1,376 3,459 3,481 2,379 2,958 3,212 

Low Gas, Mid CTG 15 0 644 1,121 654 1,796 1,851 1,812 2,865 2,278 
Mid Gas, Mid CTG 15 0 634 1,113 663 1,781 1,877 1,643 2,638 2,281 
High Gas, Mid CTG 15 0 603 1,057 706 1,705 1,929 1,187 2,087 2,337 
Low Gas, High CTG 15 0 714 1,188 720 1,940 1,987 1,920 2,927 2,361 
High Gas, Low CTG 15 0 393 823 510 1,231 1,488 854 1,821 2,102 
High Gas, Curr CTG 15 0 1,940 2,466 1,852 4,637 4,528 3,019 3,348 3,812 

Low Gas, Mid CTG 25 0 1,009 1,511 997 2,591 2,609 2,291 3,154 2,703 
Mid Gas, Mid CTG 25 0 996 1,493 1,010 2,569 2,651 2,117 2,980 2,736 
High Gas, Mid CTG 25 0 979 1,447 1,056 2,488 2,678 1,696 2,433 2,800 
Low Gas, High CTG 25 0 1,074 1,601 1,054 2,752 2,764 2,383 3,206 2,766 
High Gas, Low CTG 25 0 755 1,202 856 2,012 2,239 1,367 2,189 2,553 
High Gas, Curr CTG 25 0 2,269 2,834 2,131 5,385 5,237 3,437 3,544 4,124 

 

Interestingly, the lowest-cost portfolio across 17 of 18 scenarios (Portfolio 1: Mill Creek NGCC, Brown 
NGCC, and 637 MW solar PPAs) is also the least CO2-emitting, as shown in Table 14 below: 

Table 14:  2030 CO2 Emissions (Million Short Tons, Fuel Price Scenario: Mid Gas, Mid CTG Price Ratio) 

Port 
Number Portfolio Name 

Total CO2 
Emissions 

Difference from 
$0/MWh CO2 Price Scenario 

CO2 Price: 
$0/MWh 

CO2 Price: 
$15/MWh 

CO2 Price: 
$25/MWh 

1 MC5 & BR12; 637 Solar 22.8 -0.5 -0.5 
2 MC5 & GH2 SCR; 637 Solar 25.4 -0.3 -0.3 
3 MC5; Non-Ozone GH2 25.6 -0.3 -0.4 
4 MC5; Non-Ozone GH2; Ret BR3 25.2 -0.3 -0.4 
5 MC2/GH2 SCR 28.5 -0.2 -0.2 
6 Non-Ozone MC2/GH2 28.1 -0.1 -0.2 
7 Non-Ozone MC2/GH2; Ret BR3 25.9 -0.2 -0.2 
8 All Renewables 24.3 -0.1 -0.1 
9 SCCT + Renewables 25.1 -0.1 -0.1 
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These CO2 emissions results tie directly to the energy mix each portfolio produces, as Table 15 below 
illustrates by comparing Portfolio 1 (Mill Creek NGCC, Brown NGCC, and 637 MW solar PPAs) to Portfolio 
8 (all renewables): 

Table 15:  2030 Energy Mix Comparison (Fuel Price Scenario: Mid Gas, Mid Coal-to-Gas Price Ratio) 

Resource 
Type 

Portfolio 1: MC5 & BR12; 637 Solar Portfolio 8: All Renewables 
$0/MWh 
CO2 Price 

$15/MWh 
CO2 Price 

$25/MWh 
CO2 Price 

$0/MWh 
CO2 Price 

$15/MWh 
CO2 Price 

$25/MWh 
CO2 Price 

Coal 50% 47% 47% 60% 59% 58% 
NGCC 41% 42% 42% 15% 15% 15% 
SCCT 2% 3% 4% 8% 10% 10% 
Solar 6% 6% 6% 15% 15% 15% 
Wind 0% 0% 0% 1% 1% 1% 
Hydro 1% 1% 1% 1% 1% 1% 

 

Important observations concerning these results: 

• The Stage One apparently optimal portfolio (Mill Creek NGCC, Brown NGCC, and 637 MW solar 
PPAs) is clearly optimal in non-zero CO2 pricing scenarios.  This result is unsurprising; adding SCR 
to Ghent 2 allows a coal unit to continue operating, which is unfavorable in CO2 pricing scenarios 
due to its higher CO2 emissions per MWh. 
 

• The all-renewables replacement portfolio (Portfolio 8) is markedly more expensive than all 
other portfolios except the renewables plus SCCT portfolio (Portfolio 9), and then only with high 
gas price cases.  The cost of adding large amounts of renewables and batteries to serve load—
under normal weather conditions—far exceeds the cost of paying even $25/MWh in CO2 costs for 
all other portfolios except the portfolio that adds only renewables and SCCT.  Even that portfolio 
is less expensive than the all-renewables portfolio in all cases except high gas cost cases.     
 

• Increasing amounts of renewables require increasing dispatch of existing coal and SCCT 
generation, increasing CO2 emissions relative to two NGCCs.  Table 14 shows that the inability 
of solar to provide energy in non-daylight hours, as well as its limited daylight production profile, 
requires more dispatch of coal and SCCT.  This results in increased CO2 emissions because coal 
and SCCT have higher CO2 emissions per MWh than NGCC.     
 

4.6 Stage Three: Fine-Tuning Optimal Portfolio for Risk and Reliability 
In Stages One and Two, the Companies identified and confirmed the economically optimal portfolio that 
achieves Good Neighbor Plan compliance and satisfies minimum reserve margin requirements across a 
variety of fuel price and CO2 price cases. 

In Stage Three, the Companies sought to fine-tune the economically optimal portfolio to address certain 
risks not yet addressed and to add reliability to the extent it would be cost-effective or otherwise advisable 
to do so.  
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4.6.1 Stage Three, Step One: Mitigating Solar PPA Execution Risk through Solar Ownership 
As previously discussed, one uncertainty associated with solar PPAs is execution risk, i.e., the risk that the 
contracted capacity is not built on time or at all.  The modeling of Stages One and Two assumed the PPAs’ 
capacity would be installed and operational as specified in the PPA proposal; it assumed zero solar PPA 
execution risk.   

Other than the rights agreed to by the parties to the PPA, the Companies have no direct control over 
project development and construction.  Project execution is a particularly acute risk in the current solar 
market, as the Companies have experienced with the two solar PPAs they executed in 2019 and 2021 
(Rhudes Creek and Ragland, respectively); neither project has received all necessary approvals, neither is 
on schedule or has begun construction, and neither is likely to proceed any time soon because it will be 
difficult or impossible to finance the projects at the contracted price in today’s solar market and interest 
rate environment.  To help reduce the risk that future adverse changes in the solar market and interest 
rates negatively impact PPA project development, the Companies have negotiated a market price re-
opener for the Grays Branch and Nacke Pike PPAs.  This market price re-opener will also allow the 
Companies to request a lower price should the solar market and interest rates move lower. 

One means of mitigating solar PPA execution risk would be to add solar capacity the Companies would be 
involved in developing and owning, either through acquisition or self-building.  Ownership would allow 
the Companies and their customers to benefit from lower solar costs if the market changes favorably in 
the next several years when materials for the project would be purchased.  This is especially important 
because the assumed costs for the owned solar projects are reflective of today’s cost of materials, 
particularly solar panels. 

Thus, this first step of Stage Three analyzes the economic impacts of adding a 120 MW self-build solar 
facility (originally Muhlenberg Solar, now Mercer County Solar Facility) and a 120 MW asset purchase 
facility (the BrightNight Frontier project, also called the Marion County Solar Facility) to a portfolio where 
Mill Creek 2, Ghent 2, and Brown 3 are replaced with two NGCC units and no solar PPAs, including the 
Rhudes Creek and Ragland PPAs.  The portfolios the Companies analyzed are in Table 16 below.  Portfolio 
11 includes no solar PPAs.  Portfolio 12 builds on Portfolio 11 as described in Table 16.   

Table 16:  Solar PPA Execution Risk (Portfolios 11-12); Solar Added (Nameplate MW) 

Port 
Num Portfolio Name Description 

Total 
Solar 

Added 

11 MC5 & BR12; No Solar 
Replace MC2 in 2027 w/ MC5 
Replace BR3 & GH2 in 2028 with BR12 
No Solar (i.e., No Rhudes Creek or Ragland PPAs) 

- 

12 
Portfolio 11 
+Asset Purchase 
+Self-Build 

Portfolio 11 
+ 120 MW Solar Asset (Asset Purchase) 
+ 120 MW Solar Asset (Self-Build) 

+240 

 

The Companies conducted PROSYM runs for the portfolios listed in Table 16 across all six fuel price cases 
and all three CO2 price cases, then used the Companies’ financial model to create revenue requirements 
for each portfolio in each run over three cases for the price of renewable energy certificates (“REC”), 
namely $0, $5, and $10 per REC.  (Over the last three years, the Companies have sold Brown Solar RECs 
for between $8 and $13 per REC.)  All proceeds from the sale of RECs are returned to customers.  Table 
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17 below shows the results of adding the self-build and asset purchase resources to Portfolio 11 (with no 
solar).  Negative values are highlighted in green and indicate that the solar self-build and asset purchase 
favorably impact PVRR, e.g., adding the solar self-build and asset purchase to Portfolio 11 in the High Gas, 
Mid CTG case with $0 CO2 price decreases Portfolio 11’s PVRR by $78 million.   

Table 17:  Solar PPA Execution Risk Analysis Results (PVRR Differences, $M, 2022 Dollars)  

 
Fuel Price Scenario 
(Gas, CTG Price Ratio) 

CO2 
Price 

Impact of Adding Self-Build and Asset Purchase 
to Portfolio 11 (w/ No Solar) 

(Portfolio 12 minus Portfolio 11) 
REC Price 

$0/MWh $5/MWh $10/MWh 

Ex
pe

ct
ed

 
CT

G
 

Low Gas, Mid CTG 0 165 129 93 
Mid Gas, Mid CTG 0 93 57 21 
High Gas, Mid CTG 0 -78 -114 -150 
Avg Low-High, Mid CTG 0 60 24 -12 

At
yp

ic
al

 
CT

G
 

Low Gas, High CTG 0 153 117 81 
High Gas, Low CTG 0 -62 -98 -134 
High Gas, Curr CTG 0 -221 -257 -293 
Avg Excl High Gas, Curr CTG 0 54 18 -18 

Ex
pe

ct
ed

 
CT

G
 

Low Gas, Mid CTG 15 53 17 -19 
Mid Gas, Mid CTG 15 -12 -48 -84 
High Gas, Mid CTG 15 -181 -217 -253 
Avg Low-High, Mid CTG 15 -47 -83 -119 

At
yp

ic
al

 
CT

G
 

Low Gas, High CTG 15 47 11 -25 
High Gas, Low CTG 15 -151 -187 -224 
High Gas, Curr CTG 15 -297 -333 -369 
Avg Excl High Gas, Curr CTG 15 -49 -85 -121 

Ex
pe

ct
ed

 
CT

G
 

Low Gas, Mid CTG 25 -6 -43 -79 
Mid Gas, Mid CTG 25 -82 -118 -154 
High Gas, Mid CTG 25 -258 -294 -330 
Avg Low-High, Mid CTG 25 -115 -151 -188 

At
yp

ic
al

 
CT

G
 

Low Gas, High CTG 25 -14 -50 -86 
High Gas, Low CTG 25 -224 -260 -296 
High Gas, Curr CTG 25 -360 -396 -432 
Avg Excl High Gas, Curr CTG 25 -117 -153 -189 

 

Important observations concerning these results: 

 Adding the solar self-build and asset purchase is favorable in the majority of cases evaluated.  
In the nine cases comprising expected fuel prices (i.e., low, mid, and high gas prices with a mid 
coal-to-gas price ratio) and $0 to $10 REC prices, adding the solar assets is favorable in 3 of 9 cases 
with a $0/MWh CO2 price, 7 of 9 cases with a $15/MWh CO2 price, and 9 of 9 cases with a 
$25/MWh CO2 price. 

 
 The economics of the solar self-build improve with higher gas prices, higher REC prices, and 

higher CO2 prices.  The PVRR improves by approximately $35 million for every $5 increase in REC 
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prices.  Compared to cases with no CO2 price, the favorability of the solar assets improves by 
approximately $100 million with a $15 CO2 price.   

On the whole, based on the PVRR results and given the uncertainties concerning the solar industry, gas 
prices, and future carbon regulations (for which CO2 prices are a proxy), the Companies concluded that 
adding the solar asset purchase proposal (Marion County Solar Facility) and their self-build solar project 
(Mercer County Solar Facility) to the optimal portfolio of the Mill Creek NGCC, Brown NGCC, and 637 MW 
of solar PPAs is a reasonable hedge against these market uncertainties in the transition to a lower carbon 
future.     

4.6.2 Stage Three, Step Two: Increasing Reliability through DSM and Battery Storage 
All stages and steps of the Companies’ analysis to this point have concerned optimizing the portfolio to 
achieve Good Neighbor Plan compliance and to satisfy minimum reserve margin requirements.  The result 
is an optimized portfolio consisting of the Companies’ existing resources and the Mill Creek NGCC, Brown 
NGCC, 637 MW of solar PPAs, the least-cost solar asset purchase proposal (Marion County Solar Facility), 
and the Companies’ self-build solar project (Mercer County Solar Facility).   

In the second step of Stage Three, the Companies’ goal was to optimally enhance reliability.  To do this, 
the Companies evaluated SCCT, batteries, and dispatchable DSM programs as potential reliability-
enhancing resources.  

The SCCT and battery options the Companies evaluated were the SCCT and Brown BESS proposals 
provided as RFP responses by the Companies’ Project Engineering group with input from HDR, an 
engineering consulting firm.  The Companies chose the Brown BESS to evaluate over other battery options 
because battery ownership will allow the Companies to gain valuable operational experience with such 
systems at utility scale, which will likely be an integral part of integrating increasing amounts of renewable 
generation in future.  

The dispatchable DSM programs the Companies considered are the Companies’ existing dispatchable DSM 
programs (DSM-2, DSM-3 and 20 MW of DSM-5 in Table 5 below) and the proposed dispatchable DSM 
programs included in the Companies’ 2024-2030 DSM-EE Program Plan.  In total, the capacity of the DSM 
programs is 192 MW in the summer and 102 MW in the winter.  Note that in this analysis, the Companies 
treated all dispatchable DSM as being 100% available when needed. 

Table 18 below lists the reliability resources evaluated in this step. 

Table 18:  Resources Evaluated in Reliability Assessment 

Response 
No. Resource 

2028 Capacity 
(Summer/Winter 

MW) 
2028 Carrying 

Cost ($M) 
Max Operating Hours 

per Start/Event 
107 SCCT 243/258 18.5 N/A 
96 Brown BESS 125/125 16.9 4 

DSM-1 Peak Time Rebates 30.8/30.8 1.0 25 4-hour events per year 
DSM-2 DLC – Water Heaters 1.9/1.9 

1.2 
25 4-hour events per year 

DSM-3 DLC - AC 79.0/0 20 4-hour events per year 
DSM-4 BYOD – Smart Thermostats 16.7/4.2 1.7 25 4-hour events per year 
DSM-5 Nonres Demand Response 67.1/67.1 1.4 25 4-hour events per year 
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The Companies then determined that, given the solar execution risk previously discussed, they would 
evaluate the resources in Table 18 in one case as additions to  the Mill Creek NGCC and Brown NGCC only  
and in a second case as additions to the Mill Creek NGCC and Brown NGCC with 1,102 MW of solar 
consisting of the four new PPAs totaling 637 MW, the Rhudes Creek and Ragland PPAs, and two owned 
assets (Marion County Solar Facility and the Mercer County Solar Facility).  Table 19 lists all the portfolios 
evaluated. 

Table 19:  Portfolios Evaluated in Reliability Assessment 
Portfolios with 2 NGCCs Only Portfolios with 2 NGCCs & Solar 
MC5 & BR12 MC5 & BR12; 1,102 MW Solar 
MC5 & BR12 + SCCT MC5 & BR12; 1,102 MW Solar + SCCT 
MC5 & BR12 + DSM MC5 & BR12; 1,102 MW Solar + DSM 
MC5 & BR12 + BESS MC5 & BR12; 1,102 MW Solar + BESS 
MC5 & BR12 + DSM + BESS MC5 & BR12; 1,102 MW Solar + DSM + BESS 

 

The Companies then used SERVM to model the loss of load expectation (“LOLE”) impact and average 
reliability and production costs of each portfolio listed in Table 19 over a range of load and unit availability 
scenarios.  Note that the industry standard reliability goal is an LOLE of no more than one day in ten years. 

Table 20 below summarizes the results of this analysis for the portfolios without solar; Table 21 below 
summarizes the results of this analysis for the portfolios with solar.23  Capacity costs reflect the annual 
carrying cost of each resource (e.g., the annual carrying cost of the SCCT in 2028 is $18.5 million).  Average 
reliability and generation production costs were computed over all load and unit availability scenarios.  
Total costs are the sum of capacity costs and average reliability and generation production costs.   

Table 20:  Reliability Assessment Results without Solar 

Generation Portfolio 

LOLE (10 Years) Difference from MC5/BR12 Portfolio: 

Summer Winter Total 

Capacity 
Cost 

($M/year) 

Average 
Reliability and 

Generation 
Production Costs 

($M/year) 

Total Cost:  
Capacity Costs + 
Avg Reliability 

and Generation 
Production Costs 

($M/year) 

MC5/BR12 1.39 0.57 2.11 - - - 

MC5/BR12 + SCCT 0.49 0.21 0.74 19 -4 15 

MC5/BR12 + DSM 0.74 0.43 1.22 5 0 5 
MC5/BR12 + BESS 0.81 0.37 1.26 17 -3 14 

MC5/BR12 + DSM + BESS 0.44 0.31 0.77 22 -2 20 

 

 
23 The modeling the Companies performed in this Resource Assessment took solar to be a resource with a fixed 
production profile (i.e., for a given load scenario, the Companies evaluated over 300 unit availability scenarios for 
dispatchable resources, but the generation profile for solar was assumed to be unchanging). 
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Table 21:  Reliability Assessment Results with 1,102 MW Solar 

Generation Portfolio 

LOLE (10 Years) Difference from MC5/BR12 + Solar Portfolio: 

Summer Winter Total 

Capacity 
Cost 

($M/year) 

Average 
Reliability and 

Generation 
Production Costs 

($M/year) 

Total Cost:  
Capacity Costs + 
Avg Reliability 

and Generation 
Production Costs 

($M/year) 

MC5/BR12 + Solar 0.08 0.48 0.58 - - - 

MC5/BR12 + Solar + SCCT 0.02 0.19 0.22 19 -3 16 
MC5/BR12 + Solar + DSM 0.04 0.40 0.44 5 0 5 

MC5/BR12 + Solar + BESS 0.05 0.34 0.39 17 -2 15 

MC5/BR12 + Solar + DSM + BESS 0.03 0.25 0.28 22 -1 21 

 

Important observations concerning these results: 

 Adding dispatchable DSM from the 2024-2030 DSM-EE Program Plan is the most cost-effective 
means of enhancing reliability in these portfolios.  Table 20 shows that with only the Mill Creek 
NGCC and Brown NGCC, the Companies’ expected LOLE is 2.11 days in 10 years, which is higher 
than the physical reliability guideline of one day in 10 years.  Adding an SCCT reduces LOLE 65% 
to 0.74, but at a cost of $15 million per year, whereas adding dispatchable DSM from the 2024-
2030 DSM-EE Program Plan reduces LOLE 42% to 1.22, but at one-third of the cost of SCCT ($5 
million per year).  Table 21 shows similar results: SCCT provides a 62% LOLE reduction, but 
dispatchable DSM provides a 24% LOLE reduction, again at approximately one-third of the SCCT 
cost.  Dispatchable DSM from the 2024-2030 DSM-EE Program Plan is therefore markedly more 
cost-effective than SCCT for enhancing the reliability of these portfolios.   
 

 Adding Brown BESS further enhances reliability, but its primary value is in providing operational 
experience for integrating future renewable generation.  Table 20 and Table 21 show that Brown 
BESS adds reliability in portfolios with and without solar.  But based on its cost, it is not the most 
cost-effective means of enhancing reliability as modeled.  Therefore, the primary benefit of Brown 
BESS would be to provide the Companies valuable operational experience with a technology at 
utility scale that will likely be vital to integrating large amounts of renewable generation reliably 
in the future. 
 

It is notable that Brown BESS might provide quantifiable benefits the Companies have not attempted to 
quantify here.  For example, battery energy storage systems can provide instantaneous load following and 
compensation for fluctuations in intermittent generation that might otherwise require rapid ramping 
from the Companies’ SCCT and NGCC units, reducing wear (and related costs) on such units.  The Brown 
BESS might also allow the Companies to carry lower amounts of spinning reserves, which could also 
provide savings.  Table 22 summarizes the impact of the Brown BESS on PVRR.        
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Table 22:  Impact of Brown BESS on PVRR ($M, 2022 dollars, $0/MWh CO2 price) 
 Fuel Price Scenario 

(Gas, CTG Price Ratio) PVRR Impact 

Ex
pe

ct
ed

 
CT

G 

Low Gas, Mid CTG 130 
Mid Gas, Mid CTG 127 
High Gas, Mid CTG 95 

At
yp

ic
al

 
CT

G
 

Low Gas, High CTG 130 
High Gas, Low CTG 78 
High Gas, Curr CTG 79 

 

Based on this analysis and given the uncertainty facing the solar industry, the Companies believe it is 
appropriate to add to the optimal resource portfolio (1) the dispatchable DSM programs from the 2024-
2030 DSM-EE Program Plan, which are a cost-effective means of improving reliability, and (2) the Brown 
BESS project. 

4.6.3 Stage Three, Step Three: Analyzing OVEC Early Retirement Risk 
In this final step of the Companies’ analysis, they evaluated the impact of a possible early retirement of 
OVEC on the optimal resource portfolio of existing resources plus two NGCCs, 637 MW of solar PPAs, the 
least-cost solar asset purchase proposal (Marion County Solar Facility), the Companies’ self-build solar 
project (Mercer County Solar Facility), dispatchable DSM from the Companies’ 2024-2030 DSM-EE 
Program Plan, and the Brown BESS. 

In particular, the Companies sought to determine if an early OVEC retirement had a reliability impact that 
would require adding any demand- or supply-side resources to the optimal portfolio. 

Therefore, as a final scenario, the Companies used SERVM to evaluate the LOLE impact on the optimal 
resource portfolio (both with and without solar) if the OVEC units ceased operating in 2028 rather than 
2040 as currently forecasted.  Table 23 below contains the results of this analysis.     

Table 23:  Impact of 2028 OVEC Retirement on Optimal Resource Portfolio 
 
Portfolio 

LOLE (10 Years) 
Summer 

(Jun, Jul, Aug) 
Winter 

(Dec, Jan, Feb) Total Year 
MC5/BR12 + DSM + BESS 0.44 0.31 0.77 
MC5/BR12 + DSM + BESS - OVEC 0.93 0.55 1.56 
MC5/BR12 + Solar + DSM + BESS 0.03 0.25 0.28 
MC5/BR12 + Solar + DSM + BESS - OVEC  0.06 0.46 0.52 

 

These results show that the optimal resource portfolio would provide excellent reliability even if OVEC 
retired early.  Therefore, there was no reason to adjust the optimal portfolio solely to address the 
possibility of early OVEC unit retirements. 
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5 Objective Met: A No-Regrets Resource Portfolio to Serve Customers’ Needs 
As discussed previously, the objective of this Resource Assessment is not to make every resource decision 
for the Companies and their customers for through 2050; rather, it is only to provide an optimal resource 
portfolio for the decisions that the Companies must make today due to the Good Neighbor Plan and the 
upcoming major capital investment at Brown 3.  In other words, the objective is to provide an optimal 
resource portfolio for the resource decisions that must be made now concerning possible unit retirements 
in the 2026 to 2028 timeframe, and to do so in a way that ensures safe and reliable service at the lowest 
reasonable cost—ideally with a no-regrets resource portfolio.  

Part of having no regrets is recognizing that, as the 2022 CPCN Load Forecast shows, customers will 
continue to have significant energy needs in all hours, seasons, and weather and daylight conditions.  
Thus, a no-regrets portfolio must be able to serve customers reliably 8,760 hours every year, not just for 
a handful of peak hours, not just when the sun is shining, and not just when customers are willing to 
voluntarily reduce their load in response to pricing signals. 

The Companies’ optimal resource portfolio is such a no-regrets portfolio.  It economically retires three 
large coal units (1,194 MW total) that provide around-the-clock energy.  It replaces those units with an 
optimal blend of resources offered in the Companies’ competitive RFP process and cost-effective 
dispatchable DSM programs from the Companies’ 2024-2030 DSM-EE Program Plan: 

The 2022 Resource Assessment’s Optimal Resource Portfolio   

• Reliable, dispatchable, around-the-clock generation (1,242 MW total) 
o Mill Creek NGCC (621 MW)  
o Brown NGCC (621 MW) 

• Clean renewable generation, hedging fuel price and CO2 risk (877 MW total) 
o Mercer County Solar Facility (self-build; 120 MW) 
o Marion County Solar Facility (asset purchase; 120 MW) 
o Song Sparrow PPA (Clearway Energy; 104 MW) 
o Gage Solar PPA (BrightNight; 115 MW) 
o Nacke Pike PPA (ibV; 280 MW) 
o Grays Branch PPA (ibV; 138 MW) 

• Cost-effective dispatchable DSM programs (192 MW summer; 102 MW winter) 
• Additional reliability and valuable operational experience with Brown BESS (125 MW, 500 MWh) 

The Companies’ rigorous three-stage analysis ensured that the optimal portfolio appropriately balances 
economics, reliability, and risk; provides valuable experience with new technologies to accommodate 
greater renewable power generation in the future; and reduces CO2 emissions considerably, more than 
other portfolios analyzed, which reduces future regulatory risk and potential cost related to CO2 
emissions. It is a no-regrets portfolio: 

• Low load or increased efficiencies, no regrets.  If actual load is materially lower than projected 
load for any reason, including if technological advances or economic changes result in additional 
energy and demand savings (through DSM-EE programs or otherwise), retiring additional aging 
coal capacity would likely be the most economical option, further reducing CO2 emissions.  
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• High load, no regrets.  If actual load is materially higher than projected load, nothing in the 
Companies’ proposed portfolio precludes adding demand- or supply-side resources to address 
the need.  If the increased load results from electric space heating or electric vehicle charging, the 
proposed NGCC units could prove to be particularly valuable given their ability to cost-effectively 
serve nighttime energy requirements.   
 

• Increased renewable generation or CO2 constraints, no regrets.  The proposed portfolio’s rapid-
ramping NGCC units and Brown BESS well position the Companies to provide reliable service if 
renewable energy generation increases, and the lower CO2 emissions of NGCCs and zero 
emissions of solar and DSM-EE all improve the Companies’ positioning to address any CO2 
emissions pricing or regulations that might eventuate. 

In sum, the optimal resource portfolio this Resource Assessment recommends will help ensure that 
customers receive safe, reliable, and lowest-reasonable-cost service for years to come. 
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6 Utility Ownership 
6.1 Background 
Since the merger of LG&E and KU, the Companies have commissioned thirteen jointly-owned units:  ten 
SCCTs at the Trimble County, E.W. Brown, and Paddy’s Run stations, the Trimble County 2 coal unit, Cane 
Run 7, and Brown Solar.  An ownership ratio for the jointly-owned SCCTs was determined so that each 
utility’s projected reserve margin was equalized in the in-service year.  Brown Solar’s ownership was 
assigned by allocating its forecasted generation in each hour based on each company’s forecasted share 
of native load energy requirements for the hour.  Because Trimble County 2 and Cane Run 7 were expected 
to provide significant energy savings to customers, their ownership splits were based on the expected 
energy benefits to each company.  To determine these benefits, the production costs associated with the 
Companies’ existing generation portfolio and least-cost expansion plan were compared to the production 
costs associated with the Companies’ generation portfolio and an expansion plan that included only 
SCCTs.  This “all-SCCT” expansion plan represented the least-cost expansion plan when only considering 
capacity needs.  The overall least-cost plan included the proposed unit (either Trimble County 2 or Cane 
Run 7) and was expected to result in significant energy savings over the “all-SCCT” plan.  Because each 
company was expected to benefit differently from constructing the proposed unit due to each company’s 
unique load profile and existing generation mix, the ownership split for the proposed unit was determined 
based on each company’s share of the net present value of production cost savings. 

6.2 Methodology 
6.2.1 Solar Resources 
The new solar resources were assigned to each company using a method similar to the method used for 
Brown Solar.  This assignment was calculated by allocating the solar resources’ forecasted generation in 
each hour based on each company’s forecasted share of native load energy requirements for the hour.  
Each company’s proposed assignment equals its allocated share of the total solar energy generated during 
the study period. 

6.2.2 Mill Creek and Brown NGCC units 
Depending on natural gas price levels and future CO2 regulations, the Mill Creek and Brown NGCC units 
are expected to operate at a 60-85% capacity factor, generating significant amounts of energy.  For this 
reason, the Companies calculated their ownership so that each company’s ownership share matches its 
share of the anticipated energy benefits compared to an all-SCCT portfolio.  This method is similar to the 
method used for TC2 and CR7 (see Section 6.1) as well as for the Green River NGCC unit proposed by the 
Companies in Case No. 2014-0002, which was later canceled.24 

6.2.3 Battery Storage (Brown BESS) 
Battery storage is considered to be a capacity resource because it does not produce energy in all hours 
but rather stores energy for when it is needed most.  Therefore, the Brown BESS’s ownership was assigned 
using a method similar to the method used for the jointly-owned CTs by better balancing 2028 summer 

 
24 In the Matter of: Joint Application of Louisville Gas and Electric Company and Kentucky Utilities Company for 
Certificates of Public Convenience and Necessity for the Construction of a Combined Cycle Combustion Turbine at the 
Green River Generating Station and a Solar Photovoltaic Facility at the E.W. Brown Generating Station. 
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reserve margins based on dispatchable and battery capacity, after assigning the NGCC units’ ownership 
allocation. 

6.3 Optimal Ownership 
The optimal ownership allocations are shown in Table 24.  For the Mill Creek and Brown NGCC units, the 
optimal ownership allocation is 69% for KU and 31% for LG&E.  For the solar projects, the optimal 
allocation is 63% for KU and 37% for LG&E.  Both of these ownership allocations are also close to the 
allocation of total energy between the Companies.  KU’s share of total energy is approximately 64%; 
LG&E’s share is 36%.  The Brown BESS is assigned 100% to LG&E to better balance the Companies’ summer 
reserve margins. 

Table 24:  Optimal Ownership Allocations 
 KU LG&E 
Solar Resources 

• 4 PPAs  
• Mercer County (self-build) 
• Marion County (asset purchase) 

63% 37% 

NGCC Units 
• Mill Creek NGCC 
• Brown NGCC 

69% 31% 

Brown BESS 0% 100% 
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7 Appendix A – Summary of Inputs 
7.1 Load Forecast 
Table 25 contains the Companies’ load forecast, which was developed with the assumption that weather 
will be average or “normal” in every year.25  The Companies’ 2022 CPCN Load Forecast is Exhibit TAJ-1 to 
the testimony of Tim A. Jones.     

Table 25:  Load Forecast (Normal Weather) 

Year 

Annual Energy 
Requirements 

(GWh) 

Peak Demand (MW) 

 Year 

Annual Energy 
Requirements 

(GWh) 

Peak Demand (MW) 

Summer Winter Summer Winter 
2023 31,919 6,162 5,910  2037 33,207 6,275 6,108 
2024 32,221 6,197 5,908  2038 33,254 6,271 6,110 
2025 32,788 6,248 6,011  2039 33,258 6,266 6,111 
2026 32,841 6,253 6,003  2040 33,382 6,262 6,113 
2027 33,560 6,347 6,107  2041 33,302 6,257 6,114 
2028 33,592 6,319 6,104  2042 33,321 6,253 6,116 
2029 33,423 6,308 6,103  2043 33,330 6,249 6,117 
2030 33,303 6,305 6,102  2044 33,439 6,244 6,118 
2031 33,254 6,302 6,100  2045 33,375 6,240 6,120 
2032 33,303 6,298 6,101  2046 33,411 6,235 6,121 
2033 33,184 6,293 6,103  2047 33,451 6,231 6,123 
2034 33,151 6,289 6,104  2048 33,576 6,226 6,124 
2035 33,160 6,284 6,106  2049 33,506 6,222 6,125 
2036 33,284 6,280 6,107  2050 33,547 6,218 6,127 

 

7.2 Minimum Reserve Margin Target 
The Companies’ minimum reserve margin targets are 17% for summer and 24% for winter.  A summary of 
the analysis for the Companies’ minimum reserve margin targets is contained in Appendix D.   

7.3 Capacity and Energy Need 
Table 26 and Table 27 contain the Companies’ summer and winter peak demand and resource summaries 
through 2050.  These tables reflect the planned retirement of Mill Creek 1 at the end of 2024 and the 
assumed retirement of the small-frame SCCTs in 2025.  Mill Creek 1 and 2 cannot be operated 
simultaneously during the ozone season due to NOx limits, which results in a reduction of available 
summer capacity through 2024.  Reserve margins are computed for 2028 with and without the 
retirements of Mill Creek 2, Ghent 2, and Brown 3.     

   

 
25 The Companies use 20 years of historical weather data to develop their normal weather forecast. 
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Table 26:  Summer Peak Demand and Resource Summary (MW) 
 2023 2024 2025 2026 2027 2028 2030 2040 2050 
Peak Load 6,162 6,197 6,248 6,253 6,347 6,319 6,305 6,262 6,218 
 

Dispatchable Generation Resources 
Existing Resources 7,583 7,612 7,612 7,612 7,612 7,612 7,612 7,612 7,612 
Retirements/Additions 
   Coal26 -300 -300 -300 -300 -300 -300 -300 -452 -452 
   Large-Frame SCCTs 0 0 0 0 0 0 0 0 0 
   Small-Frame SCCTs27 0 0 -47 -47 -47 -47 -47 -47 -47 
Total 7,283 7,312 7,265 7,265 7,265 7,265 7,265 7,113 7,113 
Reserve Margin 18.2% 18.0% 16.3% 16.2% 14.5% 15.0% 15.2% 13.6% 14.4% 
 

Intermittent/Limited-Duration Resources 
Existing Resources 105 105 105 105 105 105 105 105 105 
Existing CSR 128 128 128 128 128 128 128 128 128 
Existing Disp. DSM28 62 60 56 52 49 46 42 28 24 
Retirements/Additions 
   Solar PPAs29 0 79 177 177 177 177 177 177 177 
Total 294 371 466 462 459 456 451 438 434 
 

Total Supply 7,577 7,683 7,730 7,727 7,724 7,721 7,716 7,551 7,547 
Total Reserve Margin 23.0% 24.0% 23.7% 23.6% 21.7% 22.2% 22.4% 20.6% 21.4% 

 

Dispatchable Generation Resources with Additional Coal Retirements 
Existing Resources 7,583 7,612 7,612 7,612 7,612 7,612 7,612 7,612 7,612 
Retirements/Additions 
   Coal26,30 -300 -300 -300 -300 -300 -1,494 -1,494 -1,646 -1,646 
   Large-Frame SCCTs 0 0 0 0 0 0 0 0 0 
   Small-Frame SCCTs 0 0 -47 -47 -47 -47 -47 -47 -47 
Total  7,283 7,312 7,265 7,265 7,265 6,071 6,071 5,919 5,919 
Reserve Margin 18.2% 18.0% 16.3% 16.2% 14.5% -3.9% -3.7% -5.5% -4.8% 

 

Total Supply 7,577 7,683 7,730 7,727 7,724 6,527 6,522 6,357 6,353 
Total Reserve Margin 23.0% 24.0% 23.7% 23.6% 21.7% 3.3% 3.4% 1.5% 2.2% 

 

 
26 Mill Creek 1 and 2 cannot be operated simultaneously during ozone season due to NOx limits, which results in a 
reduction of available summer capacity through 2024. Mill Creek 1 will be retired by the end of 2024. OVEC’s contract 
term ends in 2040. 
27 This analysis assumes Haefling 1-2 and Paddy’s Run 12 are retired in 2025. 
28 Existing Dispatchable DSM reflects expected load reductions under normal peak weather conditions. 
29 This analysis assumes 100 MW of solar capacity is added in 2024 (Rhudes Creek), and an additional 125 MW of 
solar capacity is added in 2025 (Ragland). Capacity values reflect 78.6% expected contribution to summer peak 
capacity. 
30 Potential additional coal retirements include Mill Creek 2, Ghent 2, and Brown 3 in 2028. 
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Table 27:  Winter Peak Demand and Resource Summary (MW) 
 2023 2024 2025 2026 2027 2028 2030 2040 2050 
Peak Load 5,910 5,908 6,011 6,003 6,107 6,104 6,102 6,113 6,127 
 

Dispatchable Generation Resources 
Existing Resources 7,901 7,909 7,909 7,909 7,909 7,909 7,909 7,909 7,909 
Retirements/Additions 
   Coal26 -300 -300 -300 -300 -300 -300 -300 -458 -458 
   Large-Frame SCCTs 0 0 0 0 0 0 0 0 0 
   Small-Frame SCCTs27 0 0 -55 -55 -55 -55 -55 -55 -55 
Total 7,601 7,609 7,554 7,554 7,554 7,554 7,554 7,396 7,396 
Reserve Margin 28.6% 28.8% 25.7% 25.8% 23.7% 23.7% 23.8% 21.0% 20.7% 
 

Intermittent/Limited-Duration Resources 
Existing Resources 72 72 72 72 72 72 72 72 72 
Existing CSR 128 128 128 128 128 128 128 128 128 
Existing Disp. DSM28 22 22 22 22 22 22 22 22 22 
Retirements/Additions 
   Solar PPAs31 0 0 0 0 0 0 0 0 0 
Total 221 221 221 221 221 221 221 221 221 
 

Total Supply 7,822 7,830 7,774 7,774 7,774 7,774 7,774 7,616 7,616 
Total Reserve Margin 32.3% 32.5% 29.3% 29.5% 27.3% 27.4% 27.4% 24.6% 24.3% 

 

Dispatchable Generation Resources with Additional Coal Retirements 
Existing Resources 7,901 7,909 7,909 7,909 7,909 7,909 7,909 7,909 7,909 
Retirements/Additions 
   Coal26,30 -300 -300 -300 -300 -300 -1,499 -1,499 -1,657 -1,657 
   Large-Frame SCCTs 0 0 0 0 0 0 0 0 0 
   Small-Frame SCCTs27 0 0 -55 -55 -55 -55 -55 -55 -55 
Total  7,601 7,609 7,554 7,554 7,554 6,355 6,355 6,197 6,197 
Reserve Margin 28.6% 28.8% 25.7% 25.8% 23.7% 4.1% 4.1% 1.4% 1.1% 

 

Total Supply 7,822 7,830 7,774 7,774 7,774 6,575 6,575 6,417 6,417 
Total Reserve Margin 32.3% 32.5% 29.3% 29.5% 27.3% 7.7% 7.8% 5.0% 4.7% 

 

Table 28 summarizes generation from Mill Creek 2, Ghent 2, and Brown 3 over the last 5 years.  In addition 
to approximately 1,200 MW of dispatchable capacity, these units provided 15-18% of total energy 
requirements (4.5 to 6.2 TWh) from 2017 to 2021.32  Slightly more than half of this energy was produced 
at night which is consistent with the proportion of total electricity consumed by customers at night.  On 
average, these units produce between 700 and 850 MW in every hour of the year.  Even if Mill Creek 2, 

 
31 This analysis assumes 100 MW of solar capacity is added in 2024, and an additional 125 MW of solar capacity is 
added in 2025. Capacity values reflect 0% expected contribution to winter peak capacity. 
32 The decrease in energy production from 2019 to 2020 (and continuing into 2021) is due to a reduction in 
generation at the Mill Creek station during the ozone season as a result of an agreement with the Louisville Metro 
Air Pollution Control District.  The generation reduction could be accomplished by either idling Unit 1 or Unit 2.  In 
practice, Unit 2 was often idled.  Unit 1 will be retired by the end of 2024, so Unit 2 will be required to run more than 
was the case in 2020 and 2021. 
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Ghent 2, and Brown 3 are not retired, the Companies’ need for energy in 2028 will be exacerbated by the 
retirement of Mill Creek 1 and the addition of the BlueOval load.   

Table 28:  Mill Creek 2, Ghent 2, and Brown 3 Generation 

Year 

Total 
Energy 
(GWh) % Night % Day 

Max Hourly 
Output 
(MW) 

Average 
Hourly 
Output 
(MW) 

% of Total 
Energy 

Requirements 
2017 5,698 52% 48% 1,235 772 17% 
2018 6,230 51% 49% 1,238 842 18% 
2019 5,407 51% 49% 1,250 785 16% 
2020 4,512 52% 48% 1,229 729 15% 
2021 4,610 51% 49% 1,219 752 15% 

 

Figure 8 shows the forecasted daily maximum and minimum loads during daytime and nighttime hours in 
2028 under normal weather conditions.  For each daytime and nighttime period, the daily maximum loads 
are sorted highest to lowest and are differentiated by season; the black lines are trend lines for the 
corresponding minimum daily loads.  Notably, the generation capacity and load following capabilities 
needed to serve daytime and nighttime energy requirements are very similar.  Under normal weather 
conditions, the forecasted winter peak demand (6,104 MW) occurs at night and is almost as high as the 
forecasted summer peak demand (6,319 MW), which occurs during the day.  Importantly, the Companies’ 
load is at least 2,450 MW in every hour of the year.    
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Figure 8:  2028 Daily Maximum and Minimum Loads during Daytime and Nighttime Hours33 

 

 

Whereas Figure 8 shows the variability in load throughout the year under normal weather conditions, 
Figure 9 shows the variability in summer and winter peak demands based on the range of weather that 
can occur in the Companies’ service territories.34  Under normal weather conditions, the Companies’ 
summer peak demand is higher than the winter peak demand but the variability in peak demand is highest 
in the winter.  This variability is driven in part by electric space heating demands when backup resistance 
heating is triggered under extremely cold weather conditions.  The Companies plan generation to reliably 
serve customers in all hours of the year and in all weather scenarios.   

 
33 Data points in color represent daily maximum values; those in light grey represent daily minimums.  The solid black 
line is a smoothed curve fit through the daily minimums. 
34 To assess generation portfolio reliability over a wide range of weather scenarios, the Companies develop hourly 
load forecasts based on weather in each of the last 49 years.  The distributions in Figure 9 are based on the summer 
and winter peak demands from these forecasts. 
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Figure 9:  Distribution of 2028 Summer and Winter Peak Demands 

 

7.4 Existing Resource Inputs 
Table 29 lists the Companies’ forecasted existing generating resources as of 1/1/2025.  Consistent with 
Table 26 and Table 27, resources that are fully dispatchable are listed separately from intermittent 
resources and resources that can be dispatched for only several hours at a time.  The Companies’ coal, 
NGCC, and SCCT resources are fully dispatchable.  For example, while SCCTs typically operate less than 24 
hours each time they are started due to their higher fuel costs, they can operate for longer periods if 
necessary.  The Companies’ solar and Ohio Falls hydro resources are intermittent.  For example, the ability 
to generate power at the Ohio Falls station is entirely a function of water availability, which is managed 
by the Corps of Engineers.  Finally, the Companies’ dispatchable DSM and Curtailable Service Rider (“CSR”) 
resources can be dispatched when needed but only for limited durations.  The operating characteristics 
of supply-side and demand-side resources are an important consideration in resource planning.   
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Table 29:  2025 LG&E/KU Generating & DSM Portfolio35 

Dispatchability Resource Type Resource Name 
Net Max Summer 

Capacity (MW) 
Net Max Winter 
Capacity (MW) 

Fully 
Dispatchable36 

Coal37 

Brown 3 412 416 
Ghent 1 475 479 
Ghent 2 485 486 
Ghent 3 481 476 
Ghent 4 478 478 
Mill Creek 2 297 297 
Mill Creek 3 391 394 
Mill Creek 4 477 486 
Trimble County 1 (75%) 370 370 
Trimble County 2 (75%) 549 570 

Coal PPA OVEC 152 158 
NGCC Cane Run 7 691 691 

SCCT 

Brown 5 130 130 
Brown 6 146 171 
Brown 7 146 171 
Brown 8 121 128 
Brown 9 121 138 
Brown 10 121 138 
Brown 11 121 128 
Paddy’s Run 13 147 175 
Trimble County 5 159 179 
Trimble County 6 159 179 
Trimble County 7 159 179 
Trimble County 8 159 179 
Trimble County 9 159 179 
Trimble County 10 159 179 

Intermittent/ 
Limited-
Duration 

Hydro 
Dix Dam 1-3 31.5 31.5 
Ohio Falls 1-8 64 40 

Interruptible CSR 128 128 
Dispatchable DSM DCP38 56 22 

Solar 

Brown Solar 8 0 
Business Solar 0.18 0 
Solar Share 1.7 0 
Rhudes Creek Solar PPA39 79 0 
Ragland Solar PPA39 98 0 

 

 
 

35 The Resource Assessment assumes Mill Creek 1, Haefling 1-2, and Paddy’s Run 12 are retired in 2025. 
36 The Companies’ simple-cycle combustion turbines at Brown and Paddy’s Run have annual operating limits based 
on their emissions permits but are fully available to serve load for long stretches of time such as a weeklong period 
of extremely cold weather. 
37 Except Mill Creek 2 and Ghent 2, all of the Companies’ coal units are equipped with SCR, flue gas desulfurization 
(“FGD”), and baghouses. 
38 Residential and Nonresidential Demand Conservation Program (“DCP”).  Capacity values reflect expected load 
reductions under normal peak weather conditions. 
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As seen in Table 30, Mill Creek 2, Ghent 2, and Brown 3 are approximately 50 years old and approaching 
the end of their current book depreciation life.  Although the units could theoretically operate beyond 
their depreciable book life, doing so would require a higher level of capital investments.  To properly 
evaluate the economics of the existing fleet, the Companies identified the types of projects and associated 
costs that would be needed to extend the lives of units beyond their current depreciable book lives to 
2050.  To be clear, the Companies are not proposing to extend these units’ lives; rather, this analytical 
approach is necessary to properly evaluate the fleet’s economics.  

Table 30:  Age of Mill Creek 2, Ghent 2, and Brown 3 

Unit 
Age as of 
1/1/2022 

Age as of 
1/1/2035 

Age as of 
1/1/2050 

End of Book 
Depreciation 

Life 
Mill Creek 2 47 60 75 2034 

Ghent 2 44 57 72 2034 
Brown 3 50 63 78 2035 

 

Table 31 contains stay-open costs for Mill Creek 2, Ghent 2, and Brown 3.  Stay-open costs for existing 
generating units include each unit’s ongoing capital and fixed operating and maintenance (“O&M”) costs.  
These costs are required to continue operating a unit and are avoided if a unit is retired.  Costs that are 
shared by all units at a station (i.e., “common” costs) are allocated to units in proportion to how they 
would be reduced as units retire.40  Stay-open costs include costs for routine maintenance and major 
overhauls, and do not include carrying costs for prior investments or costs for projects that would not be 
affected by unit retirements in this analysis, such as ash pond closures.  In the case of Mill Creek 2 and 
Ghent 2, stay-open costs include the costs of SCR for Good Neighbor Plan Compliance.  Finally, Table 31 
differentiates between “standard” major overhaul costs and the costs for projects that would be needed 
to operate the unit through 2050.41  When evaluating the retirement of these coal units, the Companies 
assume that costs for routine maintenance and major overhauls will be reduced in the years leading up 
to a unit’s retirement and that all future spending would be avoided after a unit’s retirement.   

 
39 The Rhudes Creek and Ragland solar projects have not received all of their necessary permits and are not yet under 
construction.  Given current market conditions and interest rates, it is not clear whether these projects can be 
financed at the prices in their respective contracts.   
40 The allocation of common costs requires an assumed order of retirement at a given station.  The lack of SCRs for 
Ghent 2 and Mill Creek 2 results in those units being retired first relative to other units at their respective stations.  
The remaining units have the same controls and similar efficiencies (with the exception of Trimble County 2, which 
is a supercritical unit and the most efficient in the Companies’ coal fleet), so the likely retirement order would be 
driven by age of the units.  At Ghent, this results in a retirement order of Ghent 2 first, followed by Ghent 1, then 
Ghent 3, and finally Ghent 4.  At Mill Creek, this results in a retirement order of Mill Creek 2 first, followed by Mill 
Creek 3, and finally Mill Creek 4.  At Trimble, this results in a retirement order of Trimble County 1 first, followed by 
Trimble County 2.  
41 Examples of projects that would be needed to extend the life of a generating unit are replacement of major high 
temperature components such as superheater and reheater headers and seamed main steam and hot reheat piping, 
condenser re-tubing, generator stator rewinds, generator step-up transformer replacements, and ID fan variable 
frequency drive replacements. 
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Table 31:  Total Stay-Open Costs ($M) 

Year 
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O
ng

oi
ng

 C
os

ts
 

O
ve

rh
au

l C
os

ts
 

(S
ta

nd
ar

d)
 

O
ve

rh
au

l C
os

ts
 

(L
ife

 E
xt

en
si

on
) 

En
vi

ro
nm

en
ta

l 
Co

m
pl

ia
nc

e 
Co

st
s 

(S
CR

) 

O
ng

oi
ng

 C
os

ts
 

O
ve

rh
au

l C
os

ts
 

(S
ta

nd
ar

d)
 

O
ve

rh
au

l C
os

ts
 

(L
ife

 E
xt

en
si

on
) 

En
vi

ro
nm

en
ta

l 
Co

m
pl

ia
nc

e 
Co

st
s 

(S
CR

) 

O
ng

oi
ng

 C
os

ts
 

O
ve

rh
au

l C
os

ts
 

(S
ta

nd
ar

d)
 

O
ve

rh
au

l C
os

ts
 

(L
ife

 E
xt

en
si

on
) 

2023 11 0 0 2 12 0 0 3 27 0 0 
2024 21 0 0 16 23 0 0 30 30 0 0 
2025 15 0 0 47 12 0 0 76 31 0 0 
2026 18 11 0 45 22 0 0 18 35 0 0 
2027 14 0 0 1 17 36 0 1 32 26 0 
2028 18 0 0 1 13 0 0 1 32 0 0 
2029 14 0 37 1 14 0 0 1 35 0 32 
2030 21 0 23 1 25 0 0 1 36 0 38 
2031 17 0 22 1 19 0 0 1 36 0 22 
2032 21 0 0 1 19 0 0 1 38 0 0 
2033 17 0 2 1 20 0 25 1 38 0 2 
2034 22 16 18 1 20 0 42 1 40 0 0 
2035 18 0 0 1 21 24 23 1 40 30 0 
2036 22 0 0 1 21 0 42 1 41 0 0 
2037 19 0 0 1 22 0 8 1 42 0 0 
2038 25 0 0 2 22 0 0 2 43 0 14 
2039 20 0 0 2 22 0 14 2 44 0 0 
2040 24 0 0 2 23 0 0 2 45 0 0 
2041 21 0 15 2 23 0 0 2 46 0 0 
2042 25 19 0 2 24 0 0 2 48 0 11 
2043 21 0 0 2 24 28 0 2 48 35 0 
2044 27 0 0 2 25 0 0 2 50 0 0 
2045 22 0 12 2 26 0 0 2 50 0 0 
2046 30 0 0 2 26 0 0 2 52 0 0 
2047 23 0 0 2 27 0 0 2 52 0 0 
2048 29 0 0 2 27 0 0 2 55 0 0 
2049 24 0 0 2 28 0 0 2 55 0 0 
2050 25 23 0 2 30 0 0 2 57 0 0 

 

7.4.1 CCR Revenue Assumptions  
Coal combustion residuals (“CCR”) include fly ash, bottom ash, and gypsum.  CCR is either used for onsite 
construction projects, sold to third parties for use in the production of products like cement and 
wallboard, or stored in onsite landfills.  When sold to third parties, the beneficial use of CCR materials is 
included in the Environmental Surcharge Mechanism as a credit to offset environmental compliance costs.  
In 2021, CCR sales revenues totaled over $15 million. 
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Year 
Mill Creek Ghent Trimble 

Fly Ash Gypsum Bottom Ash Fly Ash Gypsum Fly Ash Gypsum 
2022 
2023 
2024 
2025 
2026 
2027 
2028 
2029 
2030 
2031 
2032 
2033 
2034 
2035 
2036 
2037 
2038 
2039 
2040 
2041 
2042 
2043 
2044 
2045 
2046 
2047 
2048 
2049 
2050 

 
Table 33 lists the percent of CCR produced at each station that is assumed to be sold to third parties.  For 
Mill Creek, the values reflect current sales levels.  For Ghent and Trimble County, the values are the 
assumed level of sales that will commence after current on-site pond closure projects are completed.43  
The Ghent station requires additional loading facilities to increase its fly ash sales after pond closure 

 
42 No sales prices for any CCR at Brown or for bottom ash at Ghent and Trimble are included because there is 
currently no market for these materials at these stations. 
43 Based on current progress of the active closure projects, completion is anticipated no later than December 2025. 

CONFIDENTIAL INFORMATION REDACTED

In recent years, as coal units have retired in the U.S., the market supply of CCR has decreased and the 
market price for CCR has increased.  Table  32  lists the assumed sales prices for CCR in this analysis.42  The
2022 values are weighted average prices based on existing contracts.  CCR sales prices are expected to
approach market prices as existing contracts expire.  Market prices vary by station based on the station’s 
proximity to local markets and are assumed to escalate at two percent per year.

Table  32:  Sales Prices for CCR Sales ($/ton)
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projects are completed.  The Companies continue to evaluate alternatives for doing this, but no costs or 
revenue impacts associated with these facilities are considered in this analysis. 

Table 33:  Percent of CCR Production Sold to Third Parties 
Station Fly Ash Gypsum Bottom Ash 
Mill Creek 80% 97% 100% 
Ghent 6% 70% 0% 
Trimble County 80% 97% 0% 
Brown 0% 0% 0% 

 

7.5 Inflation Reduction Act Tax Incentives 
As noted earlier, after the RFP proposals were received in August 2022, the Companies followed up with 
the respondents to ensure their proposals fully reflected the investment tax credits for renewables and 
battery storage in the Inflation Reduction Act.  For PPAs, the impact of the IRA incentives is reflected in 
the PPA price.  Table 34 summarizes the assumed tax incentives for solar and battery storage proposals 
that would require the Companies to own the assets.  The solar projects that would require the 
Companies’ ownership are expected to meet the IRA’s prevailing wage and apprenticeship requirements.  
Additional incentives are available if construction materials (e.g., solar panels) are purchased from U.S. 
vendors or if the project is constructed on a coal mine or the site of a previously retired coal plant, but 
the proposed solar projects do not meet these requirements.  The battery storage projects, on the other 
hand, do meet these requirements and are assumed to receive the maximum investment tax credit 
afforded by the IRA (50%). 

Table 34:  IRA Tax Incentives 

Resource Type 
Production Tax Credit 

Investment Tax Credit $/MWh Term 
Solar 27.50 10 N/A 
Battery Storage N/A N/A 50% 

 
 
7.6 Transmission System Upgrade Costs 
In their analysis of the Mill Creek 2, Ghent 2, and Brown 3 retirements, the Companies are evaluating the 
addition of new generation at the Mill Creek and E.W. Brown generating stations.  In a scenario where all 
three coal units are retired and new generation is added at both sites, the Companies would first add 
generation at Mill Creek (Mill Creek NGCC) in part to take advantage of existing emission permitting.  Then, 
to serve customers reliably, Brown 3 would continue to operate until new generation at the Brown site is 
commissioned (Brown NGCC).  In a scenario where Mill Creek 2 and Brown 3 are retired and SCR is added 
to Ghent 2, the Companies would still plan to add Mill Creek NGCC first.  Then, to serve customers reliably, 
Brown 3 would continue to operate until SCR was added at Ghent 2.  Because Brown 3 is needed in either 
case to maintain system reliability, new generation is always added first at the Mill Creek station.   

The Companies have submitted Generator Interconnection Requests for the proposed self-build NGCC 
replacements in accordance with the LG&E/KU Open Access Transmission Tariff (“OATT”).  Per the terms 
of the OATT, the Companies’ Independent Transmission Organization (“ITO”), TranServ International, will 
perform studies to determine the proposed generators’ impact to the transmission system. However, 
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these studies are complex and time-consuming, and more importantly, cannot begin until all earlier 
queued Generator Interconnection Requests have been studied. Therefore, the results of the ITO’s studies 
are not yet available.  

Thus, for this Resource Assessment the Companies estimated costs for the identified transmission system 
upgrades that could be required to accommodate selected combinations of unit retirements and capacity 
replacements.  Due to the volume of RFP responses, it was not practical to evaluate all proposals and 
potential retirements.  The Companies initially developed least-cost resource plans considering 
transmission system upgrade costs for potential coal unit retirements and capacity replacements.  Table 
35 contains the transmission system upgrade cost estimates considered in this analysis.44 

Table 35:  Transmission System Upgrade Costs ($)45 
Scenario Cost (2022 Dollars) 
Retirements:  Mill Creek 1-2, Brown 3 
Additions:  SCCTs at Mill Creek 46,034,824 

Retirements:  Mill Creek 1-2, Brown 3 
Additions:  NGCC at Mill Creek 35,035,000 

Retirements:  Mill Creek 1-2, Brown 3, Ghent 2 
Additions:  NGCC or SCCTs at Mill Creek and Brown 3,420,000 

 

7.7 Commodity Prices 
7.7.1 Coal and Natural Gas Prices 
Coal and natural gas prices are an important input to this analysis as the level of coal and natural gas prices 
impacts the economics of renewables and the relationship between coal and natural gas prices impacts 
the economics of installing SCR on a coal unit versus replacing the unit with natural gas-fired generation.  
The fuel price scenarios for this analysis were developed over a range of low, mid, and high natural gas 
prices based on recent market quotes and the Energy Information Administration’s 2022 Annual Energy 
Outlook (“EIA’s 2022 AEO”) (see Figure 10).  Appendix E contains a more detailed discussion of the natural 
gas price forecasts and demonstrates that these forecasts are consistent with forecasts prepared by 
industry consultants.   

 

 
44 Due to the uncertainties involved in estimates of solar projects’ transmission costs, the Companies have not 
included these costs in their analysis. 
45 Consistent with the Companies’ prior filings, the study assumed the retirements of Mill Creek 2 and Brown 3 and 
considered the potential for Ghent 2’s retirement.  Replacement capacity was assumed to be either NGCC or sets of 
three SCCT units, with generic individual summer net capacities of 645 MW and 220 MW, respectively, consistent 
with the Companies’ 2021 IRP. 
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The majority of the Companies’ coal supply is sourced from the Illinois Basin.  The Companies developed 
Illinois Basin coal prices for the 2022 AEO natural gas prices based on the historical ratio of Illinois Basin 
coal and Henry Hub natural gas prices (“coal-to-gas price ratio” or “CTG price ratio”) using publicly 
available historical price data.  Figure 11 shows Illinois Basin coal prices and Henry Hub natural gas prices 
as well as the coal-to-gas price ratio since 2012.  Coal and gas prices generally move together, but coal 
markets are slower to respond to changing market fundamentals than gas.  As a result, periods of 
increasing gas prices are generally associated with lower coal-to-gas price ratios, and periods of 
decreasing gas prices are generally associated with higher coal-to-gas price ratios.  In addition, the coal-
to-gas price ratio is mean reverting (i.e., after hitting a high or low point, it reverts back toward the mean) 
and does not remain at high or low levels for long periods of time.  In 2022, U.S. coal supply became tightly 
balanced with demand as export demand from Europe remained elevated due to reduction in the supply 
of Russian coal and gas.  This resulted in the highest coal-to-gas ratio since before 2012, but this ratio is 
not expected to persist through 2050.    

 

CONFIDENTIAL INFORMATION REDACTED

Figure  10:  Natural Gas Price Forecasts (Henry Hub; Nominal $/MMBtu)
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Figure 11:  Illinois Basin Coal and Henry Hub Gas Prices (2012-2022) 

 

Table 36 summarizes the coal-to-gas price ratio in tabular form.  Over the ten-year period from 2012 to 
2021, the average coal-to-gas price ratio was 0.57.  At this coal-to-gas price ratio, the cost of coal and 
NGCC energy is very similar, regardless of the level of gas prices.  Furthermore, this average coal-to-gas 
price ratio is not surprising as coal and NGCC energy are economic substitutes, and a coal-to-gas price 
ratio of 0.57 approximates the ratio of NGCC and coal operating costs.  Over a long analysis period, despite 
changing natural gas prices, the average coal-to-gas price ratio is expected to continue at this level.  In 
addition to the 10-year average coal-to-gas price ratio, Table 36 contains the 6-year average ratios.  These 
6-year averages were used to evaluate short-term variations in the coal-to-gas price ratio.46   

Table 36:  Illinois Basis Coal to Henry Hub Natural Gas Price Ratio (“CTG Price Ratio”) 
Year CTG Price Ratio 10-Year Average 6-Year Average 
2012  0.71    
2013  0.51    
2014  0.45    
2015  0.64    
2016  0.55    
2017  0.46   0.55 (2012-2017) 
2018  0.52   0.52 (2013-2018) 
2019  0.68   0.55 (2014-2019) 
2020  0.73   0.60 (2015-2020) 
2021  0.43  0.57 (2012-2021) 0.56 (2016-2021) 
2022  0.84    

 

 
46 The Companies considered periods of five and six years to evaluate short-term variations in the average coal-to-
gas ratio but a period of six years provides a wider range of ratios.     
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Table 37 summarizes the six fuel price scenarios considered in this analysis.  For the first three fuel price 
scenarios (the “Mid” coal-to-gas price ratios), coal prices were forecasted beyond 2027 with the 
assumption that the coal-to-gas ratio would continue, on average, to approximate the average coal-to-
gas price ratio from 2012 to 2021 (0.57).  Again, note that the Mid coal-to-gas price ratio (0.57) 
approximates the ratio of NGCC and coal operating costs.  Therefore, it is plausible to expect coal-to-gas 
price ratios to revert to this ratio over the long term, which is why the Companies refer to it as the 
“Expected CTG Price Ratio.”  

The last three fuel price scenarios were developed primarily to evaluate short-term, atypical variations in 
the coal-to-gas price ratio.  Because periods of decreasing gas prices are generally associated with higher 
coal-to-gas price ratios, fuel scenario 4 pairs low gas prices with a high coal-to-gas price ratio.  Likewise, 
fuel scenario 5 pairs high gas prices with a low coal-to-gas ratio.  The High and Low coal-to-gas price ratios 
are the maximum and minimum, respectively, of the 6-year average coal-to-gas ratios in Table 36.  Fuel 
price scenario 4 (“Low Gas, High CTG”) is favorable to gas-fired generation; fuel price scenario 5 (“High 
Gas, Low CTG”) is favorable to coal-fired generation.  Fuel scenario 6 was developed to evaluate the 
continuation of current fuel prices in an energy-constrained world (i.e., high gas and coal prices with an 
unusually high coal-to-gas price ratio).  This fuel price scenario is particularly not expected to persist over 
a long analysis period. 

Table 37:  Fuel Price Scenarios 

Scenario Type 
Scenario 
Number 

Natural Gas 
Forecast 

Coal-to-Gas 
Price Ratio 

Fuel Price Scenario Name 
(Gas, CTG Price Ratio) 

Expected CTG 
Price Ratio 

1 Low (2022 AEO) Mid (0.57)47 Low Gas, Mid CTG 
2 Mid (2022 AEO) Mid (0.57)47 Mid Gas, Mid CTG 
3 High (2022 AEO) Mid (0.57)47 High Gas, Mid CTG 

Atypical CTG 
Price Ratios 

4 Low (2022 AEO) High (0.60)48 Low Gas, High CTG 
5 High (2022 AEO) Low (0.52)48  High Gas, Low CTG 
6 High (2022 AEO) Current (0.84)49 High Gas, Current CTG 

 

Table 38 summarizes the coal and natural gas price scenarios evaluated in this analysis.  These fuel prices 
reflect undelivered (Illinois Basin minemouth coal; Henry Hub gas) pricing for the Companies’ open fuel 
positions (i.e., fuel not yet under contract).  The Mid Gas, Mid CTG Ratio scenario reflects a blend of coal 
price bids and a third-party coal price forecast for 2023-2027 and a constant 0.57 CTG ratio thereafter.  All 
other scenarios reflect constant CTG ratios in all years.   

 

 
47 The mid coal-to-gas price ratio (0.57) is the average coal-to-gas ratio over the ten-year period from 2012 to 2021 
and approximates the ratio of NGCC and coal operating costs. 
48 The High and Low coal-to-gas price ratios are the maximum and minimum, respectively, of the 6-year rolling 
average coal-to-gas ratio from 2012 to 2021.  A six-year rolling average period was selected because the resource 
assessment contemplates retiring Mill Creek 2 and Ghent 2 six years before the end of their book deprecation lives 
(2034).       
49 The Current coal-to-gas price ratio is the coal-to-gas price ratio experienced in 2022 through mid-September. 
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Year 

Expected CTG Price Ratios Atypical CTG Price Ratios 

Low Gas, Mid 
CTG Ratio 

Mid Gas, Mid 
CTG Ratio 

High Gas, Mid 
CTG Ratio 

Low Gas, High 
CTG Ratio 

High Gas, Low 
CTG Ratio 

High Gas, 
Current CTG 

Ratio 
Coal Gas Coal Gas Coal Gas Coal Gas Coal Gas Coal Gas 

2023 
2024 
2025 
2026 
2027 
2028 
2029 
2030 
2031 
2032 
2033 
2034 
2035 
2036 
2037 
2038 
2039 
2040 
2041 
2042 
2043 
2044 
2045 
2046 
2047 
2048 
2049 
2050 

 

7.7.2 Ammonia Prices 
Anhydrous ammonia (“ammonia”) is used to reduce NOx emissions from coal-fired generating units.  
Ammonia and natural gas prices are highly correlated given that natural gas is used to manufacture 
ammonia.  Therefore, the Companies evaluated different levels of ammonia prices based on the level of 
natural gas prices.   

Table 39 contains the ammonia price scenarios evaluated in this analysis.  In the Mid Ammonia case, 
ammonia prices are assumed to increase by 5% from 2023 to 2024 and then escalate at 2% per year 
thereafter.  “Current” Ammonia prices reflect recent high market ammonia prices corresponding to recent 
natural gas price spikes for 2023, increase by 5% from 2023 to 2024, and escalate at 2% per year 

CONFIDENTIAL INFORMATION REDACTED

Table  38  –  Coal and Natural Gas Price Scenarios ($/mmBtu)
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Year 

Low  
Ammonia 

Mid 
Ammonia 

High  
Ammonia 

Current 
Ammonia 

Low Gas, Mid 
CTG Ratio 

Low Gas, High 
CTG Ratio 

Mid Gas, Mid 
CTG Ratio 

High Gas, Mid 
CTG Ratio 

High Gas, Low 
CTG Ratio 

High Gas, Current 
CTG Ratio 

2023 
2024 
2025 
2026 
2027 
2028 
2029 
2030 
2031 
2032 
2033 
2034 
2035 
2036 
2037 
2038 
2039 
2040 
2041 
2042 
2043 
2044 
2045 
2046 
2047 
2048 
2049 
2050 

 

7.7.3 CO2 Prices 
The Companies evaluated two non-zero CO2 emissions price scenarios of $15 per short ton (“ton”) and 
$25 per ton.  These scenarios provide a reasonable range of future expectations of CO2 prices based on 
the historical auction price trends of the two existing trading programs in North America: The Regional 
Greenhouse Gas Initiative (“RGGI”) and the California-Quebec Cap-And-Trade Program.   

CONFIDENTIAL INFORMATION REDACTED

thereafter.  The Low and High Ammonia price cases reflect the relationship between the Mid Gas price 
forecast and the Low and High Gas Price forecasts, respectively.

Table  39  –  Ammonia Prices (wholesale  nominal  $/ton)
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Year 
SO2 
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NOx 
Seasonal 
Group 3 NOx Annual  Year 

SO2 
Group 1 

NOx 
Seasonal 
Group 3 NOx Annual 

2023  2037 
2024  2038 
2025  2039 
2026  2040 
2027  2041 
2028  2042 
2029  2043 
2030  2044 
2031  2045 
2032  2046 
2033  2047 
2034  2048 
2035  2049 
2036  2050 

 

 

 

7.8 Financial Inputs 
Table 41 lists the financial inputs used to compute capital revenue requirements in this analysis. 

 
50 https://www.rggi.org/sites/default/files/Uploads/Fact%20Sheets/RGGI_101_Factsheet.pdf 
51 https://ww2.arb.ca.gov/sites/default/files/cap-and-trade/guidance/cap_trade_overview.pdf 
52 https://ww2.arb.ca.gov/our-work/programs/cap-and-trade-program/cost-containment-information 

CONFIDENTIAL INFORMATION REDACTED

RGGI,  started  in  2008,  was  the  first  CO2  trading  program  in  the  U.S.  and  sets  annual  limits  on  CO2 

emissions by electric generation facilities  in 11 states.50  Though allowance pricing over the last five years
(20 auctions) has averaged $7.38 per ton, prices have averaged $13.46 per ton over the last four quarterly 
auctions.  The 3.5% annual emission cap decline, new state admittance to the program, and 7% annual
escalation of the auction price ceiling and floor levels are expected to provide upward support to emission 
allowance prices going forward.

The California-Quebec Cap-And-Trade Program held the first joint auction in 2014.51  The program seeks 
to reduce greenhouse gas emissions from the power, industrial, and fuel distribution sectors.  Emission 
allowance prices have averaged $17.48 per ton over the last five years (20 auctions) and traded as high as
$27.99 per ton in the May  2022 auction.  The 2022 Auction Reserve Price (price floor)  of $17.87 per ton is 
set to increase 12.75% in 2023 to $20.15 per ton due to annual escalation of 5% and inflation.52

7.7.4  Emission Allowance Prices
Table  40  summarizes the emission allowance price forecasts evaluated in this analysis.  These forecasts 
were developed by IHS Markit/S&P Global in June 2022.

Table  40:  Emission Allowance Prices  (nominal $/ton)
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Table 41:  Financial Inputs 
 Combined Companies 
% Debt 47% 
% Equity 53% 
Cost of Debt 4.08% 
Cost of Equity 9.43% 
Tax Rate 24.95% 
Property Tax Rate 0.15% 
  
WACC (After-Tax) 6.43% 

  

Case No. 2022-00402
Attachment 2 to Response to JI-2 Question No. 60(a)

Page 62 of 104 
Wilson

082



 

63 
Exhibit SAW-1 

   
  

Technology No. 
Resource ID and 
Respondent Project Name Location 

Nameplate 
Capacity 

(MW) Start Date 
Term 

(Years) 

Purchase 
Price 

($/kW) 

Capacity Price 
($/kW-
month) 

Energy 
Price 

($/MWh) 

Solar 

1 

3 

7 

12 

21 

23 

29 

34 

36 

37 

Solar w/ 4-hr 
Battery Option 

39 

40 

45 

46 

56 

57 

60 

61 
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8  Appendix B  –  RFP Proposals and Dispatchable DSM Program Options
Table  42:  RFP Proposals  that Advanced to Modeling Analysis
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Technology No. 
Resource ID and 
Respondent Project Name Location 

Nameplate 
Capacity 

(MW) Start Date 
Term 

(Years) 

Purchase 
Price 

($/kW) 

Capacity Price 
($/kW-
month) 

Energy 
Price 

($/MWh) 

70 

71 

74 

75 

78 

79 

Solar + 4-hr 
Battery 

80 

81 

2-hr Battery 
82 

85 

4-hr Battery 

86 

87 

88 

91 

92 

93 

94 

95 
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Technology No. 
Resource ID and 
Respondent Project Name Location 

Nameplate 
Capacity 

(MW) Start Date 
Term 

(Years) 

Purchase 
Price 

($/kW) 

Capacity Price 
($/kW-
month) 

Energy 
Price 

($/MWh) 

97 

Pumped Hydro 98 

Wind 99 

NGCC 
101 

103 

SCCT 
107 

108 

 

Table 43: All RFP Proposals  

Technology No. 
Resource ID and 
Respondent Project Name Location 

Nameplate 
Capacity 

(MW) Start Date 
Term 

(Years) 

Purchase 
Price 

($/kW) 

Capacity Price 
($/kW-
month) 

Energy 
Price 

($/MWh) 

Solar 

1 

2 

3 

4 
5 
6 
7 
8 
9 

10 

11 
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Technology No. 
Resource ID and 
Respondent Project Name Location 

Nameplate 
Capacity 

(MW) Start Date 
Term 

(Years) 

Purchase 
Price 

($/kW) 

Capacity Price 
($/kW-
month) 

Energy 
Price 

($/MWh) 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 
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Technology No. 
Resource ID and 
Respondent Project Name Location 

Nameplate 
Capacity 

(MW) Start Date 
Term 

(Years) 

Purchase 
Price 

($/kW) 

Capacity Price 
($/kW-
month) 

Energy 
Price 

($/MWh) 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

Solar w/ 4-hr 
Battery Option 

38 

39 

40 

41 

42 

43 

44 
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Technology No. 
Resource ID and 
Respondent Project Name Location 

Nameplate 
Capacity 

(MW) Start Date 
Term 

(Years) 

Purchase 
Price 

($/kW) 

Capacity Price 
($/kW-
month) 

Energy 
Price 

($/MWh) 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 
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Technology No. 
Resource ID and 
Respondent Project Name Location 

Nameplate 
Capacity 

(MW) Start Date 
Term 

(Years) 

Purchase 
Price 

($/kW) 

Capacity Price 
($/kW-
month) 

Energy 
Price 

($/MWh) 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

Solar + 4-hr 
Battery 

80 

81 

2-hr Battery 82 
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Technology No. 
Resource ID and 
Respondent Project Name Location 

Nameplate 
Capacity 

(MW) Start Date 
Term 

(Years) 

Purchase 
Price 

($/kW) 

Capacity Price 
($/kW-
month) 

Energy 
Price 

($/MWh) 

83 

84 

85 

4-hr Battery 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

Pumped Hydro 98 

Wind 99 
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Technology No. 
Resource ID and 
Respondent Project Name Location 

Nameplate 
Capacity 

(MW) Start Date 
Term 

(Years) 

Purchase 
Price 

($/kW) 

Capacity Price 
($/kW-
month) 

Energy 
Price 

($/MWh) 

NGCC 

100 

101 

102 

103 

104 

105 

SCCT 

106 

107 

108 

Solar Asset 
Development 

109 

110 
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Table 44: Dispatchable DSM Program Options 

No. Program Name 
Variable Cost $/kWh Time-Dependent 

Characteristic 2024 2025 2026 2027 2028 2029 2030 Winter Summer 

1 Peak Time 
Rebates 2.00 2.00 

Summer Capacity MW - 4 9 17 31 31 31 
Winter Capacity MW - 4 9 17 31 31 31 
Fixed Cost $/kW-Year - - - 164 32 37 32 

2 DLC-Water 
Heaters 2.50 2.50 

Summer Capacity MW 3 3 3 2 2 2 2 
Winter Capacity MW 3 3 3 2 2 2 2 
Fixed Cost $/kW-Year 9 12 11 13 14 16 18 

3 DLC-AC53 - 1.68 
Summer Capacity MW 121 109 98 88 79 71 64 
Winter Capacity MW - - - - - - - 
Fixed Cost $/kW-Year 9 12 11 13 14 16 18 

4 BYOD-Smart 
Thermostats 4.17 4.93 

Summer Capacity MW 1 3 6 10 17 23 29 
Winter Capacity MW 0.4 1 2 3 4 6 7 
Fixed Cost $/kW-Year - - - 341 105 90 86 

5 
Non-residential 
Demand 
Response 

7.55 7.55 
Summer Capacity MW 29 36 45 56 67 79 79 
Winter Capacity MW 29 36 45 56 67 79 79 
Fixed Cost $/kW-Year 45 39 29 25 21 18 13 

 

 

 
53 Summer capacity values are design-day values.  Expected load reductions are lower on an average peak day. 
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9 Appendix C – All-DSM Portfolio Analysis 
To estimate the level of additional DSM programs required for Portfolio 10, the Companies modeled 
portfolio 10 in PROSYM and recorded the level of unserved energy in 2028.   

