SAR Exhibit B

March 15, 2022
Chad Martin
Cardno
76 San Marcos Street
Austin, TX 78702

RE: Hummingbird Solar Project, Fleming County, KY

Mr. Martin,
At your request, I have considered the impact of a 200 MW solar farm proposed to be constructed on a portion of a 3,115-acre assemblage of land off Poplar Grove Road, located near Flemingsburg, Fleming County, Kentucky. Specifically, I have been asked to give my professional opinion on whether the proposed solar farm will have any impact on adjoining property value and whether "the location and character of the use, if developed according to the plan as submitted and approved, will be in harmony with the area in which it is to be located."

To form an opinion on these issues, I have researched and visited existing and proposed solar farms in Kentucky as well as other states, researched articles through the Appraisal Institute and other studies, and discussed the likely impact with other real estate professionals. I have not been asked to assign any value to any specific property.

This letter is a limited report of a real property appraisal consulting assignment and subject to the limiting conditions attached to this letter. My client is Cardno represented to me by Chad Martin. My findings support the Kentucky Siting Board Application. The effective date of this consultation is March 15, 2021.

While based in NC, I am also a Kentucky State Certified General Appraiser \#5522.

Conclusion

The adjoining properties are well set back from the proposed solar panels and supplemental vegetation is proposed to enhance the areas where the existing trees do not currently provide a proper screen. The closest home will be 500 feet from the nearest panel and the average distance will be 963 feet.

The matched pair analysis shows no impact on home values due to abutting or adjoining a solar farm as well as no impact to abutting or adjacent vacant residential or agricultural land where the solar farm is properly screened and buffered. The criteria that typically correlates with downward adjustments on property values such as noise, odor, and traffic all indicate that a solar farm is a compatible use for rural/residential transition areas and that it would function in a harmonious manner with this area.

Data from the university studies, broker commentary, and other appraisal studies support a finding of no impact on property value adjoining a solar farm with proper setbacks and landscaped buffers.

Very similar solar farms in very similar areas have been found by hundreds of towns and counties not to have a substantial negative effect to abutting or adjoining properties, and many of those
findings of no impact have been upheld by appellate courts. Similar solar farms have been approved with adjoining agricultural uses, schools, churches, and residential developments.

Based on the data and analysis in this report, it is my professional opinion that the solar farm proposed at the subject property will have no impact on the value of adjoining or abutting properties and that the proposed use is in harmony with the area in which it is located. I note that some of the positive implications of a solar farm that have been expressed by people living next to solar farms include protection from future development of residential developments or other more intrusive uses, reduced dust, odor and chemicals from former farming operations, protection from light pollution at night, it's quiet, and there is minimal traffic.

If you have any questions please contact me.
Sincerely,

Richard C. Kirkland, Jr., MAI
Kentucky Certified General Appraiser \#5522
Table of Contents
Conclusion 1
I. Proposed Project and Adjoining Uses 4
II. Demographics 13
III. Methodology and Discussion of Issues 17
IV. Research on Solar Farms 19
A. Appraisal Market Studies. 19
B. Articles 21
C. Broker Commentary 22
V. University Studies 23
A. University of Texas at Austin, May 2018. 23
B. University of Rhode Island, September 2020 24
C. Master's Thesis: ECU by Zachary Dickerson July 2018 25
D. Ernest Orlando Lawrence Berkeley National Laboratory, December, 2019 26
VI. Assessor Surveys 26
VII. Summary of Solar Projects in Kentucky 29
613: Crittenden Solar, Crittenden, KY 33
659: Cooperative Shelby Solar, Simpsonville, KY 34
660: E.W. Brown Solar, Harrodsburg, KY 35
VIII. Market Analysis of the Impact on Value from Solar Farms 36
A. Kentucky and Adjoining States Data 37
B. Southeastern USA Data - Over 5 MW 63
C. Summary of National Data on Solar Farms 118
D. Larger Solar Farms 120
IX. Distance Between Homes and Panels 124
X. Topography 124
XI. Potential Impacts During Construction 124
XII. Scope of Research 125
XIII. Specific Factors Related To Impacts on Value 126
XIV. Conclusion 129

I. Proposed Project and Adjoining Uses

Proposed Use Description

This 200 MW solar farm is proposed to be constructed on a portion of a 3,115-acre assemblage of land located off Poplar Grove Road, Flemingsburg, Fleming County, Kentucky. Adjoining land is a mix of residential and agricultural uses, which is very typical of solar farm sites.

Adjoining Properties

I have considered adjoining uses and included a map to identify each parcel's location. Based on the current site plan the closest adjoining home will be 500 feet from the closest solar panel and the average distance to adjoining homes will be 963 feet to the nearest solar panel. These setbacks are much larger than what is typically found and will go beyond what is needed to protect adjoining

The breakdown of those uses by acreage and number of parcels is summarized below.

Adjoining Use Breakdown

	Acreage	Parcels
Residential	4.64%	46.71%
Agricultural	37.40%	25.00%
Agri/Res	57.94%	27.63%
Cemetery	0.02%	0.66%
Total	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{1 0 0 . 0 0 \%}$

Tax Parcel Map

Surrounding Uses

		GIS Data			Adjoin	Distance (ft)	LF
\#	MAP ID	Owner	Acres	Present Use	Acres	Home/Panel	Adjacency
1	057-00-00-037.00	Schwartz	86.13	Agri/Res	1.23\%	500	2,175
2	057-00-00-007.00	Eicher	95.83	Agricultural	1.37\%	N/A	2875
3	057-00-00-007.02	Lengacher	15.11	Residential	0.22\%	N/A	1130
4	057-00-00-006.00	Triple A Farm	141.88	Agri/Res	2.03\%	2,015	1
5	057-00-00-008.00	Reid	0.50	Residential	0.01\%	1,620	155
6	057-00-00-008.00	Reid	87.90	Agri/Res	1.26\%	1,130	1,250
7	057-00-00-008.01	Reid	0.59	Residential	0.01\%	1,180	140
8	069-00-00-019.00	Humphries	174.00	Agri/Res	2.49\%	500	2750
9	069-00-00-018.00	Kearns	1.50	Residential	0.02\%	500	220
10	069-00-00-021.01	Graber	13.66	Residential	0.20\%	650	775
11	069-00-00-021.00	Lengacher	25.06	Agri/Res	0.36\%	500	2,140
12	069-00-00-020.00	Mers	0.58	Residential	0.01\%	500	50
13	069-00-00-025.00	Mers	5.41	Residential	0.08\%	500	1,570
14	069-00-00-027.0	Meadows	9.11	Residential	0.13\%	565	695
15	069-00-00-028.00	Crump	20.20	Agri/Res	0.29\%	885	200
16	069-00-00-028.01	Rucker	7.21	Residential	0.10\%	765	1050
17	069-00-00-029.00	Utterback	1.88	Residential	0.03\%	N/A	Easement
18	069-00-00-029.01	Utterback	46.82	Agricultural	0.67\%	N/A	Easement
19	069-40-00-054.00	Utterback	1.33	Residential	0.02\%	2,750	Easement
20	069-00-00-007.00	Mineer	41.08	Agricultural	0.59\%	N / A	Easement
21	069-00-00-011.00	Mineer	0.98	Residential	0.01\%	1,770	Easement
22	069-00-00-007.03	Suarez	45.03	Agricultural	0.64\%	N/A	Easement
23	069-00-00-001.00	Miller	60.00	Agricultural	0.86\%	N/A	3000
24	080-00-00-011.00	Applegate	1.00	Residential	0.01\%	N/A	590
25	069-00-00-004.00	Applegate	56.75	Agri/Res	0.81\%	1,140	1910
26	069-00-00-003.00	Ratliff	4.95	Residential	0.07\%	860	855
27	069-00-00-005.00	Foxworthy	150.00	Agri/Res	2.15\%	1,165	2110
28	068-00-00-013.00	White	65.50	Agri/Res	0.94\%	1,510	1275
29	080-00-00-004.00	Meadows	128.19	Agri/Res	1.84\%	650	4880
30	080-00-00-004.01	Hughes	25.31	Agricultural	0.36\%	N / A	645
31	080-00-00-002.00	Applegate	49.50	Agri/Res	0.71\%	1,220	555
32	104647	Applegate	10.40	Residential	0.15\%	N/A	1315
33	012-00-00-048.00	Unknown	209.30	Agricultural	3.00\%	N/A	1040
34	105270	Applegate	69.80	Agricultural	1.00\%	N/A	1525
35	104208	Burberry	113.80	Agricultural	1.63\%	N/A	1790
36	080-00-00-009.00	Schwartz	121.00	Agri/Res	1.73\%	500	4210
37	081-00-00-010.00	Schwartz	38.03	Agricultural	0.54\%	N / A	2230
38	081-00-00-002.00	Beckett	0.50	Residential	0.01\%	500	215
39	081-00-00-004.02	Skaggs	6.06	Residential	0.09\%	N/A	1255
40	080-00-00-012.00	Skaggs	0.87	Residential	0.01\%	N/A	610
41	080-00-00-006.00	May	2.29	Residential	0.03\%	500	635
42	081-00-00-001.02	Palmer	0.77	Residential	0.01\%	500	295
43	081-00-00-001.01	Palmer	3.52	Residential	0.05\%	530	490
44	081-00-00-006.00	Mers	2.85	Residential	0.04\%	500	490

			GIS Data		Adjoin	Distance (ft)	L
\#	MAP ID	Owner	Acres	Present Use	Acres	Home/Panel	Adjacency
45	081-00-00-009.00	Spann	2.59	Residential	0.04\%	500	25
46	081-00-00-008.00	Schwartz	43.23	Agricultural	0.62\%	N/A	315
47	081-00-00-012.00	Graber	69.93	Agricultural	1.00\%	N/A	Easement
48	081-00-00-045.00	Graber	10.00	Residential	0.14\%	N/A	1680
49	081-00-00-039.00	Smith	30.00	Agri/Res	0.43\%	500	825
50	081-00-00-040.00	Doyle	72.92	Agricultural	1.04\%	N/A	250
51	081-00-00-041.00	Garrett	335.55	Agri/Res	4.80\%	845	2640
52	081-00-00-041.01	Steele	5.54	Residential	0.08\%	N/A	920
53	070-00-00-002.01	Graber	30.70	Agricultural	0.44\%	A	3000
54	070-00-00-003.00	Rolph Family	1.38	Cemetery	0.02\%	N/A	215
55	082-00-00-005.00	New Direction	70.12	Agricultural	1.00\%	N/A	1265
56	082-00-00-032.00	Taylor Trust	285.25	Agri/Res	4.08\%	5,110	775
57	070-00-00-028.02	Holt	7.59	Residential	0.11\%	N/A	340
58	070-00-00-028.05	Schwartz	81.43	Agri/Res	1.17\%	1,785	1855
59	070-00-00-026.00	Marshall	66.41	Agri/Res	0.95\%	1,215	2970
60	070-00-00-023.00	Marshall	110.96	Agricultural	1.59\%	1,110	3970
61	070-00-00-009.00	Marshall	96.68	Agricultural	1.38\%	N/A	705
62	069-00-00-039.00	Caudill	85.38	Agricultural	1.22\%	N/A	3220
63	069-00-00-037.00	Williams	95.06	Agri/Res	1.36\%	500	980
64	069-00-00-048.00	Turner	107.21	Agricultural	1.53\%	N/A	3155
65	069-00-00-033.00	Lewis	35.62	Agricultural	0.51\%	1,085	Easement
66	069-00-00-031.00	Swim	1.11	Residential	0.02\%	1,055	Easement
67	069-00-00-034.01	Ripato	0.93	Residential	0.01\%	1,210	Easement
68	069-00-00-034.02	Ripato	1.83	Residential	0.03\%	1,330	Easement
69	069-00-00-036.00	Williams	52.31	Agri/Res	0.75\%	1,080	Easement
70	069-00-00-042.00	Esh	1.94	Residential	0.03\%	500	755
71	069-00-00-041.00	Kegley	2.81	Residential	0.04\%	500	650
72	069-00-00-040.00	Kegley	0.86	Residential	0.01\%	500	605
73	069-00-00-047.02	Kegley	52.48	Agricultural	0.75\%	N/A	1865
74	069-00-00-045.00	Caudill	29.36	Agricultural	0.42\%	N/A	895
75	069-00-00-044.00	Mik	4.75	Residential	0.07\%	500	575
76	070-00-00-006.01	Esh	14.95	Residential	0.21\%	515	1
77	070-00-00-004.00	McKisson	5.00	Residential	0.07\%	625	430
78	069-00-00-047.01	Hickerson	1.90	Residential	0.03\%	500	950
79	070-00-00-005.00	Helmuth	12.66	Residential	0.18\%	500	1705
80	070-00-00-006.02	Norton	16.81	Residential	0.24\%	665	1580
81	070-00-00-010.00	Peachey	36.07	Agri/Res	0.52\%	880	2165
82	070-00-00-011.00	Marshall	1.21	Residential	0.02\%	500	175
83	070-00-00-014.00	Marshall	110.00	Agricultural	1.57\%	N/A	4325
84	070-00-00-013.00	Gardner	1.30	Residential	0.02\%	500	485
85	070-00-00-015.00	Marshall	70.86	Agricultural	1.01\%	N/A	1145
86	070-00-00-016.00	Caudill	38.46	Agricultural	0.55\%	N/A	1525
87	070-00-00-016.00	Marshall	57.75	Agricultural	0.83\%	N/A	2205
88	058-00-00-034.00	Holland	17.00	Residential	0.24\%	795	1455

			GIS Data		Adjoin	Distance (ft)	LF
\#	MAP ID	Owner	Acres	Present Use	Acres	Home/Panel	Adjacency
89	058-00-00-034.01	Peachey	26.69	Agricultural	0.38\%	N/A	720
90	058-00-00-036.00	Coblentz	19.00	Residential	0.27\%	500	315
91	058-00-00-037.00	Prater	39.75	Agricultural	0.57\%	N/A	2120
92	058-00-00-040.00	Fearin	13.55	Residential	0.19\%	N/A	405
93	058-00-00-040.28	Harmon	0.70	Residential	0.01\%	500	175
94	058-00-00-040.26	Conn	1.21	Residential	0.02\%	500	490
95	058-00-00-040.22	Soule	1.10	Residential	0.02\%	500	220
96	058-00-00-040.20	Ballard	0.55	Residential	0.01\%	500	110
97	058-00-00-040.18	Ballard	0.55	Residential	0.01\%	N / A	125
98	058-00-00-040.14	Stacy	1.33	Residential	0.02\%	500	295
99	058-00-00-040.12	Williams	0.57	Residential	0.01\%	500	120
100	058-00-00-040.10	McCleese	0.57	Residential	0.01\%	500	1
101	058-00-00-041.03	Utterback	5.00	Residential	0.07\%	500	405
102	058-00-00-041.00	Brewer	21.03	Agri/Res	0.30\%	695	1280
103	059-00-00-005.01	Harvey	38.15	Agricultural	0.55\%	N/A	Easement
104	059-00-00-009.02	Lunsford	34.47	Agricultural	0.49\%	500	2730
105	059-00-00-012.01	Williams	1.72	Residential	0.02\%	500	1215
106	059-00-00-009.01	Mazelin	45.00	Agri/Res	0.64\%	835	2250
107	059-00-00-008.00	Wills	100.30	Agricultural	1.44\%	N/A	2770
108	070-00-00-039.00	Fearin	127.44	Agri/Res	1.82\%	500	3060
109	071-00-00-003.00	Williams	80.07	Agri/Res	1.15\%	1,425	2240
110	071-00-00-003.01	Williams	9.13	Residential	0.13\%	525	150
111	071-00-00-005.00	Salyers	119.60	Agri/Res	1.71\%	500	1810
112	071-00-00-010.01	Lengacher	130.47	Agri/Res	1.87\%	2,635	1760
113	059-00-00-028.01	Jones	0.86	Residential	0.01\%	N/A	20
114	059-00-00-028.00	Jones	112.25	Agri/Res	1.61\%	2,975	1710
115	059-00-00-027.00	Jones	18.28	Residential	0.26\%	N/A	1880
116	059-00-00-026.00	Straus baugh	45.65	Agri/Res	0.65\%	2,835	620
117	059-00-00-023.00	Borders	50.00	Agri/Res	0.72\%	2,140	940
118	059-00-00-022.00	Gooding	68.00	Agri/Res	0.97\%	2,180	460
119	059-00-00-021.00	Himes	169.00	Agri/Res	2.42\%	2,705	3090
120	059-00-00-011.00	Bedore	40.00	Agri/Res	0.57\%	500	1315
121	059-00-00-014.00	Mitchell	3.33	Residential	0.05\%	500	270
122	059-00-00-013.00	Doyle	125.32	Agri/Res	1.79\%	850	4785
123	059-00-00-001.00	Kaenzig	170.60	Agri/Res	2.44\%	2,825	2830
124	058-00-00-043.00	Colgan	87.05	Agricultural	1.25\%	N / A	Easement
125	058-00-00-042.00	Colgan	76.75	Agri/Res	1.10\%	880	Easement
126	059-00-00-003.00	Colgan	0.34	Residential	0.00\%	1,450	Easement
127	059-00-00-004.00	Galbreath	4.39	Residential	0.06\%	1,225	Easement
128	058-00-00-019.00	Morris	100.00	Agri/Res	1.43\%	2,015	Easement
129	058-00-00-022.00	Lindberg	5.43	Residential	0.08\%	500	Easement
130	058-00-00-023.02	Hill	35.57	Agricultural	0.51\%	N / A	1450
131	058-00-00-023.00	Lamar	0.24	Residential	0.00\%	500	100
132	058-00-00-023.01	Spencer	3.26	Residential	0.05\%	670	545

			GIS Data		Adjoin	Distance (ft)	LF
$\#$	MAP ID	Owner	Acres	Present Use	Acres	Home/Panel	Adjacency
133	$058-00-00-025.00$	Cox	1.27	Residential	0.02%	500	390
134	$058-00-00-026.00$	Earls	0.77	Residential	0.01%	500	335
135	$058-00-00-028.00$	Spencer	0.32	Residential	0.00%	500	120
136	$058-00-00-029.00$	Schwartz	0.34	Residential	0.00%	500	100
137	$058-00-00-030.00$	Arthur	0.61	Residential	0.01%	500	345
138	$058-00-00-020.00$	Graham	26.37	Agricultural	0.38%	N/A	645
139	$058-00-00-020.01$	Strode	32.42	Agri/Res	0.46%	875	1575
140	$058-00-00-017.00$	Gilliam	41.93	Agri/Res	0.60%	500	1935
141	$058-00-00-018.00$	Dillon	24.50	Agri/Res	0.35%	500	2725
142	$058-00-00-016.00$	Utterback	0.70	Residential	0.01%	500	3060
143	$058-00-00-012.03$	Caskey	12.48	Residential	0.18%	N/A	575
144	$058-00-00-012.05$	Hawkins	2.00	Residential	0.03%	575	260
145	$058-00-00-012.00$	Gilkerson	12.47	Residential	0.18%	N/A	140
146	$058-00-00-014.00$	Utterback	25.83	Agricultural	0.37%	N/A	960
147	$057-00-00-016.00$	Conrad	110.00	Agri/Res	1.57%	1,690	2400
148	$057-00-00-013.00$	Reeder	149.97	Agricultural	2.15%	N/A	4220
149	$057-00-00-013.00$	Reeder	80.03	Agricultural	1.15%	N/A	4240
150	$057-00-00-011.00$	Johnson	93.33	Agri/Res	1.34%	1,120	4965
151	$057-00-00-012.00$	Reeder	141.78	Agricultural	2.03%	N/A	5870
152	$057-00-00-015.00$	Humphries	175.93	Agri/Res	2.52%	940	4265

N/A indicates that there is no adjoining home to which to measure.
Linear feet of adjacency listed in red means that the property is across a right of way from the subject property.

Linear feet of adjacency of 1 foot is assigned where properties meet at a corner.

II. Demographics

I have pulled the following demographics for a 1 -mile, 3 -mile and 5 -mile radius around the proposed solar farm project.

Data Note: Persons of Hispanic Origin may be of any race,
Source: U.S. Census Bureau, Census 2010 Summary File 1. Esri forecasts for 2021 and 2026
March 15, 2022

Housing Profile

41041, Flemingsburg, Kentucky 2
Prepared by Esri
41041, Flemingsburg, Kentucky
athule: 30,45500
Ring: 3 mile radius
Longitude - $-83.654+6$

Population		Households				\$54,492
2010 Total Population 1,078		2021 Median Household Income				
2021 Total Population 1,088		2026 Median Household Income				\$56,791
2026 Total Population 1,077	1,077	2021-2026 Annual Rate				0.83\%
2021-2026 Annual Rate $\quad-0.20 \%$	-0.20\%					
	Census 2010		2021		2026	
Housing Units by Occupancy Status and Tenure	Number	Percent	Number	Percent	Number	Percent
Total Housing Units	421	100.0\%	428	100.0\%	433	100.0\%
Occupied	382	90.7\%	388	90.7\%	386	89.1\%
Owner	319	75.8\%	303	70.8\%	303	70.0\%
Renter	63	15.0\%	85	19.9\%	83	19.2\%
Vacant	39	9.3\%	40	9.3\%	47	10.9\%
			2021		2026	
Owner Occupled Housing Units by Value			Number	Percent	Number	Percent
Total			304	100.0\%	302	100,0\%
< \$50,000			36	11.8\%	26	8.6\%
\$50,000-\$99,999			69	22.7\%	53	17.5\%
\$100,000-\$149,999			54	17.8\%	48	15.9\%
\$150,000-\$199,999			43	14.1\%	44	14.6\%
\$200,000-\$249,999			17	5.6\%	19	6.3\%
\$250,000-\$299,999			10	3.3\%	11	3.6\%
\$300,000-\$399,999			36	11.8\%	47	15.6\%
\$400,000-\$499,999			0	0.0\%	0	0.0\%
\$500,000-\$749,999			19	6.2\%	27	8.9\%
\$750,000-\$999,999			17	5.6\%	24	7.9\%
\$1,000,000-\$1,499,999			3	1.0\%	3	1.0\%
\$1,500,000-\$1,999,999			0	0.0\%	0	0.0\%
\$2,000,000+			0	0.0\%	0	0.0\%
Median Value			\$143,519		\$177,273	
Average Value			\$230,345		\$277,152	
Census 2010 Housing Units					ber	Percent
Total					421	100.0\%
In Urbanized Areas					0	0.0\%
In Urban Clusters					98	23.3\%
Rural Housing Units					323	76.7\%

Data Note: Persons of Hispanic Origin may be of any race
Source: U.S. Census Bureau, Census 2010 Summary File 1. Esri forecasts for 2021 and 2026
March 15, 2022

Housing Profile

41041, Flemingsburg, Kentucky 2
Prepared by Esri
41041, Flemingsburg, Kentucky
athule: 30,45500
Ring: 5 mile radius
Longitude $=83.65440$

Population2010 Total Population 4,142		Households				
		2021 Median Household Income				\$48,754
2021 Total Population 4,181		2026 Medián Household Income				\$51,387
2026 Total Population 4,152		2021-2026 Annual Rate				1.06\%
2021-2026 Annual Rate $\quad=0.14 \%$						
	Census 2010		2021		2026	
Housing Units by Occupancy Status and Tenure	Number	Percent	Number	Percent	Number	Percent
Total Housing Units	1,803	100.0\%	1,825	100.0\%	1,846	100.0\%
Occupied	1,607	89.1\%	1,631	89.4\%	1,624	88.0\%
Owner	1,233	68.4\%	1,159	63.5\%	1,161	62.9\%
Renter	374	20.7\%	472	25.9\%	463	25.1\%
Vacant	196	10.9\%	194	10.6\%	222	12.0\%
Owner Occupled Housing Units by Value			2021		2026	
			Number	Percent	Number	Percent
Total			1,159	100.0\%	1,161	100,0\%
< \$50,000			156	13.5\%	120	10.3\%
\$50,000-\$99,999			318	27.4\%	269	23.2\%
\$100,000-\$149,999			176	15.2\%	160	13.8\%
\$150,000-\$199,999			161	13.9\%	167	14.4\%
\$200,000-\$249,999			84	7.2\%	94	8.1\%
\$250,000-\$299,999			44	3.8\%	49	4.2\%
\$300,000-\$399,999			107	9.2\%	143	12.3\%
\$400,000-\$499,999			2	0.2\%	3	0.3\%
\$500,000-\$749,999			51	4.4\%	74	6.4\%
\$750,000-\$999,999			51	4.4\%	71	6.1\%
\$1,000,000-\$1,499,999			8	0.7\%	10	0.9\%
\$1,500,000-\$1,999,999			1	0.1\%	1	0.1\%
\$2,000,000+			0	0.0\%	0	0.0\%
Median Value			\$129,972		\$159,431	
Average Value			\$203,214		\$242,076	
Census 2010 Housing Units					ber	Percent
Total					,803	100.0\%
In Urbanized Areas					0	0.0\%
In Urban Clusters					594	32.9\%
Rural Housing Units					,209	67.1\%

Data Note: Persons of Hispanic Origin may be of any race,
Source: U.S. Census Bureau, Census 2010 Summary File 1. Esri forecasts for 2021 and 2026.

III. Methodology and Discussion of Issues

Standards and Methodology

I conducted this analysis using the standards and practices established by the Appraisal Institute and that conform to the Uniform Standards of Professional Appraisal Practice. The analyses and methodologies contained in this report are accepted by all major lending institutions, and they are used in Kentucky and across the country as the industry standard by certified appraisers conducting appraisals, market analyses, or impact studies and are considered adequate to form an opinion of the impact of a land use on neighboring properties. These standards and practices have also been accepted by the courts at the trial and appellate levels and by federal courts throughout the country as adequate to reach conclusions about the likely impact a use will have on adjoining or abutting properties.

The aforementioned standards compare property uses in the same market and generally within the same calendar year so that fluctuating markets do not alter study results. Although these standards do not require a linear study that examines adjoining property values before and after a new use (e.g. a solar farm) is developed, some of these studies do in fact employ this type of analysis. Comparative studies, as used in this report, are considered an industry standard.

The type of analysis employed is a Matched Pair Analysis or Paired Sales Analysis. This methodology is outlined in The Appraisal of Real Estate, Twelfth Edition by the Appraisal Institute pages 438-439. It is further detailed in Real Estate Damages, Third Edition, pages $33-36$ by Randall Bell PhD, MAI. Paired sales analysis is used to support adjustments in appraisal work for factors ranging from the impact of having a garage, golf course view, or additional bedrooms. It is an appropriate methodology for addressing the question of impact of an adjoining solar farm. The paired sales analysis is based on the theory that when two properties are in all other respects equivalent, a single difference can be measured to indicate the difference in price between them. Dr. Bell describes it as comparing a test area to control areas. In the example provided by Dr. Bell he shows five paired sales in the test area compared to 1 to 3 sales in the control areas to determine a difference. I have used 3 sales in the control areas in my analysis for each sale developed into a matched pair.

Determining what is an External Obsolescence

An external obsolescence is a use of property that, because of its characteristics, might have a negative impact on the value of adjacent or nearby properties because of identifiable impacts. Determining whether a use would be considered an external obsolescence requires a study that isolates that use, eliminates any other causing factors, and then studies the sales of nearby versus distant comparable properties. The presence of one or a combination of key factors does not mean the use will be an external obsolescence, but a combination of these factors tend to be present when market data reflects that a use is an external obsolescence.

External obsolescence is evaluated by appraisers based on several factors. These factors include but are not limited to:

1) Traffic. Solar Farms are not traffic generators.
2) Odor. Solar farms do not produce odor.
3) Noise. Solar farms generate no noise concerns and are silent at night.
4) Environmental. Solar farms do not produce toxic or hazardous waste. Grass is maintained underneath the panels so there is minimal impervious surface area.
5) Appearance/Viewshed. This is the one area that potentially applies to solar farms. However, solar farms are generally required to provide significant setbacks and landscaping buffers to address that concern. Furthermore, any consideration of appearance of viewshed impacts has to be considered in comparison with currently allowed uses on that site. For example if a residential subdivision is already an allowed use, the question becomes in what way does the appearance impact adjoining property owners above and beyond the appearance of that allowed subdivision or other similar allowed uses.
6) Other factors. I have observed and studied many solar farms and have never observed any characteristic about such facilities that prevents or impedes neighbors from fully using their homes or farms or businesses for the use intended.

