MAKING THE MOST OF THE POWER PLANT MARKET Best Practices for All-Source Electric Generation Procurement

Presentation to the Indiana State Bar Association, Utility Law Section, Virtual Fall Seminar September 10, 2020

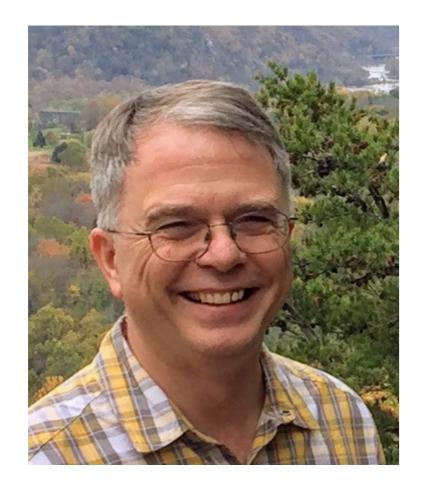
ABOUT

ENERGY INNOVATION: POLICY AND TECHNOLOGY LLC

A nonpartisan energy and environmental policy firm based in San Francisco, CA. We deliver highquality research and original analysis to policymakers to help them make informed choices on energy policy.

> EnergyInnovation.org Twitter: @EnergyInnovLLC

SOUTHERN ALLIANCE FOR CLEAN ENERGY


A regional membership organization that promotes responsible energy choices to ensure clean, safe, and healthy communities throughout the Southeast.

CleanEnergy.org Social Media: @CleanEnergyOrg

John Wilson Resource Insight (consultant to Southern Alliance for Clean Energy)

Mike O' Boyle Energy Innovation

REPORT AUTHORS

Ron Lehr Energy Innovation

Mark Detsky Dietze and Davis, PC

WHY IS GENERATION RESOURCE PROCUREMENT IMPORTANT?

- Resource options and economics are shifting quickly
- Vigorous market competition should inform utility executives' and commissioners' decisions
- Renewables are displacing gas in head-to-head competition

THE RESOURCES SPEAK FOR THEMSELVES

				Median Bid		
Generation Technology	# of Bids	Bid MW	# of Projects	Project MW	Price or Equivalent	Pricing Units
Combustion Turbine/IC Engines	30	7,141	13	2,466	\$ 4.80	\$/kW-mc
Combustion Turbine with Battery Storage	7	804	3	476	6.20	\$/kW-mc
Gas-Fired Combined Cycles	2	451	2	451		\$/kW-mc
Stand-alone Battery Storage	28	2,143	21	1,614	11.30	\$/kW-mc
Compressed Air Energy Storage	1	317	1	317		\$/kW-mc
Wind	96	42,278	42	17,380	\$ 18.10	\$/MWh
Wind and Solar	5	2,612	4	2,162	19.90	\$/MWh
Wind with Battery Storage	11	5,700	8	5,097	21.00	\$/MWh
Solar (PV)	152	29,710	75	13,435	29.50	\$/MWh
Wind and Solar and Battery Storage	7	4,048	7	4,048	30.60	\$/MWh
Solar (PV) with Battery Storage	87	16,725	59	10,813	36.00	\$/MWh
IC Engine with Solar Waste Heat Biomass	1	5	1	5		\$/MWh
	2	21	1	11		\$/MWh
	1	9	1	9		\$/MWh
Total	430	111,963	238	58,283		03

RFP Responses by Technology

THE RESOURCES SPEAK FOR THEMSELVES CONT'D

UTILITY	RFP TYPE	STATUS	BIDS
PNM	All-Source RFP	Pending 2020	735
Xcel Colorado	All-Source RFP	Approved 2018	417
Georgia Power	Comprehensive single- source RFPs	2015 Gas / 2017 RE Pending 2020	221 TBD
Minnesota Power	Comprehensive single- source RFPs	Approved 2018	115
NIPSCO	All-Source RFP	Announced 2018	90
El Paso Electric	All-Source RFP	Pending 2020	81
California	All-Source RFP	Various	(varied)
Florida	Single-source RFPs	Approved 2016	0 or few
Dominion Energy Virginia	Single-source RFP	Suspended 2019	n/a
Duke - North Carolina	Comprehensive single- source RFPs	Pending	n/a