Table 45:  LOLE in 2028 with MC2, GH2, BR3 Retirements and Dispatchable DSM 
 LOLE (10 Years) 

Portfolio 
Summer 

(Jun, Jul, Aug) 
Winter 

(Dec, Jan, Feb) Total Year 
Retire MC2, GH2, and BR3 76.58 13.01 101.37 
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1 Executive Summary 
The Companies’ long-term load forecast is developed with the assumption that weather will be normal in 
every year.1  While this is a reasonable assumption for long-term resource planning, weather from one 
year to the next is never the same.  Therefore, to account for the possibility of extreme weather events 
and the uncertainty in generating unit availability, the Companies target a level of supply-side and 
demand-side resources that exceeds their forecasted peak demands.  Reserve margin is the amount of 
resources carried in excess of forecasted peak demands and is typically expressed as a percentage of 
forecasted peak demands under normal weather conditions.   

The Companies use PLEXOS, a generation portfolio optimization model, to develop least-cost resource 
plans over a range of scenarios.  Minimum summer and winter reserve margins are key inputs to this 
analysis as these plans are developed to minimize the cost of serving customers’ load while meeting 
minimum reserve margin targets.  The Companies used the Equivalent Load Duration Curve Model 
(‘ELDCM”) and the Strategic Energy & Risk Valuation Model (“SERVM”) to determine minimum reserve 
margin targets.  SERVM is a licensed software from Astrape Consulting. 

The 2021 IRP established minimum reserve margin targets of 17 percent in the summer and 26 percent 
in the winter.  However, the 2021 IRP was finalized in October 2021, and the 2021 IRP load forecast did 
not contemplate the addition of the BlueOval SK Battery Park (“BlueOval SK”) or the impacts of the 
Inflation Reduction Act (“IRA”) and the Companies’ proposed 2024-2030 Demand-Side Mangement and 
Energy Efficiency (“DSM-EE”) Program Plan.  Therefore, using the same methodology as the 2021 IRP, the 
Companies updated their minimum reserve margin targets based on an updated load forecast, which 
includes the BlueOval SK load as well as the impacts of the IRA and the 2024-2030 DSM-EE Program Plan.2   

With the addition of the largely non-weather sensitive, summer peaking BlueOval SK load, the absolute 
level of reserve capacity needed for reliable service did not change materially, but the Companies’ 
forecasted summer and winter peak demands increased, and the summer peak demand forecast 
increased more than the winter peak demand.  The minimum reserve margin is the level of reserves below 
which the cost of adding additional generation capacity is economic.  The cost of capacity for this analysis 
was based on a response to the Companies’ June 2022 RFP for simple-cycle combustion turbine (“SCCT”) 
capacity and was 34% lower than the cost of SCCT capacity used in the 2021 IRP Reserve Margin Analysis.   

Based on the updated load forecast and after factoring in the updated cost of SCCT capacity, the minimum 
reserve margin target for the summer did not change from 17%, but the minimum winter reserve margin 
target decreased from 26% to 24%.     

These reserve margin targets were developed based on a mix of (a) fully dispatchable resources (i.e., 
resources that can be dispatched any time and operated for days at a time) and (b) intermittent and 
limited-duration resources (i.e., resources like the Companies’ dispatchable DSM programs that can only 
be dispatched for several hours at a time).  Table 1 summarizes the portions of the minimum reserve 
margin targets that are made up of fully dispatchable and intermittent or limited-duration resources.  

 

1 The Companies use 20 years of historical weather data to develop their normal weather forecast.   
2 The Companies’ 2022 CPCN Load Forecast is attached to the testimony of Tim A. Jones as Exhibit TAJ-1. 
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Total reserve margin will become less meaningful as a reliability metric as more intermittent and limited-
duration resources are added to the generation portfolio.   

Table 1 – Minimum Reserve Margin Targets 
 Summer Winter 
Fully Dispatchable Resources 12% 21% 
Intermittent/Limited-Duration Resources 5% 3% 
Total 17% 24% 

 

In addition to minimum reserve margins, the Companies used SERVM to determine the capacity 
contribution of limited-duration resources such as battery storage and the dispatchable DSM programs in 
the 2024-2030 DSM-EE Program Plan by comparing their impact on loss-of-load expectation (“LOLE”) to 
that of a SCCT.  This concept is similar to the effective load carrying capability that RTOs compute for 
limited-duration resources.  PLEXOS uses these capacity contribution values to account for the fact that 
limited-duration resources do not contribute to reliability in the same way that fully dispatchable 
resources do.  The capacity contributions for 4-hour battery storage, 8-hour battery storage, and 
dispatchable DSM are 82%, 93%, and 35%, respectively, of fully dispatchable resources.     

2 Introduction  
The reliable supply of electricity is vital to Kentucky’s economy and public safety, and customers expect it 
to be available at all times and in all weather conditions.  As a result, the Companies have developed a 
portfolio of demand- and supply-side resources with the operational capabilities and attributes needed 
to reliably serve customers’ year-round energy needs at a reasonable cost.  In addition to the ability to 
serve load during the annual system peak hour, the generation fleet must have the ability to produce low-
cost baseload energy, the ability to respond to unit outages and follow load, and the ability to 
instantaneously produce power when customers want it.   

An understanding of the way customers use electricity is critical for planning a generation, transmission, 
and distribution system that can reliably serve customers in every moment.  Temperatures in Kentucky 
can range from below zero degrees Fahrenheit to above 100 degrees Fahrenheit.  Figure 1 shows the 
distribution of annual high and low temperatures in Louisville over the last 49 years.  From 1973 to 2021, 
the median annual high temperature was 96.1 degrees Fahrenheit and the median annual low 
temperature was 3.8 degrees Fahrenheit.  Additionally, the variability of low temperatures in the winter 
is significantly greater than the variability of high temperatures in the summer. 
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Figure 1:  Louisville Annual High and Low Temperature Distributions (1973-2021)3 

 

Because of the potential for cold winter temperatures and the increasing penetration of electric heating, 
the Companies are somewhat unique in that annual peak demands can occur in summer and winter 
months.  The Companies’ highest hourly demand occurred in the summer of 2010 (7,175 MW in August 
2010).  Since then, the Companies have experienced two annual peak demands in excess of 7,000 MW, 
both of which occurred during winter months (7,114 MW in January 2014 and 7,079 MW in February 
2015).  Figure 2 contains the Companies’ hourly load profiles for every day from 2010 to 2020.  Hourly 
demands can vary by as much as 600 MW from one hour to the next and by over 3,000 MW in a single 
day.  Summer peak demands typically occur in the afternoons, while winter peaks typically occur in the 
mornings or evenings during nighttime hours.   

 

3 The limits of the box in the boxplots reflect the 25th and 75th percentiles while the “whiskers” represent the 
maximum and minimum. 

Case No. 2022-00402
Attachment 2 to Response to JI-2 Question No. 60(a)

Page 78 of 104 
Wilson

098



D-6 
Exhibit SAW-1 

Figure 2:  Hourly Load Profiles, 2010-2020 

 

 

System demands from one moment to the next can be almost as volatile as average demands from one 
hour to the next.  Figure 3 contains a plot of four-second demands from 5:00 PM to 7:00 PM on January 
6, 2014 during the polar vortex event.  The average demand from 6:00 PM to 7:00 PM was 7,114 MW but 
the maximum 4-second demand was more than 150 MW higher.4   

 

4 7,114 MW is an hourly demand and is computed as the average demand over the hour.  A 4-second demand is an 
instantaneous measure of demand taken every 4 seconds.   
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Figure 3:  Four-Second Demands, 5:00-7:00 PM on January 6, 2014 

 

 

In addition to being reliable, a generation portfolio must possess numerous other attributes to produce 
power when customers want it.  For example, a generation portfolio must possess the ramping capabilities 
to follow abrupt changes in customers’ energy requirements.  In addition, the Companies must be able to 
dispatch at least a significant portion of their generating units when they are needed.  Peaking units can 
start quickly and are needed to respond to unit outages.  Baseload units take longer to start, but because 
their start times are predictable, the Companies can bring them online when they are needed.  The size 
of a resource is also important.  If a unit is too big, taking the unit offline for maintenance can be 
problematic.  If a unit is too small, its value in responding to unit outages is limited.  The Companies’ 
resource planning decisions must ensure their generation portfolio has the full range of operational 
capabilities and attributes needed to serve customers in every moment.   

Customers consume electricity every hour of the year, but no generating resource can be available at all 
times.  Considering the need for maintenance, the Companies’ baseload units and large-frame SCCTs are 
available to be utilized up to 90 percent of hours in a year.  The Companies’ Curtailable Service Rider 
(“CSR”) limits the ability to curtail participating customers to hours when all large-frame SCCTs have been 
dispatched.  As a result, the ability to utilize this program is limited to, at most, a handful of hours each 
year.   

As the Companies evaluate integrating more renewables into their generation portfolio, they must 
consider that renewables lack many of the characteristics required to serve customers in every moment.  
Compared to coal- and natural gas-fired resources, the availability of renewables is less predictable and 
their fuel supply (e.g., sunshine, wind, or water) is more intermittent.  Furthermore, because annual peak 
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demands can occur during the winter months and because winter peaks typically occur during non-
daylight hours, solar generation has virtually no value in the Companies’ service territories as a source of 
winter capacity.   

The following sections summarize the Companies’ reserve margin analysis.  Section 3 discusses the 
analysis framework.  Section 4 provides a summary of key inputs and uncertainties in the analysis.  Finally, 
Section 5 provides a summary of the analysis results.   

3 Analysis Framework 
Figure 4 illustrates the costs and benefits of adding capacity to a generation portfolio.5  As capacity is 
added, reliability and generation production costs decrease (i.e., the generation portfolio becomes more 
reliable), but fixed capacity costs increase.  The reserve margin for the generation portfolio where the 
sum of (a) capacity costs and (b) reliability and generation production costs (“total cost”) is minimized is 
the economic reserve margin.   

Figure 4:  Costs and Benefits of Generation Capacity (Illustrative) 

 

 

Figure 5 includes an alternative capacity cost scenario (dashed green line) for capacity with the same 
dispatch cost and reliability characteristics.  The large dots mark the minimum of the range of reserve 
margins that is being evaluated.  In this scenario, reliability and generation production costs are 

 

5 As mentioned previously, different types of generation resources play different roles in serving customers; not all 
resources provide the same reliability and generation production cost benefit.   
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unchanged but total costs (dashed blue line) are lower and the economic reserve margin is higher.  This 
result is unsurprising; in an extreme case where the cost of capacity is zero, the Companies would add 
capacity until the value of adding capacity is reduced to zero.6   

Figure 5:  Economic Reserve Margin and Capacity Cost (Illustrative) 

 

Table 2 contains the Companies’ summer and winter reserve margin forecast for 2028.  Generation 
resources have a higher capacity in the winter primarily because natural gas units can produce more 
power at lower ambient air temperatures.  Mill Creek 1 and the Companies’ small-frame SCCTs are 
assumed to be retired in 2025.  Reserve margins are computed for 2028 with and without the Rhudes 
Creek and Ragland solar PPAs.  These projects have not received all of their necessary permits and are not 
yet under construction.  Given current market conditions and interest rates, it is not clear whether these 
projects can be financed at the prices originally proposed.   

 

6 In Figure 5, as more capacity is added to the generation portfolio, the value of adding the capacity decreases (i.e., 
the slope of the reliability and production cost line is flatter at higher reserve margins).   
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Table 2:  Peak Demand and Resource Summary (MW, Base Energy Requirements Forecast)  
Summer Winter 

Peak Load 6,319 6,104 
 

Dispatchable Generation Resources 
Existing Resources 7,612 7,909 
Retirements/Additions   

Coal7 -300 -300 
Large-Frame SCCTs 0 0 
Small-Frame SCCTs8 -47 -55 

Total 7,265 7,554 
Reserve Margin (%) 15.0% 23.7% 

 

Intermittent/Limited-Duration Resources 
Existing Resources 105 72 
Existing CSR 128 128 
Existing DLC 46 22 
Retirements/Additions   

Solar PPAs9 177 0 
Total 456 221 
 

Total Supply w/ Solar 7,721 7,774 
Total Reserve Margin w/ Solar (%) 22.2% 27.4% 

 
Total Supply w/o Solar 7,544 7,774 
Total Reserve Margin w/o Solar (%) 19.4% 27.4% 

 

The Resource Assessment evaluates the retirement of dispatchable resources.  Because reserve margin 
will become less meaningful as a reliability metric as more intermittent and limited-duration resources 
are added to the generation portfolio, reserve margins are computed in total as well as for fully 
dispatchable resources only.  With no additional retirements beyond 2025 and with the Rhudes Creek and 
Ragland PPAs, the Companies’ dispatchable reserve margin in 2028 is 15.0% in the summer and 23.7% in 
the winter; the Companies’ total reserve margin in 2028 is 22.2% in the summer and 27.4% in the winter 
and stays above the minimum summer and winter reserve margin targets through 2040.  Without the 

 

7 Mill Creek 1 and 2 cannot be operated simultaneously during ozone season due to NOx limits, which results in a 
reduction of available summer capacity through 2024. Mill Creek 1 will be retired at the end of 2024. OVEC’s contract 
term ends in 2040. 
8 This analysis assumes Haefling 1-2 and Paddy’s Run 12 are retired by 2025. 
9 This analysis assumes 100 MW of solar capacity is added in 2024 (Rhudes Creek), and an additional 125 MW of 
solar capacity is added in 2025 (Ragland). Capacity values reflect 78.6% expected contribution to summer peak 
capacity. 
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Rhudes Creek and Ragland PPAs, the Companies’ dispatchable reserve margins are unchanged but the 
total reserve margins drop to 19.4% in the summer and 27.4% in the winter.   

The Companies used the Equivalent Load Duration Curve Model (“ELDCM”) and Strategic Energy Risk 
Valuation Model (“SERVM”) to update the Companies’ minimum reserve margin targets.  SERVM was also 
used to compute capacity contributions for limited-duration resources based on their impact on loss of 
load expectation  (“LOLE”) in ten years.  ELDCM estimates reliability and generation production costs 
based on an equivalent load duration curve.10  SERVM is a simulation-based model and was used to 
complete the reserve margin studies for the 2011, 2014, 2018, and 2021 IRPs.  SERVM models the 
availability of generating units in more detail than ELDCM, but ELDCM’s simplified approach is able to 
consider a more complete range of unit availability scenarios.  Given the differences between the models, 
their results should be consistent but not identical.   

Key inputs to SERVM and ELDCM include load, unit availability, the ability to import power from 
neighboring regions, and other factors.  SERVM separately models the ability to import power from each 
of the Companies’ neighboring regions based on the availability of generation resources and transmission 
capacity in each region.  In ELDCM, the Companies’ ability to import power from neighboring regions is 
modeled as a single “market” resource where the availability of the resource is determined by the sum of 
available transmission capacity in all regions.  Key analysis inputs and uncertainties are discussed in the 
following section.   

4 Key Inputs and Uncertainties 
Several factors beyond the Companies’ control impact the Companies’ planning reserve margin and their 
ability to reliably serve customers’ energy needs.  The key inputs and uncertainties considered in the 
Companies’ reserve margin analysis are discussed in the following sections.   

4.1 Study Year 
The study year for this analysis is 2028.  In the Resource Assessment, the Companies assumed they could 
comply with the Good Neighbor Plan if replacement generation was secured by 2028.   

4.2 Neighboring Regions 
The vast majority of the Companies’ off-system purchase transactions are made with counterparties in 
MISO, PJM, or TVA.  SERVM models load and the availability of excess capacity from the portions of the 
MISO, PJM, and TVA control areas that are adjacent to the Companies’ service territory.11  These portions 
of MISO, PJM, and TVA are referred to as “neighboring regions.”  The following neighboring regions are 
modeled:   

• MISO-Indiana – includes service territories for all utilities in Indiana as well as Big Rivers Electric 
Corporation in Kentucky. 

 

10 See https://www-pub.iaea.org/MTCD/Publications/PDF/TRS1/TRS241_Web.pdf beginning at page 219 for the 
modeling framework employed by ELDCM. 
11 As discussed previously, the ability to import power from neighboring regions is modeled as a single “market” 
resource in ELDCM.     
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• PJM-West – refers to the portion of the PJM-West market region including American Electric 
Power (“AEP”), Dayton Power & Light, Duke Ohio/Kentucky, and East Kentucky Power 
Cooperative service territories.   

• TVA – TVA service territory.  
 
Moving forward, uncertainty exists regarding the Companies’ ability to rely on neighboring regions’ 
markets to serve load.  Approximately 20 GW of capacity was retired over the past five years in PJM and 
an additional 3 GW of retirements have been announced for the next five years.  For the purpose of 
developing a minimum reserve margin for long-term resource planning, reserve margins in neighboring 
regions are assumed to be at their target levels of 18% (MISO12), 14.8% (PJM), and 17% (TVA13).14   

4.3 Generation Resources 
The unit availability and economic dispatch characteristics of the Companies’ generating units are 
modeled in SERVM and ELDCM.  SERVM also models the generating units in neighboring regions.   

4.3.1 Unit Availability Inputs 
Uncertainty related to the performance and availability of generating units is a key consideration in 
resource planning.  From one year to the next, the average availability of generating units is fairly 
consistent.  However, the timing and duration of unplanned outage events in a given year can vary 
significantly.  A key aspect in developing a target reserve margin is properly considering the likelihood of 
unit outages during extreme weather events.  Table 3 contains a summary of the Companies’ generating 
resources along with their assumed equivalent forced outage rates (“EFORs”).  The availability of units in 
neighboring regions was assumed to be consistent with the availability of units in the Companies’ 
generating portfolio and not materially different from the availability of neighboring regions’ units today.   

 

12 See NERC’s “2020 Long-Term Reliability Assessment” at 
https://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/NERC_LTRA_2020.pdf. 
13 See TVA’s “2019 Integrated Resource Plan” at https://www.tva.com/environment/environmental-
stewardship/integrated-resource-plan. 
14 In the reserve margin analysis, adjustments were made to the neighboring regions’ generating portfolios as 
needed to reflect planned retirements and meet the neighboring regions’ target reserve margins. 
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Table 3:  2028 LG&E/KU Generating & DSM Portfolio 

Resource Resource Type 
Net Max Summer 
Capacity (MW)15 

Net Max Winter 
Capacity (MW) EFOR 

Brown 3 Coal 412 416 5.8% 
Brown 5 SCCT 130 130 8.1% 
Brown 6 SCCT 146 171 8.1% 
Brown 7 SCCT 146 171 8.1% 
Brown 8 SCCT 121 128 8.1% 
Brown 9 SCCT 121 138 8.1% 
Brown 10 SCCT 121 138 8.1% 
Brown 11 SCCT 121 128 8.1% 
Brown Solar Solar 8 0 2.5% 
Cane Run 7 NGCC 691 691 2.2% 
Dix Dam 1-3 Hydro 32 32 N/A 
Ghent 1 Coal 475 479 3.2% 
Ghent 2 Coal 485 486 3.2% 
Ghent 3 Coal 481 476 3.2% 
Ghent 4 Coal 478 478 3.2% 
Mill Creek 2 Coal 297 297 3.2% 
Mill Creek 3 Coal 391 394 3.2% 
Mill Creek 4 Coal 477 486 3.2% 
Ohio Falls 1-8 Hydro 64 40 N/A 
OVEC-KU Power Purchase 47 49 N/A 
OVEC-LG&E Power Purchase 105 109 N/A 
Paddy’s Run 13 SCCT 147 175 8.1% 
Trimble County 1 (75%) Coal 370 370 3.2% 
Trimble County 2 (75%) Coal 549 570 5.1% 
Trimble County 5 SCCT 159 179 4.9% 
Trimble County 6 SCCT 159 179 4.9% 
Trimble County 7 SCCT 159 179 4.9% 
Trimble County 8 SCCT 159 179 4.9% 
Trimble County 9 SCCT 159 179 4.9% 
Trimble County 10 SCCT 159 179 4.9% 
Business Solar Solar 0.2 0 2.5% 
Solar Share Solar 1.7 0 2.5% 
Rhudes Creek Solar Solar 79 0 2.5% 
Additional GT Option 3 Solar Solar 98 0 2.5% 
CSR Interruptible 128 128 N/A 
DCP16 DSM 46 22 N/A 

 

15 Projected net ratings as of 2022.  OVEC’s capacity reflects the capacity that is expected to be available to the 
Companies at the time of the summer and winter peaks.  The ratings for Brown Solar, Business Solar, Solar Share, 
Dix Dam 1-3, and Ohio Falls 1-8 reflect the assumed output for these facilities during the summer and winter peak 
demand.  Cane Run 7 reflects the estimated impact of evaporative cooling under average summer ambient 
conditions. 
16 The Demand Conservation Programs include the Residential and Non-Residential Demand Conservation Programs.  
These programs are the Companies’ only dispatchable demand-side management programs.  The Companies did not 
evaluate the Curtailable Service Rider because the elimination of this rider would have no impact on total revenue 
requirements.   
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Table 5: 2028 Delivered Coal Prices (LG&E and KU; Nominal $/mmBtu) 
Station Value 
Brown 
Ghent 
Mill Creek 
Trimble County – High Sulfur 
Trimble County – PRB 

 

4.3.3 Interruptible Contracts 
Load reductions associated with the Companies’ Curtailable Service Rider (“CSR”) are modeled as 
generation resources.  Table 6 lists the Companies’ CSR customers and their assumed load reductions.  
The Companies can curtail each CSR customer up to 100 hours per year.17  However, because the 
Companies can curtail CSR customers only in hours when more than 10 of the Companies’ large-frame 
SCCTs are being dispatched, the ability to utilize this program is limited to at most a handful of hours each 
year, and then the magnitude of load reductions depends on participating customers’ load during the 
hours when they are called upon.  The total assumed capacity of the CSR program is 128 MW.   

 

17 See KU’s Electric Service Tariff at https://psc.ky.gov/tariffs/Electric/Kentucky%20Utilities%20Company/Tariff.pdf 
and LG&E’s at https://psc.ky.gov/tariffs/Electric/Louisville%20Gas%20and%20Electric%20Company/Tariff.pdf. 

CONFIDENTIAL INFORMATION REDACTED

4.3.2  Fuel Prices
The forecasts  of natural gas and coal prices  for the Companies’  generating  units  are summarized in  Table 
4  and  Table  5.  Those  prices  represent  the  Mid  Gas,  Mid  Coal-To-Gas  Ratio  scenario.  Fuel  prices  in
neighboring regions were assumed to be consistent with the Companies’ fuel prices.  The natural gas  price 
forecast  reflects  forecasted  Henry  Hub  market  prices  plus  variable  costs  for  pipeline  losses  and 
transportation,  excluding  any fixed firm gas transportation costs.

Table  4:  2028  Delivered Natural Gas  Prices (LG&E and KU;  Nominal  $/mmBtu)
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CSR Customers 

Assumed Hourly 
Load Reduction 

(MW) 

4.4 Available Transmission Capacity 
Available transmission capacity (“ATC”) determines the amount of power that can be imported from 
neighboring regions to serve the Companies’ load and is a function of the import capability of the 
Companies’ transmission system and the export capability of the system from which the power is 
purchased.  For example, to purchase 50 MW from PJM, the Companies’ transmission system must have 
at least 50 MW of available import capability and PJM must have at least 50 MW of available export 
capability.  If PJM only has 25 MW of export capability, total ATC is 25 MW. 

The Companies’ import capability is assumed to be negatively correlated with load.  Furthermore, because 
weather systems impact the Companies’ service territories and neighboring regions similarly, the export 
capability from neighboring regions is oftentimes also limited when the Companies’ load is high.  Table 7 
summarizes the sum of daily ATC between the Companies’ system and neighboring regions on weekdays 
during the summer months of 2019 and 2020 and the winter months of 2020 and 2021.  Based on the 
daily ATC data, the Companies’ ATC for importing power from neighboring regions is zero 42% of the time.  
ATC is modeled in SERVM based on this distribution.     

Table 7:  Daily ATC 
Daily ATC 
Range 

Count of 
Days % of Total 

0 98 42% 
1 – 199 2 1% 
200 - 399 10 4% 
400 - 599 17 7% 
600 - 799 11 5% 
800 - 999 21 9% 
>= 1,000 73 31% 
Total 232  

CONFIDENTIAL INFORMATION REDACTED

Table  6:  Interruptible Contracts
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During peak hours when ATC is most likely needed to ensure reliable supply, ATC in ELDCM is assumed to 
be approximately 500 MW two-thirds of the time and zero MW one-third of the time.     

4.5 Load Modeling 
Uncertainty in the amount and timing of customers’ utilization of electricity is a key consideration in 
resource planning.  Uncertainty in the Companies’ load is modeled in SERVM and ELDCM.  SERVM also 
models load uncertainty in neighboring regions.  Table 8 summarizes the summer peak demand forecast 
for the Companies’ service territories and neighboring regions in 2028.  The Companies’ peak demand is 
taken from the base energy requirements forecast scenario and reflects the impact of the Companies’ 
DSM programs.  The forecasts of peak demands for MISO-Indiana, PJM-West, and TVA were taken from 
RTO forecasts and NERC Electricity Supply and Demand data.   

Table 8:  Peak Load Forecasts for 2028 
 

LG&E/KU 
MISO-

Indiana PJM-West TVA 
Peak Load 6,319 20,809 34,677 30,442 
Target Reserve Margin N/A 18.0% 14.8% 17% 

 
The Companies develop their long-term energy requirements forecast with the assumption that weather 
will be average or “normal” in each month of every year.  In a given month, weather on the peak day is 
assumed to be the average of weather on the peak day over the past 20 years.  While this is a reasonable 
assumption for long-term resource planning, weather from one month and year to the next is never the 
same.  The frequency and duration of severe weather events within a year have a significant impact on 
load shape and reliability and generation production costs.  For this reason, the Companies produced 49 
hourly demand forecasts for 2028 based on actual weather in each of the last 49 years.   

Table 9 summarizes the distributions of summer and winter peak demands for the Companies’ service 
territory and coincident demands in the neighboring regions based on these “weather year” forecasts.  
Because each set of coincident peak demands is based on weather from the same weather year, SERVM 
captures weather-driven covariation in loads between the Companies’ service territories and neighboring 
regions to the extent weather is correlated.  Because the ability to purchase power from neighboring 
regions often depends entirely on the availability of transmission capacity, load uncertainty in the 
Companies’ service territories has a much larger impact on resource planning decisions than load 
uncertainty in neighboring regions.   

Table 9:  Summer and Winter Peak Demand Forecasts, 2028 

LG&E/ 
KU Load  

Summer Winter 

Weather 
Year LG&E/KU 

Coincident Peak Demand in 
Neighboring Regions 

Weather 
Year LG&E/KU 

Coincident Peak Demand in 
Neighboring Regions 

MISO-
Indiana PJM-West TVA 

MISO-
Indiana 

PJM-
West TVA 

Max 2007  7,070  20,045   32,361   32,639  1994  7,495   21,305   37,717   31,274  
75th %-ile 2019  6,597  17,626   23,643 25,840  2003  6,408   17,718   32,037  24,089  
Median 2013  6,198  18,806   28,498  27,090  2016  5,954   18,819   33,226   29,893  
25th %-ile 1986  6,077  20,996   33,697  31,183  2011  5,802   16,905  33,525  26,061 
Min 2004  5,778 17,591   28,155  22,179  1998  5,254   14,906   26,772   21,662  
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Figure 6 and Figure 7 contain graphical distributions of the Companies’ summer and winter peak demands 
for 2028.  The values in Figure 6 labeled “Forecasted Peak” (i.e., 6,319 MW in the summer and 6,104 MW 
in the winter) are the Companies’ forecasts of summer and winter peak based on average peak weather 
conditions over the past 20 years.  In Figure 7, the year labels indicate the weather years on which the 
seasonal peaks are based.  The Companies’ Forecasted Peak is higher in the summer, but the variability in 
peak demands is much higher in the winter.18  This is largely due to the wider range of low temperatures 
that can be experienced in the winter and the fact that electric heating systems with heat pumps consume 
significantly more energy during extreme cold weather when the need for backup resistance heating is 
triggered.   

Figure 6:  Distributions of Summer and Winter Peak Demands, 2028 

 

 

 

18 The distributions in Table 9 do not reflect load reductions associated with the Companies’ Curtailable Service Rider 
(“CSR”) because this program is modeled as a generation resource; CSR load reductions are forecast to be 128 MW 
in 2028.  The maximum winter peak demand (7,495 MW) is forecasted based on the weather from January 19, 1994 
when the average temperature was -9 degrees Fahrenheit and the low temperature was -22 degrees Fahrenheit.  
For comparison, the Companies’ peak demand on January 6, 2014 during the polar vortex event was 7,114 MW and 
the average temperature was 8 degrees Fahrenheit and the low temperature was -3 degrees Fahrenheit.  CSR 
customers were curtailed during this hour and the departing municipals’ load was 285 MW.  

Case No. 2022-00402
Attachment 2 to Response to JI-2 Question No. 60(a)

Page 90 of 104 
Wilson

110

E008879
Typewriter
Exhibit SAW-1




 

D-18 
 

Figure 7:  Distributions of Summer and Winter Peak Demands, 2028 

 

 

4.6 Capacity Costs 
For minimum reserve margin, the Companies estimated the change in load that would require the 
addition of generation resources.  Specifically, the Companies estimated the load increase that would 
cause adding new SCCT to the portfolio to be less costly than the Existing portfolio.  The cost of new SCCT 
capacity is based on a response to the Companies’ June 2022 RFP and is summarized in Table 10 in 2028 
dollars.  Compared to the cost of SCCT capacity used in the 2021 IRP Reserve Margin Analysis, this cost is 
34% lower.   

Table 10:  SCCT Cost (2028 Dollars) 

Input Assumption 
 

Value 
Capital Cost ($/kW) 700 
Fixed O&M ($/kW-yr) 3.6 
Firm Gas Transport ($/kW-yr) 15.6 
Escalation Rate 1.47% 
Discount Rate 6.43% 
Carrying Charge ($/kW-yr) 73.9 

 

4.7 Cost of Unserved Energy (Value of Lost Load) 
The impacts of unserved energy on business and residential customers include the loss of productivity, 
interruption of a manufacturing process, lost product, potential damage to electrical services, and 
inconvenience or discomfort due to loss of cooling, heating, or lighting.   
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For this study, unserved energy costs were derived based on information from four publicly available 
studies.19  All studies split customers into residential, commercial, and industrial classes, which is a typical 
breakdown of customers in the electric industry.  After escalating the costs from each study to 2028 dollars 
and weighting the cost based on LG&E and KU customer class weightings across all four studies, the cost 
of unserved energy was calculated to be $21.0/kWh.   

Table 11 shows how the numbers were derived.  The range for residential customers varied from 
$1.6/kWh to $4.0/kWh.  The range for commercial customers varied from $28.4/kWh to $42.1/kWh while 
industrial customers varied from $14.7/kWh to $34.1/kWh.  Not surprisingly, commercial and industrial 
customers place a much higher value on reliability given the impact of lost production and/or product.  
The range of system cost across the four studies is approximately $8.6/kWh.   

Table 11:  Cost of Unserved Energy (2028 Dollars) 

  
  
  

 
 

Customer Class 
Mix 

 
2003 DOE 

Study 
$/kWh 

 
2009 DOE 

Study 
$/kWh 

Christian 
Associates 

Study 
$/kWh 

Billinton and 
Wacker 
Study 

$/kWh 
Residential 34% 1.8 1.6 4.0 3.4 
Commercial 36% 42.1 38.3 28.4 29.5 
Industrial 30% 24.3 34.1 14.7 29.5 
System Cost of Unserved Energy 23.0 24.6 16.0 20.6 
  

 
Customer Class 

Mix 
Min 

$/kWh 
Mean 

$/kWh 
Max 

$/kWh 
Range 
$/kWh 

Residential 34% 1.6 2.7 4.0 2.4 
Commercial 36% 28.4 34.6 42.1 13.7 
Industrial 30% 14.7 25.7 34.1 19.4 
Average System Cost of Unserved Energy   21.0    

4.8 Spinning Reserves 
Based on the Companies’ existing resources, they are assumed to carry 243 MW of spinning reserves to 
meet their reserve sharing obligation and comply with NERC standards.  The reserve margin analysis 
assumes the Companies would shed firm load in order to maintain their spinning reserve requirements.   

 

19 “Estimated Value of Service Reliability for Electric Utility Customers in the Unites States,” Ernest Orlando Lawrence 
Berkeley National Laboratory, June 2009;  
“Assessment of Other Factors:  Benefit-Cost Analysis of Transmission Expansion Plans,” Christensen Associates 
Energy Consulting, August 15, 2005;   
“A Framework and Review of Customer Outage Costs:  Integration and Analysis of Electric Utility Outage Cost 
Surveys,” Ernest Orlando Lawrence Berkeley National Laboratory, November 2003; 
“Value of Lost Load,” University of Maryland, February 14, 2000. 
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4.9 Reserve Margin Accounting 
The following formula is used to compute reserve margin: 

Reserve Margin = Total Supply/Peak Demand Forecast – 1 

Total supply includes the Companies’ generating resources and interruptible contracts.  The peak demand 
forecast is the forecast of peak demand under normal weather conditions.  The impact of the Companies’ 
DSM programs is reflected in the Companies’ peak demand forecast.  While the Companies are assumed 
to carry 243 MW of spinning reserves to meet their reserve sharing obligation, this obligation is not 
included in the peak demand forecast nor as a reduction in generation resources for the purpose of 
computing reserve margin.    

4.10 Scarcity Pricing 
As resources become scarce, the price for market power begins to exceed the marginal cost of supply.  
The scarcity price is the difference between market power prices and the marginal cost of supply.  Figure 
8 plots the scarcity pricing assumptions in SERVM.  The scarcity price is a function of reserve capacity in a 
given hour and is added to the marginal cost of supply to determine the price of purchased power.  The 
Companies’ assumed spinning reserve requirement (243 MW) is approximately 3.8% of the forecasted 
summer peak demand in 2028 (6,319 MW).  At reserve capacities less than 3.8% of the hourly load, the 
scarcity price is equal to the Companies’ value of unserved energy ($21,000/MWh; see Section 4.7).  The 
remainder of the curve is estimated based on market purchase data.    
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Figure 8:  Scarcity Price Curve 

 
 
The scarcity price impacts reliability and generation production costs only when generation reserves 
become scarce and market power is available.  In ELDCM, the scarcity price is specified as a single value 
($100/MWh).      

4.11 Summary of Scenarios 
Reliability costs and loss-of-load events occur when loads are high or when supply is limited.  To properly 
capture the cost of high-impact, low-probability events, the Companies evaluate thousands of scenarios 
that encompass a wide range of load and unit availability scenarios.  Specifically, the Companies evaluated 
each generation portfolio over 49 load scenarios and 300 unit availability scenarios.   
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5 Analysis Results 

5.1 Minimum Reserve Margin 
To determine minimum summer and winter reserve margin targets, the Companies estimated the change 
in load that would cause the addition of generation capacity to be economic.  To do this, the Companies 
modeled two generation portfolios:   

 Existing:  Existing portfolio except Mill Creek 1 (planned retirement in 2024) and the small-frame 
SCCTs (assumed retirement in 2025); Rhudes Creek and Ragland solar PPAs are not completed. 

 Add SCCT:  Existing portfolio plus 60 MW of SCCT.20   

Specifically, the Companies estimated the load increase that would cause the total cost of the Add SCCT 
and Existing portfolios to be approximately equal.  Total costs include generation capacity costs as well as 
reliability and generation production costs.  The summer and winter reserve margins associated with this 
load increase are the minimum summer and winter reserve margin targets.  Below this range, the 
Companies should seek to acquire additional resources to avoid reliability falling to levels that would likely 
be unacceptable to customers.   

Because significant near-term load increases are most likely to be the result of the addition of one or more 
large industrial customers, the analysis evaluated the addition of large, high load factor loads.   The results 
of this analysis from ELDCM and SERVM are summarized in Table 12 and Table 13, respectively.  Consistent 
with the 2021 IRP reserve margin analysis, this analysis is focused on total costs that are estimated based 
on the 85th and 90th percentiles of the reliability and generation production cost distribution for the 
purpose of reducing volatility for customers.  Based on ELDCM and assuming all other things equal, if the 
Companies’ load increases by 150 MW (i.e., summer reserve margin decreases to 17 percent and winter 
reserve margin decreases to 24 percent), the reliability and production cost benefits from adding new 
SCCT capacity would more than offset the cost of the capacity.  The results from SERVM are very similar.   

Table 12:  Minimum Reserve Margin Target (ELDCM) 

Load 
Change 

 
Summer 
Reserve 

Margin for 
Existing 

Portfolio 

Winter 
Reserve 

Margin for 
Existing 

Portfolio 

Total Cost w/ 85th %-ile  
Reliability and Production Costs  

($M/year) 

Total Cost w/ 90th %-ile  
Reliability and Production Costs 

($M/year) 

Existing 
Add 
SCCT 

Diff:  Add 
SCCT less 
Existing Existing 

Add 
SCCT 

Diff:  Add 
SCCT less 
Existing 

0 19.4% 27.4% 1,200 1,203 3 1,207 1,210 3 

50 18.4% 26.4% 1,218 1,221 3 1,226 1,228 2 

100 17.5% 25.3% 1,240 1,239 (1) 1,245 1,247 2 

150 16.6% 24.3% 1,261 1,260 (1) 1,267 1,266 (1) 

200 15.7% 23.4% 1,281 1,281 0 1,292 1,287 (5) 

 

 

20 60 MW of capacity is approximately equal to 1% of reserve margin.   

Exhibit SAW-1 

Case No. 2022-00402
Attachment 2 to Response to JI-2 Question No. 60(a)

Page 95 of 104 
Wilson

115



 

D-23 
 

Table 13:  Minimum Reserve Margin Target (SERVM) 

Load 
Change 

 
Summer 
Reserve 

Margin for 
Existing 

Portfolio 

Winter 
Reserve 

Margin for 
Existing 

Portfolio 

Total Cost w/ 85th %-ile  
Reliability and Production Costs  

($M/year) 

Total Cost w/ 90th %-ile  
Reliability and Production Costs 

($M/year) 

Existing 
Add 
SCCT 

Diff:  Add 
SCCT less 
Existing Existing 

Add 
SCCT 

Diff:  Add 
SCCT less 
Existing 

0 19.4% 27.4% 1,204 1,204 0 1,210 1,208 (2) 

100 17.5% 25.3% 1,241 1,242 1 1,256 1,250 (6) 

150 16.6% 24.3% 1,262 1,258 (4) 1,276 1,273 (4) 

200 15.7% 23.4% 1,284 1,279 (5) 1,300 1,297 (3) 

5.2 Capacity Contribution of Limited-Duration Resources 
In the previous section, the Companies determined the minimum summer and winter reserve margin 
targets as 17% and 24%, respectively.  For portfolio development and screening in PLEXOS, the Companies 
evaluate potential supply- and demand-side resources as generation replacement alternatives.  Some 
supply- and demand-side resources such as battery storage and dispatchable DSM programs are limited-
duration dispatchable resources which do not contribute to reliability in the same way that fully-
dispatchable resources do.  Therefore, the Companies use SERVM to determine the capacity contribution 
of limited-duration resources such as battery storage and the proposed new DSM programs by comparing 
their impact on LOLE to that of a SCCT.  This concept is similar to the effective load carrying capability that 
RTOs compute for limited-duration resources.21  

To complete this analysis, the Companies estimated LOLE for the generation portfolios in Table 14.  The 
“Reference” portfolio (Portfolio 1) replaces Mill Creek 2, Ghent 2, and Brown 3 with one 621 MW NGCC 
and has reserve margins that are significantly lower than the minimum reserve margin targets.  Portfolios 
2-5 add 480 MW of various technologies to the Reference portfolio to achieve summer and winter reserve 
margins close to the minimum reserve margin targets.   

Table 14:  Generation Portfolios for Capacity Contribution Analysis 
 

Generation Portfolio 

2028 Reserve 
Margin 

Summer / 
Winter 

1 Reference:  Replace Mill Creek 2, Ghent 2, and Brown 3 with 1 621 MW NGCC 10.3% / 17.6% 
2 Reference + 480 MW of SCCT 

17.9% / 26.0% 
3 Reference + 480 MW of 4-hr BESS 
4 Reference + 480 MW of 8-hr BESS 
5 Reference + 480 MW of Dispatchable DSM 

 

 

21 See PJM’s Effective Load Carrying Capability (ELCC) at https://www.pjm.com/-/media/committees-groups/task-
forces/ccstf/2020/20200407/20200407-item-04-effective-load-carrying-capability.ashx 
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Table 15 contains the results of this analysis.  With summer and winter reserve margins significantly below 
the target minimums, the LOLE for the Reference portfolio is 21.32 days in 10 years, which is significantly 
higher than the reliability standard of 1 day in 10 years.  When 480 MW of SCCT capacity is added to the 
Reference portfolio, LOLE decreases by 17.75 days.  Alternatively, when 480 MW of 4-hour BESS is added 
to the Reference portfolio, LOLE decreases by 14.60 days.  The capacity contribution for 4-hour BESS is 
computed as the ratio of the BESS LOLE impact to the SCCT LOLE impact (14.60/17.75 = 0.82).  The capacity 
contributions for 4-hour BESS, 8-hour BESS, and dispatchable DSM are 82%, 93%, and 35%, respectively, 
of a SCCT or another fully dispatchable resource. 

 

Table 15: Capacity Contribution for Limited-Duration Resources 

Generation Portfolio 
Reserve Margin 
Summer/Winter 

LOLE (Days in 
10 Years) 

LOLE 
Reduction 
(Days in 10 

Years) 
Capacity 

Contribution 

1:  Reference  10.3% / 17.6% 21.32 NA NA 

2:  Reference + SCCT 

17.9% / 26.0% 

3.57 17.75 NA 

3:  Reference + 4-hr BESS 6.72 14.60 0.82 

4:  Reference + 8-hr BESS 4.88 16.44 0.93 

5:  Reference + Disp. DSM 15.14 6.18 0.35 
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2022 Resource Assessment Fuel Price Forecasts 
1 Summary 
The 2022 Resource Assessment fuel price forecasts for Henry Hub natural gas and Ilinois Basin (“ILB”) coal 
were developed in mid-2022. Using several combinations of these forecasts, the Companies developed 
the following six fuel price scenarios for the Resource Assessment:   

• Expected Coal-to-Gas (“CTG”) Ratio 
o Low Gas, Mid CTG Ratio 
o Mid Gas, Mid CTG Ratio 
o High Gas, Mid CTG Ratio 

• Atypcial CTG Ratios 
o Low Gas, High CTG Ratio 
o High Gas, Low CTG Ratio 
o High Gas, Current CTG Ratio 

The Companies’ range of three gas price forecasts is based on the Energy Information Administration’s 
(“EIA”) forecasts in its 2022 Annual Energy Outlook (“AEO2022”)1 and is consistent with forecasts 
prepared by industry consultants, as discussed in Section 2.1.  The gas price forecasts and the coal price 
forecasts with high gas paired with mid and current CTG ratios generally assume that some level of 
elevated demand in the international fuel markets will remain intact through the long-term period. The 
High Gas, Current CTG Ratio coal price forecast assumes a continuation of demand outstripping supply in 
global fuel markets.  The Low Gas, Mid CTG and Mid Gas, Mid CTG coal price forecasts reflect a more 
domestic focus for coal demand. The High Gas, Low CTG and Low Gas, High CTG forecasts show scenarios 
where market conditions cause price trends to diverge between coal and natural gas. 

The scenarios with Mid CTG ratio assume a return to the average historical ratio between ILB coal and gas 
prices experienced between 2012 and 2021, compared to the corresponding gas prices, as discussed in 
Section 2.2.  Note that the Mid CTG price ratio approximates the ratio of NGCC and coal operating costs.  
Therefore, it is plausible to expect coal-to-gas price ratios to revert to this ratio over the long term, which 
is why the Companies refer to it as the “Expected CTG Price Ratio” throughout the Resource Assessment. 

The High Gas, Current CTG coal price forecast assumes a continuation of the more recent ILB coal/gas 
price ratios experienced in 2022, as the coal and gas markets became extremely tight. The High Gas, Low 
CTG and Low Gas, High CTG price forecasts model variations from the long-term average in the ratio 
between the price of coal and natural gas. 

2 Forecast Methodology 
2.1 Natural Gas 
The Henry Hub natural gas price forecasts were developed as combinations of short-term and long-term 
forecasts.  The first three years (2023-2025) of the gas price forecasts reflect monthly forward market 
prices from NYMEX at various quote dates between March and July 2022.  In the subsequent years, the 
market prices were interpolated to the endpoints of the AEO2022 forecasts (see Section 2.1.3).   

 
1 EIA released the AEO2022 in March 2022.  See https://www.eia.gov/outlooks/aeo/. 
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2.1.1 Gas Price Scenario Assumptions 
The first three years of each gas price forecast reflect market forward pricing as of three quote dates 
between March and July 2022, when the forecasts were being developed and as the forward gas market 
experienced high volatility. 

• Mid Gas 
o 2023-2025: Henry Hub Natural Gas forwards, 7/7/22 market quote date, reflecting the most 

recent forward market prices when the Companies’ 2023 Business Plan forecasts were being 
finalized. 

o 2026+:  Interpolation to the endpoint in 2050 of the EIA’s AEO2022 Reference case. 
• High Gas 

o 2023-2025:  6/9/22 quote date, reflecting the peak of forward gas prices during the forecast 
development period. 

o 2026+:  Interpolation to the endpoint in 2050 of the EIA’s AEO2022 Low Oil and Gas Supply 
case. 

• Low Gas 
o 2023-2025:  3/21/22 quote date, reflecting a period of relatively low forward market prices 

as the current international market factors were still taking shape. 
o 2026+:  Interpolation to the endpoint in 2050 of the EIA’s AEO2022 High Oil and Gas Supply 

case.   

2.1.2 Conversion of annual price curves to monthly 
Monthly/annual pricing ratios were calculated using NYMEX Henry Hub forwards for the respective 
market date in each case.  These monthly average “factors” were then applied to the annual prices of 
each gas price case to derive a monthly price curve for years 2026 through 2050. 

2.1.3 EIA AEO2022 Cases 
2.1.3.1 EIA AEO2022 Reference case (Mid Gas Price Case)2 
• Supply.  Natural gas production grows by almost 24%, approximately twice as fast as consumption.  

U.S. natural gas production increases in all cases except in the Low Oil and Gas Supply case.  More 
than half of the growth in natural gas production is associated with natural gas from tight oil plays 
with the remaining growth in production attributed to shale resources.  Crude oil production returns 
to pre-pandemic levels in 2023 and peaks in the late 2020s.  Production then remains relatively flat 
through 2050.     

• Demand. 
o Projected U.S. natural gas exports rise through 2050, primarily driven by increased LNG 

capacity and growing global natural gas consumption.  Increases in pipeline exports to Mexico 
also contribute to the increase in U.S. natural gas exports.  LNG capacity expansions, coupled 
with high demand for natural gas abroad, result in an increase in LNG exports to 5.86 trillion 
cubic feet (16.1 Bcf/d) by 2033.  

o Natural gas consumption for space heating, which is the largest single contributor to both U.S. 
commercial and residential delivered energy consumption throughout the Reference case 
projection period, declines through 2050. 

• Electricity consumption.  U.S. annual average electricity growth rate remains below 1% over the 
projection period (2021-2050).  Electricity is the fastest-growing fuel used for transportation, growing 
from less than 0.5% of total consumption in 2019 to nearly 2% in 2050. 

 
2 https://www.eia.gov/outlooks/aeo/pdf/AEO2022_Narrative.pdf  
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• Generation mix.  In all Cases, the EIA projects that renewable energy will be the fastest-growing U.S. 
energy source through 2050, more than doubling the current renewable electricity generation mix.  
Renewable electric generating technologies account for over 57% of the approximately 1,000 
gigawatts (GW) of cumulative capacity additions.  Solar capacity accounts for 47% of electric 
generating capacity additions, and wind accounts for about 10%.  Solar’s share of total U.S. capacity 
increases from 7% in 2020 to 29% in 2050.  Natural gas generation makes up 39% of new capacity 
additions from 2021-2050.  Significant projected coal and nuclear generating unit retirements cause 
the shares from those sources to drop by half. 

 

2.1.3.2 EIA AEO2022 Low Oil and Gas Supply Case (High gas price case) 
• Compared with the Reference case, the Low Oil and Gas Supply case assumes the following are all 

50% lower:  the estimated ultimate recovery per well for tight oil, tight gas, or shale gas in the United 
States; the undiscovered resources in Alaska and the offshore lower 48 states; and the rates of 
technological improvement that reduce costs and increase productivity in the United States.  

• The Low Oil and Gas Supply case assumes higher costs and less resource availability, which increases 
natural gas prices, so LNG exports begin to decline in the mid-2030s.   

• In 2050, the projected natural gas price is almost twice as high in the Low Oil and Gas Supply case as 
in the Reference case. 

2.1.3.3 EIA AEO2022 High Oil and Gas Supply Case (Low gas price case) 
• Compared with the Reference case, the High Oil and Gas Supply case assumes the following are all 

50% higher:  the estimated ultimate recovery per well for tight oil, tight gas, or shale gas in the United 
States; the undiscovered resources in Alaska and the offshore lower 48 states; the rates of 
technological improvement.  

• Shale gas and associated natural gas from tight oil plays are the primary contributors to the long-term 
growth of U.S. natural gas production through 2050.   

• In 2050, the price is approximately 29% lower than in the Reference case. 

2.1.4 Gas Price Forecasts Reasonableness 
The range of natural gas price forecasts compares reasonably to the market expectations of reputable 
industry consultants, as shown in Figure 2.3  The range between the Low and High scenarios reasonably 
bounds these consultants’ forecasts, while the Mid scenario approximates the AEO’s Reference case in 
the long term.    

 

 
3 The constultant’s forecasts were published in June and August 2022. 
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Figure 1 - Comparison of Henry Hub Natural Gas Price History and Forecasts (Nominal $/MMBtu)
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2.2 ILB Coal 
The Illinois Basin (“ILB”) coal open position price forecasts were created using the following inputs. 

• Bid prices solicited by LG&E/KU’s Fuels group 
• S&P Global’s (“SPG”) price forecast 
• Historical ILB coal/gas price ratios 

For the Mid Gas, Mid CTG coal price forecast, bid pricing sourced from LG&E/KU’s Fuels group reflects 
minemouth quotations supplied by coal suppliers for delivery in each year through 2027.  The fuels group 
received these quotations in response to a request for quotation (RFQ) issued in Q2 2022.  Bid pricing for 
2027 was estimated by inflating 2026’s price by 2%, due to low bid 2027 volume. 

SPG was contracted to produce a coal price forecast to complement the Companies’ bid pricing.  SPG 
produced this forecast in Q1 2022 just before a steep increase in commodity prices, so the forecast was 
adjusted in July 2022 to reflect current natural gas futures prices, which had increased by 25%-30% due 
to production being tightly balanced with demand as export demand from Europe remained elevated as 
the supply of Russian coal and gas was reduced. 

The long-term ILB price forecasts comprise 6 scenarios that were developed by applying historical 
relationships between ILB coal and natural gas prices to the natural gas price forecasts. Figure 3 shows 
that relationship over the past decade. 

Figure 2 - Historical ILB Coal/Henry Hub Gas Ratios (CTG) 

  

The ILB coal/Henry Hub natural gas ratio (referred to as “CTG”) is the ratio between yearly average ILB 
coal prices and natural gas prices. The long-term average CTG of 0.57 over the decade through 2021 
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(referred to as the “Mid CTG”) reflects a relatively stable coal market with ample supply vs. demand as 
depicted by the red line on Figure 3. This average is the basis for the Mid CTG coal price forecasts.  As 
noted above, the Mid coal-to-gas price ratio (0.57) approximates the ratio of NGCC and coal energy costs.  
Therefore, it is plausible to expect coal-to-gas price ratios to revert to this ratio over the long term, which 
is why the Companies refer to it as the “Expected CTG Price Ratio” throughout the Resource Assessment. 

The remaining CTG ratios are atypical.  The first such atypical CTG ratio is the recent average ratio (referred 
to as the “Current CTG”), at 0.84, is the 2022 January through mid September average CTG. This ratio 
reflects a volatile market and is the basis for the High Gas, Current CTG coal price forecast, which assumes 
that strong demand for ILB coal continues in both domestic and export markets and that the coal industry 
constrains supply increases by maintaining low capital expenditures.  

The High and Low rolling 6-yr average ratios (referred to as the “High CTG” and “Low CTG”) depicted on 
the graph at 0.60 and 0.52, respectively, are also atypical.  They are the maximum and minimum rolling 
6-year average ILB coal/Henry Hub gas price ratio over the past decade. These ratios are used to create 
the High Gas, Low-CTG and Low-Gas, High CTG coal price forecasts, which are intended to model a range 
of scenarios where coal and gas prices diverge from their historical correlation. 

2.2.1 ILB Coal Price Scenario Assumptions 
• Mid Gas, Mid CTG 

o 2023-2027:  blend of bid prices and the adjusted SPG forecast using the following 
weightings.   
 2023:  100% bid pricing 
 2024: 75% bid pricing/25% adjusted SPG forecast 
 2025-2027:  50% bid pricing/50% adjusted SPG forecast 

Figure 4 shows the resulting near-term ILB price forecast and its components. 
Figure 3 - Mid ILB Coal Price Forecast, 2023-2027 (Nominal $/MMBtu) 

o 2028-2050:  The Mid gas price forecast multiplied by the long-term average CTG ratio 
of 0.57. 
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• Low Gas, Mid CTG and High Gas, Mid CTG:  The Low and High gas price forecasts, respectively, 
were multiplied by the Mid CTG of 0.57 throughout the planning period. 

• High Gas, Current CTG was developed by multiplying the High gas price forecast by the Recent 
CTG, which is 0.84. 

• High Gas, Low CTG was developed by multiplying the High gas price forecast by the Low CTG 
ratio, which is 0.52.  

• Low Gas, High CTG was developed by multiplying the Low gas price forecast by the High CTG 
ratio, which is 0.60.  
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KENTUCKY UTILITIES COMPANY 
AND 

LOUISVILLE GAS AND ELECTRIC COMPANY 
 

Response to Attorney General’s Initial Request for Information  
Dated February 17, 2023 

 
Case No. 2022-00402 

 
Question No. 13 

 
Responding Witness:  Lonnie E. Bellar 

 
Q-13. Provide a detailed, thorough and comprehensive explanation regarding the causes 

of the rolling blackouts the Companies instituted during Winter Storm Elliott 
(“the Storm”), from Dec. 23-25, 2022. Include in your discussion, at a minimum, 
the following issues set forth below. For each issue identified below, and for any 
additional issues the Companies identify, explain also, where applicable, the 
potential future impact as to both of the proposed NGCC plants: 

 
a. The performance of each one of the Companies’ generating units, including 

the capacity factor of all of the Companies’ existing solar units; 
 

b. Whether the Companies had secured adequate fuel, and whether the 
Companies, and/or their pipeline suppliers, may need to obtain additional 
storage for both the LG&E LDC operations and the Companies’ joint electric 
generation operations. Include in your response whether the Companies can 
identify any infrastructure needs that would help increase the reliability of 
their gas supply; 
 

c. Whether pipelines that provide gas to the Companies’ generating units were 
affected in any manner by the Storm, and if so, how; 
 

d. Whether the Brown Station combustion turbines (“CTs”) were operated off 
of the Texas Eastern or Tennessee Gas pipelines, or perhaps both; 
 

e. Identify the pipeline and the supplier that provide gas to the Trimble Station 
CTs; 
 

f. Explain whether any of the issues that may have affected the Brown CTs also 
affected the Trimble CTs. If so, provide a discussion on whether a redundant 
gas supply to Trimble should be investigated; 
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g. Whether any of the gas suppliers and/or owners of any such affected pipelines 
declared a force majeure as a result of the Storm, and if so, the impact this 
had on the Companies, in terms of cost and otherwise; 
 

h. Whether the Companies maintain any hedging or insurance products designed 
to reduce the risk of gas and/or other fuel shortages; 
 

i. If the supplier the Companies use was unable to supply gas, explain whether 
any other suppliers are allowed to supply gas on the Texas Gas pipeline, and 
if so, explain whether the Companies either currently have a back-up supply 
contract with any other supplier, or if not, whether they will consider doing 
so in the future; 
 

j. Explain whether any of the Companies’ CTs have dual-fuel capability, and if 
so, whether the Companies have investigated installing on-site tanks to store 
a second fuel supply, such as Duke Energy, Kentucky and East Kentucky 
Power Cooperative (“EKPC”) have; 
 

k. Whether the Companies were able to make any off-system purchases to help 
mitigate the rolling outages; 
 

l. Provide all studies / internal analyses, evaluations or reports the Companies 
performed regarding the performance of their generation and transmission 
facilities during the Storm, including any “lessons learned” studies. Include 
in your response whether the Companies plan to retain any external 
consultants to perform any such studies or analyses, and if so, provide 
timelines for the completion of such studies; 
 

m. Explain whether in light of the Storm, the Companies believe that their 
generation reserve margin should be re-evaluated; 
 

n. The Storm’s impact on the Fuel Adjustment Charge (i.e., will there be any 
significant increases or decreases), and whether there will be any significant 
impact on base rates; 
 

o. Provide the total time duration during which rolling blackouts were instituted, 
the total number of ratepayers affected, and the average length of time the 
blackouts lasted. 
 

p. In the aftermath of the Storm, do the Companies believe it is more important 
to preserve their remaining coal fleet? 
 

q. Explain whether the Companies believe they did an adequate job of 
communicating with their customers regarding the rolling blackouts. Explain 
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also whether the Companies could provide more enhanced communications, 
including via a phone or computer app. 

 
A-13.  

a. See the response to JI 1-22d.  During December 23-25, 2022, the Brown Solar 
capacity factor was 11.5%, while the Simpsonville Solar capacity factor was 
13.6%. 

 
The Brown Solar and Simpsonville Solar facilities were not operating during 
the hours that load was curtailed.  
 

b. LG&E’s gas distribution business had adequate natural gas supplies including 
storage to serve its customers during the Storm.  LG&E’s gas business has 
not identified any infrastructure needs that would increase reliability as a 
result of its operating experience during the Storm.  The Companies secured 
adequate natural gas supply for generation during Winter Storm Elliott and 
those supplies were not cut by suppliers.  The Texas Gas Transmission 
pipeline serving Cane Run and Trimble County experienced equipment issues 
that caused reductions in gas pressure affecting the Companies’ ability to 
operate generating units at full output at those sites.  Texas Gas is taking steps 
to upgrade equipment and update operational procedures to ensure 
transportation reliability. 
 

c. See the response in part (b) for the interstate pipeline impact on the 
Companies generating units.  LG&E’s gas distribution business serves coal-
fired generation units at Mill Creek with gas for unit start-up and stabilization.  
LG&E’s gas distribution pipeline serving Mill Creek was not impacted by the 
Storm.       
 

d. The Brown Station CTs were operated on the Texas Eastern pipeline during 
Winter Storm Elliott. 
 

e. Texas Gas Transmission provides natural gas transportation to the Trimble 
Station CTs. 
 

f. The interstate pipeline pressure issue affecting the Trimble County CTs did 
not affect the Brown CTs, where gas was delivered via a different interstate 
pipeline.  There is not another interstate pipeline in the vicinity of the Trimble 
County plant for potentially developing a secondary interstate pipeline 
connection. 
 

g. The Companies did not receive force majeure notices from any gas suppliers 
or interstate pipelines providing gas to the Companies’ generation assets.  
LG&E’s gas distribution business receives gas from suppliers on Texas Gas 
Transmission, LLC (“Texas Gas”) and Tennessee Gas Pipeline, LLC 
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(“Tennessee”).  There were no Force Majeures issued by LG&E’s suppliers, 
Texas Gas or Tennessee during the Storm.     
 

h. LG&E’s gas distribution company does not maintain any hedging or 
insurance products designed to reduce the risk of gas shortages.  LG&E’s gas 
supply plan includes a reserve margin to mitigate the risk of forecast error, 
LG&E compressor station equipment issues, or the loss of pipeline supply.  
The reserve margin is provided by LG&E’s on-system storage.   

 
The Companies do not maintain hedging or insurance products designed to 
reduce the risk of gas shortages for generation.  The Companies’ firm gas 
transport agreement services, gas purchasing practices, and dual fuel 
capability for some of the Brown CTs are designed to ensure that adequate 
fuel is available and deliverable to the Companies’ generating units. 
 

i. See the response to part (b).  The Companies purchase gas from multiple 
suppliers on the spot and forward markets for generation gas supply.   
 
None of the suppliers to LG&E’s gas distribution system declared Force 
Majeure.  However, LG&E’s gas distribution business has contracts in place 
with several suppliers that allow it purchase gas a day at a time.  If one 
supplier fails to perform, LG&E could attempt to purchase gas “intra-day” 
from another supplier.  However, there is no guaranty that “intra-day” supply 
will be available. 
 

j. The Companies currently have dual fuel capabilities for 4 CTs at the Brown 
Station, which has both fuel oil storage and demineralized water storage to 
support operation on fuel oil.   
 

k. See the response to PSC 1-58(b). 
 

l. The investigation into the events of Winter Storm Elliott are ongoing.  
Attached are two completed reports, a comprehensive event summary report 
for Generation, Transmission and Distribution, and a summary report for Gas 
Operations.  The Companies have not retained the services of an external 
consultant to review the event.    
 

m. The Companies review of storm events, see the response to AG 1-13(l), will 
inform any decision to change the Companies Reserve Margin requirements.  
Currently, we do not expect a change in Reserve Margin requirements.  
 

n. The issues that impacted the Companies’ ability to meet its load requirements 
during Winter Storm Elliott did result in the Companies’ making high cost 
energy purchases.  Based on Commission precedent, $3.4 million of KU’s 
purchases were excluded from FAC recovery for the month of December.  
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None of LG&E’s purchases were excluded from FAC recovery, as they did 
not exceed the cost of LG&E’s highest cost unit available during the month 
of December.  There will be no impact to current base rates, as they can only 
be changed through an application with the Commission. 
 

o. Total time duration during which rolling blackouts were instituted:  5:59PM 
to 10:11PM December 23, 2022 (4 hours, 12 minutes).  Total customers 
Affected: 54,637. Average length of outage per customer:  59 minutes. 
 

p. See the response to PSC 1-58(a).  Also, it is important to note that one of the 
Companies’ coal units was on a forced outage on December 23 and several 
coal units experienced derates during the course of the storm event.  The 
Companies are confident that the new generation resources proposed in this 
CPCN case will provide reliable, low-cost service to our customers for many 
decades into the future. 
 

q. The Companies are always seeking to improve performance and are 
reviewing their communications during the storm to identify opportunities for 
future improvements. 

129



Winter Storm Elliott 
Events in the LG&E and KU Balancing Authority Area (BAA) 

December 23-24, 2022 

Executive Summary 

Winter Storm Elliott hit the Eastern Interconnect December 23-25, straining the grid, and 
resulting in load shedding events across the region.  As the storm moved across Kentucky, it 
transitioned from rain to ice then snow. Elliot’s conditions included: 

 Temperatures as low as -8 degrees, the lowest in the Louisville area since 1994.
 Windchills exceeding 30 degrees below zero and wind gusts of 30-40 miles per hour.
 Snowfall of 1-5 inches.

The storm set new all-time December electric peaks within the LG&E and KU BAA on Friday, 
Dec. 23rd. 

 Total Daily Energy Usage was 141,613 MWh, breaking the prior record of 134,600 MWh
set on Dec. 14, 2010.

 Over half-a-billion cubic feet of gas was delivered to customers on December 23.  This
was the second highest amount of gas delivered to customers on record for December.
42% of that gas came from LG&E gas storage fields.

On the evening of December 22 temperatures began to drop rapidly across the state.  In 
Louisville the temperatures dropped from the mid-40s at 16:00 to single digits by midnight and 
below zero by 04:00.  Over the course of the next two days, the LG&E and KU BAA experienced 
significant challenges including interstate gas pipeline pressure limitations, mechanical and 
other cold weather issues.   

This narrative is intended to provide a high-level overview with real time event history as it 
impacted the LG&E and KU BAA. 

On the morning of December 22, the 14-day projected net peak was forecasted to be 5,899 
MW on December 23 at 20:00.  On December 23 at 00:00 there was 4,761 MW of generation in 
service and 7,239 MW available capacity (excluding contingency reserves). The actual peak was 
6,559 MW on December 23 at 17:58, well within the projected available capacity.  TC1, BR10 
and Dix1 (444 MW net total) were offline to address pre-existing mechanical issues and were 
not expected to be needed.   

EW Brown Station’s fuel gas was supplied by Texas Eastern Transmission Pipeline (“TETCO”) 
throughout the event and was unaffected by external supply issues. 

Cane Run and Trimble County plants are supplied by the Texas Gas Transmission Pipeline 
(“Texas Gas”).  The companies’ transportation contracts with Texas Gas specify minimum 
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pressure for deliveries to Cane Run at 550 psi and Trimble County at 530 psi. Texas Gas 
deliveries to Cane Run fell below the minimum required pressure at 11:09 on 12/23. As a result, 
Cane Run experienced derates between 12/23 at 13:08 and 12/25 at 04:06.  Deliveries to Cane 
Run did not return to full contracted pressure until 12/25 at approximately 13:00.  Texas Gas 
deliveries to Trimble County fell below the minimum required pressure at approximately 11:15 
on 12/23, requiring several derates at the plant between 12/23 at 13:47 and 12/25 at 
approximately 16:00, when the deliveries returned to full contracted pressure.  Note that per 
NERC GADS rules, ‘Failure of fuel supplier to fulfill contractual obligations’ is considered 
‘Outside Plant Management Control’ and does not contribute to the plant EFOR.  See appendix 
A for fuel gas supply pressure trends. 

Further contributing to the shortfall was the interruption in energy deliveries from OVEC, which 
was projected to supply 156 MW on 12/23 but in fact ranged from 91 MW to as little as 6 MW 
over the course of the event.  Additionally, several times during the event TVA could not 
support its contingency reserve requirements, withdrawing its contribution to the Contingency 
Reserve Sharing Group (“CRSG”) and necessitating LG&E/KU to cover a significantly increased 
amount of contingency reserve for our BAA (equal to our Most Severe Single Contingency, or 
MSSC, of 710 MW – an increase of over 450 MW in contingency reserve requirements). 

As conditions across the regional grid began deteriorating on December 23, LG&E and KU 
executed the Capacity and Energy Emergency Operating Plan (which includes NERC required 
measures).  The urgent actions required when facing these rare, emergency conditions 
necessitate swift, thoughtful response to restore system balance as quickly as possible or risk 
wide scale impacts over an extended period. The LG&E and KU Balancing Authority (“BA”) had 
to shed load on 12/23 from 17:58 through 22:11  by as much as 317 MW. While this event 
impacted less than 5% of LG&E and KU customers, it was a first-of-its kind occurrence within 
the LG&E and KU system.  See Appendix B for graph of customers affected by utility. 

During the time of the load shedding event, derates attributable to the inability of Texas Gas to 
meet contractual delivery obligations ranged from 785MW to 943 MW.  Derates unrelated to 
Texas Gas supply ranged from 45MW to 361MW.   

The following graph demonstrates the impact that the gas supply issue had on the system in 
conjunction with the load shedding event.  This graph covers the period of 12/23 from 17:30 to 
22:58 and encompasses the entirety of the load shedding event.  It also reflects the impact of 
the non-gas supply derates. 
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Generation Events   
This narrative details the events across the LG&E and KU Generation Fleet over the course of 
the cold weather event.  It does not directly reflect customer impact.  Starting Friday, 12/23 the 
following generating issues developed: 

 12/23/22 at 00:00 the generation fleet condition was as follows:
o Per Generation Dispatch there was 4,761 MW of generation in service and 7,239

MW available capacity.
o TC1 (370 MW net exclusive of partners) had been in outage since 12/22/22 at

15:35 due to failure of submerged drag chain conveyor hydraulic gearbox.
Repairs were in progress at the time of this event, but the unit was available for
up to 75 MW (exclusive of partners) firing gas only.

o BR10 (138 MW net) had been in an outage since 12/3/22 when a borescopic
inspection identified issues with turbine seals.  Repairs were in progress at the
time of this event.

o Dix 1 (11 MW net) had been in a planned outage since 11/14/22.  The unit could
not be commissioned at the available lake level.

 01:28 BR5 (130 MW net) and BR8 (128 MW net) tripped offline due to an interruption in
fuel gas.  This same failure rendered BR9 (138 MW net) and BR11 (128 MW net)
unavailable.  A pilot light that preheats fuel gas to act as control gas for fuel gas supply
regulators blew out, making the regulators to the BR CT’s inoperable and stopping fuel
gas supply to the units. Station Maintenance built enclosures, installed heat trace, and
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wrapped in insulating blanket.  This system was released back into service 12/23 at 
16:58.  

o BR9 came online firing fuel oil at 03:50.
o BR11 was made available at 03:50 and came online firing fuel oil at 07:40. It

tripped at 15:39 due to a flame scanner issue and returned to service at 17:03
firing gas.

o BR8 came online firing fuel oil at 07:02.  It hit a controls alarm for emissions
limitations at 10:51, derating it to 100 MW.

 03:10 TC2 derated by 37 MW net (exclusive of partners) due to low inlet air
temperature into the air heater.  With the very low ambient air temperatures the water
coil air heater could not provide sufficient heat input to maintain full load.  This variable
derate continued through 12/27/22 at 16:30.

 OF (45 MW net) The Army Corps lost power to the dams due to inclement weather
issues. OF units were taken offline between 04:32 and 15:20 by order of Army Corps as
a method of regulating the pool.

 05:10 Generation Dispatch went into Alert Status, an internal status requesting that
plant personnel avoid unnecessary risks with generating units.

 05:15 PR13 (175 MW net) online.  Tripped at 06:36 due to low generator gas
temperature.  This was caused by a manual valve in the cooling water circuit.  The valve
was set to its winter flow setting, but the extreme cold necessitated an additional
adjustment.  The unit came back online at 07:13.

 Secondary CT’s:
o 06:15 the HA units (2x14 MW net) were requested. Note that this site is

unmanned and requires local operation.  The delay to start was based on
dispatching personnel to the site.

o HA1 came on at 10:33 and ran until 12/24/22 at 14:57
o HA2 was made unavailable from 10:33 until 14:57 due to a substation breaker

issue, at which point the lube oil temperature to the unit could not make
minimum temperature due to the extreme cold.

o 07:52 PR12 (28 MW net) online.
o 09:46 Dix2 and 09:52 Dix3 (11 MW net each) online.

 07:17 BR3 (400 MW net) derated by 62 MW due to problems with combustion process
instrumentation (not believed to be weather related at this time).   This led to additional
combustion related issues and derates through 12/25/22 at 21:15 when the unit was
taken offline due to excessive slagging. The maximum derate prior to coming offline was
76 MW.

 At 11:09 gas pressure CR dropped below their contract limit of 550psi and soon after TC
dropped below their contract limit of 530psi.  By 13:08 this began to affect generating
units, first when TC5 tripped (179 MW) followed by a derate at CR7 at 13:47 (253 MW).
This derate varied as gas supply pressure changed over the course of the event.  At
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13:48 the operating gas turbines at TC collectively took a 439 MW derate to manage 
dropping gas pressure.  As previously noted, TC1 was available for 100 MW firing gas 
had supply been available. 

 15:48 TC2 experienced a derate of 269 MW net due to a frozen boiler feed pump
transmitter. This caused a unit runback that tripped a coal mill.  The mill needed to be
manually purged before returning to service.  This lasted until 22:26 when the unit
returned to its previous 37 MW derate due to inlet air temperature.

 At 16:13 MC4 lost a coal feeder due to cold weather-related bunker issues (coal tripper
froze up) and took a 121 MW derate.  This was resolved as of 18:44 and the unit
returned to full load.

External Impacts 
The timeline below details the interaction between LG&E/KU BA and the external entities 
whose actions impacted the LG&E/KU system including times when customers were impacted.  
For simplicity and readability, it excludes real time LG&E/KU generation status information. 

 12/23/22
o 05:07 TVA declared EEA-1
o 05:38 TVA declared EEA-2
o 06:12 TVA declared EEA-3
o 06:26 LG&E/KU Out of CRSG - carrying 700 MW reserves for CR7 (at

current time MSSC)
o 09:00 LKE Curtailable Service Rider (CSR) customers - directed to reduce

load consistent with their contract and tariff.
o 10:15-11:45, 11:50-13:30 requested CSR assistance, LKE supplied 243

MW contingency reserves
o 11:09-11:15 Texas Gas supply pressure to TC and CR dropped below the

contract limit
o 13:08 Generation derates due to Texas Gas supply pressure issues begin
o 13:36 LG&E/KU BA declared EEA 3, pulled reserves from the CRSG
o 13:51 TVA declared EEA-2
o 14:48 TVA supplied extra 243 MW to CRSG
o 14:52 LG&E/KU BA changes from EEA 3 to EEA 2 and supplied our 243

MW to CRSG
o 16:29 PJM curtailed import to LG&E/KU for 400 MW
o 16:29 ARS called for 400 MW
o 16:45 LG&E/KU BA declares EEA 3
o 17:18 TVA declares EEA-3
o 17:58 LG&E/KU BA starts Load Shed process.  The peak system load of

6,552 MW with a system capacity of 6,129 MW was achieved at this point
o 18:05 End of TVA curtailment tag
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o 21:30 TETCO force majeure issue in Ohio (no impact to Brown as supply
was coming from the south).

o 22:11 Per BA/TO all breakers opened during load shed were back closed
 12/24/22

o 00:53 LG&E/KU BA declares EEA 2
o 01:55 LG&E/KU BA declares EEA 3
o 06:00 PJM adjusted OVEC tags by as much as 59 MW between 06:00 and

12:00.  The GO worked with the BA and TVA RC to resolve but it is
unknown at this time why PJM was changing tags.

o 12:10 TVA declares EEA 2
o 12:22 LG&E/KU BA declares EEA 2
o 13:07 TVA declares EEA 1
o 13:45 TVA declares EEA 0
o 14:06 LG&E/KU BA declares EEA 0

 12/25/22
o 13:15 LG&E/KU ended Generation Alert Status
o 16:00 Generation derates due to Texas Gas supply pressure issues end
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Appendix A: 
Supplied Gas Pressure from Texas Gas on 12/23/22 at 00:00 through 23:59 

Cane Run 

Trimble County 
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Supplied Gas Pressure from Texas Gas on 12/22/22 at 08:00 through 12/26 at 04:00 

Cane Run (Low pressure persisted until 12/25/2022 at approximately 13:00) 

Trimble County (Low pressure persisted until 12/25/2022 at approximately 16:00) 
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Appendix B: 
LG&E/KU Customer Outages 
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Effective July 14th, 2020 

Note: Rating values can be found in OASIS under AFC initialization impacts detail report for LGEE owned Flowgates. For Flowgates with owner 
other than LGEE, please refer to the respective owner’s OASIS for updated values. 
 