Relative Solar Farm Sizes

Solar farms have been increasing in size in recent years. Much of the data collected is from existing, older solar farms of smaller size, but there are numerous examples of sales adjoining 75 to 80 MW facilities that show a similar trend as the smaller solar farms. This is understandable given that the primary concern relative to a solar farm is the appearance or view of the solar farm, which is typically addressed through setbacks and landscaping buffers. The relevance of data from smaller solar farms to larger solar farms is due to the primary question being one of appearance. If the solar farm is properly screened, then little of the solar farm would be seen from adjoining property regardless of how many acres are involved.

Larger solar farms are often set up in sections where any adjoining owner would only be able to see a small section of the project even if there were no landscaping screen. Once a landscaping screen is in place, the primary view is effectively the same whether you are adjoining a 5 MW, 20 MW or 100 MW facility.

I have split out the data for the matched pairs adjoining larger solar farms only to illustrate the similarities later in this report. I note that I have matched pairs adjoining solar farms up to 620 MWs in size showing no impact on property value.

Steps Involved in the Analysis

The paired sales analysis employed in this report follows the following process:

1. Identify sales of property adjoining existing solar farms.
2. Compare those sales to similar property that does not adjoin an existing solar farm.
3. Confirmation of sales are noted in the analysis write ups.
4. Distances from the homes to panels are included as a measure of the setbacks.
5. Topographic differences across the solar farms themselves are likewise noted along with demographic data for comparing similar areas.

There are a number of Sale/Resale comparables included in the write ups, but most of the data shown is for sales of homes after a solar farm has been announced (where noted) or after a solar farm has been constructed.

IV. Research on Solar Farms

A. Appraisal Market Studies

I have also considered a number of impact studies completed by other appraisers as detailed below.

CohnReznick - Property Value Impact Study: Adjacent Property Values Solar Impact Study: A Study of Eight Existing Solar Facilities

Patricia McGarr, MAI, CRE, FRICS, CRA and Andrew R. Lines, MAI with CohnReznick completed an impact study for a proposed solar farm in Cheboygan County, Michigan completed on June 10, 2020. I am familiar with this study as well as a number of similar such studies completed by CohnReznick. I have not included all of these studies but I submit this one as representative of those studies.

This study addresses impacts on value from eight different solar farms in Michigan, Minnesota, Indiana, Illinois, Virginia and North Carolina. These solar farms are 19.6 MW, $100 \mathrm{MW}, 11.9 \mathrm{MW}$, $23 \mathrm{MW}, 71 \mathrm{MW}, 61 \mathrm{MW}, 40 \mathrm{MW}$, and 19 MW for a range from 11.9 MW to 100 MW with an average of 31 MW and a median of 31.5 MW . They analyzed a total of 24 adjoining property sales in the Test Area and 81 comparable sales in the Control Area over a five-year period.

The conclusion of this study is that there is no evidence of any negative impact on adjoining property values based on sales prices, conditions of sales, overall marketability, potential for new development or rate of appreciation.

Christian P. Kaila 8\& Associates - Property Impact Analysis - Proposed Solar Power Plant Guthrie Road, Stuarts Draft, Augusta County, Virginia

Christian P. Kaila, MAI, SRA and George J. Finley, MAI developed an impact study as referenced above dated June 16, 2020. This was for a proposed 83 MW facility on 886 acres.

Mr. Kaila interviewed appraisers who had conducted studies and reviewed university studies and discussed the comparable impacts of other development that was allowed in the area for a comparative analysis of other impacts that could impact viewshed based on existing allowed uses for the site. He also discussed in detail the various other impacts that could cause a negative impact and how solar farms do not have such characteristics.

Mr. Kaila also interviewed County Planners and Real Estate Assessor's in eight different Virginia counties with none of the assessor's identifying any negative impacts observed for existing solar projects.

Mr. Kaila concludes on a finding of no impact on property values adjoining the indicated solar farm.

Fred Beck, MAI, CCIM - Impact Analysis in Lincoln County 2013

Mr. Fred Beck, MAI, CCIM completed an impact analysis in 2013 for a proposed solar farm that concluded on a negative impact on value. That report relied on a single cancelled contract for an adjoining parcel where the contracted buyers indicated that the solar farm was the reason for the cancellation. It also relied on the activities of an assessment impact that was applied in a nearby county.

Mr. Beck was interviewed as part of the Christian Kalia study noted above. From that I quote "Mr. Beck concluded on no effect on moderate priced homes, and only a 5% change in his limited research of higher priced homes. His one sale that fell through is hardly a reliable sample. It also was misleading on Mr. Beck's part to report the lower re-assessments since the primary cause of the
re-assesments were based on the County Official, who lived adjacent to the solar farm, appeal to the assessor for reductions with his own home." In that Clay County Case study the noted lack of lot sales after announcement of the solar farm also coincided with the recession in 2008/2009 and lack of lot sales effectively defined that area during that time. I contacted the Clay County Assessor who indicated that there is no set downward adjustment for properties adjoining solar farms in the county at this time.

I further note, that I was present at the hearing where Mr. Beck presented these findings and the predominance of his argument before the Lincoln County Board of Commissioner's was based on the one cancelled sale as well as a matched pair analysis of high-end homes adjoining a four-story call center. He hypothesized that a similar impact from that example could be compared to being adjacent solar farm without explaining the significant difference in view, setbacks, landscaping, traffic, light, and noise. Furthermore, Mr. Beck did have matched pairs adjoining a solar farm in his study that he put in the back of his report and then ignored as they showed no impact on property value.

Also noted in the Christian Kalia interview notes is a response from Mr. Beck indicating that in his opinion "the homes were higher priced homes and had full view of the solar farm." Based on a description of screening so that "the solar farm would not be in full view to adjoining property owners. Mr. Beck said in that case, he would not see any drop in property value."

NorthStar Appraisal Company - Impact Analysis for Nichomus Run Solar, Pilesgrove, NJ, September 16, 2020

Mr. William J. Sapio, MAI with NorthStar Appraisal Company considered a matched pair analysis for the potential impact on adjoining property values to this proposed 150 MW solar farm. Mr . Sapio considered sales activity in a subdivision known as Point of Woods in South Brunswick Township and identified two recent new homes that were constructed and sold adjoining a 13 MW solar farm and compared them to similar homes in that subdivision that did not adjoin the solar farm. These homes sold in the $\$ 1,290,450$ to $\$ 1,336,613$ price range and these homes were roughly 200 feet from the closest solar panel.

Based on this analysis, he concluded that the adjoining solar farm had no impact on adjoining property value.

Mary McClinton Clay, MAI - McCracken County Solar Project Value Impact Report, July 10, 2021

Ms. Mary Clay, MAI reviewed a report by Kirkland Appraisals in this case and also provided a differing opinion of impact. She cites a number of other appraisal studies and interestingly finds fault with heavily researched opinions, while praising the results of poorly researched studies that found the opposing view.

Her analysis includes details from solar farms that show no impact on value, but she dismisses those.

She cites the University of Texas study noted later in this report, but she cites only isolated portions of that study to conclude the opposite of what that study specifically concludes.

She cites the University of Rhode Island study noted alter in this report, but specifically excludes the conclusion of that study that in rural areas they found no impact on property value.

She cites lot sales near Spotsylvania Solar without confirming the purchase prices with brokers as indicative of market impact and has made no attempt to compare lot prices that are contemporaneous. In her 5 lot sales that she identifies, all of the lot prices decline with time from 2015 through 2019. This includes the 3 lot sales prior to the approval of the solar farm. The lot sales she cites showing a drop are all related to the original developer of that subdivision $20+$ years
ago liquidating all of their lots in that time period and shows significant drops on all of the lots due to it being a liquidation value. More recent lot sales show lot prices over $\$ 100,000$ with the most recent land sale adjoining the solar farm having sold in December of 2021 for $\$ 140,000$. I spoke with Chris Kalia, MAI out of VA about these lot sales and he confirmed along with two other appraisers in that market that he connected me with that the lot sales Ms. Clay identified were all related to that liquidation and not related to the solar farm. All three appraisers agreed that they had seen no negative impacts from Spotsylvania Solar and that lot prices among builders and home owners were going up and home prices in the neighborhood were likewise going up.

She considers data at McBride Place Solar Farm and does a sale/resale analysis based on Zillow Home Value Index, which is not a reliable indication for appreciation in the market. She then adjusted her initial sales prior to the solar farm over 7 years to determine what she believes the home should have appreciated by and then compares that to an actual sale. She has run no tests or any analysis to show that the appreciation rates she is using are consistent with the market but more importantly she has not attempted to confirm any of these sales with market participants. I have spoken with brokers active in the sales that she cites and they have all indicated that the solar farm was not a negative factor in marketing or selling those homes.

She has considered lot sales at Sunshine Farms in Grandy, NC. She indicates that the lots next to the solar farm are selling for less than lots not near the solar farm, but she is actually using lot sales next to the solar farm prior to the solar farm being approved. She also ignores recent home sales adjoining this solar farm after it was built that show no impact on property value.

She also notes a couple of situations where solar developers have purchased adjoining homes and resold them or where a neighbor agreement was paid as proof of a negative impact on property value. Given that there are over 2,500 solar farms in the USA as of 2018 according to the U.S. Energy Information Administration and there are only a handful of such examples, this is clearly not an industry standard but a business decision. Furthermore, solar developers are not in the business of flipping homes and are in a position very similar to a bank that acquires a home as OREO (Other Real Estate Owned), where homes are frequently sold at discounted prices, not because of any drop in value, but because they are not a typically motivated seller. Market value requires an analysis of a typically motivated buyer and seller. So these are not good indicators of market value impacts.

The comments throughout this study are heavy in adjectives, avoids stating facts contrary to the conclusion and shows a strong selection bias.

Conclusion of Impact Studies

Of the fives studies noted two included actual sales data to derive an opinion of no impact on value. The two studies to conclude on a negative impact includes the Fred Beck study based on no actual sales data, and he has since indicated that with landscaping screens he would not conclude on a negative impact. The other study by Mary Clay shows improper adjustments for time, a lack of confirmation of sales comparables, and exclusion of data that does not support her position.

I have relied on these studies as additional support for the findings in this impact analysis.

B. Articles

I have also considered a number of articles on this subject as well as conclusions and analysis as noted below.

Farm Journal Guest Editor, March 22, 2021 - Solar's Impact on Rural Property Values

Andy Ames, ASFMRA (American Society of Farm Managers and Rural Appraisers) published this article that includes a discussion of his survey of appraisers and studies on the question of property
value related to solar farms. He discusses the university studies that I have cited as well as Patricia McGarr, MAI.

He also discusses the findings of Donald A. Fisher, ARA, who served six years at the Chair of the ASFMRA's National Appraisal Review Committee. He is also the Executive Vice President of the CNY Pomeroy Appraiser and has conducted several market studies on solar farms and property impact. He is quoted in the article as saying, "Most of the locations were in either suburban or rural areas, and all of those studies found either a neutral impact, or ironically, a positive impact, where values on properties after installation of solar farms went up higher than time trends."

Howard Halderman, AFM, President and CEO of Halderman Real Estate and Farm Management attended the ASFMRA solar talk hosted by the Indiana Chapter of the ASFMRA and he concludes that other rural properties would likely see no impact and farmers and landowners shown even consider possible benefits. "In some cases, farmers who rent land to a solar company will insure the viability of their farming operation for a longer time period. This makes them better long-term tenants or land buyers so one can argue that higher rents and land values will follow due to the positive impact the solar leases offer."

National Renewable Energy Laboratory - Top Five Large-Scale Solar Myths, February 3, 2016

Megan Day reports form NREL regarding a number of concerns neighbors often express. Myth \#4 regarding property value impacts addresses specifically the numerous studies on wind farms that show no impact on property value and that solar farms have a significantly reduced visual impact from wind farms. She highlights that the appearance can be addressed through mitigation measures to reduce visual impacts of solar farms through vegetative screening. Such mitigations are not available to wind farms given the height of the windmills and again, those studies show no impact on value adjoining wind farms.

North Carolina State University: NC Clean Energy Technology Center White Paper: Balancing Agricultural Productivity with Ground-Based Solar Photovoltaic (PV) Development (Version 2), May 2019

Tommy Cleveland and David Sarkisian wrote a white paper for NCSU NC Clean Energy Technology Center regarding the potential impacts to agricultural productivity from a solar farm use. I have interviewed Tommy Cleveland on numerous occasions and I have also heard him speak on these issues at length as well. He addresses many of the common questions regarding how solar farms work and a detailed explanation of how solar farms do not cause significant impacts on the soils, erosion and other such concerns. This is a heavily researched paper with the references included.

North Carolina State University: NC Clean Energy Technology Center White Paper: Health and Safety Impacts of Solar Photovoltaics, May 2017

Tommy Cleveland wrote a white paper for NCSU NC Clean Energy Technology Center regarding the health and safety impacts to address common questions and concerns related to solar farms. This is a heavily researched white paper addressing questions ranging from EMFs, fire safety, as well as vegetation control and the breakdown of how a solar farm works.

C. Broker Commentary

In the process of working up the matched pairs used later in this report, I have collected comments from brokers who have actually sold homes adjoining solar farms indicating that the solar farm had no impact on the marketing, timing, or sales price for the adjoining homes. I have comments from brokers noted within the solar farm write ups of this report including brokers from Kentucky, Virginia, Tennessee, and North Carolina. I have additional commentary from other states including New Jersey and Michigan that provide the same conclusion.

V. University Studies

I have also considered the following studies completed by four different universities related to solar farms and impacts on property values.

A. University of Texas at Austin, May 2018
 An Exploration of Property-Value Impacts Near Utility-Scale Solar Installations

This study considers solar farms from two angles. First it looks at where solar farms are being located and concludes that they are being located primarily in low density residential areas where there are fewer homes than in urban or suburban areas.

The second part is more applicable in that they conducted a survey of appraisers/assessors on their opinions of the possible impacts of proximity to a solar farm. They consider the question in terms of size of the adjoining solar farm and how close the adjoining home is to the solar farm. I am very familiar with this part of the study as I was interviewed by the researchers multiple times as they were developing this. One very important question that they ask within the survey is very illustrative. They asked if the appraiser being surveyed had ever appraised a property next to a solar farm. There is a very noticeable divide in the answers provided by appraisers who have experience appraising property next to a solar farm versus appraisers who self-identify as having no experience or knowledge related to that use.

On Page 16 of that study they have a chart showing the responses from appraisers related to proximity to a facility and size of the facility, but they separate the answers as shown below with appraisers with experience in appraising properties next to a solar farm shown in blue and those inexperienced shown in brown. Even within 100 feet of a 102 MW facility the response from experienced appraisers were -5% at most on impact. While inexperienced appraisers came up with significantly higher impacts. This chart clearly shows that an uninformed response widely diverges from the sales data available on this subject.

> Chart B. 2 - Estimates of Property Value Impacts $(\%)$ by Size of Facility, Distance, \& Respondent Type
> Have you assessed a home near a utility-scale solar installation?

Furthermore, the question cited above does not consider any mitigating factors such as landscaping buffers or screens which would presumably reduce the minor impacts noted by experienced appraisers on this subject.

The conclusion of the researchers is shown on Page 23 indicated that "Results from our survey of residential home assessors show that the majority of respondents believe that proximity to a solar installation has either no impact or a positive impact on home values."

This analysis supports the conclusion of this report that the data supports no impact on adjoining property values. The only impact suggested by this study is -5% if a home was within 100 feet of a 100 MW solar farm with little to no landscaping screening. The proposed project has a landscaping screening, is much further setback than 100 feet from adjoining homes, and is less than 100 MW .

B. University of Rhode Island, September 2020
 Property Value Impacts of Commercial-Scale Solar Energy in Massachusetts and Rhode Island

The University of Rhode Island published a study entitled Property Value Impacts of CommercialScale Solar Energy in Massachusetts and Rhode Island on September 29, 2020 with lead researchers being Vasundhara Gaur and Corey Lang. I have read that study and interviewed Mr. Corey Lang related to that study. This study is often cited by opponents of solar farms but the findings of that study have some very specific caveats according to the report itself as well as Mr. Lang from the interview.

While that study does state in the Abstract that they found depreciation of homes within 1-mile of a solar farm, that impact is limited to non-rural locations. On Pages 16-18 of that study under Section 5.3 Heterogeneity in treatment effect they indicate that the impact that they found was limited to non-rural locations with the impact in rural locations effectively being zero. For the study they defined "rural" as a municipality/township with less than 850 population per square mile.

They further tested the robustness of that finding and even in areas up to 2,000 population per square mile they found no statistically significant data to suggest a negative impact. They have not specifically defined a point at which they found negative impacts to begin, as the sensitivity study stopped checking at the 2,000-population per square mile.

Where they did find negative impacts was in high population density areas that was largely a factor of running the study in Massachusetts and Rhode Island which the study specifically cites as being the $2^{\text {nd }}$ and $3^{\text {rd }}$ most population dense states in the USA. Mr. Lang in conversation as well as in recorded presentations has indicated that the impact in these heavily populated areas may reflect a loss in value due to the scarce greenery in those areas and not specifically related to the solar farm itself. In other words, any development of that site might have a similar impact on property value.

Based on this study I have checked the population for the Flemingsburg CCD of Fleming County, which has a population of 7,522 population for 2021 based on HomeTownLocator using Census Data and a total area of 112.27 square miles. This indicates a population density of 67 people per square mile which puts this well below the threshold indicated by the Rhode Island Study.

I therefore conclude that the Rhode Island Study supports the indication of no impact on adjoining properties for the proposed solar farm project.

C. Master's Thesis: ECU by Zachary Dickerson July 2018

A Solar Farm in My Backyard? Resident Perspectives of Utility-Scale Solar in Eastern North Carolina

This study was completed as part of a Master of Science in Geography Master's Thesis by Zachary Dickerson in July 2018. This study sets out to address three questions:

1. Are there different aspects that affect resident satisfaction regarding solar farms?
2. Are there variations in satisfaction for residents among different geographic settings, e.g. neighborhoods adjacent to the solar farms or distances from the solar farms?
3. How can insight from both the utility and planning sectors, combined with knowledge gained from residents, fill gaps in communication and policy writing in regard to solar farms?

This was done through survey and interview with adjacent and nearby neighbors of existing solar farms. The positive to neutral comments regarding the solar farms were significantly higher than negative. The researcher specifically indicates on Page 46 "The results show that respondents generally do not believe the solar farms pose a threat to their property values."

The most negative comments regarding the solar farms were about the lack of information about the approval process and the solar farm project prior to construction.

Figure 11: Residents' positive/negative word choices by geographic setting for both questions

D. Ernest Orlando Lawrence Berkeley National Laboratory, December, 2019

The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis

This study addresses wind farms and not solar farms but it is a reasonable consideration. The activity on a wind farm is significantly different in terms of the mechanics and more particularly on the appearance or viewshed as wind farms cannot be screened from adjoining property owners. This study was commissioned by the Department of Energy and not by any developer. This study examined 7,500 home sales between 1996 and 2007 in order to track sales prices both before and after a wind energy facility was announced or built. This study specifically looked into possible stigma, nuisance, and scenic vista.

On page 17 of that study they conclude "Although the analysis cannot dismiss the possibility that individual homes or small numbers of homes have been or could be negatively impacted, it finds that if these impacts do exist, they are either too small and/or too infrequent to result in any widespread, statistically observable impact."

Given that solar farms are a similar use, but with a lower profile and therefore a lower viewshed than the wind farms, it is reasonable to translate these findings of no impact to solar farms.

VI. Assessor Surveys

I have attempted to contact all of the assessor departments in North Carolina to determine how local assessors are handling solar farms and adjoining property values. I have spoken personally with a number of assessors, but much of this data was obtained via email. I have 39 counties in NC that have both responded to these questions on property value and also have solar farms in that county. I have excluded responses from assessors from counties where there are no current solar farms.

As can be seen in the chart below, of the 39 responses all of the responses have indicated that they make no adjustment to properties adjoining solar farms. Several assessors indicated that it would require an adjoining property owner to appeal their property value with data showing a negative impact before they would make any adjustment and to date they have not had that happen.

I also point out specifically Clay County. I spoke with the assessor there specifically about adjustments that were applied to some properties near a solar farm back in 2008/2011. She was unaware of the details of that event as she was not in this position at that time. As discussed earlier in this report the lower re-assessments at that solar farm were based on a County Official, who owned property adjacent to the solar farm, who made an appeal to the assessor for reductions for his own property. The noted lack of lot sales after announcement of the solar farm however coincided with the recession in 2009 and lack of lot sales effectively defined that area during that time, but without relying on any data the assessor made that change in that time frame based on conversations with the assessor. Since then, Clay County has confirmed that they do not currently make any changes to adjoining property values and the current county assessor was not even aware that they had in the past done so.

NC Assessor Survey on Solar Farm Property Value Impacts

County	Assessor's Name	Number of Farms	Change in Adjacent Property Value
Alexander	Doug Fox	3	No
Buncombe	Lisa Kirbo	1	No
Burke	Daniel Isenhour	3, 2 on 1 parcel, 1 on 3 parcels	No
Cabarrus	Justin	less than 10 , more in the works	No
Caldwell	Monty Woods	3 small	No, but will look at data in 2025
Catawba	Lori Ray	14	No
Chatham	Jenny Williams	13	No
Cherokee	Kathy Killian	9	No
Chowan	Melissa Radke	3, I almost operational	No
Clay	Bonnie L. Lyvers		No
Davidson	Libby	1	No
Duplin	Gary Rose	34, 2 more in planning	No
Franklin	Marion Cascone	11	No
Gaston	Traci Hovis	3	No
Gates	Chris Hill	3	No
Granville	Jenny Griffin	8	No
Halifax	C. Shane Lynch	Multiple	No
Hoke	Mandi Davis	4	No
Hyde	Donnie Shumate	1 to supplement egg processing plant	No
Iredell	Wes Long	2,3 others approved	No
Lee	Lisa Faulkner	8	No
Lincoln	Susan Sain	2	No
Moore	Michael Howery	10	No
New Hanover	Rhonda Garner	35	No
Orange	Chad Phillip	2 or 7 depending on breakdown	No
Pender	Kayla Bolick Futrell	6	No
Person	Russell Jones	9	No
Pitt	Russell D. Hill	8, 1 in planning	No
Randolph	Mark Frick	19	No
Rockingham	Mark C McClintock	6	No
Rutherford	Kim Aldridge	20	No
Sampson	Jim Johnson	9, 1 in construction	No
Scotland	James Brown	15, 1 in process	No
Stokes	Richard Brim	2	No
Surry	Penny Harrison	4,2 more in process	No
Union	Robin E. Merry	6	No
Vance	Cathy E. Renn	13	No
Warren	John Preston	7	No
Wayne	Alan Lumpkin	32	No
Wilson	William (Witt) Putney	~ 16	No, mass appraisal standards applied

[^0]I have also been working on a survey of Virginia Assessors regarding property values related to solar farms and whether or not the local assessors have found any data to support any changes to value on property adjoining solar farms. In this process I have contacted every assessor's office by email and I have received responses by email and by phone from a number of these counties. Many of the counties in Virginia rely on outside firms to assist in gathering data for the assessments and where that is the case we have contacted the outside firms regarding the question of whether or not the assessors are currently making any adjustments to properties adjoining solar farms.

I currently have response from 16 counties that have solar farms in them and of those 16 responses none of the assessors are currently applying a negative impact on property value. One response suggested that adjoining values may go up.

I did speak with Randy Willis with Pearson Assessors. His company assists in the assessments in many of the counties south of Richmond. He indicated that they had found no data to suggest a negative impact on property value and they have looked as they were concerned about that issue. He indicated that they would make no negative impact adjustments and that he recognizes that

VIRGINIA Commissioner of the Revenue

County	Assessor Name	Number of Farms in Operation	Change in adjacent property value
Appomattox	Sara Henderson	1, plus one in process	No
Augusta	W. Jean Shrewsbury	no operational	No
Buckingham	Stephanie D. Love	1	No
Charlotte	Naisha Pridgen Carter	1, several others in the works	No
Clarke	Donna Peake	1	No
Frederick	Seth T. Thatcher	none, 2 appoved for 2022	No, assuming compatible with rural area
Goochland	Mary Ann Davis		No
Hanover	Ed Burnett	1	No
Louisa	Stacey C. Fletcher	2 operational by end of year	No, only if supported by market data
Mecklenburg	Joseph E. "Ed" Taylor		No
Nottoway	Randy Willis with Pearson Assessors	No	
Powhatan	Charles Everest	2 approved, 1 built	Likely increase in value
Rockingham	Dan Cullers	no operational	Likely no
Southampton	Amy B. Carr	1	Not normally
Surry	Jonathan F. Judkins	1	None at this time
Westmoreland	William K. Hoover	4	No

Responses: 16
Negative Impact on Adjoining Value $=$ Yes: 0
Negative Impact on Adjoining Value $=$ No: 16

VII. Summary of Solar Projects in Kentucky

I have researched the solar projects in Kentucky. I identified the solar farms through the Solar Energy Industries Association (SEIA) Major Projects List and then excluded the roof mounted facilities. This leaves only six solar farms in Kentucky for analysis at this time.

One of these six solar farms has limited analysis potential: E.W. Brown near Harrodsburg in Mercer County. The E. W. Brown 10 MW solar farm was built in 2014 and adjoins three coal-fired units. Given that research studies that I have read regarding fossil fuel power plants including "The Effect of Power Plants on Local Housing Values and Rents" by Lucas W. Davis and published May 2010, it would not be appropriate to use any data from this solar farm due to the influence of the coal-fired power plant that could have an impact on up to a one-mile radius. I note that the closest home to a solar panel at this site is 565 feet and the average distance is 1,026 feet. The homes are primarily clustered at the Herrington Lake frontage. Recent sales in this area range from $\$ 164,000$ to $\$ 212,000$ for these waterfront homes. Again, no usable data can be derived from this solar farm due to the adjoining coal fired plant.

Furthermore, the Cooperative solar farm in Shelby County is a 0.5 MW facility on 35 acres built in 2020 that is proposed to eventually be 4 MW . This project is too new and there have been no home sales adjoining this facility. I also cannot determine how close the nearby homes are to the adjoining solar panels as the aerial imagery does not yet show these panels.

I have provided a summary of projects below and additional detailed information on the projects on the following pages. I specifically note the similarity in most of the sites in Kentucky in terms of mix of adjoining uses, topography, and distances to adjoining homes.

The number of solar farms currently in Kentucky is low compared to a number of other states and North Carolina in particular. I have looked at solar farms in Kentucky for sales activity, but the small number of sites coupled with the relatively short period of time these solar farms have been in place has not provided as many examples of sales adjoining a solar farm as I am able to pull from other places. I have therefore also considered sales in other states, but I have shown in the summary how the demographics around the solar farms in other locations relate to the demographics around the proposed solar farm to show that generally similar locations are being considered. The similarity of the sites in terms of adjoining uses and surrounding demographics makes it reasonable to compare the lack of significant impacts in other areas would translate into a similar lack of significant impacts at the subject site.

610: Bowling Green Solar, Bowling Green, KY

This project was built in 2011 and located on 17.36 acres for a 2 MW project on Scotty's Way with the adjoining uses being primarily industrial. The closest dwelling is 720 feet from the nearest panel.

Adjoining Use Breakdown

	Acreage	Parcels
Residential	0.58%	10.00%
Agricultural	63.89%	30.00%
Industrial	35.53%	60.00%
Total	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{1 0 0 . 0 0 \%}$

611: Cooperative Solar I, Winchester, KY

This project was built in 2017 on 63 acres of a 181.47-acre parent tract for an 8.5 MW project with the closest home at 2,040 feet from the closest solar panel.

Adjoining Use Breakdown

	Acreage	Parcels
Residential	0.15%	11.11%
Agricultural	96.46%	77.78%
Agri/Res	3.38%	11.11%
Total	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{1 0 0 . 0 0 \%}$

612: Walton 2 Solar, Walton, KY

This project was built in 2017 on 58.03 acres for a 2 MW project with the closest home 120 feet from the closest panel.