PNM PORTFOLIO OPTIONS

	PNM PORTFOLIO	CCAE PORTFOLIO	RESOURCE PRICE
Wind (already under contract)	140 MW	140 MW	\$17 / MWh
Solar / Battery Hybrid	350 / 60 MW	650 / 300 MW	\$19-20 / MWh + \$7-10 / kw-mo
Standalone Battery	70 MW	0	\$1,211-1,287/kW + \$9-10 / kw-year
Gas Turbine	280 MW	0	\$680 / kW + \$3 / kw-year + fuel costs
Energy Efficiency in 2023	53 MW	69 MW	\$263 / first-year MWh
Demand Response in 2023	38 MW	69 MW	\$95 / kw-year
2022-2038 System CO ₂ emissions	21.9 million tons	20.3 million tons	
Forecast System Cost 2022- 2038 (net present value)	\$5.26 billion	\$5.33 billion	

OUR FOCUS: VERTICALLY INTEGRATED UTILITIES

- power markets
- utilities
- Market Power:
 - Monopolies Customers have little choice of utility service
 - Monopsonies Power sellers also have little choice of utility market

About half of the United States utility sector operates outside wholesale

 Many utilities in Southwest Power Pool (SPP) and Midcontinent Independent System Operator (MISO) continue to be regulated as vertically integrated

REPORT METHOD

- Evaluated four main case studies:

 - Public Service Company of New Mexico (PNM)
 - Georgia Power
 - Minnesota Power

- Reviewed six other case studies, but less comprehensively Developed best practices based on what worked vs what led to problems Reviewed and revised based on feedback from over two dozen practitioners and experts

DETERMINE THE NEED

Regulators should use the resource planning process to determine the technology-neutral procurement need.

Define in terms of:

- Load forecast
- Potential plant retirements

Do not define in terms of:

- A specific, numeric capacity target
- Technology specification

10

Regulators should require utilities to conduct competitive, all-source bidding processes, with robust bid evaluation.

- Open to all technologies
- Model selects the mix of capacity and energy to meet the utility's need

ALL-SOURCE PROCUREMENT

• Not multiple, single-source procurements

Addressing Demand Response in All-Source RFPs:

- Address technology performance in bid evaluation, not qualifications
- Demand response requires significant development time between contract award and online date, plus negotiation of proposal-specific measurement and verification

NEED

ALL-SOURCE

ALL-SOURCE PROCUREMENT

- Examples:
 - For long duration needs, combining multiple small offers requires custom evaluation – clarify criteria up front
 - Peaking capacity for fast response can either be valued (\$/kW), or best bids that meet a fast response target (MW) get selected first

ADVANCE REVIEW

- Advance review of:
 - Assumptions
 - Bid evaluation process
 - Contract terms and conditions
- Most RFP processes currently provide for review after the RFP is complete

Regulators should conduct advance review and approval of procurement assumptions and terms.

> Advance review avoids forcing an upor-down decision using contested methods

UTILITY OWNERSHIP PROTECTIONS

Regulators should renew procedures to ensure that utility ownership is not at odds with competitive bidding.

- Regulators often allow utilities to participate in their own RFPs
 - Utilities may also buy out winning bids
- Most resource practices have
 - Utility code of conduct
 - Independent evaluator
- More attention to complexity
 - Multiple resources

ENERGY M/

OLICY & TECHNOLOGY LLC

NEED

ALL-SOURCE

• Different ownership models (e.g., implications of operating entity for tax purposes)