 

List of Flowgates used in LG&E and KU AFC/ATC process 

FG ID Flowgate FG Shortname 
FG 

Owner 

1023 Volunteer-PhippsBend 500 kV (flo) Jefferson-Rockport 765 kV VOLPHBJEFROC TVA 

1024 Volunteer-PhippsBend 500 kV (flo) Conasauga-Mosteller 500 kV VOLPHBCONMOS TVA 

1025 Trimble Co.-Clifty Creek 345-Rockport-Jefferson 765 TRMCLFROCJEF LGEE 

1095 Smith 345/138 kV XFMR (flo) Wilson - Daviess 345 kV SMIXFRWILDAV OMU 

1613 Volunteer - Phipps Bend 500 VOLPHB__PTDF TVA 

1644 Bull Run - Volunteer 500kV BLLVOL__PTDF TVA 

1660 Coleman Tap-Paducah Primary 161 kV (flo) Shawnee-Marshall 500 kV GRASPDSHNMRS LGEE 

1661 
Livingston Co-North Princeton 161 kV (flo) Livingston Co-Crittenden Co-Morganfield 

161 kV 
LIVERLLIVCRD LGEE 

2047 Gibson_Petersburg_345_flo_Gibson_Bedford_345 GIBPETGIBBDF MISO 

2089 Clifty Creek-Trimble Co. 345 CLFTRM__PTDF LGEE 

2092 Cloverport - Green River Steel 138 CVPGRS__PTDF LGEE 

2192 Pineville 500/345 Tr. PINXFM__PTDF LGEE 

2201 Brown South-Fawkes 138 kV BRNFWK__PTDF LGEE 

2244 Paddys-Summershade 161 (flo) Baker-Broadford 765 PDRSSHBAKBRO TVA 

2268 Smith-Green River Steel 138 (flo) Smith 345/138 Xfmr SMIGRSSMIXFM LGEE 

2277 Avon-Loudon 138 (flo) Ghent-West Lexington-Brown 345 AVNLDNGHEWLX LGEE 

2285 Paddys West - Paddys Run 138 PDWPDR__PTDF LGEE 

2294 Clifty Creek-Carrollton 138 (flo) Baker-Broadford 765 CLFCARBAKBRO LGEE 

2484 Northside - Clifty Creek 138 (flo) Trimble County - Clifty Creek 345 NSICLFCLFTRM LGEE 

2525 W Frankfort - E Frankfort 138 (flo) Ghent - W Lexington - Brown N 345 FFWFFEGHEWLX LGEE 

2614 Bull Run-Volunteer 500kV (flo) WBN-Volunteer 500 kV BULVOLWBNVOL TVA 

2801 Brown N-Alcalde 345 (flo) Baker-Broadford 765 BNNALCBAKBRO LGEE 

2802 Buckner-Middletown 345 (flo) Trimble County-Clifty Creek 345 BUKMIDTRMCLF LGEE 

2803 Calvert-Livingston 161 (flo) Kentucky Dam-Livingston 161 CVELIVKYDLIV LGEE 

2804 Green River-River Queen Tap 161 (flo) Green River-Corydon Tap 161 GRVRQTGRVCDT LGEE 

2805 Hardinsburg-Black Branch 138 kV (flo) Daviess Co-Hardin Co 345 kV HBGHCODVCHCO LGEE 

2806 Hardinsburg-New Hardinsburg 138 (flo) Cloverport-New Hardinsburg 138 HBGNHBCVPNHB LGEE 

2807 Kentucky Dam-Livingston 161 (flo) Calvert-Livingston 161 KYDLIVCVELIV LGEE 

2808 Livingston-Crittenden 161 kV (flo) Livingston-North Princeton 161 kV LIVCRDLIVERL LGEE 

2809 Pineville 345/500 Xfm (flo) Baker-Broadford 765 PINXFMBAKBRO LGEE 

2810 
River Queen Tap-Earlington North 161 kV (flo) Green River-Corydon Tap-Morganfield 

161 kV 
RQTERLGRVCDT LGEE 

2811 Trimble County-Buckner 345 (flo) Trimble County-Middletown 345 TRMBUKTRMMID LGEE 

2812 Trimble County-Middletown 345 (flo) Buckner-Middletown 345 TRMMIDBUKMID LGEE 

2813 West Lexington 345-138 kV (flo) Brown North - West Lexington 345 kV WLXXFMBNNWLX LGEE 

2816 Trimble County - Clifty Creek 345 kV (flo) Trimble County - Ghent 345 kV TRMCLFTRMGHE LGEE 

2818 Clifty Creek - Trimble County 345 kV (flo) North Clark - Spurlock 345 kV CLFTRMNCSPRL LGEE 

2819 Clifty Creek - Carrollton 138 kV (flo) Clifty Creek - Trimble County 345 kV CLFCARCLFTRM LGEE 
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Effective July 14th, 2020 

Note: Rating values can be found in OASIS under AFC initialization impacts detail report for LGEE owned Flowgates. For Flowgates with owner 
other than LGEE, please refer to the respective owner’s OASIS for updated values. 
 

 

FG ID Flowgate FG Shortname 
FG 

Owner 

2820 Clifty Creek - Carrollton 138 kV (flo) Trimble County - Ghent 345 kV CLFCARTRMGHT LGEE 

2821 Clifty Creek - Northside 138 kV (flo) Clifty Creek - Trimble County 345 kV CLFNRSCLFTRM LGEE 

2822 Smith - Daviess County 345 kV (flo) Green River Steel - Smith 138 kV SMIDCGRVSSMI LGEE 

2824 
North Princeton - Earlington North 161 kV (flo) Morganfield - Crittenden Co - Livingston 

Co 161 kV 
NPRELNMGCCLC LGEE 

2826 Cloverport - Tip Top 138 kV (flo) Daviess County - Hardin County 345 kV CLVPTPTPDCHC LGEE 

2830 Trimble County - Clifty Creek 345 kV TRMCLF__PTDF LGEE 

2833 Green River Steel - Cloverport 138 kV (flo) Coleman - Daviess County 345 kV GRSCLVCOLDCO LGEE 

2834 Wilson - Matanzas 161 kV (flo) Green River - Wilson 161 kV WILMATGRVWIL LGEE 

2837 Wilson - Green River 161 kV (flo) Matanzas - Wilson 161 kV WILGRVMATWIL MISO 

2838 Matanzas - Wilson 161 kV (flo) Green River - Wilson 161 kV MATWILGRVWIL LGEE 

2872 East Frankfort - Tyrone 138 (flo) Ghent - West  Lexington - Brown 345 FFETYRGHEWLX LGEE 

2883 Green River-River Queen Tap 161 GRVRQT__PTDF LGEE 

2884 Green River Steel-Cloverport 138 (flo) Smith 345-138 kV GRSCVPSMIXFM LGEE 

2973 Smith 138-345 (flo) Hardinsburg - Hardin Co. 138 SMIXFMHBGHCO OMU 

2977 Buckner-Middletown 345 (flo) Trimble Co-Middletown 345 BUKMIDTRMMID LGEE 

2979 Ghent-NAS 138 (flo) Ghent - W Frankfort 345 GHENASGHEFFW LGEE 

3322 Cloverport-N. Hardinsburg 138 kV flo Cloverport-Hardinsburg 138 kV 4CL4NH4CL4HA MISO 

17564 Volunteer - Phipps Bend 500 kV (flo) Mountaineer Unit 1 VOLPHIMOUNTA TVA 

17884 Volunteer - Phipps Bend 500kV (flo) Culloden - Wyoming 765kV VOLPHBCULWYO TVA 

19146 Smith 138/345 Xfmr flo Green River_Cloverport 138 SMTXFRGRSCLV OMU 

20603 OMU Smith 138/345 kV XFMR (flo) Coleman-Newtonville 161 kV SMTXFRCOLNEW OMU 

22061 Ghent - Fairview 138kV (flo) Ghent - Batesville 345kV GHEFAIGHEBVL LGEE 

23687 Volunteer - Phipps Bend (flo) Gavin Unit 2 VOLPHIGAVIN2 TVA 

24408 Trimble County - Clifty Creek 345kV l/o Jefferson-Rockport 765kV + Rockport U1 TRICLIJEFROC LGEE 

24409 Trimble County - Clifty Creek 345kV l/o Jefferson-Rockport 765kV + Rockport U2 TRICLIJEFRO2 LGEE 

24411 Blue Lick 345/161 kV (flo) Hardin County - Mill Creek 345 Kv BLULICHARMIL LGEE 

24583 Volunteer - Phipps Bend 500kv flo Antioch - Jackson Ferry 765/500kv VOLPHIANTJAC TVA 

91008 Brown Plant - Fawkes 138 (flo) Brown N - Alcalde - Pineville 345 BRNFWKBNNALC LGEE 

91047 Brown North - Tyrone 138 kV (flo) Ghent - West Frankfort 345 kV BNNTYRGHEFFW LGEE 

91050 Brown Plant - Fawkes 138 kV (flo) Brown North 345-138 kV BRPFWKBNNXFM LGEE 

91052 Green River Steel - Smith 138 kV (flo) Smith 345-138 kV GRSSMISMIXFM LGEE 

91057 Northside - Clifty Creek 138 kV (flo) Rockport - Jefferson 765 kV NSICLFROCJEF LGEE 

91128 Ghent - Blackwell 138 kV (flo) Clifty Creek - Trimble County 345 kV GHTBLWCLFTRM LGEE 

91129 Brown Plant - Fawkes 138 kV (flo) Brown North - West Garrard 345 kV BRPFWKBRNWGA LGEE 

91130 Brown Plant - Fawkes 138 kV (flo) JK Smith - West Garrard 345 kV BRPFWKJKSWGA LGEE 

91133 Danville North Tap - Lebanon 138 kV (flo) Brown North 345/138 kV DNTLEBBRNXFM LGEE 

91136 Coleman Tap - Paducah Primary 161 kV COLTPP__PTDF LGEE 

91137 Pineville - Pineville Switching 161 kV (flo) Pocket North - Phipps Bend 500 kV PINPNSPCKNPB LGEE 

91149 Alcalde 345/161 kV (flo) Pineville 345/161 kV ALCXFMPINXFM LGEE 
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Note: Rating values can be found in OASIS under AFC initialization impacts detail report for LGEE owned Flowgates. For Flowgates with owner 
other than LGEE, please refer to the respective owner’s OASIS for updated values. 
 

 

FG ID Flowgate FG Shortname 
FG 

Owner 

91150 Cloverport - Green River Steel 138 kV (flo) Daviess County - Smith 345 kV CLVGRSDVCSMI LGEE 

91151 Avon - Loudon 138 kV (flo) JK Smith - West Garrard 345 kV AVNLDNJKSWGA LGEE 

91152 Alcalde - Elihu 161 kV (flo) Wolf Creek - Russell County - Cooper 161 kV ALCELIWCRCCP LGEE 

91154 Brown North 138/345 kV (flo) Brown Plant - Fawkes 138 kV BNNXFMBRPFWK LGEE 

91155 Pineville 345/500 kV (flo) Broadford - Sullivan 500 kV PINXFMBRFSUL LGEE 

91158 Clifty Creek - Trimble County 345 (flo) Ramsey - Kenzig Road 345 CLFTRMRAMKNZ LGEE 

91160 Gallagher - Paddys West 138 (flo) Kenzig Road - Paddys West 345 GALPDWKNZPDW LGEE 

91161 Paddys West - Gallagher 138 (flo) Trimble County - Clifty Creek 345 PDWGALTRMCLF LGEE 

91162 Hardinsburg - Black Branch 138 (flo) Hardin Co 345/138 HBGBLBHCOXFM LGEE 

91163 Matanzas - Green River 138 (flo) Matanzas - Wilson 161 MATGRVMATWIL LGEE 

91164 Smith - Daviess 345 (flo) Wilson - Daviess 345 SMIDCOWILDCO LGEE 

91165 Daviess - Smith 345 (flo) Cloverport - Green River Steel 138 DCOSMICLVGRS LGEE 

91166 Daviess - Smith 345 (flo) Green River Steel - Smith 138 DCOSMIGRSSMI LGEE 

91172 Artemus Tap - Farley 161 (flo) Brown North - Alcalde - Pineville 345 ARTFARBRNALC LGEE 

91173 Livingston - Crittenden 161 (flo) North Princeton - Earlington North 161 LIVCRDNPRERL LGEE 

91174 Green River 161/138 TR3 (flo) Wilson - Matanzas 161 GRVXF3WILMAT LGEE 

91178 Wilson - Matanzas 161 (flo) Wilson - Daviess 345 WILMATWILDCO LGEE 

91179 BR Tap - Matanzas 161 BRTMAT__PTDF LGEE 

91180 BR Tap - Matanzas 161 (flo) Hardin - Daviess 345 BRTMATHCODCO LGEE 

91181 Matanzas - BR Tap 161 (flo) Wilson - Daviess 345 MATBRTWILDCO LGEE 

91182 BR Tap - Matanzas 161 (flo) Livingston - North Princeton 161 BRTMATLIVNPR LGEE 

91183 BR Tap - Matanzas 161 (flo) Morganfield - Crittenden - Livingston 161 BRTMATMGCCLC LGEE 

91184 Matanzas - BR Tap 161 (flo) N. Hardinsburg Transformer 161/138 MATBRTHBGXFM LGEE 

91185 BR Tap - Matanzas 161 (flo) N. Hardinsburg Transformer 161/138 BRTMATHBGXFM LGEE 

91186 Matanzas - BR Tap 161 MATBRT__PTDF LGEE 

91187 Brown CT - Bardstown 138 (flo) Hardin County 345/138 BRCBRDHCOXFM LGEE 

91188 Brown North - Tyrone 138 (flo) Brown North 138/345 BRNTYRBRNXFM LGEE 

91192 Paddys West - Paddys Run 138 (flo) Paddys West - Cane Run CT - Mill Creek 345 PDWPDRPDCRMC LGEE 

91193 Paducah Primary - South Paducah 161 PDPSPD__PTDF LGEE 

91195 Buckner - Trimble County 345kV (flo) Buckner - Middletown 345kV BUKTRMBUKMID LGEE 

91196 Blue Lick - Cedar Grove Tap 161kV (flo) Hardin County 345/138kV XFMR BLUBULHCOXFM LGEE 

91199 Grahamville - Coleman Road Tap 161kV GRACLT_PTDF LGEE 

91200 Livingston Co - Crittenden 161kV LIVCRD_PTDF LGEE 

91201 Livingston Co - North Princeton 161kV LIVNPR_PTDF LGEE 

91202 Pocket North - Harlan Y 161kV (flo) Pineville - Pocket North 500kV PCKNHYPINPOC LGEE 

91203 
South Paducah - Livingston Co 161kV (flo) Grahamville-Coleman Road Tap-Paducah 

Primary 161kV 
SPDLIVGRAPDP LGEE 

91204 South Paducah - Livingston Co 161kV (flo) Shawnee - Marshall 500kV SPDLIVSHNMRS LGEE 

91205 South Paducah - Livingston Co 161kV SPDLIV_PTDF LGEE 

91206 Matanzas - BR Tap 161kV (flo) Hardin County - Daviess County 345kV MATBRTDVCHCO LGEE 
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Effective July 14th, 2020 

Note: Rating values can be found in OASIS under AFC initialization impacts detail report for LGEE owned Flowgates. For Flowgates with owner 
other than LGEE, please refer to the respective owner’s OASIS for updated values. 

FG ID Flowgate FG Shortname 
FG 

Owner 

91207 Cloverport - Tip Top 138 kV (flo) Trimble County-Clifty Creek 345 kV CVPTPTTRMCLF LGEE 

91208 Elizabethtown - Nelson County 138kV (flo) Hardin County - Brown North 345kV ETNNCOHCOBRN LGEE 

91209 Fawkes KU - Clark County 138kV (flo) Boonesboro North - Avon-Dale 138kV FWKCLKBBNDAL LGEE 

91210 Green River Steel - Cloverport 138kV (flo) Hardin County - Daviess County 345kV GRSCVPHCODCO LGEE 

91211 Hardin County - Elizabethtown 138kV (flo) Hardin County - Brown North 345kV HCOETNHCOBRN LGEE 

91212 Lake Reba Tap - Fawkes Tap 138kV (flo) Fawkes KU - Fawkes EK 138kV LRTFWTFWKFWE LGEE 

91213 Paddys West - Gallagher 138kV (flo) Speed 345/138kV XFMR PDWGLGDSPXFM LGEE 

91214 Meredith TVA Tap - Bonnieville 138kV (flo) Hardin County - Daviess County 345kV MRDBVLDCOHCO LGEE 

91215 Paducah Primary - South Paducah 161kV (flo) Shawnee - Marshall 500kV PDPSPDSHNMRS LGEE 

91216 
Paducah Primary - Coleman Road Tap 161kV (flo) South Paducah - Paducah Primary 

161kV 
PDPCLTSPDPDP LGEE 

91217 New Hardinsburg - Hardinsburg 138kV (flo) Hardin County - Daviess County 345kV NHBHBGDCOHCO LGEE 

91218 BRTap - Matanzas 161kV (flo) Reid - Wilson 345kV BRTMATREIWIL LGEE 

91220 Union City Tap - Lake Reba Tap 138kV (flo) Fawkes KU - Fawkes EK 138kV UCTLRTFWKFWE LGEE 

91221 Cooper - Elihu 161kV (flo) Laurel County - Laurel Dam 161kV CPRELIELCLCD LGEE 

91225 Ohio County - Shrewsbury 138kV (flo) Daviess County - Hardin County 345kV OCOSHRWDCHC LGEE 

91226 Jeffersonville Tap - Beargrass 138kV (flo) Beargrass - Northside 138kV JFTBRGBRGNSD LGEE 

91227 Brown North 138/345kV XFMR (flo) Brown North - West Lexington 345kV BNNXFMBNNWLX LGEE 

91228 Clifty Creek - Carrollton 138kV (flo) North Clark - Spurlock 345kV CLFCARNCSPRL LGEE 

91229 Elihu - Cooper 161kV (flo) Wolf Creek - Russell County - Cooper 161kV ELICPRCPRRCW LGEE 

91230 Green River - Matanzas 138kV (flo) Matanzas - Wilson 161kV GRVMATWLSMAT LGEE 

91231 New Hardinsburg - Hardinsburg 138kV (flo) Hardin County 345/138 kV NHGHBGHCOXFM LGEE 

91232 Paducah Primary - South Paducah 161 (flo) Grahamville - Paducah Primary 161 PDPSPDGRAPDP LGEE 

91233 Pineville 500/345 (flo) AEP Sullivan - Broadford 500 PINXFMSULBRF LGEE 

91234 Ramsey - Kenzig Road 345 (flo) AEP Rockport - Jefferson 765 RAMKNZROCJEF LGEE 

91237 Ghent - Blackwell 138 (flo) Ghent - West Lexington - Brown North 345 GHTBLWGHEWLX LGEE 

91238 Brown North 345/138 (flo) Ghent - West Lexington - Brown North 345 BNNXFMGHEWLX LGEE 

91242 Brown CT - Brown T2 138 (flo) Brown North - Brown CT - Brown South 138 BNCBNTBNBCBS LGEE 

91243 Pineville Switch - Artemus Tap 161 (flo) Brown North - Alcalde - Pineville 345 PNSARTBNALPV LGEE 

91244 Crittenden - Morganfield 161 (flo) Livingston - North Princeton 161 CRDMORLIVNPR LGEE 

91245 New Hardinsburg - Hardinsburg 138 (flo) Cloverport - Hardinsburg 138 NHBHBGCLVHBG LGEE 

91246 Hardin County 345/138 (flo) Hardin County - Brown North 345 HCOXFMHCOBNN LGEE 

91248 Trimble County - Ghent 345 (flo) EK Bullitt County - Shelby County 161 TCOGHEBULSHC LGEE 

91249 West Lexington 345/138 (flo) Brown North 345/138 WLXXFMBNNXFM LGEE 

91250 Green River Steel - Smith 138 (flo) Daviess County - BR Wilson 345 GRSSMIDCOWIL LGEE 

91251 Tip Top - Cloverport 138 (flo) Mill Creek - Hardin County 345 TPTCVPMLCHCO LGEE 

91252 Buckner - Middletown 345 (flo) Buckner - Trimble County 345 BUKMIDBUKTRM LGEE 

91254 Green River 161/138 TR2 (flo) Matanzas - Wilson 161 GRVXF2MATWIL LGEE 

91255 Elihu - Alcalde (flo) EK Laurel County - Laurel Dam 161 ELIALCEKLLDM LGEE 

91257 Brown CT - Brown T1 138 (flo) Brown North - Brown CT - Brown Plant 138 BCTBRTBRNBRP LGEE 
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Effective July 14th, 2020 

Note: Rating values can be found in OASIS under AFC initialization impacts detail report for LGEE owned Flowgates. For Flowgates with owner 
other than LGEE, please refer to the respective owner’s OASIS for updated values. 

FG ID Flowgate FG Shortname 
FG 

Owner 

91258 Higby Mill - Reynolds 138 (flo) Haefling - West Lexington 138 HIGREYHAELEX LGEE 

91259 Brown North - Tyrone 138 BRNTYR__PTDF LGEE 

91260 Morganfield - Corydon Tap 161 (flo) Morganfield 161/69 MORCORMORXFR LGEE 

91261 Hardin County - Elizabethtown 138 (flo) Hardin County 138/69 HCOETNHCOXFR LGEE 

91262 Cannelton Tap - Cloverport 138 (flo) Daviess County - Coleman 345 CANCLVDAVCOL LGEE 

91264 Avon - Loudon Ave 138 (flo) Brown North - West Garrard 345 AVOLOUBRNGAR LGEE 

91265 Spurlock - Kenton 138 (flo) EK North Clark - Spurlock 345 SPUKENCLKSPU LGEE 

91266 Haefling - IBM North Tap 138 (flo) EK JK Smith - West Garrard 345 HAEIBMGARJKS LGEE 

91267 Ramsey - Kenzig Road 345 (flo) Trimble County - Clifty Creek 345 RAMKENCLFTRM LGEE 

91268 Brown T1 - Brown Plant (flo) Brown North - Brown CT - Brown Plant 138 BRNBRPBRNBRP LGEE 

91269 Kenzig Road - Paddys West 345 (flo) Daviess County - Hardin County 345 KENPDWDAVHAR LGEE 

91271 Pineville Switch - Pineville 161 (flo) TVA Volunteer - Phipps Bend 500 PWSPVLVOLPHP LGEE 

91272 Galagher - Paddys West 138 (flo) Kenzig Road - Ramsey 345 GLGPDWKENRAM LGEE 

91273 BR Tap - Matanzas 161 (flo) TVA Volunteer - Phipps Bend 500 BRTMATVOLPHP LGEE 

91274 Spurlock - Kenton 138 SPUKEN_PDF LGEE 

91275 Phipps Bend - Pocket North 500 (flo) Broadford - Sullivan 500 PHBPOCBRFSUL LGEE 

91276 Nelson County - Bardstown 138 (flo) Hardin County - Brown North 345 NCOBRDHCOBRN LGEE 

91277 Brown T2 - Brown Plant 138 (flo) Brown North - Brown CT - Brown Plant 1 138 BR2BRPBRNBRP LGEE 

91278 Ghent - Blackwell 138 (flo) EK JK Smith - West Garrard 345 GHTBLWJKSWGA LGEE 

91279 Ghent - Blackwell 138 (flo) EK North Clark - Spurlock 345 GHTBLWNCSPRL LGEE 

91280 Trimble County - Ghent 345 (flo) Hardin County - Brown North 345 TCOGHEHCOBRN LGEE 

91281 Pineville Switch - Pineville 161 (flo) Pocket North - Phipps Bend 500 PWSPVLPCKNPB LGEE 

91282 Pineville 500/345 (flo) Pocket North 500/161 PINXFMPCKNXF LGEE 

91283 W Lexington 345/138 (flo) EK JK Smith - W Garrard 345 WLEXFMEKJWGA LGEE 

91284 Blue Lick - Cedar Grove IP 161 (flo) Mill Crk - Hardin co 345 BLUCEDMILHAR LGEE 

91285 Blue Lick - Cedar Grove 161 (flo) Mill Crk - Hardin Co 345 BLUCEDMILHA2 LGEE 

91286 Paddys Run - Lebanon Jct 161 (flo) Mill Crk - Hardin Co 345 PADLEBMILHAR LGEE 

91287 Cane Run SW - Paddys Run 138 (flo) Cane Run SW - Campground 138 CANPADCANCAM LGEE 

91288 Green River - Smith Tap 138 (flo) Daviess - Smith 345 GRESMIDAVSMI LGEE 

91289 Green River - Smith Tap 138 (flo) Daviess - BR Wilson 345 GRESMIDAVWIL LGEE 

91290 Pond Creek - Tip Top 138 (flo) Mill Crk - Hardin Co 345 PONTIPMILHAR LGEE 

91291 Spurlock - Kenton 138 (flo) EKPC Goddard 138/69 SPUKENGODXFM LGEE 

91292 TVA Pineville KY - Pineville SW 161 (flo) Pocket North - Phipps Bend 500 PINPINPCPHB LGEE 

91293 Blue Lick - Cedar Grove Ta 161kV (flo) Hardin County 345/138kV XFMR BLUCEDHARFMR LGEE 
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EXHIBIT MG-4

EIA Form 930 datafile for LGE, KU.xlsx
 

(Excel File Provided Separately) 
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EXHIBIT MG-5 

146



QUANTIFYING A MINIMUM 
INTERREGIONAL TRANSFER 
CAPABILITY REQUIREMENT

MAY 2023

BY

MICHAEL GOGGIN, ZACH ZIMMERMAN,  
AND ABBY SHERMAN,  

GRID STRATEGIES LLC

FOR

147



INTRODUCTION

This report demonstrates a straightforward method by which a minimum interregional transfer 
capability requirement can be set based on objective historical data. Applying this approach to 
historical data from the last decade indicates that a minimum interregional transfer capability 
requirement equivalent to 20-25% of peak load conservatively approximates the need for and 
reliability benefit of interregional transmission in all regions. 

The minimum transfer requirement can be calculated based on how transmission accesses 
geographic diversity across regions in the timing of peak demand, generator output, and 
correlated generator outages. The methodology compares the capacity need if sources of 
electricity supply and demand are aggregated across the Interconnect, which accounts for 
how geographic diversity in hourly electricity demand and supply patterns decreases the need 
for capacity, against the larger sum of the component regions’ stand-alone capacity needs. 
Interregional transmission reduces the amount of generating capacity that is needed to achieve 
the same level of reliability, mostly by canceling out the weather’s localized and short-lived 
impacts on electricity supply and demand.

That geographic diversity benefit should set the interregional transfer capability requirement. 
This reflects that a certain megawatt (MW) amount of interregional transmission allows 
the component regions to achieve the same level of reliability with that many fewer MW of 
generating capacity by accessing geographic diversity. This method was applied to nine years 
of historical data, which captures the largest reliability threats over the last decade: Winter 
Storm Elliott in December 2022, Winter Storm Uri in February 2021, the South Central event in 
January 2018, and the Polar Vortex event in January 2014. 

That analysis indicates that the Federal Energy Regulatory Commission specifying a default 
minimum interregional transfer capacity requirement in the range of 20-25% of peak load would 
conservatively approximate the need for and reliability benefit of interregional transmission 
in all regions. This report also outlines a similar methodology a region can use if it seeks to 
demonstrate its need for transfer capacity differs from that default. However, a specific default 
transfer capacity requirement applied uniformly to all regions is likely superior to more complex 
region-specific analytical approaches due to 1. Significant intractable uncertainty about 
factors including future weather and climate patterns, the generation mix and location, load 
patterns, and the geography of gas supply and demand and pipeline networks, 2. The fact that 
future severe weather and other extreme events will never perfectly replicate past events, 3. 
Challenges that arise from individual regions using different methodologies and assumptions to 
determine their interregional transfer capacity needs, and 4. The fact that all regions within an 
Interconnect are inherently affected by power flows resulting from the balancing of electricity 
supply and demand across all other regions in the Interconnect. 

A straightforward requirement applied uniformly to all regions reflects that interregional 
transmission functions like an insurance policy against unexpected events, in that it is 
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impossible to precisely predict when, where, or for what that insurance policy will be needed, 
but over the long term all regions will be affected by such an event and will benefit from that 
interregional transfer capacity. Favoring an elegant uniform requirement over more complex 
methods is consistent with the use of default standards to approximate other reliability and 
resilience needs, like the 1-day-in-10-year Loss of Load Expectation standard that serves as the 
foundation for resource adequacy planning in most regions. A minimum interregional transfer 
capability requirement set in the range of 20-25% of peak demand would ensure high levels of 
reliability and resilience in the face of evolving threats to the bulk power system. Transmission is 
bidirectional so it provides a capacity benefit to both interconnected regions, and transmission 
is largely immune to the correlated outages that affect many types of generation. As a result, 
expanding interregional transmission can increase electric reliability and resilience more 
effectively and at lower cost than increasing the redundancy of generating resources. Europe 
has set a similar target for each country’s interregional transfer capacity to cover 15% of its 
installed generating capacity by 2030.1 In the U.S. installed capacity is about 67% greater than 
peak load2 and increasing, so Europe’s 15% installed capacity requirement is roughly equivalent 
to a transfer capability requirement for 25% of peak load.

1  European Commission, “Electricity interconnection targets,” available at https://energy.ec.europa.eu/topics/infrastructure/electricity-interconnection-
targets_en

2  1,241,578 MW installed capacity over a peak demand of approximately 742,000 MW = 1.6733, per installed capacity for 2021 https://www.eia.gov/
electricity/data/eia860/ and recent peak demand https://www.eia.gov/electricity/gridmonitor/expanded-view/custom/pending/ElectricityOverview-2/edit
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RESULTS

A minimum interregional transfer capacity requirement can be calculated from publicly 
available hourly electricity supply and demand data. This methodology was applied to 9 years 
of historical data for ERCOT and the U.S. portion of the Eastern Interconnect, a time period that 
captures the largest reliability threats over the last decade: Winter Storm Elliott in December 
2022, Winter Storm Uri in February 2021, the South Central cold weather event in January 2018, 
and the Polar Vortex event in January 2014. The results of this analysis are shown below.

TABLE 1. Reduced capacity need from interregional transmission in Eastern and ERCOT Interconnections

Reduction in capacity needs, as a share of peak load 21%

Reduction in capacity needs, in MW 137,146

Economic value of reduced capacity needs $113 billion

Aggregating electricity supply and demand across ERCOT and the U.S. portion of the Eastern 
Interconnect over this time period reduced the peak need for capacity by 137,146 MW,3 with the 
vast majority of this benefit accruing from geographic diversity within the Eastern Interconnect. 
This geographic diversity benefit equates to 20.99% of the sum of the peak loads of the 
component regions over the last five years, supporting the creation of a default minimum 
requirement for all regions somewhere in the range of 20-25% of peak load. The reduced 
capacity need from interregional transmission can be translated to $113 billion in economic 
savings based on the avoided capital cost of an equivalent amount of gas combustion turbine 
capacity.4

This geographic diversity benefit results from the timing mismatch in when regions experience 
peak demand and reductions in generator output, typically because individual severe weather 
events do not affect all regions equally and move over time. As summarized in the table below, 
and shown in more detail in the maps in Appendix A, when some regions are experiencing 
generation shortfalls during a severe weather event, other regions tend to have abundant spare 
capacity available. Each row in the table shows the net load5 of each region during one hour of 
a severe weather event, as a percent of the maximum net load that region experienced across 
all nine years of the analysis. Regions at or near 100% and shown in red are experiencing their 
maximum shortfall in generation supply, while regions with low percentages shown in green 
tend to have abundant spare capacity at that point in time. By aggregating regions with spare 

3 This refers to MW of unforced generating capacity, generating capacity that has been derated to account for outages and derates during peak periods, 
and thus equates to theoretical capacity that is perfectly dependable.

4 Conservatively using an assumed $785/kW cost of a frame combustion turbine from U.S. Energy. Info. Admin., Cost and Performance Characteristics of 
New Generating Technologies, Annual Energy Outlook 2022 (March 2022), available at https://www.eia.gov/outlooks/aeo/assumptions/pdf/table_8.2.pdf 
and the conservative assumption that a new combustion turbine offers 95% of its nameplate capacity as dependable capacity value. To be conservative, 
ongoing fixed O&M costs for maintaining that gas capacity were also not accounted for.

5 As explained in Appendix B, “net load” is defined as electricity demand minus renewable output plus conventional generator forced outages, to reflect 
the impact of conventional generator forced outages and changes in renewable output on the need for other capacity. 
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capacity with regions experiencing shortfalls, interregional transmission is an effective tool for 
countering the localized reliability impacts of extreme events. 

TABLE 2. Each region’s net load during severe weather events, as a percent of that region’s maximum net load across 
all nine years

ERCOT SPP MISO S TVA MISO N PJM NYISO ISO-NE Carolinas SOCO Florida

1/17/2014 
7 AM ET 58% 60% 74% 86% 75% 100% 68% 64% 88% 87% 60%

1/17/2018 
10 AM ET 60% 67% 100% 81% 61% 70% 61% 63% 56% 85% 61%

1/18/2018 
6 AM ET 58% 50% 65% 76% 55% 66% 51% 55% 63% 100% 79%

2/15/2021 
10 AM ET 100% 99% 83% 61% 69% 63% 56% 59% 58% 68% 55%

12/23/2022 
6 PM ET 68% 87% 88% 99% 86% 85% 60% 56% 88% 91% 65%

12/24/2022 
6 AM ET 63% 87% 87% 91% 77% 85% 49% 50% 100% 95% 66% 

This analysis was based on data for the years 2012-2015 and 2018-2022. As documented in 
Appendix B, the period 2012-2015 was included because data tracking hourly conventional 
generator forced outage rates by NERC regional entity are available for that time period from 
Murphy et al.  2018-2022 was chosen because that time period captures three severe weather 
events (the 2018 South Central event and Winter Storms Uri and Elliott) for which FERC-NERC 
reports or other public data sources tracking hourly generator forced outages are available, and 
because EIA Form 860 began to track Balancing Authorities’ hourly generation by fuel type in 
July 2018.

Our analysis also evaluated how several sensitivities affected the need for and reliability benefit 
of interregional transmission, relative to the results presented above which are repeated in bold 
in the table below. First, we found that the need for interregional transmission is only slightly 
lower if diversity benefits within the Eastern Interconnect are evaluated without accounting for 
diversity benefits with ERCOT. Second, we found that renewable output diversity is currently 
a small contributor to the total reliability benefit of interregional transmission, confirming that 
geographic diversity in electricity demand and conventional generator correlated outages 
drive more than 87% of the need for a minimum interregional transfer capability requirement. 
These results are presented in the following table, and were derived using the same general 
methodology described above and documented in Appendix B.
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TABLE 3. Reduced capacity need from geographic diversity as a share of peak load, under different assumptions

With Renewables Without Renewables

With ERCOT 20.99% 18.35%

Without ERCOT 18.25% 14.42%

In addition to this analysis of the Eastern Interconnect and ERCOT, Grid Strategies previously 
conducted analysis for the U.S. portion of the Western Interconnect that examines geographic 
diversity in demand and renewable output. Grid Strategies presented analysis on behalf of the 
American Clean Power Association at the Commission’s December 2022 workshop6 indicating 
that in 2021, aggregating demand and renewable output across the Western Interconnect 
reduced peak net load by 14% or 19,400 MW, relative to the sum of individual Balancing 
Authorities’ peak net loads. 

This is a conservative estimate of the total geographic diversity benefit in the West, as it does 
not account for geographic diversity in correlated conventional generator outages, even though 
it has been publicly reported that Winter Storms Elliott, Uri, and the cold snap that caused the 
2011 Southwest outages did cause parts of the West to experience high forced outage rates. 
Geographic diversity in correlated outages of conventional generators was not included in 
that analysis as Murphy et al.’s 2012-2015 dataset tracks outages at the NERC Regional Entity 
level, so forced outage rates are reported uniformly for all of WECC, precluding analysis of 
geographic diversity in conventional generator forced outage rates within that region. 

Based on localized forced outage rates observed in parts of the West during recent events, as 
well as geographic diversity in forced outages observed in the Eastern Interconnect, it is likely 
that the West sees at least a 5-10% additional benefit from geographic diversity in conventional 
generator forced outages. As a result, 20-25% of peak load is a conservative estimate of 
the total geographic diversity benefit of aggregating supply and demand in the Western 
Interconnect. 

These results indicate a uniform minimum interregional transfer requirement of 20-25% of peak 
load for all parts of the Eastern, Western, and ERCOT Interconnections would conservatively 
approximate the need for and reliability benefit of interregional transmission. As explained 
above, a universal default requirement based on objective data offers many advantages over 
more complex region-specific analyses, and these results indicate a single universal requirement 
in the range of 20-25% of peak load is a conservative approximation of the need in all regions. If 
a region wants to conduct a more complex analysis to justify a different requirement, the next 
section discusses minimum criteria for inputs and methodology that FERC should require for 
such an analysis. 

These results are almost certain to be a conservative underestimate of the value of and need for 
interregional transmission for several reasons. First, hourly forced outage data is not publicly 

6  See https://www.ferc.gov/media/panel-3-opening-statement-michael-goggin-grid-strategies-acpa and https://www.ferc.gov/media/panel-3-michael-
goggin-grid-strategies-acpa 
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available for 2018-2022, unlike 2012-2015, as explained in Appendix B. Due to a lack of data, it 
was conservatively assumed that forced outages were at the same uniform rate (3% for NYISO 
and ISO-NE, and 5% for all other regions) for regions for which information on forced outages 
during the cold snap events was not available, and for all regions in all hours outside of the 
three major cold snaps. This greatly understates the actual geographic diversity in forced 
outages rates across these regions seen in the 2012-2015 data. 

In addition, our analysis does not attempt to model specific interregional power flow needs 
because future events will not exactly replicate the relatively small sample of events observed 
over the last decade. However, because power flows often cross multiple regions during such an 
event and flows to and from larger regions may cross smaller regions, it is more likely for peak 
power flows into and across some regions to be greater than that region’s pro rata share of the 
Interconnect-wide diversity benefit. As a result, setting each region’s requirement as a share of 
its peak load is more likely to understate than overstate the transmission need in some regions.

The net load analysis of the Western Interconnect is also likely to be conservative as it is based 
on only one year of data. Analysis over a longer time horizon would likely indicate a larger need 
and reliability benefit from interregional transmission in the West, as extreme events tend to 
drive the transmission need and more such events are captured by a longer time horizon.

Finally, the above analysis was based entirely on historical data to keep it founded in 
incontrovertible objective data, given the inherent uncertainty with projections of the future 
generation mix and load patterns. However, multiple trends are further coupling electricity 
supply and demand to the weather, further increasing the value of transmission for tapping into 
geographic diversity that mitigates the impact of localized weather events. The largest trend 
in the generation mix over the last 15 years has been the increasing penetration of gas. Multiple 
cold snap events over that period have shown gas generators are more prone to correlated 
outages during cold weather than other fuel sources. Peak winter electricity demand coincides 
with peak demand for gas to meet building heating demand, straining gas supply and pipeline 
capacity, particularly when supply from gas fields is reduced due to wellhead freeze-offs.7 

The growth of wind and solar generation is also increasing the impact of localized weather 
on electric supply, though wind and solar output tend to be negatively correlated during 
most extreme weather events, increasing the chance that one resource will be available if the 
other is not.8 Finally, electrifying heating will further tie electricity demand to the weather and  
increase electricity demand during extreme cold weather events, further increasing the value 
of transmission for tapping into geographic diversity that helps cancel out localized weather 
impacts.

7 A drop in fuel supply to gas generators in at least some affected regions appears to have been a major factor in all of the cold weather electricity 
reliability events discussed in this report. For example, see the FERC-NERC reports for Winter Storm Uri (https://www.ferc.gov/media/february-2021-cold-
weather-outages-texas-and-south-central-united-states-ferc-nerc-and) and the 2018 South Central cold weather event (https://www.nerc.com/pa/rrm/
ea/Documents/South_Central_Cold_Weather_Event_FERC-NERC-Report_20190718.pdf), the NERC report for the 2011 Southwest outages (https://www.
nerc.com/pa/rrm/ea/February%202011%20Southwest%20Cold%20Weather%20Event/SW_Cold_Weather_Event_Final.pdf), the NERC report on the 2014 
Polar Vortex (https://www.nerc.com/pa/rrm/January%202014%20Polar%20Vortex%20Review/Polar_Vortex_Review_29_Sept_2014_Final.pdf) as well as 
press reports on Winter Storm Elliott (https://fortune.com/2022/12/27/america-electrical-grid-barely-escaped-a-calamity-as-massive-storm-exposes-a-
vulnerable-natural-gas-infrastructure/) 

8 For example, wind output has been high during most recent cold snap events, while solar output is often high during summer high pressure heat dome 
events that often coincide with low wind output but high electricity demand.
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https://www.ferc.gov/media/february-2021-cold-weather-outages-texas-and-south-central-united-states-ferc-nerc-and
https://www.nerc.com/pa/rrm/ea/Documents/South_Central_Cold_Weather_Event_FERC-NERC-Report_20190718.pdf
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https://www.nerc.com/pa/rrm/ea/February%202011%20Southwest%20Cold%20Weather%20Event/SW_Cold_Weather_Event_Final.pdf
https://www.nerc.com/pa/rrm/January%202014%20Polar%20Vortex%20Review/Polar_Vortex_Review_29_Sept_2014_Final.pdf
https://fortune.com/2022/12/27/america-electrical-grid-barely-escaped-a-calamity-as-massive-storm-exposes-a-vulnerable-natural-gas-infrastructure/
https://fortune.com/2022/12/27/america-electrical-grid-barely-escaped-a-calamity-as-massive-storm-exposes-a-vulnerable-natural-gas-infrastructure/


As a result, the Commission may want to set the default minimum transfer capability 
requirement at or above the high end of the 20-25% range, as the 21% of peak load requirement 
calculated from conservative analysis of data from the last decade likely understates the need 
going forward.

QU
AN

TIF
YI

NG
 A 

MI
NI

MU
M 

IN
TE

RR
EG

IO
NA

L T
RA

NS
FE

R C
AP

AB
ILI

TY
 R

EQ
UI

RE
ME

NT

7
154



Methodology for Regions Proposing to Deviate from the Default Minimum

As explained above, a straightforward default transfer capacity requirement applied uniformly 
to all regions is likely to be superior to more complex analytical approaches developed by each 
region, due to intractable uncertainty in key inputs into the analysis and challenges that arise 
from regions using different methodologies and assumptions to determine their interregional 
transfer capacity needs. However, this section offers a method by which a region can calculate 
a different requirement if it believes its needs significantly differ from the default minimum 
requirement. FERC establishing minimum requirements for the assumptions and methods used 
in such an analysis, and particularly requiring that such an analysis look across the Interconnect, 
will help ensure that any analyses conducted by regions are compatible.

For geographic scope, FERC should require that regions look at geographic diversity in load, 
generator output, and generator forced outage rates across the Interconnect. This geographic 
scope reflects the physical reality that all regions within an Interconnect are inherently affected 
by power flows resulting from the balancing of electricity supply and demand across all other 
regions in the Interconnect. For example, during Winter Storm Uri, SPP was importing power 
from MISO which was importing from PJM, while during Winter Storm Elliott the Southeast was 
importing from MISO which was importing from Canada and other regions. The power system is 
a network of interdependent regions, so looking at a small number of regions in isolation misses 
the benefits of aggregation across a larger area. 

For chronological scope, FERC should require a region to use enough historical data to capture 
extreme events that tend to drive the long-term need for capacity. For example, this could 
include a requirement that the region use data for at least the last 10 years, but that time period 
could be expanded to ensure that at least one severe event (as indicated by an anomaly in peak 
load, temperature, etc.) in each region is included in the dataset.

While the default requirement presented above was calculated solely based on historical 
data to keep the calculation straightforward and incontrovertible, if a region proposes to add 
complexity by doing analysis to justify deviating from that default, it should be required to 
account for expected future trends in the resource mix and load patterns.9 On the demand side, 
this should account for the impacts of climate change10 and increasing electrification on hourly 
patterns of electricity demand. On the supply side, historical rates of conventional generator 
correlated outage rates by fuel type could be applied to the expected future generation mix. 
Existing renewable output profiles can be scaled up using statistical techniques that account for 
the inherent geographic diversity from adding new resources, or the output from additions of 
wind and solar capacity can be even more accurately modeled using synthetic hourly resource 
profiles.11 The future generation mix in that region and across the Interconnect can be projected 
based on inputs like the 10-year outlooks in NERC’s annual Long-Term Reliability Assessment,12 
with reasonable assumptions for the expected completion rate for planned resources. Utility 

9 FERC could make this requirement consistent with the requirements it sets in its pending rulemaking on Regional Transmission Planning and Cost 
Allocation, available at https://ferc.gov/media/rm21-17-000.

10 To conduct this analysis, planners could use inputs such as this 50-year historical dataset of hot and cold snaps that has been adjusted for the impacts 
of climate change to develop a forward projection.https://www.osti.gov/servlets/purl/1885888

11 For example, see https://www.nrel.gov/grid/wind-integration-data.html 

12 https://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/NERC_LTRA_2022.pdf 
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Integrated Resource Plans and utility and state carbon and renewable targets should also be 
accounted for, where they exist. Regions should be required to file their analysis justifying a 
different requirement in a contested proceeding at FERC, where intervenors and FERC staff 
should be given discovery rights that allow them to critically review the model and input 
assumptions.
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APPENDIX A 
MAPS OF NET LOAD DIVERSITY  
DURING SEVERE WEATHER EVENTS

As explained above, geographic diversity benefits result from the timing mismatch in when 
regions experience peak demand and reductions in generator output, typically because 
individual severe weather events do not affect all regions equally and move over time. As 
summarized in the maps below, when some regions are experiencing generation shortfalls, 
other regions tend to have abundant spare capacity available. Each map shows the net load 
(defined as electricity demand - renewable output + conventional generator forced outages) 
of each region during one hour of a severe weather event, as a percent of the maximum net 
load that region experienced across all nine years of the analysis. Regions at or near 100% and 
shown in red are experiencing their maximum shortfall in generation supply, while regions with 
low percentages shown in green tend to have abundant spare capacity at that point in time.13 
By aggregating regions with spare capacity with regions experiencing shortfalls, interregional 
transmission is an effective tool for countering the localized reliability impacts of severe 
weather events. 

2014 POLAR VORTEX EVENT, JANUARY 17, 2014, AT 7 AM ET

SPP
  60%

MISO N
  75%

ERCOT
58%

PJM
   100%

SOCO
 87%MISO S

74%

FL
   60%

ISO-NE
   64%

CAROLINAS
88%

NYISO
68%

TVA
   86%

13  These maps approximate the boundaries of grid operators and other regions to the nearest state border for graphical simplicity. The analysis was 
conducted on data for each grid operator and thus reflects their actual boundaries.
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2018 SOUTH CENTRAL COLD WEATHER EVENT, JANUARY 17, 2018, AT 10 AM ET
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2018 SOUTH CENTRAL COLD WEATHER EVENT, JANUARY 18, 2018, AT 6 AM ET
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2021 WINTER STORM URI, FEBRUARY 15, 2018, AT 10 AM ET
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2022 WINTER STORM ELLIOTT, DECEMBER 23, 2022, 6 PM ET
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2022 WINTER STORM ELLIOTT, DECEMBER 24, 2022, 6 AM ET
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APPENDIX B
DETAILED METHODOLOGY FOR  
ANALYSIS OF EASTERN U.S. AND ERCOT

The analysis of geographic diversity across the U.S. portions of the Eastern Interconnection 
plus ERCOT was conducted for the periods 2012-2015 and 2018-2022. As noted above, the 
time period 2012-2015 was chosen because data tracking hourly conventional generator forced 
outages by NERC regional entity are available for that time period from Murphy et al.14 2018-
2022 was chosen because that time period captures three severe weather events (the 2018 
South Central event and Winter Storms Uri and Elliott) for which FERC-NERC reports or other 
public data sources tracking hourly generator forced outages are available, and because EIA 
Form 860 began to track Balancing Authorities (BAs’) hourly generation by fuel type in July 
2018. 

The basic methodology was to compare the difference between the aggregated capacity need 
across the Eastern Interconnect and ERCOT, which accounts for how geographic diversity 
in hourly electricity demand and supply patterns decreases the need for capacity, against 
the larger sum of the component regions’ stand-alone capacity needs. To calculate capacity 
needs, hourly renewable output was subtracted from demand and hourly forced outages were 
added to demand, reflecting that those factors decrease or increase the amount of generation 
that must be supplied by other resources on a 1:1 basis, equivalent to an identical change in 
demand.15 The difference between the maximum aggregated capacity need across the Eastern 
Interconnect and ERCOT over the nine years versus the sum of the component regions’ 
maximum stand-alone capacity needs over the nine years was then calculated (a difference 
of 137,146 MW) and reported as a percentage of the sum of the regions’ stand-alone peak 
demands (20.99%).

2012-2015 Hourly Net Load Analysis

For 2012-2015 we collected hourly load and wind generation data from ERCOT,16 ISO-NE,17 
NYISO,18 PJM,19 and SPP.20 We then multiplied the GADS hourly forced outage rate (the sum 
of hourly derates, start failures, and forced outages) by the installed conventional generator 

14  https://www.sciencedirect.com/science/article/pii/S0306261917318202; Supplementary data file available at https://ars.els-cdn.com/content/image/1-s2.0-S0306261917318202-mmc1.zip 
15  In this appendix, “net load” is used to refer to hourly load minus wind and solar output plus conventional generator forced outages. “Outages” or 
“forced outages” is used to refer to conventional generator forced outages, and includes conventional generator failures to start, derates, and forced 
outages.

16  Hourly Load: https://www.ercot.com/gridinfo/load/load_hist. Hourly Wind: https://www.ercot.com/gridinfo/generation 

17  Hourly Load: https://www.iso-ne.com/isoexpress/web/reports/load-and-demand/-/tree/zone-info. Hourly Wind: https://www.iso-ne.com/isoexpress/
web/reports/operations/-/tree/daily-gen-fuel-type 

18  Hourly Load: https://www.nyiso.com/custom-reports. Hourly Wind: Did not use wind generation for 2012-2015.

19  Hourly Load: https://dataminer2.pjm.com/feed/inst_load. Hourly Wind: https://dataminer2.pjm.com/feed/wind_gen/definition 

20  Hourly Load: https://marketplace.spp.org/pages/hourly-load. Hourly Wind: https://marketplace.spp.org/pages/generation-mix-historical 
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capacity (Table 1 from Murphy et al.)21 for each region. Because the GADS outage rate and 
installed capacity data in Murphy et al. is reported at the NERC region level, which groups ISO-
NE and NYISO into NPCC along with the eastern Canadian provinces, we used the installed  
capacity for NYISO22 and ISO-NE23 as reported by those regions’ Independent Market Monitors 
(IMMs) for 2012-2015, but assumed that the NPCC GADS hourly outage rate applied for both 
regions. 

For the entire analysis we separated MISO N and MISO S to account for the limited transmission 
ties between those areas, and the fact that Entergy was its own BA prior to joining MISO on 
December 19, 2013. For MISO N a similar issue arose as with NYISO and ISO-NE due to the 
misalignment of MRO and MISO. To account for this misalignment, we pulled hourly load and 
wind generation for the entire MISO region for 2012-201524 and used IMM reported installed  
capacity for MISO for 2012-2015.25 To account for the addition of MISO S at the end of 2013 we 
subtracted hourly load and MISO S installed capacity from our MISO N hourly load and installed 
capacity. MISO S is discussed further below. For MISO N, we assumed that the MRO GADS 
hourly outage rate would apply uniformly across MISO N and multiplied the MRO GADS Hourly 
Outage by MISO N installed capacity.

To collect Entergy hourly load data before it joined MISO and its load was included in MISO 
zonal data, we used FERC Form Number 714 data to pull Entergy hourly load for 2012 through 
December 18, 2013.26 We then added MISO S reported load for December 19, 2013, through the 
end of 2015 using MISO’s reported load data. For MISO S installed capacity, we used 2012-2015 
EIA 860 nameplate capacity (MW) data for Entergy.27 We then applied Murphy’s SERC hourly 
forced outage rate to Entergy’s (MISO S) installed capacity for 2012-2015 to get hourly outages 
in MISO. No renewable generation was included as MISO S and Entergy had limited installed 
renewable capacity during this period.

For the non-RTO parts of the Eastern Interconnection we divided it up into four regions: 
the Southeast,28 TVA, the Carolinas,29 and Florida.30 We again pulled hourly load data from 
FERC Form Number 714 for the Balancing Authorities that make up each of those regions.31 

21  Murphy’s installed capacity in Table 1 did not include wind or solar capacity. Throughout this appendix we use the term “installed capacity” to refer to 
conventional generator capacity which does not include wind or solar generating capacity.

22  2012-2015 installed wind capacity, page 66, https://www.nyiso.com/documents/20142/2226467/2015-Load-Capacity-Data-Report-Gold-
Book.pdf/63d6d932-7a50-4972-1cc9-e3f1eaa7ab90; 2012-2012 installed capacity, page 339, https://www.potomaceconomics.com/wp-content/
uploads/2017/02/NYISO-2015-SOM-Report.pdf 

23  For ISO-NE’s installed capacity we used FCM results, see page 80, https://www.iso-ne.com/static-assets/documents/markets/mkt_anlys_rpts/annl_
mkt_rpts/2012/amr12_final_051513.pdf 

24  Hourly Load: https://www.misoenergy.org/markets-and-operations/real-time--market-data/market-reports/market-report-
archives/#nt=%2FMarketReportType%3ASummary%2FMarketReportName%3AArchived%20Historical%20Regional%20Forecast%20and%20Actual%20
Load%20%20(zip)&t=10&p=0&s=MarketReportPublished&sd=desc. Hourly Wind: https://www.misoenergy.org/markets-and-operations/real-time--market-
data/market- reports/market-reportarchives/#nt=%2FMarketReportType%3ASummary%2FMarketReportName%3AArchived%20Historical%20Hourly%20
Wind%20Data%20%20(zip)&t=10&p=0&s=MarketReportPublished&sd=desc 

25  2012 installed capacity, page 11, https://www.potomaceconomics.com/wp-content/uploads/2017/02/2012-State-of-the-Market-Report.pdf; 2013 
installed capacity, page 23, https://www.potomaceconomics.com/wp-content/uploads/2017/02/2014-State-of-the-Market-Report.pdf; 2014-2015 installed 
capacity, page 26, https://www.potomaceconomics.com/wp-content/uploads/2017/02/2015-State-of-the-Market-Report.pdf 

26  https://www.ferc.gov/industries-data/electric/general-information/electric-industry-forms/form-no-714-annual-electric/data 

27  https://www.eia.gov/electricity/data/eia860/ 

28  The Southeast region is composed of all Southern Company Power Companies (including Gulf Power Co) Balancing Authorities (BAs).

29  The Carolinas region is comprised of the following BAs in North and South Carolina: Duke, Dominion, South Carolina Public Service Authority, and 
Yadkin.

30  Florida is composed of the following BAs: City of Tallahassee, Florida Municipal Power Agency, Florida Power & Light, Gainesville Regional Utilities, Gulf 
Power Co (2018-2022 only), JEA, Lakeland Electric, Orlando Utilities Commission, Duke Energy Florida, Seminole Electric Cooperative, and Tampa Electric.

31  The BAs that comprise each region are based on the footnotes above and EIA 930 designations, per https://www.eia.gov/electricity/gridmonitor/
dashboard/electric_overview/US48/US48.

QU
AN

TIF
YI

NG
 A 

MI
NI

MU
M 

IN
TE

RR
EG

IO
NA

L T
RA

NS
FE

R C
AP

AB
ILI

TY
 R

EQ
UI

RE
ME

NT

15
162

https://www.nyiso.com/documents/20142/2226467/2015-Load-Capacity-Data-Report-Gold-Book.pdf/63d6d932-7a50-4972-1cc9-e3f1eaa7ab90
https://www.nyiso.com/documents/20142/2226467/2015-Load-Capacity-Data-Report-Gold-Book.pdf/63d6d932-7a50-4972-1cc9-e3f1eaa7ab90
https://www.potomaceconomics.com/wp-content/uploads/2017/02/NYISO-2015-SOM-Report.pdf
https://www.potomaceconomics.com/wp-content/uploads/2017/02/NYISO-2015-SOM-Report.pdf
https://www.iso-ne.com/static-assets/documents/markets/mkt_anlys_rpts/annl_mkt_rpts/2012/amr12_final_051513.pdf
https://www.iso-ne.com/static-assets/documents/markets/mkt_anlys_rpts/annl_mkt_rpts/2012/amr12_final_051513.pdf
https://www.potomaceconomics.com/wp-content/uploads/2017/02/2012-State-of-the-Market-Report.pdf
https://www.potomaceconomics.com/wp-content/uploads/2017/02/2014-State-of-the-Market-Report.pdf
https://www.potomaceconomics.com/wp-content/uploads/2017/02/2015-State-of-the-Market-Report.pdf
https://www.ferc.gov/industries-data/electric/general-information/electric-industry-forms/form-no-714-annual-electric/data
https://www.eia.gov/electricity/data/eia860/
https://www.eia.gov/electricity/gridmonitor/dashboard/electric_overview/US48/US48
https://www.eia.gov/electricity/gridmonitor/dashboard/electric_overview/US48/US48


For Florida we used Murphy et al.’s installed capacity MW for 2012-2015.32 For the Carolinas, 
Southeast, and TVA’s installed capacity we used Nameplate Capacity MW from EIA 860 for 
each Balancing Authority for 2012-2015 and summed it to get a total installed capacity for 
each region. We then applied Murphy’s SERC GADS hourly all outage rate to the Southeast, 
TVA, and the Carolinas and multiplied it by the installed capacity in each region to Total Hourly 
MW Outages. No renewable generation was included for any of the three regions as each had 
limited installed renewable capacity during this period.

All regions were standardized to the Eastern Time Zone and then Total Hourly Outages (MW) 
were calculated by multiplying Installed Capacity by the NERC region GADS Hourly Outage 
Percent. We then calculated Total Hourly Net Load by subtracting Hourly Wind Generation from 
Hourly Load and then adding Total Hourly Outages (MW).

2018-2022 Analysis

For 2018-2022 a similar methodology was used with some changes to the data sources to 
analyze the Eastern Interconnection and ERCOT. 2018-2022 hourly load and 2019-2022 hourly 
wind and solar generation was compiled using EIA 930 data for ERCOT, ISO-NE, NYISO, PJM, 
SPP, TVA, and the Southeast, Carolinas, and Florida regions.33 EIA 930 did not start reporting 
hourly wind and solar generation until July 1, 2018, so regionally reported hourly wind and solar 
generation for 2018 was used for ERCOT, ISO-NE, PJM, and SPP using the same sources as 
the 2012-2015 analysis. For TVA, Southeast, Carolinas, and Florida, the renewable generation 
for January 1, 2018, through June 30, 2018, was not included due to limited installed capacity. 
Hourly MISO data which separates load, wind, solar generation into MISO N and MISO S was 
used instead of EIA 930 data, which does not distinguish between MISO N and S.34

For the RTO regions (except MISO), we again used installed capacity for ERCOT,35 ISO-NE,36 

32  Table 1 from Murphy et al.

33  https://www.eia.gov/electricity/gridmonitor/dashboard/electric_overview/US48/US48 

34  2021-2022 Load: https://www.misoenergy.org/markets-and-operations/real-time--market-data/market-
reports/#nt=%2FMarketReportType%3ASummary%2FMarketReportName%3AHistorical%20Daily%20Forecast%20and%20
Actual%20Load%20by%20Local%20Resource%20Zone%20(xls)&t=10&p=0&s=MarketReportPublished&sd=desc; 2018-
2020 Load: https://www.misoenergy.org/markets-and-operations/real-time--market-data/market-reports/market-report-
archives/#nt=%2FMarketReportType%3ASummary%2FMarketReportName%3AArchived%20Historical%20Regional%20Forecast%20and%20Actual%20
Load%20%20(zip)&t=10&p=0&s=MarketReportPublished&sd=desc; 2021-2022 Wind and Solar: https://www.misoenergy.org/markets-and-operations/real-
time--market-data/market-reports/#nt=%2FMarketReportType%3ASummary%2FMarketReportName%3AHistorical%20Generation%20Fuel%20Mix%20
(xlsx)&t=10&p=0&s=MarketReportPublished&sd=desc ; 2018-2020 Wind and Solar: https://www.misoenergy.org/markets-and-operations/real-time--
market-data/market-reports/market-report-archives/#nt=%2FMarketReportType%3ASummary%2FMarketReportName%3AArchived%20Historical%20
Generation%20Fuel%20Mix%20%20%20(zip)&t=10&p=0&s=MarketReportPublished&sd=desc 

35  2022: Assumed same installed capacity in 2022 as 2021. 2021: Wind, page 35; Solar, page 32; Installed capacity based on estimate from Figure A16, 
page A-26, https://ftp.puc.texas.gov/public/puct-info/industry/electric/reports/ERCOT_annual_reports/2021annualreport.pdf; 2020: Wind page 25; Solar 
page 23; Installed capacity based on estimate from Figure A-14, page A-20; https://ftp.puc.texas.gov/public/puct-info/industry/electric/reports/ERCOT_
annual_reports/2020annualreport.pdf; 2019: Solar based on stated additions in 2020 report, page 22; Wind, page 24; Installed capacity based on estimate 
from Figure A14, page A-18; https://ftp.puc.texas.gov/public/puct-info/industry/electric/reports/ERCOT_annual_reports/2019annualreport.pdf.; 2018: 
Solar based on estimate from page A-18 in 2019 report; Wind page 80; Installed capacity based on estimate from Figure 64, page 77; https://ftp.puc.texas.
gov/public/puct-info/industry/electric/reports/ERCOT_annual_reports/2018annualreport.pdf.

36  For ISO-NE’s installed capacity we used FCM results, see page 205. For 2018-2020 wind and solar we used a MW of installed capacity that also included 
DR, Coal, Other, and Battery Storage, Figure 6-2, page 195, https://www.iso-ne.com/static-assets/documents/2022/05/2021-annual-markets-report.pdf.
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https://ftp.puc.texas.gov/public/puct-info/industry/electric/reports/ERCOT_annual_reports/2020annualreport.pdf
https://ftp.puc.texas.gov/public/puct-info/industry/electric/reports/ERCOT_annual_reports/2020annualreport.pdf
https://ftp.puc.texas.gov/public/puct-info/industry/electric/reports/ERCOT_annual_reports/2019annualreport.pdf
https://ftp.puc.texas.gov/public/puct-info/industry/electric/reports/ERCOT_annual_reports/2018annualreport.pdf
https://ftp.puc.texas.gov/public/puct-info/industry/electric/reports/ERCOT_annual_reports/2018annualreport.pdf
https://www.iso-ne.com/static-assets/documents/2022/05/2021-annual-markets-report.pdf


NYISO,37 PJM,38 and SPP39 as reported by the IMM. For ERCOT, ISO-NE, and SPP, 2021 installed 
capacity was used for 2022.

For MISO N40 we used IMM reported total installed capacity minus MISO S installed capacity, 
which we calculated by summing the EIA 860 nameplate installed capacity for all Entergy 
Utilities for 2018-2022. For MISO N and S, 2021 installed capacity was used for 2022.

For the Carolinas, Southeast, and TVA, installed capacity was calculated using Nameplate 
Capacity MW from EIA 860 for each Balancing Authority for 2018-2021 which was then summed 
to get a total installed capacity for each region. 2021 installed capacity was used for 2022 
as 2022 EIA 860 data is not yet available. For Florida, we used installed capacity from the 
Southern Alliance for Clean Energy’s SENFO database for Florida BAs for 2018-2021, which 
were then summed to get a total installed capacity for Florida for 2018-2021. For Florida’s 
installed renewable capacity we summed the installed nameplate renewable capacity from EIA’s 
860 data for 2018-2021. For the Carolinas, Southeast, TVA, and Florida installed capacity for 
2021 was used for 2022.

For 2018-2022, we did not have access to NERC GADS Hourly Outage data, but we did have 
hourly outage data for some regions for three extreme weather events during that time period: 
2022 Winter Storm Elliott, 2021 Winter Storm Uri, and the 2018 South Central Cold Weather 
Event. For each of these events there was often post-event reports that tracked outage MWs 
in the affected regions. We compiled this data to track hourly MW of forced outages at the 
regional level during those events.

For the 2018 South Central Cold Weather Event, the best outage data came from the FERC-
NERC report.41 Figure 22 from the report details outages for MISO S, SPP, TVA and SERC for 
January 17, 2018. We manually extracted the numerical hourly MW outages for each region 
during the event from the figure. For MISO S and TVA, we assumed outages did not include 
any renewable outages since both regions had limited installed renewables. For SPP and SERC 
(our Southeast region) a 5% outage rate was assumed for installed renewables during the event 
and these outages were subtracted from the FERC-NERC Figure 22 outages. For the rest of 
the Eastern Interconnection Regions and ERCOT we did not have actual hourly outages and an 
hourly outage rate of 5% was used, except for ISO-NE and NYISO where a 3% outage rate was 
assumed, approximating those regions’ average forced outage rate over the 2012-2015 period 
per Murphy et al.

37  2022 Installed capacity, wind, and solar assumed same as 2021. 2020-2021 Installed capacity, wind, and solar, page 71, https://www.nyiso.
com/documents/20142/2226333/2021-Gold-Book-Final-Public.pdf/b08606d7-db88-c04b-b260-ab35c300ed64. 2018-2019 Installed capacity, 
wind, and solar, page 43, https://www.nyiso.com/documents/20142/2226333/2019-Gold-Book-Final-Public.pdf/a3e8d99f-7164-2b24-e81d-
b2c245f67904?t=1556215322968.

38  2022 Installed capacity, wind and solar, page 313, https://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2022/2022-som-
pjm-vol2.pdf. 2021 Installed capacity, wind, and solar, page 295, https://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2021/2021-
som-pjm-vol2.pdf. 2020 Installed capacity, wind, and solar, page 272, https://www.monitoringanalytics.com/reports/PJM_State_of_the_
Market/2020/2020-som-pjm-vol2.pdf. 2019 Installed capacity, wind, and solar, page 262, pg 262; https://www.monitoringanalytics.com/reports/
PJM_State_of_the_Market/2019/2019-som-pjm-volume2.pdf. 2018 Installed capacity, wind, and solar, page 262, https://www.monitoringanalytics.com/
reports/PJM_State_of_the_Market/2018/2018-som-pjm-volume2.pdf

39  2019-2021 installed capacity, wind, and solar, page 52, https://www.spp.org/documents/67104/2021%20annual%20state%20of%20the%20market%20
report.pdf. 2018 installed capacity, wind and solar, page 30, https://www.spp.org/documents/65161/2020%20annual%20state%20of%20the%20
market%20report.pdf

40  2020-2021 installed capacity, wind, and solar, page 6, https://www.potomaceconomics.com/wp-content/uploads/2022/06/2021-MISO-SOM_Report_
Body_Final.pdf. 2018-2019 installed capacity, wind, and solar, page 6, https://www.potomaceconomics.com/wp-content/uploads/2020/06/2019-MISO-
SOM_Report_Final_6-16-20r1.pdf

41  Pg 46, https://www.nerc.com/pa/rrm/ea/Documents/South_Central_Cold_Weather_Event_FERC-NERC-Report_20190718.pdf 
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https://www.nyiso.com/documents/20142/2226333/2021-Gold-Book-Final-Public.pdf/b08606d7-db88-c04b-b260-ab35c300ed64
https://www.nyiso.com/documents/20142/2226333/2021-Gold-Book-Final-Public.pdf/b08606d7-db88-c04b-b260-ab35c300ed64
https://www.nyiso.com/documents/20142/2226333/2019-Gold-Book-Final-Public.pdf/a3e8d99f-7164-2b24-e81d-b2c245f67904?t=1556215322968
https://www.nyiso.com/documents/20142/2226333/2019-Gold-Book-Final-Public.pdf/a3e8d99f-7164-2b24-e81d-b2c245f67904?t=1556215322968
https://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2022/2022-som-pjm-vol2.pdf
https://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2022/2022-som-pjm-vol2.pdf
https://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2021/2021-som-pjm-vol2.pdf
https://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2021/2021-som-pjm-vol2.pdf
https://www.spp.org/documents/67104/2021%20annual%20state%20of%20the%20market%20report.pdf
https://www.spp.org/documents/67104/2021%20annual%20state%20of%20the%20market%20report.pdf
https://www.nerc.com/pa/rrm/ea/Documents/South_Central_Cold_Weather_Event_FERC-NERC-Report_20190718.pdf


For 2021 Winter Storm Uri, the best data also came from the FERC-NERC report for that event.42 
Figure 66b from the report details outages for ERCOT, MISO, and SPP for February 8-20, 2021. 
From the figure, we manually extracted the numerical MW outages for approximately each 12-
hour interval for each region during the event, and then the hourly outages within each 12-hour 
period were interpolated linearly. However, the report does not include renewable outage rates 
during the event. For MISO S a 5% outage rate was assumed for installed renewables during 
the event and these outages were subtracted from the interpolated FERC Figure 66b hourly 
outages for February 13-20, 2021. For ERCOT, EIA 930 Forecasted Load was used for February 
14, 2021 through February 20, 2021, as this better reflected what load would have been without 
the large loss of load during that period. 

Generator outage data for ERCOT and SPP were compiled from those RTOs’ outage reports. 
Both RTOs’ reports provide forward-looking projections of outages, which tend to have 
decreasing accuracy over time. As a result, only the initial hours from each report were used 
and a linear interpolation was used to fill in the gaps between reports. To account for renewable 
outages during February 13-20, 2021, 10 real-time ERCOT outage reports from February 13-
17, 2021 were used to interpolate renewable outages. The first 6 hours from each report was 
used and a linear interpolation was used to fill in the gaps between reports. From February 
17 at 14:00 through the end of the day February 20th a thermal outage rate was extrapolated 
using the ratio of the previous total hourly outage compared to thermal outages. For SPP, 
wind outages were pulled from the first hour of SPP forecasted generator outage reports 
for February 13, 2021.43 The first hour of renewable outages from the report was linearly 
interpolated to February 14th. For February 14th through February 20th, reported wind 
outages were used from Figure 23 of an SPP report.44 From the figure we manually extracted 
the numerical MW outages roughly every 12 hours for SPP wind outages and then the hourly 
outages in between were interpolated linearly. For the rest of the Eastern Interconnection, we 
did not have hourly forced outage data, so as above, an hourly forced outage rate of 5% was 
used, except for ISO-NE and NYISO where a 3% forced outage rate was assumed.

For Winter Storm Elliott, conventional generator correlated outage data was pieced together 
from preliminary event reports from different regions. For SPP, slide 22 of an SPP Staff 
Presentation45 shows outages by generator type for December 19th through December 26th. 
From the slide we manually extracted the numerical MW outages for roughly every 12 hours 
during the event, and then the hourly outages in between were interpolated linearly for each 
12-hour period. We only used Gas and Coal outages from the chart as outages from other 
fuel types were negligible and the impact of renewable forced outages is captured in the EIA 
930 hourly renewable output data. For PJM, we used Slide 2 from a PJM Winter Storm Elliott 
Presentation,46 which shows outages by generator fuel type for December 23rd through 
December 25th on a two-hour basis. From the slide we manually extracted the numerical 
MW outages for two-hour blocks during the event. MISO reported system-wide daily average 

42  Pg 126, https://www.ferc.gov/media/february-2021-cold-weather-outages-texas-and-south-central-united-states-ferc-nerc-and

43  https://marketplace.spp.org/pages/capacity-of-generation-on-outage

44  Pg 48, https://spp.org/documents/65037/comprehensive%20review%20of%20spp%27s%20response%20to%20the%20feb.%202021%20winter%20
storm%202021%2007%2019.pdf 

45  SPP, “DECEMBER 2022 WINTER STORM ELLIOTT,” Staff Presentation by C.J. Brown, January 17, 2023, slide 22.

46  Slide 2, https://www.pjm.com/-/media/committees-groups/committees/oc/2023/20230413/20230413-item-04---winter-storm-elliott-fuel-supply-
issues.ashx 
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https://www.ferc.gov/media/february-2021-cold-weather-outages-texas-and-south-central-united-states-ferc-nerc-and
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https://spp.org/documents/65037/comprehensive%20review%20of%20spp%27s%20response%20to%20the%20feb.%202021%20winter%20storm%202021%2007%2019.pdf
https://www.pjm.com/-/media/committees-groups/committees/oc/2023/20230413/20230413-item-04---winter-storm-elliott-fuel-supply-issues.ashx
https://www.pjm.com/-/media/committees-groups/committees/oc/2023/20230413/20230413-item-04---winter-storm-elliott-fuel-supply-issues.ashx


unplanned generation outages by fuel type for December 22nd through December 24th.47 
The reported daily averages were entered for Hour 12 of December 22, 23, and 24, and then a 
linear interpolation was done between those hours. The outages were then split proportionally 
between MISO N and MISO S based on installed capacity. For TVA and the Carolinas, outages 
were determined by taking the difference between the EIA 860 installed thermal capacity for 
the region in 2022 and comparing it to the lowest hour of thermal generation (coal, gas, and 
nuclear) during each region’s rolling blackout period(s) during Winter Storm Elliott, based 
on the assumption that all thermal generation would have been fully dispatched during this 
period.48 We did not have hourly outage data for the rest of the Eastern Interconnection and 
ERCOT, so as above an hourly outage rate of 5% was used, except for ISO-NE and NYISO where 
a 3% outage rate was assumed.

All hourly data for demand, renewable output, and forced outages were converted to the 
Eastern Time Zone. Total Hourly Outages (MW) were then calculated outside of the three 
extreme weather events by multiplying by the assumed 5% or 3% outage rate discussed above. 
We then calculated Total Hourly Net Load for 2018-2022 by subtracting Hourly Wind and Solar 
Generation from Hourly Load and then adding Total Hourly Outages (MW).