Adjoining Use Breakdown

	Acreage	Parcels
Residential	20.84%	47.06%
Agri/Res	59.92%	17.65%
Commercial	19.25%	35.29%
Total	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{1 0 0 . 0 0 \%}$

613: Crittenden Solar, Crittenden, KY

This project was built in late 2017 on 34.10 acres out of a 181.70 -acre tract for a 2.7 MW project where the closest home is 345 feet from the closest panel.

Adjoining Use Breakdown

	Acreage	Parcels
Residential	1.65%	32.08%
Agricultural	73.39%	39.62%
Agri/Res	23.05%	11.32%
Commercial	0.64%	9.43%
Industrial	0.19%	3.77%
Airport	0.93%	1.89%
Substation	0.15%	1.89%
Total	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{1 0 0 . 0 0 \%}$

659: Cooperative Shelby Solar, Simpsonville, KY

This project was built in 2020 on 35 acres for a 0.5 MW project that is approved for expansion up to 4 MW.

Adjoining Use Breakdown

	Acreage	Parcels
Residential	6.04%	44.44%
Agricultural	10.64%	11.11%
Agri/Res	31.69%	33.33%
Institutional	51.62%	11.11%
Total	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{1 0 0 . 0 0 \%}$

660: E.W. Brown Solar, Harrodsburg, KY

This project was built in 2016 on 50 acres for a 10 MW project. This solar facility adjoins three coalfired units, which makes analysis of these nearby home sales problematic as it is impossible to extract the impact of the coal plant on the nearby homes especially given the lake frontage of the homes shown.

Adjoining Use Breakdown

	Acreage	Parcels
Residential	2.77%	77.27%
Agricultural	43.92%	9.09%
Agri/Res	28.56%	9.09%
Industrial	24.75%	4.55%
Total	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{1 0 0 . 0 0 \%}$

VIII. Market Analysis of the Impact on Value from Solar Farms

I have researched hundreds of solar farms in numerous states to determine the impact of these facilities on the value of adjoining properties. This research has primarily been in North Carolina, but I have also conducted market impact analyses in Virginia, South Carolina, Tennessee, Texas, Oregon, Mississippi, Maryland, New York, California, Missouri, Florida, Montana, Georgia, Kentucky, and New Jersey.

I have derived a breakdown of the adjoining uses to show where solar farms are located. A summary showing the results of compiling that data over hundreds of solar farms is shown later in the Scope of Research section of this report.

I also consider whether the properties adjoining a solar farm in one location have characteristics similar to the properties abutting or adjoining the proposed site so that I can make an assessment of market impact on each proposed site. Notably, in most cases solar farms are placed in areas very similar to the site in question, which is surrounded by low density residential and agricultural uses. In my over 700 studies, I have found a striking repetition of that same typical adjoining property use mix in over 90% of the solar farms I have looked at. Matched pair results in multiple states are strikingly similar, and all indicate that solar farms - which generate very little traffic, and do not generate noise, dust or have other harmful effects - do not negatively impact the value of adjoining or abutting properties.

I have previously been asked by the Kentucky Siting Board about how the solar farms and the matched pair sets were chosen. This is the total of all the usable home sales adjoining the 900+ solar farms that I have looked at over the last 10 years. Most of the solar farms that I have looked at are only a few years old and have not been in place long enough for home or land sales to occur next to them for me to analyze. There is nothing unusual about this given the relatively rural locations of most of the solar farms where home and land sales occur much less frequently than they do in urban and suburban areas and the number of adjoining homes is relatively small.

I review the solar farms that I have looked at periodically to see if there are any new sales. If there is a sale I have to be sure it is not an inhouse sale or to a related family member. A great many of the rural sales that I find are from one family member to another, which makes analysis impossible given that these are not "arm's length" transactions. There are also numerous examples of sales that are "arm's length" but are still not usable due to other factors such as adjoining significant negative factors such as a coal fired plant or at a landfill or prison. I have looked at homes that require a driveway crossing a railroad spur, homes in close proximity to large industrial uses, as well as homes adjoining large state parks, or homes that are over 100 years old with multiple renovations. Such sales are not usable as they have multiple factors impacting the value that are tangled together. You can't isolate the impact of the coal fired plant, the industrial building, or the railroad unless you are comparing that sale to a similar property with similar impacts. Matched pair analysis requires that you isolate properties that only have one differential to test for, which is why the type of sales noted above is not appropriate for analysis.

After my review of all sales and elimination of the family transactions and those sales with multiple differentials, I am left with the matched pairs shown in this report to analyze. I do have additional matched pair data in other areas of the United States that were not included in this report due to being states less comparable to Kentucky than those shown. The only other sales that I have eliminated from the analysis are home sales under $\$ 100,000$, which there haven't been many such examples, but at that price range it is difficult to identify any impacts through matched pair analysis. I have not cherry picked the data to include just the sales that support one direction in value, but I have included all of them both positive and negative with a preponderance of the evidence supporting no impact to mild positive impacts.

A. Kentucky and Adjoining States Data

1. Matched Pair - Crittenden Solar, Crittenden, KY

This solar farm was built in December 2017 on a 181.70-acre tract but utilizing only 34.10 acres. This is a 2.7 MW facility with residential subdivisions to the north and south.

I have identified five home sales to the north of this solar farm on Clairborne Drive and one home sale to the south on Eagle Ridge Drive since the completion of this solar farm. The home sale on Eagle Drive is for a $\$ 75,000$ home and all of the homes along that street are similar in size and price range. According to local broker Steve Glacken with Cutler Real Estate these are the lowest price range/style home in the market. I have not analyzed that sale as it would unlikely provide significant data to other homes in the area.

Mr. Glacken is currently selling lots at the west end of Clairborne for new home construction. He indicated that the solar farm near the entrance of the development has been a complete non-factor and none of the home sales are showing any concern over the solar farm. Most of the homes are in the $\$ 250,000$ to $\$ 280,000$ price range. The vacant residential lots are being marketed for $\$ 28,000$ to $\$ 29,000$. The landscaping buffer is considered light, but the rolling terrain allows for distant views of the panels from the adjoining homes along Clairborne Drive.

The first home considered is a bit of an anomaly for this subdivision in that it is the only manufactured home that was allowed in the community. It sold on January 3, 2019. I compared that sale to three other manufactured home sales in the area making minor adjustments as shown on the next page to account for the differences. After all other factors are considered the adjustments show a -1% to $+13 \%$ impact due to the adjacency of the solar farm. The best indicator is 1250 Cason, which shows a 3% impact. A 3% impact is within the normal static of real estate transactions and therefore not considered indicative of a positive impact on the property, but it strongly supports an indication of no negative impact.

Adjoining Residential Sales After Solar Farm Approved

Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	$\$ / \mathbf{G B A}$	BR/BA	Park	Style	Other
	Adjoins	250 Claiborne	0.96	$1 / 3 / 2019$	$\$ 120,000$	2000	2,016	$\$ 59.52$	$3 / 2$	Drive	Manuf	
	Not	1250 Cason	1.40	$4 / 18 / 2018$	$\$ 95,000$	1994	1,500	$\$ 63.33$	$3 / 2$	2 -Det	Manuf	Carport
	Not	410 Reeves	1.02	$11 / 27 / 2018$	$\$ 80,000$	2000	1,456	$\$ 54.95$	$3 / 2$	Drive	Manuf	
	Not	315 N Fork	1.09	$5 / 4 / 2019$	$\$ 107,000$	1992	1,792	$\$ 59.71$	$3 / 2$	Drive	Manuf	

| Adjustments
 Solar | | Address | Time | Site | YB | GLA | BR/BA | Park | Other | Total | \% Diff | \% Diff |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Distance

5\%

I also looked at three other home sales on this street as shown below. These are stick-built homes and show a higher price range.

Adjoining Residential Sales After Solar Farm Approved

Parcel	Solar		ress	Acres	Date Sold		Sales	Price	Built	GBA		GBA	$\begin{gathered} \text { BR/BA } \\ 3 / 3 \end{gathered}$	$\begin{aligned} & \text { Park } \\ & \text { 2-Car } \end{aligned}$	Style Ranch	Other Brick	
	Adjoins	300	aiborne	1.08	9/20/2018		\$212	,720	2003	1,568		5.66					
	Not	460	aiborne	0.31	1/3/2019		\$229	,000	2007	1,446	\$15	8.37	3/2	2-Car	Ranch	Brick	
	Not	2160	herman	1.46	6/1/2019		\$265	,000	2005	1,735	\$15	2.74	3/3	2-Car	Ranch	Brick	
	Not	215 L	xington	1.00	7/27/2018		\$231	,200	2000	1,590	\$14	5.41	5/4	2-Car	Ranch	Brick	
Adjustments				Site	YB		GLA	BR/BA	Park	Other		Total \%		\% Diff	Avg	Distance	
Solar	Addr		Time				\% Diff										
Adjoins	300 Cla	borne											\$213	,000			488
Not	460 Cla	borne	-\$2,026		-\$4,580 \$	\$15	5,457	\$5,000				\$242	,850	-14\%			
Not	2160 Sh	rman	-\$5,672		-\$2,650 -\$	-\$20	20,406					\$236	,272	-11\%			
Not	215 Lex	ngton	\$1,072		\$3,468 -		2,559	-\$5,000				\$228	, 180	-7\%			

This set of matched pairs shows a minor negative impact for this property. I was unable to confirm the sales price or conditions of this sale. The best indication of value is based on 215 Lexington, which required the least adjusting and supports a -7% impact.

Adjoin Parcel	Re	S	Solar F	m Approv								
	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other
Adjoins		350 Claiborne	1.00	7/20/2018	\$245,000	2002	1,688	\$145.14	3/3	2-Car	Ranch	Brick
Not		460 Claiborne	0.31	1/3/2019	\$229,000	2007	1,446	\$158.37	3/2	2-Car	Ranch	Brick
Not		2160 Sherman	1.46	6/1/2019	\$265,000	2005	1,735	\$152.74	3/3	2-Car	$\mathrm{R} / \mathrm{FBsmt}$	Brick
	Not	215 Lexington	1.00	7/27/2018	\$231,200	2000	1,590	\$145.41	5/4	2 -Car	Ranch	Bric

Adjustments										Avg		
Solar	Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff	Distance
Adjoins	350 Claiborne								\$245,000			720
Not	460 Claiborne	-\$3,223		-\$5,725	\$30,660	\$5,000			\$255,712	-4\%		
Not	2160 Sherman	-\$7,057		-\$3,975	-\$5,743				\$248,225	-1\%		
Not	215 Lexington	-\$136		\$2,312	\$11,400	-\$5,000			\$239,776	2\%		

The following photograph shows the light landscaping buffer and the distant view of panels that was included as part of the marketing package for this property. The panels are visible somewhat on the left and somewhat through the trees in the center of the photograph. The first photograph is from the home, with the second photograph showing the view near the rear of the lot.

This set of matched pairs shows a no negative impact for this property. The range of adjusted impacts is -4% to $+2 \%$. The best indication is -1%, which as described above is within the typical market static and supports no impact on adjoining property value.

Adjoining Residential Sales After Solar Farm Approved

This set of matched pairs shows a general positive impact for this property. The range of adjusted impacts is -5% to $+10 \%$. The best indication is $+7 \%$. I typically consider measurements of $+/-5 \%$ to be within the typical variation in real estate transactions. This indication is higher than that and suggests a positive relationship.

The photograph from the listing shows panels visible between the home and the trampoline shown in the picture.

This set of matched pairs shows a general positive impact for this property. The range of adjusted impacts is -3% to $+6 \%$. The best indication is $+6 \%$. I typically consider measurements of $+/-5 \%$ to be within the typical variation in real estate transactions. This indication is higher than that and suggests a positive relationship. The landscaping buffer on these is considered light with a fair visibility of the panels from most of these comparables and only thin landscaping buffers separating the homes from the solar panels.

The five matched pairs considered in this analysis includes two that show no impact on value, one that shows a negative impact on value, and two that show a positive impact. The negative indication supported by one matched pair is -7% and the positive impacts are $+6 \%$ and $+7 \%$. The two neutral indications show impacts of -1% and $+3 \%$. The average indicated impact is $+0 \%$ when all five of these indicators are blended.

Furthermore, the comments of the local real estate broker strongly support the data that shows no negative impact on value due to the proximity to the solar farm. This is further supported by the national data that is shown on the following pages.
2. Matched Pair - Mulberry, Selmer, TN

This 16 MW solar farm was built in 2014 on 208.89 acres with the closest home being 480 feet.
This solar farm adjoins two subdivisions with Central Hills having a mix of existing and new construction homes. Lots in this development have been marketed for $\$ 15,000$ each with discounts offered for multiple lots being used for a single home site. I spoke with the agent with Rhonda Wheeler and Becky Hearnsberger with United County Farm \& Home Realty who noted that they have seen no impact on lot or home sales due to the solar farm in this community.

I have included a map below as well as data on recent sales activity on lots that adjoin the solar farm or are near the solar farm in this subdivision both before and after the announced plan for this solar farm facility. I note that using the same method I used to breakdown the adjoining uses at the subject property I show that the predominant adjoining uses are residential and agricultural, which is consistent with the location of most solar farms.

Adjoining Use Breakdown

	Acreage	Parcels
Commercial	3.40%	0.034
Residential	12.84%	79.31%
Agri/Res	10.39%	3.45%
Agricultural	73.37%	13.79%
Total	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{1 0 0 . 0 0 \%}$

I have run a number of direct matched comparisons on the sales adjoining this solar farm as shown below. These direct matched pairs include some of those shown above as well as additional more recent sales in this community. In each of these I have compared the one sale adjoining the solar farm to multiple similar homes nearby that do not adjoin a solar farm to look for any potential impact from the solar farm.

Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other
3	Adjoins	491 Dusty	6.86	$10 / 28 / 2016$	$\$ 176,000$	2009	1,801	$\$ 97.72$	$3 / 2$	2-Gar	Ranch	
	Not	820 Lake Trail	1.00	$6 / 8 / 2018$	$\$ 168,000$	2013	1,869	$\$ 89.89$	$4 / 2$	2-Gar	Ranch	
	Not	262 Country	1.00	$1 / 17 / 2018$	$\$ 145,000$	2000	1,860	$\$ 77.96$	3/2	2-Gar	Ranch	
	Not	35 April	1.15	$8 / 16 / 2016$	$\$ 185,000$	2016	1,980	$\$ 93.43$	3/2	2-Gar	Ranch	

The best matched pair is 35 April Loop, which required the least adjustment and indicates a -1% increase in value due to the solar farm adjacency.

Adjoining Residential Sales After Solar Farm Built												
Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other
12	Adjoins	57 Cooper	1.20	2/26/2019	\$163,000	2011	1,586	\$102.77	3/2	2-Gar	1.5 Story	Pool
	Not	191 Amelia	1.00	8/3/2018	\$132,000	2005	1,534	\$86.05	3/2	Drive	Ranch	
	Not	- 75 April	0.85	3/17/2017	\$134,000	2012	1,588	\$84.38	3/2	2-Crprt	Ranch	
	Not	345 Woodland	1.15	12/29/2016	\$131,000	2002	1,410	\$92.91	3/2	1-Gar	Ranch	

Parcel	Solar	Address	Sales Price	Time	Site	YB	GLA	Park	Other	Total	\% Diff	Distance
12	Adjoins	S Cooper	$\$ 163,000$							$\$ 163,000$		685
	Not	19 Amelia	$\$ 132,000$	$\$ 2,303$		$\$ 3,960$	$\$ 2,685$	$\$ 10,000$	$\$ 5,000$	$\$ 155,947$	4%	
	Not	75 April	$\$ 134,000$	$\$ 8,029$	$\$ 4,000$	$-\$ 670$	$-\$ 135$	$\$ 5,000$	$\$ 5,000$	$\$ 155,224$	5%	
	Not	345 Woodland	$\$ 131,000$	$\$ 8,710$		$\$ 5,895$	$\$ 9,811$		$\$ 5,000$	$\$ 160,416$	2%	
										Average	4%	

The best matched pair is 191 Amelia, which was most similar in time frame of sale and indicates a $+4 \%$ increase in value due to the solar farm adjacency.

Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other
15	Adjoins	297 Country	1.00	9/30/2016	\$150,000	2002	1,596	\$93.98	3/2	4-Gar	Ranch	
	Not	185 Dusty	1.85	8/17/2015	\$126,040	2009	1,463	\$86.15	3/2	2-Gar	Ranch	
	Not	53 Glen	1.13	3/9/2017	\$126,000	1999	1,475	\$85.42	3/2	2-Gar	Ranch	Brick

Parcel	Solar	Address	Sales Price	Time	Site	YB	GLA	Park	Other	Total	\% Diff

The best matched pair is 53 Glen, which was most similar in time frame of sale and required less adjustment. It indicates a $+4 \%$ increase in value due to the solar farm adjacency.

The average indicated impact from these three sets of matched pairs is $+4 \%$, which suggests a mild positive relationship due to adjacency to the solar farm. The landscaping buffer for this project is mostly natural tree growth that was retained as part of the development but much of the trees separating the panels from homes are actually on the lots for the homes themselves. I therefore consider the landscaping buffer to be thin to moderate for these adjoining homes.

I have also looked at several lot sales in this subdivision as shown below.
These are all lots within the same community and the highest prices paid are for lots one parcel off from the existing solar farm. These prices are fairly inconsistent, though they do suggest about a $\$ 3,000$ loss in the lots adjoining the solar farm. This is an atypical finding and additional details suggest there is more going on in these sales than the data crunching shows. First of all Parcel 4 was purchased by the owner of the adjoining home and therefore an atypical buyer seeking to expand a lot and the site is not being purchased for home development. Moreover, using the SiteToDoBusiness demographic tools, I found that the 1 -mile radius around this development is expecting a total population increase over the next 5 years of 3 people. This lack of growing demand for lots is largely explained in that context. Furthermore, the fact that finished home sales as shown above are showing no sign of a negative impact on property value makes this data unreliable and inconsistent with the data shown in sales to an end user. I therefore place little weight on this outlier data.
\(\left.\begin{array}{cccccccccc}Parcel \& Solar \& Address \& Acres \& Date Sold \& Sales Price \& 4/18/2019

Adj for Time\end{array}\right)\) \$/AC | 4/18/2019 |
| :---: |
| Adj for Time |

3. Matched Pair - Grand Ridge Solar, Streator, IL

This solar farm has a 20 MW output and is located on a 160 -acre tract. The project was built in 2012.

I have considered the recent sale of Parcel 13 shown above, which sold in October 2016 after the solar farm was built. I have compared that sale to a number of nearby residential sales not in proximity to the solar farm as shown below. Parcel 13 is 480 feet from the closest solar panel. The landscaping buffer is considered light.

Adjoining Residential Sales After Solar Farm Completed							
\#	TAX ID	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA
13	34-21-237-000	2	Oct-16	\$186,000	1997	2,328	\$79.90
Not Adjoining Residential Sales After Solar Farm Completed							
\#	TAX ID	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA
712 Columbus Rd	32-39-134-005	1.26	Jun-16	\$166,000	1950	2,100	\$79.05
504 N 2782 Rd	18-13-115-000	2.68	Oct-12	\$154,000	1980	2,800	\$55.00
7720 S Dwight Rd	11-09-300-004	1.14	Nov-16	\$191,000	1919	2,772	\$68.90
701 N 2050th Rd	26-20-105-000	1.97	Aug-13	\$200,000	2000	2,200	\$90.91
9955 E 1600th St	04-13-200-007	1.98	May-13	\$181,858	1991	2,600	\$69.95

TAX ID		Adjustments			
34-21-237-000	Date Sold	Time	Total	$\$ / \mathbf{S f}$	
$32-39-134-005 ~$	Oct-16		$\$ 186,000$	$\$ 79.90$	
$18-13-115-000$	Jun-16		$\$ 166,000$	$\$ 79.05$	
$11-09-300-004$	Oct-12	$\$ 12,320$	$\$ 166,320$	$\$ 59.40$	
$26-20-105-000$	Nov-16			$\$ 191,000$	$\$ 68.90$
$04-13-200-007$	Aug-13	$\$ 12,000$	$\$ 212,000$	$\$ 96.36$	
	May-13	$\$ 10,911$	$\$ 192,769$	$\$ 74.14$	

Adjoins Solar Farm Not Adjoin Solar Farm

	Average	Median	Average	Median
Sales Price/SF	$\$ 79.90$	$\$ 79.90$	$\$ 75.57$	$\$ 74.14$
GBA	2,328	2,328	2,494	2,600

Based on the matched pairs I find no indication of negative impact due to proximity to the solar farm.

The most similar comparable is the home on Columbus that sold for $\$ 79.05$ per square foot. This is higher than the median rate for all of the comparables. Applying that price per square foot to the subject property square footage indicates a value of $\$ 184,000$.

There is minimal landscaping separating this solar farm from nearby properties and is therefore considered light.

4. Matched Pair - Portage Solar, Portage, IN

This solar farm has a 2 MW output and is located on a portion of a 56 -acre tract. The project was built in 2012.

I have considered the recent sale of Parcels 5 and 12. Parcel 5 is an undeveloped tract, while Parcel 12 is a residential home. I have compared each to a set of comparable sales to determine if there was any impact due to the adjoining solar farm. This home is 1,320 feet from the closest solar panel. The landscaping buffer is considered light.

Adjoining Residential Sales After Solar Farm Completed							
\#	TAX ID	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA
12	64-06-19-326-007.000-015	1.00	Sep-13	\$149,800	1964	1,776	\$84.35
Nearby Residential Sales After Solar Farm Completed							
\#	TAX ID	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA
2501 Architect Dr	64-04-32-202-004.000-021	1.31	Nov-15	\$191,500	1959	2,064	\$92.78
336 E 1050 N	64-07-09-326-003.000-005	1.07	Jan-13	\$155,000	1980	1,908	\$81.24
2572 Pryor Rd	64-05-14-204-006.000-016	1.00	Jan-16	\$216,000	1960	2,348	\$91.99
Adjoining Land Sales After Solar Farm Completed							
\#	TAX ID	Acres	Date Sold	Sales Price	\$/AC		
5	64-06-19-200-003.000-015	18.70	Feb-14	\$149,600	\$8,000		
Nearby Land Sales After Solar Farm Completed							
\#	TAX ID	Acres	Date Sold	Sales Price	\$/AC		
	64-07-22-401-001.000-005	74.35	Jun-17	\$520,450	\$7,000		
	64-15-08-200-010.000-001	15.02	Jan-17	\$115,000	\$7,658		

Residential Sale Adjustment Chart

	Adjustments			
TAX ID	Date Sold	Time	Total	\$/Sf
64-06-19-326-007.000-015	Sep-13	\$8,988	\$158,788	\$89.41
64-04-32-202-004.000-021	Nov-15	\$3,830	\$195,330	\$94.64
64-07-09-326-003.000-005	Jan-13	\$9,300	\$164,300	\$86.11
64-05-14-204-006.000-016	Jan-16		\$216,000	\$91.99

2\% adjustment/year
Adjusted to 2017

	Adjoins Solar Farm			Not Adjoin Solar Farm	
Sales Price/SF	Average	Median		Average	Median
GBA	$\$ 89.41$	$\$ 89.41$		$\$ 90.91$	$\$ 91.99$
	1,776	1,776		2,107	2,064

After adjusting the price per square foot is 2.88% less for the home adjoining the solar farm versus those not adjoining the solar farm. This is within the typical range of variation to be anticipated in any real estate transaction and indicates no impact on property value.

Applying the price per square foot for the 336 E 1050 N sale, which is the most similar to the Parcel 12 sale, the adjusted price at $\$ 81.24$ per square foot applied to the Parcel 12 square footage yields a value of $\$ 144,282$.

The landscaping separating this solar farm from the homes is considered light.

Land Sale Adjustment Chart

TAX ID	Adjustments			
Date Sold	Time	Total	\$/Acre	
64-06-19-200-003.000-015	Feb-14	$\$ 8,976$	$\$ 158,576$	$\$ 8,480$
$64-07-22-401-001.000-005$	Jun-17		$\$ 520,450$	$\$ 7,000$
$64-15-08-200-010.000-001$	Jan-17		$\$ 115,000$	$\$ 7,658$

2\% adjustment/year
Adjusted to 2017

	Adjoins Solar Farm			Not Adjoin Solar Farm	
	Average	Median		Average	Median
	$\$ 8,480$	$\$ 8,480$		$\$ 7,329$	$\$ 7,329$
Sales Price/Ac	18.70	18.70		44.68	44.68

After adjusting the price per acre is higher for the property adjoining the solar farm, but the average and median size considered is higher which suggests a slight discount. This set of matched pair supports no indication of negative impact due to the adjoining solar farm.

Alternatively, adjusting the 2017 sales back to 2014 I derive an indicated price per acre for the comparables at $\$ 6,580$ per acre to $\$ 7,198$ per acre, which I compare to the unadjusted subject property sale at $\$ 8,000$ per acre.

5. Matched Pair - Dominion Indy III, Indianapolis, IN

This solar farm has an 8.6 MW output and is located on a portion of a 134-acre tract. The project was built in 2013.

There are a number of homes on small lots located along the northern boundary and I have considered several sales of these homes. I have compared those homes to a set of nearby not adjoining home sales as shown below. The adjoining homes that sold range from 380 to 420 feet from the nearest solar panel, with an average of 400 feet. The landscaping buffer is considered light.

Adjoining Residential Sales After Solar Farm Completed							
\#	TAX ID	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA
2	2013249	0.38	12/9/2015	\$140,000	2006	2,412	\$58.04
4	2013251	0.23	9/6/2017	\$160,000	2006	2,412	\$66.33
5	2013252	0.23	5/10/2017	\$147,000	2009	2,028	\$72.49
11	2013258	0.23	12/9/2015	\$131,750	2011	2,190	\$60.16
13	2013260	0.23	3/4/2015	\$127,000	2005	2,080	\$61.06
14	2013261	0.23	2/3/2014	\$120,000	2010	2,136	\$56.18
Nearby Not Adjoining Residential Sales After Solar Farm Completed							
\#	TAX ID	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA
5836 Sable Dr	2013277	0.14	Jun-16	\$141,000	2005	2,280	\$61.84
5928 Mosaic Pl	2013845	0.17	Sep-15	\$145,000	2007	2,280	\$63.60
5904 Minden Dr	2012912	0.16	May-16	\$130,000	2004	2,252	\$57.73
5910 Mosaic Pl	2000178	0.15	Aug-16	\$146,000	2009	2,360	\$61.86
5723 Minden Dr	2012866	0.26	Nov-16	\$139,900	2005	2,492	\$56.14

| TAX ID | Date Sold | Adjustments | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total | Time | \$/Sf | | |
| 2013249 | $12 / 9 / 2015$ | $\$ 5,600$ | $\$ 145,600$ | $\$ 60.36$ |
| 2013251 | $9 / 6 / 2017$ | | $\$ 160,000$ | $\$ 66.33$ |
| 2013252 | $5 / 10 / 2017$ | | $\$ 147,000$ | $\$ 72.49$ |
| 2013258 | $12 / 9 / 2015$ | $\$ 5,270$ | $\$ 137,020$ | $\$ 62.57$ |
| 2013260 | $3 / 4 / 2015$ | $\$ 5,080$ | $\$ 132,080$ | $\$ 63.50$ |
| 2013261 | $2 / 3 / 2014$ | $\$ 7,200$ | $\$ 127,200$ | $\$ 59.55$ |
| 2013277 | $6 / 1 / 2016$ | $\$ 2,820$ | $\$ 143,820$ | $\$ 63.08$ |
| 2013845 | $9 / 1 / 2015$ | $\$ 5,800$ | $\$ 150,800$ | $\$ 66.14$ |
| 2012912 | $5 / 1 / 2016$ | $\$ 2,600$ | $\$ 132,600$ | $\$ 58.88$ |
| 2000178 | $8 / 1 / 2016$ | $\$ 2,920$ | $\$ 148,920$ | $\$ 63.10$ |
| 2012866 | $11 / 1 / 2016$ | $\$ 2,798$ | $\$ 142,698$ | $\$ 57.26$ |

2\% adjustment/year
Adjusted to 2017

| | Adjoins Solar Farm | | | Not Adjoin Solar Farm | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Average | Median | | Average | Median |
| | $\$ 64.13$ | $\$ 63.03$ | | $\$ 61.69$ | $\$ 63.08$ |
| Sales Price/SF | 2,210 | 2,163 | | 2,333 | 2,280 |

This set of homes provides very strong indication of no impact due to the adjacency to the solar farm and includes a large selection of homes both adjoining and not adjoining in the analysis.