14

RULES FOR FAIRNESS

- Fairness, objectivity and efficiency:
 - Treatment of bidders

NEED

ENERGY M/

OLICY & TECHNOLOGY LLC

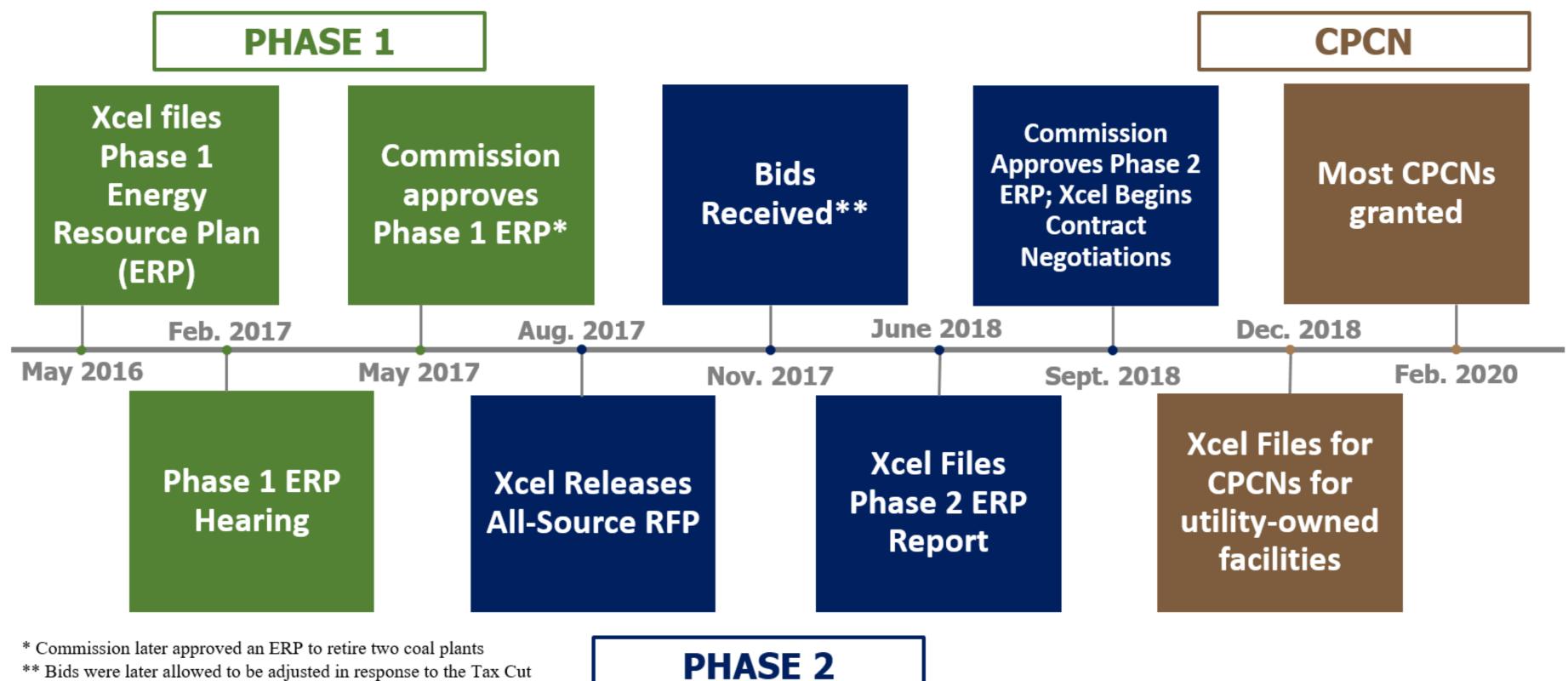
- Engagement of stakeholders
- Contract terms should be pre-approved in a public process

ALL-

SOURCE

- Stakeholders can challenge assumptions and methods to ensure objectivity
- Utilities with leverage can pressure regulators to make "constructive" decisions to approve the utility's preferred outcome

Regulators should revisit rules for fairness, objectivity and efficiency.



XCEL COLORADO PROCUREMENT

** Bids were later allowed to be adjusted in response to the Tax Cut Jobs Act and new solar panel tariffs

QUESTIONS + CONTACT

John Wilson

Resource Insight (consultant to Southern Alliance for Clean Energy) jwilson@resourceinsight.com

Mike O'Boyle Energy Innovation michael@energyinnovation.org

Ron Lehr Energy Innovation rllehr@msn.com

Mark Detsky Dietze and Davis, PC mdetsky@dietzedavis.com