47  Slide 10, https://cdn.misoenergy.org/20230117%20RSC%20Item%2005%20Winter%20Storm%20Elliott%20Preliminary%20Report627535.pdf 

48  Reported rolling blackouts for both TVA and Duke during Winter Storm Elliot from this article: https://rmi.org/wasted-wind-and-tenable-transmission-
during-winter-storm-elliott/ 
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The Value of Inter-Regional Coordination and
Transmission in Decarbonizing the US
Electricity System
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Botterud

prbrown@alum.mit.edu

HIGHLIGHTS

US electricity demand can be met

with currently available zero-

carbon technologies

Inter-regional coordination and

transmission construction

significantly reduce cost

Nuclear, if available, plays a

smaller role than renewables at

central cost projections

Nationally planned

decarbonization is more efficient

than state or regional approaches
Rapid decarbonization of electricity is a critical component of climate change

mitigation. We model zero-carbon electricity systems for the continental US using

technologies currently deployed at gigawatt-scale—solar, wind, existing

hydropower, lithium-ion batteries, and transmission. Inter-state operational

coordination reduces the cost of decarbonization; allowing new inter-state

transmission reduces cost further. Nuclear power and long-duration energy

storage have the potential to reduce system cost but are not necessary for

decarbonization; all sensitivity cases deploy hundreds of gigawatts of new solar

and wind.
Brown & Botterud, Joule 5, 115–134
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The Value of Inter-Regional Coordination
and Transmission in Decarbonizing
the US Electricity System

Patrick R. Brown1,3,* and Audun Botterud2
Context & Scale

Averting the worst effects of

climate change requires

decarbonizing the electricity

sector as rapidly as possible.

Given the urgency of action and

the uncertainty inherent in new

technology development, it is

prudent to explore zero-carbon

electricity systems limited to

technologies currently being

deployed at gigawatt-scale. Here,

we model zero-carbon electricity

systems for the continental US

using solar photovoltaics, wind

power, existing hydropower,

lithium-ion batteries, and
SUMMARY

Preventing global warming in excess of 1.5�C–2�C requires a transi-
tion to zero-carbon electricity systems by midcentury along with the
widespread electrification of other sectors. Current state-level
renewable portfolio standards and regional transmission arrange-
ments do not capture the benefits of inter-regional transmission
or coordination of planning and dispatch for renewable-energy inte-
gration. Here, using a co-optimized capacity-planning and dispatch
model over 7 years of hourly operation, we show that inter-state co-
ordination and transmission expansion reduce the system cost of
electricity in a 100%-renewable US power system by 46% compared
with a state-by-state approach, from 135 $/MWh to 73 $/MWh.
Sensitivity analyses show that reductions in the cost of photovol-
taics, wind, and lithium-ion batteries lead to the lowest electricity
costs for systems in which transmission expansion is allowed, while
cost reductions for nuclear power or long-duration energy storage
lead to greater electricity cost reductions for isolated systems.
transmission, incorporating 7

years of hourly weather data from

tens of thousands of available

sites. New and existing long-

distance transmission significantly

reduces the system cost of

electricity and the amount of

energy storage required for

reliable zero-carbon electricity.

Streamlining the planning and

permitting process for new

transmission and coordinating

decarbonization at the national

(rather than state) level could

enable a more efficient and rapid

transition to a zero-carbon

electricity system.
INTRODUCTION

Stabilizing global warming below 1.5�C–2�C necessitates reducing net anthropo-

genic greenhouse gas emissions to zero by the middle of this century.1 Many ana-

lyses suggest that the electricity sector will need to decarbonize most rapidly,

concomitant with electrification of other sectors.2 Given the short time frame for po-

wer-system decarbonization and the long development times for new technologies

and supply chains, there is a need for analyses demonstrating zero-carbon power-

system pathways using technologies currently deployed at gigawatt-scale to pre-

pare for the possibility that nascent technologies, including next-generation nuclear

fission, carbon capture and long-term sequestration (CCS), and grid-connected

hydrogen turbines or fuel cells, are delayed or unavailable at a large scale. Zero-car-

bon technologies currently deployed at gigawatt-scale in the United States (US)

include onshore wind power (104 GW installed capacity at the end of 2019), nuclear

power (103 GW), hydropower (80 GW), photovoltaics (36 GW), geothermal (3.8 GW),

and concentrated solar thermal power (1.6 GW), and ancillary technologies

including alternating-current (AC) and direct-current (DC) transmission, pumped-hy-

dropower storage (PHS) (22 GW), and electrochemical batteries (1.0 GW).3

Modeling zero-carbon electricity systems for the US, particularly those relying on

high penetrations of variable renewable energy (VRE, including wind and solar po-

wer) and storage, presents numerous challenges.4,5 Large (continent-scale)

geographic coverage is necessary to represent spatiotemporal correlation in

weather systems and the long-range interconnected nature of the US electricity
Joule 5, 115–134, January 20, 2021 ª 2020 Elsevier Inc. 115
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grid;6–8 large (multi-year) temporal coverage is required to account for interannual

weather variability and ensure resource adequacy during uncommon low-resource

weather events;8–11 fine (% 1h) temporal resolution is required to represent VRE vari-

ability and storage operation; and chronological time coupling is required to repre-

sent storage energy constraints, the combined capacity value of VRE and storage,

and generator ramp rates in systems employing nuclear power.

Numerous optimization models12,13 and a significant body of literature4,5,14 address

the optimal design of low- and zero-carbon electricity systems for the US. These

models and studies can roughly be divided into two classes. One class employs

high geographic resolution (10–100 zones), explicit representation of transmission

investment and power flow, relatively low temporal resolution for capacity planning

(typically tens to hundreds of ‘‘time slices’’), and a multi-period sequential-invest-

ment framework, typically to model systems up to ~80% decarbonization.15–20

The second class tends to employ low geographic resolution (often a single-zone

‘‘copper-plate’’ system), limited or no representation of transmission, high temporal

resolution (hourly chronological time steps, often for a single year but sometimes

over multiple years), and a single-period steady-state framework to model systems

up to 100% decarbonization—in some cases for the entire US,8,21 and in others for

isolated sites,10 states,22 or regions.23,24 MacDonald et al. partially bridge this

divide,25 combining hourly resolution with zonal transmission expansion, but do

not exceed 80% decarbonization. Other studies explore zero-carbon systems for Eu-

rope,26–29 including the recent work of Tröndle et al.,30 which explores the impact of

VRE siting policy and transmission availability on system cost (albeit for a single year

at four-hour resolution). For the reasons noted above, both high temporal resolution

and an explicit representation of transmission are necessary for accurately modeling

low- and zero-carbon electricity systems for the US.

Here, we employ a linear optimization model with hourly resolution over 7 years of

historical weather (2007–2013) to explore zero-carbon electricity systems for the US,

co-optimizing capacity investments and hourly operation of generation, storage,

and transmission to meet projected electricity demand in 2040. Transmission costs

and constraints at the national scale are addressed using a hierarchical approach,

first determining inter-state transmission investment within 11 regional planning

areas (PAs), then optimizing inter-PA transmission investment and hourly flows for

an interconnected US system. We find that a zero-carbon power system is feasible

at the level of hourly system balancing using technologies deployed today (photo-

voltaics [PV], wind, transmission, Li-ion batteries, and hydropower) at all spatial

scales considered, from isolated states to PAs to the interconnected US system. In-

ter-state and inter-regional coordination of capacity-planning and dispatch, as well

as the construction of new inter-state transmission capacity, significantly reduce the

cost of decarbonization. Sensitivity analyses show that, while flexible nuclear power

and ‘‘long-duration’’ (low-energy-cost and low-self-discharge-rate) storage have the

potential to reduce the cost of decarbonization, they are not required to reach a

zero-carbon system and have less impact on system cost than continued reduction

in the price of PV, wind, and Li-ion batteries when full transmission expansion is

allowed.

Analytical Approach

Renewable-Energy Supply Curves

Modeling the expansion of PV and wind capacity requires assessing the available

land area for new deployment. We develop supply curves of available land area

for PV and wind development, excluding water bodies,31 national parks,32 urban
116 Joule 5, 115–134, January 20, 2021
170

mailto:prbrown@alum.mit.edu
https://doi.org/10.1016/j.joule.2020.11.013


A B

C D

E F
G

Figure 1. Geospatial Input Assumptions for VRE Availability and Power System Topology for the Continental US.

(A) Land exclusions.31–35 Excluded areas are indicated by colored areas; white areas are assumed to be available for solar and wind deployment.

(B) Existing transmission lines (colored lines) and transmission substations (black circles).76 Interconnection costs are calculated based on the distance

from solar and wind sites to substations and the distance from substations to urban boundaries in (A), as described in the Supplemental Information.

(C and D) Maps of the LCOE for 41,990 PV sites (C) and 416,859 wind sites (D), including the site-specific cost of interconnection to in-state substations.

(E and F) Supply curves of PV sites (E) and wind sites (F) sorted by site-specific LCOE, excluding (blue dotted lines) and including (orange solid lines)

interconnection costs.

(G) PA boundaries and transmission system topology assumed for the capacity-planning model in this study. Inter-state intra-PA transmission is

denoted by gray lines; inter-PA transmission is denoted by black lines. Solid lines denote AC connections; dashed lines denote DC connections. All

costs in (C)–(F) and in the remainder of this work are in 2017 US dollars.
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areas,33 mountain ranges,34 and Native American territories35 from development

(Figure 1A) and quantifying the interconnection cost of ‘‘spur lines’’ to connect to ex-

isting transmission infrastructure (Figure 1B).

The hourly capacity factor (CF) of horizontal 1-axis-tracking PV over 2007–2013 is simu-

lated using satellite data from the National Solar Radiation Database (NSRDB)36,37 for

41,990 sites across the continental US; the hourly CF of wind is simulated using climate

reanalysis data from the WIND Toolkit and manufacturer power curve data for the

Gamesa:G126/2500 turbine at 100-meter height for 416,859 sites. Figures 1C and

1D showmaps of the calculated levelized cost of electricity (LCOE) across the modeled

sites assuming 2030 ‘‘mid’’ cost projections from the 2019 NREL Annual Technology

Baseline (ATB),38 and Figures 1E and 1F show the cumulative available capacity sorted

by LCOE, applying areal power densities representative of current installations. Further

details are provided in the Supplemental Information (Note S2).

Capacity-Planning Model

The capacity-planning model minimizes the sum of annualized capital costs and

hourly operational costs over 7 years of hourly operation using 2007–2013 weather

data, subject to constraints on hourly demand balance, hourly VRE availability, avail-

able PV and wind capacities, storage energy balance, transmission flows, and hydro-

power availability. Using the ‘‘steady-state’’ framework discussed above, we include-

long-lived ‘‘brownfield’’ hydropower and transmission assets while treating all other

generators as ‘‘greenfield’’ assets, and we do not consider limits on annual capacity

deployment. The model improves upon previous work by combining hourly resolu-

tion, interannual variability (across 7 years in central cases and up to 21 years in the

Supplemental Information [Note S5.2]), explicit modeling of transmission flows, and

site-specific VRE interconnection costs with an extensive sensitivity analysis over

more than 370 independent cases. Details regarding the model formulation, as-

sumptions, and input data are provided in the Supplemental Information (Note

S3), with open-source computer code available in the associated repository.

Hourly electricity demand projections by state are obtained from the NREL Electri-

fication Futures Study, using the 2040 ‘‘reference’’ electrification scenario with

‘‘slow’’ technology advancement.39,40 Cost and performance assumptions for gener-

ation and storage technologies are provided in Table 1; we use 2030 ‘‘mid’’ cost pro-

jections from the 2019 NREL ATB unless noted otherwise, reflecting the fact that

most capacity in the modeled demand year of 2040 will be installed in years prior

to 2040. Cost and performance assumptions for transmission are taken from the

NREL ReEDS model15 and are provided in Table S3; existing transmission capacity

is assumed to be available at no cost. PV and wind sites are aggregated into five

LCOE classes within each zone to reduce the model size. No existing (‘‘brownfield’’)

VRE capacity is included, given that most installations are likely to be repowered by

2040. The power and energy costs of Li-ion battery systems are disaggregated,41,42

allowing the model to optimize the duration (energy-to-power ratio) of storage

within each modeled zone. Existing reservoir and run-of-river (ROR) hydropower fa-

cilities are included, using monthly historical generation from 2007–2013.3,43,44 Ex-

isting hydropower is considered to be fully paid off, with zero capex cost; no new hy-

dropower construction is allowed.

Nuclear power represents a special case when compared with other currently deployed

technologies; while nuclear power produced roughly 20% of US electricity in 2019, only

a single unit has been built in the US in the last 24 years.3,43 There are two operational

power-generating carbon-capture plants worldwide at the time of this writing, with a
118 Joule 5, 115–134, January 20, 2021
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Table 1. Cost and Performance Assumptions for Generation and Storage Technologies

Technology Qualifier Capex Cost
(Power)

Capex Cost
(Energy)

Lifetime WACC
(Real)

FOM Cost
(Power)

FOM Cost
(Energy)

Ramp
Rate

Minimum
Generation

[$/kWac] [$/kWh] [Years] [%] [$/kWac-yr] [$/kWh-yr] [%/h] [% capacity]

PV 2018 1,442 - 25 4.2 26 - 100 0

PV 2030
"Mid"

1,118 - 25 4.2 13 - 100 0

PV 2030
"Low"

733 - 25 4.2 9 - 100 0

Wind 2018 1,623 - 25 4.2 44 - 100 0

Wind 2030
"Mid"

1,262 - 25 4.2 39 - 100 0

Wind 2030
"Low"

1,134 - 25 4.2 34 - 100 0

Nuclear Noflex 6,180* - 25 4.5 101 - 0 100

Nuclear Midflex 6,180* - 25 4.5 101 - 25 50

Nuclear Fullflex 6,180* - 25 4.5 101 - 25 0

Nuclear Existing 0 - - - 234 - 5 85

Hydro Reservoir - - - - 36 - 100 10

Hydro Run-of-
River

- - - - 36 - 0 100

CCGT 2030
"Mid"

850 - 25 4.5 11 - 50 0

OCGT 2030
"Mid"

849 - 25 4.5 12 - 100 0

Li-Ion 2018 287 300 15 4.2 6 7 100 0

Li-Ion 2030
"Mid"

158 165 15 4.2 3 4 100 0

Li-Ion 2030
"Low"

95 99 15 4.2 2 2 100 0

LDES 1,757 5–50* 25 4.2 16 0 100 0

PHS Existing 0 0 - - 16 0 100 0

All monetary quantities are in 2017 US dollars and are taken, where possible, from the NREL Annual Technology Baseline (ATB).38 Capital expenditure (capex)

costs for nuclear power and long-duration energy storage (LDES), marked with a ‘‘*’’, vary across sensitivity cases and are noted in Figure 4 for cases in which they

are included. LDES cost and performance assumptions are derived from estimates for PHS. Reservoir and run-of-river hydropower are included in all simulations,

but no capacity additions are allowed. Figures 2 and 3 and the ‘‘default’’ row in Figure 4 include only PV ‘‘2030 mid,’’ wind ‘‘2030 mid,’’ Li-ion ‘‘2030 mid,’’ and

transmission as new investment options; other rows in Figure 4 include the additional technologies listed here where noted. Additional cost and performance

assumptions are given in Tables S10 and S11. Abbreviations are defined in the Supplemental Information (Note S1).
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combined capacity of 0.35 GW; both utilize the captured CO2 for enhanced oil recov-

ery,45 and cannot be classified as zero-carbon given the sub-100% CO2-capture effi-

ciency of CCS. While offshore wind is currently deployed at gigawatt-scale in Europe,

the deployed US capacity is 0.03 GW at the time of this writing.3 Given our focus on

technologies currently being deployed at gigawatt-scale in the US, only PV, wind, Li-

ion batteries, existing hydropower, and transmission are included in the base case; nu-

clear power is considered separately in the sensitivity analysis described below, while

offshore wind and carbon capture are excluded given their sub-gigawatt capacity.

Geothermal and CSP currently demonstrate relatively limited regional availability and

deployment, and are thus excluded to reduce the model size and computation time

(computational details are provided in Supplemental Information section S4). Three

additional sources of flexibility are considered in the sensitivity analysis: flexible nuclear,

long-duration energy storage (LDES, with cost assumptions and technical parameters

derived from PHS), and load shedding during periods of peak net demand.
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Table 2. Regional Coordination and Transmission Assumptions

Scenario Zones Independent Simulations Coordination Boundary Existing Inter-State
Transmission?

New Inter-State
Transmission?

States States 48 State No No

PA – AC States 11 PA Within each PA No

PA + AC States 11 PA Within each PA AC between states within PA

USA – AC – DC PAs 1 USA Between adjacent PAs AC between states within PA
No new AC/DC between PAs

USA + AC – DC PAs 1 USA Between adjacent PAs AC between states within PA
New AC between synchronous PAs

USA + AC + DC PAs 1 USA Between adjacent PAs AC between states within PA
New AC between synchronous PAs
New DC between asynchronous PAs

The transmission system topology for the ‘‘PA’’ and ‘‘USA’’ scenarios is shown in Figure 1G. Each PA contains between 1 and 8 states. ‘‘+’’ and ‘‘–’’ symbols in

scenario names indicate whether new transmission of the indicated type (AC or DC) is allowed (+) or disallowed (–) between the constituent zones (states for

PA scenarios, PAs for USA scenarios). There are three groups of synchronous PAs: the western interconnect (Northwest, Mountain, and California), the eastern

interconnect (Central, MidwestN, MidwestS, Northeast, MidAtlantic, Southeast, Florida), and Texas; AC transmission is included between PAs within the same

synchronous interconnect, while DC transmission is only included between interconnects.

ll
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Regional Coordination and Transmission Scenarios

In this work, ‘‘coordination’’ is defined to include all of the functions that would be

performed by a cost-minimizing centrally-planned electric system operator within

an isolated coordination area: generation and transmission capacity planning and

procurement, balancing of supply and demand through hourly dispatch, and (in

the relevant sensitivity cases discussed below) procurement of operating reserves.

We consider three different boundaries for regional coordination: individual states,

multi-state PAs, and the interconnected US system. Two ‘‘PA’’ and three ‘‘USA’’ sce-

narios are considered, differing in their allowance of new transmission construction.

The ‘‘States’’ and ‘‘PA’’ scenarios entail independent optimizations of each state or

PA, balancing hourly supply and demand using only generation assets sited within

the borders of the relevant state or PA, while the ‘‘USA’’ scenarios entail a single opti-

mization of the full 11-PA system. These six scenarios are summarized in Table 2.

While existing transmission capacity is most closely approximated by the ‘‘USA – AC

– DC’’ scenario, this scenario does include new intra-PA inter-state transmission to

balance VRE generation with demand within the PA. Independent system operators

(ISOs) currently coordinate extensively between states within their service territory,

while inter-ISO coordination is comparatively more difficult;46 coordination of gen-

eration capacity-planning and day-ahead unit commitment between ISOs is limited,

and wheeling charges disincentivize inter-regional power flows. The names and

boundaries of the 11 PAs considered here, in addition to the assumed intra-PA in-

ter-state grid topology and inter-PA topology, are shown in Figure 1G. To accom-

modate our high temporal resolution (>60,000 chronological hourly timesteps

over 7 years), the 11 PAs used here are larger in size and smaller in number than

the ~70 balancing authorities of the continental US.47

Limitations

Before describing our results, we first note several limitations in our analysis. We do

not model sub-hourly resource variability (although the hourly operating reserves

cases suggest that doing so would not substantially increase costs); transmission

is modeled in a highly aggregated fashion, without AC or DC optimal power flow;

we do not include connections to Canada or Mexico, offshore wind, geothermal,
120 Joule 5, 115–134, January 20, 2021
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Figure 2. Cost, Capacity, and Annual Operation of Optimized Zero-Carbon Power Systems

Results are shown for isolated states (‘‘States’’); isolated PAs without (‘‘PA – AC’’) and with (‘‘PA + AC’’) new inter-state AC transmission; and the full-US

system without new inter-PA transmission (‘‘USA – AC – DC’’), with new inter-PA AC transmission (‘‘USA + AC �DC’’), and with new inter-PA AC and DC

transmission (‘‘USA + AC + DC’’). New DC transmission capacity is only allowed between nodes connected by dashed lines in Figure 1G.

(A) Average SCOE, given by the optimized value of the objective function divided by the summed hourly system demand. Gray bars denote optimized

solutions for the full 2007–2013 period; black lines denote optimized individual yearly solutions for the 7 years between 2007 and 2013, with 2007 on the

left and 2013 on the right.

(B) Installed energy capacity of storage. As in (A), green bars denote solutions optimized for the full 2007–2013 period and black lines denote individual

yearly solutions for the 7 years between 2007 and 2013.

(C) Installed power capacity of generation and storage optimized for the full 2007–2013 period.

(D) Annual dispatched energy for systems optimized for the full 2007–2013 period. Bars start from a negative value that corresponds to the energy used

to charge storage, in addition to storage and transmission losses. The sum of dispatched energy from storage and dispatched energy from hydropower,

wind, and PV equals the annual demand, denoted by the black dashed line.

(E) Annual available energy for systems optimized for the full 2007–2013 period, with annual demand denoted by the black dashed line. As in (D), bars

start from a negative value to account for storage charging and losses from storage and transmission. The available energy from wind and PV is given by

the 7-year average CF multiplied by the installed capacity. The available energy from reservoir hydropower is given by historical generation over 2007–

2013, assuming no spilled power.

(F) Installed inter-state transmission capacity. Bars include both existing and new-build transmission capacity. Interconnection ‘‘spur lines’’ associated

with PV and wind sites are not included. Intra-PA transmission for the ‘‘USA’’ scenarios is calculated using the method described in the Supplemental

Information (Note S3.2.1).
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CSP, demand response (outside of the bounding ‘‘$9000/MWh load shedding’’

sensitivity case discussed below), unit commitment for nuclear or CCGT, security

constraints, or nonlinearities arising from wind wake effects and storage degrada-

tion. Our approach can be characterized as ‘‘perfect hindsight,’’ showing that histor-

ical demand profiles (scaled up to account for demand growth and electrification)

can be met under historical weather conditions; we do not model forecast uncer-

tainty in VRE availability or demand, or the impact of climate change on weather pat-

terns. We also do not address issues of system inertia or transient stability (although

recent work shows that PV,48 wind,49 and batteries50 can provide such services).

These areas should be considered in future work. Including additional generation

technologies or demand response would decrease estimated electricity costs, while

modeling optimal power flow, security constraints, inertia, or unit commitment

would tend to increase costs.51
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RESULTS

Impacts of Regional Coordination and Transmission

Figure 2 shows the system cost of electricity (SCOE, defined as the total annualized ca-

pex and operational costs of generation, storage, and transmission divided by the

yearly system-wide demand; distribution and administration costs are not included),

installed capacity, and dispatched and available energy for the six central zero-carbon

scenarios described in Table 2. Zero-carbon systems are feasible with today’s VRE and

storage technologies in all scenarios, even for the ‘‘States’’ scenario requiringeach state

tobalancehourly electricity supply anddemand fromgeneratorswithin its ownborders.

Yet as regional coordination increases along the horizontal axis, the SCOE and installed

generation and storage capacity decrease substantially. Benefits are derivedboth from

increasing coordination without installing new transmission capacity (the SCOE de-

creases by 22 $/MWh from ‘‘States’’ to ‘‘PA – AC’’ and by 16 $/MWh from ‘‘PA + AC’’

to ‘‘USA – AC – DC’’) and from allowing new transmission installations at the same level

of coordination (in the ‘‘USA’’ scenarios, allowing new AC transmission reduces the

SCOE by 10 $/MWh, and allowing new DC transmission across the three asynchronous

interconnects reduces SCOE by a further 8 $/MWh).

The decline in storage deployment is even more pronounced: The ‘‘USA + AC +DC’’

case deploys 40% of the storage used in the ‘‘PA + AC’’ case and 23% of the storage

used in the ‘‘States’’ case. Projected average 2040 electricity demand is 0.50TW, so

the installed energy capacity of storage (Figure 2B) divided by average demand

equates to roughly 23 hours in the ‘‘States’’ case, 13 hours in the ‘‘PA + AC’’ case,

and 5.3 hours in the ‘‘USA + AC + DC’’ case. Inter-state transmission capacity

(including both intra-PA and inter-PA capacity) increases by roughly 90% between

the ‘‘USA – AC – DC’’ and ‘‘USA + AC + DC’’ cases.

These results corroborate previous studies showing that a single weather year is

insufficient for modeling zero-carbon systems with high reliability.8–11 The 7-year

simulations over 2007–2013 always entail higher SCOE (Figure 2A) and typically

employ larger storage capacity (Figure 2B) than simulations over individual weather

years, even the ‘‘worst’’ years, although interannual weather variability is smaller at

the continent scale than at the scale of states or PAs (Note S5). Because the worst

year varies across states (Figure S19) and storage deployment tends to be sized

for the worst year (where ‘‘worst’’ roughly indicates the severity and duration of syn-

chronized low-availability periods for wind, PV, and hydropower), the gap between

the optimal 7-year and 1-year storage capacities (and SCOE) is larger for the

geographically-isolated ‘‘States’’ and ‘‘PA’’ scenarios than for the ‘‘USA’’ scenarios.

Given the currently available technologies modeled here, the intermittency of VRE is

primarily managed by sizing VRE capacity to provide sufficient generation during the

lowest-resource times (cloudy winters for PV and calm summers for wind) and curtailing

generation to match demand during other times.22,52 Increased regional coordination

and transmission reduce the necessary capacity and the incidence of curtailment (Fig-

ures 2D and 2E). As shown in Figure 3, storage duration (defined by the energy-to-po-

wer ratio of the optimized storage capacity in a given zone) is lower in the ‘‘USA + AC +

DC’’ scenario than in the ‘‘USA – AC – DC’’ scenario. Construction of new transmission

capacity thus has two primary benefits—it allows increased VRE deployment at higher-

quality sites, reducing the capacity investment required to produce a given amount of

energy (Figure 2C); it also reduces VRE intermittency by integrating generation from

distant sites spanning different cloud andweather systems,6,7 thus reducing the amount

and duration of storage required (Figures 2B, 3C, and 3G).
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Figure 3. Capacity and Operation of Optimized Zero-Carbon Systems Disaggregated by PA for the ‘‘USA – AC – DC’’ (Left) and ‘‘USA + AC + DC’’

(Right) Scenarios

Power capacity and dispatch are optimized for the full 2007–2013 period.

(A and E) Installed inter-PA transmission capacity (red) and average hourly power flow (black), with capacity and flow indicated by line thickness. Each

link shows the average flow in both directions, with the average flow into a node shown by the thickness of the black line on the side of the link closest to

that node.

(B and F) Installed power capacity of generation and storage disaggregated by PA.

(C and G) Energy/power ratio of storage for each PA. Storage energy in GWh is given by the product of storage power in (B and F) and energy/power

ratio in (C and G).

(D and H) Hourly dispatch by PA for the week from 2011-07-23-00:00 to 2011-07-29-23:00, shown in US central standard time. Negative values indicate

charging of storage or power flow out of the PA; red areas indicate transmission power flow into the PA. Curtailment of wind and PV and spillage of

reservoir hydropower are not shown.
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Alternative Technology Assumptions

While the analysis described thus far indicates the feasibility of zero-carbon systems

and the value of inter-regional coordination and transmission, the assumed future

technology costs and demand levels are far from certain. It is also possible that tech-

nologies excluded thus far—including nuclear power and long-duration storage—

could be economically viable in the future. Figure 4 presents the results of a sensi-

tivity analysis across 48 different cases (41 zero-carbon cases and 7 ‘‘no-policy’’

cases), taking the ‘‘USA + AC + DC’’ scenario described above as the base case. Nu-

merical and methodological assumptions for the alternative cases are provided in

Table 1 and in Note S3.2.5.

Three zero-carbon cases result in a SCOE that is at least 10 $/MWh cheaper than the

default case: ‘‘2030low VRE&S prices’’ (-17 $/MWh difference with the default case),

‘‘LDES ($5/kWh)’’ (-13 $/MWh), and ‘‘fullflex nuclear_$4000/kW’’ (-12 $/MWh). In

addition to the ‘‘States’’ and ‘‘PA’’ scenarios described above, eight cases produce

a SCOE that is at least 10 $/MWh more expensive than the default case: ‘‘2018

VRE&S prices,’’ ‘‘no new AC or DC’’ (the same scenario as ‘‘USA – AC – DC’’

described above), ‘‘WTKclass2’’ (representing a higher-specific-power wind turbine

model), ‘‘53 Li-ion cost,’’ ‘‘Vestas:V110/2000’’ (another higher-specific-power wind

turbine model), ‘‘0.13 VRE available,’’ ‘‘53 interconnection cost,’’ and ‘‘6% WACC.’’

Combining changes frommultiple sensitivity cases would lead to greater differences

from the default case.

New Nuclear

The impact of nuclear is sensitive to cost and technical assumptions. At a capex cost

of $12,000/kWac—roughly the estimated cost of the Georgia Vogtle nuclear plant

expansion, still incomplete at the time of this writing53—no new nuclear capacity

is installed (‘‘noflex nuclear_$12000/kW’’). At the 2030 ATB cost projection of

$6,180/kWac, between 70 GW (‘‘noflex nuclear_$6180/kW’’) and 190 GW (‘‘fullflex

nuclear_$6180/kW’’) of nuclear capacity is installed depending on the flexibility as-

sumptions, but the system cost is only reduced by 0.2–2 $/MWh compared with the

default case without nuclear. System cost reductions greater than 5 $/MWh are only

observed once the nuclear capex cost drops to $5,000/kWac, roughly 10% below the

ATB cost projection for 2050. ‘‘Fullflex’’ nuclear at $4,000/kWac does significantly

reduce the SCOE (-12 $/MWh) but to a lesser extent than achieving the 2030

‘‘low’’ cost projections for PV, wind, and Li-ion batteries (-17 $/MWh). While the

impact of nuclear at central cost projections is low, nuclear and VRE can coexist,

even in the ‘‘noflex’’ nuclear cases: VRE generators are highly rampable within their

temporal availability limits, so when paired with inflexible nuclear, VRE and storage

perform load-following to complement nuclear baseload.

VRE Availability / Wind Turbine

Results are relatively robust to assumptions regarding the available land area for VRE

development and regional cost variability: uniformly reducing the available land

area by 80% (‘‘0.23 VRE available’’) only raises the SCOE by 2 $/MWh, and applying

regional cost scalers from the EIA Annual Energy Outlook 202054 raises the SCOE by

1 $/MWh. VRE prices are comparatively much more important, along with technical

assumptions regarding wind power: utilizing the power curve for the high-specific-

power ‘‘WTKclass2’’ model increases the SCOE by ~16 $/MWh relative to the low-

specific-power Gamesa:G126/2500 (used as the default) or Leitwind:LTW90/1000

models. These results corroborate previous studies reporting an increased value

for low-specific-power wind turbines at lower wind penetrations.55,56 Additional de-

tails on wind modeling are provided in the Supplemental Information (Note S2).
124 Joule 5, 115–134, January 20, 2021
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Figure 4. Sensitivity of Cost, Capacity, and Annual Operation to a Range of Assumptions

All results are for the interconnected US system; default assumptions correspond to the scenario labeled ‘‘USA + AC + DC’’ in Figure 2.

(A) Average SCOE

(B) Installed storage energy capacity

(C) Installed power capacity of storage and generation

(D) Annual dispatched energy

(E) Annual available energy

(F) Installed transmission capacity.

Plotting conventions follow Figure 2, but only results for the full 2007–2013 period are shown here. Panel (A) disaggregates the SCOE into contributions

from different sources; here, ‘‘Inter-state trans.’’ includes the cost of new intra-PA and inter-PA transmission, while ‘‘Interconnection’’ includes site-

specific interconnection costs for PV and wind. The dotted red line in (A), (B), (C), and (F) indicates the value for the ‘‘default’’ case as a guide to the eye,

and the dotted black line in (D) and (E) indicates the yearly electricity demand. Low, medium, and high gas prices for ‘‘Allow gas’’ rows are 3.40, 4.11, and

5.82 $/MMBtu, respectively (3.22, 3.90, and 5.52 $/GJ); complete details on other different sensitivity cases are provided in Table 1 and in the

Supplemental Information (Note S3.2.5). Social costs associated with emissions of greenhouse gases and particulate matter in the ‘‘Allow gas’’ cases are

not included.
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VRE & Storage Prices / Transmission

Regional scope is still more important than VRE/storage cost assumptions: assuming

constant VRE and storage costs for the full-US ‘‘USA + AC + DC’’ scenario (‘‘2018

VRES prices’’ in Figure 4) results in a SCOE that is 11 $/MWh lower than assuming

the baseline projected 2030 ‘‘mid’’ cost reductions for the transmission-constrained

‘‘PA + AC’’ scenario (Figure 2A). Reductions in the cost of either PV or storage tend to

increase the deployment of PV and storage at the expense of wind and inter-PA

transmission, while reductions in the cost of either wind or transmission tend to

have the opposite effect (Note S6.1). Even in the ‘‘53 transmission cost’’ case there

are substantial transmission additions: optimized inter-PA transmission capacity in

this case increases 30% over the ‘‘no new AC or DC’’ (‘‘USA – AC – DC’’) case,

reducing the SCOE by 6 $/MWh.

Demand

The SCOE is relatively insensitive to the assumed electricity demand. While signifi-

cantly more generation capacity and storage are built in the high-demand cases

(‘‘Demand’’ in Figure 4), the increased capex cost is levelized over an increased elec-

tricity demand, such that the SCOE of all alternative demand scenarios is roughly

equivalent to the baseline SCOE. Given the greater degree of electrification of heat-

ing and transportation in the high-demand cases, these cases represent a greater

reduction in economy-wide emissions than the baseline case and may enable

increased flexibility from price-responsive demand (not considered here).

Reliability

Results are also relatively insensitive to changes in the reliability assumptions. Imple-

menting load shedding at a cost of $9,000/MWh (‘‘$9000/MWh load shedding,’’

matching the scarcity price currently used in the ERCOT system) reduces the

SCOE by 2 $/MWh, resulting in load shedding equivalent to 0.10 days of average

system-wide demand per year (Figure S25). Results for individual states and PAs

are much more sensitive to assumptions regarding load shedding, as shown in the

Supplemental Information (Note S6.3). Implementing an hourly operating reserve

margin requirement, which can bemet by curtailed VRE or by energy held in storage,

also has relatively little impact on cost: SCOE increases by 0.7 $/MWh, 2 $/MWh, and

5 $/MWh in the ‘‘20% reserves,’’ ‘‘50% reserves,’’ and ‘‘100% reserves’’ cases, where

the reserve level indicates the percentage of hourly demand for which operating re-

serves must be procured.
Alternative Assumptions for Regional Coordination and Transmission

The sensitivity analysis shown in Figure 4 applies to the ‘‘USA + AC + DC’’ scenario

allowing transmission expansion between all adjacent PAs. Figure 5 shows the SCOE

for a subset of sensitivity cases for each of the six coordination and transmission sce-

narios described in Table 2. In each case, costs increase monotonically as inter-

regional coordination and the ability to deploy new transmission capacity are

reduced. In general, cost differences across sensitivity cases are accentuated in

the transmission-constrained ‘‘States’’ and ‘‘PA’’ scenarios. While the directionality

of most trends across sensitivity cases is similar within each of the six coordination

and transmission scenarios, low-cost flexible nuclear and long-duration storage

reduce the SCOE to a much larger extent in the ‘‘States’’ and ‘‘PA’’ scenarios than

in the ‘‘USA’’ scenarios and, when available, reduce the relative benefits of inter-

regional coordination and transmission. While the ‘‘2030low VRE&S prices’’ case

gives the lowest SCOE in the ‘‘USA + AC + DC’’ and ‘‘USA + AC – DC’’ scenarios

(and accordingly gives the lowest SCOE across all sensitivity-case/transmission-
126 Joule 5, 115–134, January 20, 2021
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Figure 5. Sensitivity of Electricity Cost to Technical Assumptions under Different Scenarios for

Regional Coordination and Transmission

Regional coordination and transmission scenarios are described in Table 2. Sensitivity cases

represent a subset of the cases included in Figure 4 and are described in Note S3.2.5. The dark gray

‘‘USA + AC + DC’’ bars reproduce the total SCOE shown in Figure 4A.
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scenario pairs considered in this study), ‘‘LDES ($5/kWh)’’ and ‘‘fullflex nu-

clear_$4000/kW’’ give lower costs in the ‘‘PA’’ and ’’States’’ scenarios.

These results emphasize that there are multiple potentially viable paths to a zero-

carbon system at costs below those presented in Figure 2 under default assump-

tions: low-cost renewables and Li-ion batteries coupled with new transmission con-

struction give the lowest cost, but if either are unavailable, the development of low-

cost flexible nuclear or low-cost long-duration storage would provide an alternative

at only moderately higher cost. Electricity costs would be further reduced if all tech-

nology options (low-cost renewables, Li-ion batteries, nuclear, LDES, and transmis-

sion) were available.
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Additional sensitivity cases and results are discussed in the Supplemental Informa-

tion (Note S6), including the impact of interannual weather variability over longer pe-

riods and alternative assumptions for nuclear power and load shedding.

‘‘No-Policy’’ Decarbonization

The discussion thus far has focused on zero-carbon electricity systems. To illustrate

the trajectory of electricity cost between a ‘‘no-policy’’ case (unconstrained carbon

emissions) and zero carbon, we here allow investment in combined-cycle gas tur-

bines (CCGT) and open-cycle gas turbines (OCGT). The ‘‘Allow gas’’ rows in Figure 4

demonstrate the characteristics of the optimized system in the no-policy case with

three different natural gas price assumptions: 3.40, 4.11, and 5.82 $/MMBtu (or

3.22, 3.90, and 5.52 $/GJ) for the ‘‘low,’’ ‘‘mid,’’ and ‘‘high’’ cases, taken from the

NREL ATB for 2030.38 Using 2030 ‘‘mid’’ prices for all technologies results in 31%

of demand being met by non-fossil resources (Figure 4D). As noted in other

studies,25,57 the economic level of decarbonization in a no-policy case is highly sen-

sitive to assumptions regarding the capex cost of VRE and fuel price of natural gas:

‘‘no-policy’’ decarbonization ranges from 6% in the ‘‘2018 VRES, 2030 low gas’’ sce-

nario to 81% in the ‘‘2030 low VRES, 2030 high gas’’ scenario.

From ‘‘No-Policy’’ to ‘‘Zero-Carbon’’

Figure 6 bridges the gap between the no-policy and zero-carbon cases by applying

an escalating clean-energy standard (CES, equivalent to a renewable portfolio stan-

dard [RPS] in this nuclear-free case) in each of the isolated states (blue bars), isolated

PAs (green bars), and the interconnected US system (orange and red bars). The cur-

rent implementation of most RPS policies lies between our ‘‘States’’ and ‘‘PA’’ sce-

narios; some states allow out-of-state generation capacity to contribute to the

state’s RPS if generation is delivered to the state, while other states have quotas

or benefits for in-state generation siting.58 Other studies have noted that system

cost increases nonlinearly as decarbonization approaches 100%;10,19,24 while our re-

sults support this finding, the cost increase is much smaller for an interconnected US

system than for isolated systems. Achieving 95%, 99%, and 100% decarbonization

adds 24 $/MWh, 44 $/MWh, and 93 $/MWh, respectively, to the no-policy SCOE

when the CES is applied at the level of isolated states, compared with 10 $/MWh,

18 $/MWh, and 33 $/MWh when applied to the full US allowing new inter-PA trans-

mission capacity. For context, 33 $/MWh was roughly the difference in retail elec-

tricity price between Michigan and Oklahoma in 2018.59 As noted in Figure 4A,

achieving low-cost targets for VRE and Li-ion, LDES, or nuclear would reduce the

electricity cost premium for 100% decarbonization relative to themiddle ‘‘no-policy’’

case to 16 $/MWh, 20 $/MWh, or 20 $/MWh, respectively.

DISCUSSION

Curtailment

It is notable that the level of curtailment—defined as the total nameplate capacity

times hourly availability of each generator minus annual demand, shown by the

gap between the black dotted line and the sum of the colored bars in Figure 4E—

is roughly the same between the zero-carbon and no-policy cases. Given that

peak demand nationwide is ~1.6 3 mean demand,40 a system reliant on fully dis-

patchable generation would feature ~37% ð1�1 =1:6Þ curtailment. This level of

curtailment is observed across most of the zero-carbon and no-policy sensitivity

cases considered in Figure 4 (with the exception of the ‘‘LDES ($5/kWh)’’ and ‘‘fullflex

nuclear’’ cases, which exhibit 20%–30% curtailment, and the ‘‘no new AC or DC’’ and

‘‘53 Li-ion cost’’ cases, which exhibit ~50% curtailment). Just as natural gas peaking

capacity lies idle during off-peak periods (with most open-cycle gas peakers
128 Joule 5, 115–134, January 20, 2021
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Figure 6. System Cost of Electricity As a Function of Clean-Energy Standard (CES) En Route to 100%

Colored bars indicate the SCOE for zero-carbon (100% CES) systems. Each bar is overlaid with a subplot (black lines) indicating the SCOE for systems

allowing natural gas generation and employing an escalating CES, with 0% CES on the left of each bar and 100% CES on the right of each bar. The three

horizontal ticks in each bar indicate the SCOE at 95%, 99%, and 100% CES, as shown in the ‘‘NJ’’ bar in (A). The SCOE of the interconnected US system

allowing construction of new inter-state and inter-PA transmission is shown on the right of each subplot in red for context.

(A) SCOE for each of the 48 states in the continental US if each state were to meet its hourly electricity demand within its own borders (corresponding to

scenario ‘‘States’’ in [D] and Figure 2), sorted by SCOE at 100% CES.

(B) SCOE for each of the isolated PAs without new inter-state transmission (‘‘PA � AC’’ in [D] and Figure 2), sorted by SCOE at 100% CES.

(C) SCOE for each of the isolated PAs allowing new inter-state transmission (‘‘PA + AC’’ in [D] and Figure 2), in the same order as (B).

(D) Combined SCOE across all isolated states (blue), isolated PAs (green), and the interconnected US system (orange and red). Colored bars in this plot

indicate the same values as in Figure 2A. Social costs associated with emissions of greenhouse gases and particulate matter in the sub-100% CES cases

are not included.
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exhibiting capacity factors <10%, or >90% ‘‘curtailment’’), 60 some VRE capacity lies

idle during high-resource low-demand periods in a cost-optimized system (albeit

without fuel-based cost savings). Including demand response through flexible

charging of electric vehicles or other forms of inter-sector coupling (not modeled

here) could significantly reduce the curtailment of zero-marginal-cost VRE.

It is also notable that curtailment is higher in the ‘‘USA – AC – DC’’ scenario than in

the ‘‘PA + AC’’ scenario (Figure 2E), even though wind and solar capacity is higher in

‘‘PA + AC’’ (Figure 2C). As the ‘‘USA’’ scenarios have access to higher-quality wind

and solar sites, more energy can be generated from less capacity, thus reducing

cost while increasing curtailment. While curtailment is a feature of a cost-minimized

system, it does lead to market-design implications and would increase the impor-

tance of capacity markets and/or scarcity pricing for cost recovery.
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Expanding Transmission versus Generation Capacity

The roughly 90% increase in transmission capacity in the cost-optimized ‘‘USA + AC +

DC’’ scenario compared with the ‘‘USA – AC – DC’’ scenario (Figure 2F) is in line with

other studies showing roughly a doubling in installed transmission capacity to be

cost-optimal for electricity decarbonization in the USA61 and the EU.29,30 While large,

the relative expansion in transmission capacity is considerably smaller than the expan-

sion in wind (~103) and PV (~283) capacity in the default case or the ~33 expansion in

nuclear capacity in the most-aggressive nuclear case (Figure 4C).3 Note also that the

~90% increase in transmission capacity [TW-km] does not necessarily imply a similar in-

crease in transmission-line-miles; a double-circuit 500kV line can carry roughly 7.53 the

power of a single-circuit 230kV line over a given distance.62

MacDonald et al. also present the benefits of nationwide transmission expansion for

decarbonization; as MacDonald et al. utilize a ‘‘no-policy’’ scenario reaching ~80%

decarbonization, they report lower benefits from inter-regional transmission than

are observed in our 100%-decarbonized scenarios.25 The 13 $/MWh reduction in

SCOE observed here for the ‘‘LDES ($5/kWh)’’ case is roughly in line with the 10–

20 $/MWh reduction in SCOE from LDES observed by Dowling et al.63 for a full-

US model without transmission constraints. Shaner et al.8 report that hourly US elec-

tricity demand over 36 years could be met by a 50/50 wind/solar resource mix with

an available-energy/demand ratio of ~1.33 and storage equivalent to 4 days of

mean demand; this result is in line with our ‘‘LDES ($5/kWh)’’ case (Figure 4), which

employs 3 days of storage and an available-energy/demand ratio of 1.23. Other

studies over small geographic areas report a larger role for LDES10 and nuclear po-

wer24 in zero-carbon systems; as shown in Figure 5, we also find that nuclear and

LDES significantly reduce the SCOE in isolated and transmission-constrained zero-

carbon systems, but their impact is diminished when new transmission deployment

is fully allowed.

Conclusions and Policy Implications

The results described here suggest that a zero-carbon electricity system for the US

based on VRE and storage is feasible at 1-hour resolution over many years of oper-

ation, accounting for the costs and constraints of transmission and land availability,

using technologies currently being deployed at gigawatt-scale. Moreover, we

demonstrate that, while decarbonization of the electricity system is feasible at the

level of individual states and regions, it can be accomplished at a significantly lower

cost when implemented at the national level.

Even in the absence of new inter-regional transmission, inter-state coordination of

generation capacity planning and dispatch reduces system cost substantially in dec-

arbonized electricity systems. Historical experience with the western Energy Imbal-

ance Market (EIM) shows that inter-regional coordination of real-time dispatch alone

can reduce operational costs, renewable curtailment, and CO2 emissions;64 this

work shows that as the geographic and operational bounds of coordination are

expanded, even further benefits can be realized. Relaxing in-state siting require-

ments for renewable portfolio standards would deliver similar benefits.65 While

increased coordination delivers system-wide cost reductions, the relinquishing of

local operational control alongside the potential for locally increased electricity pri-

ces in low-priced regions upon coordination with higher-priced regions can lead to

localized opposition.66

While this study demonstrates that transmission expansion is a cost-effective enabler of

electricity system decarbonization, transmission construction—particularly inter-state
130 Joule 5, 115–134, January 20, 2021
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and inter-regional transmission—facesmultiple challenges in the US. Transmission lines

typically require permits from multiple federal agencies and from each state and local

jurisdiction within their path;67 the multi-party benefits of transmission make cost allo-

cation difficult;68 and like any type of energy infrastructure, transmission can engender

local opposition.69 There are a number of strategies for streamlining the planning,

permitting, and construction of new inter-state transmission to overcome such barriers:

increasing utilization of existing transmission rights-of-way through reconductoring of

existing lines, increasing line voltage, or adding additional circuits;70 converting exist-

ing AC transmission corridors to DC;71 implementing federally identified transmission

corridors;72 and building social acceptance through public engagement73 or commu-

nity ownership74,75 could accelerate and reduce the cost of transmission expansion

and power-system decarbonization. While innovation in long-duration energy storage

and nuclear power has the potential to reduce system costs, all zero-carbon systems

modeled here deploy substantial capacities of wind and PV (>670 GW in all cases

and >2,200 GW in the base case), demonstrating the importance of near-term deploy-

ment of available technologies in the pursuit of urgent climate targets.
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Abstract—The Interconnections Seam Study examines the 
potential economic value of increasing electricity transfer between the 
Eastern and Western Interconnections using high-voltage direct-
current (HVDC) transmission and cost-optimizing both generation 
and transmission resources across the United States. The study 
conducted a multi-model analysis that used co-optimized generation 
and transmission expansion planning and production cost modeling. 
Four transmission designs under eight scenarios were developed and 
studied to estimate costs and potential benefits. The results show 
benefit-to-cost ratios that reach as high as 2.9, indicating significant 
value to increasing the transmission capacity between the 
interconnections under the cases considered, realized through sharing 
generation resources and flexibility across regions. 

Index Terms— HVDC transmission, Interregional transmission, 
Power generation dispatch, Power system economics, Power system 
reliability, Power system planning, Resource adequacy, Solar power 
generation, Wind power generation. 

I.  INTRODUCTION 
t the western edge of the American prairie, just east of the 
Rocky Mountains, lies a collection of electrical transmission 
resources that tie together the otherwise segregated U.S. and 

Canadian Eastern and Western Interconnections (EI and WI). 
These seven back-to-back (B2B) high-voltage direct-current 
(HVDC) facilities enable 1,320 megawatts (MW) of electricity to 
flow between the U.S. EI and WI.1 This transfer capability between 
the interconnections is very small compared to the networks they 
connect—the larger EI is home to 700,000 MW of generating 
capacity, and the WI roughly 250,000 MW. But as small as these 
B2B facilities may be, they are important: they are located 
strategically at the “seam” where the East meets the West—and 
with the U.S. resource portfolio in transition, the ability to share 
additional resources across the seam could be economically 
attractive under a variety of possible futures. At the same time, 
these facilities are aging, and thus their continued use will require 
additional investment for keeping them in service. These 
observations suggest that increasing cross-seam transmission 
capacity may represent a timely and impactful opportunity for 
utilities, developers, regulators, and policy makers to modernize 
and strengthen the U.S. electric grid. 

Over the last 95 years, a number of entities have indicated 
interest in developing additional cross-seam transmission. The 
earliest [1], in 1923, was motivated by a desire to integrate the 
continent’s hydro and coal resources. Subsequent studies [2, 3, 4, 
5] investigated joining the existing systems for economic and/or 
reliability benefits. An HVDC overlay of the U.S. western and 

 
1 An additional 150 MW of B2B transmission capacity is in Alberta, 

Canada; it was modeled, but not considered for expansion. 

Midwestern grids was proposed in [6]. Reference [7] argued for an 
integrated alternating-current/direct-current (AC/DC) approach 
and illustrated a national overlay design of predominantly 765 kV 
AC lines. More recent work [8, 9, 10] applied generation and 
transmission co-optimization on a set of geographically aggregated 
electric nodes across the United States to design a national 
transmission network that was shown to be economically attractive 
under various futures. A variety of challenges have prevented 
nationwide HVDC overlays from development so far.  References 
[11, 12] describe transmission planning efforts around the world, 
including HVDC overlay designs.  

Here we present the Interconnections Seam Study, a coordinated 
transmission planning analysis of the two major U.S. 
interconnections. The study co-optimizes capacity expansion and 
systems operations to quantify the potential value of increasing the 
transmission capacity between the EI and WI using HVDC 
technology to facilitate more economically efficient exchange of 
power and adequacy throughout the United States. The work 
described in this paper differs from previous efforts in three ways: 
(1) Study objective: The objective was to identify the value of 
increased cross-seam transmission capacity; as a result, several 
HVDC designs were studied—one of which, called the macrogrid, 
has features similar to those of previously developed overlays.  
(2) Analysis fidelity: The study uniquely captures capacity 
expansion and production cost at an unprecedented geographic 
scale and detail, all performed with consistent data inputs. The 
production cost modeling deploys a novel geographic 
decomposition computational method to more precisely represent 
operational constraints, enable increased modeling resolution, and 
reduce solve time. 
(3) HVDC and AC transmission: In each cross-seam transmission 
design, HVDC capacity was co-optimized not only with generation 
investments but also with AC transmission investments; this 
process ensured that AC transmission investment needs were 
satisfied. 

II.  APPROACH 
To ensure the technical rigor of this study, a technical review 

committee (TRC) including more than 20 organizations met on six 
occasions to discuss the approach, methods, scenarios, data, 
assumptions, and results. The study provides initial valuations of 
increasing connection between the interconnections but should not 
be referenced as reporting final ready-to-build designs. It also does 
not take the place of regional planning studies, but can provide 
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analysis of potential ways regions can benefit from inter-regional 
planning efforts. Similarly, the study does not obviate the need for 
state and federal siting review. The study did not consider the 
impact on wholesale rates set by the Federal Energy Regulatory 
Commission or North American Electric Reliability Corporation 
(NERC) reliability standards under Federal Power Act Sections 
203, 205, and 206.  

The first step of the study was to conduct a detailed capacity 
expansion analysis for four future (through 2038) transmission 
designs and eight different generation scenarios developed using 
differing assumptions regarding transmission costs, renewable 
generation, wind and solar costs, gas prices, and retirements (see 
Table 1).  Each of the 32 simulated power systems (four 
transmission designs applied to eight scenarios) meet long-term 
simplified, single-year, consistent, resource adequacy 
requirements. In the base case, the systems are expanded cost-
optimally based on state renewable portfolio standards existing in 
2017 and business-as-usual assumptions for generation technology 
cost improvement. We then created detailed nodal transmission 
models to evaluate the ability of the power system to reliably 
schedule and dispatch generation to meet demand at all hours of 
the year for select scenarios. 

TABLE 1 
Description of the Scenarios* 

Scenario Key assumption differences  
Base Case AEO 2017 gas price, state RPS laws 
Low Gas 
Price 

AEO 2017 High Gas Resource (regionally 
and temporally varying around $4/mmbtu) 

High Gas 
Price 

AEO 2017 Low Gas Resources gas prices 
(varying around $6/mmbtu) 

High AC Trx 
Cost (1.5x) 

50% higher than base transmission cost.  
Base transmission cost from [16] 

High AC Trx 
Cost (2x) 

Double the base transmission cost  

No 
retirements 

Model does not retire any generating units 
beyond announced retirements 

Low-cost 
renewables 

ATB 2017 Low-Cost VG 

High VG Least-cost generation mix when using a 
carbon cost from $3/tonne in 2024 to 
$45/tonne in 2038** 

*Acronyms used here include Energy Information Administration (EIA) Annual 
Energy Outlook (AEO); Renewable Portfolio Standard (RPS); Annual Technology 
Baseline (ATB) (atb.nrel.gov); Variable Generation (VG) 
**: The study TRC recommended this approach (consistent with cost estimates in 
[17]) as a proxy for potential growth in wind and solar in light of uncertainty in 
traditional deployment forecasts [18]. 

Table 2 summarizes the four interregional transmission designs 
considered in the generation scenarios. In all designs, new AC 
transmission and generation are co-optimized to minimize system-
wide costs in addition to the HVDC and B2B facility expansions 
allowed under each transmission design. For co-optimized 
generation and transmission expansion, we used Iowa State 
University’s co-optimized generation and transmission plan 

(CGT-Plan) model [14]. Energy Exemplar’s PLEXOS was used 
for production cost modeling (PCM). 

TABLE 2 
Summary of Transmission Designs 

Design Name Description 
Design 1 (D1) Existing B2B facilities are maintained at 

their 2017 capacity 
Design 2a (D2a) Existing B2B facilities are allowed to 

expand in the optimization 
Design 2b (D2b) Three HVDC transmission segments 

(along with the expansion of the B2Bs) 
are built between the EI and WI 

Design 3 (D3) A national-scale HVDC transmission 
network, or macrogrid, is built 

III.  INPUT DATA AND ASSUMPTIONS 
A variety of input data and assumptions were used to build 

power system representation of the EI and WI. The near-term 
expected generation and transmission for the EI and WI was 
obtained from NERC regional entities. The Eastern 
Interconnection Reliability Assessment Group’s (ERAG) 
Multiregional Modeling Working Group (MMWG) 2026 summer 
case and the Western Electricity Coordinating Council (WECC) 
Transmission Expansion Planning Policy Committee (TEPPC) 
2024 common case were chosen as the starting point for creating 
an updated nodal representation of the 2024 EI and WI. Additional 
information on the 2024 data can be found in [13]. Both capacity 
expansion and production cost modeling used consistent data for 
the transmission topology, existing and expanded generation fleet, 
thermal plant operating characteristics, load forecasts, and time-
series data for wind and solar resources. 

A.  Capacity Expansion Modeling 
The capacity expansion model, CGT-Plan, determines the 

location, size, and technology type for generation and transmission 
built in each scenario. It does this by minimizing generation and 
transmission investment costs, generation retirement costs and 
generation production cost over time from 2024-2038 using 169 
buses reduced from the 98,000 nodal 2024 U.S. EI and WI 
transmission networks. Production costs include, for new and 
existing resources, fixed and variable operating and maintenance 
costs, fuel cost and operational reserve cost (regulation up/down 
and contingency reserve).  Constraints imposed include: power 
balance at each node; “DC” angle constraints across each existing 
line; upper and lower limits on generation dispatch and line flows; 
lower limits on available up/down regulation reserves and 
available contingency reserves; upper limits on up/down regulation 
(contingency) reserves by the unit’s 1-minute (10-minute) ramp 
rate; capacity in excess of the NERC-recommended 115% of peak 
[14] (all units contributed to the planning reserve according to each 
units capacity value which, for wind and solar, varied locationally 
as described in [15] but were independent of renewable 
penetration); and the definition of the particular transmission 
design being studied. Operational reserves were imposed system-
wide; a capacity constraint was imposed in each of four regions:  
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West, Northwest, Midwest, and East. A full description of the 
model is available at [15].  

CGT-Plan was run 32 times, for each of the four designs, D1, 
D2a, D2b, and D3 under the eight scenarios. CGT-Plan identified 
investments in two-year increments to minimize net present 
value of investments plus operational costs occurring during the 
15-year decision horizon, plus operating costs occurring for 
another 20 years thereafter. Operations were simulated for every 
year using 19 conditions; wind and solar were dispatched using a 
Pmax set by their capacity factor (for energy blocks) or capacity 
value (for peak blocks) and were redispatched down under 
congested conditions as necessary; flexibility requirements were 
modeled as a function of net-load variability. The 19 conditions 
included 15 “energy blocks” capturing five time periods in each 
of three seasons (summer, winter, and shoulder): 1–7 a.m., 8 
a.m.–12 p.m., 1–4 p.m., 5–6 p.m., and 7 p.m.–12 a.m. The 
remaining four conditions were “peak net-load blocks” to capture 
one-hour annual peak conditions in each of four regions. The 
peak blocks were used to model the capacity constraint; because 
different regions peak at different times of the year, this enabled 
analysis of interregional reserve-sharing subject to transmission-
related deliverability constraints [15]. 

Decision variables included investment in various generation 
and transmission technologies, as well as retirement of existing 
generation. Percentage of load served by VG ranged from 
approximately 30% to 40% in the base case and high VG case, 
respectively.  All generation assets were based on commercially 
available technologies in 2017 and were modeled with 
appropriate maturation rates at all buses. The natural gas price 
assumption for the Base Case was adopted from the U.S. Energy 
Information Agency’s (EIA) 2017 AEO [19]; the nominal price 
for electric generation ranged by region from $4.2/million British 
thermal units (MBTU) to $5.1/MBTU in 2024; these assumed 
prices are similar to those projected in the “low oil and gas supply 
curve” of the 2020 EIA AEO [20]. Battery energy storage was 
not an investment option. At each bus, the wind resources 
available for selection included three 100-meter wind 
technologies, each having different costs and the ability to be 
optimized for unique wind resource characteristics by geography. 
This included three different capacity factor categories that 
identified the investment potential at a particular range of 
capacity factor. Investments in solar photovoltaics (PV) were 
limited to utility scale and were split evenly between single-axis 
tracking and fixed-tilt. Distributed PV capacity projections for 
2024 came from the 2016 NREL Standard Scenarios [21], and a 
3% per year growth rate [19] was applied until 2038.  

Investment options among transmission technologies included 
additional AC capacity on any existing branch at the voltage of 
that branch, at a cost per mile appropriate for that voltage and the 
geography of the region. Table 1 summarizes the additional 
HVDC investments that are allowed in D2a, D2b, and D3. In D2a 
and D2b, B2B facilities could expand independently of one 
another. In D2b, the three additional HVDC lines connecting the 
EI and WI are required to develop equal capacity. Similarly, in 
D3, all segments of the macrogrid are required to maintain equal 
capacity. Although the N-1 reliability criterion was not explicitly 
imposed, the “equal capacity” constraints for the HVDC lines in 
D2b and D3 were employed as proxies to avoid significant 

violation of this criterion. For example, three equal-capacity 
parallel HVDC bipole lines can be loaded to capacity and 
withstand a monopole loss of any one of them (considered to be 
an N-1 outage) if the remaining five poles can each provide an 
additional 20% capacity for a short time on their emergency 
overload ratings. Based on analysis of discount rates 
recommended by the White House Office of Management and 
Budget and other studies [21 - 23], we chose a nominal discount 
rate of 7.7% and an inflation rate of 2%, resulting in a real 
discount rate of 5.7%. Demand growth was set within each region 
consistent with recent studies [24, 25]; technology costs and 
regional multipliers for all generation resources and AC and 
HVDC transmission were based on [16, 26-29]. A capacity credit 
is given to each generator type and is the percent of that unit’s 
capacity that can be applied towards satisfying the annual peak 
[30, 31]. Other data and associated sources are identified in [15, 
32].  After the translation (III.B) and PCM (III.C) were 
completed on the penultimate CGT-Plan runs, the CGT-Plan was 
re-run for analysis presented in the results section on costs and 
benefits (IV.C), this time allowing a comprehensive set of 
transmission interfaces to be expanded and considering load 
growth end effects beyond 2038 in the optimization. 

B.  Translation from Capacity Expansion to Production Cost 
Modeling 

CGT-Plan developed year-2038 aggregated zonal 
transmission and generation for the EI and WI. In order to study 
the year-2038 operation of these systems and determine 
operational savings (in perpetuity) due to the HVDC and B2B 
facilities, a nodal production cost model (PCM) of the 2038 
system was created. This required a translation of the CGT-Plan 
zonal generation and transmission results to the nodal PCM 
network. This is a two-step process that begins with a 2024 nodal 
transmission model. Step 1 distributes generation investments 
and retirements identified by CGT-Plan according to the 2024 
nodal model, using the following criteria: (i) Individual 
generating units are retired in the 2024 model based on heat rate 
until the CGT-Plan retirement amounts are satisfied; (ii) CGT-
Plan new thermal generators are added at locations in the 2024 
model where thermal plants were retired; and (iii) wind and PV 
investments identified by CGT-Plan were added to the high-
voltage node (≥230 kV) in the PCM that is geographically closest 
to the wind and PV sites. 

Step 1 resulted in a nodal model that contained 2038 load and 
generation for the PCM (from CGT-Plan) but did not update the 
transmission system. For step 2, we developed a transmission 
expansion planning (TEP) optimization program and applied it to 
the nodal PCM obtained from Step 1. This optimization is non-
linear, given each transmission investment changes the circuit 
capacity and the circuit reactance. To address this, we developed 
the TEP as a sequence of linear programs (LPs), where each LP 
minimized the total transmission investment cost (subject to DC 
power flow equations), and only circuit capacity was treated as a 
decision variable, while circuit reactance was held constant. 
Following the LP solution, the reactance of each invested circuit 
was updated to reflect the change in capacity, after which the LP 
was rerun. The iterations were terminated when the circuit with 
the largest change in capacity relative to the previous iteration 
was within a specified tolerance. This two-step process results in 
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a nodal version of the 2038 systems created by CGT-Plan, which 
is used in the PCM.  

C.  Production Cost Modeling 
The nodal PCM that resulted from the capacity expansion 

scenarios was used to simulate a full year of continuous operation 
in the year 2038. The simulation has two phases, a day-ahead unit 
commitment, made up of 365 serial optimizations, and a real-time 
dispatch in which 8,760 serial optimizations are completed. Each 
day-ahead unit commitment optimization is a mixed integer linear 
program that considers 24 hourly decisions with additional 24-
hours of look-ahead information. The look-ahead is used to 
improve decisions about the operations of energy-limited resources 
and units with long minimum online/offline times. The real-time 
dispatch is also a mixed integer linear program that only considers 
a single hourly decision at a time.  

Barrows et al. [33] summarizes the system of equations that 
define the optimization problem for each phase of the PCM. The 
objective function minimizes the total cost to operate the system, 
while deciding which generating units to start or shut down and 
how much power online units should generate. Constraints to the 
objective functions include requiring total system generation meet 
total system load, the technical limitations of generators (such as 
ramp rates and minimum up/down times), temporal energy limits, 
nodal power balance, and linearized power flow equations, among 
others.  

We adopted a new decomposition method described in [34] to 
complete the day-ahead unit commitment phase to improve 
representation of realistic operations for multiple regions and 
reduce solve times by three orders of magnitude. This method 
enables the unit commitment and dispatch to be simulated 
independently for each region (independent system operator 
(ISO)/regional transmission organization (RTO) equivalent).  

The 2038 PCM includes approximately 13,000 generating 
units, 98,000 transmission nodes, and 96,000 transmission lines 
and transformers. Wind data is from the Wind Integration National 
Dataset (WIND) Toolkit, and solar data is from the National Solar 
Radiation Database (NSRDB).2 Load data is from multiple 
sources, including the various RTOs, ISOs, and Federal Energy 
Regulatory Commission (FERC) [13]. Weather conditions for the 
years 2007–2013 were evaluated for use in the PCM. A geospatial 
analysis of wind and solar resource availability identified 2012 as 
the closest to average across the seven-year data set, so the 2012 
data was used for wind, solar, and load to maintain correlations and 
time synchronicity between these data sets. 

Thermal plant assumptions were adopted from [35] and enabled 
detailed modeling of every thermal generator. When possible, 
existing thermal plants that are still in operation in 2038 have unit-
specific plant flexibility characteristics that were extracted by 
analyzing the Environmental Protection Agency’s Continuous 
Emissions Monitoring System. When unit-specific data was 
unavailable, generic assumptions were made based on the 
generator vintage and type.  

Contingency and regulation reserves are held regionally, either 
by ISO/RTO boundary or by FERC Order 1000 planning region. 

 
2 https//www.nrel.gov/grid/wind-toolkit.html; http://nsrdb.nrel.gov/ 

The amount of regulation required is calculated using the method 
described in Ibanez et al. [36]. The method determines the amount 
of reserves required to cover the uncertainty and variability of the 
load, wind, and solar.  

IV.  RESULTS 

A.  Costs and Benefits 
 In this section, we describe the results of the generation and 
transmission expansion through 2038, for the four transmissions 
designs in the base case (Table 3) and then the suite of eight 
scenarios (Tables 4 and 5).  The capacity expansion model was 
used to assess the costs and benefits of each of the study scenarios 
and designs, using the investment costs and operating costs for the 
years 2024–2038, plus 20 years with no load or generation growth 
after 2038 in order to reduce the impacts of end effects.  Because 
D1 was the only design that did not allow cross-seam transmission 
investment, it is reference for comparison for the other three 
designs; positive numbers indicate cost increases and negative 
indicates cost decreases. The investment and operational costs for 
each transmission design in the base case are presented in Table 3, 
where we observe that the 35-year net cost change (total 
transmission and generation investment costs plus operational cost, 
relative to D1) is greatest for D2b and D3 in each scenario.  

An important observation from Table 3 is that the benefit-to-cost 
(B/C) ratio, calculated as the change (relative to D1) in the 
generation investment and operational cost divided by the change 
in the transmission investment cost, is well above the industry 
threshold of 1.25 considered necessary to justify transmission 
investments [37]. Most of the benefit occurs as a result of reduction 
in generation operational costs enabled by  increased transfer 
capability provided by transmission builds. The values shown may 
be considered as lower bounds on B/C ratios since they do not 
reflect externalities nor non-quantified benefits such as increased 
resiliency of the electric system to continue supplying low-cost 
energy during catastrophes such as large hurricanes and 
widespread wildfires.  While including these details could increase 
overall costs of the scenarios, transmission would likely continue 
to have additional benefits. 

TABLE 3 
Summary of CGT-Plan Benefit/Cost Results for Base Scenario 

Capacity or Cost 
Item 

D1 ΔD2a ΔD2b ΔD3 

Transmission 
Investment Cost, $B 

40.03 2.57 6.76 8.19 

Generation Investment 
Cost, $B  

555.23 3.6 10.44 4.17 

Operational cost, $B 2376.50 -8.79 -21.70 -15.30 
35-yr Net Cost change, 
$B 

- -2.62 -4.5 -2.94 

35-yr B/C ratio - 2.02 1.66 1.36 
Note: D1 results are shown as absolute costs; D2a, D2b, and D3 results are shown 
relative to D1. 
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Tables 4 and 5 show the 35-year net cost savings and benefit to 
cost ratios for D2a, D2b and D3, relative to D1 for the various 
scenarios. The cost (net present value) of the D1 design under the 
base case conditions is $B29,712. Though D2a consistently 
produces the highest B/C ratio among the three cases per 
sensitivity, D2b results in the greatest potential net cost savings. 

TABLE 4 
 35-year Net Cost Savings for Sensitivities ($B) 

Sensitivity ΔD2a ΔD2b ΔD3 
Base Case -2.62 -4.5 -2.94 
Low Gas Price -2.91 -4.15 -2.38 
High Gas Price -4.67 -9.51 -5.88 
High AC Trx Cost (1.5x) -2.23 -5.35 -4.56 
High AC Trx Cost (2x) -2.08 -5.46 -5.48 
No retirements -1.24 -1.58 -0.82 
Low-cost renewables -2.87 -4.78 -3.00 
High VG -18.35 -28.83 -23.04 

Note: D2a, D2b, and D3 results are shown as savings relative to D1. Emission costs 
included in the High VG scenario are not included in Net Costs. 

TABLE 5 
35-year Benefit/Cost Ratio for Sensitivities 

Sensitivity ΔD2a ΔD2b ΔD3 
Base Case 2.02 1.66 1.36 
Low Gas Price 1.81 1.52 1.22 
High Gas Price 1.76 1.84 1.46 
High AC Trx Cost (1.5x) 1.87 1.45 1.29 
High AC Trx Cost (2x) 2.26 1.52 1.37 
No retirements 1.98 1.72 1.33 
Low-cost renewables 2.53 1.77 1.56 
High VG 2.09 2.89 1.80 

Note: D2a, D2b, and D3 results are shown relative to D1.  Emission costs included 
in the High VG scenario are not included in ratio. 

The B/C ratio in almost every case (except D3 for the low gas price 
case) remains above the 1.25 threshold mentioned above.  In most 
cases, it is significantly higher. 

 
Fig. 1.  Installed generation capacity by resource type in 2038. The installed 
capacity was determined using CGT-Plan. 

The 2038 installed generation capacity from CGT-Plan is 
presented in Fig. 1 for D1 and D3. Maps of the resulting AC and 

DC (post-translation) transmission additions are shown in Fig. 2. 
Fig. 1 reveals a slight decrease in installed capacity in all scenarios 
in designs D3, relative to D1 (D2a and D2b, not shown, are all 
between D1 and D3). The High VG scenario has the largest 
capacity reduction and the most transmission.  Tables 6 and 7 
identify the additional transmission capacity added in the Base and 
High VG scenarios. Each design requires significant AC 
transmission expansion, but this AC transmission expansion is less 
for the designs with high HVDC capacity (D2b and D3).  
Additional details on the CGT-Plan modeling are provided in [15]. 

TABLE 6 
Transmission Investment Summary, Base Scenario 

Design D1 D2a D2b D3 
HVDC-B2B (GW) 0 6.7 6.3 0 
HVDC-Line (GW-miles) 0 0 14,487 29,062 
AC Line (GW-miles) 18,409 19,357 17,778 16,076 

 Note: New transmission investments are identified, for B2B in terms of GW 
increased capacity between B2B terminals;  and also, for lines, in terms of GW-
miles, which is the GW capacity multiplied by the path distance. 

TABLE 7 
Transmission Investment Summary, High VG Scenario 

Design D1 D2a D2b D3 
HVDC-B2B (GW) 0 25.7 7.5 0 
HVDC-Line (GW-miles) 0 0 31,335 63,156 
AC Line (GW-miles) 52,737 60,141 50,964 43,190 

B.  System Operations 
 We use hourly PCM to help evaluate the operability of a given 
scenario by simulating an entire year of hourly operations, as 
opposed to the time slices used for capacity expansion.  The PCM 
simulated the operations of the 2038 power systems built by the 
penultimate (and largely similar to the final) version of CGT-Plan 
buildout. We compare the base case to the high VG scenario, as 
they showed the most differences in B/C ratio, net cost savings, 
and overall generation buildout. In those simulations, all of the 
power systems met all load in all hours and met 99.69%–99.97% 
of all contingency and regulation reserve requirements. In both of 
the capacity scenarios, D1, the design with the least cross-seam 
transmission capacity, had the largest total reserve shortage. In the 
PCM modeling, nuclear generation did not change across the 
scenarios.  Fossil fuels provided 36% of generation in the four Base 
designs and approximately 26% in the four High VG designs.  
Wind and solar increased from just under 30% in the Base designs 
to just under 40% in the High VG designs. 
VG curtailment ranged from 11%–15% across all scenarios and 
designs. A review of curtailment outcomes indicates that 
congestion on AC transmission lines is a significant driver of 
curtailment.  Other options, such as additional energy storage 
investment or additional demand response, may also become 
economically attractive at these curtailment levels, but they were 
not considered as an investment option. Additional analysis is 
necessary to understand the tradeoffs between curtailment, 
transmission, storage, and other options. 
 In addition to assessing overall system performance in 2038, the 
PCM was also used to conduct a detailed analysis of extreme time 
periods based on 2012 load and meteorology. We present two such 
cases that reflect periods of high net-loads and ramping, as well as 
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the value of cross-seam transmission in potentially mitigating 
them. The first period is the three-day period in August around the 
coincident peak load across the EI and WI. The hourly cross-seam 
flow across the B2B and HVDC lines during this period is 
displayed in Fig. 3. There is a strong diurnal pattern in the 
aggregate power flow across the interconnections seam during this 
period in all transmission designs. In the afternoon, the load in the 
EI begins to peak. At the same time, solar PV generation is high in 

the WI, while the WI load is still relatively low. Cross-seam lines 
are nearly fully loaded and are used to flow power from the WI to 
EI. As the sun begins to set on the West Coast, load decreases in 
the EI and wind in the Midwest increases its output. The flow on 
the cross-seam lines changes direction, delivering power from the 
EI to the WI. The lines export Midwestern wind power and power 
from thermal units that otherwise would have turned off after the 
EI peak load.  

 
Fig. 2.  Maps of the resulting AC and DC transmission additions between 2024 and 2038 from the TEP (i.e., post-translation and as modeled in the 
PCM). On the left are the four transmission designs in the base scenario. The results for the designs in the high VG scenario are on the right. 
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Fig. 3.  Cross-seam transmission power flow (B2B and HVDC) during the 
coincident peak load period. A positive flow is a net export from the EI to 
the WI; a negative flow is a net import into the EI from the WI. Times are 
Eastern Standard Time. 

 
Fig. 4.  Cross-seam transmission power flow (B2B and HVDC) during a 
large down-ramp in Midwest wind generation. A positive flow is a net 
export from the EI to the WI; a negative flow is a net import into the EI 
from the WI. Times are Eastern Standard Time. 

 We also analyzed a three-day period in April. On the first day of 
this period, April 15th, the VG instantaneous penetration hovers 
around 60% of total generation for all designs in both scenarios. 
VG curtailment is also significant throughout the day. However, in 
the late morning hours of the next day, April 16th, Southwest Power 
Pool (SPP) wind begins a steady ramp down, and a decrease in 
Midcontinent Independent System Operator (MISO) wind follows. 
Fig. 4 shows how cross-seam transmission helps respond to this 
event. On April 15th, the cross-seam HVDC is used to export wind 
from SPP and MISO to the WI. But as the wind power drops off 
on the morning of April 16th, the flow changes direction, and the 

WI begins exporting to the EI. Rather than requiring SPP and 
MISO to deal with the down-ramp in wind on their own, cross-
seam transmission allows lower-cost resources in the WI to help 
balance the loss of the wind power on the other side of the seam.   