The landscaping screen is considered light in relation to the homes considered above.
6. Matched Pair - Clarke County Solar, Clarke County, VA

This project is a 20 MW facility located on a 234-acre tract that was built in 2017.

I have considered a recent sale or Parcel 3. The home on this parcel is 1,230 feet from the closest panel as measured in the second map from Google Earth, which shows the solar farm under construction.

I've compared this home sale to a number of similar rural homes on similar parcels as shown below. I have used multiple sales that bracket the subject property in terms of sale date, year built, gross living area, bedrooms and bathrooms. Bracketing the parameters insures that all factors are well balanced out in the adjustments. The trend for these sales shows a positive value for the adjacency to the solar farm.

Adjoining Residential Sales After Solar Farm Approved											
Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other
Adjoins	833 Nations Spr	5.13	1/9/2017	\$295,000	1979	1,392	\$211.93	3/2	Det Gar	Ranch	Unfin bsmt
Not	85 Ashby	5.09	9/11/2017	\$315,000	1982	2,333	\$135.02	3/2	2 Gar	Ranch	
Not	541 Old Kitchen	5.07	9/9/2018	\$370,000	1986	3,157	\$117.20	4/4	2 Gar	2 story	
Not	4174 Rockland	5.06	1/2/2017	\$300,000	1990	1,688	\$177.73	3/2	3 Gar	2 story	
Not	400 Sugar Hill	1.00	6/7/2018	\$180,000	1975	1,008	\$178.57	3/1	Drive	Ranch	

Adjoining	sidential Sales	Sol	m Approv		Adjoining	Sales Ad	usted						
Solar	Address	Acres	Date Sold	Sales Price	Time	Acres	YB	GLA	BR/BA	Park	Other	Total	\% Diff
Adjoins	833 Nations Spr	5.13	1/9/2017	\$295,000								\$295,000	
Not	85 Ashby	5.09	9/11/2017	\$315,000	-\$6,300		-\$6,615	-\$38,116		-\$7,000	\$15,000	\$271,969	8\%
Not	541 Old Kitchen	5.07	9/9/2018	\$370,000	-\$18,500		-\$18,130	-\$62,057		-\$7,000	\$15,000	\$279,313	5\%
Not	4174 Rockland	5.06	1/2/2017	\$300,000			-\$23,100	-\$15,782		-\$12,000	\$15,000	\$264,118	10\%
Not	400 Sugar Hill	1.00	6/7/2018	\$180,000	-\$9,000	\$43,000	\$5,040	\$20,571	\$10,000	\$3,000	\$15,000	\$267,611	9\%
												Average	8\%

The landscaping screen is primarily a newly planted buffer with a row of existing trees being maintained near the northern boundary and considered light.
7. Matched Pair - Walker-Correctional Solar, Barham Road, Barhamsville, VA

This project was built in 2017 and located on 484.65 acres for a 20 MW with the closest home at 110 feet from the closest solar panel with an average distance of 500 feet.

I considered the recent sale identified on the map above as Parcel 19, which is directly across the street and based on the map shown on the following page is 250 feet from the closest panel. A limited buffering remains along the road with natural growth being encouraged, but currently the panels are visible from the road. Alex Uminski, SRA with MGMiller Valuations in Richmond VA
confirmed this sale with the buying and selling broker. The selling broker indicated that the solar farm was not a negative influence on this sale and in fact the buyer noticed the solar farm and then discovered the listing. The privacy being afforded by the solar farm was considered a benefit by the buyer. I used a matched pair analysis with a similar sale nearby as shown below and found no negative impact on the sales price. Property actually closed for more than the asking price. The landscaping buffer is considered light.

I also spoke with Patrick W. McCrerey of Virginia Estates who was marketing a property that sold at 5300 Barham Road adjoining the Walker-Correctional Solar Farm. He indicated that this property was unique with a home built in 1882 and heavily renovated and updated on 16.02 acres. The solar farm was through the woods and couldn't be seen by this property and it had no impact on marketing this property. This home sold on April 26,2017 for $\$ 358,000$. I did not set up any matched pairs for this property as it was such a unique property that any such comparison would be difficult to rely on. The broker's comments do support the assertion that the adjoining solar farm had no impact on value. The home in this case was 510 feet from the closest panel.
8. Matched Pair - Sappony Solar, Sussex County, VA

This project is a 30 MW facility located on a 322.68 -acre tract that was built in the fourth quarter of 2017.

I have considered the 2018 sale of Parcel 17 as shown below. From Parcel 17 the retained trees and setbacks are a light to medium landscaped buffer.

9. Matched Pair - Spotsylvania Solar, Paytes, VA

This solar farm is being built in four phases with the area known as Site C having completed construction in November 2020 after the entire project was approved in April 2019. Site C, also known as Pleinmont 1 Solar, includes 99.6 MW located in the southeast corner of the project and shown on the maps above with adjoining parcels 111 through 144. The entire Spotsylvania project totals 617 MW on 3500 acres out of a parent tract assemblage of 6,412 acres.

I have identified three adjoining home sales that occurred during construction and development of the site in 2020.

The first is located on the north side of Site A on Orange Plank Road. The second is located on Nottoway Lane just north of Caparthin Road on the south side of Site A and east of Site C. The third is located on Post Oak Road for a home that backs up to Site C that sold in September 2020 near the completion of construction for Site C.

Spotsylvania Solar Farm

| Solar | Address | Acres | Date Sold | Sales Price | Built | GBA | \$/GBA | BR/BA | Park | Style | Other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Adjoins | 12901 Orng Plnk | 5.20 | $8 / 27 / 2020$ | $\$ 319,900$ | 1984 | 1,714 | $\$ 186.64$ | $3 / 2$ | Drive | 1.5 | Un Bsmt |
| Not | 8353 Gold Dale | 3.00 | $1 / 27 / 2021$ | $\$ 415,000$ | 2004 | 2,064 | $\$ 201.07$ | $3 / 2$ | 3 Gar | Ranch | |
| Not | 6488 Southfork | 7.26 | $9 / 9 / 2020$ | $\$ 375,000$ | 2017 | 1,680 | $\$ 223.21$ | $3 / 2$ | 2 Gar | 1.5 | Barn/Patio |
| Not | 12717 Flintlock | 0.47 | $12 / 2 / 2020$ | $\$ 290,000$ | 1990 | 1,592 | $\$ 182.16$ | $3 / 2.5$ | Det Gar | Ranch | |

Adjoining Sales Adjusted										
Address	Time	Ac/Loc	YB	GLA	BR/BA	Park	Other	Total	\% Diff	Dist
12901 Orng Plnk								\$319,900		1270
8353 Gold Dale	-\$5,219	\$20,000	-\$41,500	-\$56,298		-\$20,000		\$311,983	2\%	
6488 Southfork	-\$401	-\$20,000	-\$61,875	\$6,071		-\$15,000		\$283,796	11\%	
12717 Flintlock	-\$2,312	\$40,000	-\$8,700	\$17,779	-\$5,000	-\$5,000		\$326,767	-2\%	
Average Diff 4\%										

I contacted Keith Snider to confirm this sale. This is considered to have a medium landscaping screen.

Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other
Adjoins	9641 Nottoway	11.00	$5 / 12 / 2020$	$\$ 449,900$	2004	3,186	$\$ 141.21$	$4 / 2.5$	Garage	2-Story	Un Bsmt
Not	26123 Lafayette	1.00	$8 / 3 / 2020$	$\$ 390,000$	2006	3,142	$\$ 124.12$	$3 / 3.5$	Gar/DtG	2-Story	
Not	11626 Forest	5.00	$8 / 10 / 2020$	$\$ 489,900$	2017	3,350	$\$ 146.24$	$4 / 3.5$	2 Gar	2-Story	
Not	10304 Pny Brnch	6.00	$7 / 27 / 2020$	$\$ 485,000$	1998	3,076	$\$ 157.67$	$4 / 4$	2Gar/Dt2 Ranch	Fn Bsmt	

| Adjoining Sales Adjusted
 Address | Time | Ac/Loc | YB | GLA | BR/BA | Park | Other | Total | \% Diff |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Dist | Tish |
| :---: |
| 9641 Nottoway |

```
Average Diff 2%
```

I contacted Annette Roberts with ReMax about this transaction. This is considered to have a medium landscaping screen.

Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other
Adjoins	13353 Post Oak	5.20	$9 / 21 / 2020$	$\$ 300,000$	1992	2,400	$\$ 125.00$	$4 / 3$	Drive	2-Story	Fn Bsmt
Not	9609 Logan Hgt	5.86	$7 / 4 / 2019$	$\$ 330,000$	2004	2,352	$\$ 140.31$	$3 / 2$	2Gar	2-Story	
Not	12810 Catharpian	6.18	$1 / 30 / 2020$	$\$ 280,000$	2008	2,240	$\$ 125.00$	$4 / 2.5$	Drive	2-Story Bsmt/Nd Pnt	
Not	10725 Rbrt Lee	5.01	$10 / 26 / 2020$	$\$ 295,000$	1995	2,166	$\$ 136.20$	$4 / 3$	Gar	2-Story	Fn Bsmt

Adjoining Sales Adjusted Address Time	Ac/Loc	YB	GLA	BR/BA	Park	Other	Total	\% Diff	Dist
13353 Post Oak								$\$ 300,000$	
9609 Logan Hgt	$\$ 12,070$		$-\$ 19,800$	$\$ 5,388$		$-\$ 15,000$	$\$ 15,000$	$\$ 327,658$	-9%
12810 Catharpian	$\$ 5,408$	$-\$ 849$	$-\$ 22,400$	$\$ 16,000$	$\$ 5,000$		$\$ 15,000$	$\$ 299,008$	0%
10725 Rbrt Lee	$-\$ 4,425$	$\$ 25,496$		$-\$ 10,000$	$\$ 305,222$	-2%			

I contacted Joy Pearson with CTI Real Estate about this transaction. This is considered to have a heavy landscaping screen.

All three of these homes are well set back from the solar panels at distances over 1,000 feet and are well screened from the project. All three show no indication of any impact on property value.

Conclusion

The solar farm matched pairs shown above have similar characteristics to each other in terms of population, but with several outliers showing solar farms in far more urban areas. The median income for the population within 1 mile of a solar farm among this subset of matched pairs is $\$ 65,695$ with a median housing unit value of $\$ 186,463$. Most of the comparables are under $\$ 300,000$ in the home price, with $\$ 483,333$ being the high end of the set, though I have matched pairs in other states over $\$ 1,000,000$ in price adjoining large solar farms. The predominate adjoining uses are residential and agricultural. These figures are in line with the larger set of solar farms that I have looked at with the predominant adjoining uses being residential and agricultural and similar to the solar farm breakdown shown for Kentucky and adjoining states as well as the proposed subject property.

Based on the similarity of adjoining uses and demographic data between these sites and the subject property, I consider it reasonable to compare these sites to the subject property.

Matched Pair Summary

	Name	City
$\mathbf{1}$	Crittenden	Crittenden
$\mathbf{2}$	Mulberry	Selmer
$\mathbf{3}$	Grand Ridge	Streator
$\mathbf{4}$	Portage	Portage
$\mathbf{5}$	Dominion	Indianapolis
$\mathbf{6}$	Walker	Barhamsville
$\mathbf{7}$	Clarke Cnty	White Post
$\mathbf{8}$	Sappony	Stony Crk
$\mathbf{9}$	Spotyslvania	Paytes
	Average	
	Median	
	High	
	Low	

Adj. Uses By Acreage

Adj. Uses By Acreage					
	Topo				
	Shift	Res	Ag	Ag/Res Com/Ind	
	40	22%	51%	27%	0%
0	60	13%	73%	10%	3%
0	1	8%	87%	5%	0%
0	0	19%	81%	0%	0%
0	20	3%	97%	0%	0%
0	N/A	12%	68%	20%	0%
0	70	14%	39%	46%	1%
0	N/A	2%	98%	0%	0%
0	160	37%	52%	11%	0%
8	50	14%	72%	13%	0%
0	40	13%	73%	10%	0%
00	160	37%	98%	46%	3%
0	0	2%	39%	0%	0%

1 mile Radius (2010-2020 Data)

Popl.	Med. Income	Avg. Housing Unit	Veg. Buffer 1,419
$\$ 60,198$	$\$ 178,643$	Light	
467	$\$ 40,936$	$\$ 171,746$	Lt to Med
96	$\$ 70,158$	$\$ 187,037$	Light
6,642	$\$ 65,695$	$\$ 186,463$	Light
3,774	$\$ 61,115$	$\$ 167,515$	Light
203	$\$ 80,773$	$\$ 320,076$	Light
578	$\$ 81,022$	$\$ 374,453$	Light
74	$\$ 51,410$	$\$ 155,208$	Medium
74	$\$ 120,861$	$\$ 483,333$	Med to Hvy
1,481	$\$ 70,241$	$\$ 247,164$	
467	$\$ 65,695$	$\$ 186,463$	
6,642	$\$ 120,861$	$\$ 483,333$	
74	$\$ 40,936$	$\$ 155,208$	

Proposed Solar Farm at a 1-mile radius has 110 people with an average income of $\$ 59,840$ and an average home price of $\$ 230,000$.

Proposed Solar Farm at a 3-mile radius has 1,088 people with an average income of \$54,492 and an average home price of $\$ 230,345$.

These are very similar to the demographics shown around these comparable solar farms.
On the following page is a summary of the matched pairs for all of the solar farms noted above. They show a pattern of results from -7% to $+7 \%$. As can be seen in the chart of those results below, most of the data points are between -2% and $+5 \%$. This variability is common with real estate and consistent with market "static." I therefore conclude that these results strongly support an indication of no impact on property value due to the adjacent solar farm.

Residential Dwe	g Match	irs Ad	ning	ar Far					
Pair Solar Farm	City	State	M W	Approx Distance	Tax ID/Address	Date	Sale Price	Adj. Sale Price	Veg. \% Diff Buffer
1 Crittenden	Crittenden	KY	2.7	373	250 Claiborne	Jan-19	\$120,000		Light
					315 N Fork	May-19	\$107,000	\$120,889	-1\%
2 Crittenden	Crittenden	KY	2.7	488	300 Claiborne	Sep-18	\$213,000		Light
					1795 Bay Valley	Dec-17	\$231,200	\$228,180	-7\%
3 Crittenden	Crittenden	KY	2.7	720	350 Claiborne	Jul-18	\$245,000		Light
					2160 Sherman	Jun-19	\$265,000	\$248,225	-1\%
4 Crittenden	Crittenden	KY	2.7	930	370 Claiborne	Aug-19	\$273,000		Light
					125 Lexington	Apr-18	\$240,000	\$254,751	7\%
5 Mulberry	Selmer	TN	5	400	0900A011	Jul-14	\$130,000		Light
					099CA043	Feb-15	\$148,900	\$136,988	-5\%
6 Mulberry	Selmer	TN	5	400	099CA002	Jul-15	\$130,000		Light
					0990NA040	Mar-15	\$120,000	\$121,200	7\%
7 Mulberry	Selmer	TN	5	480	491 Dusty	Oct-16	\$176,000		Light
					53 April	Aug-16	\$185,000	\$178,283	-1\%
8 Mulberry	Selmer	TN	5	650	297 Country	Sep-16	\$150,000		Medium
					53 Glen	Mar-17	\$126,000	\$144,460	4\%
9 Mulberry	Selmer	TN	5	685	57 Cooper	Feb-19	\$163,000		Medium
					191 Amelia	Aug-18	\$132,000	\$155,947	4\%
10 Grand Ridge	Streator	IL	20	480	1497 E 21st	Oct-16	\$186,000		Light
					712 Columbus	Jun-16	\$166,000	\$184,000	1\%
11 Dominion	Indianapolis	IN	8.6	400	2013249 (Tax ID)	Dec-15	\$140,000		Light
					5723 Minden	Nov-16	\$139,900	\$132,700	5\%
12 Dominion	Indianapolis	IN	8.6	400	2013251 (Tax ID)	Sep-17	\$160,000		Light
					5910 Mosaic	Aug-16	\$146,000	\$152,190	5\%
13 Dominion	Indianapolis	IN	8.6	400	2013252 (Tax ID)	May-17	\$147,000		Light
					5836 Sable	Jun-16	\$141,000	\$136,165	7\%
14 Dominion	Indianapolis	IN	8.6	400	2013258 (Tax ID)	Dec-15	\$131,750		Light
					5904 Minden	May-16	\$130,000	\$134,068	-2\%
15 Dominion	Indianapolis	IN	8.6	400	2013260 (Tax ID)	Mar-15	\$127,000		Light
					5904 Minden	May-16	\$130,000	\$128,957	-2\%
16 Dominion	Indianapolis	IN	8.6	400	2013261 (Tax ID)	Feb-14	\$120,000		Light
					5904 Minden	May-16	\$130,000	\$121,930	-2\%
17 Clarke Cnty	White Post	VA	20	1230	833 Nations Spr	Jan-17	\$295,000		Light
					6801 Middle	Dec-17	\$249,999	\$296,157	0\%
18 Walker	Barhamsville	VA	20	250	5241 Barham	Oct-18	\$264,000		Light
					9252 Ordinary	Jun-19	\$277,000	\$246,581	7\%
19 Clarke Cnty	White Post	VA	20	1230	833 Nations Spr	Aug-19	\$385,000		Light
					2393 Old Chapel	Aug-20	\$330,000	\$389,286	-1\%
20 Sappony	Stony Creek	VA	20	1425	12511 Palestine	Jul-18	\$128,400		Medium
					6494 Rocky Branch	Nov-18	\$100,000	\$131,842	-3\%
21 Spotsylvania	Paytes	VA	617	1270	12901 Orange Plnk	Aug-20	\$319,900		Medium
					12717 Flintlock	Dec-20	\$290,000	\$326,767	-2\%
22 Spotsylvania	Paytes	VA	617	1950	9641 Nottoway	May-20	\$449,900		Medium
					11626 Forest	Aug-20	\$489,900	\$430,246	4\%
23 Spotsylvania	Paytes	VA	617	1171	13353 Post Oak	Sep-20	\$300,000		Heavy
					12810 Catharpin	Jan-20	\$280,000	\$299,008	0\%

	Avg.
MW	Distance
106.72	738
8.60	480
617.00	1,950
5.00	250

	Indicated Impact
Average	1%
Median	0%
High	7%
Low	-5%

I have further broken down these results based on the MWs, Landscaping, and distance from panel to show the following range of findings for these different categories.

This breakdown shows no homes between 100-200 homes. Solar farms up to 75 MW show homes between 201 and 500 feet with no impact on value. Most of the findings are for homes between 201 and 500 feet.

Light landscaping screens are showing no impact on value at any distances, though solar farms over 75.1 MW only show Medium and Heavy landscaping screens in the 3 examples identified. Light landscaping is 20 -foot wide or less landscaping and is often a planted mix by the solar farm developer. Medium landscaping is 20 to 100 feet of landscaped buffer and is generally a retained existing wooded area. Heavy landscaping is over 100 feet of wooded buffer.

MW Range 4.4 to 10									
Landscaping	Light	Light	Light	Medium	Medium	Medium	Heavy	Heavy	
Distance	100-200	201-500	500+	100-200	201-500	500+	100-200	201-500	500+
\#	0	11	2	0	0	2	0	0	0
Average	N/A	1\%	N/A	N/A	N/A	4\%	N/A	N/A	N/A
Median	N/A	-1\%	N/A	N/A	N/A	4\%	N/A	N/A	N/A
High	N/A	7\%	N/A	N/A	N/A	4\%	N/A	N/A	N/A
Low	N/A	-5\%	N/A	N/A	N/A	4\%	N/A	N/A	N/A

Landscaping Distance	$\begin{gathered} \text { Light } \\ \text { 100-200 } \end{gathered}$	$\begin{gathered} \text { Light } \\ \text { 201-500 } \end{gathered}$	Light 500+	$\begin{aligned} & \text { M edium } \\ & 100-200 \end{aligned}$	$\begin{aligned} & \text { Medium } \\ & 201-500 \end{aligned}$	$\begin{gathered} \text { Medium } \\ 500+ \end{gathered}$	$\begin{gathered} \text { Heavy } \\ \text { 100-200 } \end{gathered}$	$\begin{gathered} \text { Heavy } \\ 201-500 \end{gathered}$	Heavy 500+
\#	0	2	2	0	0	1	0	0	0
Average	N/A	4\%	-1\%	N/A	N/A	-3\%	N/A	N/A	N/A
Median	N/A	4\%	-1\%	N/A	N/A	-3\%	N/A	N/A	N/A
High	N/A	7\%	0\%	N/A	N/A	-3\%	N/A	N/A	N/A
Low	N/A	1\%	-1\%	N/A	N/A	-3\%	N/A	N/A	N/A

Landscaping Distance	$\begin{gathered} \text { Light } \\ \text { 100-200 } \end{gathered}$	$\begin{gathered} \text { Light } \\ 201-500 \end{gathered}$	Light 500+	$\begin{aligned} & \text { M edium } \\ & 100-200 \end{aligned}$	$\begin{aligned} & \text { Medium } \\ & 201-500 \end{aligned}$	Medium 500+	$\begin{gathered} \text { Heavy } \\ \text { 100-200 } \end{gathered}$	$\begin{gathered} \text { Heavy } \\ 201-500 \end{gathered}$	Heavy 500+
\#	0	0	0	0	0	0	0	0	0
Average	N/A	1\%	0\%	N/A	N/A	0\%	N/A	N/A	N/A
Median	N/A	1\%	0\%	N/A	N/A	0\%	N/A	N/A	N/A
High	N/A	2\%	2\%	N/A	N/A	9\%	N/A	N/A	N/A
Low	N/A	1\%	-2\%	N/A	N/A	-7\%	N/A	N/A	N/A

Landscaping Distance	$\begin{gathered} \text { Light } \\ \text { 100-200 } \end{gathered}$	$\begin{gathered} \text { Light } \\ \text { 201-500 } \end{gathered}$	Light 500+	$\begin{aligned} & \text { Medium } \\ & 100-200 \end{aligned}$	$\begin{aligned} & \text { Medium } \\ & 201-500 \end{aligned}$	$\begin{gathered} \text { Medium } \\ 500+ \end{gathered}$	$\begin{gathered} \text { Heavy } \\ \text { 100-200 } \end{gathered}$	$\begin{gathered} \text { Heavy } \\ 201-500 \end{gathered}$	Heavy 500+
\#	0	0	0	0	0	2	0	0	1
Average	N/A	N/A	N/A	N/A	N/A	1\%	N/A	N/A	0\%
Median	N/A	N/A	N/A	N/A	N/A	1\%	N/A	N/A	0\%
High	N/A	N/A	N/A	N/A	N/A	4\%	N/A	N/A	0\%
Low	N/A	N/A	N/A	N/A	N/A	-2\%	N/A	N/A	0\%

B. Southeastern USA Data - Over 5 MW
 1. Matched Pair - AM Best Solar Farm, Goldsboro, NC

This 5 MW solar farm adjoins Spring Garden Subdivision which had new homes and lots available for new construction during the approval and construction of the solar farm. The recent home sales have ranged from $\$ 200,000$ to $\$ 250,000$. This subdivision sold out the last homes in late 2014. The solar farm is clearly visible particularly along the north end of this street where there is only a thin line of trees separating the solar farm from the single-family homes.

Homes backing up to the solar farm are selling at the same price for the same floor plan as the homes that do not back up to the solar farm in this subdivision. According to the builder, the solar farm has been a complete non-factor. Not only do the sales show no difference in the price paid for the various homes adjoining the solar farm versus not adjoining the solar farm, but there are actually more recent sales along the solar farm than not. There is no impact on the sellout rate, or time to sell for the homes adjoining the solar farm.

I spoke with a number of owners who adjoin the solar farm and none of them expressed any concern over the solar farm impacting their property value.

The data presented on the following page shows multiple homes that have sold in 2013 and 2014
 adjoining the solar farm at prices similar to those not along the solar farm. These series of sales indicate that the solar farm has no impact on the adjoining residential use.

The homes that were marketed at Spring Garden are shown below.

The homes adjoining the solar farm are considered to have a light landscaping screen as it is a narrow row of existing pine trees supplemented with evergreen plantings.

Matched Pairs
As of Date: $\quad 9 / 3 / 2014$

Adjoining Sales After Solar Farm Completed								
TAX ID	Owner	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA Style	
3600195570	Helm	0.76	Sep-13	$\$ 250,000$	2013	3,292	$\$ 75.94$	2 Story
3600195361	Leak	1.49	Sep-13	$\$ 260,000$	2013	3,652	$\$ 71.19$	2 Story
3600199891	McBrayer	2.24	Jul-14	$\$ 250,000$	2014	3,292	$\$ 75.94$	2 Story
3600198632	Foresman	1.13	Aug-14	$\$ 253,000$	2014	3,400	$\$ 74.41$	2 Story
3600196656	Hinson	0.75	Dec-13	$\$ 255,000$	2013	3,453	$\$ 73.85$	2 Story

Adjoining Sales Before Solar Farm Announced								
TAX ID	Owner	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA Style	
3600183905	Carter	1.57	Dec-12	$\$ 240,000$	2012	3,347	$\$ 71.71$	1.5 Story
3600193097	Kelly	1.61	Sep-12	$\$ 198,000$	2012	2,532	$\$ 78.20$	2 Story
3600194189	Hadwan	1.55	Nov-12	$\$ 240,000$	2012	3,433	$\$ 69.91$	1.5 Story
	Average	1.59		$\$ 219,000$	2012	2,940	$\$ 74.95$	
	Median	1.59		$\$ 219,000$	2012	2,940	$\$ 74.95$	

Nearby Sales After Solar Farm Completed TAX ID	Owner	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA Style	
3600193710	Barnes	1.12	Oct-13	$\$ 248,000$	2013	3,400	$\$ 72.94$	2 Story
3601105180	Nackley	0.95	Dec-13	$\$ 253,000$	2013	3,400	$\$ 74.41$	2 Story
3600192528	Mattheis	1.12	Oct-13	$\$ 238,000$	2013	3,194	$\$ 74.51$	2 Story
3600198928	Beckman	0.93	Mar-14	$\$ 250,000$	2014	3,292	$\$ 75.94$	2 Story
3600196965	Hough	0.81	Jun-14	$\$ 224,000$	2014	2,434	$\$ 92.03$	2 Story
3600193914	Preskitt	0.67	Jun-14	$\$ 242,000$	2014	2,825	$\$ 85.66$	2 Story
3600194813	Bordner	0.91	Apr-14	$\$ 258,000$	2014	3,511	$\$ 73.48$	2 Story
3601104147	Shaffer	0.73	Apr-14	$\$ 255,000$	2014	3,453	$\$ 73.85$	2 Story

Nearby Sales Before Solar Farm Announced								
TAX ID	Owner	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA Style	
3600191437	Thomas	1.12	Sep-12	$\$ 225,000$	2012	3,276	$\$ 68.68$	2 Story
3600087968	Lilley	1.15	Jan -13	$\$ 238,000$	2012	3,421	$\$ 69.57$	1.5 Story
3600087654	Burke	1.26	Sep-12	$\$ 240,000$	2012	3,543	$\$ 67.74$	2 Story
3600088796	Hobbs	0.73	Sep-12	$\$ 228,000$	2012	3,254	$\$ 70.07$	2 Story
	Average	1.07		$\$ 232,750$	2012	3,374	$\$ 69.01$	
	Median	1.14		$\$ 233,000$	2012	3,349	$\$ 69.13$	

Matched Pair Summary

	Adjoins Solar Farm		Nearby Solar Farm	
	Average	Median	Average	Median
Sales Price	$\$ 253,600$	$\$ 253,000$	$\$ 246,000$	$\$ 249,000$
Year Built	2013	2013	2014	2014
Size	3,418	3,400	3,189	3,346
				$\$ 77.85$
Price $/$ SF	$\$ 74.27$	$\$ 74.41$	$\$ 74.46$	

Percentage Differences	
Median Price	-2%
Median Size	-2%
Median Price/SF	0%

I note that 2308 Granville Drive sold again in November 2015 for $\$ 267,500$, or $\$ 7,500$ more than when it was purchased new from the builder two years earlier (Tax ID 3600195361, Owner: Leak). The neighborhood is clearly showing appreciation for homes adjoining the solar farm.

The Median Price is the best indicator to follow in any analysis as it avoids outlying samples that would otherwise skew the results. The median sizes and median prices are all consistent throughout the sales both before and after the solar farm whether you look at sites adjoining or nearby to the solar farm. The average size for the homes nearby the solar farm shows a smaller building size and a higher price per square foot. This reflects a common occurrence in real estate where the price per square foot goes up as the size goes down. So even comparing averages the indication is for no impact, but I rely on the median rates as the most reliable indication for any such analysis.

I have also considered four more recent resales of homes in this community as shown on the following page. These comparable sales adjoin the solar farm at distances ranging from 315 to 400 feet. The matched pairs show a range from -9% to $+6 \%$. The range of the average difference is -2% to $+1 \%$ with an average of 0% and a median of $+0.5 \%$. These comparable sales support a finding of no impact on property value.

Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other	Distance
	Adjoins	103 Granville Pl	1.42	7/27/2018	\$265,000	2013	3,292	\$80.50	4/3.5	2-Car	2-Story		385
	Not	2219 Granville	1.15	1/8/2018	\$260,000	2012	3,292	\$78.98	4/3.5	2-Car	2-Story		
	Not	634 Friendly	0.96	7/31/2019	\$267,000	2018	3,053	\$87.45	4/4.5	2-Car	2-Story		
	Not	2403 Granville	0.69	4/23/2019	\$265,000	2014	2,816	\$94.11	5/3.5	2 -Car	2-Story		
	Solar	Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	$\begin{gathered} \text { Avg } \\ \text { \% Diff } \end{gathered}$	
	Adjoins	103 Granville Pl								\$265,000		-2\%	
	Not	2219 Granville	\$4,382		\$1,300	\$0				\$265,682	0\%		
	Not	634 Friendly	-\$8,303		-\$6,675	\$16,721	-\$10,000			\$258,744	2\%		
	Not	2403 Granville	-\$6,029		-\$1,325	\$31,356				\$289,001	-9\%		

Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other	Distance
	Adjoins	104 Erin	2.24	6/19/2017	\$280,000	2014	3,549	\$78.90	5/3.5	2-Car	2-Story		315
	Not	2219 Granville	1.15	1/8/2018	\$260,000	2012	3,292	\$78.98	4/3.5	2-Car	2-Story		
	Not	634 Friendly	0.96	7/31/2019	\$267,000	2018	3,053	\$87.45	4/4.5	2-Car	2-Story		
	Not	2403 Granville	0.69	4/23/2019	\$265,000	2014	2,816	\$94.11	5/3.5	2 -Car	2-Story		
												Avg	
	Solar	Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff	
	Adjoins	104 Erin								\$280,000		0\%	
	Not	2219 Granville	-\$4,448		\$2,600	\$16,238				\$274,390	2\%		
	Not	634 Friendly	-\$17,370		-\$5,340	\$34,702	-\$10,000			\$268,992	4\%		
	Not	2403 Granville	-\$15,029		\$0	\$48,285				\$298,256	-7\%		

Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other	Distance
	Adjoins	2312 Granville	0.75	5/1/2018	\$284,900	2013	3,453	\$82.51	5/3.5	2-Car	2-Story		400
	Not	2219 Granville	1.15	1/8/2018	\$260,000	2012	3,292	\$78.98	4/3.5	2-Car	2-Story		
	Not	634 Friendly	0.96	7/31/2019	\$267,000	2018	3,053	\$87.45	4/4.5	2-Car	2-Story		
	Not	2403 Granville	0.69	4/23/2019	\$265,000	2014	2,816	\$94.11	5/3.5	2-Car	2-Story		
												Avg	
	Solar	Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff	
	Adjoins	2312 Granville								\$284,900		1\%	
	Not	2219 Granville	\$2,476		\$1,300	\$10,173				\$273,948	4\%		
	Not	634 Friendly	-\$10,260		-\$6,675	\$27,986	-\$10,000			\$268,051	6\%		
	Not	2403 Granville	-\$7,972		-\$1,325	\$47,956				\$303,659	-7\%		

Adjoining Residential Sales After Solar Farm Approved													
Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other	Distance
	Adjoins	2310 Granville	0.76	5/14/2019	\$280,000	2013	3,292	\$85.05	5/3.5	2-Car	2-Story		400
	Not	2219 Granville	1.15	1/8/2018	\$260,000	2012	3,292	\$78.98	4/3.5	2-Car	2-Story		
	Not	634 Friendly	0.96	7/31/2019	\$267,000	2018	3,053	\$87.45	4/4.5	2-Car	2-Story		
	Not	2403 Granville	0.69	4/23/2019	\$265,000	2014	2,816	\$94.11	5/3.5	2-Car	2-Story		
												Avg	
	Solar	Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff	
	Adjoins	2310 Granville								\$280,000		1\%	
	Not	2219 Granville	\$10,758		\$1,300	\$0				\$272,058	3\%		
	Not	634 Friendly	-\$1,755		-\$6,675	\$16,721	-\$10,000			\$265,291	5\%		
	Not	2403 Granville	\$469		-\$1,325	\$31,356				\$295,500	-6\%		

I have also considered the original sales prices in this subdivision relative to the recent resale values as shown in the chart below. This rate of appreciation is right at 2.5% over the last 6 years. Zillow indicates that the average home value within the 27530 zip code as of January 2014 was \$101,300 and as of January 2020 that average is $\$ 118,100$. This indicates an average increase in the market of 2.37%. I conclude that the appreciation of the homes adjoining the solar farm are not impacted by the presence of the solar farm based on this data.

Address	Initial Sale		Second Sale		Year		\%	Apprec. \%/Year
	Date	Price	Date	Price	Diff	Apprec.	Apprec.	
1103 Granville PI	4/1/2013	\$245,000	7/27/2018	\$265,000	5.32	\$20,000	8.16\%	1.53\%
2105 Erin	7/1/2014	\$250,000	6/19/2017	\$280,000	2.97	\$30,000	12.00\%	4.04\%
32312 Granville	12/1/2013	\$255,000	5/1/2015	\$262,000	1.41	\$7,000	2.75\%	1.94\%
42312 Granville	5/1/2015	\$262,000	5/1/2018	\$284,900	3.00	\$22,900	8.74\%	2.91\%
52310 Granville	8/1/2013	\$250,000	5/14/2019	\$280,000	5.79	\$30,000	12.00\%	2.07\%
62308 Granville	9/1/2013	\$260,000	11/12/2015	\$267,500	2.20	\$7,500	2.88\%	1.31\%
72304 Granville	9/1/2012	\$198,000	6/1/2017	\$225,000	4.75	\$27,000	13.64\%	2.87\%
8102 Erin	8/1/2014	\$253,000	11/1/2016	\$270,000	2.25	\$17,000	6.72\%	2.98\%
							Average	2.46\%
							Median	2.47\%

2. Matched Pair - Mulberry, Selmer, TN

This 16 MW solar farm was built in 2014 on 208.89 acres with the closest home being 480 feet.
This solar farm adjoins two subdivisions with Central Hills having a mix of existing and new construction homes. Lots in this development have been marketed for $\$ 15,000$ each with discounts offered for multiple lots being used for a single home site. I spoke with the agent with Rhonda Wheeler and Becky Hearnsberger with United County Farm \& Home Realty who noted that they have seen no impact on lot or home sales due to the solar farm in this community.

I have included a map below as well as data on recent sales activity on lots that adjoin the solar farm or are near the solar farm in this subdivision both before and after the announced plan for this solar farm facility. I note that using the same method I used to breakdown the adjoining uses at the subject property I show that the predominant adjoining uses are residential and agricultural, which is consistent with the location of most solar farms.

Adjoining Use Breakdown

	Acreage	Parcels
Commercial	3.40%	0.034
Residential	12.84%	79.31%
Agri/Res	10.39%	3.45%
Agricultural	73.37%	13.79%
Total	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{1 0 0 . 0 0 \%}$

I have run a number of direct matched comparisons on the sales adjoining this solar farm as shown below. These direct matched pairs include some of those shown above as well as additional more recent sales in this community. In each of these I have compared the one sale adjoining the solar farm to multiple similar homes nearby that do not adjoin a solar farm to look for any potential impact from the solar farm.

Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other
3	Adjoins	491 Dusty	6.86	$10 / 28 / 2016$	$\$ 176,000$	2009	1,801	$\$ 97.72$	$3 / 2$	2-Gar	Ranch	
	Not	820 Lake Trail	1.00	$6 / 8 / 2018$	$\$ 168,000$	2013	1,869	$\$ 89.89$	$4 / 2$	2-Gar	Ranch	
	Not	262 Country	1.00	$1 / 17 / 2018$	$\$ 145,000$	2000	1,860	$\$ 77.96$	3/2	2-Gar	Ranch	
	Not	35 April	1.15	$8 / 16 / 2016$	$\$ 185,000$	2016	1,980	$\$ 93.43$	3/2	2-Gar	Ranch	

$\begin{aligned} & \text { Parcel } \\ & 3 \end{aligned}$	Adjoining Sales Adjusted						Park	Other	$\begin{gathered} \text { Total } \\ \$ 176,000 \end{gathered}$	\% Diff	$\begin{gathered} \text { Distance } \\ 480 \end{gathered}$
	Solar	Address	Time	Site	YB	GLA					
	Adjoins	491 Dusty									
	Not	820 Lake Trail	-\$8,324	\$12,000	-\$3,360	-\$4,890			\$163,426	7\%	
	Not	262 Country	-\$5,450	\$12,000	\$6,525	-\$3,680			\$154,396	12\%	
	Not	F 35 April	\$1,138	\$12,000	-\$6,475	-\$13,380			\$178,283	-1\%	
									Average	6\%	

The best matched pair is 35 April Loop, which required the least adjustment and indicates a -1% increase in value due to the solar farm adjacency.

Adjoining Residential Sales After Solar Farm Built												
Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other
12	Adjoins	57 Cooper	1.20	2/26/2019	\$163,000	2011	1,586	\$102.77	3/2	2-Gar	1.5 Story	Pool
	Not	191 Amelia	1.00	8/3/2018	\$132,000	2005	1,534	\$86.05	3/2	Drive	Ranch	
	Not	- 75 April	0.85	3/17/2017	\$134,000	2012	1,588	\$84.38	3/2	2-Crprt	Ranch	
	Not	345 Woodland	1.15	12/29/2016	\$131,000	2002	1,410	\$92.91	3/2	1-Gar	Ranch	

Parcel	Solar	Address	Sales Price	Time	Site	YB	GLA	Park	Other	Total	\% Diff	Distance
12	Adjoins	S Cooper	$\$ 163,000$							$\$ 163,000$		685
	Not	19 Amelia	$\$ 132,000$	$\$ 2,303$		$\$ 3,960$	$\$ 2,685$	$\$ 10,000$	$\$ 5,000$	$\$ 155,947$	4%	
	Not	75 April	$\$ 134,000$	$\$ 8,029$	$\$ 4,000$	$-\$ 670$	$-\$ 135$	$\$ 5,000$	$\$ 5,000$	$\$ 155,224$	5%	
	Not	345 Woodland	$\$ 131,000$	$\$ 8,710$		$\$ 5,895$	$\$ 9,811$		$\$ 5,000$	$\$ 160,416$	2%	
										Average	4%	

The best matched pair is 191 Amelia, which was most similar in time frame of sale and indicates a $+4 \%$ increase in value due to the solar farm adjacency.

The best matched pair is 53 Glen, which was most similar in time frame of sale and required less adjustment. It indicates a $+4 \%$ increase in value due to the solar farm adjacency.

The average indicated impact from these three sets of matched pairs is $+4 \%$, which suggests a mild positive relationship due to adjacency to the solar farm. The landscaping buffer for this project is mostly natural tree growth that was retained as part of the development but much of the trees separating the panels from homes are actually on the lots for the homes themselves. I therefore consider the landscaping buffer to be thin to moderate for these adjoining homes.

I have also looked at several lot sales in this subdivision as shown below.
These are all lots within the same community and the highest prices paid are for lots one parcel off from the existing solar farm. These prices are fairly inconsistent, though they do suggest about a $\$ 3,000$ loss in the lots adjoining the solar farm. This is an atypical finding and additional details suggest there is more going on in these sales than the data crunching shows. First of all Parcel 4 was purchased by the owner of the adjoining home and therefore an atypical buyer seeking to expand a lot and the site is not being purchased for home development. Moreover, using the SiteToDoBusiness demographic tools, I found that the 1 -mile radius around this development is expecting a total population increase over the next 5 years of 3 people. This lack of growing demand for lots is largely explained in that context. Furthermore, the fact that finished home sales as shown above are showing no sign of a negative impact on property value makes this data unreliable and inconsistent with the data shown in sales to an end user. I therefore place little weight on this outlier data.
\(\left.\begin{array}{cccccccccc}Parcel \& Solar \& Address \& Acres \& Date Sold \& Sales Price \& 4/18/2019

Adj for Time\end{array}\right)\) \$/AC | 4/18/2019 |
| :---: |
| Adj for Time |

3. Matched Pair - Leonard Road Solar Farm, Hughesville, MD

This 5 MW solar farm is located on 47 acres and mostly adjoins agricultural and residential uses to the west, south and east as shown above. The property also adjoins retail uses and a church. I looked at a 2016 sale of an adjoining home with a positive impact on value adjoining the solar farm of 2.90%. This is within typical market friction and supports an indication of no impact on property value.

I have shown this data below. The landscaping buffer is considered heavy.

Leonardtown Road Solar Farm, Hughesville, MD
Nearby Residential Sale After Solar Farm Construction

Address	Solar Farm	Acres	Date Sold	Sales Price*	Built	GBA	\$/GBA	Style	BR/BA	Bsmt	Park	Upgrades	Other
14595 Box Elder Ct	Adjoins	3.00	2/12/2016	\$291,000	1991	2,174	\$133.85	Colonial	5/2.5	No	2 Car Att	N/A	Deck
15313 Bassford Rd	Not	3.32	7/20/2016	\$329,800	1990	2,520	\$130.87	Colonial	3/2.5	Finished	2 Car Att	Custom	Scr Por/Patio

*\$9,000 concession deducted from sale price for Box Elder and \$10,200 deducted from Bassford

Adjoining Sales Adjusted				Adjustments				Total
Address	Date Sold	Sales Price	Time	GLA	Bsmt	Upgrades	ther	
14595 Box Elder Ct	2/12/2016	\$291,000						$\$ 291,000$
15313 Bassford Rd	7/20/2016	\$329,800	-\$3,400	-\$13,840	-\$10,000	-\$15,000	-\$5,000	\$282,560
				Difference Attributable to Location				\$8,440
								2.90\%

This is within typical market friction and supports an indication of no impact on property value.

This 5 MW project is located on the south side of Neal Hawkins Road just outside of Gastonia. The property identified above as Parcel 4 was listed for sale while this solar farm project was going
through the approval process. The property was put under contract during the permitting process with the permit being approved while the due diligence period was still ongoing. After the permit was approved the property closed with no concerns from the buyer. I spoke with Jennifer Bouvier, the broker listing the property and she indicated that the solar farm had no impact at all on the sales price. She considered some nearby sales to set the price and the closing price was very similar to the asking price within the typical range for the market. The buyer was aware that the solar farm was coming and they had no concerns.

This two-story brick dwelling was sold on March 20, 2017 for $\$ 270,000$ for a 3,437 square foot dwelling built in 1934 in average condition on 1.42 acres. The property has four bedrooms and two bathrooms. The landscaping screen is light for this adjoining home due to it being a new planted landscaping buffer.

I also considered the newer adjoining home identified as Parcel 5 that sold later in 2017 and it likewise shows no negative impact on property value. This is also considered a light landscaping buffer.

Adjoining Residential Sales After Solar Farm Approved										
Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GLA	BR/BA	Park	Style
Adjoins	611 Neal Hawkins	0.78	$7 / 6 / 2017$	$\$ 288,000$	1991	2,256	$\$ 127.66$	$5 / 3$	$2-\mathrm{Gar}$	1.5 Brick
Not	1211 Still Frst	0.51	$7 / 30 / 2018$	$\$ 280,000$	1989	2,249	$\$ 124.50$	$3 / 3$	2-Gar	Br Rnch
Not	2867 Colony Wds	0.52	$8 / 14 / 2018$	$\$ 242,000$	1990	2,006	$\$ 120.64$	3/3	2-Gar	Br Rnch
Not	1010 Strawberry	1.00	$10 / 4 / 2018$	$\$ 315,000$	2002	2,330	$\$ 135.19$	3/2.5	2-Gar	1.5 Brick

Adjoining Sales Adjusted										
Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	Avg \% Diff
Distance										

5. Matched Pair - Summit/Ranchlands Solar, Moyock, NC

This project is located at 1374 Caritoke Highway, Moyock, NC. This is an 80 MW facility on a parent tract of 2,034 acres. Parcels Number 48 and 53 as shown in the map above were sold in 2016 . The project was under construction during the time period of the first of the matched pair sales and the permit was approved well prior to that in 2015.

I looked at multiple sales of adjoining and nearby homes and compared each to multiple comparables to show a range of impacts from -10% up to $+11 \%$ with an average of $+2 \%$ and a median of $+3 \%$. These ranges are well within typical real estate variation and supports an indication of no impact on property value.

Adjoining Residential Sales After Solar Farm Approved													
Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other	Distance
48	Adjoins	129 Pinto	4.29	4/15/2016	\$170,000	1985	1,559	\$109.04	3/2	Drive	MFG		1,060
	Not	102 Timber	1.30	4/1/2016	\$175,500	2009	1,352	\$129.81	3/2	Drive	MFG		
	Not	120 Ranchland	0.99	10/1/2014	\$170,000	2002	1,501	\$113.26	3/2	Drive	MFG		
												Avg	
	Solar	Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff	
	Adjoins	129 Pinto								\$170,000		-3\%	
	Not	102 Timber	\$276	\$10,000	-\$29,484	\$18,809				\$175,101	-3\%		
	Not	120 Ranchland	\$10,735	\$10,000	-\$20,230	\$4,598				\$175,103	-3\%		

Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GLA	BR/BA	Park	Style	Other
Adjoins	105 Pinto	4.99	$12 / 16 / 2016$	$\$ 206,000$	1978	1,484	$\$ 138.81$	$3 / 2$	Det G	Ranch	
Not	111 Spur	1.15	$2 / 1 / 2016$	$\$ 193,000$	1985	2,013	$\$ 95.88$	$4 / 2$	Gar	Ranch	
Not	103 Marshall	1.07	$3 / 29 / 2017$	$\$ 196,000$	2003	1,620	$\$ 120.99$	$3 / 2$	Drive	Ranch	
Not	127 Ranchland	0.00	$6 / 9 / 2015$	$\$ 219,900$	1988	1,910	$\$ 115.13$	$3 / 2$	Gar/3Det	Ranch	

Adjoining Sales Adjusted									Avg		
Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff	Distance
105 Pinto								\$206,000			980
111 Spur	\$6,747	\$10,000	-\$6,755	-\$25,359				\$177,633	14\%		
103 Marshall	-\$2,212	\$10,000	-\$24,500	-\$8,227		\$5,000		\$176,212	14\%		
127 Ranchland	\$13,399	\$10,000	-\$10,995	-\$24,523		-\$10,000		\$197,781	4\%		
										11\%	

Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other	Distance
15	Adjoins	318 Green View	0.44	9/15/2019	\$357,000	2005	3,460	\$103.18	4/4	2-Car	1.5 Brick		570
	Not	195 St Andrews	0.55	6/17/2018	\$314,000	2002	3,561	\$88.18	5/3	2-Car	2.0 Brick		
	Not	336 Green View	0.64	1/13/2019	\$365,000	2006	3,790	\$96.31	6/4	3-Car	2.0 Brick		
	Not	275 Green View	0.36	8/15/2019	\$312,000	2003	3,100	\$100.65	5/3	2 -Car	2.0 Brick		
												Avg	
	Solar	Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff	
	Adjoins	318 Green View								\$357,000		4\%	
	Not	195 St Andrews	\$12,040		\$4,710	-\$7,125	\$10,000			\$333,625	7\%		
	Not	336 Green View	\$7,536		-\$1,825	-\$25,425			-\$5,000	\$340,286	5\%		
	Not	275 Green View	\$815		\$3,120	\$28,986	\$10,000			\$354,921	1\%		

Adjoin	ing Res	ntial Sales Af	olar	m Built									
Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other	Distance
29	Adjoins	164 Ranchland	1.01	4/30/2019	\$169,000	1999	2,052	\$82.36	4/2	Gar	MFG		440
	Not	150 Pinto	0.94	3/27/2018	\$168,000	2017	1,920	\$87.50	4/2	Drive	MFG		
	Not	105 Longhorn	1.90	10/10/2017	\$184,500	2002	1,944	\$94.91	3/2	Drive	MFG		
	Not	112 Pinto	1.00	7/27/2018	\$180,000	2002	1,836	\$98.04	3/2	Drive	MFG	Fenced	
												Avg	
	Solar	Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff	
	Adjoins	164 Ranchland								\$169,000		-10\%	
	Not	150 Pinto	\$5,649		-\$21,168	\$8,085			\$5,000	\$165,566	2\%		
	Not	105 Longhorn	\$8,816	-\$10,000	-\$3,875	\$7,175			\$5,000	\$191,616	-13\%		
	Not	112 Pinto	\$4,202		-\$3,780	\$14,824			\$5,000	\$200,245	-18\%		

Adjoining Residential Sales After Solar Farm Built

Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other	Distance
	Adjoins	358 Oxford	10.03	9/16/2019	\$478,000	2008	2,726	\$175.35	3/3	2 Gar	Ranch		635
	Not	276 Summit	10.01	12/20/2017	\$355,000	2006	1,985	\$178.84	3/2	2 Gar	Ranch		
	Not	176 Providence	6.19	5/6/2019	\$425,000	1990	2,549	\$166.73	3/3	4 Gar	Ranch	Brick	
	Not	1601 B Caratoke	12.20	9/26/2019	\$440,000	2016	3,100	\$141.94	4/3.5	5 Gar	Ranch	Pool	
												Avg	
	Solar	Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff	
	Adjoins	358 Oxford								\$478,000		5\%	
	Not	276 Summit	\$18,996		\$3,550	\$106,017	\$10,000			\$493,564	-3\%		
	Not	176 Providence	\$4,763		\$38,250	\$23,609		-\$10,000	-\$25,000	\$456,623	4\%		
	Not	1601 B Caratoke	-\$371	\$50,000	-\$17,600	-\$42,467	-\$5,000	-\$10,000		\$414,562	13\%		

6. Matched Pair - Tracy Solar, Bailey, NC

This project is located in rural Nash County on Winters Road with a 5 MW facility that was built in 2016 on 50 acres. A local builder acquired parcels 9 and 10 following construction as shown below
at rates comparable to other tracts in the area. They then built a custom home for an owner and sold that at a price similar to other nearby homes as shown in the matched pair data below. The retained woods provide a heavy landscaped buffer for this homesite.

Adjoining Land Sales After Solar Farm Completed											
\#	Solar Farm	TAX ID	Grantor	Grantee	Address	Acres	Date Sold	Sales Price	\$/AC	Other	
9810	Adjoins	316003	Cozart	Kingsmill	9162 Winters	13.22	7/21/2016	\$70,000	\$5,295		
		\& 316004									
	Not	6056			Billingsly	427 Young	41	10/21/2016	\$164,000	\$4,000	
	Not	33211	Fulcher		Weikel	10533 Cone	23.46	7/18/2017	\$137,000	\$5,840	Doublewide, structures
	Not	106807	Perry	Gardner	Claude Lewis	11.22	8/10/2017	\$79,000	\$7,041	Gravel drive for sub, cleared	
	Not	3437	Vaughan	N/A	11354 Old	18.73	Listing	\$79,900	\$4,266	Small cemetery,wooded	
					Lewis Sch						

Adjoining Sales Adjusted
Time Acres Location Other Adj \$/Ac \% Diff
\$5,295

$\$ 0$	$\$ 400$	$\$ 0$	$\$ 0$	$\$ 4,400$	17%
$-\$ 292$	$\$ 292$	$\$ 0$	$-\$ 500$	$\$ 5,340$	-1%
$-\$ 352$	$\$ 0$	$\$ 0$	$-\$ 1,000$	$\$ 5,689$	-7%
$-\$ 213$	$\$ 0$	$\$ 0$	$\$ 213$	$\$ 4,266$	19%

Average 7\%

\#	Solar Farm	n	Address	Acres	Date Sold	Sales Price	Built	GLA	\$/GLA	BR/BA	Style	Other
$9 \% 10$	Adjoins	${ }_{3}$	9162 Winters	13.22	1/5/2017	\$255,000	2016	1,616	\$157.80	3/2	Ranch	1296 sf wrkshp
	Not	N	7352 Red Fox	0.93	6/30/2016	\$176,000	2010	1,529	\$115.11	3/2	2-story	

Adjoining Sales Adjusted							
Time	Acres	YB	GLA	Style	Other	Total	\% Diff
						$\$ 255,000$	
$\$ 0$	$\$ 44,000$	$\$ 7,392$	$\$ 5,007$	$\$ 5,000$	$\$ 15,000$	$\$ 252,399$	1%

The comparables for the land show either a significant positive relationship or a mild negative relationship to having and adjoining solar farm, but when averaged together they show no negative impact. The wild divergence is due to the difficulty in comping out this tract of land and the wide variety of comparables used. The two comparables that show mild negative influences include a property that was partly developed as a residential subdivision and the other included a doublewide with some value and accessory agricultural structures. The tax assessed value on the improvements were valued at $\$ 60,000$. So both of those comparables have some limitations for comparison. The two that show significant enhancement due to adjacency includes a property with a cemetery located in the middle and the other is a tract almost twice as large. Still that larger tract after adjustment provides the best matched pair as it required the least adjustment. I therefore conclude that there is no negative impact due to adjacency to the solar farm shown by this matched pair.

The dwelling that was built on the site was a build-to-suit and was compared to a nearby homesale of a property on a smaller parcel of land. I adjusted for that differenced based on a $\$ 25,000$ value for a 1 -acre home site versus the $\$ 70,000$ purchase price of the larger subject tract. The other adjustments are typical and show no impact due to the adjacency to the solar farm.

The closest solar panel to the home is 780 feet away.
I note that the representative for Kingsmill Homes indicated that the solar farm was never a concern in purchasing the land or selling the home. He also indicated that they had built a number of nearby homes across the street and it had never come up as an issue.

7. Matched Pair - Manatee Solar Farm, Parrish, FL

This solar farm is located near Seminole Trail, Parrish, FL. The solar farm has a 74.50 MW output and is located on a $1,180.38$ acre tract and was built in 2016. The tract is owned by Florida Power \& Light Company.

I have considered the recent sale of 13670 Highland Road, Wimauma, Florida. This one-story, concrete block home is located just north of the solar farm and separated from the solar farm by a railroad corridor. This home is a $3 \mathrm{BR}, 3 \mathrm{BA} 1,512$ s.f. home with a carport and workshop. The property includes new custom cabinets, granite counter tops, brand new stainless steel appliances, updated bathrooms and new carpet in the bedrooms. The home is sitting on 5 acres. The home was built in 1997.

I have compared this sale to several nearby homesales as part of this matched pair analysis as shown below. The landscaping separating the home from the solar farm is considered heavy.

Solar	TAX ID/Address	Acres	Date Sold	Sales Price	Built	GBA	$\$ / \mathbf{G B A}$	BR/BA	Park	Style	Note
Adjoins	13670 Highland	5.00	$8 / 21 / 2017$	$\$ 255,000$	1997	1,512	$\$ 168.65$	$3 / 3$	Carport/Wrkshp	Ranch Renov.	
Not	2901 Arrowsmith	1.91	$1 / 31 / 2018$	$\$ 225,000$	1979	1,636	$\$ 137.53$	$3 / 2$	2 Garage/Wrkshp Ranch		
Not	602 Butch Cassidy	1.00	$5 / 5 / 2017$	$\$ 220,000$	2001	1,560	$\$ 141.03$	$3 / 2$	N/A	Ranch Renov.	
Not	2908 Wild West	1.23	$7 / 12 / 2017$	$\$ 254,000$	2003	1,554	$\$ 163.45$	$3 / 2$	2 Garage/Wrkshp Ranch Renov.		
Not	13851 Highland	5.00	$9 / 13 / 2017$	$\$ 240,000$	1978	1,636	$\$ 146.70$	$4 / 2$	3 Garage	Ranch Renov.	