V.  CONCLUSIONS/NEXT STEPS 
This study demonstrates significant novelty in its multi-model 

approach. Combining CGT-Plan and PCM allowed for a thorough 
assessment and evaluation of the benefits and costs of four 
alternative cross-seam transmission designs in the United States 
and eight generation and transmission cost scenarios. The study 
also deploys novel modeling techniques to 1) characterize the 
value of capacity sharing, and 2) enable a nodal simulation of every 
generator and transmission line in the two largest North American 
Interconnections.  

The study shows with increased intercontinental transmission 
that the system was able to balance generation and load with less 
total system installed capacity across each of the generation 
scenarios, due to load and generation diversity, and increased 
operating flexibility. The results show benefit-to-cost ratios 
ranging from 1.2 to 2.9, indicating significant value to increasing 
the transmission capacity between the interconnections and sharing 
generation resources for of all the cost futures studied.  Production 
cost modeling identified that new lines would likely have high 
utilization during challenging operational periods throughout the 
year. 

While fundamental elements of transmission and generation 
were represented throughout the study, additional modeling and 
analysis is required to further examine the alternative grid designs 
and evaluate the technical and economic benefits. Contingency 
analysis, particularly for new HVDC designs D2a, D2b, and D3, is 
an essential step in going forward. Industry review and input will 
remain vital to further evaluation of potential transmission 
expansion across the interconnections, as studies often present the 
most optimal solution given the model inputs.  Additionally, this 
study does not address market adoption feasibility as well as other 
technical details needed to develop a more thorough understanding 
of system reliability implications (e.g. dynamic power flow, 
voltage stability, more complete contingency analysis). Full 
exploration of the potential benefits and costs of cross-seam 
transmission to the continent will require additional multi-model 
analysis.  

This study provides a platform for conducting additional 
research at a large geographic scale. Potential reliability and 
resilience benefits of transmission could be explored through AC 
power flow studies with steady-state and stability modeling; 
consideration of system resilience and security requirements 
related to weather and extreme conditions; and incorporation of 
natural gas delivery infrastructure and gas-electric operational 
coordination.  Additional analyses could estimate additional 
system- and local-level costs and benefits (e.g., economic and 
environmental impacts).  
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Future cost-competitive electricity systems and
their impact on US CO2 emissions
Alexander E. MacDonald1*†, Christopher T. M. Clack1,2*†, Anneliese Alexander1,2, Adam Dunbar1,
JamesWilczak1 and Yuanfu Xie1

Carbon dioxide emissions from electricity generation are a major cause of anthropogenic climate change. The deployment of
wind and solar power reduces these emissions, but is subject to the variability of the weather. In the present study, we calculate
the cost-optimized configuration of variable electrical power generators using weather data with high spatial (13-km) and
temporal (60-min) resolution over the contiguous US. Our results show that when using future anticipated costs for wind and
solar, carbon dioxide emissions from the US electricity sector can be reduced by up to 80% relative to 1990 levels, without
an increase in the levelized cost of electricity. The reductions are possible with current technologies and without electrical
storage. Wind and solar power increase their share of electricity production as the system grows to encompass large-scale
weather patterns. This reduction in carbon emissions is achieved by moving away from a regionally divided electricity sector
to a national system enabled by high-voltage direct-current transmission.

Carbon dioxide (CO2) release from burning fossil fuels is a
major contributor to climate change1. Without significant
action to curb these emissions, humans and the natural

world will face increasing penalties2–5. In contrast with the negative
effects of CO2 emissions are the benefits of cheap energy; electricity
in particular is strongly linked to advanced national economies
and high living standards6. Any solution to mitigate CO2 must be
economical for it to succeed.

Wind and solar power have very low life-cycle CO2 emissions7.
Integrating large amounts of wind and solar would decrease CO2
emissions drastically; however, they are dependent on the weather.
The variability of the weather has led to the assumption that
all weather-dependent renewable energy technologies need to be
supported by backup fossil fuel generation or storage on a significant
basis, causing costs to soar8. Paradoxically, the variability of the
weather can provide the answer to its perceived problems.

Because Earth’s mid-latitude weather systems cover large
geographic areas, the average variability of weather decreases as
size increases9; if wind or solar power are not available in a small
area, they are more likely to be available somewhere in a larger
area. Even more importantly, access to electricity over a large region
allows locations with rich wind and solar resources to supply cheap
power to distant markets. The key enabling technology for the
large geographic domains favoured for wind and solar power is a
network of high-voltage direct-current (HVDC) transmission lines.
Electrical storage can also reduce the intermittency of wind and
solar, but at a higher cost than HVDC transmission lines.

Our study targets the contiguous US electricity sector to find
cost-optimal networks of wind and solar generators that fulfil the
requirements of an electrical power system. We show that the US
can reduce CO2 emissions from the electricity sector by 33–78% at
approximately the same cost of electricity as in 2012. In recent years,
similar tools have been developed that deal with electrical power
ystem optimization, for example, MARKAL, NEMS,WEM, ReEDS,
SWITCH, US-REGEN and ReNOT (refs 10–18). Our National

Electricity with Weather System (NEWS) model differs from these
models in its use of weather data with high temporal and spatial
resolution, broad geographic areas, and extended time periods.
Further, it co-optimizes dispatch, transmission and capacity
expansion, allowing cost savings from geographic diversity, load
smoothing, transmission expansion, reserve pooling and decreased
energy density requirements. We integrate complex weather data
over continental-scale geography while still handling the salient
features of an electrical power system. NEWS implicitly computes
the security-constrained unit commitment and economic dispatch,
explicitly determines the planning reserves, load-following reserves
and calculates the hourly transmission power flow, the capacity
expansion of generators as well as transmission expansion. These
constraints can be found in Supplementary Information Section 1.6.

Several studies have appeared over the past few years examining
very high penetration levels of variable generation (close to 100%);
these studies model renewable energy domination of the electricity
sector. Two of these use subsets of the US, both spatially and
temporally19,20. To get very high penetrations of variable generation
they either constrain the fossil fuels or assume low-cost storage.
Further, transmission is assumed to be perfect, an assumption that
we do not make. A further study21 considers the entire contiguous
US is considered, but with large amounts of spatial aggregation
along with a longer time series. However, the longer time series
is simplified by utilizing only a small subset of those data. Also,
they cost-optimize predetermined resource sites to balance the load.
Aside from the resource data, the critical difference in these models
compared with NEWS is the co-optimized structure of the NEWS
model, which solves for the minimum total system cost, including
both generation and transmission simultaneously.

The NEWS model is intended to be a hybrid capacity
expansion and production cost model. The hybrid approach
allows for cost reductions because the capacity expansion is
decided in parallel with the dispatch of the generators instead
of in serial. Supplementary Information Section 1 provides more

© 2016 Macmillan Publishers Limited. All rights reserved
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Figure 1 | The wind and solar PV power potential over the contiguous US. a,b, Wind at 90 m above ground level (a) and solar PV resource potential (b)
over the US using the high-resolution weather data and power-modelling algorithms for 2006–2008. The potential is presented as the expected
percentage of installed capacity power (capacity factor). Black/blue represents very low resource potential whereas red/violet indicate very good resource
potential for that technology. The range of values is di�erent for wind and solar PV. The description of the wind and solar PV power modelling is given in
Supplementary Information Section 1.1.2.

details on the mathematics of the optimization. Further discussion
of the optimization technique can also be found in ref. 22.
The study uses hourly wind speed and solar irradiance for the
years 2006–2008 using an advanced weather assimilation model
on a 13-km grid23. The weather assimilation model extrapolates
extensive weather observations over a uniformly spaced grid
utilizing mathematical operators consistent with atmospheric
dynamics and physics. We convert the weather data into electrical
power output for wind turbines and solar photovoltaic (PV) panels
with sophisticated power-modelling algorithms to mimic current
technology behaviour (see Supplementary Information Section 1 for
the methods).

Figure 1 shows the wind and solar PV resource potential over
the US. It demonstrates the high level of detail contained in the
weather and power data sets; there are ∼152,000 spatial grid points
in the data set. The panels in Fig. 1 show the temporal averages
for 2006–2008; the data set contains ∼27,000 hourly time steps.
Figure 1a highlights that the locations across the US that have a
high wind resource potential are predominantly away from densely
populated regions, whereas Fig. 1b shows that the best solar PV
resources are located in the desert southwest. The wind power data
set is described in more detail in ref. 24. We did not explicitly treat
wake effect interactions between wind turbines because the number
of wind turbines is a dependent variable within the optimization and
doing so would have made the problem intractable. The resulting
distribution of wind turbines across the US does not extract more
than 0.5Wm−2 on average from their grid cells.

Because weather is a major driver of electrical power use, we
compiled the concurrent electricity demand for each market area
and each hour of 2006–2008 (ref. 25). It is recognized that electrical
power system dispatch includes timescales shorter than one hour,
and that sub-hourly variability of wind and solar PV can be
significant. However, the currentNEWSmodel cannot address these
high-frequency fluctuations because current data sets of electricity
demand, as well as output from weather assimilation models, are
not available at higher temporal resolution for the geographic scales
we are modelling. Furthermore, the geographic scales considered
in the present study effectively eliminate sub-hourly variability due
to aggregation26.

We selected 2030 as the reference year to create a cost-minimized
electrical power system, and included a 14% increase in electricity

demand above our baseline years of 2006–2008. The main reason
for choosing a reference year of 2030 is that the cost estimates for
all of the technologies become increasingly uncertain at longer time
horizons. The increase in electricity demand is found by tracking
GDP growth and contraction to 2011, then estimating a 0.7%
growth per annum, in line with EIA estimates27. Supplementary
Fig. 4 shows the aggregated hourly US electricity demand. Cost
estimates for generators are continually evolving, so to provide
rigorous estimates we compiled cost projections from numerous
studies available at the time of the simulation runs and constructed
three 2030 scenarios that span a range of future costs. The reader
can refer to Supplementary Information Section 1.4 (Supplementary
Fig. 6 and Supplementary Table 3) for a detailed description of
the cost estimates used. The first was the high-cost renewable and
low-cost natural gas (HRLG) scenario, which is similar to costs in
2012. The second was the low-cost renewable and high-cost gas
(LRHG) scenario, in which the US achieves future expected cost
reductions for renewable energy and faces increased demand for
natural gas. Finally, we took the average of those two estimates to
create the mid-cost renewable and mid-cost natural gas (MRMG)
scenario.We assume that generator and transmission purchase costs
are fully amortized over thirty years with a real discount rate of
6.6%. The costs are socialized equally among all of the different
geographic regions of the contiguous US. Further, there are no
increased capacity payments in themodel because the purchases are
simply assumed to be all debt repaid over the thirty years.

The study focused on three main generation technologies; wind
turbines, solar PV, and natural gas combined cycle turbines, while
one simulation also included coal plants. Natural gas is an effective
complement to wind and solar PV because it has lower greenhouse
gas emissions than other fossil fuels, and has the advantage of
being able to rapidly change power output. Starting from nuclear,
hydroelectric (no pumped hydroelectric is considered), wind, and
solar PV plants that existed in 2012, our optimization model
designs a new cost-optimal electrical power system for the entire
contiguous US. The solution comprises wind, solar PV, natural
gas, nuclear and hydroelectric generators. It also includes an
HVDC transmission network that can transmit electricity over long
distances, which high-voltage alternating current (HVAC) cannot
do. In addition, HVDC is more efficient and cheaper than HVAC
(ref. 28). Ourmodel’s key constraint is that it must provide electrical
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Figure 2 | The US electricity sector CO2 emissions (left axis, bars) and levelized cost of electricity (right axis, diamonds). The blue bars are for historical
data and an International Energy Agency projection to 2030 (ref. 6). The green bars represent results from our optimization model (the values are the
average of the three years of simulations). The coal scenario is identical to the HRLG scenario, but with the inclusion of coal plants. The red diamonds
represent the levelized cost of electricity per kilowatt-hour (kWh) to consumers in 2013US$. The percentages show the change of CO2 emissions relative
to 1990 levels.

power for every hour to every market while operating within
current technology limits (see Supplementary Information Section 1
for methods).

The IEA World Energy Outlook (WEO) 2013 estimates that the
levelized cost of electricity (LCOE), in 2013US$, to US customers
will be 11.5¢, with a range between 8.5¢ and 14.5¢, per kWh by
2030, and CO2 emissions will be 6% higher than in 1990 (ref. 6).
The EIAAnnual EnergyOutlook (AEO) 2015 also estimates that the
LCOE to US customers will be 11.5¢ per kWh (ref. 29). The LCOE
toUS customers includes the generation, transmission, distribution,
O&M and fuel costs. The same applies to results from the NEWS
model. Although our study focused on three main technologies,
coal at present plays a major role in electricity generation in the
US. In Fig. 2 we show results from optimization model runs that
included coal (without carbon capture and sequestration (CCS));
CO2 emissions were 37% higher than 1990 levels and the LCOE
was 8.5¢ kWh−1 (ref. 29). The cost of electricity for comparison is
estimated using the optimization model output and assuming that
the split of costs remains the same as at present—that is, 68% for
generation and transmission and 32% for distribution. The costs of
nuclear and hydroelectric generation are 6¢ kWh−1 and 2¢ kWh−1,
respectively. Although somewhat less expensive than the other
NEWS solutions, the coal scenario does notmitigate CO2 emissions.
Any proposed solution to mitigate CO2 emissions cannot have
substantial coal without CCS. Storage was considered and available
in the optimization model; however, in preliminary simulations
it was not selected in national solutions at a cost of US$1.50 per
watt installed (more can be found in Supplementary Information
Section 1.4). Therefore, for simplicity we removed it from the
model. All other generation technologies were excluded from the
optimization on the basis of cost projections that make them non-
cost-competitive, or because of their current lack of large-scale
commercial availability; including geothermal, concentrating solar
power, andmarine-hydro-kinetics. Further, the NEWS scenarios do
not model fossil fuel generator stranded assets. However, we note
that there is a significant turnover of fossil fuel generators on decadal
timescales and, in particular, large numbers of coal plants are at
present being retired for age, economic or environmental reasons.

Figure 2 indicates that, with current technologies, CO2 emissions
would be reduced by 33%, 61% and 78% relative to 1990 levels
according to the HRLG, MRMG and LRHG scenarios, respectively.
With a LCOE at 8.6¢, 10.2¢ and 10.0¢ kWh−1, the three scenarios
are below the 2030 reference LCOE of 11.5¢ kWh−1, estimated
by both the WEO 2013 and AEO 2015. Therefore, with existing
technologies, the US electricity sector can substantially reduce its
CO2 emissions by 2030 without an increase in the LCOE, assuming
learning curve cost reductions in wind and solar PV and the
facilitation of a national HVDC transmission grid overlay. Using
the LRHG scenarios (2006–2008), US power consumers could save
an estimated US$47.2 billion annually with a national electrical
power system versus a regionally divided one (∼1.1¢ kWh−1). This
amounts to almost three times the cost of the HVDC transmission
per year.

The model-produced electrical power system is a complex
amalgam of variable and conventional generators, HVDC
transmission lines and varying electrical load. Another component
of the optimization model is that it simultaneously computes
the locations of each generator and the capacity of each HVDC
transmission line, dispatches each generator every hour at each
location, and calculates the power flow (with losses) within the
HVDC transmission network. The HVDC transmission network
is a web of lines that connects 32 nodes, allowing power to flow
between each region. The siting of the generators is bounded
by numerous constraints, and care was taken to incorporate
these restrictions within the model. For example, the nuclear and
hydroelectric power plants are placed where they existed in 2012,
the optimization can select to build natural gas and coal plants only
where a fossil fuel plant existed in 2012 (to ensure the necessary
infrastructure exists), and wind and solar PV plants cannot be
built on protected lands, within urban areas or on steep slopes. See
Supplementary Information Section 2.2 for details.

The selected locations of the wind and solar PV plants in
the cost-optimized solutions are geographically dispersed over
the entire contiguous US (Fig. 3). The electrical power system
shown in Fig. 3 is for the LRHG scenario using data year 2007.
It includes 523 gigawatts (GW) of wind (22MW offshore, seen
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Onshore wind
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Offshore wind
Natural gas
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Nuclear 3 GW transmission

Figure 3 | Cost-optimized single electrical power system for the contiguous US, using data year 2007. The colours indicate that a model grid cell has a
technology sited within it. Onshore wind and solar PV are split into three bins to designate the density of installations. For wind the bins are: less than
0.5 W m−2; between 0.5 W m−2 and 1.5 W m−2; above 1.5 W m−2. For solar the bins are: less than 5 W m−2; between 5 W m−2 and 10 W m−2; above
10 W m−2. The grey lines show the HVDC transmission network. The outer pie chart represents the installed capacity, whereas the inner pie chart shows
the electricity demand met by each technology.

halfway down the Maine coastline), 371GW of solar PV, 461GW
of natural gas, 100GW of nuclear, and 74GW of hydroelectric, for
a total of 1,529GW installed capacity. The very small amount of
offshore wind (22MW) demonstrates the cost efficiency of HVDC
transmission to be able to transmit the power from the high plains
to the coast rather than building wind turbines offshore. Compared
with 2012 that represents a total increase in capacity of 31%.
Natural gas capacity falls by 25GW, whereas wind and solar PV
rise by 463GW (a factor of eight) and 368GW (a factor of 62),
respectively27. The inner pie chart in Fig. 3 shows that wind provides
the dominant share of electricity at 38%, natural gas contributes
21%, solar PV 17%, and the remainder is fulfilled by nuclear and
hydroelectric (16%and 8%, respectively). In otherwords, natural gas
reduces its contribution by 9% relative to 2012, whereas wind and
solar PV substantially increase their share to replace the other fossil
fuels and displace some natural gas. The reader is encouraged to
compare this result with those found in Supplementary Information
Section 2 for all the other scenario runs.

The land taken out of its current uses and converted into power
production is 6,570 km2 (460 km2 for wind and 6,110 km2 for solar
PV), or 0.08% of the contiguous US. The HVDC transmission
network provides the access to these distant areas at a share of 4%
of the cost of the electricity. A further benefit from this scenario
is a significant drop of 65% in water consumption for electricity
generation relative to 2012, predominantly because fewer steam
turbines and cooling towers are needed30. More detailed results are
presented in the Supplementary Information Section 2.

In the current US electricity sector there is no single electrical
power system; there are three large connected regions known as
interconnects, which are further divided into balancing authority
areas (BAAs) that are designed to maintain supply and demand
of electricity within their respective areas. Small, self-contained

areas will diminish the efficacy of power generation from wind and
solar PV because the local resources will be more correlated in
time than geographically separated sites. In Fig. 4a the dependency
on electrical power system size can be observed. As the size of
the connected system grows, the amount of wind and solar PV
generation increases. Moreover, the cost of electricity decreases as
the area increases, because the system has access to more remote,
rich resources and the correlation between connected sites weakens.
The amounts by which the wind and solar PV installations grow and
the costs decrease vary by scenario, but the trend persists in each. It is
worthmentioning that, even in the single connected electrical power
system, there can be thirty-two asynchronous subsystems that are
connected by theHVDC. TheHVDC reduces the potential of whole
electrical power system blackouts because the entire systemdoes not
need to operate at the exact same frequency. Therefore, when faults
occur, regions of the electrical power system can be isolated from
the remainder.

Natural gas is a commodity and its cost to the electricity
sector fluctuates continuously. During the decade of 2004–2014 the
average monthly cost of natural gas for electricity has been as low as
US$2.81 and as high as US$12.41 per million British thermal units
(MM Btu). One MM Btu is equivalent to 1.054615 GJ. (ref. 31).
Because the NEWS model minimizes the total system cost, the
deployment of wind and solar PV in our model is linked to the cost
of natural gas; as it increases so does the installed capacity of wind
and solar PV. There is always a critical cost of natural gas where
the system rapidly installs more wind and solar PV. Figure 4a,b
can be used together to estimate the additional amounts of carbon-
emission-free generation that could be economically deployed in
2030 for the same LCOE if a national HVDC-enabled system
were implemented. For example, for ∼11¢ kWh−1 there is ∼75%
carbon-emissions-free generation for themid renewable costs in the
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Figure 4 | Sensitivity to geographic scale and natural gas price. a,b, Influence of area (a) and natural gas cost (b) on the amount of carbon-emission-free
generation. The green-hashed area represents the carbon-emissions-free generation of the HRLG scenario, whereas the grey area shows extra
carbon-emissions-free generation created in the LRHG scenario. The blue dot-dashed line is the midrange (MRMG) value of the share of demand met by
non-fossil fuel generation. The grey, blue and green diamonds show the LRHG, MRMG and HRLG cost scenarios LCOE to customers, respectively. The
values shown are the three-year averages. The shaded arrow in b denotes natural gas costs to electricity utilities over the past decade (2004–2014).

national system (from Fig. 4b, columns for US$12–13 per million
British thermal units (MM BTU)), but only ∼40% with systems on
the scale of the 2012 BAAs (from Fig. 4a, 63,129 km2 column).

The formidable challenges associatedwith a large transformation
of the US electrical power system by the 2030s include: the
integration of variable generators; changes to the existing regulatory,
commercial and legal system; and investments in a HVDC network
and new power plants. Importantly, if the electricity sector is
decarbonized, there are good prospects that electrical vehicles,
heat pumps, and other electricity-based technologies can similarly
reduce CO2 across the entire energy sector. Although it would
be a difficult transition, the challenges are not dissimilar to
previous US projects for the creation of national markets, such as
the transcontinental railroads of the nineteenth century, and the
interstate highway system of the twentieth century.
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GETTING CAPACITY RIGHT: HOW CURRENT METHODS 
OVERVALUE CONVENTIONAL POWER SOURCES

Acceleration of the clean energy transition is dramatically shifting the types of electric 

generation technologies used to meet electricity demand and reliably operate the grid. Rapid 

cost declines in advanced energy technologies like wind, solar, and energy storage are making 

them increasingly competitive choices for new generation additions. The thriving clean energy 

market, combined with state policies and customer demand for such technologies, is causing 

these technologies to begin overtaking conventional generation sources like coal and natural 

gas that have traditionally been relied upon. This trend will accelerate as state clean energy 

targets, climate laws, and sustainability commitments by consumers and local governments call 

for their replacement.  

These advanced energy technologies have different operating characteristics than the 

conventional power plant fleet. As a result, there has been considerable attention devoted to 

establishing the performance metrics and resource adequacy accreditation methods (e.g., 

determining their reliability value) applied to these new resource types, particularly renewables 

and energy storage. However, the methods used to evaluate the resource adequacy, or 

capacity, value of conventional thermal generating resources (including coal, natural gas, and 

oil-fired power plants) have not been formally reexamined or updated in decades.  

In addition, recent extreme weather events have raised important questions about whether 

uncertainties in resource availability and correlated outage risks – those that affect multiple 

generators at the same time – are captured in current resource accreditation metrics. These 

events, which are increasing in frequency, have a significant impact on grid reliability. While 

methodologies recently adopted in some regions to determine the resource adequacy value of 

renewable resources and energy storage include such uncertainties and outage risks, the 

methodologies currently applied to conventional resources may not. Ensuring that the 

reliability contributions of all resources sufficiently take into account known reliability risks, and 

reflect them in their resource adequacy value determination, is critical to ensuring reliability 

and a level playing field in the markets.  

With these factors in mind, Advanced Energy Economy (AEE) engaged Astrapé Consulting to 

conduct an analysis of the prevailing methodology for accrediting resource adequacy for 

thermal generating resources.1 The report compared the methods applied to value the 

capacity of thermal power plants to their actual performance under various conditions.  

1 Accrediting Resource Adequacy Value to Thermal Generation, Astrapé Consulting, March 2022 
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The analysis shows that the traditional valuation method can overstate the capacity value of 

these resources by 2.7% to over 20% in winter and 4.6% to over 10% in summer, depending on 

regional conditions and other relevant factors These findings demonstrate that improvements 

in methodology are needed to accurately reflect the contributions to system reliability of these 

resources when determining their resource adequacy value and the amount of capacity they 

can bid into and receive revenues for in capacity markets. Putting in place methodologies that 

consider all types of outage risks would improve incentives for all generators to take steps to 

improve their accredited value, add new incentives for demand response and flexible load to 

enter the market, and send a signal for inefficient and poor performing thermal generators to 

retire, all of which can lower the total costs for capacity that customers pay to ensure reliability.  

RESOURCE ADEQUACY AND CAPACITY MARKETS 

Ensuring that electric power systems have sufficient resources available to reliably serve 

customers is accomplished through a combination of planning analyses to assess system 

needs, and procurement mechanisms that obtain the resources needed to meet those needs. 

Every system operator, regardless of whether it is a regional transmission organization (RTO) or 

a vertically integrated utility outside an RTO region, calculates a Planning Reserve Margin 

(PRM) that expresses the quantity of capacity needed to meet a system’s peak demand. 

Planners typically use inputs such as expected demand growth, seasonal patterns in demand, 

historic and anticipated outages, and availability of supply to determine the required PRM. 

Procuring resources needed to meet the PRM requires the application of methods to accredit 

(i.e., calculate) the capacity value of particular generating units, taking into account the amount 

of time they are expected to be available to produce energy. No generating resource is 

available 100% of the time to achieve its maximum potential output; these methods determine 

the “discount” from a generating unit’s nameplate capacity to determine how much value it 

provides toward meeting resource adequacy needs. The RTOs in the Northeast (namely PJM 

Interconnection, ISO New England, and New York Independent System Operator) operate 

centralized capacity markets where generators compete to sell capacity needed to meet the 

RTO’s PRM. In those regions, capacity accreditation methods are important because they 

determine the amount of capacity generators can sell into the market. 

To accredit the capacity value of thermal generators, these regions generally apply a 

methodology called Equivalent Forced Outage Rate Demand (EFORd), which considers a unit’s 

historical forced outage rate during periods the unit was in demand. EFORd assumes that a 

generating unit’s performance is independent of other similar resources (i.e., outages are not 

correlated). 

2209



This is very different from how the capacity of advanced energy resources like wind, solar, and 

energy storage are now assessed in PJM and other regions using an Effective Load Carrying 

Capability (ELCC) methodology. ELCC is a probabilistic method that determines the capacity 

value of these resources by evaluating their contribution to meeting the reliability objective of 

no more than one day of outage in 10 years. ELCC capacity values are determined for groups 

(or classes) of resources based on their characteristics and output profiles; unlike EFORd, this 

grouping captures the potential for correlated periods of unavailability among similar resources 

and assigns capacity value accordingly. ELCCs have not typically been quantified for thermal 

resources since they are dispatchable and presumed to not have energy constraints. The only 

reduction in the reliability contribution of these resources would be due to unplanned outages. 

PJM CAISO MISO SPP ERCOT 
 Onshore Wind 15.0% 16.3% 16.6% 16.8% 21.0% 
 Offshore Wind 40.0% N/A N/A N/A 31.0% 
 Solar Fixed 38.0% 8.7% 50.0% 85.1% 74.0% 
 Solar Tracking 54.0% 11.0% 50.0% 85.1% 74.0% 
4-Hr Battery 83.0% 90.6% 100.0% N/A N/A 

In PJM, EFORd continues to be used for conventional thermal resources, while ELCC is now in 

place for renewables, energy storage, hydro, and similar variable or limited duration resources. 

This difference in treatment of resources has been identified by market participants and at least 

one FERC commissioner2 as problematic. PJM is now considering revisiting conventional 

thermal resource accreditation. Other regions are in various stages of moving to an ELCC 

methodology (for some or all resources) to determine capacity value as they anticipate 

expected increases in the development of renewables and storage putting pressure on 

conventional generation, and in response to recent extreme weather events like Winter Storm 

Uri, which raise new questions about outage risks facing the generation fleet.  

ACCOUNTING FOR KNOWN OUTAGE RISKS OF THERMAL GENERATORS 

In the report, Astrapé assesses the extent to which the existing EFORd methodology 

adequately accounts for the actual risks of outages of thermal resources that were observed in 

prior extreme weather events, and whether EFORd appropriately values capacity in light of 

those outage risks. To perform this assessment, Astrapé constructed a model based on the 

demand and generation resource profile of the PJM South region. Incorporating historic 

extreme weather events and publicly available data, the model ran different simulations 

2 Commissioner Christie’s Dissent from Order Concerning PJM’s proposed ELCC, Federal Energy 
Regulatory Commission, July 20, 2021.  
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SOURCE: Astrapé Consulting, “Accrediting Resource Adequacy Value to Thermal Generation,” 
March 2022
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weighing thousands of simulated years of outages (including both winter and summer) to 

compare how the EFORd methodology performs in accounting for these uncertainties when 

compared to an ELCC-equivalent methodology. 

Based on this modeling, Astrapé determined that the existing EFORd accreditation 

methodology does not fully account for these risks when assigning capacity value to thermal 

generation resources. Specifically, the report describes four categories of outage uncertainty 

and risk that the EFORd methodology fails to fully capture when compared to an ELCC-

equivalent: 

1. Outage variability: Existing EFORd and Unforced Capacity (UCAP) determination

methodologies implicitly presume an annual average rate of outages, but Astrapé’s

modeling shows that at any given time actual outages will vary and often can exceed

those averages. Using an annual average masks these higher outage rates and results in

a higher capacity accreditation than is justified.

2. Common mode failures: Existing methodologies like EFORd generally assume that

generator outages are independent from one another. However, modeling shows

correlated outages of multiple resources can occur in certain instances, such as when

they share equipment like a step-up transformer.

3. Weather-dependent outages: The modeling further showed that thermal generation

resources can suffer correlated outages due to the acute impacts of extreme weather,

such as frozen equipment or heat stress, causing them to perform below their EFORd-

based rating in a statistically significant manner.

4. Fuel availability: Modeling and anecdotal evidence reviewed by Astrapé showed that

cold weather events can impact availability of fuel supply itself (such as natural gas)

independent of particular acute impacts on generation resources themselves and result

in correlated outages that may not be captured in the EFORd average availability

calculation.

Based on these findings, the report presents an illustrative range of the downward adjustments 

to EFORd-based accreditations that could be made to account for these risks. While precise 

adjustments to capacity accreditation require further study and analysis, the range presented in 

the report illustrates the potential magnitude by which the existing EFORd-based methodology 

overstates the capacity value of thermal resources. The table below summarizes illustrative 

adjustments from model simulations, showing potential downward adjustments of 2.7% to over 

20% in winter and 4.6% to over 10% in summer. 
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Thermal Generator 
SUMMER Outage Factor Accreditation Impact 

(Incremental) 
Capacity Credit 

(Cumulative) 

Standard 
Practice 

Forced Outage Rate 5.0% 95.0% 

Proposed 
Additional 
Factors 

Outage Variability 4.6% 90.4% 

Common Mode Outage N/A 
Weather Dependent 
Outage  5.6% 84.7% 

Fuel Supply Outages N/A 

Adjusted Summer Thermal Capacity Credit:  84.7% 

Thermal Generator 
WINTER Outage Factor Accreditation Impact 

(Incremental) 
Capacity Credit 

(Cumulative) 

Standard 
Practice 

Forced Outage Rate 5.0% 95.0% 

Proposed 
Additional 
Factors 

Outage Variability 2.7% 92.3% 

Common Mode Outage 2.3%  90.0% 
Weather Dependent 
Outage  

10.0% 82.3% 

Fuel Supply Outages 6.2% 76.1  

Adjusted Winter Thermal Capacity Credit: 76.1% 

IMPLICATIONS FOR REGIONAL MARKET OPERATORS AND REGULATORS 

The report findings suggest that existing EFORd-based resource adequacy and capacity 

accreditation methodologies should be carefully reviewed and revised to ensure that they 

adequately consider all relevant uncertainties. To the extent these methodologies do not 

account for these outage uncertainties, they may be over-accrediting capacity value to thermal 

resources and requiring consumers to pay for capacity contributions to reliability they are not 

actually receiving. Further, given that ELCC-based methodologies now applied to renewables, 

energy storage, and similar technologies in PJM already account for correlated unavailability, 

failure to revisit existing EFORd-based methodologies applied to thermal resources may result 

in undue discrimination among resources within RTO centralized capacity markets. 

The modeling results in the report do not necessarily imply that PRM requirements should be 

increased. Some of these risks are already accounted for when setting the reserve margin 

5

SOURCE: Astrapé Consulting, “Accrediting Resource Adequacy Value to Thermal Generation,” 
March 2022

SOURCE: Astrapé Consulting, “Accrediting Resource Adequacy Value to Thermal Generation,” 
March 2022
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requirement but they are not considered in the capacity values of generation resources using 
EFORd. This essentially shifts the cost of these risks to customers (who pay the costs of all 

capacity acquired to meet the PRM), rather than assigning those risks to generators by 

adjusting the amount of capacity they can sell. Other unaccounted for risks may be offset by 

other conservative assumptions.  

Putting that risk back on the generators, where it belongs, would improve incentives for 

generators to take steps to improve their accredited value (adding storage, improving 

weatherizing, obtaining firm fuel supply, etc.), add new incentives for demand response and 

flexible load to enter the market, and send a signal for inefficient and poor performing 

thermal generators to retire, all of which can in turn lower the total costs customers must pay 

for capacity to meet PRM requirements.   

While the report presents a range of illustrative downward adjustments to EFORd-based 

thermal capacity accreditations, further analysis is necessary to translate the results of the 

modeling into a fair accreditation and valuation methodology for use in markets.  

To arrive at a new methodology, regional market operators should consider, among other 

things, how to account for and adjust outage assumptions based on individual unit size, age, 

and performance characteristics (including fuel supply arrangements or other technical 

specifications). Seasonal impacts on outage risks may also need to be addressed.   

A methodology that fairly quantifies the capacity value of traditional energy sources becomes 

increasingly important as the transition to advanced energy technologies like solar, wind, and 

energy storage accelerates and these technologies replace thermal generation resources. A 

clear understanding of the true load-carrying capability of all resources is necessary to ground 

conversations about the potential reliability implications of this shift and solutions to identified 

reliability challenges.  

www.aee.net     @aeenet     
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EXECUTIVE SUMMARY 

We have been asked by the Electric Reliability Council of Texas (ERCOT) to estimate the market 

equilibrium reserve margin (MERM) and the economically optimal reserve margin (EORM) for 

ERCOT’s wholesale electric market.  For this analysis, Astrapé Consulting simulated the ERCOT market 

using its Strategic Energy & Risk Valuation Model (SERVM).  The model captures ERCOT’s wholesale 

market design and projected system conditions for 2024; it probabilistically simulates the economic 

and reliability implications of a range of possible reserve margins under a range of weather and other 

conditions. The MERM concept is relevant in ERCOT because, unlike all other electricity systems in 

North America, ERCOT does not have a resource adequacy reliability standard or reserve margin 

requirement.  In ERCOT, the reserve margin is ultimately determined by suppliers’ costs and 

willingness to invest based on market prices, where prices are determined by market fundamentals 

and by the administratively-determined Operating Reserve Demand Curve (ORDC) during tight 

market conditions.  This approach creates a supply response to changes in energy market prices 

towards a “market equilibrium”; low reserve margins cause high energy and ancillary service (A/S) 

prices and attract investment in new resources, and investment will continue until high reserve 

margins result in prices too low to support further investment. 

We estimate a market equilibrium reserve margin of 12.25% under projected 2024 market conditions, 

as shown in Figure ES-1.1 This is higher than our MERM projection of 10.25% in our 2018 study, 

however, the projections of system reliability are nearly identical at 0.5 Loss of Load Expectation 

(LOLE).2 

 

 

 

 

 

 

 

 

 
1 This estimate should not be interpreted as a precise forecast for 2024 or any other particular year, but as a 
reasonable expectation around which actual reserve margins may vary as market conditions fluctuate.  To expect a 
persistently lower reserve margin would be to assume investors will forego profitable opportunities to add additional 
supply, and to expect a persistently higher reserve margin would be to assume investors will over-invest. 
2 The 2018 Report can be found at Newell, et al. (2018b). 
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Figure ES-1. Market Equilibrium Reserve Margin 

 

Input and reserve margin accounting changes with both upward and downward effects have been 

introduced since 2018. An increase in renewable penetration put downward pressure on MERM, 

while the changes in resource accounting increased the MERM. The PUCT administered changes to 

the ORDC which put upward pressure on MERM, and higher forced outage rates also put upward 

pressure on MERM. The change in marginal resource composition put slight downward pressure on 

MERM. The waterfall chart in Figure ES-2 quantifies the magnitude of the impact of each of these 

factors. 
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Figure ES-2. Base MERM Changes from 2018 to 2020 Study 

 

In terms of reliability, our probabilistic simulations indicate that under base case assumptions with a 

market equilibrium reserve margin of 12.25%, the system is expected to experience 0.5 days per year 

Loss of Load Expection (LOLE).3 As shown in Figure ES-3, this is significantly higher than the 0.1 events 

per year LOLE standard used by most electric systems in North America for planning purposes. It is 

also important to note that this LOLE is the same value reported in the 2018 study at the MERM of 

10.25%. Intuitively, the higher MERM in this study would supply higher reliability. However, the 

higher Equivalent Forced Outage Rate (EFOR) assumptions, combined with a discrepancy between 

the renewable credit (or reliability contribution) estimated for CDR4 reserve margin reporting and the 

actual reliability value provided by these resources, increase the MERM without an improvement to 

reliability. 

 

 

 

 
3 For the simulations, a loss-of-load (LOL) event occurs when the hourly load, plus a minimum operating reserve level 
of 1,000 MW, is greater than available resource capacity.  A LOL event is recorded for each day of the simulation if 
one LOL hour occurs in the 24-hour span, or if there are more than one non-contiguous LOL hours during the day.  
For a given reserve margin level, the LOLE is the mean number of LOL events for 10,000 simulations (40 weather 
years, 5 load error levels, 50 outage draws). 
4 CDR is the “Report on Capacity, Demand and Reserves for the ERCOT Region,” typically released in May of each 
year, with an update released in December. 
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 Figure ES-3. Loss-of-Load Expectation at Varying Reserve Margins 

 

Determination of the economic potential of marginal resources in an energy-only market is complex. 

The potential energy margins of any generating resource are a function of the load profile, the 

technological composition of the entire generation fleet, the reserve margin of the fleet, the fuel 

prices to operate those generators, and other factors. The MERM for marginal peaking capacity then 

is in part determined by the characteristics of the other resources on the system. While this study is 

designed to analyze only marginal peaking capacity decisions, the ramifications of that equilibrium 

penetration can inform the calculus for other resource classes making investment or retirement 

decisions as well. 

One interaction among resources that is analyzed in detail for this study is the impact of renewable 

penetration on MERM for marginal peaking capacity. Since the introduction of renewable generation, 

with its de minimis variable operating costs, will tend to depress market prices5, we find that the 

MERM will be reduced by increases in renewable penetration. This downward pressure on the MERM 

from increasing renewables is initially small. For the 2018 study, Astrapé and Brattle quantified that 

an increase of 20 GW of renewable capacity would shift MERM down by only 0.75 percentage points, 

or approximately 500 MW. The magnitude of the impact however grows as the penetration of 

renewable grows, and is particularly sensitive to solar capacity. The size of the impact is primarily 

 
5 The volatility of renewable output could lead to more frequent periods of scarcity pricing if the system is not able 
to respond quickly enough. However, we assume this effect is mitigated by carrying additional operating reserves 
to be able to respond to the renewable volatility. As such, the addition of renewable generation is expected to 
depress market prices. 
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dependent on how the renewable fleet affects the frequency of hours with high electricity market 

prices. In an extremely high solar penetration scenario, the net load shape is very steep, so there are 

very few hours with very high loads, and commensurately high market price hours are infrequent. Up 

to projected penetrations in 2024 however, the net load shape is quite flat. There are eight or more 

hours every day within a few thousand MW of the daily peak load. Figure ES-4 compares the net load 

shape in the base case and in a high renewable scenario. Both scenarios require the same reserve 

margin to maintain the same reliability, but the high renewable scenario will have many fewer hours 

with high market prices.  

Figure ES-4. Average August Daily Net Load Comparison 

 

The moderation of net load peak frequency can be seen clearly in the annual net load duration curve 

shown in Figure ES-5. Scarcity conditions and associated high prices are most likely when net load is 

near its annual peak. The addition of another 15 GW of solar capacity dramatically steepens the net 

load duration curve near the annual peak. This steepening translates to lower frequency of scarcity 

conditions and high prices, depressing MERM.  

 

 

 

 

6-8 Hours Near Peak 

in 2024 Base Case 

2-3 Hours Near Peak 

in 2024 High 

Renewable Case 
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Figure ES-5. Net Load Duration Curve Comparison 

 

From the waterfall chart (Figure ES-2), the impact of the 20 GW of renewable additions from the 2018 

study to the 2020 study was to reduce the MERM by 1.00 percentage points. Because of the more 

pronounced effect on load shape of additional solar from the projected 2024 penetration, the next 

20 GW of renewable additions analyzed in the high renewable scenario are expected to reduce MERM 

by 2.00 percentage points to 10.25%, as shown in Figure ES-6. At this level, the reliability implications 

of a different MERM are significant with firm load shed occurring 0.5 days per year at MERM in the 

base case, but more than 1.3 days every year in the high renewable case. 

Figure ES-6. Marginal Unit Net Energy Revenues 
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While the change in net load shape reduces the frequency of scarcity pricing, it creates opportunities 

for other classes of resources, namely battery storage, as shown in Figure ES-7. Prior to the 

introduction of any solar, the load peak in ERCOT spans several hours; the net load is within a few 

thousand MW of the daily peak for six to eight hours. Even after the addition of over 16 GW of solar 

projected to be online by 2024, the net load shape is still quite flat near the peak, and consequently 

batteries would need to supply long duration storage. Subsequent additions begin to produce steeper 

net loads near the daily peak, and at the penetrations in the high renewable scenario, the steepness 

of the net load shape results in significant four-hour battery capacity6 being able to supply capacity 

value. 

Figure ES-7. Net Load Shape Impact of Solar7 

 

While the capital cost of batteries is higher than that of conventional combustion turbine (CT) 

capacity, the economic benefits of batteries are substantial in the high renewable scenario. At the 

high renewable MERM of 10.25%, incremental batteries can expect to earn a return in excess of their 

fixed and variable costs from the energy and ancillary service market. Swapping out new CTs for new 

 
6 Batteries of shorter duration than 4 hours can provide some capacity value, but as the penetration increases, the 
capacity value potential declines. This study focused on higher penetrations of storage which require average 
durations of 4 hours or longer. We note that much of the current battery capacity development activity in ERCOT is 
of shorter duration, but our analysis is focused on future portfolios when longer durations will be needed to supply 
capacity value. 
7 Profiles developed from a single example weather day with varying solar penetration. 
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four-hour batteries yields the energy margins8 shown in Figure ES-8 for incremental battery capacity, 

and demonstrates a breakeven incremental penetration of 1,100 MW.9 The energy margin decline is 

modest and if technology improvements lead to a battery capital cost decline to $115/kw-yr, up to 

6.5 GW of incremental four-hour battery capacity could be economic in ERCOT in a high renewable 

scenario with the reserve margin at 10.25%. These results are contingent on a number of assumptions 

including the bidding behavior of renewable resources and the qualification for providing ancillary 

services, and they do not include other potential value streams for storage including locational 

benefits, but they provide indications of the economic potential for storage in ERCOT in the future. 

Figure ES-8. Storage Energy Margins 

 

Another key difference from the 2018 study is an increase to ORDC pricing.10 A comparison of the 

2018 and 2020 ORDC adders is illustrated in Figure ES-9. At the same level of reserves, market 

participants will realize higher energy and ancillary service prices which will increase MERM.  

 

 

 

 
8 Energy margins as referenced in this report are calculated as total revenue from energy and ancillary service 
markets minus variable operating costs. 
9 The base case has 1,103 MW of batteries. Battery analysis is incremental to that capacity. 
10 See PUCT (2019b). 
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Figure ES-9. ORDC Curve Comparison 

 
As shown in the waterfall chart (Figure ES-2), the ORDC curve change increased the MERM by 1.5 

percentage points. In isolation this administrative change would improve reliability. However, the 

increase of renewable penetration in the base case almost completely offsets this effect.  

Other key differences from the 2018 study include higher forced outages rates in the more recent 

outage data used for this study and the effect of the change in the reference technology.  

While the MERM tests market outcomes, ERCOT stakeholders may be interested in the associated 

economic optimality outcomes.  The economic optimum occurs at the reserve margin that minimizes 

societal costs net of all supply costs and the lost value from any disruptions in electric service.  We 

calculate the economically optimal reserve margin (EORM) by finding the balance between the 

marginal costs and marginal benefits of adding capacity.  The marginal costs are simply the levelized 

capital costs and fixed costs of a new generator.  Marginal benefits include lower production costs 

and reduced load shedding (at an assumed cost of $9,000/MWh), reserve shortages, demand-

response calls, and other costly emergency events. Our simulations quantify how scarcity event 

frequencies decrease (at a diminishing rate) as reserve margins increase.  As shown in Figure ES-10 

below, we estimate 11.00% as the EORM, based on the risk-neutral, probability-weighted-average 

cost of 80,000 simulations.11  However, the estimated societal costs are relatively flat with respect to 

reserve margin near the minimum, with only modest variation between reserve margins of 10.00% 

and 12.00%. There is also a noticeable asymmetry in costs on either side of the EORM, suggesting risk 

 
11 40 weather years, each at 5 levels of non-weather-based load forecast error, with 50 generator outage draws, at 
8 modeled reserve margins. 
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adjustment value to consumers to maintaining a reserve margin higher than EORM. While the 

asymmetry was present in previous EORM analyses, the magnitude is more pronounced in this study 

due to a higher penetration of energy limited resources that can be exhausted more rapidly at very 

low reserve margins and the recognition of additional reliability risks in the SERVM modeling. The 

mechanism to achieve a higher reserve margin than economically optimum in an energy-only market 

is through market pricing constructs. 

Figure ES-10. Total System Costs across Planning Reserve Margins 

 

Our analysis shows that the market equilibrium of 12.25% is greater than the economically optimal 

level of capacity by 1.25 percentage points.  The market equilibrium is higher than the economic 

optimum because the ORDC as currently designed sets prices higher than the marginal value of 

energy during scarcity conditions.  The size of the gap is lower than suggested by current ORDC values 

and the gaps identified in previous studies because of the presence of more energy-limited resources. 

In certain reliability-constrained hours in the simulation, additional capacity can provide more value 

than its nameplate multiplied by the value of lost load (VOLL). This is because in addition to being 

available during the peak hour, the incremental resource can preserve the energy from the energy 
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limited resources such as battery and demand response12 for availability during peak conditions. This 

means that the system savings in some extreme hours will be larger than the market price benefit 

the marginal CT realizes.  

Table ES-1 shows the MERM and EORM for the base case as well as for sensitivity and scenario 

analyses conducted for this study.  Some of the key assumptions we test are the estimated capital 

cost of new generation, load forecasting error, coal and natural gas prices, VOLL, intermittent 

renewable penetration, and weather distributions.  Regarding weather, our base case assumption is 

that all 40 years of historical weather are assigned an equal probability of occurring for the 2024 

simulation year, and this reliance on long term history is consistent with the EORM Manual.13  More 

recent weather has been hotter (especially 2011) and may be more representative of future weather.  

Assuming accordingly that each of the last 15 weather years has a 1/15th chance of reoccurring (with 

0% weight on each of the prior 25 years) leads to higher simulated prices and reliability events at a 

given reserve margin; but the higher prices would attract more investment, resulting in a 1% higher 

market equilibrium reserve margin and similar reliability to the base case. 

Table ES-1. Market Equilibrium and Economically Optimal Reserve Margins and Reliability 

Scenario/Sensitivity 
MERM EORM 

(%) (%) 

Base Case 12.25 11.00 

Vary Cost of New Entry (CONE) 11.25 – 13.25 10.00 – 12.00 

Vary VOLL 12.25 10.25 – 13.25 

Vary Probability of Weather Years 13.25 12.00 

Vary Forward Period and Load Forecast Uncertainty 11.25 – 12.00 10.00 – 10.75 

High Renewables Scenario  10.25 9.00 

Lower EFOR 11.25 10.00 
Notes: 
 Table reflects all scenarios and sensitivities analyzed, as described in Section C; Current practice has VOLL set to the max of the 

ORDC but the sensitivity which varies to VOLL does not change the ORDC curve and therefore does not affect the MERM. 

These estimates must not be interpreted as deterministic, since actual market conditions will 

fluctuate from year-to-year. In reality, the reserve margin will vary as plants enter and exit.  

Moreover, even at a given reserve margin, realized reliability and price outcomes can deviate far from 

the expected value, primarily due to weather and variations in wind generation.  For example, with a 

projected market equilibrium reserve margin of 12.25%, we estimate that in the 90th percentile 

outcome—representing relatively hot weather and low generation availability—energy prices would 

more than double, marginal units could have net energy revenues reaching $246/kW-year, with 1.2 

load-shed events per year (compared to a mean of 0.5 across all conditions modeled). 

 
12 Two demand response categories – TDSP and ERS – have annual, seasonal, or daily call constraints. 
13 See ERCOT (2017b). Note that the methodology described in the manual is derived from our 2014 study. 
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I. BACKGROUND AND CONTEXT 

We have been asked to estimate the market equilibrium reserve margin (MERM) and the economically 

optimal reserve margin (EORM) for ERCOT’s wholesale electric market. 

The MERM describes the reserve margin that the market can be expected to support in equilibrium, as 

investment in new supply resources responds to expected market conditions.  This concept is relevant in 

ERCOT because, unlike all other electricity systems in North America, ERCOT does not have a reserve 

margin requirement.  In ERCOT, the reserve margin is ultimately determined by suppliers’ costs and 

willingness to invest based on market prices, where prices are determined by market fundamentals and 

by the administratively-determined Operating Reserve Demand Curve (ORDC) during tight market 

conditions.  This approach creates a supply response to changes in energy market prices toward a “market 

equilibrium”; low reserve margins cause high energy and ancillary service (A/S) prices and attract 

investment in new resources, and investment will continue until high reserve margins result in prices too 

low to support further investment.  The PUCT also wants to know whether the market outcome will be 

acceptable with respect to economic optimality.  The EORM is the benchmark for establishing the 

sufficiency of the expected MERM, where the marginal benefits of new supply are just equal to the 

marginal costs of new supply. 

As the left panel of Figure 1 shows, higher reserve margins are associated with higher generation capital 

and fixed costs of building more capacity (dark blue line).  The higher costs are offset by a reduction in the 

frequency and magnitude of costly reliability events, such as load-shed events, other emergency events, 

and demand-response curtailments, and the reduced production costs (light blue line).  The tradeoff 

between increasing capital costs and decreasing reliability-related operating costs results in a U-shaped 

societal cost curve (red line), with costs minimized at what we refer to as the “economically optimal” 

reserve margin.14  The right chart of Figure 1 shows how we derive the “market equilibrium” reserve 

margin.  The marginal cost of capacity is known as the “Cost of New Entry” (CONE), which depends on 

technology costs and economic conditions such as tax structures and remains stable across reserve 

margins (dark blue line).  A marginal unit’s net revenues from energy markets and ancillary services (light 

blue line) quickly decrease with less scarcity pricing at higher reserve margins.  The intersection point of 

a marginal unit’s net revenue and CONE represent the “market equilibrium” reserve margin where the 

marginal unit breaks even. 

 

 

 
14 In developing our approach to calculating the economically optimal reserve margin, we draw upon a large body of 
prior work conducted by ourselves and others, although the majority or all of this prior work was relevant in the 
context of regulated planning rather than restructured markets.  For example, see Poland (1988), p.21; Munasinghe 
and Sanghvi (1988), pp. 5–7, 12–13; and Carden, Pfeifenberger, and Wintermantel (2011). 
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Figure 1. Economically Optimal Reserve Margin and Market Equilibrium Reserve Margin Concepts 
(Illustrative Schematics, Not Simulation Results) 

 

This study estimates the MERM and the EORM for the ERCOT market given the currently formulated 

scarcity pricing mechanism and expected market conditions.  It estimates the reliability at each of those 

levels of reserves, but strictly for informational purposes since there is no reliability requirement.  Our 

study methodology follows the ERCOT manual for estimating the EORM and MERM.15  The primary 

analytical tool in this study is energy market simulations using the SERVM model.  SERVM simulates hourly 

energy demand (under a range of weather conditions), energy production, and energy prices given the 

marginal cost of available supply and the Operating Reserve Demand Curve (ORDC).  By analyzing the 

results of simulations conducted at many possible levels of investment, we can identify which of the 

reserve margins represents the MERM and which level represents the EORM. 

This study was previously performed in 2014 and 2018.  The present study incorporates updated market 

conditions regarding the projected resource mix, the CONE for a reference generation resource, ORDC, 

maintenance outages, and gas prices; different assumptions regarding weather; higher forced outage 

rates based on recent data; and current conventions for describing peak load and accounting for 

intermittent resources in expressing the reserve margin. 

  

 
15 See ERCOT (2017b).   
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II. STUDY ASSUMPTIONS AND APPROACH 

Our simulations rely on a detailed representation of the ERCOT system, including: load and weather 

patterns and their probabilistic variations; the cost and performance characteristics of ERCOT’s generation 

and demand-response resources; the mechanics of the ERCOT energy and ancillary services markets, 

including a unit commitment and economic dispatch of all generation resources, demand-response 

resources, and the transmission interties with neighboring markets.  Assumptions on the generation fleet, 

demand-response penetration, fuel prices, and energy market design reflect expected conditions in 2024. 

A. MODELING FRAMEWORK 

We use the Strategic Energy & Risk Valuation Model (SERVM) to estimate the economically optimal 

reserve margin, the market equilibrium reserve margin, and associated reliability in the ERCOT system.16  

Like other reliability models, SERVM probabilistically evaluates the reliability implications of any given 

reserve margin.  It does so by simulating generation availability, load profiles, load uncertainty, inter-

regional transmission availability, and other factors.  SERVM ultimately generates standard reliability 

metrics such as loss-of-load events (LOLE), loss-of-load hours (LOLH), and expected unserved energy 

(EUE).  Unlike other reliability modeling packages, however, SERVM simulates economic outcomes, 

including hourly generation dispatch, ancillary services, and price formation under both normal conditions 

and emergency operating procedures.  SERVM estimates hourly and annual production costs, customer 

costs, market prices, net import costs, load shed costs, and generator net energy revenues as a function 

of the planning reserve margin.  These results allow us to compare these variable costs against the 

incremental capital costs required to achieve higher planning reserve margins, such that the optimal 

reserve margin can be identified.  The MERM can be identified by comparing potential new generators’ 

net revenues to their levelized fixed costs. 

The multi-area economic and reliability simulations in SERVM include an hourly chronological economic 

dispatch that is subject to inter-regional transmission constraints.  Each generation unit is modeled 

individually, characterized by its economic and physical characteristics.  Planned outages are scheduled in 

off-peak seasons, consistent with standard practices, while unplanned outages and derates occur 

probabilistically using historical distributions of time between failures and time to repair, as explained in 

Appendix 1.  Load, hydro, wind, and solar conditions are modeled based on profiles consistent with 

individual historical weather years.  Dispatch limitations and limitations on annual energy output are 

imposed on certain types of resources such as demand response, hydro generation, and seasonally 

mothballed units. 

The model implements a week-ahead and then multi-hour-ahead unit commitment algorithm considering 

the outlook for weather and planned generation outages.  In the operating day, the model runs an hourly 

 
16 SERVM software is a product of Astrapé Consulting, which authored this report. See Astrapé (2020). 
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economic dispatch of baseload, intermediate, and peaking resources, including an optimization of 

transmission-constrained inter-regional power flows to minimize total costs.  During most hours, hourly 

prices reflect marginal production costs, with higher prices being realized when import constraints are 

binding.  During emergency and other peaking conditions, SERVM simulates scarcity prices that exceed 

generators’ marginal production costs as explained further in Appendix 1.E 

To examine a full range of potential economic and reliability outcomes, we implement a Monte Carlo 

analysis over a large number of scenarios with varying demand and supply conditions.  Because reliability 

events occur only when system conditions reflect unusually high loads or limited supply, these simulations 

must capture wide distributions of possible weather, load growth, and generation performance scenarios.  

This study incorporates 40 weather years, 5 levels of economic load forecast error,17 and 50 draws of 

generating unit performance for a total of 10,000 iterations for each simulated reserve margin case. Each 

individual iteration simulates 8,760 hours for the year 2024.  The large number of simulations is necessary 

to accurately assess the reliability and economic implications of varying reserve margins.  A probabilistic 

approach is needed to characterize the distribution of possible outcomes, particularly because the 

majority of reliability-related costs are associated with infrequent and sometimes extreme scarcity events.  

Such reliability events are typically triggered by rare circumstances that reflect a combination of extreme 

weather-related loads, high load-growth forecast error, and unusual combinations of generation outages. 

To properly capture the magnitude and impact of reliability conditions during extreme events, a critical 

aspect of this modeling effort is the correct economic and operational characterization of emergency 

procedures.  For this reason, SERVM simulates a range of emergency procedures, accounting for energy 

and call-hour limitations, dispatch prices, operating reserve depletion, dispatch of economic and 

emergency demand-response resources, and administrative scarcity pricing.18 

B. PRIMARY INPUTS 

The projected resource mixes in ERCOT have shifted and load has grown since completion of the 2018 

study report.  This section focuses on those changes and discusses their implications for the MERM and 

EORM. 

Load and resource accounting for the base case is based on ERCOT’s conventions in the May 2020 CDR, 

as summarized in column C of Table 1. Peak load is reduced for non-controllable load resources (LRs), 10-

minute and 30-minute emergency response service (ERS), and Transmission/Distribution Service 

 
17 The five discrete levels of load forecast error we model are equal to 0%, +/−2%, and +/−4% above and below the 
50/50 ERCOT load forecast. 
18 Similar to other reliability modeling exercises, our study is focused on resource adequacy as defined by having 
sufficient resources to meet peak summer load.  As such, we have not attempted to model other types of outage or 
reliability issues such as transmission and distribution outages, common mode failures related to winter weather 
extremes, or any potential issues related to gas pipeline constraints or delivery problems. 
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Providers (TDSP) energy efficiency and load management.  On the supply side, most resources are counted 

toward the reserve margin at their summer ratings, except for coastal wind, panhandle wind, other wind, 

solar, and storage counting at 63%, 29%, 16%, 76%, and 0% of nameplate respectively, and the High 

Voltage Direct Current (HVDC) ties counting at approximately 31% of the path ratings, consistent with the 

CDR. The capacity credit estimation process for renewable resources is discussed further in section II.A.  

Table 1. Components of Supply and Demand in Current 2020 Study vs. 2018 Study 

 Values from 
2018 Study 

Re-expressed 
Values from 
2018 Study 
(Using 2020 
Accounting) 

Values from 
2020 Study 

Difference 
Attributable to 

Accounting 
Changes 

Difference 
Attributable 

to Fundamentals 
Changes 

 (MW) (MW) (MW) (MW) (MW) 
 [A] [B] [C] [B-A] [C-B] 

Modelled Year 2022  2024   

Accounting Methodology Year 2018  2020   

Peak Load 79,027 79,027 82,982 0 3,955 

Load Reduction 2,173 2,173 2,202 0 29 

     LRs serving RRS 1,119 1,119 1,172 0 53 

     10-Minute ERS 140 140 76 0 -64 

     30-Minute ERS 632 632 692 0 60 

     TDSP Curtailment Programs 282 282 262 0 -20 

Supply 85,919 86,813 93,979 894 7,166 

     Conventional Generation 72,441 72,441 68,395 0 -4,046 

     Hydro 467 467 474 0 7 

     Wind 6,331 7,052 9,137 721 2,085 

     Solar 2,708 2,744 12,161 36 9,417 

     Storage 324* 0 0** -324 0 

     PUNs 3,259 3,259 2,962 0 -297 

     Capacity of DC Ties 389 850 850 461 0 

Reserve Margin 11.80% 12.96% 16.34% 1.16% 3.38% 
Notes: *The 324 MW of storage capacity represents a CAES unit. Batteries were also given 0% capacity credit in the 2018 study.  

**1,103 MW of nameplate capacity of storage is included in the 2020 study but given a 0% capacity credit in the reserve margin   

calculation. 

The base 2024 supply fleet, as summarized in column C of Table 1 is consistent with the 2020 North 

American Electric Reliability Corporation (NERC) Long-Term Reliability Assessment (LTRA) report.19  The 

fleet summary developed by ERCOT staff for the NERC LTRA was the most recent data available when this 

study was developed.  When compared to the 2020 CDR values for 2024, the supply fleet fluctuates by a 

relatively modest 129 MW of thermal capacity, 115 MW of wind, and 620 MW less of solar installed 

 
19 We include or exclude new units and retirements starting in the specified year and completely exclude units that 
have been mothballed.  We model switchable units as internal resources.  Data was provided, as submitted to NERC, 
by ERCOT staff. 
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capacity (reflecting reported delays in planned solar projects by developers).  The composition of installed 

capacity in the 2020 LTRA is summarized in Figure 2. 

Figure 2. Installed Capacity by Resource Type 

  
Sources and Notes: Most recent LTRA data supplied by ERCOT staff and ERCOT, 2020a.The LTRA data 
was comparable to the capacities provided in the May 2020 CDR. 

We conducted simulations over a wide range of reserve margins by adding or removing capacity from this 

supply fleet. To analyze higher reserve margins, we add gas CT capacity, assuming the characteristics 

shown in Table 2 below that were derived from a recent study Brattle conducted. To analyze lower reserve 

margins, we selectively retired coal units and excluded planned thermal units.20  We assume the CONE for 

the new CT units are $93,500/MW-year.21 

 

 

 

 

 

 

 
20 More detail on the reference technology can be found in Appendix 1.B.1. 
21 The CONE value is based on the results from the 2018 PJM CONE study (Newell, et al. 2018a) 
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Table 2. Reference Technology Cost and Summer Performance Characteristics 

 Characteristic Unit Simple Cycle 
Plant Configuration   

     Turbine  GE 7HA.02 
     Configuration  1 x 0 
Heat Rate (HHV)   

     Base Load   

          Non-Summer (Btu/kWh) 9,138 
          Summer (Btu/kWh) 9,274 
Installed Capacity   

     Base Load   

          Non-Summer (MW) 371 
          Summer (MW) 352 
CONE ($/kW-yr) 93.5  

  Sources and Notes: Based on ambient conditions of 92°F Max. Summer (55.5% Humidity).  

On the demand side, this study starts with ERCOT’s peak load forecast for 2024, and then uses hourly 

shapes under many possible weather patterns.  We simulate each of 40 weather years, from 1980 through 

2019 (with corresponding wind and solar conditions from the same years).  When calculating expected 

values, we assume an equal probability for each year’s weather.  Applying equal probabilities is reasonable 

given that so many years can be taken to be fairly representative of the underlying distribution, assuming 

there is not a trend in the average weather or in the variability of weather.  (Other possibilities are 

considered in the Section 45. below.)   

A. RENEWABLE ACCOUNTING 

The CDR methodology used for determining the renewable capacity contribution is calculated by the 

following process:  

• Wind Capacity Contribution Values: Values are calculated for three zones--Coastal, Panhandle, 

and Other—based on average telemetered dispatch limits (HSLs) during the highest 20 seasonal 

peak load hours for each season for each of the last ten years (2010-2019). They are re-calculated 

after each season with the new seasonal historical data. In addition to including a new Panhandle 

zone for calculating contribution values, another change introduced in 2019 was to use weighted 

averaging of the historical seasonal nameplate capacities. This approach reduces the influence of 

older wind turbine technologies installed in the earlier years of the estimation period, and thereby 

increased the contribution values relative to the ones based on the original methodology. 

• Solar Capacity Contribution Values: Values are based on average telemetered HSLs during the 

highest 20 seasonal peak load hours for each season for each of the last three years (2017-2019). 
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They are re-calculated after each season with new seasonal historical data. Weighted-averaging 

of the seasonal nameplate capacities is also applied to the solar contribution values. 

However, the value from this calculation will not match the calculated reliability contribution from SERVM 

simulations for the same resources. Table 3 illustrates the apparent disconnect between the reported 

capacity value and the true reliability contribution of renewable resources.22 

Table 3. Potential ELCC Methods: Average Output Versus Peak Net Load Reduction  

  Wind  Solar 

  

Avg Output During 
Top 20 Load Hours 
(ERCOT Accounting 

Method) 

Peak Net Load 
Reduction (Modeled 

Reliability 
Contribution) 

 

Avg Output During 
Top 20 Load Hours 
(ERCOT Accounting 

Method) 

Peak Net Load 
Reduction (Modeled 

Reliability 
Contribution) 

2010 12% 8%  78% 75% 

2011 24% 12%  83% 72% 

2012 13% 6%  80% 72% 

2013 24% 13%  82% 80% 

2014 24% 16%  80% 68% 

2015 18% 13%  81% 76% 

2016 30% 21%  76% 71% 

2017 24% 18%  75% 68% 

2018 20% 16%  76% 70% 

2019 27% 16%  79% 65% 

Average 22% 14%  79% 72% 

This disconnect means that the reserve margin needed to maintain the same reliability will shift. Since the 

reliability contribution is less than the average output during high gross load hours, the reserve margin 

will increase. This disconnect is not new. The 2018 study also used CDR accounting practices, and likewise 

the renewable capacity credit did not match its reliability contribution either. In order to isolate the impact 

of the renewable accounting on changes in MERM from the 2018 study to this study, only the incremental 

disconnect is quantified.  

The magnitude of the incremental disconnect is about 1,800 MW or a 2% increase in reserve margin.23 

Other reserve margin accounting related changes from the 2018 study include the addition of 1,103 MW 

of battery storage capacity. These resources are not given any capacity credit in CDR accounting, but they 

 
22 The modeled peak net load reduction represents the analytical reduction in annual net load peak between gross 
load and gross load minus modeled wind or solar output. Other factors can affect the simulated reliability benefits 
of wind and solar, so the peak net load reduction is only an approximation of the reliability contribution of the 
respective renewable portfolios, but it is more accurate than using an average output methodology. 
23 Increase in counted wind capacity in CDR from values used in the 2018 study to those in this study was 2,728 MW. 
Increase in reliability contribution was approximately 950 MW, resulting in an incremental disconnect of 1,778 MW. 
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provide reliability benefits in the SERVM simulations, offsetting the increase in reserve margin due to 

renewable penetration. The net impact of the resource accounting treatment from the 2018 study to this 

study is an increase in reserve margin of one percentage point. For the higher renewable penetration 

analyzed in this study, the reserve margin accounting was normalized such that the capacity credit of 

incremental renewable resources matched its simulated reliability contribution. Given the complexity of 

reserve margin accounting and reliability contributions, ERCOT commissioned the calculation of Effective 

Load Carrying Capability (ELCC) for each renewable resource category to rigorously quantify the dynamic 

of declining capacity contributions as a function of increasing renewable penetration. This analysis is 

documented in Appendix 2. 

B. SCARCITY PRICING AND DEMAND RESPONSE MODELING 

A number of different types of demand-side resources contribute to resource adequacy and price 

formation in ERCOT.  Table 4 summarizes these resources, explaining how we model their characteristics, 

their assumed marginal costs when utilized, and how they are accounted for in the reserve margin.  We 

developed these assumptions in close coordination with the ERCOT staff, who provided assumptions 

regarding the appropriate quantities for modeling. 

The marginal costs of these demand-side resources are highly uncertain, although the marginal costs we 

report in the table are in the general range that we would anticipate given the sparse data availability.  

Most of these resources including TDSP load management, emergency response service (ERS), and load 

resources (LRs) are dispatched for energy based on an emergency event trigger rather than a price-based 

trigger consistent with marginal cost.  We use ERCOT’s administrative scarcity pricing mechanism, the 

ORDC, to reflect the willingness to pay for spinning and non-spinning reserves in the real-time market.  

We make the simplifying assumption that these resources are triggered in order of ascending marginal 

cost, and at the time when market prices are equal to their marginal curtailment cost, as explained further 

in Appendix 1.E.4 below. 

Energy efficiency (EE) is not explicitly modeled because the load shapes already reflect their projected 

impact as a function of historical energy reduction trends.  These resources are appropriately accounted 

for using the conventions of ERCOT’s CDR report as explained further in Appendix 1.A.1 below.  

Two programs with overlapping response were modeled explicitly in both load and resources: four 

coincident peak (4CP) and price-responsive demand (PRD). Both programs had strong response in 2019 

when the reserve margin was lower than typically experienced. A single model for the aggregate response 

was constructed to gross up the synthetic load shapes. For simulating the respective response, separate 

functions were developed since PRD response varies with price while 4CP is primarily expected to vary as 

a function of load only. At low reserve margins then, PRD response is expected to be higher with the 

corresponding higher prices while 4CP response is the same at all reserve margin levels. 
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Table 4. Summary of Demand Resource Characteristics and Modeling Approach 

Resource Type 
Quantity 

(MW) 
Modeling Approach 

Marginal 
Curtailment 

Cost 

Adjustments 
to ERCOT 

Load Shape 

Reserve Margin 
Accounting 

TDSP Programs 

Energy Efficiency 2,884 Not explicitly modeled. n/a None Load reduction 

Load Management 262 Emergency trigger at EEA Level 1 $2,469 None Load reduction 

Emergency Response Service (ERS) 

30-Minute ERS 691 Emergency trigger at EEA Level 1 $1,372 None Load reduction 

10-Minute ERS 76 Emergency trigger at EEA Level 2 $2,469 None Load reduction 

Load Resources (LRs) 

Non-Controllable 
LRs 

1,172 

Economically dispatch for Responsive 
Reserve Service (most hours) or energy 

(few peak hours). Emergency 
deployment at EEA Level 2 

$2,469 None Load reduction 

Controllable LRs 0 
Currently no controllable LRs modeled 

in ERCOT 
n/a n/a n/a 

Voluntary Self-Curtailments 

4 CP Reductions 1,700 
Load shapes grossed up for projected 
response and corresponding response 

modeled on the resource side 
n/a None 

None; excluded from 
reported peak load 

Price Responsive 
Demand 

Variable 
Load shapes explicitly grossed up for 
expected response. Economic self-

curtailment modeled on resource side 

$5,000 - 
$9,000/MWh 

None 
None; excluded from 
reported peak load 

Sources and Notes: 
 Developed based on analyses of recent DR participation in each program and input and data from ERCOT staff.  See corresponding sections 

in the Appendix for more detail.  
  

C. STUDY SENSITIVITIES AND SCENARIOS 

In addition to the base case analysis described above, we simulated three alternative scenarios and several 

“sensitivity” analyses to inform how the MERM and EORM could vary under different plausible conditions.  

The three scenarios are “High Renewables Penetration,” “Storage Potential at the High Renewables 

Penetration,” and “Lower Equivalent Forced Outage Rate (EFOR)”.  The high renewable penetration 

scenario adds much more wind and solar generation to explore the implications of understating 

renewable penetration in 2024 (or beyond).  The storage scenario evaluates the economic potential for 

batteries using the renewable penetrations in the high renewable scenario. The Lower EFOR study uses 

the class average forced outage rate assumptions from the 2018 study to isolate the impact of more recent 

outage data.  The assumptions for each scenario are summarized in Table 5 below. 
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Table 5. Description of Modeled Scenarios 

Scenario Name Base Case Assumption Alternate Scenario Assumption Expected EORM Impact 

High Renewables 
Penetration 

Only include CDR-
eligible wind and solar 

from CDR 

Include some of the wind and 
solar from the interconnection 

queue that has not met all 
requirements for CDR (15 GW of 

new solar, 5 GW of new wind) 

Downward pressure on 
prices and therefore 

lower EORM 

Storage Potential 
at the High 
Renewables 
Penetration 

1,100 MW of battery 
storage 

Test various battery penetrations 
at MERM from the High 

Renewables Scenario 

 

Lower EFOR 
Last 3 years used to 

populate outage rates 
for all units 

Use class average EFORs from 
2018 study 

2018 modeled EFOR was 
lower, so the reversion 

will decrease EORM 

The other sensitivity analyses that we conducted, defined in Table 6, examine the impacts of: (a) varying 

the assumed cost of building new plants; (b) adjusting the value of lost load (VOLL)24; (c) adjusting the 

likelihood of recent weather years compared to historic values; and (d) varying the associated load 

forecast uncertainty not attributable to weather conditions.  

Table 6. Definition of Non-Modeled Sensitivities 

Sensitivity Base Case Assumption Sensitivity Range 

CONE $93.5/kW-year -25% / +25% 

VOLL $9,000/MWh $5,000 to $30,000/MWh 

Weighting of Historical 
Weather Years 

Equal probability assigned to all 
40 weather years 

Equal probability assigned to the last 

15 weather years 

Forward Period and Load 
Forecast Uncertainty 

4 years 0 years to 3 years 

 
24 Our VOLL sensitivity adjusts the VOLL but it does not adjust the ORDC, which is set by the Public Utility Commission 

of Texas based on the system-wide offer cap and not directly set based on customer VOLL.  Because the ORDC curve 

does not change, the VOLL sensitivity does not affect market prices and the MERM (which is solely based on market 

prices) does not change.  The EORM is affected because the higher VOLL implies customers place a higher value on 

avoiding loss-of-load events and therefore prefer higher reserve margins, all else equal.  
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D. MODEL VALIDATION 

In addition to carefully constructing realistic inputs to the model, we validated that the model’s outputs 

are reasonable by comparing them to real-world market observations. In the 2018 study, Astrapé and 

Brattle introduced calibration efforts to ensure modeled economic and reliability results corresponded to 

historical conditions. The approach primarily looked at Peaker Net Margin (PNM); careful tuning of the 

annual market price duration curve was not performed. Since the economics of the marginal resource 

were primarily influenced by hours where the market cleared above the dispatch cost of CTs, this was 

adequate. In the 2020 EORM study, hybrid battery and solar resources are a potential marginal resource, 

making the market prices throughout the year critical to the conclusions of this analysis. Also, the higher 

penetrations of renewable resources are expected to make low price conditions more impactful. For this 

calibration, a number of benchmarks were considered: 

• Market price duration curve 

• Monthly peak and off-peak pricing 

• Scarcity pricing timing, magnitude, and frequency 

The typical drivers of the market prices throughout the year are fuel prices, the underlying reserve margin, 

the resource mix and economic parameters of generators, and generator forced outage rates. Through 

the calibration process, a number of other drivers were identified including planned and maintenance 

outages, day ahead load and wind forecast error, and generator bidding strategies.  

An example of the outcome of the SERVM calibration for 2019 is shown below in Figure 3. The chart 

reflects the cumulative energy margin for CTs with a 10,000 btu/kwh heat rate. The historical load, 

renewable profiles, and generators were input into the model. The simulations were run for five iterations 

of random generator outages, market support, and day ahead forecast error. Planned and maintenance 

outages were modeled with historical averages rather than forcing exact 2019 conditions. The modest 

slope in most months of the years reflect limited energy margins for CTs when scarcity is not present in 

the market. The steep ramp during the summer reflects the historical and modeled scarcity conditions 

where market prices approached $9,000/MWh. Another period of increasing energy margins starting 

around hour 5,800 reflects September conditions when loads remained high, but maintenance and 

planned outages began to take place.  
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Figure 3. SERVM Energy Margin Calibration for 2019 

 

Not all years calibrated this well, but the intent of the process was not to force the model to replicate 

history but to understand how random drivers may influence market prices. In 2018 for instance, reserve 

margins were relatively low, but energy margins did not reflect significant scarcity. This was primarily 

driven by better than expected performance of conventional generation as shown in Table 7. 