Adjoining Sales Adjusted										
Solar	TAX ID / Address	Time	Acres	YB	GLA	BR/BA	Park	Note	Total	\% Diff
Adjoins	13670 Highland								\$255,000	
Not	2901 Arrows mith	\$2,250	\$10,000	\$28,350	-\$8,527	\$5,000	-\$10,000	\$10,000	\$262,073	-3\%
Not	602 Butch Cassidy	-\$2,200	\$10,000	-\$6,160	-\$3,385	\$5,000	\$2,000		\$225,255	12\%
Not	2908 Wild West	\$0	\$10,000	-\$10,668	-\$3,432	\$5,000	-\$10,000		\$244,900	4\%
Not	13851 Highland	\$0	\$0	\$31,920	-\$9,095	\$3,000	-\$10,000		\$255,825	0\%
									Average	3\%

The sales prices of the comparables before adjustments range from $\$ 220,000$ to $\$ 254,000$. After adjustments they range from $\$ 225,255$ to $\$ 262,073$. The comparables range from no impact to a strong positive impact. The comparables showing -3% and $+4 \%$ impact on value are considered within a typical range of value and therefore not indicative of any impact on property value.

This set of matched pair data falls in line with the data seen in other states. The closest solar panel to the home at 13670 Highland is 1,180 feet. There is a wooded buffer between these two properties.

I have included a map showing the relative location of these properties below.

8. Matched Pair - McBride Place Solar Farm, Midland, NC

This project is located on Mount Pleasant Road, Midland, North Carolina. The property is on 627 acres on an assemblage of 974.59 acres. The solar farm was approved in early 2017 for a 74.9 MW facility.

I have considered the sale of 4380 Joyner Road which adjoins the proposed solar farm near the northwest section. This property was appraised in April of 2017 for a value of $\$ 317,000$ with no consideration of any impact due to the solar farm in that figure. The property sold in November

2018 for $\$ 325,000$ with the buyer fully aware of the proposed solar farm. The landscaping buffer relative to Joyner Road, Hayden Way, Chanel Court and Kristi Lane is considered medium, while the landscaping for the home at the north end of Chanel Court is considered very light.

Adjoining Residential Sales After Solar Farm Approved											
Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other
Adjoins	4380 Joyner	12.00	11/22/2017	\$325,000	1979	1,598	\$203.38	3/2	2xGar	Ranch	Outbldg
Not	3870 Elkwood	5.50	8/24/2016	\$250,000	1986	1,551	\$161.19	3/2.5	Det 2xGar	Craft	
Not	8121 Lower Rocky	18.00	2/8/2017	\$355,000	1977	1,274	\$278.65	2/2	2 xCarprt	Ranch	Eq. Fac.
Not	13531 Cabarrus	7.89	5/20/2016	\$267,750	1981	2,300	\$116.41	3/2	2xGar	Ranch	

Adjoining Sales Adjusted										
Time	Acres	YB	Condition	GLA	BR/BA	Park	Other	Total	\% Diff	
$\$ 7,500$	$\$ 52,000$	$-\$ 12,250$	$\$ 10,000$	$\$ 2,273$	$-\$ 2,000$	$\$ 2,500$	$\$ 7,500$	$\$ 317,523$	2%	
$\$ 7,100$	$-\$ 48,000$	$\$ 4,970$		$\$ 23,156$	$\$ 0$	$\$ 3,000$	$-\$ 15,000$	$\$ 330,226$	-2%	
$\$ 8,033$	$\$ 33,000$	$-\$ 3,749$	$\$ 20,000$	$-\$ 35,832$	$\$ 0$	$\$ 0$	$\$ 7,500$	$\$ 296,702$	9%	
									Average	3%

The home at 4380 Joyner Road is 275 feet from the closest solar panel.
I also considered the recent sale of a lot at 5800 Kristi Lane that is on the east side of the proposed solar farm. This 4.22-acre lot sold in December 2017 for $\$ 94,000$. A home was built on this lot in 2019 with the closest point from home to panel at 689 feet. The home site is heavily wooded and their remains a wooded buffer between the solar panels and the home. I spoke with the broker, Margaret Dabbs, who indicated that the solar farm was considered a positive by both buyer and seller as it insures no subdivision will be happening in that area. Buyers in this market are looking for privacy and seclusion.

The breakdown of recent lot sales on Kristi are shown below with the lowest price paid for the lot with no solar farm exposure, though that lot has exposure to Mt Pleasant Road South. Still the older lot sales have exposure to the solar farm and sold for higher prices than the front lot and adjusting for time would only increase that difference.

Adjoining Lot Sales After Solar Farm Built							
Parcel	Solar	Address	Acres	Date Sold	Sales Price	$\$ / \mathbf{A C}$	$\$ /$ Lot
	Adjoins	5811 Kristi	3.74	$5 / 1 / 2018$	$\$ 100,000$	$\$ 26,738$	$\$ 100,000$
	Adjoins	5800 Kristi	4.22	$12 / 1 / 2017$	$\$ 94,000$	$\$ 22,275$	$\$ 94,000$
	Not	5822 Kristi	3.43	$2 / 24 / 2020$	$\$ 90,000$	$\$ 26,239$	$\$ 90,000$

The lot at 5811 Kristi Lane sold in May 2018 for $\$ 100,000$ for a 3.74 -acre lot. The home that was built later in 2018 is 505 feet to the closest solar panel. This home then sold to a homeowner for $\$ 530,000$ in April 2020. I have compared this home sale to other properties in the area as shown below.

Adjoining Residential Sales After Solar Farm Built											
Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other
Adjoins	5811 Kristi	3.74	3/31/2020	\$530,000	2018	3,858	\$137.38	5/3.5	2 Gar	2-story	Cement Ext
Not	3915 Tania	1.68	12/9/2019	\$495,000	2007	3,919	\$126.31	3/3.5	2 Gar	2-story	3Det Gar
Not	6782 Manatee	1.33	3/8/2020	\$460,000	1998	3,776	\$121.82	4/2/2h	2 Gar	2-story	Water
Not	314 Old Hickory	1.24	9/20/2019	\$492,500	2017	3,903	\$126.18	6/4.5	2 Gar	2-story	
											Avg
Solar	Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff
Adjoins	5811 Kristi								\$530,000		5\%
Not	3915 Tania	\$6,285		\$27,225	-\$3,852		-\$20,000		\$504,657	5\%	
Not	6782 Manatee	\$1,189		\$46,000	\$4,995	\$5,000			\$517,183	2\%	
Not	314 Old Hickory	\$10,680		\$2,463	-\$2,839	-\$10,000			\$492,803	7\%	

After adjusting the comparables, I found that the average adjusted value shows a slight increase in value for the subject property adjoining a solar farm. As in the other cases, this is a mild positive impact on value but within the typical range of real estate transactions.

I also looked at 5833 Kristi Lane that sold on $9 / 14 / 2020$ for $\$ 625,000$. This home is 470 feet from the closest panel.

Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GLA	BR/BA	Park	Style	Other
Nearby	5833 Kristi	4.05	$9 / 14 / 2020$	$\$ 625,000$	2008	4,373	$\$ 142.92$	$5 / 4$	3-Car	2-Brick	
Not	4055 Dakeita	4.90	$12 / 30 / 2020$	$\$ 629,000$	2005	4,427	$\$ 142.08$	$4 / 4$	4-Car	2-Brick	4DetGar/Stable
Not	9615 Bales	2.16	$6 / 30 / 2020$	$\$ 620,000$	2007	4,139	$\$ 149.79$	$4 / 5$	3-Car	2-Stone	2DetGar
Not	9522 Bales	1.47	$6 / 18 / 2020$	$\$ 600,000$	2007	4,014	$\$ 149.48$	$4 / 4.5$	3-Car	2-Stone	

Adjoining Sales Adjusted									Avg		
Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff	Distance
5833 Kristi								\$625,000			470
4055 Dakeita	-\$9,220		\$5,661	-\$6,138		-\$25,000		\$594,303	5\%		
9615 Bales	\$6,455		\$1,860	\$28,042	-\$10,000	-\$15,000		\$631,356	-1\%		
9522 Bales	\$7,233		\$1,800	\$42,930	-\$5,000			\$646,963	-4\%		

The average difference is 0% impact and the differences are all within a close range with this set of comparables and supports a finding of no impact on property value.

I have also looked at 4504 Chanel Court. This home sold on January 1, 2020 for $\$ 393,500$ for this 3,010 square foot home built in 2004 with 3 bedroooms, 3.5 bathrooms, and a 3-car garage. This home includes a full partially finished basement that significantly complicates comparing this to other sales. This home previously sold on January 23, 2017 for $\$ 399,000$. This was during the time that the solar farm was a known factor as the solar farm was approved in early 2017 and public discussions had already commenced. I spoke with Rachelle Killman with Real Estate Realty, LLC the buyer's agent for this transaction and she indicated that the solar farm was not a factor or consideration for the buyer. She noted that you could see the panels sort of through the trees, but it wasn't a concern for the buyer. She was not familiar with the earlier 2017 sale, but indicated that it was likely too high. This again goes back to the partially finished basement issue. The basement has a fireplace, and an installed 3/4 bathroom but otherwise bare studs and concrete floors with different buyers assigning varying value to that partly finished space. I also reached out to Don Gomez with Don Anthony Realty, LLC as he was the listing agent.

I also looked at the recent sale of 4599 Chanel Court. This home is within 310 feet of solar panels but notably does not have a good landscaping screen in place as shown in the photo below. The plantings appear to be less than 3-feet in height and only a narrow, limited screen of existing hardwoods were kept. The photograph is from the listing.

According to Scott David with Better Homes and Gardens Paracle Realty, this property was under contract for $\$ 550,000$ contingent on the buyer being able to sell their former home. The former home was apparently overpriced and did not sell and the contract stretched out over 2.5 months.

The seller was in a bind as they had a home they were trying to buy contingent on this closing and were about to lose that opportunity. A cash buyer offered them a quick close at $\$ 500,000$ and the seller accepted that offer in order to not lose the home they were trying to buy. According to Mr. David, the original contracted buyer and the actual cash buyer never considered the solar farm as a negative. In fact Mr. David noted that the actual buyer saw it as a great opportunity to purchase a home where a new subdivision could not be built behind his house. I therefore conclude that this property supports a finding of no impact on adjoining property, even where the landscaping screen still requires time to grow in for a year-round screen.

I also considered a sale/resale analysis on this property. This same home sold on September 15, 2015 for $\$ 462,000$. Adjusting this upward by 5% per year for the five years between these sales dates suggests a value of $\$ 577,500$. Comparing that to the $\$ 550,000$ contract that suggests a 5% downward impact, which is within a typical market variation. Given that the broker noted no negative impact from the solar farm and the analysis above, I conclude this sale supports a finding of no impact on value.

9. Matched Pair - Mariposa Solar, Gaston County, NC

This project is a 5 MW facility located on 35.80 acres out of a parent tract of 87.61 acres at 517 Blacksnake Road, Stanley that was built in 2016.

I have considered a number of recent sales around this facility as shown below.
The first is identified in the map above as Parcel 1, which is 215 Mariposa Road. This is an older dwelling on large acreage with only one bathroom. I've compared it to similar nearby homes as shown below. The landscaping buffer for this home is considered light.

Adjoining Residential Sales After Solar Farm Approved

Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style
Adjoins	215 Mariposa	17.74	$12 / 12 / 2017$	$\$ 249,000$	1958	1,551	$\$ 160.54$	$3 / 1$	Garage	$\mathrm{Br} / \mathrm{Rnch}$
Not	249 Mariposa	0.48	$3 / 1 / 2019$	$\$ 153,000$	1974	1,792	$\$ 85.38$	$4 / 2$	Garage	$\mathrm{Br} / \mathrm{Rnch}$
Not	110 Airport	0.83	$5 / 10 / 2016$	$\$ 166,000$	1962	2,165	$\$ 76.67$	$3 / 2$	Crprt	$\mathrm{Br} / \mathrm{Rnch}$
Not	1249 Blacksnake	5.01	$9 / 20 / 2018$	$\$ 242,500$	1980	2,156	$\$ 112.48$	$3 / 2$	Drive	1.5
Not	1201 Abernathy	27.00	$5 / 3 / 2018$	$\$ 390,000$	1970	2,190	$\$ 178.08$	$3 / 2$	Crprt	$\mathrm{Br} / \mathrm{Rnch}$

Adjoining Residential Sales After Solar Farm Approved Adjoining Sales Adjusted													
Solar	Address	Acres	Date Sold	Sales Price	Time	YB	Acres	GLA	BR/BA	Park	Other	Total	\% Diff
Adjoins	215 Mariposa	17.74	12/12/2017	\$249,000								\$249,000	
Not	249 Mariposa	0.48	3/1/2019	\$153,000	-\$5,583	-\$17,136	\$129,450	-\$20,576	-\$10,000			\$229,154	8\%
Not	110 Airport	0.83	5/10/2016	\$166,000	\$7,927	-\$4,648	\$126,825	-\$47,078	-\$10,000			\$239,026	4\%
Not	1249 Blacksnake	5.01	9/20/2018	\$242,500	-\$5,621	-\$37,345	\$95,475	-\$68,048	-\$10,000	\$5,000		\$221,961	11\%
Not	1201 Abernathy	27.00	5/3/2018	\$390,000	-\$4,552	-\$32,760	-\$69,450	-\$60,705	-\$10,000			\$212,533	15\%
												Average	9\%

The average difference after adjusting for all factors is $+9 \%$ on average, which suggests an enhancement due to the solar farm across the street. Given the large adjustments for acreage and size, I will focus on the low end of the adjusted range at 4%, which is within the typical deviation and therefore suggests no impact on value.

I have also considered Parcel 4 that sold after the solar farm was approved but before it had been constructed in 2016. The landscaping buffer for this parcel is considered light.

The average difference after adjusting for all factors is $+6 \%$, which is again suggests a mild increase in value due to the adjoining solar farm use. The median is a 4% adjustment, which is within a standard deviation and suggests no impact on property value.

I have also considered the recent sale of Parcel 13 that is located on Blacksnake Road south of the project. I was unable to find good land sales in the same 20 -acre range, so I have considered sales of larger and smaller acreage. I adjusted each of those land sales for time. I then applied the price per acre to a trendline to show where the expected price per acre would be for 20 acres. As can be seen in the chart below, this lines up exactly with the purchase of the subject property. I therefore conclude that there is no impact on Parcel 13 due to proximity to the solar farm.

Adjoining Residential Land Sales After Solar Farm Approved						
Solar	Tax/Street	Acres	Date Sold	Sales Price	$\$ / \mathbf{A c}$	
Adjoins	$174339 /$ Blacksnake 21.15	$6 / 29 / 2018$	$\$ 160,000$	$\$ 7,565$		
Not	$227852 /$ Abernathy	10.57	$5 / 9 / 2018$	$\$ 97,000$	$\$ 9,177$	
Not	$17443 /$ Legion	9.87	$9 / 7 / 2018$	$\$ 64,000$	$\$ 6,484$	
Not	$164243 /$ Alexis	9.75	$2 / 1 / 2019$	$\$ 110,000$	$\$ 11,282$	
Not	$176884 /$ Bowden	55.77	$6 / 13 / 2018$	$\$ 280,000$	$\$ 5,021$	

Adjoining Sales	Adjusted
Time	$\$ / \mathbf{A c}$
	$\$ 7,565$
$\$ 38$	$\$ 9,215$
$-\$ 37$	$\$ 6,447$
$-\$ 201$	$\$ 11,081$
$\$ 7$	$\$ 5,027$

Finally, I have considered the recent sale of Parcel 17 that sold as vacant land. I was unable to find good land sales in the same 7 acre range, so I have considered sales of larger and smaller acreage. I adjusted each of those land sales for time. I then applied the price per acre to a trendline to show where the expected price per acre would be for 7 acres. As can be seen in the chart below, this lines up with the trendline running right through the purchase price for the subject property. I therefore conclude that there is no impact on Parcel 13 due to proximity to the solar farm. I note that this property was improved with a 3,196 square foot ranch built in 2018 following the land purchase, which shows that development near the solar farm was unimpeded.

Ad	Residential L			arm Appr		Adjoin	s Ad	ted
Solar	Tax/Street	Acres	Date Sold	Sales Price	\$/Ac	Time	Location	\$/Ac
Adjoins	227039/Mariposa	6.86	12/6/2017	\$66,500	\$9,694			\$9,694
Not	227852/Abernathy	10.57	5/9/2018	\$97,000	\$9,177	-\$116		\$9,061
Not	17443/Legion	9.87	9/7/2018	\$64,000	\$6,484	-\$147		\$6,338
Not	177322/Robinson	5.23	5/12/2017	\$66,500	\$12,715	\$217	-\$1,272	\$11,661
Not	203386/Carousel	2.99	7/13/2018	\$43,500	\$14,548	-\$262	-\$1,455	\$12,832

10. Matched Pair - Clarke County Solar, Clarke County, VA

This project is a 20 MW facility located on a 234-acre tract that was built in 2017.

I have considered two recent sales of Parcel 3. The home on this parcel is 1,230 feet from the closest panel as measured in the second map from Google Earth, which shows the solar farm under construction. This home sold in January 2017 for $\$ 295,000$ and again in August 2019 for $\$ 385,000$. I show each sale below and compare those to similar home sales in each time frame. The significant increase in price between 2017 and 2019 is due to a major kitchen remodel, new roof, and related upgrades as well as improvement in the market in general. The sale and later resale of the home with updates and improvements speaks to pride of ownership and increasing overall value as properties perceived as diminished are less likely to be renovated and sold for profit.

I note that 102 Tilthammer includes a number of barns that I did not attribute any value in the analysis. The market would typically give some value for those barns but even without that adjustment there is an indication of a positive impact on value due to the solar farm. The landscaping buffer from this home is considered light.

Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GLA	BR/BA	Park	Style	Other
3	Adjoins	833 Nations Spr	5.13	8/18/2019	\$385,000	1979	1,392	\$276.58	3/2	Det Gar	Ranch	UnBsmt
	Not	167 Leslie	5.00	8/19/2020	\$429,000	1980	1,665	\$257.66	3/2	Det2Gar	Ranch	
	Not	2393 Old Chapel	2.47	8/10/2020	\$330,000	1974	1,500	\$220.00	3/1.5	Det Gar	Ranch	
	Not	102 Tilthammer	6.70	5/7/2019	\$372,000	1970	1,548	\$240.31	3/1.5	Det Gar	Ranch	UnBsmt

Adjoining Sales Adjusted										
Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	Avg \% Diff	Distance 1230
$-\$ 13,268$		$-\$ 2,145$	$-\$ 56,272$		$-\$ 5,000$	$\$ 50,000$	$\$ 402,315$	-4%		
$-\$ 9,956$	$\$ 25,000$	$\$ 8,250$	$-\$ 19,008$	$\$ 5,000$		$\$ 50,000$	$\$ 389,286$	-1%		
$\$ 3,229$		$\$ 16,740$	$-\$ 29,991$	$\$ 5,000$			$\$ 366,978$	5%		
									0%	

11. Matched Pair - Simon Solar, Social Circle, GA

This 30 MW solar farm is located off Hawkins Academy Road and Social Circle Fairplay Road. I identified three adjoining sales to this tract after development of the solar farm. However, one of those is shown as Parcel 12 in the map above and includes a powerline easement encumbering over a third of the 5 acres and adjoins a large substation as well. It would be difficult to isolate those impacts from any potential solar farm impact and therefore I have excluded that sale. I also excluded the recent sale of Parcel 17, which is a farm with conservation restrictions on it that similarly would require a detailed examination of those conservation restrictions in order to see if there was any impact related to the solar farm. I therefore focused on the recent sale of Parcel 7 and the adjoining parcel to the south of that. They are technically not adjoining due to the access road for the flag-shaped lot to the east. Furthermore, there is an apparent access easement serving the two rear lots that encumber these two parcels which is a further limitation on these sales. This analysis assumes that the access easement does not negatively impact the subject property, though it may.

The landscaping buffer relative to this parcel is considered medium.

Adjoining Land Sales After Solar Farm Approved								
Parcel	Solar	Address	Acres	Date Sold	Sales Price	\$/AC	Type	Other
$7+$	Adjoins	4514 Hawkins	36.86	$3 / 31 / 2016$	$\$ 180,000$	$\$ 4,883$	Pasture	Esmts
	Not	HD Atha	69.95	$12 / 20 / 2016$	$\$ 357,500$	$\$ 5,111$	Wooded	N $/$ A
	Not	Pannell	66.94	$11 / 8 / 2016$	$\$ 322,851$	$\$ 4,823$	Mixed	$*$
	Not	1402 Roy	123.36	$9 / 29 / 2016$	$\$ 479,302$	$\$ 3,885$	Mixed	$* *$

* Adjoining 1 acre purchased by same buyer in same deed. Allocation assigned on the County Tax Record.
** Dwelling built in 1996 with a 2016 tax assessed value of $\$ 75,800$ deducted from sales price to reflect land value

Adjoining Sales Adjusted						
Time	Size	Type	Other	Total/Ac	\% Diff	Avg
\% Diff						

The range of impact identified by these matched pairs are -12% to $+14 \%$, with an average of 0% impact due to the solar farm. The best matched pair with the least adjustment supports a -2% impact due to the solar farm. I note again that this analysis considers no impact for the existing access easements that meander through this property and it may be having an impact. Still at -2% impact as the best indication for the solar farm, I consider that to be no impact given that market fluctuations support $+/-5 \%$.
12. Matched Pair - Candace Solar, Princeton, NC

This 5 MW solar farm is located at 4839 US 70 Highway just east of Herring Road. This solar farm was completed on October 25, 2016.

I identified three adjoining sales to this tract after development of the solar farm with frontage on US 70. I did not attempt to analyze those sales as they have exposure to an adjacent highway and railroad track. Those homes are therefore problematic for a matched pair analysis unless I have similar homes fronting on a similar corridor.

I did consider a land sale and a home sale on adjoining parcels without those complications.
The lot at 499 Herring Road sold to Paradise Homes of Johnston County of NC, Inc. for \$30,000 in May 2017 and a modular home was placed there and sold to Karen and Jason Toole on September 29, 2017. I considered the lot sale first as shown below and then the home sale that followed. The landscaping buffer relative to this parcel is considered medium.

Adjoin	Lan	es After Sol	Farm	pproved			Adjoini	Sales	djuste		
Parcel	Solar	Address	Acres	Date Sold	Sales Price	Other	Time	Site	Other	Total	\% Diff
16	Adjoins	499 Herring	2.03	5/1/2017	\$30,000					\$30,000	
	Not	37 Becky	0.87	7/23/2019	\$24,500	Sub/Pwr	-\$1,679	\$4,900		\$27,721	8\%
	Not	5858 Bizzell	0.88	8/17/2016	\$18,000		\$390	\$3,600		\$21,990	27\%
	Not	488 Herring	2.13	12/20/2016	\$35,000		\$389			\$35,389	-18\%
										Average	5\%

Following the land purchase, the modular home was placed on the site and sold. I have compared this modular home to the following sales to determine if the solar farm had any impact on the purchase price.

The best comparable is 1795 Bay Valley as it required the least adjustment and was therefore most similar, which shows a 0% impact. This signifies no impact related to the solar farm.

The range of impact identified by these matched pairs ranges are therefore -3% to $+26 \%$ with an average of $+8 \%$ for the home and an average of $+4 \%$ for the lot, though the best indicator for the lot shows a $\$ 5,000$ difference in the lot value due to the proximity to the solar farm or a -12% impact.
13. Matched Pair - Walker-Correctional Solar, Barham Road, Barhamsville, VA

This project was built in 2017 and located on 484.65 acres for a 20 MW with the closest home at 110 feet from the closest solar panel with an average distance of 500 feet.

I considered the recent sale identified on the map above as Parcel 19, which is directly across the street and based on the map shown on the following page is 250 feet from the closest panel. A
limited buffering remains along the road with natural growth being encouraged, but currently the panels are visible from the road. Alex Uminski, SRA with MGMiller Valuations in Richmond VA confirmed this sale with the buying and selling broker. The selling broker indicated that the solar farm was not a negative influence on this sale and in fact the buyer noticed the solar farm and then discovered the listing. The privacy being afforded by the solar farm was considered a benefit by the buyer. I used a matched pair analysis with a similar sale nearby as shown below and found no negative impact on the sales price. Property actually closed for more than the asking price. The landscaping buffer is considered light.

Adjoining Residential Sales After Solar Farm Approved											
Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other
Adjoins	5241 Barham	2.65	$10 / 18 / 2018$	$\$ 264,000$	2007	1,660	$\$ 159.04$	$3 / 2$	Drive	Ranch	Modular
Not	17950 New Kent	5.00	$9 / 5 / 2018$	$\$ 290,000$	1987	1,756	$\$ 165.15$	$3 / 2.5$	3 Gar	Ranch	
Not	9252 Ordinary	4.00	$6 / 13 / 2019$	$\$ 277,000$	2001	1,610	$\$ 172.05$	$3 / 2$	1.5-Gar	Ranch	
Not	2416 W Miller	1.04	$9 / 24 / 2018$	$\$ 299,000$	1999	1,864	$\$ 160.41$	$3 / 2.5$	Gar	Ranch	

Adjoining Sales Adjusted										
Solar	Address	Time	Ac/Loc	YB	GLA	BR/BA	Park	Other	Total	\% Diff

$$
\text { Average Diff } 0 \%
$$

I also spoke with Patrick W. McCrerey of Virginia Estates who was marketing a property that sold at 5300 Barham Road adjoining the Walker-Correctional Solar Farm. He indicated that this property was unique with a home built in 1882 and heavily renovated and updated on 16.02 acres. The solar farm was through the woods and couldn't be seen by this property and it had no impact on marketing this property. This home sold on April 26, 2017 for $\$ 358,000$. I did not set up any matched pairs for this property since it is a unique property that any such comparison would be difficult to rely on. The broker's comments do support the assertion that the adjoining solar farm had no impact on value. The home in this case was 510 feet from the closest panel.
14. Matched Pair - Innovative Solar 46, Roslin Farm Rd, Hope Mills, NC

This project was built in 2016 and located on 532 acres for a 78.5 MW solar farm with the closest home at 125 feet from the closest solar panel with an average distance of 423 feet.

I considered the recent sale of a home on Roslin Farm Road just north of Running Fox Road as shown below. This sale supports an indication of no impact on property value. The landscaping buffer is considered light.

Adjoining Residential Sales After Solar Farm Approved

Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other	Distance
Adjoins	6849 Roslin Farm	1.00	2/18/2019	\$155,000	1967	1,610	\$96.27	3/3	Drive	Ranch	Brick	435
Not	6592 Sim Canady	2.43	9/5/2017	\$185,000	1974	2,195	\$84.28	3/2	Gar	Ranch	Brick	
Not	1614 Joe Hall	1.63	9/3/2019	\$145,000	1974	1,674	\$86.62	3/2	Det Gar	Ranch	Brick	
Not	109 Bledsoe	0.68	1/17/2019	\$150,000	1973	1,663	\$90.20	3/2	Gar	Ranch	Brick	
											Avg	
Solar	Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff	
Adjoins	6849 Roslin Farm								\$155,000		5\%	
Not	6592 Sim Canady	\$8,278		-\$6,475	-\$39,444	\$10,000	-\$5,000		\$152,359	2\%		
Not	1614 Joe Hall	-\$2,407		-\$5,075	-\$3,881	\$10,000	-\$2,500		\$141,137	9\%		
Not	109 Bledsoe	\$404	\$10,000	-\$4,500	-\$3,346		-\$5,000		\$147,558	5\%		

15. Matched Pair - Innovative Solar 42, County Line Rd, Fayetteville, NC

This project was built in 2017 and located on 413.99 acres for a 71 MW with the closest home at 135 feet from the closest solar panel with an average distance of 375 feet.

I considered the recent sales identified on the map above as Parcels 2 and 3 , which is directly across the street these homes are 330 and 340 feet away. Parcel 2 includes an older home built in 1976, while Parcel 3 is a new home built in 2019. So the presence of the solar farm had no impact on new construction in the area.