Table 7. Average Megawatts Forced Offline for Modeled Versus Historical in Top 3 Load Days of 2018 

Date 
Modeled Forced Outages 

(MW) 

Historical from NERC 

Generating Availability Data 

System  

(MW) 

7/23/2018 3,231 2,272 

7/19/2018 3,383 1,891 

7/20/2018 3,041 2,141 

More distant history also did not calibrate as well. In 2011-2014, the modeled energy margins were mostly 

lower than those experienced in history. This may be due to the retirement of old generating capacity 

with high heat rates that may have set market prices for some hours in those years. Figure 4 below 

compares the simulated and historical CT net energy revenues for 2011 to 2019.   
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Figure 4. Modeled vs. Actual Combustion Turbine Net Energy Revenues 

 

Future enhancements to the commitment and dispatch practices in ERCOT were not captured in these 

simulations. Significant price reduction benefits of more advanced optimization have been quantified by 

the Independent Market Monitor for ERCOT.25 If these benefits are realized, the MERM would likely shift 

downward. 

 

  

 
25 See Puct 2019b. 
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III. RESULTS 

This section first presents the results of our study under base case assumptions, including the estimated 

2024 MERM and EORM and the associated reliability statistics, and then describes how the results could 

differ under alternative market conditions captured in the scenarios and sensitivities described above.  

This section explains why the MERM and EORM results differ with respect to the result from the 2018 

study. 

A. MARKET EQUILIBRIUM RESERVE MARGIN 

We describe here the anticipated equilibrium conditions under ERCOT’s current market design by: (1) 

estimating the market equilibrium for our base case assumptions and several sensitivity cases; (2) 

summarizing the volatility in realized prices and net revenues across reserve margins; and (3) describing 

the likely year-to-year variation in realized reserve margins. 

1. AVERAGE EQUILIBRIUM RESERVE MARGIN 

As described above, the MERM occurs at the level of capacity where the net revenues of new capacity 

from our simulations just equal the marginal costs of capacity, which is equal to CONE.  As shown in Figure 

5 below, CT net energy revenues tend to decrease with higher reserve margins due to lower energy prices 

and few scarcity hours that occur when there is additional supply available on the system.  We find that 

the MERM, where marginal costs of new capacity intersect with the marginal revenues for that capacity, 

is 12.25%. 

Figure 5. ERCOT Projected 2024 Market Equilibrium Reserve Margin 
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However, the single average MERM of 12.25% does not provide a complete story of the expected 

reliability of the ERCOT system or the expected revenues for new entrants.  In the remainder of this 

section we discuss the volatility in realized prices in our simulations and the year-to-year variability in the 

reserve margin.  In Section 0 we compare this market equilibrium to an economically optimal reserve 

margin, and in Section C we examine the sensitivity of our analysis to uncertainties in future market 

conditions. 

2. VOLATILITY IN REALIZED PRICES AND GENERATOR REVENUES 

Our estimate of the average MERM is strongly influenced by the assumed peak load and generator outage 

probability distributions, especially the most extreme scarcity events at the tails of those distributions.  As 

the reserve margin declines, these tails become more likely to produce scarcity resulting in high prices, 

high system-wide costs, and high generator margins. 

Figure 6 shows the range of annual energy prices (left) and marginal unit net energy revenues (right) for 

the base case across the reserve margins analyzed.26  The upper percentile curves show that prices and 

supplier margins in the tails of the distribution can be much higher in any given year than their median or 

overall weighted average values. 

Figure 6. Distribution of Spot Energy Prices (Left) and Net Energy Revenues for a Marginal Unit (Right)  

 
Note: Marginal Unit Net Energy Revenues represent net revenues from added CTs.  

The years reflected in the tails of the distribution have a substantial effect on the MERM.  For example, at 

the base case MERM value of 12.25%, we estimate that once per decade (90th percentile) energy prices 

would exceed $65/MWh (78% higher than the median price at this reserve margin).  Once every two 

 
26 Marginal Unit Net Energy Revenues represent net revenues from added CTs. 
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decades (95th percentile), prices would exceed $81/MWh (123% above the median price).  Similarly, new 

gas plant net revenues in the median year are only $62/kW-year, which is just 66.5% of CONE, but 

occasional high-priced years would elevate the average to CONE.  Assuming full exposure to spot market 

prices (i.e., no hedging) net revenues of marginal units would exceed $246/kW-year (about 2.6 times 

CONE) once in a decade (90th percentile) and $353/kW-year (about 3.8 times CONE) once every two 

decades (95th percentile).27 All simulation results reflect scarcity pricing rules that reduce the systemwide 

offer cap from $9,000/MWh to $2,000/MWh when net operating profit exceeds three times the cost of 

new entry (assumed at $93.5/kw-yr). 

3. YEAR-TO-YEAR RESERVE MARGIN VARIABILITY  

The uncertainty in future load growth can have significant impacts on reserve margins and reliability.  Our 

base case simulations assume that the market invests based on the expected load growth and resulting 

prices on a four-year forward basis.  However, realized load growth will generally differ from four-year 

expectations, resulting in a range of reserve margins that differ from the equilibrium reserve margins 

shown above. 

We simulate this effect by assuming alternative load growth projections based on the distribution of non-

weather forecast error in projecting future load, as described in Appendix 1.A.1 below.  Even if the four-

year-ahead planning reserve margin is exactly at the market equilibrium of 12.25%, realized shorter-term 

planning reserve margins can be higher or lower as load growth uncertainty resolves itself over the next 

four years.  The planning reserve margins projected going into each summer would thus vary around the 

equilibrium from 10.7% to 13.8% in 50% of all years and drop below 9.25% approximately once per decade 

(i.e., below the 10th percentile).  Once weather-related load fluctuations are considered as well, after-the-

fact realized reserve margins will vary even more substantially and will drop below 9.4% approximately 

once per decade (i.e., below the 10th percentile).  However, realized reserve margins, particularly the lows 

that largely reflect realized weather extremes, should not be compared to more familiar planning reserve 

margin benchmarks. 

Variability in reserve margins may be moderated by short lead-time resources (including switchable units, 

mothballs, uprates, and demand response) that can exit or enter the market as expectations change 

between four years forward and delivery.  By not simulating the effects of market exit and entry by short-

term resources, our results would tend to overstate the range of realized reserve margins.  However, our 

simulations do not account for the countervailing effects of additional supply-side uncertainties, such as 

unanticipated retirements, construction delays, and lumpiness in uncoordinated new entry, which would 

tend to increase the variability of reserve margins.  Furthermore, uncertainties about anticipated fuel 

prices, the capacity contribution of renewables, and other modeling assumptions would further widen the 

 
27 However, generators are generally not fully exposed to spot markets, since they hedge by selling most of their 
output in forward markets.  Forward prices reflect ex ante market expectations of all possibilities rather than spot 
realizations.  Selling forward dramatically smooths revenues closer to the expected values we estimate. 
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distribution of realized reserve margins.  Overall, we estimate that with a four-year forward period, load 

forecast uncertainty would result in equilibrium reserve margins ranging from 9.25% to 15.25% (10th to 

90th percentiles). 

4. COMPARISON TO 2018 STUDY RESULTS 

The 2018 study estimated a market equilibrium reserve margin for 2022 of 10.25%, which is 2.00 

percentage points lower than current base case results of 12.25%. There are several offsetting factors that 

result in a 2.00% net change in the MERM, shown in Figure 7 below. While changes in the ORDC and forced 

outage rate assumptions increase the MERM, these changes are somewhat offset by an increase in 

renewables, and a change to the reference technology from a blended CT and combined-cycle to just a 

CT. 

The largest drivers that had upward effects on the MERM are the higher ORDC, the higher forced outage 

rates for conventional generators, and renewable accounting procedures. The economic effects of higher 

renewable penetration and the composition of the reference technology reduced the MERM.  While 

sensitivity simulations were not performed to assess the implications for a change in reference technology 

to an alternative gas-fired technology, the small difference in capital costs between combined cycles and 

combustion turbines is likely slightly more than offset by the production cost savings of the more efficient 

technology. This likely contributes to a small reduction in the MERM. 

Since the base case uses the renewable accounting methodology applied in ERCOT’s CDR development 

process, any discrepancy between the renewable capacity in the CDR and the reliability contribution in 

the simulations will also affect the MERM. The largest discrepancy between the capacity credit for 

incremental resources was for wind resources. The net change in capacity credit for wind in the CDR 

between the two studies was 2,806 MW, while the reliability contribution of wind only changed by 1,142 

MW in the SERVM simulations. Offsetting this effect was the fact that storage resources were not given 

any capacity credit in the CDR, but in the simulations they did provide reliability value. The net effect of 

these accounting practices is a 1.00% increase in MERM. 
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Figure 7. Drivers of the Market Equilibrium Reserve Margin Change from 2018 to 2020 Study 

 
Given the MERM in this study is 2.00 percentage points higher than the MERM found in the 2018 study, 

intuition suggests that ERCOT would be more reliable at MERM now. However, since the one percentage 

point increase in forced outage rates and one percentage point renewable accounting impact do not 

correspond to reliability improvements, projected reliability actually stayed the same between the 2018 

study MERM and the 2020 study MERM. Absent the administrative boost to ORDC prices, reliability would 

have degraded at MERM. Since the effects reducing MERM are projected to escalate with additional 

renewable, it will be important to carefully monitor projected reliability going forward. 

B. ECONOMICALLY OPTIMAL RESERVE MARGIN 

1. SYSTEM COST-MINIMIZING RESERVE MARGIN 

The EORM is the level of capacity that minimizes total system capital and production costs.  As shown in 

Figure 8 below, we estimated the annual average of reliability-related costs over a range of planning 

reserve margins and found the EORM under base case assumptions to be 11.00%. 

At the lowest reserve margins analyzed, the average annual reliability costs are high, driven by the cost of 

firm load shedding (red bar), regulation and reserve scarcity (grey bars), and production costs of 

emergency and conventional resources.  As reserve margins increase, total reliability costs drop due to 

the decrease in scarcity events and production costs.  These costs decrease more quickly than the 

increases in capital costs associated with adding additional CTs resulting in a decrease in total system 

costs.  This continues at higher reserve margins until the “economically optimal” quantity of capacity has 
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been added at a reserve margin of 11.00%.  After crossing this minimum cost point, the capital costs of 

adding more CTs exceed the benefits from reducing reliability-related costs, so total costs increase. 

Figure 8. Total System Costs across Planning Reserve Margins 

 
Notes: 
 Total system costs include a large baseline of total system costs that do not change across reserve margins, including $13.4B/year 

in transmission and distribution (assumption not updated from 2018 study), $7.5B/year in external system costs, and $5.2B/year 
in production costs. 

The total cost curve shown above has a shape similar to those we have observed in value-of-service 

studies for many other electric systems.28  The curve is relatively flat near the minimum average cost point, 

indicating that expected total costs do not vary substantially between reserve margins of 10%–12%.  

However, the lower end of that range (10%) is associated with much more uncertainty in realized annual 

reliability costs, which we discuss in the next section, and a much larger number of severe, high-cost 

reliability events.  At the 12% reserve margin, a greater proportion of total annual costs is associated with 

the costs of adding new units (which has less uncertainty), and a smaller proportion of the average annual 

costs are from uncertain, low-probability, but high-cost reliability events.29 One notable difference from 

 
28 For example, see Poland (1988), p.21; Munasinghe and Sanghvi (1988), pp. 5–7 and 12–13; and Carden, 
Pfeifenberger, and Wintermantel (2011). 
29 Reliability across planning reserve margins is discussed in Section 1. 
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the components of the EORM curve is the smaller magnitude of production cost savings. Since CTs have 

relatively high dispatch costs, increasing penetration does not provide much incremental production cost 

savings. While there is significant capacity in ERCOT with dispatch costs higher than that of the marginal 

CT additions, the differential is dwarfed by the difference in costs between CTs and the emergency 

products. At the capacity factor of the marginal CTs of 9%, a cost differential of $8/MWh between the CT 

and an older gas generator would produce annual savings of only $6/kw-yr. In contrast, avoiding a single 

hour of firm load shed would provide $9/kw-yr. Since there are several emergency categories that are 

activated multiple times per year when the system reserve margin is near the EORM, the economic 

benefits of the CT are more concentrated in emergency savings than in production cost savings. 

At each reserve margin level in Figure 8, we show the weighted-average costs across all 10,000 annual 

simulations for several components of system costs that change with reserve margins.  We estimated 

each of the components of system costs based on the following assumptions: 

• Marginal CT Capital Costs are the annualized fixed costs associated with building CT 

plants at a cost of $93.5/kW-year in the Base Case. 

• Production Costs (Above $5.2 billion per year Baseline) are total system production costs 

of all resources above an arbitrary baseline cost of $5.2 billion.  We show only a portion 

of total system costs as an individual slice on the chart in order to avoid having production 

costs dwarf the magnitude of other cost components and subtract the same $5.2 billion 

at all reserve margins shown. Production costs decrease at higher reserve margins 

because adding efficient new gas CTs reduces the need to dispatch higher-cost peakers. 

• External System Costs (Above Baseline) include production and scarcity costs in 

neighboring regions above an arbitrary baseline, which drop by a small amount with 

increasing reserve margins because ERCOT will rely less on imports from high-cost 

external peakers during internal scarcity events, and may be able to export more supply 

during external scarcity events.30 

• Emergency Generation is the price-driven dispatch of units outputting at high levels 

above their summer peak ratings at an assumed cost of $1,372/MWh, see Appendix 1.E.3. 

• 10-Minute and 30-Minute ERS is the cost of dispatching these resources during 

emergency events at assumed costs of $2,469 and $1,372/MWh for 10-minute and 30-

minute ERS respectively, see Appendix 1.C.1. 

• Non-Controllable LR costs reflect the cost of administratively re-dispatching LRs from 

supplying Responsive Reserve Service (RRS) to supplying energy at a cost of $2,469/MWh 

during emergencies, see Appendix 1.C.2. 

 
30 The baseline level of external production costs is not included in our total system cost.  This differs from our 
reporting of ERCOT-internal production costs, for which we do include baseline costs (that do not vary with reserve 
margin) in order to produce a meaningful total cost estimate for the ERCOT system. 
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• TDSP Load Management costs are incurred when ERCOT administratively orders these 

demand-side resources to curtail during emergencies at an assumed cost of $2,469/MWh, 

see Appendix 1.E.2. 

• Price Responsive Demand costs are determined by the hourly market price in the hours 

during which the demand response occurred. 

• Spinning and Non-Spinning Reserve Scarcity costs are calculated as the area under the 

ORDC curve, calculated assuming load would be shed at X = 1,000 MW, see Appendix 

1.E.4. 

• Regulation Scarcity costs are calculated according to the Power Balance Penalty Curve 

(PBPC) assuming that this curve accurately reflects the marginal cost of running short on 

regulating reserves, see Appendix 1.E.5. 

• Firm Load Shedding costs are the customer costs imposed during load-shed events at a 

cost at the assumed VOLL of $9,000/MWh. 

2. EXPOSURE TO EXTREME SCARCITY EVENTS 

The economic results shown above assume risk neutrality with respect to the uncertainty and volatility of 

reliability-related costs.  Figure 8 compares total costs at different reserve margins as the probability-

weighted average of annual reliability costs for all 10,000 simulation draws.  However, there is substantial 

volatility around the average level of possible reliability cost outcomes.  Most simulated years will have 

very modest reliability costs, while a small number of years have very high costs.  These high-cost 

outcomes account for the majority of the weighted-average annual costs shown as the individual bars in 

Figure 8 above. 

Figure 9 below summarizes this risk exposure by comparing the weighted-average costs for different 

reserve margins (red line, which is equal to the height of the individual bars in Figure 8) to annual costs 

under the most costly possible outcomes, represented by the 75th, 90th, and 95th percentiles of annual 

reliability costs across all 10,000 simulated scenarios. 

Considering the higher-cost uncertainty exposure at lower reserve margins, some policymakers prefer 

reserve margins to exceed the risk-neutral economic optimum.  As the simulation results show, a several 

percentage point increase in the reserve margin would only slightly increase the average annual costs, but 

more significantly reduce the likelihood of experiencing very high-cost events.  Total average costs change 

by a relatively modest amount over a range of planning reserve margins (e.g., average system costs 

increase by just $5 million with an increase in reserve margin from 10% to 15%).  However, lower planning 

reserve margins have a significantly larger uncertainty in reliability costs and the likelihood of high-cost 

outcomes than can be encountered in any particular year.  For example, at a 7% reserve margin, costs are 
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expected to be $2.2 billion higher than average once every ten years, while at 11% they would increase 

with a similar frequency by $1.2 billion.31 

Figure 9. Year-to-Year Possible Realizations of Total Annual System Costs 

 
Notes: 
 Total system costs include scarcity-related and production costs (that decrease with reserve margin), generation capital costs 

(that increase with reserve margin), and T&D costs (which remain constant across reserve margins.  Additional detail on the 
individual components of total system costs is available in Section 1. 

C. SYSTEM RELIABILITY 

In this section, we compare the expected reliability of the market equilibrium reserve margin to traditional 

reliability metrics. 

1. PHYSICAL RELIABILITY METRICS 

At a market equilibrium reserve margin of 12.25% ERCOT can expect a probability-weighted average of 

0.5 loss-of-load events (LOLE) per year.  Our simulations find that there is likely to be a loss-of-load event 

about every two years in the range of 1,541 MW of load being shed for 2.9 hours on average, for a total 

expected unserved energy of 4,507 MWh.32  Such events would be more frequent, longer, and deeper at 

lower reserve margins and less so at higher reserve margins. Figure 10 depicts how three physical 

 
31 These values are calculated as the difference between the weighted average and 90th percentile total system 
costs at 7% and 11% reserve margins. 
32 Load, duration, and energy are calculated for each firm load shed event which occurs approximately once every 
two years. The LOLH and EUE in Figure 10 are annual metrics. 
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reliability metrics vary with reserve margin: (1) LOLE on the left; (2) loss of load hours (LOLH) in the middle; 

(3) Normalized Expected Unserved Energy (EUE) on the right.33 

Figure 10. Reliability Metrics that Vary with Reserve Margins 
        (a) LOLE                                             (b) LOLH                                                      (c) EUE 

 
Notes: Reflects Base Case assumptions, including 4-Year Forward LFE, and equal weather weights of all 40 weather years. 

Table 8 shows the same information in tabular form, along with additional information describing the 

magnitude of outage events when they occur. 

 

 

 

 

 

 

 

 
33 For our simulations, the reported reliability metrics are the mean for 10,000 simulations (40 weather years, 5 load 
error levels, 50 outage draws).  A LOLE event is recorded for each day with at least one hour of lost load.  LOLH is 
calculated as the total hours in the simulation with lost load, without accounting for persistence of a particular 
outage event.  Normalized EUE is calculated as the expected quantity of unserved energy over the year divided by 
the net energy for load multiplied by 1,000,000.   
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Table 8. Detailed Reliability Metrics across Planning Reserve Margins in Base Case 

Reserve 
Margin 

Total Annual Loss of Load Average Outage Event 

LOLE LOLH EUE Duration Energy Lost Depth 

(%) (events/yr) (hours/yr) (MWh) (hours) (MWh) (MW) 

4% 17.61 79.45 209,338 4.51 11,890 2,635 

5% 11.41 48.76 120,154 4.27 10,532 2,464 

6% 7.39 29.93 68,964 4.05 9,329 2,304 

7% 4.79 18.37 39,583 3.83 8,264 2,155 

8% 3.10 11.27 22,720 3.63 7,320 2,015 

9% 2.01 6.92 13,040 3.44 6,484 1,885 

10% 1.30 4.25 7,485 3.26 5,744 1,762 

11% 0.84 2.61 4,296 3.09 5,088 1,648 

12% 0.55 1.60 2,466 2.92 4,507 1,541 

13% 0.35 0.98 1,415 2.77 3,992 1,441 

14% 0.23 0.60 812 2.62 3,536 1,348 

15% 0.15 0.37 466 2.49 3,132 1,260 

16% 0.09 0.23 268 2.35 2,775 1,179 

17% 0.06 0.14 154 2.23 2,458 1,102 

18% 0.04 0.09 88 2.11 2,177 1,031 

Most US areas set reliability metrics on the “1-in-10” standard, i.e., a probability-weighted average of 0.1 

loss-of-load events (LOLE) per year.34  Under base case conditions a 15.75% reserve margin would be 

required to achieve 0.1 LOLE, which is 3.5 percentage points higher than MERM.  

All of the reliability metrics shown above reflect the average over many possible outcomes at a given 

reserve margin.  Average statistics provide a convenient summary of a large amount of data, but they can 

obscure the wide distribution of possible outcomes around the average, as shown in the sections above.  

Realized reliability in any given year will depend strongly on the weather and on generation availability. 

To illustrate the distribution of possible outcomes, Figure 11 below shows how reliability varies with 

weather, as measured by the annual expected unserved energy.  The teal bars show the total MWh of 

load shed during each of the 40 weather years for the Base Case simulations at a 12.25% reserve margin 

corresponding to the market equilibrium reserve margin.  The reoccurrence of 2011 weather conditions 

could lead to almost 17,080 MWh of expected involuntary curtailment of firm load, far above the equal-

probability-weighted average of 2,171 MWh over all 40 years depicted by the blue horizontal line.  By 

contrast, 25 out of the 40 years have much milder weather, with substantially less load shed than the 

average.  Thus, the actual reliability will vary.  In addition, the expected value of reliability would differ if 

 
34 LOLE standards refer only to loss-of-load events due to shortages of bulk power supplies. Customer outages caused 
by disturbances on distribution infrastructure are much more frequent and longer in duration.    
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different probability weights were assigned to the various weather patterns, as discussed in the next 

section. 

Figure 11. Expected Unserved Energy by Weather Year at 12.25% Reserve Margin 

  
Notes: Figure reflects Base Case 4-Year forward LFE assumption and the Base Case equal weather weight for all 40 years. 

2. EMERGENCY EVENT FREQUENCY 

Figure 12 summarizes the frequency of six types of emergency events for the base case simulations as a 

function of the reserve margin. The emergency events, in increasing order of severity, are: (1) the 

economic dispatch of emergency generation (red line); (2) calling 30-minute ERS (dark gray line); (3) calling 

TDSP load curtailments (dark blue line); (4) re-dispatching LRs from RRS to energy (light gray line); (5) 

calling 10-minute ERS (light blue line); and, finally, (6) shedding firm load (light red line).  As shown, at a 

15.75% reserve margin corresponding to 1-event-in-10-years (0.1 LOLE), emergency generation would be 

dispatched approximately one time a year on a weighted-average basis across all simulated years.  At a 

reserve margin of 8.5%, the system faces two load shed events per year on average, most years without 

load shed events and some years with several.  At the same 8.5% reserve margin, the various types of 

demand resources would have to be called from two to four times on average each year (depending on 

the resource type), and emergency generation would be dispatched approximately nine times on average 

each year.  At the market equilibrium reserve margin of 12.25%, emergency generation would be 

dispatched about three times on average per year, and other demand resources would average about one 

time per year. 

All types of emergency events become more frequent at lower reserve margins, but the frequency of load 

shed and emergency generation decline faster than several of the other categories of emergency events. 

Some of the emergency products in ERCOT are summer-only so any reliability events that occur in non-

summer months will only entail emergency generation and load shed. 
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Figure 12. Average Annual Frequency of Emergency Events 

 
 Notes: Results from Base Case (4-Year Forward LFE, equal weighting of weather years). 

 Inflections in the series data reflect the fact that some emergency procedures are not available in all seasons or they  
have other call constraints. 

D. SENSITIVITY OF MARKET EQUILIBRIUM RESERVE MARGIN TO STUDY ASSUMPTIONS 

If investors have different beliefs about load and other factors affecting revenues, or if they face different 

costs, the MERM could differ from our estimates.  Here we examine several important uncertainty factors 

affecting the MERM, including: (1) the amount of intermittent renewable generation installed; (2) the 

reference technology moving to four-hour battery storage; (2) the forced outage rate of conventional 

generators; (3) the assumed cost of building new natural gas-fired plants; (3) the value of lost load; (4) the 

assumed probabilities of the historical weather years used to model hourly loads and renewable 

generation; (5) and load forecast uncertainty.  

Changing the values for these variables over a plausible range results in market equilibrium reserve 

margins ranging from 10.25% to 13.25%.  The actual uncertainty could be even wider, however, when 

considering other possibilities such as extreme weather events, broader distributions of intermittent 

renewable generation coinciding with the highest load years (rather than always taking the 2011 wind 

patterns with 2011 loads, for example), or different beliefs about future market and regulatory conditions.  

This range of equilibrium reserve margins would produce a range of reliability outcomes, which we 

estimate to be 0.32 to 1.17 LOLE. 
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1. RENEWABLES PENETRATION SCENARIOS 

The base case analysis assumes 37.4 GW of wind and 16 GW of solar online by 2024, based on the existing 

fleet and planned resources that have met the criteria to be included in the CDR.  Our alternative “High 

Renewables” scenario adds wind and solar capacity that has not yet met all the requirements to be 

included in the May 2020 CDR, resulting in an additional five GW of wind and 15 GW of solar.   

All else equal, adding renewable generation would decrease prices; but lower prices should force out 

conventional generation, until the market re-equilibrates at approximately the same reserve margin.  

However, we do estimate that equilibrium reserve margins would decrease slightly with higher renewable 

penetration because the net load duration curve becomes steeper.  A steeper net load duration curve 

causes prices to fall faster from the peak hour.  That would reduce generators’ net revenues, so reserve 

margins have to tighten slightly to re-equilibrate, with a slight increase in high-priced ORDC hours. As 

discussed in the Executive Summary, the load shape impact of increasing renewables is becoming 

significant given projected 2024 penetrations. Solar capacity additions to date have not materially 

steepened the net load shape since solar afternoon output has not reduced the net load below the load 

after sunset. Once the net load in late afternoon hours is below the post-sunset net load, subsequent 

additions of solar will make the net load much steeper late in the day. This steep net load shape means 

that few hours will be close to the daily peak load, and correspondingly few hours will be close to the 

annual peak load. In the 2018 study, the High Renewables scenario reduced the MERM by 1 percentage 

point. In this study, a commensurate 20 GW increase in renewable capacity reduces the MERM by 2.00 

percentage points, as illustrated in Figure 13.    

Figure 13. Market Equilibrium Reserve Margin Sensitivity to Renewable Penetration 
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2. STORAGE POTENTIAL AT THE HIGH RENEWABLES PENETRATION  

The net load shape effect of increasing renewable resources provides an opportunity for short duration 

resources to provide capacity value. The area under the net load curve during peak days that could be 

served by four-hour duration resources increases from the penetration expected in the base case in 2024 

to a higher renewable scenario which includes an additional 15 GW of solar capacity.  An illustration of 

this shift is shown in Figure 14. It is important to note that the 2024 base case net load shape has many 

hours near the daily peak which results in limited opportunity for short-duration batteries to provide 

energy arbitrage. It was for this reason that we only studied battery potential for a high renewable 

scenario. 

Figure 14. Net Load Shape Impact of Solar Generation 

 

To quantify the capacity of storage that can contribute to reliability, the area under each net load curve is 

analyzed. The area under the series labeled ‘Gross Load Minus Wind’ within one GW of the daily net load 

peak is approximately 1.6 GWh. This means that one GW of load can be served reliably with 1.6 hours of 

energy from a battery resource. Within two GW of the daily net load peak a longer duration is required 

and that area represents 2.1 hours of energy. Figure 15 contains a visual illustration of this example. The 

area under the curve for the ‘Gross Load Minus Wind’ series at four-hours of duration corresponds to 

8,000 MW of capacity and is shown as the far left point on Figure 16.  
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Figure 15. Battery Storage Duration Analysis Example 

 
Performing this calculation for a wide range of solar penetrations yields the remaining points on this 

series. Initial incremental solar flattens the net load shape, reducing the potential for storage to supply 

reliability to ERCOT. At approximately 30 GW of total solar penetration, the net load shape begins to 

steepen and storage potential begins to increase. In the high renewable penetration scenario (additional 

15 GW of solar and 5 GW of wind added to the system) analyzed, approximately 10 GW of four-hour 

battery storage has the potential to supply reliability value to ERCOT. 

Figure 16. Storage Potential to Contribute to Reliability 

 

High Renewable 
Penetration 

Scenario 
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Example charging and discharging schedules, in Figure 17, illustrate the flatness or steepness of the 

respective daily load shapes under different solar penetrations. 

Figure 17. Storage Charging Potential 

 

Since the load shape in the 2024 Base Case did not support significant incremental short duration storage 

capacity, all economic analysis of batteries was performed with the portfolios from the 2024 High 

Renewable scenario. The economic opportunity quantified in the following sections would be lower for 

batteries in the Base Case although the magnitude of the difference was not quantified.  

The economic opportunity for battery storage is limited by the daily arbitrage opportunity throughout the 

year. The significant penetrations of renewable resources in ERCOT create frequent low market price 

hours where most conventional generation is either turned off or dispatched near minimum. During these 

periods, renewable generation can even be curtailed. The bidding strategies of renewable generator 

owners may entail bidding at negative prices since they have a financial incentive in terms of tax credits 

to continue to produce. Batteries are able to charge during these periods and capture significant arbitrage 

opportunities. To assess the potential for batteries to earn an economic return in future high renewable 

scenarios, the bidding behavior of these resources must be modeled. The historical relationship between 

curtailment and the average minimum zonal price is reflected in Figure 18.  
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Figure 18. Historical Relationship Between Curtailment and the Average Minimum Zonal Price 

 

Unfortunately the behavior is likely influenced by penetration and composition of renewable resources 

that will be on the system in the future and extrapolating from historical relationships is challenging. 

Assuming that market prices in these low net load periods will continue to be correlated to system 

renewable curtailment, the historical relationship was modeled in SERVM. A sensitivity reflecting 

moderation of negative pricing bidding strategies demonstrated that energy margins for battery resources 

could decline by 10%. 

Even with frequent negative pricing, the economic arbitrage opportunity is still limited and declines as the 

penetration of storage increases. On days in which combined-cycle generators are on the margin in low 

load hours and CTs are on the margin in high load hours, the arbitrage opportunity is less than $10/MWh 

with gas prices below $3/MMBtu. Simulations of mild weather years with a reserve margin near MERM 

suggest energy arbitrage opportunities over the course of the year approaching $30/kw-yr. After inclusion 

of ancillary service market opportunity and scarcity pricing periods, the economic margins of the first 

tranches of energy storage exceed those of marginal CTs, but decline as the penetration increases. As 

shown in Figure 19, with capital carrying costs of $147/kw-yr, the economic potential for batteries at the 

high renewable penetration is only 2,100 MW, and approximately 1,100 MW of batteries is already 

expected to be in the system in 2024. This opportunity also presumes that other conventional resources 

would economically retire to maintain the system reserve margin near MERM. Otherwise, if reserve 

margins increased with increasing penetration of storage, returns would drop much faster. If battery 

capital costs decline to $115/kw-yr, up to 6.5 GW of incremental 4-hour battery capacity could be 

economic at the high renewable penetration. 
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Figure 19. Storage Charging Potential at the High Renewable Penetration 

 

3. COST OF NEW ENTRY SENSITIVITY 

The base case simulations assume that a natural gas-fired CT is the marginal resource with industry 

standard assumptions for capital costs.  However, industry experience suggests that there is a range of 

uncertainty around technology cost estimates.   

Figure 20 shows the impact of varying CONE from −25% to +25% relative to our base assumptions.  The 

base case CONE estimate was adapted from a Brattle Group study from 2018.35 A more recent report from 

Lazard gives a range of estimates for installed capital costs with a lower end of $700/kW.36 This is 

approximately 22% lower than the comparable installed cost in the Brattle report. Accordingly, we 

selected a range of -25% to +25% relative to our base assumptions. Overall, the MERM could vary over a 

range of 11.25% to 13.25% depending on the range of CONE uncertainty. 

 

 

 

 

 
35 See Newell, et al. (2018 a) 
36 See Lazard (2020) 
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Figure 20. Market Equilibrium Reserve Margin Sensitivity to Cost of New Entry 

   

 

4. PROBABILITY WEIGHTING OF WEATHER SENSITIVITY 

The high impact of weather on net energy revenue means that different weather expectations will 

influence the market equilibrium reserve margin.  The base case assumes equal probability for all 40 

weather years because 40 years should be a sufficient sample of the underlying distribution, assuming 

that distribution is representative of future weather patterns.  This reliance on long history is consistent 

with the EORM Manual.  However, more recent weather has, on average, been hotter (especially in 2011) 

and may be assumed to be more representative of future weather, as discussed in Section D above.  

Assuming accordingly that each of the last 15 weather years has a 6.66% chance of reoccurring (with 0% 

weight on each of the prior 25 years) leads to higher simulated prices and reliability events at a given 

reserve margin; but the higher prices would attract more investment, resulting in a 1% higher market 

equilibrium reserve margin of 13.25%.  With that higher MERM protecting against the effects of hotter 

weather, the simulated reliability is approximately the same as in the base case. 

5. FORWARD PERIOD AND LOAD FORECAST UNCERTAINTY SENSITIVITY 

In our base case analysis, we assume that all future supply decisions must be locked in four years in 

advance, approximately consistent with the lead time needed to construct new natural gas-fired 

generation resources.  However, unlike weather-related load uncertainty, non-weather load forecasting 

error (LFE) increases with the forward period.  The forward period may increase if investors require a 

longer planning period and decrease if there are significant short-term resources (such as demand 

response, switchable units, mothballed units, and even renewable resources) to respond more quickly to 
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market conditions than traditional new builds.  Depending on the expected forward periods the market 

equilibrium will vary from 11.25% to 12.25%. 

6. SUMMARY OF SENSITIVITIES 

Our estimate of the MERM is sensitive to a number of study assumptions as explained in previous sections, 

and summarized in Figure 21 and Table 9.  As shown in the table, the MERM is between 10.25% and 

13.25% for all sensitivities. 

The change in the VOLL is not considered to shift the operating reserves demand curve (ORDC) and will 

not affect the MERM.37  Moving from a four-year LFE forward period to no forward period reduces the 

MERM by one percentage point. Each one-year increase in the forward period increases the MERM by 

0.25%. Weighting more recent weather years more heavily increases MERM since recent data exhibits 

higher loads on average. And the effects of CONE pricing are symmetrical, but even a reasonably large 

shift of 25% only moves MERM by one percentage point. 

Figure 21. Sensitivity of the Market Equilibrium Reserve Margin to Study Assumptions 

 
Notes: Varying the VOLL is not shown because it does not affect the MERM.  

 

 
37 The ORDC is discussed in Appendix 1.E.4; varying the VOLL to range from $5,000 to $30,000 changes the EORM to 
range from 10.25% to 13.25%, respectively. 
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Table 9. Sensitivity of the Market Equilibrium Reserve Margin to Study Assumptions  

Scenario/Sensitivity 

Market 
Equilibrium 

Reserve Margin 
(%) 

Base Assumptions Low/High Sensitivity 

Base Case 12.25   

Vary CONE 11.25 – 13.25 $93.5/kW-yr $70.1 - $116.9/kW-yr 

Vary VOLL 12.25 $9,000/MWh $5,000-$30,000/MWh 

Vary Probability of Weather 
Years 

13.25 
Equal probability to 
all 40 weather years 

Equal probability to 
last 15 weather years 

Vary Forward Period and Load 
Forecast Uncertainty 

11.25 – 12.00 4 years 0 years to 3 years 

High Renewables Scenario  10.25 
May 2020 CDR 
values for 2024 

study year 

15 GW of new solar 
and 5 GW of new 

wind 

Lower EFOR 11.25 
Last 3 years to 

populate outage 
rates for all units 

2018 study class 
average EFORs 

Notes: Varying the VOLL does not affect the MERM.   
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IV. DISCUSSION OF RESULTS 

As shown in Table 10, the reported MERM from the 2018 study increased from 10.25% to 12.25%, but the 

increase is associated with forced outage rate changes and reserve margin reporting artifacts which do 

not translate to improvements in reliability. The base case in this study, as in the 2018 study, projects 0.5 

LOLE days per year, a level 5 times higher than the industry standard of 0.1 LOLE. If renewable 

deployments continue to increase to the level in the high renewable scenario analyzed, firm load shed 

frequency will rise 160% to 1.3 days per year. This high renewable scenario demonstrates a MERM of 

10.25%. Since further renewable penetration increases have a more dramatic impact on the shape of the 

net load curve, the impact on MERM will escalate, further reducing reserve margins and increasing the 

frequency of reliability events. 

Table 10. MERM and Reliability Comparison Between Scenarios  

Scenario MERM 
Reliability at MERM 

(LOLE in Days per Year) 

2018 Study 10.25% 0.5 

2020 Study 12.25% 0.5 

2020 Study, High Renewable 10.25% 1.3 

However, other factors, which have in recent history mostly resulted in realized reserve margins in ERCOT 

above MERM, may continue to exert an influence on reserve margin levels. Renewable resource 

investments motivated by alternate economic or other decision criteria have continued to be added at a 

pace that maintains a reserve margin above the market equilibrium even after economic retirements are 

accounted for. Storage deployment costs have dropped dramatically in recent years and after 

consideration of current and potential governmental incentives for storage devices, may support 

significant investment and result in the continuation of reserve margins that support high levels of 

reliability. However, the design of an energy-only market does not inherently protect system reliability. 

Future reserve margin studies will continue to analyze the implications of not only marginal conventional 

technology, but also the interactions of all resource classes and other market conditions that may result 

in realized reliability higher than projected by MERM. 

In addition to highlighting the potential market and reliability outcomes of the ERCOT system, this report 

has provided information on the impact of accounting treatment of renewable resources. While the 

reserve margin is primarily only a reporting indicator, it can communicate the wrong message with respect 

to reliability if the disconnect between capacity credit and reliability contribution continues to grow. In 

fact, if current CDR accounting was applied to the high renewable scenario, the reported MERM would 

rise to 19.25%, even though the projected reliability for this scenario is 160% worse than that of the base 

case. In order to provide market participants with the most meaningful information, it is important that 

the reliability contribution calculations and capacity accounting be synchronized. 
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The results presented throughout this report consider a range of possibilities for a number of uncertain 

variables.To the extent history provides guidance for the distribution of uncertainty, rigorous analysis was 

performed to quantify it. Load shapes, renewable output profiles, and generator outages all have histories 

that give reasonable representations for how the future may materialize.   
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LIST OF ACRONYMS 
 

4CP Four Coincident Peak 

ATWACC After-Tax Weighted Average Cost of Capital 

AEO Annual Energy Outlook 

CC Combined Cycle 

CDR Capacity, Demand, and Reserves (report) 

CONE Cost of New Entry (Gross) 

CT Combustion Turbine 

EFOR Equivalent Forced Outage Rate 

EE Energy Efficiency 

EORM Economically Optimal Reserve Margin 

ERCOT Electric Reliability Council of Texas 

ERS Emergency Response Service 

EUE Expected Unserved Energy 

GADS Generation Availability Data System 

HCAP High System-Wide Offer Cap 

HVDC High Voltage Direct Current 

LCAP Low System-Wide Offer Cap 

LFE Load Forecast Error 

LTRA Long-Term Reliability Assessment 

LOL Loss-of-Load 

LOLE Loss-of-Load Event 

LOLH Loss-of-Load Hour 

LOLP Loss of Load Probability 

LRs Load Resources 

MERM Market Equilibrium Reserve Margin 

MW Megawatt(s) 

NERC North American Electric Reliability Corporation 

ORDC Operating Reserve Demand Curve 

PBPC Power Balance Penalty Curve 

PNM Peaker Net Margin 

PRD Price Responsive Demand 

PUCT Public Utility Commission of Texas 

PUN Private Use Network 

RRS Responsive Reserve Service 

SCED  Security Constrained Economic Dispatch 

SERVM Strategic Energy Risk Valuation Model 
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SWOC System-Wide Offer Cap 

TDSP Transmission/Distribution Service Providers 

VOLL Value of Lost Load 

VOM Variable Operations and Maintenance 
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APPENDIX 1: MODELING ASSUMPTIONS 

This Appendix describes in more detail the representation of the ERCOT system, including: load and 

weather patterns and their probabilistic variations; the cost and performance characteristics of ERCOT’s 

generation and demand-response resources; the mechanics of the ERCOT energy and ancillary services 

markets, including a unit commitment and economic dispatch of all generation resources, demand-

response resources, and the transmission interties with neighboring markets.  We also explain 

assumptions developed to reflect expected conditions of 2024 on the generation fleet, demand-response 

penetration, fuel prices, and energy market design. 

A. DEMAND MODELING  

This section describes the data and modelling of the demand in the model, specifically peak load, weather 

uncertainty, non-weather forecast uncertainty, and demand shapes. 

1. PEAK DEMAND AND REGIONAL DIVERSITY  

 The peak load forecast normalizes for weather by identifying a 50th percentile peak load (“50/50”) forecast 

for each weather zone. The 50/50 peak load for each weather zone represents the average peak load from 

40 synthetic load profiles, each representing the expected load in a future year given the weather patterns 

from each of the last 40 years of history.  To develop a system 50/50 peak load forecast, the load in each 

weather zone must be identified at the time of the system peak.  To do so, an average load duration curve 

is constructed for each weather zone by averaging each hour of the load duration curves from 40 years of 

historical data.  Then, the zonal load duration curves are mapped to a single historical year.  The single 

historical year ERCOT uses for the 2020 CDR is 2008 because it was a generally “normal” weather year.  

The mapping is completed by identifying the peak load hour in 2008 and setting its load to the peak load 

from the average zonal load duration curve. Then the second highest load hour in 2008 is assigned the 

second highest load in the average zonal load duration curve. This continues until all of the hours in 2008 

are assigned a load level based on their rank and the equivalent load at that rank in the average load 

duration curve. The resulting hourly load profile constructed for each zone is then used to aggregate the 

individual zonal loads into the system peak load.   

However, 2008 experienced less peak diversity between weather zones than ERCOT normally experiences.  

Expressing the “50/50” peak from the many years of historical data using 2008 as a base shape therefore 

understates typical load diversity and may overstate the 50/50 system peak load.  It results in a 82,982 

MW system peak load rather than 81,793 MW 50/50 peak when using the median system peak across the 

study years (1980–2019).38 For the purposes of this study, this is only a reporting issue and does not affect 

the underlying hourly weather patterns and loads used in our simulations.  It does cause the EORM and 

 
38 Provided by ERCOT staff. 
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MERM to appear lower than they would if expressed against a 50/50 peak load using typical diversity, by 

about 1.4% (since the reserve margin is expressed relative to a 83 GW reported peak load when the actual 

50/50 corresponding to the same underlying data may be closer to 82 GW). 

2. DEMAND SHAPES AND WEATHER UNCERTAINTY MODELING  

We represent weather uncertainty in the projected ERCOT 2024 peak load by modeling 40 load forecasts 

based on 40 historical weather years from 1980–2019, as summarized in Figure A1-1.39  ERCOT staff used 

these 40 weather years as inputs into its 2020 load forecasting model, which produced the range of hourly 

load forecasts for 2024 we used in the SERVM model for this study.40  

The left chart shows projected 2024 peak load for each weather year relative to the weather-normal peak 

load.  The chart illustrates asymmetry in the distribution of peak loads, with the highest projected peak 

load (based on 2011 weather) at 3.9% above the weather-normal peak loads, compared to a peak load in 

the mildest weather year that is only 5.9% below weather-normal peak load. 

The right chart in Figure A1-1 shows the 2024 load duration curves for the 250 highest-load hours in each 

of the 40 weather years.  The light blue load duration curve is based on the extreme and extended hot 

summer weather in 2011.  As shown, the entire load duration curve from 2011 weather is far above all 

other weather years in the top 250 hours.  This extreme heat resulted in a number of emergency events 

and price spikes during the summer of 2011, which is described by some as a 1-in-100 weather year.  

Despite this, our base case assigns equal probability to all 40 weather years because the sample set is large 

enough to be reasonably representative of weather patterns.  We also report the MERM and EORM under 

an alternative weather weight of equal probability of the last 15 years.  

 

 

 

 

 

 

 
39 This is different than the previous EORM study, which used 38 weather years (1980–2017). 
40 Details on the load forecast model methodology in ERCOT (2019a). 
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Figure A1-1. ERCOT Peak Load (Left) and Peak Load Duration Curve (Right) by Weather Year 

     
Sources and Notes: ERCOT load shapes provided by ERCOT staff. 

3. NON-WEATHER DEMAND FORECAST UNCERTAINTY AND FORWARD PERIOD  

Forward-looking “planning” or “target” reserve margins differ from actually-realized reserve margins 

because both realized peak load and actual available resources can differ from projections.  One cause of 

forecast error is simply the weather.  Another is due to uncertainties in population growth, economic 

growth, efficiency rates, and other factors.  These non-weather drivers of load forecast errors (LFEs) differ 

from weather-related LFEs because they increase with the forward planning period, while weather 

uncertainties will generally remain constant and be independent with the forward period.   

As shown in the left chart of Figure A1-2, we assume that non-weather LFE is normally distributed with a 

standard deviation of 0.43% on a 1-year forward basis, increasing by 0.66% with each additional forward 

year.41  The distribution includes no bias or asymmetry in non-weather LFEs, unlike the weather-driven LFE 

in ERCOT, which has more upside than downside uncertainty. 

For our purposes, the relevant forward period for characterizing non-weather LFEs is the period at which 

investment decisions must be finalized.  We assume investment decisions must be finalized four years 

prior to delivery, consistent with the approximate construction lead time for new generation resources.  

This means that available supply and the expected planning reserve margin are “locked in” at four years 

forward, and the realized reserve margin may differ substantially as both weather and non-weather 

uncertainties are resolved as the delivery year approaches.  The right-hand chart of Figure A1-2 shows the 

five discrete levels of LFE we model, equal to 0%, +/−2%, and +/−4% above and below the forecast.  The 

 
41 This assumed LFE is a standard assumption that we developed in lieu of any ERCOT-specific analysis, which would 
require either a longer history of load forecasts in ERCOT or a new analysis developed out of ERCOT’s peak load 
forecast, neither of which are currently available.  
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largest errors are the least likely, consistent with a normal distribution.  We also conduct a sensitivity 

analysis, examining the implications on economically optimal and reliability-based reserve margins if the 

forward period is varied between zero and four years forward. 

Figure A1-2. Non-Weather Load Forecast Error 

 

4. EXTERNAL REGION DEMAND 

We independently developed external regions’ peak load and load shapes based on publicly-available peak 

load projections, historical hourly weather profiles, and historical hourly load data.  Table A1-1 summarizes 

the peak load for the ERCOT system and the load diversity relative to the interconnected neighboring 

regions.  Consistent with the peak load reporting conventions used in ERCOT’s CDR report, these peak 

loads are reported: (a) net of anticipated load reductions from price-responsive demand (PRD) and load 

resources (LRs); and (b) prior to any potential reductions from transmission and distribution service 

provider (TDSP) load management or energy efficiency (EE) programs.42 

 

 

 

 

 

 
42 See May 2020 CDR in ERCOT (2020a). 
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Table A1-1. Peak Loads and Diversity Used in Reserve Margin Accounting 

  
Sources and Notes: 

Non-Coincident Peak represents each individual region’s peak load. 
Coincident Peak represents the load in each region at the maximum total model area peak. 
At ERCOT Peak represents the load in each region at the time of the ERCOT system peak. 
SPP 50/50 peak load forecast is from the NERC 2019 Long-Term Reliability Assessment.43 
Entergy’s 50/50 peak load forecast is from the MISO Planning Year 2020-2021 Loss of Load Expectation Study Report. 44 
Load shapes in SPP and Entergy are based on our independently-developed statistical relationship between hourly weather and load 
estimated over five years of load data and 40 years of weather data.45 
Mexico’s peak load and load shape were unavailable.  The peak is assumed at a 15% reserve margin above the 
currently-installed generation fleet). Load shapes in Mexico are assumed identical to those in ERCOT.  

As shown in the table above, there is a substantial amount of load diversity between ERCOT and the 

neighboring systems, indicating that ERCOT may have access to substantial import quantities during 

shortages to the extent that sufficient intertie capability exists.  For example, at the time of ERCOT’s peak 

load, SPP load is likely to be at only 90% of its own non-coincident peak load. This load diversity results in 

having more than 11,500 MW of excess generation available for export in hours where ERCOT is shedding 

firm load.  However, most of these excess supplies will not be imported because ERCOT is relatively 

isolated from neighboring systems with only 820 MW of intertie capability with SPP and 400 MW with 

Mexico. 

 

 
43 See NERC (2019). 
44 See MISO (2019). 
45 See FERC (2020) and NOAA (2020). 
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B. GENERATION RESOURCES 

We model the economic, availability, ancillary service capability, and dispatch characteristics of all 

generation units in the ERCOT fleet, using unit ratings and online status consistent with ERCOT’s May 2020 

CDR report.  In this section we describe our approach for modeling conventional generation, private use 

networks (PUNs), and intermittent wind and solar.  We also describe the assumed cost and technical 

specifications of the CT reference technology. 

1. MARGINAL RESOURCE TECHNOLOGY 

The quantity of installed generating capacity must vary to simulate ERCOT’s system costs, market prices, 

and reliability across different reserve margins.  We add gas CT plants in our base case, roughly reflecting 

the types of capacity resources that have been added or proposed for the ERCOT market.  Our technology 

choices for the gas CT plants is consistent with assumptions from the 2018 study.  

The costs and performance characteristics of the reference CT are summarized in Table A1-2 and Table 

A1-3 respectively.  These characteristics are based on GE 7HA technology for the CT plants, which is the 

same as the CT reference technology from EORM 2018.46  We use updated cost of new entry (CONE) 

assumptions consistent with this technology, as well as an updated after-tax weighted-average cost of 

capital (ATWACC) for a merchant developer based on current financial market conditions.  These updates 

result in an estimated CONE of $93,500/MW-year for the gas CT, which is 5.65% higher than in EORM 

2018, as shown in Table A1-2. 

Table A1-2. Cost of New Entry 

 ATWACC CONE 

 Simple Cycle Combined Cycle 
 (%/yr) ($/MW-yr) ($/MW-yr) 

From 2018 Study (2022 Online Date) 
Low: Base Minus 10% n/a $79,700 $85,100 

Base: Merchant ATWACC 7.80% $88,500 $94,500 
High: Base Plus 25% n/a $110,600 $118,100 

Updated Estimate (2024 Online Date) 
Low: Base Minus 25% n/a $70,100  

Base: Merchant ATWACC 7.80% $93,500  
High: Base Plus 25% n/a $116,90  

 
Sources and Notes: 
2018 study numbers and current numbers are adapted from CONE studies for PJM, with adjustments applied as relevant for ERCOT; 

see Spees, et al. (2011) and Newell, et al. (2018a), respectively. CONE values determined with adjustments to technology 
characteristics within an area that most closely resemble ERCOT, as outlined in Table A1-3. The updated CONE estimate was 
developed based on the values in the 2018 PJM CONE report before adjustments were made to the assumed discount rate and 
exemption from paying sales taxes. 

 

  

 
46 See Newell, et al. (2018a). 
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Table A1-3. Performance Characteristics 

 Characteristic Unit Simple Cycle 
Plant Configuration   

     Turbine  GE 7HA.02 
     Configuration  1 x 0 
Heat Rate (HHV)   

     Base Load   

          Non-Summer (Btu/kWh) 9,138 
          Summer (Btu/kWh) 9,274 
Installed Capacity   

     Base Load   

          Non-Summer (MW) 371 
          Summer (MW) 352 
CONE ($/kW-yr) 93.5  

 Sources and Notes: 
 Technical and performance parameters use region EMAAC as most closely resembling ERCOT in altitude and ambient 

conditions from Newell, et al. (2018a). 
Based on ambient conditions of 92°F Max. Summer (55.5% Humidity) and 59°F Non-Summer. 

2. CONVENTIONAL GENERATION OUTAGES 

A major component of reliability analyses is modeling the availability of supply resources after considering 

maintenance and forced outages.  We model forced and maintenance outages of conventional generation 

units stochastically. Partial and full forced outages occur probabilistically based on distributions accounting 

for time-to-fail, time-to-repair, startup failure rates, and partial outage derate percentages.  Maintenance 

outages also occur stochastically, but SERVM accommodates maintenance outages with some flexibility to 

schedule maintenance during off-peak hours.  Planned outages are differentiated from maintenance 

outages and are scheduled in advance of each hourly simulation.  Consistent with market operations, the 

planned outages occur during low demand periods in the spring and fall, such that the highest coincident 

planned outages occur in the lowest load days.  This outage modeling approach allows SERVM to recognize 

some system-wide scheduling flexibility while also capturing the potential for severe scarcity caused by a 

number of coincident unplanned outages.47 

We develop distributions of outage parameters for time-to-fail, time-to-repair, partial outage derate 

percentages, startup probabilities, and startup time-to-repair from historical Generation Availability Data 

System (GADS) data for individual units in ERCOT’s fleet, supplemented by asset class average outage rates 

 
47 Capturing the possibility of such low-probability, high-impact events is an advantage of the unit-specific Monte 
Carlo outage modeling used in SERVM. The simpler convolution method, which is a common alternative outage 
modeling method, results in a distribution of outages that may under-estimate the potential for extreme events, 
especially in small systems. 
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provided by ERCOT where unit-specific data were unavailable.  Table A1-4 summarizes fleet-wide and 

asset-class outage rates, including both partial and forced outages. 

Table A1-4. Forced Outage Rates by Asset Class and Fleet Average 

Unit Type 

Equivalent Forced 
Outage Rate 

Mean Time 
to Fail 

Mean Time 
to Repair 

(%) (hours) (hours) 

Gas Combined Cycle 3.7 1,312 32 

Gas Combustion Turbine 8.3 967 74 

Gas Steam  14.0 687 58 

Coal 5.9 833 39 

Nuclear 0.2 16,467 330 

Fleet Weighted Average 5.9   

Sources and Notes: Parameter distributions based on two years (2018-2019) of unit-specific GADS data and asset class 
average outage rates from ERCOT. 

3. PRIVATE USE NETWORKS 

We represent generation from Private Use Networks (PUNs) in ERCOT on a net generation basis, where 

the net output increases with the system portion of peak load consistent with historical data and as 

summarized in  

Figure A1-3.  At any given load, the realized net PUN generation has a probabilistic quantity, with 10 

different possible quantities of net generation within each of 10 different bands of system load.48  Each of 

the 10 possible quantities has an equal 10% chance of materializing, although  

Figure A1-3 reports only the lowest, median, and highest possible quantity.  We developed this 

probabilistic net PUN supply curve based on aggregate hourly historical net output data within each range 

of peak load percentage.  During scarcity conditions with load at or above 93% of normal peak load, PUN 

output produces at least 2,776 MW of net generation with an average of 3,691 MW. 

We observe a pattern of availability and responsiveness consistent with: (a) gross generation, much of 

which is fully integrated into ERCOT’s economic dispatch and security constrained economic dispatch 

(SCED), resulting in substantial increases in the expected quantities over moderate price levels, minus (b) 

gross load, which introduces some probabilistic uncertainty around net generation, minus (c) some 

apparent load price-responsiveness, which likely contributes to some small additional increase in net PUN 

generation at very high prices. 

 

 
48 Hourly net PUN output data gathered from ERCOT, hourly load data from Velocity Suite, ABB Inc. 
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Figure A1-3. PUN Net Generation 

 
Sources and Notes: 
  Hourly net PUN output data gathered from ERCOT, hourly load data from Velocity Suite, ABB Inc. 
 Individual data points represent summary of data in a series of data binned by system load level, within 

each load bin, the points on the chart represent the lowest 10%, middle 10%, and top 10% of realized 
quantities in 2012 to 2020.  

4. INTERMITTENT WIND AND SOLAR 

We model a total quantity of intermittent wind and solar photovoltaic resources that reflects what ERCOT 

reported to NERC for its 2020 LTRA report, including the installed capacity of all existing and planned 

resources as of 2024.49  This includes 37,396 MW nameplate capacity of wind and 16,001 MW nameplate 

of solar, with intermittent output based on hourly generation profiles that are specific to each weather 

year. 

 
49 Provided by ERCOT staff. 
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We developed our system-wide hourly wind profiles by aggregating 40 years of synthesized hourly wind 

shapes for each location of individual units across the system wind shapes over 1980 to 2019, as provided 

by ERCOT staff.50  Figure A1-4 plots the average wind output by season and time of day, showing the 

highest output overnight and in spring months with the lowest output in mid-day and in summer months.  

The overall capacity factor for wind resources is 36.4%; although we calculate reserve margins assuming 

an ELCC of 63% for coastal wind, 29% for panhandle wind, and 16% for other wind, consistent with the 

ERCOT May 2020 CDR convention.51  In EORM 2018, wind units were given an ELCC of 14% for non-coastal 

wind and 59% for coastal wind, consistent with the ERCOT May 2018 CDR convention. 

Figure A1-4. Average Wind Output by Month and Time of Day 

  
Sources and Notes:  

Average of 40 years’ hourly wind profiles provided by ERCOT, originally from UL (formerly AWS Truepower).  

We similarly model hourly solar photovoltaic output based on hourly output profiles that are specific to 

each weather year, as aggregated from county-specific synthesized output profiles over years 1980 to 

2019.52  In aggregate, solar resources have a capacity factor of 27.3% across all years, and we assign a 76% 

 
50 We aggregated location-specific output profiles for all units, including traditional and coastal units. ERCOT obtained 
the original wind profiles from UL (formerly AWS Truepower).   
51 See ERCOT (2020a).  
52 Individual county output profiles for 1980-2019 were provided by ERCOT, obtained through UL (formerly AWS 
Truepower). 
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of nameplate contribution toward the reserve margin consistent with ERCOT’s CDR accounting 

convention.53 

5. HYDROELECTRIC  

We include 558.1 MW of hydroelectric resources, consistent with ERCOT’s May 2020 CDR report.54  We 

characterize hydro resources using six years of hourly data over 2012–2019 provided by ERCOT, and 40 

years of monthly data over 1980–2019 from EIA form 923.55  For each month, SERVM uses four parameters 

for modeling hydro resources, as summarized in Figure A1-5: (1) monthly total energy output and (2) 

monthly maximum output, as drawn from historical data consistent with each weather year; and (3) daily 

maximum output and (4) daily minimum output, as estimated from historical hourly data. 

When developing hydro output profiles, SERVM will first schedule output up to the monthly maximum 

output into the peak hours but will schedule some output across all hours based on historically observed 

output during off-peak periods up to the total monthly output.  During emergencies, SERVM can schedule 

up to 49.25 MW in drought conditions and 116.15 MW for all other months.     

Figure A1-5. Hydro Annual Energy (left) and Average Hydro Daily Shape (right) 

  
 Sources and Notes:  

 Monthly and annual energy data from EIA form 923, peak shaving capability based on eight years of historical hourly data from ERCOT. 

6. FUEL PRICES  

We use the 2020 Annual Energy Outlook Low Economic Growth case for our gas price future inputs.  These 

gas prices are consistent with fuel prices used in other ERCOT analysis, and are comparable to gas price 

forwards, as shown in Figure A1-6.  Alternative gas prices are explored as sensitivities, but do not make a 

 
53 See ERCOT (2020a).  For the 2018 study, solar was given a 75% contribution to reserve margin consistent with 
ERCOT’s 2018 CDR accounting conventions. 
54 See ERCOT (2020a). 
55 See Form 923 in EIA (2020). 
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substantial difference in results.  We estimate monthly fuel prices for ERCOT coal units based on the 

average 2019 historical prices.  For external coal units and all oil-fired plants, we use futures prices for the 

year 2024 and after applying a delivered fuel price basis.  We use U.S. Gulf Coast and Powder River Basin 

as the market price points for historical and futures prices as shown in Figure A1-6.56  To estimate a 

delivered fuel price basis for each market, we calculated the historical difference between that market 

price point and prices as delivered to plants in that region and then escalated the delivered price basis 

with inflation to the year 2024.57  This locational basis is inclusive of both market price basis as well as a 

delivery charge and therefore may be positive or negative overall as shown in  

 

 

 

Table A1-5. 

 
56 Oil futures at WTI Cushing were used to escalate No. 2 fuel oil prices into the future due to lack of data on No. 2 
futures at U.S. Gulf Coast.  Data from S&P Global Market Intelligence LLC and Bloomberg. 
57 Fuel price basis varies by region by not among individual plants.  Historical delivered fuel prices from Bloomberg, 
SNL Energy, and EIA. 

284



 

12 
 

Figure A1-6. Historical and Futures Prices for Gas, Coal, and No. 2 Distillate

 
Sources and Notes:  

No. 2 prices escalated using a linear relationship with WTI Cushing and escalated with WTI futures.   
Prices for the base case are from the 2020 Annual Energy Outlook (AEO) Low Economic Growth Case. 
Natural gas and coal historical prices and coal futures prices from Bloomberg, SNL Energy, and EIA.  

 

 

 

Table A1-5. ERCOT 2024 Delivered Fuel Prices 

Coal Fuel 
Price 

($/MMBtu) 
Gas Fuel 

Price 
($/MMBtu) 

Diesel Fuel 
Price 

($/MMBtu) 
1.65 2.96 11.14 

  
Sources and Notes:  
Coal Fuel Price is averaged from 2019 EIA 923 and FERC Form 1 data. 
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Gas Fuel Price from the 2020AEO Low Economic Growth Case. 

C. DEMAND-SIDE RESOURCES 

Several types of demand response participate directly or indirectly in ERCOT’s market, including: 

Emergency Response Service (ERS), Load Resources, and Price Responsive Demand.  These various types 

differ from each other in whether they are triggered by price-based or emergency actions, and restrictions 

on availability and call hours. Below we describe the assumptions and modeling approach for each type of 

resource. 

1. EMERGENCY RESPONSE SERVICE  

Emergency Response Service (ERS) includes two types of products, 10-minute and 30-minute (weather 

sensitive and non-weather sensitive) ERS, with the quantity of each product available changing by time of 

day and season as shown in  

Table A1-6.  The quantity of each product by time of day and season is proportional to the quantities most 

recently procured over the four seasons of year 2019, with the 2024 summer peak quantity assumption 

provided by ERCOT.58  Demand resources enrolled under ERS are dispatchable by ERCOT during 

emergencies, but cannot be called outside their contracted hours and cannot be called for more than 

twenty-four hours total per season.59 

 

 

 

 

 

Table A1-6. Assumed ERS Quantities Available in 2024 

 
58 For total ERS procurement quantities by product type and season, see ERCOT (2020b).   
59 See ERCOT (2018a) and ERCOT (2020a-c). 
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Sources and Notes:  
 Total available ERS MW for 2024 June-Sept. TP4 provided by ERCOT staff. 
 ERS 10-min and 30-min MW for other contract periods scaled proportionally to the 2024 LTRA summer quantity 

(767 MW), based on availability in 2019, from ERCOT (2020a). 

2. LOAD RESOURCES PROVIDING ANCILLARY SERVICES  

Consistent with ERCOT’s published minimum Responsive Reserve Service (RRS) requirements, we model 

1,172 MW of non-controllable load resources (LRs) that actively participate in the RRS market.60  All 1,172 

MW are modeled as responsive to Energy Emergency Alert, Level 2. 

3. PRICE RESPONSIVE DEMAND AND 4 COINCIDENT PEAK  

2019 historical demand response was used to develop modeling inputs to replicate stochastic demand-

side response for price responsive and 4-coincident peak demands. A comparison of historical and 

synthetic PRD calls is shown in Figure A1-7 The aggregate of these shapes was used to gross up all 40 

synthetic weather shapes. 

 
60 Currently, 1,400 MW is the maximum quantity of non-controllable LRs that are allowed to sell responsive reserve 
service (RRS) and is the clearing quantity in the vast majority of hours.  
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To model the price responsive demand (PRD) in SERVM, a curtailable unit was created that points to a 

price responsive demand curve.  The demand curve has 4 pricing points based on the segments above 

($200, $400, $800, and $1,500).  For each of the 4 pricing points, 50 data points were created using the 

segment formulas specified.  Within SERVM, whenever price reached one of the specified threshold points, 

SERVM randomly picked a DR value from that list of 50 data points. The Price Responsive Demand unit was 

available in all months. 

Figure A1-7. Comparison of Historical and Synthetic PRD Calls 

 

This stochastic representation in 2020 modeling differs from the discrete representation in the 2018 study, 

as shown in Figure A1-8.  

 

 

Figure A1-8. PRD Modeling Comparison Between 2018 and 2020 Studies 
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Similarly, 4CP was modeled as a load responsive unit. A comparison of historical and synthetic 4CP calls is 

provided below in Figure A1-9. Historical hourly 4CP was calculated as the sum of the following 4CP 

programs: 

• 4CP Competitive 

• 4CP NOIE 

To model this unit in SERVM, a curtailable unit was created that pointed to a load responsive demand 

curve. The demand curve had four load points based on the segments above (66,000, 67,000, 72,000, and 

74,000 MW). For each of the four load points, 50 data points were created using the segment formulas 

specified. Within SERVM, whenever load reached one of the specified threshold points, SERVM randomly 

picked a DR value from that list of 50 data points. The 4 CP unit was only available during the months of 

June to September.  
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Figure A1-9. Comparison of Historical and Synthetic 4CP Calls 

 

D. TRANSMISSION SYSTEM MODELING AND EXTERNAL RESOURCE OVERVIEW  

This section provides an overview of the system interconnection topology, intertie availability, ERCOT and 

neighboring regions’ supply curves.   

1. TRANSMISSION TOPOLOGY  

ERCOT is a relatively islanded system with only 1,220 MW of high voltage direct current (HVDC) interties; 

the majority of that intertie capacity is with SPP.61  As described in Section A, SERVM runs a multi-area 

economic dispatch and will schedule imports or exports from ERCOT depending on the relative cost of 

production compared to the neighboring systems.  During peaking conditions, ERCOT will generally import 

power due to the high internal prices, unless imports cannot be realized.  ERCOT may not be able to import 

during peak conditions because either: (a) the neighboring system experiences a simultaneous scarcity 

 
61 In some ERCOT studies the South DC Tie between ERCOT and Mexico is modeled with a capacity of 36 MW.  
However, we retired the 30 MW South Tie (Eagle Pass Tie) on April 2020 consistent with the ERCOT DC-Tie Operations 
Manual. See ERCOT (2020e) and ERCOT (2020a). 
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and will prioritize meeting its own load, or (b) insufficient intertie capability exists to support the desired 

imports.  The intertie capacities assumed for this study are shown in Figure A1-10 below. 

Figure A1-10. System Topology and Modeled Interties 

 
Sources and Notes:  
 ERCOT intertie ratings from ERCOT (2020e)  

 

2. EXTERNAL SYSTEMS’ RESOURCE OVERVIEW 

This section of our report provides an overview of the neighboring regions resource mixes.62  Appendix A.1 

summarizes the supply resource mix that we model in ERCOT, SPP, Entergy, and Mexico. For the 

neighboring regions, we rely on public data sources for the fleet makeup and demand-response 

penetrations.63  As shown in Figure A1-11, we model each external region at criterion, meaning that we 

treat them exactly at their respective reserve margin targets of 12.0%, 16.8%, and 15% for SPP, Entergy, 

and Mexico, respectively.64  Because these regions are currently capacity long, we adjusted their resource 

base downward by removing individual units of different resource types in order to maintain the current 

overall resource mix. 

 

 
62 More information on the ERCOT supply mix can be found in B. 
63 Specifically, we take external regions’ resource mix from publicly available data and external regions’ demand-
response penetrations from NERC (2019). 
64 See MISO (2019), NERC (2019), SPP (2018). For Mexico we use an assumed reserve margin above the peak load. 
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Figure A1-11. Resource Mix for ERCOT and Neighboring System 

 

3. AVAILABILITY OF EXTERNAL RESOURCES FOR ERCOT  

Imports to ERCOT depend on the conditions in the neighboring systems; even if transmission is available, 

ERCOT may not be able to import in emergency situations if the external region is peaking at the same 

time.  To provide intuition regarding anticipated prices and intertie flows during normal conditions, we 

summarize the ERCOT and neighboring regions’ supply curves in Figure A1-12.  The curve reports energy 

dispatch costs consistent with year 2024, accounting for unit-specific heat rates, variable operations and 

maintenance (VOM) costs, and locational fuel prices from Appendix 1.0.6.  For ERCOT, we gathered unit-

specific information representing heat rate curves, VOM, ancillary service capabilities, ramp rates, startup 

fuel, non-fuel startup costs, and run-time restrictions from ERCOT.  For external regions, we gathered unit-

specific heat rates from public data sources, supplemented by class-average characteristics similar to those 

in ERCOT for other unit characteristics.65 For all thermal resources, we model a seasonal capacity value 

which results in increased available capacity from the fleet during colder periods.   

Overall, ERCOT’s supply curve is similar to Mexico’s but is relatively tight compared to SPP and Entergy.  

However, interchange will be limited because of ERCOT’s relatively small quantity of HVDC interties, having 

 
65 Heat rates from ABB Velocity Suite (2018). 
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only 820 MW of interties with SPP and 400 MW with Mexico.66  Some factors affecting the quantity and 

economic value of interchange include that: (a) SPP has more lower-cost coal that is somewhat cheaper 

than ERCOT-internal resources that are dominated by efficient but somewhat higher-cost gas combined-

cycles, which will lead to ERCOT being a net importer, and (b) Mexico has a substantial proportion of 

relatively high-cost oil-fired peaking units, which will make such imports unlikely except at high prices in 

scarcity conditions.  Further, the regions experience some amount of load diversity that will change the 

relative economics of supply in each region and lead to inter-regional flows. 

Figure A1-12. 2024 System Supply Curves 

 
Sources and Notes:  

ERCOT is shown at 9.57% reserve margin, with resource mix consistent with 2020 LTRA as explained in Appendix 1.B, using 
unit-specific heat rates, VOM, and other characteristics obtained from ERCOT. 

 External systems resource mix from publicly available data. 
 Supply curves reflect VOM and fuel costs, with fuel prices from Appendix 1.B.6 above.   

E. SCARCITY CONDITIONS  

Increasing the reserve margin provides benefits primarily by reducing the frequency and severity of high-

cost emergency events. Calculating the economically optimal reserve margin requires a careful 

examination of the nature, frequency, trigger order, and cost of each type of market-based or 

administrative emergency action implemented during such events. 

 
66 Based on several years of historical hourly intertie ratings supplied by ERCOT. 
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1. ADMINISTRATIVE MARKET PARAMETERS  

We developed a representation of the 2024 ERCOT market using the parameters summarized in Table A1-

7.  We assume that the administrative Value of Lost Load (VOLL) is equal to the true market VOLL and the 

High System-Wide Offer Cap (HCAP) at $9,000/MWh.67  We also conduct a sensitivity analysis for a 

reasonable range of VOLL. 

Consistent with current market rules, we tabulate the Peaker Net Margin (PNM) over the calendar year 

and reduce the System-Wide Offer Cap (SWOC) to the Low System-Wide Offer Cap (LCAP) of $2,000/MWh 

after the PNM threshold is exceeded.68  However, we stress that this mechanism will have a small impact 

on the MERM since the PNM threshold is rarely exceeded at reserve margins near MERM. We ran a 

simulation scenario which did not adjust the SWOC after the PNM threshold was exceeded, and the MERM 

changed by less than .25% from the result in our base case.  We further explain our implementation of the 

ORDC PBPC in Sections 4 and 5 below. 
Table A1-7. ERCOT Scarcity Pricing Parameters Assumed for 2024 

Parameter Value Notes 

Value of Lost Load (VOLL) $9,000/MWh Administrative and actual 

High System-Wide Offer Cap (HCAP) $9,000/MWh Applied to PBPC and ORDC 

Low System-Wide Offer Cap (LCAP) $2,000/MWh 
Applies to PBPC and ORDC when 

PNM threshold exceeded 

Peaker Net Margin (PNM) Threshold $280,500/MW-yr 3 x CT CONE 

Sources and Notes:  
 HCAP, LCAP, and VOLL parameters consistent with PUCT (2019a). 
 PNM threshold is set at three times CT CONE consistent with current market rules and our updated CONE. 

The offer cap and PNM parameters determine the maximum offer price for small suppliers in ERCOT’s 

market under its monitoring and mitigation framework.  However, we do not explicitly model these 

dynamics and instead assume that suppliers always offer into the market at price levels reflective of their 

marginal costs, including commitment costs. 

2. EMERGENCY PROCEDURES AND MARGINAL COSTS  

 

Table A1-8 summarizes our modeling approach and assumptions under all scarcity and non-scarcity 

conditions depending on what type of marginal resource or administrative emergency procedure would 

 
67 See PUCT (2019a). 
68 See PUCT (2019a). 
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be implemented to meet an incremental increase in demand.  These marginal resources are listed in the 

approximate order of increasing marginal costs and emergency event scarcity, although in some cases the 

deployment order overlaps. 

We distinguish between market-based responses to high prices in scarcity conditions and out-of-market 

administrative interventions triggered by emergency conditions.  Among market-based responses, we 

include generation, imports, and price-responsive demand, including some very high-cost resources that 

will not economically deploy until prices are quite high.  We also model reserve scarcity that is 

administrative in nature but triggered on a price basis consistent with the ORDC and PBPC as explained in 

the following sections.   

A final category of emergency interventions encompasses out-of-market actions including ERS, LR, TDSP 

load management, and firm load shed deployments that are triggered for non-price reasons during 

emergency conditions.  We implement each of these actions at a particular scarcity level as indicated by 

the quantity of reserves capability available according to the ORDC x-axis, a measure similar to the physical 

responsive capacity (PRC) indicator used by ERCOT to monitor system operations.  To estimate the 

approximate ORDC x-axis at which each action would be implemented, we reviewed ERCOT’s emergency 

operating procedures, evaluated the PRC level coinciding with each action during historical emergency 

events, and confirmed these assumptions with ERCOT staff.69  These trigger levels are in line with historical 

emergency events, although actual emergency actions are manually implemented by the system operator 

based on a more complex evaluation of system conditions, including frequency and near-term load 

forecast.  

We also describe in the table below the marginal system costs of each type of scarcity event as well as the 

prevailing market price during those events.  In a perfectly-designed energy market, prices would always 

be equal to the marginal cost that would theoretically lead to optimal response to scarcity events and an 

optimal level of investments in the market.  In ERCOT, prices are reflective of marginal costs in most cases 

but not all.  Specifically, the ORDC curve is designed based on an assumption that load would be shed at X 

= 2,000 MW, while our review of historical events indicates that load shedding is more likely to occur at a 

lower level of X = 1,000 MW.  This discrepancy results in prices above marginal costs during moderate 

scarcity events, as discussed further in Appendix 1.E.4 below. 