The matched pairs for each of these are shown below. The landscaping buffer relative to these parcels is considered light.

Adjoini	Residential	Aft	Solar Farm	Approved								
Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other	Distance
Adjoins	2923 County Ln	8.98	2/28/2019	\$385,000	1976	2,905	\$132.53	3/3	2-Car	Ranch	Brick/Pond	340
Not	1928 Shaw Mill	17.00	7/3/2019	\$290,000	1977	3,001	\$96.63	4/4	2-Car	Ranch	Brick/Pond/Rental	
Not	2109 John McM.	7.78	4/25/2018	\$320,000	1978	2,474	\$129.35	3/2	Det Gar	Ranch	Vinyl/Pool,Stable	
											Avg	
Solar	Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff	
Adjoins	2923 County Ln								\$385,000		3\%	
Not	1928 Shaw Mill	-\$3,055	\$100,000	-\$1,450	-\$7,422	-\$10,000			\$368,074	4\%		
Not	2109 John McM.	\$8,333		-\$3,200	\$39,023	\$10,000		\$5,000	\$379,156	2\%		

Adjoining Residential Sales After Solar Farm Approved												
Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other	Distance
Adjoins	2935 County Ln	1.19	6/18/2019	\$266,000	2019	2,401	\$110.79	4/3	Gar	2-Story		330
Not	3005 Hemingway	1.17	5/16/2019	\$269,000	2018	2,601	\$103.42	4/3	Gar	2-Story		
Not	7031 Glynn Mill	0.60	5/8/2018	\$255,000	2017	2,423	\$105.24	4/3	Gar	2-Story		
Not	5213 Bree Brdg	0.92	5/7/2019	\$260,000	2018	2,400	\$108.33	4/3	3-Gar	2-Story		
											Avg	
Solar	Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff	
Adjoins	2935 County Ln								\$266,000		3\%	
Not	3005 Hemingway	\$748		\$1,345	-\$16,547				\$254,546	4\%		
Not	7031 Glynn Mill	\$8,724		\$2,550	-\$1,852				\$264,422	1\%		
Not	5213 Bree Brdg	\$920		\$1,300	\$76			-\$10,000	\$252,296	5\%		

Both of these matched pairs adjust to an average of $+3 \%$ on impact for the adjoining solar farm, meaning there is a slight positive impact due to proximity to the solar farm. This is within the standard $+/$ - of typical real estate transactions, which strongly suggests no impact on property value. I noted specifically that for 2923 County Line Road, the best comparable is 2109 John McMillan as it does not have the additional rental unit on it. I made no adjustment to the other sale for the value of that rental unit, which would have pushed the impact on that comparable downward - meaning there would have been a more significant positive impact.

16. Matched Pair - Sunfish Farm, Keenebec Rd, Willow Spring, NC

This project was built in 2015 and located on 49.6 acres (with an inset 11.25 acre parcel) for a 6.4 MW project with the closest home at 135 feet with an average distance of 105 feet.

I considered the 2017 sale identified on the map above, which is 205 feet away from the closest panel. The matched pairs for each of these are shown below followed by a more recent map showing the panels at this site. The average difference in the three comparables and the subject property is $+3 \%$ after adjusting for differences in the sales date, year built, gross living area, and other minor differences. This data is supported by the comments from the broker Brian Schroepfer with Keller Williams that the solar farm had no impact on the purchase price. The landscaping screen is considered light.

Adjoining Residential Sales After Solar Farm Approved

Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style
	Adjoins	7513 Glen Willow	0.79	$9 / 1 / 2017$	$\$ 185,000$	1989	1,492	$\$ 123.99$	$3 / 2$	Gar	BR/Rnch
	Not	2968 Tram	0.69	$7 / 17 / 2017$	$\$ 155,000$	1984	1,323	$\$ 117.16$	$3 / 2$	Drive	BR/Rnch
	Not	205 Pine Burr	0.97	$12 / 29 / 2017$	$\$ 191,000$	1991	1,593	$\$ 119.90$	$3 / 2.5$	Drive	BR/Rnch
	Not	1217 Old Honeycutt	1.00	$12 / 15 / 2017$	$\$ 176,000$	1978	1,558	$\$ 112.97$	$3 / 2.5$	2 Carprt	VY/Rnch

| Adjustments
 Solar
 Adjoins | Address
 7513 Glen Willow | Time | Site | YB | GLA | BR/BA | Park | Other | Total | \% Diff |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Avg |
| :---: |
| \% Diff |

17. Matched Pair - Sappony Solar, Sussex County, VA

This project is a 30 MW facility located on a 322.68 -acre tract that was built in the fourth quarter of 2017.

I have considered the 2018 sale of Parcel 17 as shown below. This was a 1,900 s.f. manufactured
 manufactured homes as shown below. The range of impacts is within typical market variation with an average of -1%, which supports a conclusion of no impact on property value. The landscaping buffer is considered medium.

18. Matched Pair - Camden Dam, Camden, NC

This 5 MW project was built in 2019 and located on a portion of 49.83 acres.
Parcel 1 noted above along with the home on the adjoining parcel to the north of that parcel sold in late 2018 after this solar farm was approved but prior to construction being completed in 2019. I have considered this sale as shown below. The landscaping screen is considered light.

The comparable at 548 Trotman is the most similar and required the least adjustment shows no impact on property value. The other two comparables were adjusted consistently with one showing significant enhancement and another as showing a mild negative. The best indication is the one requiring the least adjustment. The other two sales required significant site adjustments which make them less reliable. The best comparable and the average of these comparables support a finding of no impact on property value.

Adjoining Residential Sales After Solar Farm Approved											
Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GLA	BR/BA	Park	Style	Other
Adjoins	122 N Mill Dam	12.19	11/29/2018	\$350,000	2005	2,334	\$149.96	3/3.5	3-Gar	Ranch	
Not	548 Trotman	12.10	5/31/2018	\$309,000	2007	1,960	\$157.65	4/2	Det2G	Ranch	Wrkshp
Not	198 Sand Hills	2.00	12/22/2017	\$235,000	2007	2,324	\$101.12	4/3	Open	Ranch	
Not	140 Sleepy Hlw	2.05	8/12/2019	\$330,000	2010	2,643	\$124.86	4/3	1-Gar	1.5 Story	

Adjoining Sales Adjusted									Avg		
Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff	Distance
122 N Mill Dam								\$350,000			342
548 Trotman	\$6,163		-\$3,090	\$35,377	\$5,000			\$352,450	-1\%		
198 Sand Hills	\$8,808	\$45,000	-\$2,350	\$607		\$30,000		\$317,064	9\%		
140 Sleepy Hlw	-\$9,258	\$45,000	-\$8,250	-\$23,149	\$5,000	\$30,000		\$369,343	-6\%		
										1\%	

19. Matched Pair - Grandy Solar, Grandy, NC

This 20 MW project was built in 2019 and located on a portion of 121 acres.
Parcels 40 and 50 have sold since construction began on this solar farm. I have considered both in matched pair analysis below. I note that the marketing for Parcel 40 (120 Par Four) identified the lack of homes behind the house as a feature in the listing. The marketing for Parcel 50 (269 Grandy) identified the property as "very private." Landscaping for both of these parcels is considered light.

Adjoining Residential Sales After Solar Farm Approved																
Solar	Add	ress	Acres	Date Sold	Sales Pr	Price	Built		GBA	\$/G		BR/BA	A Park	Style	Other	
Adjoins	120 P	ar Four	0.92	8/17/2019	\$315,0		2006		2,188	\$143		4/3	2-Gar	1.5 Story	Pool	
Not	102 T	Teague	0.69	1/5/2020	\$300,0		2005		2,177	\$137		3/2	Det 3G	Ranch		
Not	112 Me	adow Lk	0.92	2/28/2019	\$265,0		1992		2,301	\$115		3/2	Gar	1.5 Story		
Not	116 B	arefoot	0.78	9/29/2020	\$290,000		2004		2,192	\$132		4/3	2-Gar	2 Story		
Adjoining Sales Adjusted				YB	GLA	BR/BA		Park		Other	Total \%		\% Diff	Avg		
Addr	ess	Time	Site					\% Diff D	$\begin{gathered} \text { Distance } \\ 405 \end{gathered}$							
120 Pa	Four							\$315,000								
102 Te	ague	-\$4,636		\$1,500	\$910	\$10,	000				\$20,000		,774	-4\%		
112 Mea	dow Lk	\$4,937		\$18,550	-\$7,808	\$10,00	,000 \$		0,000	\$20,000		,679	-2\%			
116 Ba	refoot	-\$12,998		\$2,900	-\$318					\$20,000	\$29	,584	5\%			
														0\%		

Both of these matched pairs support a finding of no impact on value. This is reinforced by the listings for both properties identifying the privacy due to no housing in the rear of the property as part of the marketing for these homes.

20. Matched Pair - Champion Solar, Lexington County, SC

This project is a 10 MW facility located on a 366.04-acre tract that was built in 2017.
I have considered the 2020 sale of an adjoining home located off 517 Old Charleston Road. Landscaping is considered light.

21. Matched Pair - Barefoot Bay Solar Farm, Barefoot Bay, FL

This project is located on 504 acres for a 704.5 MW facility. Most of the adjoining uses are medium density residential with some lower density agricultural uses to the southwest. This project was built in 2018. There is a new subdivision under development to the west.

I have considered a number of recent home sales from the Barefoot Bay Golf Course in the Barefoot Bay Recreation District. There are a number of sales of these mobile/manufactured homes along the eastern boundary and the lower northern boundary. I have compared those home sales to other similar homes in the same community but without the exposure to the solar farm. Staying within the same community keeps location and amenity impacts consistent. I did avoid any comparison with home sales with golf course or lakefront views as that would introduce another variable.

The six manufactured/double wide homes shown below were each compared to three similar homes in the same community and are consistently showing no impact on the adjoining property values. Based on the photos from the listings, there is limited but some visibility of the solar farm to the east, but the canal and landscaping between are providing a good visual buffer and actually are commanding a premium over the non-canal homes.

Landscaping for these adjoining homes is considered light, though photographs from the listings show that those homes on Papaya that adjoin the solar farm from east/west have no visibility of the solar farm and is effectively medium density due to the height differential. The homes that adjoin the solar farm from north/south along Papaya have some filtered view of the solar farm through the trees.

Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GLA	BR/BA	Park	Style	Other
14	Adjoins	465 Papaya Cr	0.12	7/21/2019	\$155,000	1993	1,104	\$140.40	2/2	Drive	Manuf	Canal
	Not	1108 Navajo	0.14	2/27/2019	\$129,000	1984	1,220	\$105.74	2/2	Crprt	Manuf	Canal
	Not	1007 Barefoot	0.11	9/3/2020	\$168,000	2005	1,052	\$159.70	2/2	Crprt	Manuf	Canal
	Not	1132 Waterway	0.11	7/10/2020	\$129,000	1982	1,012	\$127.47	2/2	Crprt	Manuf	Canal

Adjoining Sales Adjusted								Avg		
Address	Time	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff	Distance
465 Papaya Cr							\$155,000			765
1108 Navajo	\$1,565	\$5,805	-\$9,812				\$126,558	18\%		
1007 Barefoot	-\$5,804	-\$10,080	\$6,643				\$158,759	-2\%		
1132 Waterway	-\$3,859	\$7,095	\$9,382				\$141,618	9\%		
									8\%	

Adjoining Residential Sales After Solar Farm Approved												
Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GLA	BR/BA	Park	Style	Other
19	Adjoins	455 Papaya	0.12	9/1/2020	\$183,500	2005	1,620	\$113.27	3/2	Crprt	Manuf	Canal
	Not	938 Waterway	0.11	2/12/2020	\$160,000	1986	1,705	\$93.84	2/2	Crprt	Manuf	Canal
	Not	719 Barefoot	0.12	4/14/2020	\$150,000	1996	1,635	\$91.74	3/2	Crprt	Manuf	Canal
	Not	904 Fir	0.17	9/27/2020	\$192,500	2010	1,626	\$118.39	3/2	Crprt	Manuf	Canal

Adjoining Sales Adjusted							Avg			
Address	Time	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff	Distance
455 Papaya							$\$ 183,500$			
938 Waterway	$\$ 2,724$	$\$ 15,200$	$-\$ 6,381$				$\$ 171,542$	7%		
719 Barefoot	$\$ 1,770$	$\$ 6,750$	$-\$ 1,101$				$\$ 157,419$	14%		
904 Fir	$-\$ 422$	$-\$ 4,813$	$-\$ 568$				$\$ 186,697$	-2%		
							6%			

Adjoining Residential Sales After Solar Farm Approved

Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GLA	BR/BA	Park	Style	Other
37	Adjoins	419 Papaya	0.09	$7 / 16 / 2019$	$\$ 127,500$	1986	1,303	$\$ 97.85$	$2 / 2$	Crprt	Manuf	Green
	Not	865 Tamarind	0.12	$2 / 4 / 2019$	$\$ 133,900$	1995	1,368	$\$ 97.88$	$2 / 2$	Crprt	Manuf	Green
	Not	501 Papaya	0.10	$6 / 15 / 2018$	$\$ 109,000$	1986	1,234	$\$ 88.33$	$2 / 2$	Crprt	Manuf	
	Not	418 Papaya	0.09	$8 / 28 / 2019$	$\$ 110,000$	1987	1,248	$\$ 88.14$	$2 / 2$	Crprt	Manuf	

| Adjoining Sales Adjusted | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address | Time | YB | GLA | BR/BA | Park | Other | Total | \% Diff | Avg
 \% Diff | Distance |
| 419 Papaya | | | | | | | $\$ 127,500$ | | | |
| 865 Tamarind | $\$ 1,828$ | $-\$ 6,026$ | $-\$ 5,090$ | | | | $\$ 124,613$ | 2% | | |
| 501 Papaya | $\$ 3,637$ | $\$ 0$ | $\$ 4,876$ | | | $\$ 5,000$ | $\$ 122,513$ | 4% | | |
| 418 Papaya | $-\$ 399$ | $-\$ 550$ | $\$ 3,878$ | | | $\$ 5,000$ | $\$ 117,930$ | 8% | | |

Adjoining Residential Sales After Solar Farm Approved												
Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GLA	BR/BA	Park	Style	Other
39	Adjoins	413 Papaya	0.09	7/16/2020	\$130,000	2001	918	\$141.61	2/2	Crprt	Manuf	Grn/Upd
	Not	341 Loquat	0.09	2/3/2020	\$118,000	1985	989	\$119.31	2/2	Crprt	Manuf	Full Upd
	Not	1119 Pocatella	0.19	1/5/2021	\$120,000	1993	999	\$120.12	2/2	Crprt	Manuf	Green
	Not	1367 Barefoot	0.10	1/12/2021	\$130,500	1987	902	\$144.68	2/2	Crprt	Manuf	Green/Upd

Adjoining Sales Adjusted										
Address	Time	YB	GLA	BR/BA	Park	Other	Total	\% Diff	Avg \% Diff	Distance
413 Papaya							$\$ 130,000$		6	
341 Loquat	$\$ 1,631$	$\$ 9,440$	$-\$ 6,777$				$\$ 122,294$	6%		
1119 Pocatella	$-\$ 1,749$	$\$ 4,800$	$-\$ 7,784$			$\$ 5,000$	$\$ 120,267$	7%		
1367 Barefoot	$-\$ 1,979$	$\$ 9,135$	$\$ 1,852$				$\$ 139,507$	-7%		

Adjoining Residential Sales After Solar Farm Approved												
Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GLA	BR/BA	Park	Style	Other
48	Adjoins	343 Papaya	0.09	12/17/2019	\$145,000	1986	1,508	\$96.15	3/2	Crprt	Manuf	Gn/Fc/Upd
	Not	865 Tamarind	0.12	2/4/2019	\$133,900	1995	1,368	\$97.88	2/2	Crprt	Manuf	Green
	Not	515 Papaya	0.09	3/22/2018	\$145,000	2005	1,376	\$105.38	3/2	Crprt	Manuf	Green
	Not	849 Tamarind	0.15	6/26/2019	\$155,000	1997	1,716	\$90.33	3/2	Crprt	Manuf	Grn/Fnce

Adjoining Sales Adjusted										
Address	Time	YB	GLA	BR/BA	Park	Other	Total	\% Diff	Avg \% Diff	Distance
343 Papaya								$\$ 145,000$		
865 Tamarind	$\$ 3,566$	$-\$ 6,026$	$\$ 10,963$				$\$ 142,403$	2%		
515 Papaya	$\$ 7,759$	$-\$ 13,775$	$\$ 11,128$				$\$ 150,112$	-4%		
849 Tamarind	$\$ 2,273$	$-\$ 8,525$	$-\$ 15,030$			$\$ 5,000$	$\$ 138,717$	4%		

Adjoining Residential Sales After Solar Farm Approved												
Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GLA	BR/BA	Park	Style	Other
52	Nearby	335 Papaya	0.09	4/17/2018	\$110,000	1987	1,180	\$93.22	2/2	Crprt	Manuf	Green
	Not	865 Tamarind	0.12	2/4/2019	\$133,900	1995	1,368	\$97.88	2/2	Crprt	Manuf	Green
	Not	501 Papaya	0.10	6/15/2018	\$109,000	1986	1,234	\$88.33	2/2	Crprt	Manuf	
	Not	604 Puffin	0.09	10/23/2018	\$110,000	1988	1,320	\$83.33	2/2	Crprt	Manuf	

Adjoining Sales Adjusted										
Address	Time	YB	GLA	BR/BA	Park	Other	Total	\% Diff	\% Diff	Distance
335 Papaya							$\$ 110,000$			
865 Tamarind	$-\$ 3,306$	$-\$ 5,356$	$-\$ 14,721$			$\$ 0$	$\$ 110,517$	0%		
501 Papaya	$-\$ 542$	$\$ 545$	$-\$ 3,816$			$\$ 5,000$	$\$ 110,187$	0%		
604 Puffin	$-\$ 1,752$	$-\$ 550$	$-\$ 9,333$			$\$ 5,000$	$\$ 103,365$	6%		

I also identified a new subdivision being developed just to the west of this solar farm called The Lakes at Sebastian Preserve. These are all canal-lot homes that are being built with homes starting at $\$ 271,000$ based on the website and closed sales showing up to $\$ 342,000$. According to Monique, the onsite broker with Holiday Builders, the solar farm is difficult to see from the lots that back up to that area and she does not anticipate any difficulty in selling those future homes or lots or any impact on the sales price. The closest home that will be built in this development will be approximately 340 feet from the nearest panel.

Based on the closed home prices in Barefoot Bay as well as the broker comments and activity at The Lakes at Sebastian Preserve, the data around this solar farm strongly indicates no negative impact on property value.

22. Matched Pair - Miami-Dade Solar Farm, Miami, FL

This project is located on 346.80 acres for a 74.5 MW facility. All of the adjoining uses are agricultural and residential. This project was built in 2019.

I considered the recent sale of Parcel 26 to the south that sold for over $\$ 1.6$ million dollars. This home is located on 4.2 acres with additional value in the palm trees according to the listing. The comparables include similar homes nearby that are all actually on larger lots and several include avocado or palm tree income as well. All of the comparables are in similar proximity to the subject and all have similar proximity to the Miami-Dade Executive airport that is located 2.5 miles to the east.

These sales are showing no impact on the value of the property from the adjoining solar farm. The landscaping is considered light.

Adjoining Residential Sales After Solar Farm Approved

Parcel	Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GLA	BR/BA	Park	Style	Other
26	Adjoins	13600 SW 182nd	4.20	$11 / 5 / 2020$	$\$ 1,684,000$	2008	6,427	$\$ 262.02$	$5 / 5.5$	3 Gar	CBS Rnch Pl/Guest	
	Not	18090 SW 158th	5.73	$10 / 8 / 2020$	$\$ 1,050,000$	1997	3,792	$\$ 276.90$	$5 / 4$	3 Gar	CBS Rnch	
	Not	14311 SW 187th	4.70	$10 / 22 / 2020$	$\$ 1,100,000$	2005	3,821	$\$ 287.88$	$6 / 5$	3 Gar	CBS Rnch	Pool
	Not	17950 SW 158th	6.21	$10 / 22 / 2020$	$\$ 1,730,000$	2000	6,917	$\$ 250.11$	$6 / 5.5$	2 Gar	CBS Rnch	Pool

Adjoining Sales Adjusted Address	Time	Site	YB	GLA	BR/BA	Park	Other	Total	\% Diff	Avg \% Diff	Distance
13600 SW 182nd								$\$ 1,684,000$			
18090 SW 158th	$\$ 2,478$		$\$ 57,750$	$\$ 583,703$	$\$ 30,000$			$\$ 1,723,930$	-2%		1390
14311 SW 187th	$\$ 1,298$		$\$ 16,500$	$\$ 600,178$	$\$ 10,000$			$\$ 1,727,976$	-3%		
17950 SW 158th	$\$ 2,041$		$\$ 69,200$	$-\$ 98,043$		$\$ 10,000$		$\$ 1,713,199$	-2%		

23. Matched Pair - Spotsylvania Solar, Paytes, VA

This solar farm is being built in four phases with the area known as Site C having completed construction in November 2020 after the entire project was approved in April 2019. Site C, also known as Pleinmont 1 Solar, includes 99.6 MW located in the southeast corner of the project and shown on the maps above with adjoining parcels 111 through 144. The entire Spotsylvania project totals 617 MW on 3500 acres out of a parent tract assemblage of 6,412 acres.

I have identified three adjoining home sales that occurred during construction and development of the site in 2020.

The first is located on the north side of Site A on Orange Plank Road. The second is located on Nottoway Lane just north of Caparthin Road on the south side of Site A and east of Site C. The third is located on Post Oak Road for a home that backs up to Site C that sold in September 2020 near the completion of construction for Site C.

Spotsylvania Solar Farm

| Solar | Address | Acres | Date Sold | Sales Price | Built | GBA | \$/GBA | BR/BA | Park | Style | Other |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Adjoins | 12901 Orng Plnk | 5.20 | $8 / 27 / 2020$ | $\$ 319,900$ | 1984 | 1,714 | $\$ 186.64$ | $3 / 2$ | Drive | 1.5 | Un Bsmt |
| Not | 8353 Gold Dale | 3.00 | $1 / 27 / 2021$ | $\$ 415,000$ | 2004 | 2,064 | $\$ 201.07$ | $3 / 2$ | 3 Gar | Ranch | |
| Not | 6488 Southfork | 7.26 | $9 / 9 / 2020$ | $\$ 375,000$ | 2017 | 1,680 | $\$ 223.21$ | $3 / 2$ | 2 Gar | 1.5 | Barn/Patio |
| Not | 12717 Flintlock | 0.47 | $12 / 2 / 2020$ | $\$ 290,000$ | 1990 | 1,592 | $\$ 182.16$ | $3 / 2.5$ | Det Gar | Ranch | |

Adjoining Sales Adjusted										
Address	Time	Ac/Loc	YB	GLA	BR/BA	Park	Other	Total	\% Diff	Dist
12901 Orng Plnk								\$319,900		1270
8353 Gold Dale	-\$5,219	\$20,000	-\$41,500	-\$56,298		-\$20,000		\$311,983	2\%	
6488 Southfork	-\$401	-\$20,000	-\$61,875	\$6,071		-\$15,000		\$283,796	11\%	
12717 Flintlock	-\$2,312	\$40,000	-\$8,700	\$17,779	-\$5,000	-\$5,000		\$326,767	-2\%	
							Average Diff		4\%	

Solar	Address	Acres	Date Sold	Sales Price	Built	GBA	\$/GBA	BR/BA	Park	Style	Other
Adjoins	9641 Nottoway	11.00	$5 / 12 / 2020$	$\$ 449,900$	2004	3,186	$\$ 141.21$	$4 / 2.5$	Garage	2-Story	Un Bsmt
Not	26123 Lafayette	1.00	$8 / 3 / 2020$	$\$ 390,000$	2006	3,142	$\$ 124.12$	$3 / 3.5$	Gar/DtG	2-Story	
Not	11626 Forest	5.00	$8 / 10 / 2020$	$\$ 489,900$	2017	3,350	$\$ 146.24$	$4 / 3.5$	2 Gar	2-Story	
Not	10304 Pny Brnch	6.00	$7 / 27 / 2020$	$\$ 485,000$	1998	3,076	$\$ 157.67$	$4 / 4$	2Gar/Dt2 Ranch	Fn Bsmt	

Adjoining Sales Adjusted										
Address	Time	Ac/Loc	YB	GLA	BR/BA	Park	Other	Total	\% Diff	Dist
9641 Nottoway								$\$ 449,900$		1950
26123 Lafayette	$-\$ 2,661$	$\$ 45,000$	$-\$ 3,900$	$\$ 4,369$	$-\$ 10,000$	$-\$ 5,000$		$\$ 417,809$	7%	
11626 Forest	$-\$ 3,624$		$-\$ 31,844$	$-\$ 19,187$		$-\$ 5,000$		$\$ 430,246$	4%	
10304 Pny Brnch	$-\$ 3,030$		$\$ 14,550$	$\$ 13,875$	$-\$ 15,000$	$-\$ 15,000$	$-\$ 10,000$	$\$ 470,396$	-5%	

Average Diff 2%

Solar	Address	Acres	Date Sold	Sales Price Built	GBA	$\$ / \mathbf{\$ B A}$	BR/BA	Park	Style	Other	
Adjoins	13353 Post Oak	5.20	$9 / 21 / 2020$	$\$ 300,000$	1992	2,400	$\$ 125.00$	$4 / 3$	Drive	2-Story	Fn Bsmt
Not	9609 Logan Hgt	5.86	$7 / 4 / 2019$	$\$ 330,000$	2004	2,352	$\$ 140.31$	$3 / 2$	2Gar	2 -Story	
Not	12810 Catharpian	6.18	$1 / 30 / 2020$	$\$ 280,000$	2008	2,240	$\$ 125.00$	$4 / 2.5$	Drive	2-Story Bsmt/Nd Pnt	
Not	10725 Rbrt Lee	5.01	$10 / 26 / 2020$	$\$ 295,000$	1995	2,166	$\$ 136.20$	$4 / 3$	Gar	2-Story	Fn Bsmt

| Adjoining Sales Adjusted
 Address | Time | Ac/Loc | YB | GLA | BR/BA | Park | Other | Total | \% Diff |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Dist

All three of these homes are well set back from the solar panels at distances over 1,000 feet and are well screened from the project. All three show no indication of any impact on property value.