 

 

 

 
69 The PRC metric is calculated with some accounting nuances that make it a somewhat different number from the 
ORDC Spin x-axis, we do not consider these nuances in our modeling, for the formula for calculating PRC, see ERCOT 
(2020d), Section 6.5.7. 
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Table A1-8. Emergency Procedures and Marginal Costs 

Emergency 
Level 

Marginal 
Resource 

Amount of 
Resource 

(MW) 
Trigger Price 

Marginal 
System 

Cost 

n/a Generation Variable Price Approximately $20 - $250 Same 

n/a Imports Variable Price 
Approximately $20-$250 

Up to $1,000 during load shed 
Same 

n/a 
Non-Spin 
Shortage 

700 
ORDC x-axis =  

3,000 MW 
$4,627 (from ORDC)* $1,025* 

n/a 
Price-Responsive 

Demand 
Variable Price $500 - $9,000 Same 

n/a 
Emergency 
Generation 

469.8 
ORDC x-axis =  

2,300 MW 
$5,850 (from ORDC) $1,372 

n/a PBPC 200 Price $1,000 - $9,000 Same 

EEA 1 30-Minute ERS 691** 
Spin ORDC x-axis =  

2,300 MW 
$5,850 (from ORDC) $1,372 

EEA1 Spin Shortage A 550 
Spin ORDC x-axis =  

2,300 MW 
$7,492 (from ORDC)* $1,856* 

EEA 2 
TDSP Load 

Curtailments 
262 

Spin ORDC x-axis =  
1,750 MW 

$9,000 (from ORDC) $2,469 

EEA 2 
Load Resources 

in RRS 
1,172*** 

Spin ORDC x-axis =  
1,750 MW 

$9,000 (from ORDC) $2,469 

EEA 2 10-Minute ERS 76** 
Spin ORDC x-axis =  

1,750 MW 
$9,000 (from ORDC) $2,469 

EEA3 Spin Shortage B 750 
Spin ORDC x-axis = 

1,750 MW 
$9,000 (from ORDC) $3,562* 

EEA 3 Load Shed Variable 
Spin ORDC x-axis =  

1,000 MW 
VOLL = $9,000 Same 

Sources and Notes: 
*: Price reflects the average price between the upper and lower level of each resource. 
**: 76 10NWS + 666 30NWS + 26 30WS = 767 total ERS (CDR Value). Both NWS and WS are included in the 30-Minute ERS. 
***: 60% of RRS 
Developed based on review of historical emergency event data, input from ERCOT staff, and ERCOT’s emergency procedure manuals; see ERCOT 

(2020d), Section 6.5.9, and ERCOT (2020f), Section 4. 

3. EMERGENCY GENERATION  

During severe scarcity conditions, there are out-of-market instructions by ERCOT as well as strong 

economic incentives for suppliers to increase their power output to their emergency maximum levels for 

a short period of time.70  During these conditions, suppliers can output power above their normal capacity 

ratings, although doing so is costly because it may impose additional maintenance costs and may put the 

unit at greater risk of failure.   

 
70 See Section 6.5.9, ERCOT 2020d.  
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According to ERCOT’s emergency maximum ratings, the aggregate ERCOT fleet should be able to produce 

approximately 469.8 MW in excess of summer CDR ratings.71  We estimate the marginal cost of emergency 

output at approximately $2,752/MWh, consistent with ERCOT’s procedures for calling emergency 

generation. 

4. OPERATING RESERVES DEMAND CURVE  

The most important and influential administrative scarcity pricing mechanism in ERCOT is the operating 

reserves demand curve (ORDC) that reflects the willingness to pay for spinning and non-spinning reserves 

in the real-time market.  Figure A1-13 illustrates our approach to implementing ORDC in our modeling, 

which is similar to ERCOT’s implementation, although with some simplifications.72  We implement distinct 

ORDC curves for each of the four seasons each year, and for each of two types of operating reserves.73 

Figure A1-13. Operating Reserve Demand Curves 
Example: Summer Hours 15-18 

 
Sources and Notes: 

ORDC curves developed consistent with ERCOT (2013). 

 
71 This number excludes private use network resources, which we model separately as explained in Section 3 above.   
72 For a detailed explanation of ERCOT’s ORDC implementation see their whitepaper on the methodology for 
calculating ORDC at ERCOT (2013). 
73 See ERCOT (2013). 
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The ORDC curves are calculated based on a loss of load probability (LOLP) at each quantity of reserves 

remaining on the system, multiplied by the value of lost load (VOLL) caused by running short of operating 

reserves.74  This curve reflects the incremental cost imposed by running short of reserves and is added to 

the marginal energy cost to estimate the total marginal system cost and price. 

The x-axis of the curve reflects the quantity of operating reserves available at a given time, where: (a) the 

spin ORDC includes all resources providing regulation up or RRS, suppliers that are online but dispatched 

below their maximum capacity, hydrosynchronous resources, non-controllable load resources, and 10-

minute quickstart; and (b) the spin + non-spin ORDC include all resources contributing to the spin x-axis as 

well as any resources providing NSRS and all 30-minute quickstart units.  Table A1-9 provides a summary 

of the resources that are always available to contribute to the ORDC x-axis unless they have been 

dispatched for energy although the realized ORDC x-axis can be higher (if other resources are committed 

but not outputting at their maximum capability) or lower (during peaking conditions when some of the 

below resources are dispatched for energy).75 

Table A1-9. Resources Always Contributing to ORDC X-Axis Unless Dispatched for Energy 

Spin X-Axis   

     Hydrosynchronous Resources (MW) 245 

     Non-Controllable Load Resources (MW) 1,172 

Non-Spin X-Axis   

     30-Minute Quickstart (MW) 5,206 

Total Spin + Non-Spin (MW) 6,623 

  

The red and pink curves in Figure A1-13 show the ORDC curves used for price-setting purposes, calculated 

as if ERCOT would shed load at an ORDC x-axis of X = 2,000 MW.  However, as we explained in Appendix 

1.E.2 above, we assume that load shedding will actually occur at X = 1,000 MW based on our analysis of 

historical emergency events and consistent with the blue curves below.  In other words, we model a 

discrepancy between marginal costs (blue) and market prices (red) that will create some inefficiency in 

realized market outcomes. 

 
74 Note that the lost load implied by this function and caused by operating reserve scarcity is additive to the lost load 
that we report elsewhere in this study.  This is because the LOLP considered in ERCOT’s ORDC curve is caused by sub-
hourly changes to supply and demand that can cause short-term scarcity and outages that are driven only by small 
quantities of operating reserves, but are not caused by an overall resource adequacy scarcity, which is the type of 
scarcity we model elsewhere in this study.  For simplicity and clarity, we refer to these reserve-related load-shedding 
events as “reserve scarcity costs” to distinguish them from the load shedding events caused by total supply scarcity.  
We do not independently review here ERCOT’s approach to calculating LOLP, but instead take this function as an 
accurate representation of the impacts of running short of operating reserves.  We also do not change the ORDC 
when varying the VOLL in our model sensitivities.  
75 We assume that the CT reference unit is capable of providing non-spin from an offline position. 

298



 

26 
 

As in ERCOT’s ORDC implementation, we calculate: (a) non-spin prices using the non-spin ORDC; (b) spin 

prices as the sum of the non-spin and spin ORDC; and (c) energy prices as the sum of the marginal energy 

production cost plus the non-spin and spin ORDC prices.  However, as a simplification we do not scale the 

ORDC curves in proportion to VOLL minus marginal energy in each hour.76  Instead, we treat the ORDC 

curves as fixed with a maximum total price adder of VOLL minus $500, which causes prices to rise to the 

cap of $9,000/MWh in scarcity conditions, because $500 is the cap placed on marginal energy prices in the 

model.  Higher-cost demand-response resources will be triggered in response to high ORDC prices and 

therefore prevent prices from going even higher, but do not affect the “marginal energy component” of 

price-setting.  We model the ORDC curves out to a maximum quantity of 8,000 MW where the prices are 

near zero, although they never drop all the way to zero. 

These ORDC curves create an economic incentive for units to be available as spinning or non-spinning 

reserve, which influences suppliers’ unit commitment decisions.  We therefore model unit commitment in 

three steps: (1) a week-ahead optimal unit commitment over the fleet, with the result determining which 

long-lead resources will be committed77; (2) a four-hour ahead unit commitment (updated hourly) with an 

updated fleet outage schedule, with the result determining the preliminary commitment and 

decommitment schedules for combined cycle units; and (3) an hourly economic dispatch that dispatches 

online baseload units, and can commit 10-minute and 30-minute quickstart units if energy and spin prices 

are high enough to make it more profitable than remaining offline (similarly, if prices are not high enough 

these units will economically self-decommit).78  Note that 10-minute quickstart units can earn spin 

payments from an offline position while 30-minute quickstart units can earn non-spin payments from an 

offline position.  These resources will not self-commit unless doing so would result in greater energy and 

spin payments (net of variable and commitment costs) than would be available from an offline position.  

We use a similar logic to economically commit or de-commit units until the incentives provided by the 

ORDC are economically consistent with the quantity of resources turned on. 

5. POWER BALANCE PENALTY CURVE 

The Power Balance Penalty Curve (PBPC) is an ERCOT market mechanism that introduces administrative 

scarcity pricing during periods of supply scarcity.  The PBPC is incorporated into the security constrained 

economic dispatch (SCED) software as a set of phantom generators at administratively-specified price and 

quantity pairs, as summarized in the blue curve in Figure A1-14.79  Whenever a PBPC is dispatched for 

 
76 See ERCOT’s implementation in ERCOT (2013). 
77 Short-term resources are included in the week-ahead commitment algorithm, but their commitment schedule is 
not saved since it will be dynamically calculated in a shorter window.  But using short-lead resources in the week-
ahead commitment allows them to affect the commitment of long-lead resources. 
78 These week-ahead and day-ahead commitment algorithms minimize cost subject to meeting load as well as 
ERCOT’s administratively-determined regulation up and spinning reserve targets, with non-spinning reserve targets 
not considered at the unit commitment phase. 
79 See ERCOT (2019b). 
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energy, it reflects a scarcity of supply relative to demand in that time period that, if sustained for more 

than a moment, will materialize as a reduction in the quantity of regulating up capability.  At the highest 

price, the PBPC will reach the system-wide offer cap (SWOC), which is set at the HCAP at the beginning of 

each calendar year but which will drop to the LCAP if the PNM threshold is exceeded as explained in 

Appendix 1.E.1 above. 

We similarly model the PBPC as phantom supply that may influence the realized price, and that will cause 

a reduction in available regulating reserves whenever called.  However, we model only the first 200 MW 

of the curve at prices below the cap, and assume that all price points on the PBPC will increase according 

to the scheduled SWOC.80  We also assume that the prices in the PBPC are reflective of the marginal cost 

incurred by going short of each quantity of regulating reserves.81  Consistent with current market design, 

we assume that once the PNM threshold is exceeded, the maximum price in the PBPC will be set at the 

LCAP + $1/MWh or $2,001/MWh.82  Note that even after the maximum PBPC price is reduced, ERCOT 

market prices may still rise to a maximum value of VOLL equal to $9,000/MWh during scarcity conditions 

because of the ORDC as explained in the following section. 

Figure A1-14. Power Balance Penalty Curve 

  

Sources and Notes:  
  PBPC numbers from ERCOT (2019b), p. 22-23. 

 
80 See ERCOT (2019b). 
81 Once the PNM is exceeded and the PBPC is reduced, these prices are no longer reflective of marginal cost but are 
instead lower than marginal cost at regulation shortage quantities greater than 40 MW.  
82 See ERCOT (2019b). 
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APPENDIX 2: EFFECTIVE LOAD CARRYING CAPABILITY 

The reserve margin is the sum of all dependable generating capacity divided by expected peak load. 

Dependable generating capacity varies for non-dispatchable or energy-limited resources and generally 

depends on simulations which calculate the comparable conventional capacity for the resource being 

evaluated. Very constrained resources such as 1-hour energy storage or low capacity factor wind would 

be expected to have ratios much lower than 100% while very dependable resources such as long duration 

storage would have ratios close to 100%. 

The actual steps to determine these ratios are as follows: 

1. Calibrate system reliability to 0.1 LOLE by removing or adding conventional capacity. 

2. Remove the non-dispatchable or energy-limited resource portfolio in question. This will increase 

the frequency of LOLE events. 

3. Restore LOLE to 0.1 by adding conventional capacity.  

4. Calculate the ELCC: 

𝐸𝐿𝐶𝐶 =  
𝐶𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐴𝑑𝑑𝑒𝑑 (𝑆𝑡𝑒𝑝 3)

𝑁𝑜𝑛-𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑎𝑏𝑙𝑒 𝑜𝑟 𝐸𝑛𝑒𝑟𝑔𝑦-𝐿𝑖𝑚𝑖𝑡𝑒𝑑 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑅𝑒𝑚𝑜𝑣𝑒𝑑 (𝑆𝑡𝑒𝑝 2)
 

Figure A2-1 contains a visual example of the process described above.  

Figure A2-1. ELCC Visual Example 
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AVERAGE ELCC VERSUS INCREMENTAL ELCC 

The calculation steps explained above are for average ELCC. It determines the value of an entire portfolio. 

Calculations for incremental ELCC would typically be done in reverse. Add a small resource to a calibrated 

system and determine the capacity to remove to determine ELCC. Average ELCC would be used for reserve 

margin accounting. Incremental ELCC is used for procurement decisions. 

In Figure A2-2, the average ELCC illustration on the left shows the reduction in net load which would 

approximately correspond to the average ELCC value. The illustration on the right shows the renewable 

profile of an incremental resource against the net load profile of a system with an existing penetration of 

renewable capacity. The Incremental ELCC value would approximately correspond to the average output 

during the net load peak. 

Figure A2-215. Average ELCC Versus Incremental ELCC 

 

Both of these methods differ from the implicit ELCC calculations in the CDR accounting in ERCOT. The 

capacity credit given to wind and solar in CDR is based on the average of the top 20 gross load hours. Since 

this method doesn’t consider that the net load may have shifted due to the renewable output, it will 

overstate the ELCC of the renewable resources. Table A2-1 shows a comparison of methods of ELCC 

calculation using synthetic data for both wind and solar. 

 

 

 

 

 

 

 

 

Average ELCC 
Incremental ELCC 
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Table A2-1. Average Output and Net Load Reduction ELCC Comparison 

 Wind  Solar 

 

Avg Output During 
Top 20 Load Hours 
(ERCOT Accounting 

Method) 

Net Load Reduction 
(True Reliability 

Contribution) 

 

Avg Output During 
Top 20 Load Hours 
(ERCOT Accounting 

Method) 

Net Load Reduction 
(True Reliability 

Contribution) 

2010 12% 8%  78% 75% 

2011 24% 12%  83% 72% 

2012 13% 6%  80% 72% 

2013 24% 13%  82% 80% 

2014 24% 16%  80% 68% 

2015 18% 13%  81% 76% 

2016 30% 21%  76% 71% 

2017 24% 18%  75% 68% 

2018 20% 16%  76% 70% 

2019 27% 16%  79% 65% 

Average 22% 14%  79% 72% 

ELCC RESULTS 

The net load reductions in Table A2-1 indicate the true reliability contribution, but SERVM simulations are 

required to get precise values. Performing the average ELCC simulations results in ELCCs for the entire 

renewable portfolio in Table A2-2. 

Table A2-2. Average ELCC Simulation Results for Entire Renewable Portfolio 

 2020 2024 2024 High Renewable 

All Renewable ELCC (MW) 9,436 18,693 22,844 

All Renewable Installed Capacity (MW) 37,923 53,397 73,397 

All Renewable ELCC (%) 25% 35% 31% 

 

These renewable portfolio totals will be used in later steps since the sum of individual technology or zonal 

ELCCs cannot exceed the renewable portfolio total. Technology specific ELCCs are calculated by removing 

only the study resource. Since wind and solar exhibit some synergy for reliability contribution, the sum of 

the raw ELCCs for wind and solar is greater than the entire portfolio ELCC. Figure A2-3 shows how the 

addition of solar pushes the net load to late in the day when the aggregate ERCOT wind output is expected 

to produce more energy. The higher energy translates to higher ELCC. In reverse, wind would push the net 

load peak to earlier in the day, increasing the ELCC for solar as well. 
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Figure A2-316. Effects of Addition of Solar to Net Load Shape 

 

The resulting raw ELCCs for each technology are shown in Tables A2-3 and A2-4. As expected the sum of 

the individual technology ELCCs is larger than the entire portfolio ELCC, since the standalone analyses 

include the full synergistic benefits from the other technology. This would be double counting the benefit 

by assigning it to each of wind and solar. 

Table A2-3. Wind Technology Raw ELCC Values 

 2020 2024 2024 High Renewable 

Wind Raw SERVM ELCC (MW) 5,422 7,045 9,194 

Wind Installed Capacity (MW) 32,026 37,396 42,396 

Wind ELCC (%) 17% 19% 22% 

 

Table A2-4. Solar Technology Raw ELCC Values 

 2020 2024 2024 High Renewable 

Solar Raw SERVM ELCC (MW) 4,711 12,529 17,095 

Solar Installed Capacity (MW) 5,897 16,001 31,002 

Solar ELCC (%) 80% 78% 55% 
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Since the sum is larger, the total portfolio ELCC needs to be allocated to each respective technology 

according to the following formulas: 

▪ 𝑊𝑖𝑛𝑑 𝐸𝐿𝐶𝐶 =  
𝑊𝑖𝑛𝑑 𝐸𝐿𝐶𝐶

(𝑊𝑖𝑛𝑑 𝐸𝐿𝐶𝐶+𝑆𝑜𝑙𝑎𝑟 𝐸𝐿𝐶𝐶)
∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝐸𝐿𝐶𝐶 

▪ 𝑆𝑜𝑙𝑎𝑟 𝐸𝐿𝐶𝐶 =  
𝑆𝑜𝑙𝑎𝑟 𝐸𝐿𝐶𝐶

(𝑊𝑖𝑛𝑑 𝐸𝐿𝐶𝐶+𝑆𝑜𝑙𝑎𝑟 𝐸𝐿𝐶𝐶)
∗ 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝐸𝐿𝐶𝐶 

The results of these calculations are shown in Tables A2-5 and A2-6. 

Table A2-5. Wind Technology Allocated ELCC Values 

 2020 2024 2024 High Renewable 

Wind Raw SERVM ELCC (MW) 5,422 7,045 9,194 

Wind Allocated ELCC (MW) 5,049 6,728 7,989 

Wind ELCC (%) 16% 18% 19% 

 

Table A2-6. Solar Technology Allocated ELCC Values 

 2020 2024 2024 High Renewable 

Solar Raw SERVM ELCC (MW) 4,711 12,529 17,095 

Solar Allocated ELCC (MW) 4,387 11,965 14,855 

Solar ELCC (%) 74% 75% 48% 

 

The synergy can be seen in both the allocation calculation as well as the change from year to year. The 

wind capacity value increases from 2020 to 2024 and to 2024 High Renewable as solar shifts the net load 

profile to later in the day. Solar ELCC doesn’t decline much between 2020 and 2024, but additions after 

the penetrations assumed in the 2024 portfolio have a rapidly declining ELCC. The average ELCC for solar 

increases from approximately 12 GW in 2024 to 15 GW 2024 with High Renewable. The 3 GW increase in 

ELCC corresponds to a 15 GW solar increase, so on a relative basis, the solar added between these 

scenarios only achieves a 20% ELCC. 

We performed further calculations to isolate locational ELCCs for both wind and solar. Wind is divided into 

Wind Coastal (Wind-C), Wind Other (Wind-O), and Wind Panhandle (Wind-P). A typical summer profile is 

shown for each wind location in Figure A2-4. 
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Figure A2-417. Typical Daily Summer Profile for Each Wind Subcategory 

 

Solar is divided into West and Non-West according to the geographic grouping shown in the map in Figure 

A2-5. 
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Figure A2-518. Geographic Grouping for Solar West and Non-West 

 

As expected, the coastal wind which exhibits higher capacity factor and higher diversity with load has a 

higher ELCC than the other two locational categories. However, it is not as high as suggested by the average 

output calculations performed by ERCOT. Table A2-7 compares the ELCCs for different years and portfolios 

and the ERCOT CDR methodology. 
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Table A2-7. Wind ELCC by Location 

 May 2020 CDR Summer Peak 

Average Capacity Contribution 
2020 2024 2024 High Renewable 

Wind-C 63% 31% 37% 24% 

Wind-O 16% 11% 13% 18% 

Wind-P 29% 21% 22% 17% 

All Wind  16% 18% 19% 

Solar ELCC is in part determined by longitude. Projects further to the west would be expected to have 

higher ELCCs in the summer since they would continue to produce output late into the afternoon. Since 

summer is the predominant reliability risk season, this effect drives the ELCC for solar, but in winter 

peaking regions across the country, eastern projects could produce higher ELCCs if early morning peaks 

are a reliability concern. The difference in ELCCs by location is 3-4%, as shown in Table A2-8, but more 

granular analysis comparing ELCCs for single locations in far West Texas vs far East Texas might show 

slightly larger disparities. 

Table A2-8. Solar ELCC by Location 

 May 2020 CDR Summer Peak 

Average Capacity Contribution 
2020 2024 2024 High Renewable 

Solar Non-West 76% 71% 72% 46% 

Solar West 76% 75% 76% 49% 

All Solar  74% 75% 48% 

 

Until 2024, the CDR accounting methodology roughly approximates the ELCC results from SERVM. 

However, further expansion of the solar fleet will sharply reduce ELCCs creating a disconnect with CDR 

methodology.  
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Executive Summary 

We have been asked by the Electric Reliability Council of Texas (ERCOT), on behalf of the Public 

Utility Commission of Texas (PUCT), to estimate the market equilibrium reserve margin (MERM) 

and the economically optimal reserve margin (EORM) for ERCOT’s wholesale electric market.  We 

undertook this analysis with Astrapé Consulting simulating the ERCOT market using its Strategic 

Energy Risk Valuation Model (SERVM).  The model reflects ERCOT’s wholesale market design 

and projected system conditions for 2022; it probabilistically simulates the economic and reliability 

implications of a range of possible reserve margins under a range of weather and other conditions. 

The MERM describes the reserve margin that the market can be expected to support in 

equilibrium, as investment in new supply resources responds to expected market conditions.  This 

concept is relevant in ERCOT because, unlike all other electricity systems in North America, 

ERCOT does not have a resource adequacy reliability standard or reserve margin requirement.  In 

ERCOT, the reserve margin is ultimately determined by suppliers’ costs and willingness to invest 

based on market prices, where prices are determined by market fundamentals and by the 

administratively-determined Operating Reserve Demand Curve (ORDC) during tight market 

conditions.  This approach creates a supply response to changes in energy market prices towards a 

“market equilibrium”; low reserve margins cause high energy and ancillary service (A/S) prices and 

attract investment in new resources, and investment will continue until high reserve margins 

result in prices too low to support further investment. 

We estimate a market equilibrium reserve margin of 10.25% under projected 2022 market 

conditions, as shown in Figure ES-1.1  This is much lower than historical reserve margins, but close 

to the reserve margins from ERCOT’s latest resource adequacy reports.  Reserve margins were 

10.9% for the summer of 2018 (relative to forecasted firm peak load),2 with 11.0% projected for 

2019.3 

                                                   

1  This estimate should not be interpreted as a precise forecast for 2022 or any other particular year, but 

as a reasonable expectation around which actual reserve margins may vary as market conditions 

fluctuate.  To expect a persistently lower reserve margin would be to assume investors will forego 

profitable opportunities to add additional supply, and to expect a persistently higher reserve margin 

would be to assume investors will over-invest. 

2  Final 2018 Summer SARA.  Adjusted Peak Demand reduced by Load Resources, Emergency Response 

Service, and TDSP according to the May 2018 Capacity, Demand and Reserves (CDR) report to calculate 

the reserve margin. 

3  May 2018 CDR. 
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Figure ES‐1 

 
Note: Marginal Unit Net Energy Revenue represents the net revenue from a mix of added combined‐
cycle  and  simple‐cycle  combustion  turbine  plants  (77:23  ratio);  the  Cost  of New Entry  shown  at 
$93.1/kW‐yr reflects this mix. 

The PUCT may be interested in whether such a market outcome would be acceptable to economic 

optimality.  The economic optimum occurs at the reserve margin that minimizes societal costs net 

of all supply costs and the lost value from any disruptions in electric service.  We calculate the 

economically optimal reserve margin by finding the balance between the marginal costs and 

marginal benefits of adding capacity.  The marginal costs are simply the levelized capital costs and 

fixed costs of a new generator.  Marginal benefits include lower production costs and reduced load 

shedding (at an assumed cost of $9,000/MWh), reserve shortages, demand-response calls, and other 

costly emergency events.  Our simulations quantify how scarcity event frequencies decrease (at a 

diminishing rate) as reserve margins increase.  We estimate 9.0% as the economically optimal 

reserve margin, based on the risk-neutral, probability-weighted-average cost of 57,000 

simulations.4  However, the estimated societal costs are relatively flat with respect to reserve 

margin near the minimum, with only modest variation between reserve margins of 7% and 11%. 

Our analysis shows that the market equilibrium of 10.25% is greater than the economically optimal 

level of capacity by 1.25%.  Based on these results, we conclude that the current market design will 

support more than sufficient reserve margins from an economic perspective.  The market 

equilibrium is higher than the economic optimum because the ORDC as currently designed sets 

                                                   

4  38 weather years, each at 5 levels of non-weather-based load forecast error, with 50 generator outage 

draws, at six modeled reserve margins. 
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prices higher than the marginal value of energy during scarcity conditions.  This design 

intentionally creates additional incentives to invest and thereby raises reserve margins somewhat 

above the economic optimum.  When ERCOT implemented the ORDC in June 2014 per PUCT 

orders, it right-shifted the curve by 1,000 MW (slightly more than 1% of peak load) relative to the 

curve that more accurately reflected the expected value of lost load.5  The right-shift accounted for 

the additional cost of emergency actions, but it may have reflected some risk aversion to lower 

reliability. 

Table ES-1 shows these for the base case as well as for sensitivity and scenario analyses conducted 

for this study.  Some of the key assumptions we test are the estimated capital cost of new 

generation, load forecasting error, coal and natural gas prices, the value of lost load (VOLL), 

intermittent renewable penetration, and weather distributions.  Regarding weather, our base case 

assumption is that all 38 years of historical weather are assigned an equal probability of occurring 

for the 2022 simulation year, and this reliance on long history is consistent with the EORM 

Manual.  More recent weather has been hotter (especially 2011) and may be assumed to be more 

representative of future weather.  Assuming accordingly that each of the last 10 weather years has 

a 10% chance of reoccurring (with 0% weight on each of the prior 28 years) leads to higher 

simulated prices and reliability events at a given reserve margin; but the higher prices would attract 

more investment, resulting in a 1.5% higher market equilibrium reserve margin and similar 

reliability to the base case. 

Table ES‐1 
Market Equilibrium and Economically Optimal Reserve Margins and Reliability 

   

                                                   

5  Specifically, the ORDC was set as if load would be shed (or other emergency actions taken at an 

equivalent cost) at an operating reserve level of 2,000 MW.  This is above the 1,000 MW estimated level 

at which load is shed, with prior emergency actions incurring costs below the value of lost load. 

MERM EORM

(%) (%)

Base Case 10.25% 9.0%

Vary Gross CONE 9.25% ‐ 10.50%   8.0% ‐ 9.25%

Vary VOLL 10.25%       8.25% ‐ 10.5%

Vary Probability of Weather Years 10.0% ‐ 11.75% 8.75% ‐ 10.5%

Vary Forward Years 9.25% ‐ 10.25% 8.5% ‐ 9.0%

High Renewables Scenario 9.25% 8.25%

Low Renewables Scenario 10.75% 9.50%

High Gas Price 11.25% 10.25%
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Notes: 
  Table reflects all scenarios and sensitivities analyzed, as described in Section II.D; Current practice has VOLL set to the max of the 

ORDC but the sensitivity which varies to VOLL does not change the ORDC curve and therefore does not affect the MERM. 

In an alternative High Renewable scenario with 10 GW more wind and 10 GW more solar 

photovoltaic capacity (nameplate) than the base case,6 renewable resources economically displace 

a roughly offsetting amount of conventional generation, resulting in only a small change in the 

market equilibrium reserve margin.  We estimate a 1% reduction in the market equilibrium reserve 

margin.  The decrease is caused by a steeper net load (load minus renewable generation) duration 

curve causing prices to fall faster beyond the peak hour.  Such lower prices would reduce 

generators’ net revenues, so reserve margins have to tighten slightly (increasing high-priced ORDC 

hours) for investment to re-equilibrate.  The reduction in market equilibrium reserve margin is 

matched, however, by an equal reduction in the economically optimal reserve margin.  Thus the 

market would still be expected to attract more than sufficient reserves from an economic 

perspective. 

In terms of reliability, our probabilistic simulations indicate that under base case assumptions with 

a market equilibrium reserve margin of 10.25%, the system could be expected to experience 0.5 

events per year loss-of-load expectation (LOLE).7  This compares favorably to 0.8 events per year 

LOLE at the economically optimum level, but is above the 0.1 events per year LOLE standard used 

by most electric systems in North America for planning purposes. 

These estimates must not be interpreted as deterministic, since actual market conditions will 

fluctuate from year-to-year.  In reality, the reserve margin will vary as plants enter and exit.  

Moreover, even at a given reserve margin, realized reliability and price outcomes can deviate far 

from the expected value, primarily due to weather and variations in wind generation.  For example, 

with a projected market equilibrium reserve margin of 10.25%, we estimate that in the 90th 

percentile outcome—representing relatively hot weather and low generation availability—energy 

                                                   

6  The high renewables case adds roughly 50% of the wind and solar capacity from the July 2018 Generator 

Interconnection Status (GIS) report that has not yet met all the requirements to be included in ERCOT’s 

May 2018 CDR report. 

7  For the simulations, a loss-of-load (LOL) event occurs when the hourly load, plus a minimum operating 

reserve level of 1,000 MW, is greater than available resource capacity.  A LOL event is recorded for each 

day of the simulation if one LOL hour occurs in the 24-hour span, or if there are more than one non-

contiguous LOL hours during the day.  For a given reserve margin level, the LOLE is the mean number 

of LOL events for 9,500 simulations (38 weather years, 5 load error levels, 50 outage draws). 
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prices would double, marginal units could have net energy revenues reaching $200/kW-year, with 

1.2 load-shed events per year (compared to a mean of 0.5 across all conditions modeled). 

Compared to the 2014 study, both the estimated market equilibrium reserve margin and 

economically optimal reserve margin are 1.25% lower in spite of a lower Cost of New Entry 

(CONE) and reserve margin accounting changes that would lead to higher reserve margins.  Factors 

driving down reserve margins are low gas prices, higher renewable penetration, and updated 

assumptions on generator forced outages and weather.  Correspondingly, reliability under the 

estimated market equilibrium reserve margin is worse than the estimated LOLE in the last study, 

at 0.5 events per year vs. 0.33 events per year in the previous study.  The two biggest drivers of a 

lower MERM, and the corresponding lower reliability, are lower forced outage rates and changes 

in weather weights. 

These conclusions are based on a well-tested model, whose structure and updated inputs have been 

carefully constructed in collaboration with ERCOT staff, and whose outputs (particularly prices) 

have been validated against real-world conditions.  However, as in any analysis of complex 

problems, this analysis has its limitations that must be understood to properly interpret the results.  

One limitation is the uncertainty surrounding the assumptions.  Although we believe the most 

important uncertain assumptions are examined through our sensitivity analyses, others are also 

uncertain, such as the average availability of the generation fleet.  Another limitation is that we 

did not consider how high prices under tight market conditions might attract more renewable 

generation, energy storage, and price-responsive demand that could help support reliability. 
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I. Background and Context 

We have been asked by the Public Utility Commission of Texas (PUCT) and the Electric Reliability 

Council of Texas (ERCOT) to estimate the market equilibrium reserve margin (MERM) and the 

economically optimal reserve margin (EORM) for ERCOT’s wholesale electric market. 

The MERM describes the reserve margin that the market can be expected to support in 

equilibrium, as investment in new supply resources responds to expected market conditions.  This 

concept is relevant in ERCOT because, unlike all other electricity systems in North America, 

ERCOT does not have a reserve margin requirement.  In ERCOT, the reserve margin is ultimately 

determined by suppliers’ costs and willingness to invest based on market prices, where prices are 

determined by market fundamentals and by the administratively-determined Operating Reserve 

Demand Curve (ORDC) during tight market conditions.  This approach creates a supply response 

to changes in energy market prices toward a “market equilibrium”; low reserve margins cause high 

energy and ancillary service (A/S) prices and attract investment in new resources, and investment 

will continue until high reserve margins result in prices too low to support further investment.  

The PUCT also wants to know whether the market outcome will be acceptable to economic 

optimality.  The EORM is the benchmark for establishing the sufficiency of the expected MERM, 

where the marginal benefits of new supply are just equal to the marginal costs of new supply. 

As the left panel of Figure 1 shows, higher reserve margins are associated with higher generation 

capital and fixed costs of building more capacity (dark blue line).  The higher costs are offset by a 

reduction in the frequency and magnitude of costly reliability events, such as load-shed events, 

other emergency events, and demand-response curtailments, and the reduced production costs 

(light blue line).  The tradeoff between increasing capital costs and decreasing reliability-related 

operating costs results in a U-shaped societal cost curve (red line), with costs minimized at what 

we refer to as the “economically optimal” reserve margin.8  The right part of Figure 1 shows how 

we derive the “market equilibrium” reserve margin.  The marginal cost of capacity is known as the 

“Cost of New Entry” (CONE), which depends on technology costs and economic conditions such 

                                                   

8  In developing our approach to calculating the economically optimal reserve margin, we draw upon a 

large body of prior work conducted by ourselves and others, although the majority or all of this prior 

work was relevant in the context of regulated planning rather than restructured markets.  For example, 

see Poland (1988), p.21; Munasinghe (1988), pp. 5–7, 12–13; and Carden, Pfeifenberger, and 

Wintermantel (2011). 
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as tax structures and remains stable across reserve margins (dark blue line).  A marginal unit’s 

revenues from energy markets and ancillary services (light blue line) quickly decrease with less 

scarcity pricing at higher reserve margins.  The intersection point of a marginal unit’s revenue and 

CONE represent the “market equilibrium” reserve margin where the marginal unit breaks even. 

Figure 1 
Economically Optimal Reserve Margin and Market Equilibrium Reserve Margin Concepts 

(Illustrative Schematics, Not Simulation Results) 

 

This study estimates the MERM and the EORM for the ERCOT market given the currently 

formulated scarcity pricing mechanism and expected market conditions.  It estimates the reliability 

at each of those levels of reserves, but strictly for informational purposes, since there is no 

reliability requirement.  Our study methodology follows the ERCOT manual for estimating the 

EORM and MERM.9  The primary analytical tool in this study is energy market simulations using 

the SERVM model.  SERVM simulates hourly energy demand (under a range of weather 

conditions), energy production, and energy prices given the marginal cost of available supply and 

the Operating Reserve Demand Curve (ORDC).  By analyzing the results of simulations conducted 

at many possible levels of investment, we can identify which of the reserve margins represents a 

MERM and which level represents the EORM. 

In the 2014 study, we found a MERM of 11.5% and an EORM of 10.2%, with corresponding 

reliability of 0.5 and 0.8 expected load-shed events per year, respectively.  The present study 

                                                   

9  See ERCOT (2017b).  Note that the methodology described in the manual is derived from our 2014 

study. 
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incorporates updated market conditions regarding the projected resource mix, CONE, and gas 

prices; different assumptions regarding weather; lower forced outage rates based on recent data; 

and current conventions for describing peak load and accounting for intermittent resources in 

expressing the reserve margin. 
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II. Study Assumptions and Approach 

Our simulations rely on a detailed representation of the ERCOT system, including: load and 

weather patterns and their probabilistic variations; the cost and performance characteristics of 

ERCOT’s generation and demand-response resources; the mechanics of the ERCOT energy and 

ancillary services markets, including a unit commitment and economic dispatch of all generation 

resources, demand-response resources, and the transmission interties with neighboring markets.  

Assumptions on the generation fleet, demand-response penetration, fuel prices, and energy market 

design reflect expected conditions in 2022. 

A. MODELING FRAMEWORK 

We use the Strategic Energy Risk Valuation Model (SERVM) to estimate the economically optimal 

reserve margin, the market equilibrium reserve margin, and the associated reliability in the 

ERCOT system.10  Like other reliability models, SERVM probabilistically evaluates the reliability 

implications of any given reserve margin.  It does so by simulating generation availability, load 

profiles, load uncertainty, inter-regional transmission availability, and other factors.  SERVM 

ultimately generates standard reliability metrics such as loss-of-load events (LOLE), loss-of-load 

hours (LOLH), and expected unserved energy (EUE).  Unlike other reliability modeling packages, 

however, SERVM simulates economic outcomes, including hourly generation dispatch, ancillary 

services, and price formation under both normal conditions and emergency operating procedures.  

SERVM estimates hourly and annual production costs, customer costs, market prices, net import 

costs, load shed costs, and generator net energy revenues as a function of the planning reserve 

margin.  These results allow us to compare these variable costs against the incremental capital costs 

required to achieve higher planning reserve margins, such that the optimal reserve margin can be 

identified.  The MERM can be identified by comparing potential new generators’ net revenues to 

their levelized fixed costs. 

The multi-area economic and reliability simulations in SERVM include an hourly chronological 

economic dispatch that is subject to inter-regional transmission constraints.  Each generation unit 

is modeled individually, characterized by its economic and physical characteristics.  Planned 

outages are scheduled in off-peak seasons, consistent with standard practices, while unplanned 

outages and derates occur probabilistically using historical distributions of time between failures 

                                                   

10  SERVM software is a product of Astrapé Consulting, co-authors of this report.  See Astrapé (2018). 
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and time to repair, as explained in Appendix 1.  Load, hydro, wind, and solar conditions are 

modeled based on profiles consistent with individual historical weather years.  Dispatch limitations 

and limitations on annual energy output are imposed on certain types of resources such as demand 

response, hydro generation, and seasonally mothballed units. 

The model implements a week-ahead and then multi-hour-ahead unit commitment algorithm 

considering the outlook for weather and planned generation outages.  In the operating day, the 

model runs an hourly economic dispatch of baseload, intermediate, and peaking resources, 

including an optimization of transmission-constrained inter-regional power flows to minimize 

total costs.  During most hours, hourly prices reflect marginal production costs, with higher prices 

being realized when import constraints are binding.  During emergency and other peaking 

conditions, SERVM simulates scarcity prices that exceed generators’ marginal production costs as 

explained further in Appendix 1.E 

To examine a full range of potential economic and reliability outcomes, we implement a Monte 

Carlo analysis over a large number of scenarios with varying demand and supply conditions.  

Because reliability events occur only when system conditions reflect unusually high loads or 

limited supply, these simulations must capture wide distributions of possible weather, load growth, 

and generation performance scenarios.  This study incorporates 38 weather years, 5 levels of 

economic load forecast error,11 and 50 draws of generating unit performance for a total of 9,500 

iterations for each simulated reserve margin case.  Each individual iteration simulates 8,760 hours 

for the year 2022.  The large number of simulations is necessary to accurately assess the reliability 

and economic implications of varying reserve margins.  A probabilistic approach is needed to 

characterize the distribution of possible outcomes, particularly because the majority of reliability-

related costs are associated with infrequent and sometimes extreme scarcity events.  Such 

reliability events are typically triggered by rare circumstances that reflect a combination of 

extreme weather-related loads, high load-growth forecast error, and unusual combinations of 

generation outages. 

To properly capture the magnitude and impact of reliability conditions during extreme events, a 

critical aspect of this modeling effort is the correct economic and operational characterization of 

emergency procedures.  For this reason, SERVM simulates a range of emergency procedures, 

                                                   

11  The five discrete levels of load forecast error we model are equal to 0%, +/−2%, and +/−4% above and 

below the 50/50 ERCOT load forecast. 
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accounting for energy and call-hour limitations, dispatch prices, operating reserve depletion, 

dispatch of economic and emergency demand-response resources, and administrative scarcity 

pricing.12 

B. PRIMARY INPUTS 

Market conditions and ERCOT’s reserve margin accounting conventions have both shifted since 

the 2014 EORM report was completed.  This section focuses on those changes and discusses their 

implications for the MERM and EORM. 

Our reserve margin accounting is consistent with the reserve margin accounting conventions in 

ERCOT’s 2018 CDR, as summarized in column C of Table 1.  Peak load is reduced for non-

controllable load resources (LRs), 10-minute and 30-minute emergency response service (ERS), 

and Transmission/Distribution Service Providers (TDSP) energy efficiency and load management.  

On the supply side, most resources are counted toward the reserve margin at their summer ratings, 

except for non-coastal wind, coastal wind, and solar counting at 14%, 59%, and 75% of nameplate 

respectively, and the High Voltage Direct Current (HVDC) ties counting at approximately 31% of 

the path ratings, consistent with the CDR. 

There have been several changes in reserve margin accounting since the 2014 EORM report.  Table 

1 columns A and B summarize the effects of the reserve margin accounting changes on the 

assumptions used in EORM 2014.  Most notably, ERCOT now counts more capacity value for wind 

generation after having refined its methods based on historical operating data.  The contribution 

of wind generation is now divided by region, coastal versus non-coastal, and both areas have higher 

contributions than the previous 8.7%, increasing the accounting for wind.13  This increase in 

nominal capacity contributions (and reserve margins) is partially offset by having reduced solar 

generation’s nominal capacity contribution from full nameplate capacity down to 75%.  Similarly, 

ERCOT now counts less summer peak capacity available on ERCOT’s tie lines with neighboring 

                                                   

12   Similar to other reliability modeling exercises, our study is focused on resource adequacy as defined by 

having sufficient resources to meet peak summer load.  As such, we have not attempted to model other 

types of outage or reliability issues such as transmission and distribution outages, common mode failures 

related to winter weather extremes, or any potential issues related to gas pipeline constraints or delivery 

problems. 

13  Non-coastal wind has a 14% capacity contribution, and coastal wind has a 59% capacity contribution 

during summer peak loads. 

324



14 | brattle.com 

regions based on historical contributions, rather than the prior assumption that they could be 

expected to contribute 50% of their line ratings. 

A more subtle accounting change is that ERCOT’s system peak load forecast is now expressed as a 

higher number for the same underlying loads because the historical year ERCOT used to shape its 

forecast had less inter-zonal load diversity than in the 2014 study (and we understand that this was 

chosen by ERCOT staff to create more conservative load forecasts, so we characterize it as an 

“accounting” change).14  This means that the ERCOT system peak forecast appears higher than it 

would have been under previous calculations, and this decreases apparent reserve margins, all else 

equal. 

In addition to accounting changes, ERCOT’s system has been experiencing many changes in 

market fundamentals since the previous study (for study year 2016).  First, load has been growing 

about 1.5% per year due to economic and population factors.  Second, much more wind and solar 

generation has entered or will enter the system by 2022—approximately 15 GW more wind and 3 

GW more solar than prior expectations for 2016.  Third, ERCOT has seen increased participation 

in load reduction programs.15  Fourth, private use network (PUN) units are expected to have a 

lower contribution to supply during peak demand periods.16 

                                                   

14  There is an additional accounting effect in that ERCOT uses the most recent 15 years in its load 

forecasting, so the current load forecasts are based on a different set of historical years than those for 

the 2014 EORM study.  

15  Participation has decreased in RRS, 10-minute ERS, and TDSP programs, but this is offset by an increase 

in 30-minute ERS participation. 

16  PUNs are behind-the-fence loads at generation facilities and frequently operate with zero net energy 

injection into the ERCOT system, but contribute to system inertia; PUN generation in ERCOT is mainly 

comprised of Combined Cycle, Combustion Turbine Simple Cycle, and Gas Steam units (ERCOT, 

2018k). 
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Table 1 
Components of Supply and Demand in Current 2018 Study vs. 2014 Study 

 
Sources and Notes:  Reserve Margin = Supply/ (Peak Load − Load Reductions) − 1  
Conventional Generation includes new units.  CC and CT capacity is treated as a key variable in this study, controlling reserve margins. 

The base 2022 supply fleet, as summarized in column C of Table 1 is consistent with the 

forthcoming 2018 North American Electric Reliability Corporation (NERC) Long-Term Reliability 

Assessment (LTRA) report.17  The fleet summary developed by ERCOT staff for the NERC LTRA 

was the most recent data available when this study was developed.  When compared to the 2018 

CDR values for 2022, the supply fleet adds a relatively modest 986 MW of wind and 251 MW of 

solar installed capacity.  The composition of installed capacity in the 2018 LTRA is summarized in 

Figure 2. 

                                                   

17  We include or exclude new units and retirements starting in the specified year and completely exclude 

units that have been mothballed.  We model switchable units as internal resources.  Data was provided, 

as submitted to NERC, by ERCOT staff. 

Values from 

2014 Study

Re‐expressed 

Values from 

2014 Study

Values from 

2018 Study

(Using 2018 

Accounting)

(MW) (MW) (MW) (MW) (MW)

[A] [B] [C] [B‐A] [C‐B]

Modelled Year 2016 2016 2022

Accounting  Methodology Year 2013 2018 2018

Peak Load 70,618 71,353 79,027 735 7,674

Load Reduction 1,869 1,869 2,173 0 304

LRs serving RRS 1,205 1,205 1,119 0 ‐86

10‐Minute ERS 347 347 140 0 ‐207

30‐Minute ERS 77 77 632 0 555

TDSP Curtailment Programs 240 240 282 0 42

Supply 76,659 78,114 85,919 1,455 7,805

Conventional Generation 69,700 69,700 72,441 0 2,741

Hydro 521 521 467 0 ‐54

Wind 1,319 3,044 6,331 1,725 3,287

Solar 124 93 2,708 ‐31 2,615

Storage 36 36 324 0 288

PUNs 4,331 4,331 3,259 0 ‐1,072

Capacity of DC Ties 628 389 389 ‐239 0

Reserve Margin 11.51% 12.42% 11.80% 0.91% ‐0.63%

Difference 

Attributable to 

Accounting 

Changes

Difference 

Attributable to 

Fundamentals 

Changes
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Figure 2 
Installed Capacity by Resource Type 

  
Sources and Notes: Most recent LTRA data supplied by ERCOT staff and ERCOT, 2018a.The LTRA data 
was comparable to the capacities provided in the May 2018 CDR. 

We conduct simulations over a wide range of reserve margins by adding or removing capacity from 

this existing supply fleet.  To analyze higher reserve margins, we add a combination of gas CC and 

gas CT capacity, assuming the characteristics shown in Table 2 below that were derived from a 

recent study Brattle conducted.  CCs and CTs are added in a 77:23 megawatt ratio, roughly 

reflecting the types of resources that have been added or proposed for the ERCOT market.  To 

analyze lower reserve margins, we exclude planned new resources that are similar to our reference 

technology.18  We assume the CONE for the new units are $94,500/MW-year for the gas CC and 

$88,500/MW-year for the gas CT.19 

                                                   

18  More detail on the reference technology can be found in Appendix 1.B.1. 

19  The CONE values are based on the results from the 2018 PJM CONE study (Newell, et al. 2018.), but do 

not account for adjustments to the assumed discount rate and exemption from paying sales taxes that 

occurred following the release of the report.  Changing the CONE for ERCOT to be consistent with the 

higher discount rate would increase the CC CONE to $97.5/kW-year and the CT CONE to $91.2/kW-

year, which is within the high end sensitivity range (+25%). 
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Table 2 
Reference Technology Cost and Summer Performance Characteristics 

 
Sources and Notes: Based on ambient conditions of 92°F Max.  Summer (55.5% Humidity).  (Newell, et al. 2018).  

After  the  initial  report,  Brattle  made  two  (largely  offsetting)  updates  with  higher  ATWACC  (8%)  and 
incorporating state sales tax exemptions. 

On the demand side, this study starts with ERCOT’s peak load forecast for 2022, but then develops 

hourly shapes under many possible weather patterns.  We simulate each of 38 weather years, from 

1980 through 2017 (with corresponding wind and solar conditions from the same years).  When 

calculating expected values, we assume equal probabilities of each year’s weather.  Applying equal 

probabilities is reasonable given that so many years can be taken to be fairly representative of the 

underlying distribution, assuming there is not a trend in the average weather or in the variability 

of weather.  (Other possibilities are considered in the Section III.D.3. below.)  This differs from 

the 2014 EORM study base assumptions, which applied a 1% weight to 2011 weather and assigned 

the remaining 99% equally among weather conditions for 15 other years (1998 to 2012).  The effect 

of using 38 years provides a greater variation in weather uncertainty, and while it puts more weight 

on 2011, the more recent weather history simulated for the 2014 EORM study resulted in more 

reliability issues than the full 38-year distribution on average.  The net effect of the change in 

weather assumptions reduces the market equilibrium reserve margin relative to the level reported 

in the 2014 EORM study. 

C. SCARCITY PRICING AND DEMAND RESPONSE MODELING 

A number of different types of demand-side resources contribute to resource adequacy and price 

formation in ERCOT.  Table 3 summarizes these resources, explaining how we model their 

characteristics, their assumed marginal costs when interrupted, and how they are accounted for in 

Simple Cycle Combined 

Cycle

Plant Configuration

Turbine GE 7HA.02 GE 7HA.02

Configuration 1 x 0 2 x 1

Heat Rate (HHV)

Base Load (Btu/kWh) 9,274 6,312

Max Load w/ Duct Firing (Btu/kWh) n/a 6,553

Installed Capacity

Base Load (MW) 352 1,023

Max Load (MW) n/a 1,152

Gross CONE ($/kW‐yr) $89 $95
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the reserve margin.  We developed these assumptions in close coordination with the ERCOT staff, 

who provided assumptions regarding the appropriate quantities for modeling. 

The marginal costs of these demand-side resources are highly uncertain, although the marginal 

costs we report in the table are in the general range that we would anticipate given the sparse data 

availability.  Most of these resources including TDSP load management, emergency response 

service (ERS), and load resources (LRs) are dispatched for energy based on an emergency event 

trigger rather than a price-based trigger consistent with marginal cost.  We use ERCOT’s 

administrative scarcity pricing mechanism, the operating reserves demand curve (ORDC), to 

reflect the willingness to pay for spinning and non-spinning reserves in the real-time market.  We 

make the simplifying assumption that these resources are triggered in order of ascending marginal 

cost, and at the time when market prices are equal to their marginal curtailment cost, as explained 

further in Appendix 1.E.4 below. 

Two types of demand-side resources, energy efficiency (EE) and self-curtailment to avoid four 

coincident peak (4CP) transmission charges, are not explicitly modeled because the historical effect 

of these load reductions are included in the load shapes.  However, these resources are 

appropriately accounted for using the conventions of ERCOT’s CDR report as explained further in 

Appendix 1.A.1 below. 
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Table 3 
Summary of Demand Resource Characteristics and Modeling Approach 

Resource Type 
Quantity 
(MW) 

Modeling Approach 
Marginal 

Curtailment 
Cost 

Adjustments 
to ERCOT 
Load Shape 

Reserve Margin 
Accounting 

Load Management 

Energy Efficiency  2,389  Not explicitly modeled.  n/a  None  Load reduction. 

TDSP Programs  282  Emergency trigger at EEA Level 1.  $2,456  None  Load reduction. 

Emergency Response Service (ERS) 

30‐Minute ERS  632  Emergency trigger at EEA Level 1.  $1,365  None  Load reduction. 

10‐Minute ERS  140  Emergency trigger at EEA Level 2.  $2,456  None  Load reduction. 

Load Resources (LRs) 

Non‐Controllable 
LRs 

1,119 

Economically dispatch for Responsive 
Reserve Service (most hours) or energy 

(few peak hours).  Emergency 
deployment at EEA Level 2. 

$2,456  None  Load reduction. 

Controllable LRs  0 
Currently no controllable LRs modeled 

in ERCOT. 
n/a  n/a  n/a 

Voluntary Self‐Curtailments 

4 CP Reductions  1,700 
Not explicitly modeled (assume 4CP 

behavior will persist in all 
circumstances). 

n/a  None 
None; excluded from 
reported peak load. 

Price Responsive 
Demand 

741  Economic self‐curtailment 
$5,000 ‐ 

$9,000/MWh 
None 

None; excluded from 
reported peak load. 

Sources and Notes: 
  Developed based on analyses of recent DR participation in each program and input and data from ERCOT staff.  See corresponding sections 

in the Appendix for more detail.  
  No adjustments are made to the ERCOT load shapes because they are estimated assuming no curtailments, except for 4CP for which the load 

shapes are already reduced, and Price Responsive Demand which is assumed to have a negligible historical response. 
  For 10‐Minute ERS and 30‐Minute ERS there is an 8‐hour call limit per Contract Period.  See Table A1‐6 below.  

TDSP Load Management Programs have a 16‐hour call limit from June to September. 
   Previously, the 2014 EORM Report also had 36 MW of Controllable LRs attributed to the Notrees Battery; both the CDR and the LTRA listed 

Notrees battery as 0 MW for summer 2022 so  no controllable LRs were modeled in ERCOT for this study.  

D. STUDY SENSITIVITIES AND SCENARIOS 

In addition to the base case analysis described above, we simulated three alternative scenarios and 

several “sensitivity” analyses to inform how the MERM and EORM could vary under different 

plausible conditions.  The three scenarios are “High Renewables Penetration,” “Low Renewables 

Penetration,” and “High Gas Prices.”  The high renewable penetration scenario adds much more 

wind and solar generation to explore the implications of understating renewable penetration in 

2022 (or beyond).  The low renewable penetration scenario assumes the same level of renewable 

penetration as 2014 and is included to inform the differences between the current EORM study 
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and the 2014 study, not because we find it to be a realistic future scenario.  The High Gas Price 

scenario is considered due to the impact gas prices have on the economics of investing in new 

plant.  We do not consider a low gas price scenario since the base case gas prices are near historic 

lows.  The assumptions for each scenario are summarized in Table 4 below. 

Table 4 
Description of Modeled Scenarios 

Scenario Name  Base Case Assumption  Scenario Assumption  Expected Impact 

High Renewables 
Penetration 

Consistent with the 
2018 LTRA, 1.2 GW 

new solar and 5.4 GW 
new wind 

In addition, add ~50% of the wind and solar 
capacity from the July 2018 interconnection 

queue that has not yet met all the 
requirements to be included in the LTRA 
(10 GW new solar, 10 GW new wind) 

Steeper net load curve 
may reduce MERM and 

EORM and slightly 
degrade reliability 

Low Renewables 
Penetration  

Consistent with the 
2018 LTRA, 1.2 GW 

new solar and 5.4 GW 
new wind 

Model wind and solar capacity equal 
consistent with the values used in the 2014 

EORM Report 

Increase MERM and 
EORM.  Helps explain 
the effect of net load 
changes from previous 

report 

High Gas Price  Consistent with the 
2018 EIA AEO High Oil 
and Gas Resource and 

Technology Case 

Consistent with the 2018 EIA AEO Low Oil 
and Gas Resource and Technology Case 

Increase EORM 

The other sensitivity analyses that we conducted examine the impacts of: (a) varying the assumed 

cost of building new plants; (b) adjusting the value of lost load (VOLL);20 (c) adjusting the 

likelihood of recent weather years compared to historic values; and (d) varying the associated load 

forecast uncertainty not attributable to weather conditions. 

                                                   

20  Our VOLL sensitivity adjusts the VOLL but it does not adjust the ORDC, which is set by the Public 

Utility Commission of Texas based on the system-wide offer cap and not directly set based on customer 

VOLL.  Because the ORDC curve does not change, the VOLL sensitivity does not affect market prices 

and the MERM (which is solely based on market prices) does not change.  The EORM is affected because 

the higher VOLL implies customers place a higher value on avoiding loss-of-load events and therefore 

prefer higher reserve margins, all else equal. 
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Table 5 
Definition of Non‐Modeled Sensitivities 

Sensitivity  Base Case Assumption  Sensitivity Range 

Gross CONE 
CT: $89/kW‐year 
CC: $95/kW‐year 

−10% / +25% 

VOLL  $9,000/MWh  $5,000 to $30,000/MWh 

Weighting of Historical 
Weather Years 

Equal probability assigned to 
all 38 weather years 

(1) Assign equal probability  to 10 most  recent  years 
and zero probability to first 28 years 

(2) Assign  probabilities  based  on  Pareto  distribution 
fit  to  weather  years  based  on  number  of 
consecutive days with weather over 100 degrees  

(3) Set probabilities equal to 2014 EORM base case 

Forward Period and Load 
Forecast Uncertainty 

3 years  0 years to 2 years 

E. MODEL VALIDATION 

In addition to carefully constructing realistic inputs to the model, we validated that the model’s 

outputs are reasonable by comparing them to real-world market observations.  Figure 3 below 

compares the simulated and historical combined-cycle net energy revenues for 2011 to 2017.  The 

historical bars reflect the net energy revenues for a new combine-cycle based on historical energy 

and natural gas price.  The modeled bars reflect the simulated net energy revenues for the same 

combined-cycle with energy prices determined by SERVM based on market and weather 

conditions corresponding to the actual year, assuming renewable capacity consistent with the “low 

renewable” scenario. 
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Figure 3 
Modeled vs. Actual Combined‐Cycle Net Energy Revenues 

   

The simulated net energy revenues are similar to the historical values with discrepancies primarily 

reflecting differences in supply availability.  This suggests that the model characterizes the price 

formation in the market reasonably well.21 

Note that, the chart above does not include 2018 data since not all the data is available.  Instead, 

we calculated the net energy revenues for a new combined-cycle over the most recent twelve 

month period based on realized energy and gas prices (similar to the historical bars in the figure 

above) and compared it to the median of simulated combined-cycle net revenues at the realized 

2018 reserve margin.22  The comparison indicates the proxy 2018 value is also reasonably 

calibrated. 

Another useful benchmark is a comparison of the average simulated net energy revenues against 

historically expected net energy revenues (corresponding to forward prices), both of which should 

reflect the distribution of possible weather and generation availability at a given planning reserve 

                                                   

21  Note that pre-2013 price formation differed absent an ORDC, but the overall effect was similar on 

average as price cap was lower but it was activated more readily at higher levels of reserves. 

22  This simpler comparison adjusts the realized load in the peak hour for demand-side resources, but not 

all hours as was done in the comparison above.  The demand-side resources adjustments for each year 

are consistent with December 2017 CDR values.  This assumes that the resources were not deployed to 

help meet the peak demand. 
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margin.23  As Figure 4 shows, the historical data points fall above and below the curve across a 

range of reserve margins, suggested that the distribution of possibilities represented in the model 

is reasonably similar to the distributions underlying energy traders’ and generation investors’ 

views.  The 2018 point shown, calculated consistently with the other years, falls below the curve.  

However, the 2018 point based on revenues using forward prices from May 2018, when prices 

spiked, falls above the curve. 

Although the fit is decent, the fit would be even closer if the curve shifted 1.5 percentage points 

to the right.  Such a shifted curve is approximately what we simulate under alternative weather 

assumptions drawn equally from each of the last 10 years instead of the last 38 in our base case.  

On average the last 10 years have been hotter than the prior period, suggesting a trend.  The fact 

that the curve based on recent, hotter weather appears more consistent with futures prices suggests 

that perhaps traders in the electricity futures markets place more weight on the recent hot weather 

data. 

                                                   

23 Planning reserve margins are from the December CDR report prior to each year shown in the chart; 

forwards prices are from contemporaneous trade dates, also in December. 
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Figure 4 
 Average Modeled vs. Historical Expected Net Energy Revenues by Reserve Margin 

 
Notes and Sources: 

Net Energy Revenues are calculated based on energy and gas forward prices as of the end of December before each respective year, 
from S&P Global Market Intelligence LLC.  Planning Reserve Margins shown along the x‐axis are taken from the December CDRs 
before each respective year.  The dark teal “2018 May Forwards” point is a similar calculation as of May, using updated forward 
prices  and  updated  supply  and  demand  information  from  the  SARA  report  and  load  adjustments  (LRs,  ERS,  TDSP)  from  the 
December 2017 CDR; we show that because it is so different from December expectations.  Note that net energy revenues shown 
here likely understate what an actual unit would expect to earn because they do not account for hourly volatility within on‐peak 
and off‐peak periods. 2011 was not included due to insufficient data. 

III. Results 

This section first presents the results of our study under base case assumptions, including the 

estimated 2022 MERM and EORM and the associated reliability, and then how the results could 

differ under alternative market conditions captured in the scenarios and sensitivities described 

above.  This section explains why the MERM and EORM results differ with respect to the result 

from the 2014 EORM study. 

A. MARKET EQUILIBRIUM RESERVE MARGIN 

We describe here the anticipated equilibrium conditions under ERCOT’s current market design 

by: (1) estimating the market equilibrium for our base case assumptions and several sensitivity 
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cases; (2) summarizing the volatility in realized prices and net revenues across reserve margins; 

and (3) describing the likely year-to-year variation in realized reserve margins. 

1. Average Equilibrium Reserve Margin 

As described above, the market equilibrium reserve margin occurs at the level of capacity where 

the net revenues of new capacity from our simulations just equal the marginal costs of capacity, 

which is equal to CONE.  As shown in Figure 5 below, CC/CT net energy revenues tend to decrease 

with higher reserve margins due to lower energy prices and few scarcity hours that occur when 

there is additional supply available on the system.  We find that the market equilibrium reserve 

margin, where marginal costs of new capacity intersect with the marginal revenues for that 

capacity, is 10.25%. 

Figure 5 
ERCOT Projected 2022 Market Equilibrium Reserve Margin 

 
Note: Marginal Unit Net Energy Revenue represents the net revenue from a mix of added CCs and CTs 
(77:23 ratio); the CONE shown at $93.1/kW‐yr reflects this mix as well. 

However, the single average market equilibrium reserve margin of 10.25% does not provide a 

complete story of the expected reliability of the ERCOT system or the expected revenues for new 

entrants.  In the remainder of this section we discuss the volatility in realized prices in our 

simulations and the year-to-year variability in the reserve margin.  In Section III.B we compare 

this market equilibrium to an economically optimal reserve margin, and in Section III.C we 

examine the sensitivity of our analysis to uncertainties in future market conditions. 
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2. Volatility in Realized Prices and Generator Revenues 

Our estimate of the average market equilibrium reserve margin is strongly influenced by the 

assumed peak load and generator outage probability distributions, especially the most extreme 

scarcity events at the tails of those distributions.  As the reserve margin declines, these tails become 

more likely to produce scarcity resulting in high prices, high system-wide costs, and high generator 

margins. 

Figure 6 shows the range of annual energy prices (left) and marginal unit net energy revenues 

(right) for the base case across the reserve margins analyzed.24  The upper percentile curves show 

that prices and supplier margins in the tails of the distribution can be much higher in any given 

year than their median or overall weighted average values. 

Figure 6 
Distribution of Spot Energy Prices (Left) and Net Energy Revenues for a Marginal Unit (Right) 

   
Note: Marginal Unit Net Energy Revenues represent net revenues from a mix of added CCs and CTs (77:23 ratio).  

The years reflected in the tails of the distribution have a substantial effect on the market 

equilibrium reserve margin.  For example, at the base case market equilibrium reserve margin of 

10.25%, we estimate that once per decade (90th percentile) energy prices would exceed $62/MWh 

(100% higher than the median price at this reserve margin).  Once every two decades (95th 

                                                   

24  Marginal Unit Net Energy Revenues represent net revenues from a mix of added CCs and CTs (77:23 

ratio). 

$0

$20

$40

$60

$80

$100

$120

$140

$160

$180

$200

6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 16%

En
e
rg
y 
P
ri
ce
 ($

/M
W
h
)

Reserve Margin (% ICAP)

Median

5th Percentile

75th Percentile

90th Percentile

95th Percentile

Average

$0

$50

$100

$150

$200

$250

$300

$350

$400

$450

$500

6% 7% 8% 9% 10% 11% 12% 13% 14% 15% 16%

En
e
rg
y 
M
ar
gi
n
 ($

/k
W
‐y
r)

Reserve Margin (% ICAP)

Median

5th Percentile

75th Percentile

90th Percentile

95th Percentile

Average

337



27 | brattle.com 

percentile), prices would exceed $86/MWh (180% above the median price).  Similarly, new gas 

plant net revenues in the median year are only $46/kW-year, which is just 50% of CONE, but 

occasional high-priced years would elevate the average to CONE.  Assuming full exposure to spot 

market prices (i.e., no hedging) net revenues of marginal units would exceed $204/kW-year (about 

2 times CONE) once in a decade (90th percentile) and $334/kW-year (about 3.5 times CONE) once 

every two decades (95th percentile).25 

3. Year-to-Year Reserve Margin Variability  

The uncertainty in future load growth can have significant impacts on reserve margins and 

reliability.  Our base case simulations assume that the market invests based on the expected load 

growth and resulting prices on a three-year forward basis.  However, realized load growth will 

generally differ from three-year expectations, resulting in a range of reserve margins that differ 

from the equilibrium reserve margins shown above. 

We simulate this effect by assuming alternative load growth projections based on the distribution 

of non-weather forecast error in projecting future load, as described in Appendix 1.A.1 below.  

Even if the three-year-ahead planning reserve margin is exactly at the market equilibrium of 

10.25%, realized shorter-term planning reserve margins can be higher or lower as load growth 

uncertainty resolves itself over the next three years.  The planning reserve margins projected going 

into each summer would thus vary around the equilibrium from 8.4% to 12.1% in 50% of all years 

and drop below 6.7% approximately once per decade (i.e., below the 10th percentile).  Once 

weather-related load fluctuations are considered as well, after-the-fact realized reserve margins 

will vary even more substantially and will drop below 6.2% approximately once per decade (i.e., 

below the 10th percentile).  However, realized reserve margins, particularly the lows that largely 

reflect realized weather extremes, should not be compared to more familiar planning reserve 

margin benchmarks. 

Variability in reserve margins may be moderated by short lead-time resources (including 

switchable units, mothballs, uprates, and demand response) that can exit or enter the market as 

expectations change between three years forward and delivery.  By not simulating the effects of 

market exit and entry by short-term resources, our results would tend to overstate the range of 

                                                   

25  However, generators are generally not fully exposed to spot markets, since they hedge by selling most of 

their output in forward markets.  Forward prices reflect ex ante market expectations of all possibilities rather 

than spot realizations.  Selling forward dramatically smooths revenues closer to the expected values we 

estimate. 
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realized reserve margins.  However, our simulations do not account for the countervailing effects 

of additional supply-side uncertainties, such as unanticipated retirements, construction delays, and 

lumpiness in uncoordinated new entry, which would tend to increase the variability of reserve 

margins.  Furthermore, uncertainties about anticipated fuel prices, the capacity contribution of 

renewables, and other modeling assumptions would further widen the distribution of realized 

reserve margins.  Overall, we estimate that with a three-year forward period, load forecast 

uncertainty would result in equilibrium reserve margins ranging from 6.7% to 13.8% (10th to 90th 

percentiles). 

4. Comparison to 2014 EORM Study Results 

The 2014 EORM study estimated a market equilibrium reserve margin for 2016 of 11.5%, which 

is 1.25% higher than the current base case results of 10.25%.  There are several offsetting factors 

that drive the change in results, shown in Figure 7 below.  While changes in the ERCOT reserve 

margin accounting and a lower CONE tend to increase the MERM, these changes are primarily 

offset by an increase in renewables, lower gas prices, a lower assumed fleet-wide forced outage 

rate, and adjustments to the weighting we applied to historical weather years. 

The two largest drivers behind the market equilibrium reserve margin reduction are the lower 

CONE projected for 2022 and the lower forced outage rate seen in recent data, which offset each 

other by changing market equilibrium reserve margin up by 1.0% and down by 1.0%, respectively.  

As discussed in Section II.B, ERCOT has made several changes to reserve margin accounting, 

including: the diversity benefit of peak load, the capacity contribution of renewable generation, 

and the contribution of DC Ties; together these changes increase the market equilibrium reserve 

margin reported in the 2014 EORM study by 0.90%.  The increase in renewable installed capacity, 

lower predicted gas prices, and the change in the base case weather year weighting each have a 

0.6%, 0.5%, and a 0.75% decrease on the market equilibrium reserve margin, respectively.  Each 

of these aforementioned drivers is explored as a sensitivity to the results, discussed in Section 

III.D.5.  Other, more nuanced differences between the 2014 EORM study and the current study, 

such as the change in renewable generation shapes lining up with peak load hours, account for the 

remaining 0.3% decrease in the market equilibrium reserve margin.  For the same reasons, the 

EORM, as discussed in Section III.B, decreases with roughly the same percentage point 

magnitudes. 
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Figure 7 
Drivers of the Market Equilibrium Reserve Margin Change from 2016 to 2022 Model 

  

B. ECONOMICALLY OPTIMAL RESERVE MARGIN 

1. System Cost-Minimizing Reserve Margin 

The EORM is the level of capacity that minimizes total system capital and production costs.  As 

shown in Figure 8 below, we estimated the annual average of reliability-related costs over a range 

of planning reserve margins and found the EORM under base case assumptions to be 9.0%. 

At the lowest reserve margins analyzed the average annual reliability costs are high, driven by the 

cost of firm load shedding (red bar), regulation and reserve scarcity (grey bars), and production 

costs (purple bar).  As reserve margins increase, total reliability costs drop due to the decrease in 

scarcity events and production costs.  These costs decrease more quickly than the increases in 

capital costs associated with adding additional CCs and CTs resulting in a decrease in total system 

costs.  This continues at higher reserve margins until the “economically optimal” quantity of 

capacity has been added at a reserve margin of 9.0%.  After crossing this minimum cost point, the 

capital costs of adding more CCs and CTs exceed the benefits from reducing reliability-related 

costs, so total costs increase. 

10.25%

0.5%
0.6%

0.75%

1.0%

0.3%

11.5%

0.9%

1.0%

0%

2%

4%

6%

8%

10%

12%

14%

2014 MERM
Base

Reserve
Margin

Accounting

Lower Cost
of

New Entry

Increase in
Renewables

Lower Gas
Prices

Change in
Weather
Year

Weighting

Lower
Forced

Outage Rate

Other 2018 MERM
Base

M
ar
ke
t 
Eq

u
il
ib
ri
u
m
 R
e
se
rv
e 
M
ar
gi
n

340



30 | brattle.com 

Figure 8 
Total System Costs across Planning Reserve Margins 

 
Notes: 
  Total system costs include a large baseline of total system costs that do not change across reserve margins, including $13.4B/year 

in transmission and distribution, $6.7B/year in external system costs, and $5.8B/year in production costs. 

The total cost curve shown above has a shape similar to those we have observed in value-of-service 

studies for many other electric systems.26  The curve is relatively flat near the minimum average 

cost point, indicating that expected total costs do not vary substantially between reserve margins 

of 7%–11%.  However, the lower end of that range (7%) is associated with much more uncertainty 

in realized annual reliability costs, which we discuss in the next section, and a much larger number 

of severe, high-cost reliability events.  At the 11% reserve margin, a greater proportion of total 

annual costs is associated with the costs of adding new units (which has less uncertainty), and a 

smaller proportion of the average annual costs are from uncertain, low-probability, but high-cost 

reliability events.27 

                                                   

26  For example, see Poland (1988), p.21; Munasinghe (1988), pp. 5–7 and 12–13; and Carden, Pfeifenberger, 

and Wintermantel (2011). 

27  Reliability across planning reserve margins is discussed in Section III.C.1. 
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At each reserve margin level in Figure 8, we show the weighted-average costs across all 9,500 

annual simulations for several components of system costs that change with reserve margins.  We 

estimated each of the components of system costs based on the following assumptions: 

 Marginal CC and CT Capital Costs are the annualized fixed costs associated with 

building a mix of CC and CT plants, at a cost of $95/kW-year for the CC and 

$89/kW-year for the CT in the base case. 

 Production Costs (Above $6 billion per year Baseline) are total system production 

costs of all resources above an arbitrary baseline cost of $6 billion.  We show only 

a portion of total system costs as an individual slice on the chart in order to avoid 

having production costs dwarf the magnitude of other cost components, and 

subtract the same $6 billion at all reserve margins shown.  Production costs decrease 

at higher reserve margins because adding efficient new gas CCs and CTs reduces 

the need to dispatch higher-cost peakers. 

 External System Costs (Above Baseline) include production and scarcity costs in 

neighboring regions above an arbitrary baseline, which drop by a small amount 

with increasing reserve margins because ERCOT will rely less on imports from 

high-cost external peakers during internal scarcity events, and may be able to 

export more supply during external scarcity events.28 

 Emergency Generation is the price-driven dispatch of units outputting at high levels 

above their summer peak ratings at an assumed cost of $1,365/MWh, see Appendix 

1.E.3. 

 10-Minute and 30-Minute ERS is the cost of dispatching these resources during 

emergency events at assumed costs of $2,456 and $1,365/MWh for 10-minute and 

30-minute ERS respectively, see Appendix 1.C.1. 

 Non-Controllable LR costs reflect the cost of administratively re-dispatching LRs 

from supplying Responsive Reserve Service (RRS) to supplying energy at a cost of 

$2,456/MWh during emergencies, see Appendix 1.C.2. 

 TDSP Load Management costs are incurred when ERCOT administratively orders 

these demand-side resources to curtail during emergencies at an assumed cost of 

$2,456/MWh, see Appendix 1.E.2. 

                                                   

28  The baseline level of external production costs is not included in our total system cost.  This differs from 

our reporting of ERCOT-internal production costs, for which we do include baseline costs (that do not 

vary with reserve margin) in order to produce a meaningful total cost estimate for the ERCOT system. 
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 Spinning and Non-Spinning Reserve Scarcity costs are calculated as the area under 

the ORDC curve, calculated assuming load would be shed at X = 1,000 MW, see 

Appendix 1.E.4. 

 Regulation Scarcity costs are calculated according to the Power Balance Penalty 

Curve (PBPC) assuming that this curve accurately reflects the marginal cost of 

running short on regulating reserves, see Appendix 1.E.5. 

 Firm Load Shedding costs are the customer costs imposed during load-shed events 

at a cost at the assumed VOLL of $9,000/MWh. 

2. Exposure to Extreme Scarcity Events 

The economic results shown above assume risk neutrality with respect to the uncertainty and 

volatility of reliability-related costs.  Figure 8 compares total costs at different reserve margins as 

the probability-weighted average of annual reliability costs for all 9,500 simulation draws.  

However, there is substantial volatility around the average level of possible reliability cost 

outcomes.  Most simulated years will have very modest reliability costs, while a small number of 

years have very high costs.  These high-cost outcomes account for the majority of the weighted-

average annual costs shown as the individual bars in Figure 8 above. 

Figure 9 below summarizes this risk exposure by comparing the weighted-average costs for 

different reserve margins (red line, which is equal to the height of the individual bars in Figure 8) 

to annual costs under the most costly possible outcomes, represented by the 75th, 90th, and 95th 

percentiles of annual reliability costs across all 9,500 simulated scenarios. 

Considering the higher-cost uncertainty exposure at lower reserve margins, some policymakers 

prefer reserve margins to exceed the risk-neutral economic optimum.  As the simulation results 

show, a several percentage point increase in the reserve margin would only slightly increase the 

average annual costs, but more significantly reduce the likelihood of experiencing very high-cost 

events.  Total average costs change by a relatively modest amount over a range of planning reserve 

margins (e.g., average system costs increase by just $200 million with an increase in reserve margin 

from 10% to 15%).  However, lower planning reserve margins have a significantly larger 

uncertainty in reliability costs and the likelihood of high-cost outcomes than can be encountered 

in any particular year.  For example, at a 7% reserve margin costs are expected to be $1.3 billion 

higher than average once every ten years, while at 11% they would increase with a similar 

frequency by 1.0 billion. 
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Figure 9 
Year‐to‐Year Possible Realizations of Total Annual System Costs 

  
Notes: 
  Total system costs include scarcity‐related and production costs (that decrease with reserve margin), generation capital costs 

(that increase with reserve margin), and T&D costs (which remain constant across reserve margins.  Additional detail on the 
individual components of total system costs is available in Section III.B.1. 

C. SYSTEM RELIABILITY 

Although assessing planning reserve margins based on physical reliability standards is not within 

the scope of this study, it is still important to address the expected physical reliability metrics 

associated with our study results.  Most notably, we compare the expected reliability of the market 

equilibrium reserve margin to traditional reliability metrics. 

1. Physical Reliability Metrics 

At a market equilibrium reserve margin of 10.25% ERCOT can expect a probability-weighted 

average of 0.5 loss-of-load events (LOLE) per year.  Our simulations find that there is likely to be 

a loss-of-load event about every two years in the range of 1,527 MW of load being shed for 3.2 

hours on average, for a total expected unserved energy of 4,647 MWh.  Such events would be more 

frequent, longer, and deeper at lower reserve margins and less so at higher reserve margins.  Figure 

10 depicts how three physical reliability metrics vary with reserve margin: (1) LOLE on the left; 
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(2) loss of load hours (LOLH) in the middle; (3) Normalized Expected Unserved Energy (EUE) on 

the right.29 

Figure 10 
Reliability Metrics that Vary with Reserve Margins 

      (a) LOLE                                           (b) LOLH                                            (c) EUE 

 
Notes: 

Reflects base case assumptions, including 3‐Year Forward LFE and equal weather weights for all 38 years. 

Table 6 shows the same information in tabular form, along with additional information describing 

the magnitude of outage events when they occur. 

                                                   

29  For our simulations, the reported reliability metrics are the mean for 9,500 simulations (38 weather 

years, 5 load error levels, 50 outage draws).  A LOLE event is recorded for each day with at least one 

hour of lost load.  LOLH is calculated as the total hours in the simulation with lost load, without 

accounting for persistence of a particular outage event.  Normalized EUE is calculated as the expected 

quantity of unserved energy over the year divided by the net energy for load multiplied by 1,000,000.  

More information on these reliability metrics can be found in NERC 2010. 
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Table 6 
Detailed Reliability Metrics across Planning Reserve Margins in Base Case 

 

Most US areas set reliability metrics according to the “1-in-10” standard, i.e., a probability-

weighted average of 0.1 loss-of-load events (LOLE) per year.30  Under base case conditions a 13.5% 

reserve margin would be required to achieve 0.1 LOLE, which is 3.25% higher than MERM.  

However, another common interpretation of a one “day” in 10 years resource adequacy standard 

is 24 hours per 10 years, or 2.4 loss of load hours (LOLH) per year, for which the reserve margin 

would only need to be 9.2%, which is 1.05% lower than MERM. 

All of the reliability metrics shown above reflect the average over many possible outcomes at a 

given reserve margin.  Average statistics provide a convenient summary of a large amount of data, 

but they can obscure the wide distribution of possible outcomes around the average, as shown in 

the sections above.  Realized reliability in any given year will depend strongly on the weather and 

on generation availability. 

To illustrate the distribution of possible outcomes, Figure 11 below shows how reliability varies 

with weather, as measured by the annual expected unserved energy.  The teal bars show the total 

MWh of load shed during each of the 38 weather years for the base case simulations at a 10.25% 

reserve margin corresponding to the market equilibrium reserve margin.  The reoccurrence of 2011 

weather conditions could lead to almost 25,000 MWh of expected involuntary curtailment of firm 

                                                   

30  LOLE standards refer only to loss-of-load events due to shortages of bulk power supplies.  Annual 

customer service interruption hours caused by distribution outages are orders of magnitude greater, as 

discussed in Newell 2012. 

Reserve Total Annual Loss of Load Average Outage Event

Margin LOLE LOLH EUE Duration Energy Lost Depth

(%) (events/yr) (hours/yr) (MWh) (hours) (MWh) (MW)

6% 2.33 8.35 17,015 3.59 7,315 2,038

7% 1.68 5.81 11,263 3.46 6,714 1,938

8% 1.18 3.95 7,198 3.34 6,086 1,824

9% 0.81 2.61 4,426 3.21 5,444 1,698

10% 0.54 1.67 2,610 3.08 4,805 1,562

11% 0.35 1.03 1,468 2.94 4,182 1,421

12% 0.22 0.61 778 2.80 3,571 1,277

13% 0.13 0.33 374 2.61 2,919 1,118

14% 0.07 0.16 148 2.34 2,117 903

15% 0.03 0.07 48 2.09 1,409 673

16% 0.02 0.03 18 1.90 1,017 535
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load, far above the equal-probability-weighted average of 2,300 MWh over all 38 years depicted 

by the blue horizontal line.  By contrast, 28 out of the 38 years have much milder weather, with 

substantially less load shed than the average.  Thus the actual reliability will vary.  In addition, the 

expected value of reliability would differ if different probability weights were assigned to the 

various weather patterns, as discussed in the next section. 

Figure 11 
Expected Unserved Energy by Weather Year at 10.25% Reserve Margin 

  
Notes: 
  Figure reflects the base case 3‐Year forward LFE assumption and equal weather weights for all 38 years. 

2. Emergency Event Frequency 

Figure 12 summarizes the frequency of six types of emergency events for the base case simulations 

as a function of the reserve margin.  The emergency events, in increasing order of severity, are: 

(1) the economic dispatch of emergency generation (red line); (2) calling 30-minute ERS (dark gray 

line); (3) calling TDSP load curtailments (dark blue line); (4) re-dispatching LRs from RRS to 

energy (light gray line); (5) calling 10-minute ERS (light blue line); and, finally, (6) shedding firm 

load (light red line).  As shown, at a 13.5% reserve margin corresponding to 1-event-in-10-years 

(0.1 LOLE), emergency generation would be dispatched approximately 1 time a year on a 

weighted-average basis across all simulated years.  At a reserve margin of 8.5%, the system faces 

one load shed event per year on average, most years without load shed events and some years with 

several.  At the same 8.5% reserve margin, the various types of demand resources would have to 

be called from two to five times on average each year (depending on the resource type), and 
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emergency generation would be dispatched approximately five times on average each year.  At the 

market equilibrium reserve margin of 10.25%, emergency generation would be dispatched about 

three times on average per year, and other demand resources would average between once and 2.5 

times per year. 

All types of emergency events become more frequent at lower reserve margins, but the frequency 

of re-dispatching LRs that provide RRS to energy increases faster than TDSP calls.  This is because 

at lower reserve margins the hours-per-year constraints on TDSP demand-side resources bind in 

more cases, which diminishes their reliability value and requires ERCOT to rely more heavily on 

other measures and resources. 

Figure 12 
Average Annual Frequency of Emergency Events 

 
Notes: 
  Results from base case (3‐Year Forward LFE, equal weighting of weather years). 

D. SENSITIVITY OF MARKET EQUILIBRIUM RESERVE MARGIN TO STUDY ASSUMPTIONS 

If investors have different beliefs about load and other factors affecting revenues, or if they face 

different costs, the market equilibrium reserve margin could differ from our estimates.  Here we 

examine the most important uncertainty factors affecting the MERM, including: (1) the amount of 

intermittent renewable generation installed; (2) the assumed cost of building new natural gas-fired 

plants; (3) the value of lost load; (4) the assumed probabilities of the historical weather years used 

to model hourly loads and renewable generation; (5) load forecast uncertainty; and (6) gas prices. 

0

1

2

3

4

5

6

7

8

9

10

6% 8% 10% 12% 14%

Ev
e
n
t 
Fr
e
q
u
e
n
cy
 (
ev
e
n
ts
/y
r)

Reserve Margin (% ICAP)

Market Equilibirum 
Reserve Margin

30‐min ERS

LRs

TDSP

Emergency 
Generation

10‐min ERS

Load Shed

0.1 LOLE

348



38 | brattle.com 

Changing the values for these variables over a plausible range results in market equilibrium reserve 

margins ranging from 9.25% to 11.75%.  The actual uncertainty could be even wider, however, 

when considering other possibilities such as extreme weather events, broader distributions of 

intermittent renewable generation coinciding with the highest load years (rather than always 

taking the 2011 wind patterns with 2011 loads, for example), or different beliefs about future 

market and regulatory conditions.  This range of equilibrium reserve margins would produce a 

range of reliability outcomes, which we estimate to be 0.44 to 0.74 LOLE. 

1. Renewables Penetration Scenarios 

The base case analysis assumes 32.0 GW of wind and 3.6 GW of solar online by 2022, based on the 

existing fleet and planned resources that have met the criteria to be included in the CDR.  Our 

alternative “High Renewables” scenario adds 50% of the wind and solar capacity from ERCOT’s 

July 2018 Generator Interconnection Status report that has not yet met all the requirements to be 

included in the May 2018 CDR, resulting in an additional 10 GW of wind and 10 GW of solar.  The 

alternative “Low Renewables” scenario makes wind and solar capacities consistent with the 2014 

EORM Study by removing approximately 16.8 GW of wind and 3.5 GW of solar—not because this 

is realistic but because it informs how much of the change in MERM from one study to the other 

can be attributed to the additional renewables.31 

All else equal, adding renewable generation would decrease prices; but lower prices should force 

out conventional generation, until the market re-equilibrates at approximately the same reserve 

margin.  However, we do estimate that equilibrium reserve margins would decrease slightly with 

higher renewable penetration because the net load (load minus renewable generation) duration 

curve becomes steeper.  A steeper net load duration curve causes prices to fall faster beyond the 

peak hour.  That would reduce generators’ net revenues, so reserve margins have to tighten slightly 

to re-equilibrate, with a slight increase in high-priced ORDC hours.  In the High Renewables 

scenario, the MERM falls by one percentage point, to 9.25%, and reliability worsens slightly, 

increasing LOLE by 0.25. 

                                                   

31  The capacity contribution of renewables was adjusted in the high and low scenarios so that an LOLE of 

0.1 events per year occurs at a reserve margin of 13.75%, which is the consistent with the base case 

reliability under ERCOT’s current renewable capacity contributions.  Capacity contribution decreased 

in the high renewables scenario, and increased in the low renewable scenario. 
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In the Low Renewables scenario, the MERM rises 0.5 percentage points, to 10.75%—a smaller 

increase than the decrease estimated for the High scenario.  Although both renewable penetration 

scenarios add or decrease about 20 GW of renewable nameplate capacity, they have asymmetric 

effects on the MERM because of the impact of renewables penetration on the remaining fleet, 

which can be seen in Figure 13.  In the Low Renewables scenario, additional gas-fired generation 

is necessary to maintain the reserve margin at base case levels.32  These relatively efficient new 

resources operate frequently and reduce prices in many hours, thus limiting the amount of 

investment that can be supported.33  By contrast, the High Renewable scenario displaces 9 GW of 

existing generation that is not as efficient. 

Figure 13 
Market Equilibrium Reserve Margin Sensitivity to Renewable Penetration 

     

This resource adequacy study does not account for numerous operational challenges that can arise 

with greater penetration of intermittent renewable generation, such as providing enough 

operating reserves to compensate for wind and solar forecast errors, providing enough ramping 

capability to compensate for rapid changes in wind and solar output, and maintaining enough 

inertia to slow the rate of change of frequency following the loss of a large (usually thermal) 

generator.  While these problems can be addressed to avoid deteriorating operational reliability, it 

is likely they result in both more hours with low (or negative) market prices as well as more hours 

with high market prices than produced by our simulations, which assume perfect foresight in 

                                                   

32  The characteristics of Marginal Technology Resources are described in Appendix 1.IV.B.1. 

33  The 2014 EORM included several GW of traditional generators that have retired. 
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setting commitment and dispatch.  These challenges could affect reliability if not addressed 

adequately, and they are not expressed in the small change in MERM we estimate. 

2. Cost of New Entry Sensitivity 

The base case simulations assume that a combination of natural gas-fired CCs and CTs are the 

marginal resource with industry standard assumptions for capital costs.  However, industry 

experience suggests that there is a range of uncertainty around technology cost estimates.  Figure 

14 shows the impact of varying gross CONE from −10% to +25% relative to our base assumptions.34  

Overall, the market equilibrium reserve margin could vary over a range of 9.25% to 10.50% 

depending on the range of gross CONE uncertainty. 

Figure 14 
Market Equilibrium Reserve Margin Sensitivity to Cost of New Entry 

   
Note: Marginal Unit Net Energy Revenue reflects a mix of CCs and CTs.  This ratio is applied in each sensitivity. 

3. Probability Weighting of Weather Sensitivity 

The high impact of weather on net energy revenue means that different weather expectations will 

influence the market equilibrium reserve margin.  The base case assumes equal probability for all 

38 weather years because 38 years should be a sufficient sample of the underlying distribution, 

                                                   

34  We tested an asymmetric range with more upside because CONE estimates are substantially lower than 

in the past, and to account for the possibility that developers may require higher, more front-loaded 

payments to enter given the prospect of a high-renewable future that limits future revenues. 
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assuming that distribution is representative of future weather patterns.  This reliance on long 

history is consistent with the EORM Manual.  However, more recent weather has, on average, 

been hotter (especially in 2011) and may be assumed to be more representative of future weather 

as discussed in Section II.E above.  Assuming accordingly that each of the last 10 weather years has 

a 10% chance of reoccurring (with 0% weight on each of the prior 28 years) leads to higher 

simulated prices and reliability events at a given reserve margin; but the higher prices would attract 

more investment, resulting in a 1.5% higher market equilibrium reserve margin of 11.75%.  With 

that higher MERM protecting against the effects of hotter weather, the simulated reliability is 

approximately the same as in the base case. 

We also examined the effects of two other sets of weighting factors: (1) assign weights based on 

the number of consecutive days of greater than 100-degree weather using a Pareto distribution, 

resulting in a 0.25% lower MERM;35 and (2) apply the same weights as in the 2014 EORM study, 

with a 1% weight to 2011 and equal weight to the remaining years from 1998 to 2012, resulting in 

a 0.75% higher MERM. 

4. Forward Period and Load Forecast Uncertainty Sensitivity 

In our base case analysis, we assume that all future supply decisions must be locked in three years 

in advance, approximately consistent with the lead time needed to construct new natural gas-fired 

generation resources.36  However, unlike weather-related load uncertainty, non-weather load 

forecasting error (LFE) increases with the forward period.  The forward period may increase if 

investors require a longer planning period and decrease if there are significant short-term resources 

(such as demand response, switchable units, mothballed units, and even renewable resources) to 

respond more quickly to market conditions than traditional new builds.  Depending on the 

expected forward periods the market equilibrium will vary from 9.25% to 10.25%. 

5. Summary of Sensitivities 

Our estimate of the MERM is sensitive to a number of study assumptions as we have explained in 

previous sections, and summarized in Figure 15 and Table 7.  As shown in the table, the MERM is 

between 9.25% and 11.75% for all sensitivities. 

                                                   

35  This is an updated version of the Weather-risk Index weighting discussed in Section 10.2.1 of ERCOT 

2017b. 

36  This construction timeframe is why the PJM and ISO-NE capacity markets rely on a three-year forward 

period. 
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Each sensitivity does not necessarily have a symmetric effect on the MERM.  As discussed in 

Section III.D.1, the resource mix of renewable additions influences the effect on the MERM.  

Having a higher ratio of solar to wind installed in the high renewable penetration case decreases 

the MERM more than the low renewable penetration case decreases the MERM.  The change in 

the VOLL is not considered to shift the operating reserves demand curve (ORDC), and will not 

affect the MERM.37  Moving from a three-year LFE forward period to no forward period reduces 

the MERM by one percentage point.  Each one-year increase in the forward period increases the 

MERM by 0.5%, but each additional year of LFE has a smaller incremental effect on the MERM. 

Figure 15 
Sensitivity of the Market Equilibrium Reserve Margin to Study Assumptions 

 
Notes: 

Varying the VOLL is not shown because it does not affect the MERM.  

                                                   

37  The ORDC is discussed in Appendix 1.E.4; varying the VOLL to range from $5,000 to $30,000 changes 

the EORM to range from 8.25% to 10.5%, respectively. 
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Table 7 
Sensitivity of the Market Equilibrium Reserve Margin to Study Assumptions 

 
Notes: 

Varying the VOLL does not affect the MERM.   

Reserve Margin

(%)
Base Assumptions Low/High Sensitivity

Base Case 10.25%

Vary Gross CONE 9.25% ‐ 10.50%
$88.5/kW‐yr (CT)

$94.5/kW‐yr (CC)

$79.7‐$110.6/kW‐yr (CT)

$85.1‐$118.1/kW‐yr (CC)

Vary VOLL 10.25% $9,000/MWh $5,000‐$30,000/MWh

Vary Probability of Weather 

Years
10.0% ‐ 11.75%

Equal Probability to all 38 

weather years

Equal Probability to last 10 years;

2014 EORM Base Case Weather Probability;

Consecutive Days >100 Pareto Distribution

Vary Forward Years 9.25% ‐ 10.25% 3 years 0 years to 2 years

High Renewables Scenario 9.25% 10 GW of new solar, 10 GW of new wind

Low Renewables Scenario 10.75%
Wind and Solar capacities equal to those in the 2014 

EORM report.

High Gas Price 11.25% $3.00 increase in Gas price.
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IV. Discussion of Results 

Our analysis shows a market equilibrium reserve margin of 10.25%, which exceeds the economic 

optimum by 1.25%, as discussed in Section III.B.  Based on these results, we conclude that the 

current market design will support more than sufficient reserve margins from an economic 

perspective, with some excess.  In terms of reliability, our probabilistic simulations indicate that at 

the market equilibrium reserve margin of 10.25%, the system could be expected to experience 0.5 

events per year loss-of-load expectation (LOLE).  This compares favorably to 0.8 events per year 

LOLE at the economic optimum, but is greater than the 0.1 events per year LOLE standard used 

by most electric systems in North America for planning purposes.  Table 8 shows these and other 

metrics, as well as alternative estimates under different uncertain assumptions and future 

scenarios.   

One of the most important sources of uncertainty is the likelihood of extreme 2011-like weather 

(i.e., many days over 100 degrees) and hot weather generally.  Assigning a 10 percent weight to 

each of the last 10 years would increase the market equilibrium by 1.5% from the base case that 

assumes equal weight on each of the last 38 years—but it would also increase the number of 

scarcity events at a given reserve margin, resulting in similar reliability at the higher market 

equilibrium reserve margin.   

Other uncertainty factors are the estimated capital cost of building new generation, load 

forecasting error, natural gas prices, and renewable penetration.  We estimate that the market 

equilibrium decreases by 1.0% with an additional 10 GW of nameplate wind and 10 GW of 

nameplate PV capacity, with reliability deteriorating by 0.25 events/year for that amount of 

additional capacity (and offsetting reductions in the amount of gas-fired capacity).  This 

observation may seem to point to a future of declining reliability, but perhaps not if storage 

becomes more economic and/or if gas price rise from their current low levels. 
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Table 8 
Market Equilibrium and Economically Optimal Reserve Margins 

  
Notes: 

Table reflects all scenarios and sensitivities studied, as described in Section II.D; Current practice has VOLL set to the max of the ORDC 
but the sensitivity which varies to VOLL does not change the ORDC curve and therefore does not affect the MERM. 

These estimates must not be interpreted as deterministic, since actual conditions will fluctuate from 

year-to-year.  In reality, the reserve margin will vary as plants enter and exit.  Moreover, even at 

a given reserve margin, realized reliability and price outcomes can deviate far from the expected 

value, primarily due to weather and variations in wind generation.  For example, with a projected 

reserve margin of 10.25% (the market equilibrium), we estimate that the 90th percentile 

outcome—representing relatively hot weather, higher than expected non-weather related load, 

and low generation availability—energy prices would double, marginal units could have net 

energy revenues reaching $200/kW-yr, and reliability would be expected to fall to 1.2 firm load 

shed events per year 

The market equilibrium is higher than the economic optimum because the ORDC sets prices 

higher than the marginal value of energy during scarcity conditions, creating additional incentives 

to invest that raise reserve margins somewhat above the optimal level.  This is by design.  When 

ERCOT implemented the ORDC in June 2014 per PUCT orders, it was deliberately right-shifted 

by 1,000 MW (slightly more than 1%) relative to an original curve that reflected the expected 

MERM EORM

(%) (%)

Base Case 10.25% 9.0%

Vary Gross CONE 9.25% ‐ 10.50%   8.0% ‐ 9.25%

Vary VOLL 10.25%       8.25% ‐ 10.5%

Vary Probability of Weather Years 10.0% ‐ 11.75% 8.75% ‐ 10.5%

Vary Forward Years 9.25% ‐ 10.25% 8.5% ‐ 9.0%

High Renewables Scenario 9.25% 8.25%

Low Renewables Scenario 10.75% 9.50%

High Gas Price 11.25% 10.25%
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value of lost load.38  The right-shift recognized the additional cost of emergency actions, but it also 

may have reflected some risk aversion to lower reliability.  

Our base case market equilibrium estimate of 10.25% is above the 9.0% economically optimal 

reserve margin, discussed in Section III.B.  This 10.25% market equilibrium value exceeds the 

economically optimal reserve margin because the base case ORDC produces energy prices that 

sometimes exceed marginal system cost (as explained in Appendix 1.E) and, therefore, provides 

investment incentives that slightly exceed the resource’s risk-neutral economic value. 

  

                                                   

38  Specifically, the ORDC was set as if load would be shed (or other emergency actions taken at an 

equivalent cost) at an operating reserve level of X = 2,000 MW.  This is above the 1,000 MW estimated 

level at which load is shed, with prior emergency actions incurring costs below the value of lost load. 
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List of Acronyms 
 

4CP Four Coincident Peak 

ATWACC After-Tax Weighted Average Cost of Capital 

AEO Annual Energy Outlook 

CC Combined Cycle 

CDR Capacity, Demand, and Reserves (report) 

CONE Cost of New Entry 

CT Combustion Turbine 

EFOR Equivalent Forced Outage Rate 

EE Energy Efficiency 

EORM Economically Optimal Reserve Margin 

ERCOT Electric Reliability Council of Texas 

ERS Emergency Response Service 

EUE Expected Unserved Energy 

GADS Generation Availability Data System 

GIS Generator Interconnection Status 

HCAP High System-Wide Offer Cap 

HVDC High Voltage Direct Current 

LCAP Low System-Wide Offer Cap 

LFE Load Forecast Error 

LTRA Long-Term Reliability Assessment 

LOL Loss-of-Load 

LOLE Loss-of-Load Event 

LOLH Loss-of-Load Hour 

LOLP Loss of Load Probability 

LRs Load Resources 

MERM Market Equilibrium Reserve Margin 

NERC North American Electric Reliability Corporation 

ORDC Operating Reserve Demand Curve 

PBPC Power Balance Penalty Curve 

PNM Peaker Net Margin 

PRD Price Responsive Demand 

PUCT Public Utility Commission of Texas 
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PUN Private Use Network 

RRS Responsive Reserve Service 

SARA Seasonal Assessment of Resource Adequacy 

SCED  Security Constrained Economic Dispatch 

SERVM Strategic Energy Risk Valuation Model 

SWOC System-Wide Offer Cap 

TDSP Transmission/Distribution Service Providers 

VOLL Value of Lost Load 

VOM Variable Operations and Maintenance 
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Appendix 1: Modeling Assumptions 

This Appendix describes in more detail the representation of the ERCOT system, including: load 

and weather patterns and their probabilistic variations; the cost and performance characteristics 

of ERCOT’s generation and demand-response resources; the mechanics of the ERCOT energy and 

ancillary services markets, including a unit commitment and economic dispatch of all generation 

resources, demand-response resources, and the transmission interties with neighboring markets.  

We also explain assumptions developed to reflect expected conditions of 2022 on the generation 

fleet, demand-response penetration, fuel prices, and energy market design. 

A. DEMAND MODELING  

This section describes the data and modelling of the demand in the model, specifically peak load, 

weather uncertainty, non-weather forecast uncertainty, and demand shapes. 

1. Peak Demand and Regional Diversity  

We developed a weather-normal ERCOT peak load forecast for expressing the reserve margin (as 

[supply – peak] / peak) consistent with the May 2018 Capacity and Demand Report (CDR).  The 

peak load forecast normalizes for weather by identifying a 50th percentile peak load (“50/50”) 

forecast for each weather zone.  The 50/50 peak load for each weather zone represents the average 

peak load from 15 synthetic load profiles, each representing the expected load in a future year 

given the weather patterns from each of the last 15 years of history.  To develop a system 50/50 

peak load forecast, the load in each weather zone must be identified at the time of the system peak.  

To do so, an average load duration curve is constructed for each weather zone by averaging each 

hour of the load duration curves from 15 years of historical data.  Then, the zonal load duration 

curves are mapped to a single historical year.  The single historical year ERCOT uses for the 2018 

CDR is 2003 because it was a generally “normal” weather year.  The mapping is completed by 

identifying the peak load hour in 2003 and setting its load to the peak load from the average zonal 

load duration curve.  Then the second highest load hour in 2003 is assigned the second highest 

load in the average zonal load duration curve.  This continues until all of the hours in 2003 are 

assigned a load level based on their rank and the equivalent load at that rank in the average load 

duration curve.  The resulting hourly load profile constructed for each zone is then used to 

aggregate the individual zonal loads into the system peak load. 
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However, 2003 experienced less peak diversity between weather zones than ERCOT normally 

experiences.  Expressing the “50/50” peak from the many years of historical data using 2003 as a 

base shape therefore understates typical load diversity and may overstate the 50/50 system peak 

load.  It results in a 79,568 MW system peak load rather than 78,079 MW 50/50 peak when using 

the average system peak across the study years (1980–2017).39  For the purposes of this study, this 

is only a reporting issue and does not affect the underlying hourly weather patterns and loads used 

in our simulations.  It does cause the EORM and MERM to appear lower than they would if 

expressed against a 50/50 peak load using typical diversity, by about 1.2% (since the reserve margin 

is expressed relative to a 79 GW reported peak load when the actual 50/50 corresponding to the 

same underlying data may be closer to 78 GW). 

2. Demand Shapes and Weather Uncertainty Modeling  

We represent weather uncertainty in the projected ERCOT 2022 peak load by modeling 38 load 

forecasts based on 38 historical weather years from 1980–2017, as summarized in Figure A1-1.40  

ERCOT staff used these 38 weather years as inputs into its 2018 load forecasting model, which 

produced the range of hourly load forecasts for 2022 we used in the SERVM model for this study.41 

The left chart shows projected 2022 peak load for each weather year relative to the weather-normal 

peak load.42  The chart illustrates asymmetry in the distribution of peak loads, with the highest 

projected peak load (based on 2011 weather) at 5.9% above the weather-normal peak loads, 

compared to a peak load in the mildest weather year that is only 4.6% below weather-normal peak 

load. 

The right chart in Figure A1-1 shows the 2022 load duration curves for the 250 highest-load hours 

in each of the 38 weather years.  The light blue load duration curve is based on the extreme and 

extended hot summer weather in 2011.  As shown, the entire load duration curve from 2011 

weather is far above all other weather years in the top 250 hours.  This extreme heat resulted in a 

number of emergency events and price spikes during the summer of 2011, which is described by 

some as a 1-in-100 weather year.  Despite this, our base case assigns equal probability to all 38 

                                                   

39  Provided by ERCOT staff. 

40  This is different than the previous EORM study, which used 15 weather years (1998–2012) 
41  Details on the load forecast model methodology in (ERCOT, 2017c). 

42  In this study there is no peak load gross-up for PRD and LRs because there has not been significant 

historical response from these resources so the historical load shape has not been reduced by their 

deployment. 
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weather years because the sample set is large enough to be reasonably representative of weather 

patterns.  We also report the MERM and EORM under alternative weather weights consistent with 

the 15 weather years used in the 2014 EORM study and placing higher probability on the last 10 

years to represent recent trends in weather patterns, which tend to emphasize the 2011 weather 

and its impacts on load. 

Figure A1‐1 
ERCOT Peak Load (Left) and Peak Load Duration Curve (Right) by Weather Year 

     
Sources and Notes: 
 ERCOT load shapes provided by ERCOT staff. 

3. Non-Weather Demand Forecast Uncertainty and Forward Period  

Forward-looking “planning” or “target” reserve margins differ from actually-realized reserve 

margins because both realized peak load and actual available resources can differ from projections.  

One cause of forecast error is simply the weather.  Another is due to uncertainties in population 

growth, economic growth, efficiency rates, and other factors.  These non-weather drivers of load 

forecast errors (LFEs) differ from weather-related LFEs because they increase with the forward 

planning period, while weather uncertainties will generally remain constant and be independent 

with the forward period. 

As shown in the left chart of Figure A1-2, we assume that non-weather LFE is normally distributed 

with a standard deviation of 0.8% on a 1-year forward basis, increasing by 0.6% with each 
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additional forward year.43  The distribution includes no bias or asymmetry in non-weather LFEs, 

unlike the weather-driven LFE in ERCOT, which has more upside than downside uncertainty. 

For our purposes, the relevant forward period for characterizing non-weather LFEs is the period 

at which investment decisions must be finalized.  We assume investment decisions must be 

finalized three years prior to delivery, consistent with the approximate construction lead time for 

new generation resources.  This means that available supply and the expected planning reserve 

margin are “locked in” at three years forward, and the realized reserve margin may differ 

substantially as both weather and non-weather uncertainties are resolved as the delivery year 

approaches.  The right-hand chart of Figure A1-2 shows the five discrete levels of LFE we model, 

equal to 0%, +/−2%, and +/−4% above and below the forecast.  The largest errors are the least likely, 

consistent with a normal distribution.  We also conduct a sensitivity analysis, examining the 

implications on economically optimal and reliability-based reserve margins if the forward period 

is varied between zero and four years forward. 

Figure A1‐2 
Non‐Weather Load Forecast Error 

 

4. External Region Demand 

We independently developed external regions’ peak load and load shapes based on publicly-

available peak load projections, historical hourly weather profiles, and historical hourly load data.  

Table A1-1 summarizes the peak load for the ERCOT system and the load diversity relative to the 

interconnected neighboring regions.  Consistent with the peak load reporting conventions used in 

                                                   

43  This assumed LFE is a standard assumption that we developed in lieu of any ERCOT-specific analysis, 

which would require either a longer history of load forecasts in ERCOT or a new analysis developed 

out of ERCOT’s peak load forecast, neither of which are currently available.  
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ERCOT’s CDR report, these peak loads are reported: (a) net of anticipated load reductions from 

price-responsive demand (PRD) and load resources (LRs); and (b) prior to any potential reductions 

from transmission and distribution service provider (TDSP) load management or energy efficiency 

(EE) programs.44 

Table A1‐1 
Peak Loads and Diversity Used in Reserve Margin Accounting 

  
Sources and Notes: 

Non‐Coincident Peak represents each individual region’s peak load. 

Coincident Peak represents the load in each region at the maximum total model area peak. 

At ERCOT Peak represents the load in each region at the time of the ERCOT system peak. 

SPP 50/50 peak load forecast is from the NERC 2017 Long‐Term Reliability Assessment. 

Entergy’s 50/50 peak load forecast is from the MISO Planning Year 2017‐2018 Loss of Load Expectation Study Report.  Load shapes 
in SPP and Entergy are based on our independently‐developed statistical relationship between hourly weather and load estimated 
over five years of load data from FERC and 38 years of weather data from NOAA (2017). 

Mexico’s peak  load and  load shape were unavailable.   The peak  is assumed at a 15% reserve margin above  the 
currently‐installed generation fleet, see NERC (2017) and ABB, Inc. Velocity Suite (2018).  Load shapes in Mexico are 
assumed identical to those in ERCOT’s South Zone, as estimated by ERCOT staff.  

As shown in the table above, there is a substantial amount of load diversity between ERCOT and 

the neighboring systems, indicating that ERCOT may have access to substantial import quantities 

during shortages to the extent that sufficient intertie capability exists.  For example, at the time of 

ERCOT’s peak load, SPP load is likely to be at only 96% of its own non-coincident peak load.  This 

load diversity results in having more than 6,000 MW of excess generation available for export in 

hours where ERCOT is shedding firm load.  However, most of these excess supplies will not be 

imported because ERCOT is relatively isolated from neighboring systems with only 800 MW of 

intertie capability with SPP. 

                                                   

44  See May 2018 CDR. 

ERCOT Entergy SPP Mexico Total

Summer Peak Load Forecast

Non‐Coincident (MW) 79,027   23,644  50,326   12,679   165,677  

Coincident (MW) 76,700   22,965  49,488   12,306   161,459  

At ERCOT Peak (MW) 79,027   21,894  48,219   12,679   161,819  

Load Diversity

At Coincident Peak (%) 3.0% 3.0% 1.7% 3.0% 2.6%

At ERCOT Peak (%) 0.0% 8.0% 4.4% 0.0% 2.4%

Reserve Margin at Criterion

At Non‐Coincident Peak (%) n/a 15.8% 13.6% 15.0% n/a

At ERCOT Peak (%) n/a 25.1% 18.6% 15.0% n/a
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B. GENERATION RESOURCES 

We model the economic, availability, ancillary service capability, and dispatch characteristics of 

all generation units in the ERCOT fleet, using unit ratings and online status consistent with 

ERCOT’s May 2018 CDR report.  In this section we describe our approach for modeling 

conventional generation, private use networks (PUNs), and intermittent wind and solar.  We also 

describe the assumed cost and technical specifications of the gas combined cycle and combustion 

turbine reference technologies. 

1. Marginal Resource Technology 

The quantity of installed generating capacity must vary to simulate ERCOT’s system costs, market 

prices, and reliability across different reserve margins.  We add gas combined cycle (CC) and 

combustion turbine (CT) plants in our base case at a 77:23 ratio, roughly reflecting the types of 

resources that have been added or proposed for the ERCOT market.  Our technology choices for 

the gas CC and CT plants are also consistent with recent developer announcements.45 

The costs and performance characteristics of the reference CC and CT are summarized in Table 

A1-2 and Table A1-3 respectively.  These characteristics are based on GE 7HA technology for both 

the CC and CT plants, which is different than the reference GE 7FA technology from EORM 

2014.46  We use updated cost of new entry (CONE) assumptions consistent with this technology, 

as well as an updated after-tax weighted-average cost of capital (ATWACC) for a merchant 

developer based on current financial market conditions.  These updates result in an estimated 

CONE of $94,500/MW-year for the gas CC and $88,500/MW-year for the gas CT, which is 22.6% 

and 8.8% lower than in EORM 2014, as shown in Table A1-2. 

                                                   

45  Recent orders of GE turbines show that future CCs are almost exclusively using the H-class turbines 

from GE Power & Water’s H-Class Gas Turbine Experience List from November 2016 and the 7F.05 Gas 

Turbine Experience List from June 2016. 

46  See Newell, et al. (2018). 
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Table A1‐2 
Gross Cost of New Entry 

 
Sources and Notes: 
2014 Study numbers and current numbers are adapted from CONE studies for PJM, with adjustments applied as relevant for ERCOT; 

see Spees, et al.  (2011) and Newell, et al.  (2018),  respectively.   CONE values determined with adjustments  to  technology 
characteristics within an area that most closely resemble ERCOT, as outlined in Table A1‐3.  The updated CONE estimate was 
developed based on the values in the 2018 PJM CONE report before adjustments were made to the assumed discount rate 
and exemption from paying sales taxes.  Changing the CONE for ERCOT to be consistent with the higher discount rates would 
increase the Base CC CONE to $97.5/kW‐year and the Base CT CONE to $91.2/kW‐year, which is well within the sensitivity 
range, as described in Section III.D.2. 

  

ATWACC Gross CONE

Simple Cycle Combined Cycle

(%/yr) ($/MW‐yr) ($/MW‐yr)

From 2014 Study (2016 Online Date)

Low: Base minus 10% n/a $87,300 $109,900

Base: Merchant ATWACC 8.0% $97,000 $122,100

High: Base plus 25% n/a $121,300 $152,600

Updated Estimate (2022 Online Date)

Low: Base minus 10% n/a $79,700 $85,100

Base: Merchant ATWACC 7.8% $88,500 $94,500

High: Base plus 25% n/a $110,600 $118,100
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Table A1‐3 
Performance Characteristics 

 
 Sources and Notes: 
 Technical and performance parameters use region EMAAC as most closely resembling ERCOT in altitude and ambient 

conditions from Newell, et al. (2018). 

2. Conventional Generation Outages 

A major component of reliability analyses is modeling the availability of supply resources after 

considering maintenance and forced outages.  We model forced and maintenance outages of 

conventional generation units stochastically.  Partial and full forced outages occur probabilistically 

based on distributions accounting for time-to-fail, time-to-repair, startup failure rates, and partial 

outage derate percentages.  Maintenance outages also occur stochastically, but SERVM 

accommodates maintenance outages with some flexibility to schedule maintenance during off-

peak hours.  Planned outages are differentiated from maintenance outages and are scheduled in 

advance of each hourly simulation.  Consistent with market operations, the planned outages occur 

during low demand periods in the spring and fall, such that the highest coincident planned outages 

occur in the lowest load days.  This outage modeling approach allows SERVM to recognize some 

Simple Cycle Combined 

Cycle

Plant Configuration

Turbine GE 7HA.02 GE 7HA.02

Configuration 1 x 0 2 x 1

Heat Rate (HHV)

Base Load

Non‐Summer (Btu/kWh) 9,138 6,270

Summer (Btu/kWh) 9,274 6,312

Max Load w/ Duct Firing

Non‐Summer (Btu/kWh) n/a 6,503

Summer (Btu/kWh) n/a 6,553

Installed Capacity

Base Load

Non‐Summer (MW) 371 1,073

Summer (MW) 352 1,023

Max Load

Non‐Summer (MW) n/a 1,202

Summer (MW) n/a 1,152

Gross CONE ($/kW‐yr) $89 $95
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system-wide scheduling flexibility while also capturing the potential for severe scarcity caused by 

a number of coincident unplanned outages.47 

We develop distributions of outage parameters for time-to-fail, time-to-repair, partial outage 

derate percentages, startup probabilities, and startup time-to-repair from historical Generation 

Availability Data System (GADS) data for individual units in ERCOT’s fleet, supplemented by asset 

class average outage rates provided by ERCOT where unit-specific data were unavailable.  Table 

A1-4 summarizes fleet-wide and asset-class outage rates, including both partial and forced outages. 

Table A1‐4 
Forced Outage Rates by Asset Class and Fleet Average 

 
Sources and Notes: 
Parameter distribution based on three years (2015‐2017) of unit‐specific GADS data and asset class average 

outage rates from ERCOT.48 

3. Private Use Networks 

We represent generation from Private Use Networks (PUNs) in ERCOT on a net generation basis, 

where the net output increases with the system portion of peak load consistent with historical data 

and as summarized in Figure A1-3.49  At any given load, the realized net PUN generation has a 

                                                   

47  Capturing the possibility of such low-probability, high-impact events is an advantage of the unit-

specific Monte Carlo outage modeling used in SERVM.  The simpler convolution method, which is a 

common alternative outage modeling method, results in a distribution of outages that may under-

estimate the potential for extreme events, especially in small systems. 

48  Significant forced outages of the Comanche Peak Nuclear Power Plant increased the Equivalent Forced 

Outage Rate (EFOR) of nuclear plants as compared to EORM 2014.  The EFOR of combined cycle and 

combustion turbines decreased, bringing the Fleet Weighted Average down by two percentage points 

from EORM 2014. 

49  The representation of PUN generation as correlated with load is a slight change to the modeling from 

the previous EORM report, which used system energy prices to predict PUN generation, without a 

Equivalent Forced 

Outage Rate

Mean Time to 

Fail 

Mean Time to 

Repair

(%) (hours) (hours)

Nuclear 5.3% 7,580                 339                    

Coal 5.0% 863                     38                      

Gas Combined Cycle 2.3% 3,182                 27                      

Gas Combustion Turbine 7.1% 1,486                 66                      

Gas Steam Turbine 9.7% 784                     61                      

Fleet Weighted Average  4.8%

Unit Type
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probabilistic quantity, with 11 different possible quantities of net generation within each of 15 

different bands of system load.50  Each of the 11 possible quantities has an equal 9.1% chance of 

materializing, although Figure A1-3 reports only the lowest, median, and highest possible quantity.  

We developed this probabilistic net PUN supply curve based on aggregate hourly historical net 

output data within each range of peak load percentage.  During scarcity conditions with load at or 

above 93% of normal peak load, PUN output produces at least 3,100 MW of net generation with 

an average of 3,600 MW. 

We observe a pattern of availability and responsiveness consistent with: (a) gross generation, much 

of which is fully integrated into ERCOT’s economic dispatch and security constrained economic 

dispatch (SCED), resulting in substantial increases in the expected quantities over moderate price 

levels, minus (b) gross load, which introduces some probabilistic uncertainty around net 

generation, minus (c) some apparent load price-responsiveness, which likely contributes to some 

small additional increase in net PUN generation at very high prices. 

                                                   
realized change in results.  Load and prices are also correlated, but PUN decisions are more likely to be 

made based on load forecasts. 

50  Hourly net PUN output data gathered from ERCOT, hourly load data from ABB Inc. Velocity Suite 

(2018). 
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Figure A1‐3 
PUN Net Generation 

 
Sources and Notes: 
   Hourly net PUN output data gathered from ERCOT, hourly load data from Velocity Suite, ABB Inc. 
  Individual data points represent summary of data in a series of data binned by system load level, within 

each  load bin, the points on the chart represent the  lowest 9.1%, middle 9.1%, and top 9.1% of 
realized quantities in 2012 to 2017.  

4. Intermittent Wind and Solar 

We model a total quantity of intermittent wind and solar photovoltaic resources that reflects what 

ERCOT reported to NERC for its 2018 LTRA report, including the installed capacity of all existing 

and planned resources as of 2022.51  This includes 31,806 MW nameplate capacity of wind and 

3,623 MW nameplate of solar, with intermittent output based on hourly generation profiles that 

are specific to each weather year. 

                                                   

51  Provided by ERCOT staff. 
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We developed our system-wide hourly wind profiles by aggregating 38 years of synthesized hourly 

wind shapes for each location of individual units across the system wind shapes over 1980 to 2017, 

as provided by ERCOT staff.52  Figure A1-4 plots the average wind output by month and time of 

day, showing the highest output overnight and in spring months with the lowest output in mid-

day and in summer months.  The overall capacity factor for wind resources is 37.7%; although we 

calculate reserve margins assuming an effective load-carrying capability of 14% for non-coastal 

wind and 59% for coastal wind, consistent with the ERCOT May 2018 CDR convention.53  In 

EORM 2014, all wind units were given an ELCC of 8.7%, consistent with the 2013 CDR 

convention.  ERCOT updated this convention as wind penetration has increased and more 

historical output data became available. 

Figure A1‐4 
Average Wind Output by Month and Time of Day 

  
Sources and Notes:  

Average of 38 years’ hourly wind profiles provided by ERCOT, originally from UL (formerly AWS Truepower). 

We similarly model hourly solar photovoltaic output based on hourly output profiles that are 

specific to each weather year, as aggregated from county-specific synthesized output profiles over 

                                                   

52  We aggregated location-specific output profiles for all units, including traditional and coastal units.  

ERCOT obtained the original wind profiles from UL (formerly AWS Truepower). 

53  See ERCOT (2018a), p. 8. 
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years 1997 to 2015.54  In aggregate, solar resources have a capacity factor of 33.5% across all years, 

and we assign a 75% of nameplate contribution toward the reserve margin consistent with 

ERCOT’s CDR accounting convention.55 

5. Hydroelectric  

We include 555 MW of hydroelectric resources, consistent with ERCOT’s May 2018 CDR report.56  

We characterize hydro resources using six years of hourly data over 2012–2017 provided by 

ERCOT, and 38 years of monthly data over 1980–2017 from EIA form 923.57  For each month, 

SERVM uses four parameters for modeling hydro resources, as summarized in Figure A1-5: (1) 

monthly total energy output and (2) monthly maximum output, as drawn from historical data 

consistent with each weather year; and (3) daily maximum output and (4) daily minimum output, 

as estimated from historical hourly data. 

When developing hydro output profiles, SERVM will first schedule output up to the monthly 

maximum output into the peak hours, but will schedule some output across all hours based on 

historically observed output during off-peak periods up to the total monthly output.  During 

emergencies, SERVM can schedule up to 100 MW of additional hydro for 20 hours per year. 

                                                   

54  Individual county output profiles for 1997-2015 were provided by ERCOT, obtained through UL 

(formerly AWS Truepower).  In conjunction with ERCOT, profiles were developed for the other 

synthetic weather years by inserting solar profiles from the 1997-2015 dataset for days with similar load 

patterns in the same time of year. 

55  See ERCOT (2018a), p. 8.  For the 2014 EORM study, solar was given a 100% contribution to reserve 

margin consistent with ERCOT’s 2013 CDR accounting conventions. 

56  See ERCOT (2018a). 

57  See EIA-923. 
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Figure A1‐5 
Hydro Annual Energy (left) and Average Hydro Daily Shape (right) 

  
 Sources and Notes:  
  Monthly and annual energy data from FERC (2013b), peak shaving capability based on six years of historical hourly data from ERCOT. 

6. Fuel Prices  

We use 2018 AEO High Resource Case for our gas price future inputs.  These gas prices consistent 

with fuel prices used in other ERCOT analysis, and are comparable to gas price forwards, as shown 

in Figure A1-6.  Alternative gas prices are explored as sensitivities, but do not make a substantial 

difference in results.  We estimate monthly fuel prices for ERCOT coal units based on the average 

2017 historical prices.  For external coal units and all oil-fired plants, we use futures prices for the 

year 2022 and after applying a delivered fuel price basis.  We use U.S. Gulf Coast and Powder River 

Basin as the market price points for historical and futures prices as shown in Figure A1-6.58  To 

estimate a delivered fuel price basis for each market, we calculated the historical difference 

between that market price point and prices as delivered to plants in that region and then escalated 

the delivered price basis with inflation to the year 2022.59  This locational basis is inclusive of both 

market price basis as well as a delivery charge and therefore may be positive or negative overall as 

shown in Table A1-5. 

                                                   

58  Oil futures at WTI Cushing were used to escalate No. 2 fuel oil prices into the future due to lack of data 

on No. 2 futures at U.S. Gulf Coast.  Data from S&P Global Market Intelligence LLC and Bloomberg. 

59  Fuel price basis varies by region by not among individual plants.  Historical delivered fuel prices from 

S&P Global Market Intelligence LLC and EIA. 
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Figure A1‐6 
Historical and Futures Prices for Gas, Coal, and No. 2 Distillate 

 
Sources and Notes:  

No. 2 prices escalated using a linear relationship with WTI Cushing and escalated with WTI futures.   
Prices for the base case and High Gas Price Scenario from the 2018 Annual Energy Outlook (AEO) High Resource Case and 2018 AEO Low 

Resource Case, respectively.  
Natural gas and coal historical prices and coal futures prices from S&P Global Market Intelligence LLC and Bloomberg.  

Table A1‐5 
ERCOT 2022 Delivered Fuel Prices 

 
Sources and Notes:  
Coal Fuel Price is averaged from 2017 EIA 923 and FERC Form 1 data. 
Gas Fuel Price from the 2018 AEO High Resource Case. 

C. DEMAND-SIDE RESOURCES 

Several types of demand response participate directly or indirectly in ERCOT’s market, including: 

Emergency Response Service (ERS), Load Resources, and Price Responsive Demand.  These various 

types differ from each other in whether they are triggered by price-based or emergency actions, 

Coal Fuel 

Price

Gas Fuel 

Price

Diesel Fuel 

Price

($/MMBtu) ($/MMBtu) ($/MMBtu)

$1.70 $3.26 $14.85
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and restrictions on availability and call hours.  Below we describe the assumptions and modeling 

approach for each type of resource. 

1. Emergency Response Service  

Emergency Response Service (ERS) includes two types of products, 10-minute and 30-minute ERS, 

with the quantity of each product available changing by time of day and season as shown in Table 

A1-6.  The quantity of each product by time of day and season is proportional to the quantities 

most recently procured over the four seasons of year 2018, with the 2022 summer peak quantity 

assumption provided by ERCOT.60  Demand resources enrolled under ERS are dispatchable by 

ERCOT during emergencies, but cannot be called outside their contracted hours and cannot be 

called for more than twelve hours total per season.61 

                                                   

60  For total ERS procurement quantities by product type and season, see ERCOT (2018b).  In EORM 2014 

we grossed-up ERS quantities from the CDR for losses in the model, but the 2018 CDR ERS quantities 

include losses. 

61  See ERCOT (2018b–d). 
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Table A1‐6 
Assumed ERS Quantities Available in 2022 

 
Sources and Notes:  
  Total available ERS MW for 2022 June‐Sept. TP4 provided by ERCOT staff. 
  ERS 10‐min and 30‐min MW for other contract periods scaled proportionally to the 2022 LTRA summer quantity 

(772 MW), based on availability in 2018, from ERCOT (2018a). 
  ERS resources have an eight‐hour call limit applies to both product types and are not callable outside contracted 

hours, see ERCOT (2018d) 

2. Load Resources Providing Ancillary Services  

Consistent with ERCOT’s published minimum Responsive Reserve Service (RRS) requirements, 

we model 1,119 MW of non-controllable load resources (LRs) that actively participate in the RRS 

market.62  All 1,119 MW are modeled as responsive to Energy Emergency Alert, Level 2.63 

                                                   

62  Currently, 1,400 MW is the maximum quantity of non-controllable LRs that are allowed to sell 

responsive reserve service (RRS) and is the clearing quantity in the vast majority of hours.  

63  Our non-controllable load resource modeling deviates from the previous EORM report prepared in 

2014.  In that report 1,400 MW of LRs were modeled, consistent with the maximum amount allowed 

to clear in the RRS market.  The LRs were divided into 2 blocks, a smaller block that responded at an 

Contract Period

10‐Min 30‐Min Total

(MW) (MW) (MW)

June ‐ September

TP1: Weekdays 5 AM ‐ 8 AM 159        732        891       

TP2: Weekdays 8 AM ‐ 1 PM 165        776        941       

TP3: Weekdays 1 PM ‐ 4 PM 142        709        851       

TP4: Weekdays 4 PM ‐ 7 PM 140        632        772       

TP5: Weekdays 7 PM ‐ 10 PM 156        750        905       

TP6: All Other Hours 150        653        803       

October ‐ January

TP1: Weekdays 5 AM ‐ 8 AM 202        632        835       

TP2: Weekdays 8 AM ‐ 1 PM 213        671        885       

TP3: Weekdays 1 PM ‐ 4 PM 211        659        870       

TP4: Weekdays 4 PM ‐ 7 PM 206        654        860       

TP5: Weekdays 7 PM ‐ 10 PM 202        624        826       

TP6: All Other Hours 193        647        839       

February ‐ May

TP1: Weekdays 5 AM ‐ 8 AM 185        650        835       

TP2: Weekdays 8 AM ‐ 1 PM 196        701        896       

TP3: Weekdays 1 PM ‐ 4 PM 192        686        878       

TP4: Weekdays 4 PM ‐ 7 PM 189        677        866       

TP5: Weekdays 7 PM ‐ 10 PM 184        655        839       

TP6: All Other Hours 171        585        756       

Quantity 
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3. Price Responsive Demand  

ERCOT has conducted several studies to understand the quantity and behavior of price responsive 

demand (PRD), whereby customers respond to retail prices that may track spot prices to some 

extent.64  Retail programs that enable customers to respond to spot wholesale market conditions 

include Block & Index, Real Time Pricing, NOIE Price Response, Peak Rebate, DG, and others.  

We model all such programs combined into a 741 MW of resource based on analysis provided by 

ERCOT staff of existing PRD enrollments and likely responses.65 

Table A1‐7 
PRD by Program Type 

 

The past several years have experienced few scarcity events and limited dispatch response from 

PRD under emergency conditions.  Given the infrequency of scarcity events and limited PRD 

response, historical load shapes are not grossed up for PRD.66  Furthermore, we analyzed the 

                                                   
energy “strike price” of $380/MWh and the rest.  The smaller block represented units that had 

commonly been withdrawing from the RRS market in times of high prices, in order to self-curtail.  In 

this year’s study we did not see the same common behave of self-curtailments. 

64  See ERCOT (2017a and 2018e). 

65  We do not forecast growth in PRD programs for 2022, because historical enrollment analysis shows a 

low correlation between both load growth and prices and actual enrollment changes. 

66  The prior EORM study (2014) did gross up load shapes for PRD, on the expectation that the PRD 

response under 2011 scarcity conditions was representative of long-term PRD behavior.  However, 

ERCOT has had additional time to study historical PRD response, and has found that historical load 

shapes have not been greatly affected by PRD deployments. 

Enrolled Quantity (MW)

Program Type Response
Estimated 

Undeployed

Block & Index 194

Real Time Pricing 25

NOIE Price Response 299

Other 27

DG 181

Other Direct Load Control 2 5

Peak Rebate 13 144

Total 741 149

Total (Including Undeployed) 890

380



70 | brattle.com 

response of PRD from 2014 to 2017 and model the likely MW response at various market prices 

based on the supply curve shown in Figure A1-7 below.67 

Figure A1‐7 
Historic and Modeled Price Responsive Demand  

 

D. TRANSMISSION SYSTEM MODELING AND EXTERNAL RESOURCE OVERVIEW  

This section provides an overview of the system interconnection topology, intertie availability, 

ERCOT and neighboring regions’ supply curves. 

1. Transmission Topology  

ERCOT is a relatively islanded system with only 1,250 MW of high voltage direct current (HVDC) 

interties; the majority of that intertie capacity is with SPP.68  As described in Section II.A, SERVM 

runs a multi-area economic dispatch and will schedule imports or exports from ERCOT depending 

                                                   

67  The 2014-2017 PRD response and price behavior is consistent with our analysis of PRD response in 

2008–2012 as studied in EORM 2014. 

68  In some ERCOT studies the South DC Tie between ERCOT and Mexico is modeled with a capacity of 

36 MW.  However, we model the South Tie with a 30 MW capacity consistent with the ERCOT DC-

Tie Operations Manual (2018h). 
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on the relative cost of production compared to the neighboring systems.  During peaking 

conditions, ERCOT will generally import power due to the high internal prices, unless imports 

cannot be realized.  ERCOT may not be able to import during peak conditions because either: (a) 

the neighboring system experiences a simultaneous scarcity and will prioritize meeting its own 

load, or (b) insufficient intertie capability exists to support the desired imports.  The intertie 

capacities assumed for this study are shown in Figure A1-8 below. 

Figure A1‐8 
System Topology and Modeled Interties 

 
Sources and Notes:  
  ERCOT intertie ratings from ERCOT (2018h), SPP‐Entergy path rating from OATI (2013). 

2. External Systems’ Resource Overview 

This section of our report provides an overview of the neighboring regions resource mixes.69  

Appendix A.1 summarizes the supply resource mix that we model in ERCOT, SPP, Entergy, and 

Mexico.  For the neighboring regions, we rely on public data sources for the fleet makeup and 

                                                   

69  More information on the ERCOT supply mix can be found in II.B. 
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demand-response penetrations.70  We model each external region at criterion, meaning that we 

treat them exactly at their respective reserve margin targets of 13.6%, 12%, and 15% for SPP, 

Entergy, and Mexico, respectively.71  Because these regions are currently capacity long, we adjusted 

their resource base downward by removing individual units of different resource types in order to 

maintain the current overall resource mix. 

Figure A1‐9 
Resource Mix for ERCOT and Neighboring System 

 

3. Availability of External Resources for ERCOT  

Imports to ERCOT depend on the conditions in the neighboring systems; even if transmission is 

available, ERCOT may not be able to import in emergency situations if the external region is 

peaking at the same time.  To provide intuition regarding anticipated prices and intertie flows 

during normal conditions, we summarize the ERCOT and neighboring regions’ supply curves in 

Figure A1-10.  The curve reports energy dispatch costs consistent with year 2022, accounting for 

                                                   

70  Specifically, we take external regions resource mix from ABB, Inc. Velocity Suite (2018) and external 

regions’ demand-response penetrations from NERC (2017). 

7171  See MISO (2016), NERC (2017), SPP (2015).  For Mexico we use an assumed reserve margin above the 

peak load. 
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unit-specific heat rates, variable operations and maintenance (VOM) costs, and locational fuel 

prices from Appendix 1.0.6.  For ERCOT, we gathered unit-specific information representing heat 

rate curves, VOM, ancillary service capabilities, ramp rates, startup fuel, non-fuel startup costs, 

and run-time restrictions from ERCOT.  For external regions, we gathered unit-specific heat rates 

from public data sources, supplemented by class-average characteristics similar to those in ERCOT 

for other unit characteristics.72 

For all thermal resources, we model a relationship between capacity and hourly temperature 

which results in increased available capacity from the fleet during colder periods.  Each unit is 

designated a specific weather station in which the hourly temperature determines the rating of the 

unit for that hour.  By doing this, we simulate the real-world correlation among load, thermal 

generation, wind, and solar across the 38 weather years that are simulated. 

Overall, ERCOT’s supply curve is similar to Mexico’s but is relatively tight compared to SPP and 

Entergy.  However, interchange will be limited because of ERCOT’s relatively small quantity of 

HVDC interties, having only 820 MW of interties with SPP and 430 MW with Mexico.73  Some 

factors affecting the quantity and economic value of interchange include that: (a) SPP has more 

lower-cost coal that is somewhat cheaper than ERCOT-internal resources that are dominated by 

efficient but somewhat higher-cost gas CCs, which will lead to ERCOT being a net importer, and 

(b) Mexico has a substantial proportion of relatively high-cost oil-fired peaking units, which will 

make such imports unlikely except at high prices in scarcity conditions.  Further, the regions 

experience some amount of load diversity that will change the relative economics of supply in each 

region and lead to inter-regional flows. 

                                                   

72  Heat rates from ABB, Inc. Velocity Suite (2018). 

73  Based on several years of historical hourly intertie ratings supplied by ERCOT. 
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Figure A1‐10 
2022 System Supply Curves 

 
Sources and Notes:  
ERCOT is shown at 11.8% reserve margin, with resource mix consistent with 2018 LTRA as explained in Appendix 1.B, using 

unit‐specific heat rates, VOM, and other characteristics obtained from ERCOT. 
  External systems resource mix from with resource attributes from ABB, Inc. Velocity Suite (2018). 
  Supply curves reflect VOM and fuel costs, with fuel prices from Appendix 1.B.6 above.   

E. SCARCITY CONDITIONS  

Increasing the reserve margin provides benefits primarily by reducing the frequency and severity 

of high-cost emergency events.  Calculating the economically optimal reserve margin requires a 

careful examination of the nature, frequency, trigger order, and cost of each type of market-based 

or administrative emergency action implemented during such events. 

1. Administrative Market Parameters  

We developed a representation of the 2022 ERCOT market using the parameters summarized in 

Table A1-8.  We assume that the administrative Value of Lost Load (VOLL) is equal to the true 

market VOLL and the High System-Wide Offer Cap (HCAP) at $9,000/MWh.74  We also conduct 

a sensitivity analysis for a reasonable range of VOLL. 

                                                   

74  See PUCT (2012). 
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Consistent with current market rules, we tabulate the Peaker Net Margin (PNM) over the calendar 

year and reduce the System-Wide Offer Cap (SWOC) to the Low System-Wide Offer Cap (LCAP) 

of $2,000/MWh after the PNM threshold is exceeded.75  However, we stress that this mechanism 

will have a small impact on the market because the LCAP only affects the Power Balance Penalty 

Curve (PBPC) and suppliers’ offers, but does not affect the Operating Reserves Demand Curve 

(ORDC).  Therefore, prices will still rise gradually to the VOLL of $9,000 in scarcity conditions 

even after the PNM threshold is exceeded, thereby rendering the LCAP far less important.  We 

further explain our implementation of the ORDC and PBPC in Sections IV.E.4 and IV.E.5 below. 

Table A1‐8 
ERCOT Scarcity Pricing Parameters Assumed for 2022 

 
Sources and Notes:  
  HCAP, LCAP, and VOLL parameters consistent with scheduled increases by 2016, see PUCT (2012). 
  PNM threshold is set at three times CT CONE consistent with current market rules and our updated CONE estimate from 

Appendix.B.1, but is lower than the $300,000/MW‐yr value applicable for 2013, see PUCT (2012).  

The offer cap and PNM parameters determine the maximum offer price for small suppliers in 

ERCOT’s market under its monitoring and mitigation framework.  However, we do not explicitly 

model these dynamics and instead assume that suppliers always offer into the market at price levels 

reflective of their marginal costs, including commitment costs. 

2. Emergency Procedures and Marginal Costs  

Table A1-9 summarizes our modeling approach and assumptions under all scarcity and non-

scarcity conditions depending on what type of marginal resource or administrative emergency 

procedure would be implemented to meet an incremental increase in demand.  These marginal 

resources are listed in the approximate order of increasing marginal costs and emergency event 

scarcity; although in some cases the deployment order overlaps. 

We distinguish between market-based responses to high prices in scarcity conditions and out-of-

market administrative interventions triggered by emergency conditions.  Among market-based 

                                                   

75  See PUCT (2012). 

Parameter Value Notes

Value of Lost Load (VOLL) $9,000/MWh Administrative and actual

High System‐Wide Offer Cap (HCAP) $9,000/MWh Always applied to ORDC

Low System‐Wide Offer Cap (LCAP) $2,000/MWh Applies only to PBPC

Peaker Net Margin (PNM) Threshold $266,000/MW‐yr 3 x CT CONE
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responses, we include generation, imports, and price-responsive demand, including some very 

high-cost resources that will not economically deploy until prices are quite high.  We also model 

reserve scarcity that is administrative in nature, but triggered on a price basis consistent with the 

ORDC and PBPC as explained in the following sections. 

A final category of emergency interventions encompasses out-of-market actions including ERS, 

LR, TDSP load management, and firm load shed deployments that are triggered for non-price 

reasons during emergency conditions.  We implement each of these actions at a particular scarcity 

level as indicated by the quantity of reserves capability available according to the ORDC x-axis, a 

measure similar to the physical responsive capacity (PRC) indicator used by ERCOT to monitor 

system operations.  To estimate the approximate ORDC x-axis at which each action would be 

implemented, we reviewed ERCOT’s emergency operating procedures, evaluated the PRC level 

coinciding with each action during historical emergency events, and confirmed these assumptions 

with ERCOT staff.76  These trigger levels are in line with historical emergency events, although 

actual emergency actions are manually implemented by the system operator based on a more 

complex evaluation of system conditions, including frequency and near-term load forecast. 

We also describe in the table below the marginal system costs of each type of scarcity event as well 

as the prevailing market price during those events.  In a perfectly-designed energy market, prices 

would always be equal to the marginal cost that would theoretically lead to optimal response to 

scarcity events and an optimal level of investments in the market.  In ERCOT, prices are reflective 

of marginal costs in most cases but not all.  Specifically, the ORDC curve is designed based on an 

assumption that load would be shed at X = 2,000 MW, while our review of historical events 

indicates that load shedding is more likely to occur at a lower level of X = 1,000 MW.  This 

discrepancy results in prices above marginal costs during moderate scarcity events, as discussed 

further in Appendix 1.E.4 below. 

                                                   

76  The PRC metric is calculated with some accounting nuances that make it a somewhat different number 

from the ORDC Spin x-axis, we do not consider these nuances in our modeling, for the formula for 

calculating PRC, see ERCOT (2018f), Section 6.5.7.5. 
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Table A1‐9 
Emergency Procedures and Marginal Costs 

Emergency 
Level 

Marginal 
Resource 

Amount of 
Resource  
(MW) 

Trigger  Price 
Marginal 

System Cost 

n/a  Generation  Variable  Price  Approximately $20 ‐ $250  Same 

n/a  Imports  Variable  Price 
Approximately $20‐$250 

Up to $1,000 during load shed 
Same 

n/a 
Non‐Spin 
Scarcity 

700 
ORDC x‐axis = 
3,000 MW 

$2,753 (from ORDC)*  $1,020* 

n/a 

Price‐
Responsive 
Demand 

741  Price  $500 ‐ $9,000  Same 

n/a 
Emergency 
Generation 

237 
ORDC x‐axis = 
2,300 MW 

$3,787 (from ORDC)  $1,365 

n/a  PBPC  200  Price  $1,000 ‐ $9,000  Same 

EEA 1 
30‐Minute 

ERS 
632 

Spin ORDC x‐axis 
= 2,300 MW 

$3,787 (from ORDC)  $1,365 

EEA1 
Spin Scarcity 

A 
550 

Spin ORDC x‐axis 
= 2,300 MW 

$6,394 (from ORDC)*  $1,847* 

EEA 2 
TDSP Load 
Curtailments 

282 
Spin ORDC x‐axis 
= 2,300 MW 

$3,787 (from ORDC)  $2,456 

EEA 2 

Load 
Resources in 

RRS 
1,119 

Spin ORDC x‐axis 
= 1,750 MW 

$9,000 (from ORDC)  $2,456 

EEA 2 
10‐Minute 

ERS 
140 

Spin ORDC x‐axis 
= 1,750 MW 

$9,000 (from ORDC)  $2,456 

EEA3 
Spin Scarcity 

B 
750 

Spin ORDC x‐axis 
=1,750 MW 

$9,000 (from ORDC)*  $3,544* 

EEA 3  Load Shed  Variable 
Spin ORDC x‐axis 
= 1,000 MW 

VOLL = $9,000  Same 

Sources and Notes: 
*Price reflects the average price between the upper and lower level of each resource 
Developed based on review of historical emergency event data, input from ERCOT staff, and ERCOT’s emergency procedure manuals; see ERCOT 

(2018f), Section 6.5.9.4, and ERCOT (2018i), Section 4. 

3. Emergency Generation  

During severe scarcity conditions, there are out-of-market instructions by ERCOT as well as strong 

economic incentives for suppliers to increase their power output to their emergency maximum 
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levels for a short period of time.77  During these conditions, suppliers can output power above their 

normal capacity ratings, although doing so is costly because it may impose additional maintenance 

costs and may put the unit at greater risk of failure. 

To estimate the approximate quantity and cost of emergency generation, we reviewed ERCOT data 

on units’ emergency maximum ratings.78  According to ERCOT’s emergency maximum ratings, the 

aggregate ERCOT fleet should be able to produce approximately 237 MW in excess of summer 

CDR ratings.79  We estimate the marginal cost of emergency output at approximately $1,365/MWh, 

consistent with ERCOT’s procedures for calling emergency generation. 

4. Operating Reserves Demand Curve  

The most important and influential administrative scarcity pricing mechanism in ERCOT is the 

operating reserves demand curve (ORDC) that reflects the willingness to pay for spinning and non-

spinning reserves in the real-time market.80  Figure A1-11 illustrates our approach to implementing 

ORDC in our modeling, which is similar to ERCOT’s implementation, although with some 

simplifications.81  We implement all 48 distinct ORDC curves that reflect four seasons each year, 

six periods each day, and two types of operating reserves.82 

                                                   

77  See Section 6.5.9, ERCOT 2018f.  

78  EORM 2014 also analyzed actual realized output levels during high price events in August of 2011, but 

there were not enough such events to meaningfully analyze for the purpose of this study. 

79  This number excludes private use network resources, which we model separately as explained in Section 

IV.B.3 above.  This number is significantly lower than the EORM 2014 rating of 360 MW because 

ERCOT updated the reporting standards of HSL and emergency limits, which reduced the MW above 

HSL. 

80  Note that the ORDC is not planned to be co-optimized with the energy market at this time, but the 

real-time spinning and non-spinning prices they produce are used to settle against the day-ahead RRS 

(Spin) and NSRS (Non-Spin) markets.   

81  For a detailed explanation of ERCOT’s ORDC implementation see their whitepaper on the methodology 

for calculating ORDC at ERCOT (2013). 

82  See ERCOT (2013), p. 15. 
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Figure A1‐11 
Operating Reserve Demand Curves 
Example: Summer Hours 15‐18 

 
Sources and Notes: 

ORDC curves developed consistent with ERCOT (2013). 

The ORDC curves are calculated based on a loss of load probability (LOLP) at each quantity of 

reserves remaining on the system, multiplied by the value of lost load (VOLL) caused by running 

short of operating reserves.83  This curve reflects the incremental cost imposed by running short of 

                                                   

83  Note that the lost load implied by this function and caused by operating reserve scarcity is additive to 

the lost load that we report elsewhere in this study.  This is because the LOLP considered in ERCOT’s 

ORDC curve is caused by sub-hourly changes to supply and demand that can cause short-term scarcity 

and outages that are driven only by small quantities of operating reserves, but are not caused by an 

overall resource adequacy scarcity, which is the type of scarcity we model elsewhere in this study.  For 

simplicity and clarity, we refer to these reserve-related load-shedding events as “reserve scarcity costs” 

to distinguish them from the load shedding events caused by total supply scarcity.  We do not 

independently review here ERCOT’s approach to calculating LOLP, but instead take this function as an 

accurate representation of the impacts of running short of operating reserves.  We also do not change 

the ORDC when varying the VOLL in our model sensitivities.  
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reserves and is added to the marginal energy cost to estimate the total marginal system cost and 

price. 

The x-axis of the curve reflects the quantity of operating reserves available at a given time, where: 

(a) the spin ORDC includes all resources providing regulation up or RRS, suppliers that are online 

but dispatched below their maximum capacity, hydrosynchronous resources, non-controllable 

load resources, and 10-minute quick start; and (b) the spin + non-spin ORDC include all resources 

contributing to the spin x-axis as well as any resources providing NSRS and all 30-minute quick 

start units.  Table A1-10 provides a summary of the resources that are always available to 

contribute to the ORDC x-axis unless they have been dispatched for energy although the realized 

ORDC x-axis can be higher (if other resources are committed but not outputting at their maximum 

capability) or lower (during peaking conditions when some of the below resources are dispatched 

for energy).84 

Table A1‐10 
Resources Always Contributing to ORDC X‐Axis  

Unless Dispatched for Energy 

  
Sources and Notes: Controllable Load Resources and 10‐Minute Quickstart not shown, compared to 
EORM 2014, because they are modeled at zero. 

The red and pink curves in Figure A1-11 show the ORDC curves used for price-setting purposes, 

calculated as if ERCOT would shed load at an ORDC x-axis of X = 2,000 MW.  However, as we 

explained in Appendix 1.E.2 above, we assume that load shedding will actually occur at X = 1,000 

MW based on our analysis of recent emergency events and consistent with the blue curves below.  

In other words, we model a discrepancy between marginal costs (blue) and market prices (red) that 

will create some inefficiency in realized market outcomes. 

                                                   

84  We assume that the CC reference unit is not capable of providing either spin or non-spin from an offline 

position, although we assume that the CT reference unit is capable of providing non-spin from an offline 

position. 

Spin X‐Axis

Hydrosynchronous Resources (MW) 240

Non‐Controllable Load Resources (MW) 1,119

Non‐Spin X‐Axis

30‐Minute Quickstart (MW) 7,767

Total Spin + Non‐Spin (MW) 9,126
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As in ERCOT’s ORDC implementation, we calculate: (a) non-spin prices using the non-spin 

ORDC; (b) spin prices as the sum of the non-spin and spin ORDC; and (c) energy prices as the sum 

of the marginal energy production cost plus the non-spin and spin ORDC prices.  However, as a 

simplification we do not scale the ORDC curves in proportion to VOLL minus marginal energy in 

each hour.85  Instead, we treat the ORDC curves as fixed with a maximum total price adder of 

VOLL minus $500, which causes prices to rise to the cap of $9,000/MWh in scarcity conditions, 

because $500 is the cap placed on marginal energy prices in the model.  Higher-cost demand-

response resources will be triggered in response to high ORDC prices and therefore prevent prices 

from going even higher, but do not affect the “marginal energy component” of price-setting.  We 

model the ORDC curves out to a maximum quantity of 8,000 MW where the prices are near zero, 

although they never drop all the way to zero. 

These ORDC curves create an economic incentive for units to be available as spinning or non-

spinning reserve, which influences suppliers’ unit commitment decisions.  We therefore model 

unit commitment in three steps: (1) a week-ahead optimal unit commitment over the fleet, with 

the result determining which long-lead resources will be committed;86 (2) a four-hour ahead unit 

commitment (updated hourly) with an updated fleet outage schedule, with the result determining 

the preliminary commitment and decommitment schedules for combined cycle units; and (3) an 

hourly economic dispatch that dispatches online baseload units, and can commit 10-minute and 

30-minute quick start units if energy and spin prices are high enough to make it more profitable 

than remaining offline (similarly, if prices are not high enough these units will economically self-

decommit).87  Note that 10-minute quick start units can earn spin payments from an offline 

position while 30-minute quick start units can earn non-spin payments from an offline position.  

These resources will not self-commit unless doing so would result in greater energy and spin 

payments (net of variable and commitment costs) than would be available from an offline position.  

We use a similar logic to economically commit or de-commit units until the incentives provided 

by the ORDC are economically consistent with the quantity of resources turned on. 

                                                   

85  See ERCOT’s implementation in ERCOT (2013). 

86  Short-term resources are included in the week-ahead commitment algorithm, but their commitment 

schedule is not saved since it will be dynamically calculated in a shorter window.  But using short-lead 

resources in the week-ahead commitment allows them to affect the commitment of long-lead resources. 

87  These week-ahead and day-ahead commitment algorithms minimize cost subject to meeting load as well 

as ERCOT’s administratively-determined regulation up and spinning reserve targets, with non-spinning 

reserve targets not considered at the unit commitment phase. 

392



82 | brattle.com 

5. Power Balance Penalty Curve 

The Power Balance Penalty Curve (PBPC) is an ERCOT market mechanism that introduces 

administrative scarcity pricing during periods of supply scarcity.  The PBPC is incorporated into 

the security constrained economic dispatch (SCED) software as a set of phantom generators at 

administratively-specified price and quantity pairs, as summarized in the blue curve in Figure A1-

12.88  Whenever a PBPC is dispatched for energy, it reflects a scarcity of supply relative to demand 

in that time period that, if sustained for more than a moment, will materialize as a reduction in 

the quantity of regulating up capability.  At the highest price, the PBPC will reach the system-

wide offer cap (SWOC), which is set at the HCAP at the beginning of each calendar year but which 

will drop to the LCAP if the PNM threshold is exceeded as explained in Appendix 1.E.1 above. 

We similarly model the PBPC as phantom supply that may influence the realized price, and that 

will cause a reduction in available regulating reserves whenever called.  However, we model only 

the first 200 MW of the curve at prices below the cap, and assume that all price points on the PBPC 

will increase according to the scheduled SWOC.89  We also assume that the prices in the PBPC are 

reflective of the marginal cost incurred by going short of each quantity of regulating reserves.90  

Consistent with current market design, we assume that once the PNM threshold is exceeded, the 

maximum price in the PBPC will be set at the LCAP + $1/MWh or $2,001/MWh.91  Note that even 

after the maximum PBPC price is reduced, ERCOT market prices may still rise to a maximum value 

of VOLL equal to $9,000/MWh during scarcity conditions because of the ORDC as explained in 

the following section. 

                                                   

88  See ERCOT (2018g). 

89  See ERCOT (2018g). 

90  Once the PNM is exceeded and the PBPC is reduced, these prices are no longer reflective of marginal 

cost but are instead lower than marginal cost at regulation shortage quantities greater than 40 MW.  

91  See ERCOT (2018g). 
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Figure A1‐12 
Power Balance Penalty Curve 

   

Sources and Notes:   
   PBPC numbers from ERCOT (2018g), p. 22‐23. 
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