Conclusion - SouthEast Over 5 MW

Southeast USA Over 5 MW														
						Topo						Med.	Avg. Housing	Veg.
	Name	City	State	Acres	MW	Shift	Res	Ag	Ag/Res	Com/Ind	Pop.	Income	Unit	Buffer
1	AM Best	Goldsboro	NC	38	5.00	2	38\%	0\%	23\%	39\%	1,523	\$37,358	\$148,375	Light
2	Mulberry	Selmer	TN	160	5.00	60	13\%	73\%	10\%	3\%	467	\$40,936	\$171,746	Lt to Med
3	Leonard	Hughesville	MD	47	5.00	20	18\%	75\%	0\%	6\%	525	\$106,550	\$350,000	Light
4	Gastonia SC	Gastonia	NC	35	5.00	48	33\%	0\%	23\%	44\%	4,689	\$35,057	\$126,562	Light
5	Summit	Moyock	NC	2,034	80.00	4	4\%	0\%	94\%	2\%	382	\$79,114	\$281,731	Light
6	Tracy	Bailey	NC	50	5.00	10	29\%	0\%	71\%	0\%	312	\$43,940	\$99,219	Heavy
7	Manatee	Parrish	FL	1,180	75.00	20	2\%	97\%	1\%	0\%	48	\$75,000	\$291,667	Heavy
8	McBride	Midland	NC	627	75.00	140	12\%	10\%	78\%	0\%	398	\$63,678	\$256,306	Lt to Med
9	Mariposa	Stanley	NC	36	5.00	96	48\%	0\%	52\%	0\%	1,716	\$36,439	\$137,884	Light
10	Clarke Cnty	White Post	VA	234	20.00	70	14\%	39\%	46\%	1\%	578	\$81,022	\$374,453	Light
11	Simon	Social Circle	GA	237	30.00	71	1\%	63\%	36\%	0\%	203	\$76,155	\$269,922	Medium
12	Candace	Princeton	NC	54	5.00	22	76\%	24\%	0\%	0\%	448	\$51,002	\$107,171	Medium
13	Walker	Barhamsville	VA	485	20.00	N/A	12\%	68\%	20\%	0\%	203	\$80,773	\$320,076	Light
14	Innov 46	Hope Mills	NC	532	78.50	0	17\%	83\%	0\%	0\%	2,247	\$58,688	\$183,435	Light
15	Innov 42	Fayetteville	NC	414	71.00	0	41\%	59\%	0\%	0\%	568	\$60,037	\$276,347	Light
16	Sunfish	Willow Spring	NC	50	6.40	30	35\%	35\%	30\%	0\%	1,515	\$63,652	\$253,138	Light
17	Sappony	Stony Crk	VA	322	20.00	N/A	2\%	98\%	0\%	0\%	74	\$51,410	\$155,208	Light
18	Camden Dam	Camden	NC	50	5.00	0	17\%	72\%	11\%	0\%	403	\$84,426	\$230,288	Light
19	Grandy	Grandy	NC	121	20.00	10	55\%	24\%	0\%	21\%	949	\$50,355	\$231,408	Light
20	Champion	Pelion	SC	100	10.00	N/A	4\%	70\%	8\%	18\%	1,336	\$46,867	\$171,939	Light
21	Barefoot Bay	Barefoot Bay	FL	504	74.50	0	11\%	87\%	0\%	3\%	2,446	\$36,737	\$143,320	Lt to Med
22	Miami-Dade	Miami	FL	347	74.50	0	26\%	74\%	0\%	0\%	127	\$90,909	\$403,571	Light
23	Spotyslvania	Paytes	VA	3,500	617.00	160	37\%	52\%	11\%	0\%	74	\$120,861	\$483,333	Md to Hvy
	Average			485	57.04	38	24\%	48\%	22\%	6\%	923	\$63,955	\$237,700	
	Median			234	20.00	20	17\%	59\%	11\%	0\%	467	\$60,037	\$231,408	
	High			3,500	617.00	160	76\%	98\%	94\%	44\%	4,689	\$120,861	\$483,333	
	Low			35	5.00	0	1\%	0\%	0\%	0\%	48	\$35,057	\$99,219	

The solar farm matched pairs shown above have similar characteristics to each other in terms of population, but with several outliers showing solar farms in farm more urban areas. The median income for the population within 1 mile of a solar farm is $\$ 60,037$ with a median housing unit value of $\$ 231,408$. Most of the comparables are under $\$ 300,000$ in the home price, with $\$ 483,333$ being the high end of the set, though I have matched pairs in multiple states over \$1,000,000 adjoining solar farms. The adjoining uses show that residential and agricultural uses are the predominant adjoining uses. These figures are in line with the larger set of solar farms that I have looked at with the predominant adjoining uses being residential and agricultural and similar to the solar farm breakdown shown for Virginia and adjoining states as well as the proposed subject property.

Based on the similarity of adjoining uses and demographic data between these sites and the subject property, I consider it reasonable to compare these sites to the subject property.

I have pulled 56 matched pairs from the above referenced solar farms to provide the following summary of home sale matched pairs and land sales next to solar farms. The summary shows that the range of differences is from -10% to $+10 \%$ with an average of $+1 \%$ and median of $+1 \%$. This means that the average and median impact is for a slight positive impact due to adjacency to a solar farm. However, this +1 to rate is within the typical variability I would expect from real estate. I therefore conclude that this data shows no negative or positive impact due to adjacency to a solar farm.

While the range is seemingly wide, the graph below clearly shows that the vast majority of the data falls between -5% and $+5 \%$ and most of those are clearly in the 0 to $+5 \%$ range. This data strongly supports an indication of no impact on adjoining residential uses to a solar farm.

I therefore conclude that these matched pairs support a finding of no impact on value at the subject property for the proposed project, which as proposed will include a landscaped buffer to screen adjoining residential properties.

				Approx				Adj. Sale	Veg.
Pair Solar Farm	City	State	M W	Distance	Tax ID/Address	Date	Sale Price	Price	\% Diff Buffer
1 AM Best	Goldsboro	NC	5	280	3600195570	Sep-13	\$250,000		Light
					3600198928	Mar-14	\$250,000	\$250,000	0\%
2 AM Best	Goldsboro	NC	5	280	3600195361	Sep-13	\$260,000		Light
					3600194813	Apr-14	\$258,000	\$258,000	1\%
3 AM Best	Golds boro	NC	5	280	3600199891	Jul-14	\$250,000		Light
					3600198928	Mar-14	\$250,000	\$250,000	0\%
4 AM Best	Golds boro	NC	5	280	3600198632	Aug-14	\$253,000		Light
					3600193710	Oct-13	\$248,000	\$248,000	2\%
5 AM Best	Goldsboro	NC	5	280	3600196656	Dec-13	\$255,000		Light
					3601105180	Dec-13	\$253,000	\$253,000	1\%
6 AM Best	Goldsboro	NC	5	280	3600182511	Feb-13	\$247,000		Light
					3600183905	Dec-12	\$240,000	\$245,000	1\%
7 AM Best	Goldsboro	NC	5	280	3600182784	Apr-13	\$245,000		Light
					3600193710	Oct-13	\$248,000	\$248,000	-1\%
8 AM Best	Goldsboro	NC	5	280	3600195361	Nov-15	\$267,500		Light
					3600195361	Sep-13	\$260,000	\$267,800	0\%
9 Mulberry	Selmer	TN	5	400	0900A011	Jul-14	\$130,000		Light
					099CA043	Feb-15	\$148,900	\$136,988	-5\%
10 Mulberry	Selmer	TN	5	400	099CA002	Jul-15	\$130,000		Light
					0990NA040	Mar-15	\$120,000	\$121,200	7\%
11 Mulberry	Selmer	TN	5	480	491 Dusty	Oct-16	\$176,000		Light
					53 April	Aug-16	\$185,000	\$178,283	-1\%
12 Mulberry	Selmer	TN	5	650	297 Country	Sep-16	\$150,000		Medium
					53 Glen	Mar-17	\$126,000	\$144,460	4\%
13 Mulberry	Selmer	TN	5	685	57 Cooper	Feb-19	\$163,000		Medium
					191 Amelia	Aug-18	\$132,000	\$155,947	4\%
14 Leonard Rd	Hughesville	MD	5.5	230	14595 Box Elder	Feb-16	\$291,000		Light
					15313 Bassford Rd	Jul-16	\$329,800	\$292,760	-1\%
15 Neal Hawkins	Gastonia	NC	5	225	609 Neal Hawkins	Mar-17	\$270,000		Light
					1418 N Modena	Apr-18	\$225,000	\$242,520	10\%
16 Summit	Moyock	NC	80	1,060	129 Pinto	Apr-16	\$170,000		Light
					102 Timber	Apr-16	\$175,500	\$175,101	-3\%
17 Summit	Moyock	NC	80	980	105 Pinto	Dec-16	\$206,000		Light
					127 Ranchland	Jun-15	\$219,900	\$198,120	4\%
18 Tracy	Bailey	NC	5	780	9162 Winters	Jan-17	\$255,000		Heavy
					7352 Red Fox	Jun-16	\$176,000	\$252,399	1\%
19 Manatee	Parrish	FL	75	1180	13670 Highland	Aug-18	\$255,000		Heavy
					13851 Highland	Sep-18	\$240,000	\$255,825	0\%
20 McBride Place	Midland	NC	75	275	4380 Joyner	Nov-17	\$325,000		Medium
					3870 Elkwood	Aug-16	\$250,000	\$317,523	2\%
21 McBride Place	Midland	NC	75	505	5811 Kristi	Mar-20	\$530,000		Medium
					3915 Tania	Dec-19	\$495,000	\$504,657	5\%
22 Mariposa	Stanley	NC	5	1155	215 Mariposa	Dec-17	\$249,000		Light
					110 Airport	May-16	\$166,000	\$239,026	4\%
23 Mariposa	Stanley	NC	5	570	242 Mariposa	Sep-15	\$180,000		Light
					110 Airport	Apr-16	\$166,000	\$175,043	3\%
24 Clarke Cnty	White Post	VA	20	1230	833 Nations Spr	Jan-17	\$295,000		Light
					6801 Middle	Dec-17	\$249,999	\$296,157	0\%
25 Candace	Princeton	NC	5	488	499 Herring	Sep-17	\$215,000		Medium
					1795 Bay Valley	Dec-17	\$194,000	\$214,902	0\%
26 Walker	Barhamsville	VA	20	250	5241 Barham	Oct-18	\$264,000		Light
					9252 Ordinary	Jun-19	\$277,000	\$246,581	7\%
27 AM Best	Golds boro	NC	5	385	103 Granville Pl	Jul-18	\$265,000		Light
					2219 Granville	Jan-18	\$260,000	\$265,682	0\%
28 AM Best	Goldsboro	NC	5	315	104 Erin	Jun-17	\$280,000		Light
					2219 Granville	Jan-18	\$265,000	\$274,390	2\%
29 AM Best	Golds boro	NC	5	400	2312 Granville	May-18	\$284,900		Light
					2219 Granville	Jan-18	\$265,000	\$273,948	4\%

Residential Dwelling Matched Pairs Adjoining Solar Farms									
				Approx				Adj. Sale	Veg.
Pair Solar Farm	City	State	M W	Distance	Tax ID/Address	Date	Sale Price	Price	\% Diff Buffer
30 AM Best	Goldsboro	NC	5	400	2310 Granville	May-19	\$280,000		Light
					634 Friendly	Jul-19	\$267,000	\$265,291	5\%
31 Summit	Moyock	NC	80	570	318 Green View	Sep-19	\$357,000		Light
					336 Green View	Jan-19	\$365,000	\$340,286	5\%
32 Summit	Moyock	NC	80	440	164 Ranchland	Apr-19	\$169,000		Light
					105 Longhorn	Oct-17	\$184,500	\$186,616	-10\%
33 Summit	Moyock	NC	80	635	358 Oxford	Sep-19	\$478,000		Light
					176 Providence	Sep-19	\$425,000	\$456,623	4\%
34 Summit	Moyock	NC	80	970	343 Oxford	Mar-17	\$490,000		Light
					218 Oxford	Apr-17	\$525,000	\$484,064	1\%
35 Innov 46	Hope Mills	NC	78.5	435	6849 Roslin Farm	Feb-19	\$155,000		Light
					109 Bledsoe	Jan-19	\$150,000	\$147,558	5\%
36 Innov 42	Fayetteville	NC	71	340	2923 County Line	Feb-19	\$385,000		Light
					2109 John McMillan	Apr-18	\$320,000	\$379,156	2\%
37 Innov 42	Fayetteville	NC	71	330	2935 County Line	Jun-19	\$266,000		Light
					7031 Glynn Mill	May-18	\$255,000	\$264,422	1\%
38 Sunfish	Willow Sprng	NC	6.4	205	7513 Glen Willow	Sep-17	\$185,000		Light
					205 Pine Burr	Dec-17	\$191,000	\$172,487	7\%
39 Neal Hawkins	Gastonia	NC	5	145	611 Neal Hawkins	Jun-17	\$288,000		Light
					1211 Still Forrest	Jul-18	\$280,000	\$274,319	5\%
40 Clarke Cnty	White Post	VA	20	1230	833 Nations Spr	Aug-19	\$385,000		Light
					2393 Old Chapel	Aug-20	\$330,000	\$389,286	-1\%
41 Sappony	Stony Creek	VA	20	1425	12511 Palestine	Jul-18	\$128,400		Medium
					6494 Rocky Branch	Nov-18	\$100,000	\$131,842	-3\%
42 Camden Dam	Camden	NC	5	342	122 N Mill Dam	Nov-18	\$350,000		Light
					548 Trotman	May-18	\$309,000	\$352,450	-1\%
43 Grandy	Grandy	NC	20	405	120 Par Four	Aug-19	\$315,000		Light
					116 Barefoot	Sep-20	\$290,000	\$299,584	5\%
44 Grandy	Grandy	NC	20	477	269 Grandy	May-19	\$275,000		Light
					103 Spring Leaf	Aug-18	\$270,000	\$275,912	0\%
45 Champion	Pelion	SC	10	505	517 Old Charleston	Aug-20	\$110,000		Light
					1429 Laurel	Feb-19	\$126,000	\$107,856	2\%
46 Barefoot Bay	Bare foot Bay	FL	74.5	765	465 Papaya	Jul-19	\$155,000		Medium
					1132 Waterway	Jul-20	\$129,000	\$141,618	9\%
47 Barefoot Bay	Barefoot Bay	FL	74.5	750	455 Papaya	Sep-20	\$183,500		Medium
					904 Fir	Sep-20	\$192,500	\$186,697	-2\%
48 Barefoot Bay	Bare foot Bay	FL	74.5	690	419 Papaya	Jul-19	\$127,500		Medium
					865 Tamarind	Feb-19	\$133,900	\$124,613	2\%
49 Barefoot Bay	Barefoot Bay	FL	74.5	690	413 Papaya	Jul-20	\$130,000		Medium
					1367 Barefoot	Jan-21	\$130,500	\$139,507	-7\%
50 Barefoot Bay	Barefoot Bay	FL	74.5	690	343 Papaya	Dec-19	\$145,000		Light
					865 Tamarind	Feb-19	\$133,900	\$142,403	2\%
51 Barefoot Bay	Barefoot Bay	FL	74.5	710	335 Papaya	Apr-18	\$110,000		Light
					865 Tamarind	Feb-19	\$133,900	\$110,517	0\%
52 Miami-Dade	Miami	FL	74.5	1390	13600 SW 182nd	Nov-20	\$1,684,000		Light
					17950 SW 158th	Oct-20	\$1,730,000	\$1,713,199	-2\%
53 Spotsylvania	Paytes	VA	617	1270	12901 Orange Plnk	Aug-20	\$319,900		Medium
					12717 Flintlock	Dec-20	\$290,000	\$326,767	-2\%
54 Spotsylvania	Paytes	VA	617	1950	9641 Nottoway	May-20	\$449,900		Medium
					11626 Forest	Aug-20	\$489,900	\$430,246	4\%
55 Spotsylvania	Paytes	VA	617	1171	13353 Post Oak	Sep-20	\$300,000		Heavy
					12810 Catharpin	Jan-20	\$280,000	\$299,008	0\%
56 McBride Place	Midland	NC	75	470	5833 Kristi	Sep-20	\$625,000		Light
					4055 Dakeita	Dec-20	\$600,000	\$594,303	5\%

M W	Avg.	Distance	
64.91	612	Average	Indicated
Impact			

I have further broken down these results based on the MWs, Landscaping, and distance from panel to show the following range of findings for these different categories.

Most of the findings are for homes between 201 and 500 feet. Most of the findings are for Light landscaping screens.

Light landscaping screens are showing no impact on value at any distances, including for solar farms over 75.1 MW.

MW Range 4.4 to 10									
Landscaping	Light	Light	Light	Medium	Medium	Medium	Heavy	Heavy	
Distance	100-200	201-500	500+	100-200	201-500	500+	100-200	201-500	500+
\#	1	19	2	0	1	2	0	0	1
Average	5\%	2\%	3\%	N/A	0\%	4\%	N/A	N/A	1\%
Median	5\%	1\%	3\%	N/A	0\%	4\%	N/A	N/A	1\%
High	5\%	10\%	4\%	N/A	0\%	4\%	N/A	N/A	1\%
Low	5\%	-5\%	3\%	N/A	0\%	4\%	N/A	N/A	1\%
10.1 to 30									
Landscaping	Light	Light	Light	Medium	Medium	Medium	Heavy	Heavy	Heavy
Distance	100-200	201-500	500+	100-200	201-500	500+	100-200	201-500	500+
\#	0	3	2	0	0	1	0	0	0
Average	N/A	4\%	-1\%	N/A	N/A	-3\%	N/A	N/A	N/A
Median	N/A	5\%	-1\%	N/A	N/A	-3\%	N/A	N/A	N/A
High	N/A	7\%	0\%	N/A	N/A	-3\%	N/A	N/A	N/A
Low	N/A	0\%	-1\%	N/A	N/A	-3\%	N/A	N/A	N/A

Landscaping Distance	$\begin{gathered} \text { Light } \\ \text { 100-200 } \end{gathered}$	$\begin{gathered} \text { Light } \\ 201-500 \end{gathered}$	Light 500+	$\begin{aligned} & \text { Medium } \\ & 100-200 \end{aligned}$	$\begin{aligned} & \text { Medium } \\ & \text { 201-500 } \end{aligned}$	$\begin{gathered} \text { Medium } \\ 500^{+} \end{gathered}$	$\begin{gathered} \text { Heavy } \\ \text { 100-200 } \end{gathered}$	$\begin{gathered} \text { Heavy } \\ 201-500 \end{gathered}$	Heavy 500+
\#	0	2	3	0	0	4	0	0	0
Average	N/A	1\%	0\%	N/A	N/A	0\%	N/A	N/A	N/A
Median	N/A	1\%	0\%	N/A	N/A	0\%	N/A	N/A	N/A
High	N/A	2\%	2\%	N/A	N/A	9\%	N/A	N/A	N/A
Low	N/A	1\%	-2\%	N/A	N/A	-7\%	N/A	N/A	N/A

Landscaping Distance	$\begin{gathered} \text { Light } \\ \text { 100-200 } \end{gathered}$	$\begin{gathered} \text { Light } \\ \text { 201-500 } \end{gathered}$	Light 500+	Medium 100-200	$\begin{aligned} & \text { Medium } \\ & 201-500 \end{aligned}$	$\begin{gathered} \text { Medium } \\ 500^{+} \end{gathered}$	$\begin{gathered} \text { Heavy } \\ \text { 100-200 } \end{gathered}$	$\begin{gathered} \text { Heavy } \\ 201-500 \end{gathered}$	Heavy 500+
\#	0	2	5	0	0	2	0	0	1
Average	N/A	-3\%	2\%	N/A	N/A	1\%	N/A	N/A	0\%
Median	N/A	-3\%	4\%	N/A	N/A	1\%	N/A	N/A	0\%
High	N/A	5\%	5\%	N/A	N/A	4\%	N/A	N/A	0\%
Low	N/A	-10\%	-3\%	N/A	N/A	-2\%	N/A	N/A	0\%

C. Summary of National Data on Solar Farms

I have worked in 19 states related to solar farms and I have been tracking matched pairs in most of those states. On the following pages I provide a brief summary of those findings showing 37 solar farms over 5 MW studied with each one providing matched pair data supporting the findings of this report.

The solar farms summary is shown below with a summary of the matched pair data shown on the following page.

From these 37 solar farms, I have derived 94 matched pairs. The matched pairs show no negative impact at distances as close as 105 feet between a solar panel and the nearest point on a home. The range of impacts is -10% to $+10 \%$ with an average and median of $+1 \%$.

	M W	Avg.	Distance	Indicated
Impact				

While the range is broad, the two charts below show the data points in range from lowest to highest. There is only 3 data points out of 94 that show a negative impact. The rest support either a finding of no impact or 9 of the data points suggest a positive impact due to adjacency to a solar farm. As discussed earlier in this report, I consider this data to strongly support a finding of no impact on value as most of the findings are within typical market variation and even within that, most are mildly positive findings.

D. Larger Solar Farms

I have also considered larger solar farms to address impacts related to larger projects. Projects have been increasing in size and most of the projects between 100 and 1000 MW are newer with little time for adjoining sales. I have included a breakdown of solar farms with 20 MW to 80 MW facilities with one 617 MW facility.

Matched Pair Summary - 20 MW And Larger						Adj. Uses By Acreage					1 mile Radius (2010-2019 Data)			
						Topo Shift						Med.	Avg. Housing	Veg.
	Name	City	State	Acres	MW		Res	Ag	Ag/Res	Com/Ind	Popl.	Income	Unit	Buffer
1	Summit	Moyock	NC	2,034	80.00	4	4\%	0\%	94\%	2\%	382	\$79,114	\$281,731	Light
2	Manatee	Parrish	FL	1,180	75.00	20	2\%	97\%	1\%	0\%	48	\$75,000	\$291,667	Heavy
3	McBride	Midland	NC	627	75.00	140	12\%	10\%	78\%	0\%	398	\$63,678	\$256,306	Lt to Med
4	Grand Ridge	Streator	IL	160	20.00	1	8\%	87\%	5\%	0\%	96	\$70,158	\$187,037	Light
5	Clarke Cnty	White Post	VA	234	20.00	70	14\%	39\%	46\%	1\%	578	\$81,022	\$374,453	Light
6	Simon	Social Circle	GA	237	30.00	71	1\%	63\%	36\%	0\%	203	\$76,155	\$269,922	Medium
7	Walker	Barhamsville	VA	485	20.00	N/A	12\%	68\%	20\%	0\%	203	\$80,773	\$320,076	Light
8	Innov 46	Hope Mills	NC	532	78.50	0	17\%	83\%	0\%	0\%	2,247	\$58,688	\$183,435	Light
9	Innov 42	Fayetteville	NC	414	71.00	0	41\%	59\%	0\%	0\%	568	\$60,037	\$276,347	Light
10	Demille	Lapeer	MI	160	28.40	10	10\%	68\%	0\%	22\%	2,010	\$47,208	\$187,214	Light
11	Turrill	Lapeer	MI	230	19.60	10	75\%	59\%	0\%	25\%	2,390	\$46,839	\$110,361	Light
12	Picure Rocks	Tucson	AZ	182	20.00	N/A	6\%	88\%	6\%	0\%	102	\$81,081	\$280,172	Light
13	Avra Valley	Tucson	AZ	246	25.00	N/A	3\%	94\%	3\%	0\%	85	\$80,997	\$292,308	None
14	Sappony	Stony Crk	VA	322	20.00	N/A	2\%	98\%	0\%	0\%	74	\$51,410	\$155,208	None
15	Grandy	Grandy	NC	121	20.00	10	55\%	24\%	0\%	21\%	949	\$50,355	\$231,408	Medium
16	Barefoot Bay	Barefoot Bay	FL	504	74.50	0	11\%	87\%	0\%	3\%	2,446	\$36,737	\$143,320	Lt to Med
17	Miami-Dade	Miami	FL	347	74.50	0	26\%	74\%	0\%	0\%	127	\$90,909	\$403,571	Light
18	Spotyslvania	Paytes	VA	3,500	617.00	160	37\%	52\%	11\%	0\%	74	\$120,861	\$483,333	Med to Hvy
	Average			640	76.03		19\%	64\%	17\%	4\%	721	\$69,501	\$262,659	
	Median			335	29.20		12\%	68\%	2\%	0\%	293	\$72,579	\$273,135	
	High			3,500	617.00		75\%	98\%	94\%	25\%	2,446	\$120,861	\$483,333	
	Low			121	19.60		1\%	0\%	0\%	0\%	48	\$36,737	\$110,361	

The breakdown of adjoining uses, population density, median income and housing prices for these projects are very similar to those of the larger set. The matched pairs for each of these were considered earlier and support a finding of no negative impact on the adjoining home values.

I have included a breakdown of solar farms with 50 MW to 617 MW facilities adjoining.

Matched Pair Summary - @ 50 MW And Larger						Adj. Uses By Acreage					1 mile Radius (2010-2019 Data)			
	Name	City	State	Acres	MW	Topo Shift	Res	Ag	Ag/Res	Com/Ind	Popl.	Med. Income	Avg. Housing Unit	Veg. Buffer
1	Summit	Moyock	NC	2,034	80.00	4	4\%	0\%	94\%	2\%	382	\$79,114	\$281,731	Light
2	Manatee	Parrish	FL	1,180	75.00	20	2\%	97\%	1\%	0\%	48	\$75,000	\$291,667	Heavy
3	McBride	Midland	NC	627	75.00	140	12\%	10\%	78\%	0\%	398	\$63,678	\$256,306	Lt to Med
4	Innov 46	Hope Mills	NC	532	78.50	0	17\%	83\%	0\%	0\%	2,247	\$58,688	\$183,435	Light
5	Innov 42	Fayetteville	NC	414	71.00	0	41\%	59\%	0\%	0\%	568	\$60,037	\$276,347	Light
6	Barefoot Bay	Barefoot Bay	FL	504	74.50	0	11\%	87\%	0\%	3\%	2,446	\$36,737	\$143,320	Lt to Med
7	Miami-Dade	Miami	FL	347	74.50	0	26\%	74\%	0\%	0\%	127	\$90,909	\$403,571	Light
8	Spotyslvania	Paytes	VA	3,500	617.00	160	37\%	52\%	11\%	0\%	74	\$120,861	\$483,333	Med to Hvy
	Average			1,142	143.19		19\%	58\%	23\%	1\%	786	\$73,128	\$289,964	
	Median			580	75.00		15\%	67\%	0\%	0\%	390	\$69,339	\$279,039	
	High			3,500	617.00		41\%	97\%	94\%	3\%	2,446	\$120,861	\$483,333	
	Low			347	71.00		2\%	0\%	0\%	0\%	48	\$36,737	\$143,320	

The breakdown of adjoining uses, population density, median income and housing prices for these projects are very similar to those of the larger set. The matched pairs for each of these were considered earlier and support a finding of no negative impact on the adjoining home values.

The data for these larger solar farms is shown in the SE USA and the National data breakdowns with similar landscaping, setbacks and range of impacts that fall mostly in the $+/-5 \%$ range as can be seen earlier in this report.

On the following page I show 81 projects ranging in size from 50 MW up to $1,000 \mathrm{MW}$ with an average size of 111.80 MW and a median of 80 MW . The average closest distance for an adjoining home is 263 feet, while the median distance is 188 feet. The closest distance is 57 feet. The mix of adjoining uses is similar with most of the adjoining uses remaining residential or agricultural in nature. This is the list of solar farms that I have researched for possible matched pairs and not a complete list of larger solar farms in those states.

	City	Name	Output Total		UsedAcres	Avg. Dist Closest Adjoining Use by Acre					
Parcel \# State			(MW)	Acres		to home	Home	Res	Agri	Ag/R	Com
78 NC	Moyock	Summit/Ranchland	80	2034		674	360	4\%	94\%	0\%	2\%
133 MS	Hattiesburg	Hattiesburg	50	1129	479.6	650	315	35\%	65\%	0\%	0\%
179 SC	Ridgeland	Jasper	140	1600	1000	461	108	2\%	85\%	13\%	0\%
211 NC	Enfield	Chestnut	75	1428.1		1,429	210	4\%	96\%	0\%	0\%
222 VA	Chase City	Grasshopper	80	946.25				6\%	87\%	5\%	1\%
226 VA	Louisa	Belcher	88	1238.1			150	19\%	53\%	28\%	0\%
305 FL	Dade City	Mountain View	55	347.12		510	175	32\%	39\%	21\%	8\%
319 FL	Jasper	Hamilton	74.9	1268.9	537	3,596	240	5\%	67\%	28\%	0\%
336 FL	Parrish	Manatee	74.5	1180.4		1,079	625	2\%	50\%	1\%	47\%
337 FL	Arcadia	Citrus	74.5	640				0\%	0\%	100\%	0\%
338 FL	Port Charlotte	Babcock	74.5	422.61				0\%	0\%	100\%	0\%
353 VA	Oak Hall	Amazon East(ern st	80	1000		645	135	8\%	75\%	17\%	0\%
364 VA	Stevensburg	Greenwood	100	2266.6	1800	788	200	8\%	62\%	29\%	0\%
368 NC	Warsaw	Warsaw	87.5	585.97	499	526	130	11\%	66\%	21\%	3\%
390 NC	Ellerbe	Innovative Solar 34	50	385.24	226	N/A	N / A	1\%	99\%	0\%	0\%
399 NC	Midland	McBride	74.9	974.59	627	1,425	140	12\%	78\%	9\%	0\%
400 FL	Mulberry	Alafia	51	420.35		490	105	7\%	90\%	3\%	0\%
406 VA	Clover	Foxhound	91	1311.8		885	185	5\%	61\%	17\%	18\%
410 FL	Trenton	Trenton	74.5	480		2,193	775	0\%	26\%	55\%	19\%
411 NC	Battle boro	Fern	100	1235.4	960.71	1,494	220	5\%	76\%	19\%	0\%
412 MD	Golds boro	Cherrywood	202	1722.9	1073.7	429	200	10\%	76\%	13\%	0\%
434 NC	Conetoe	Conetoe	80	1389.9	910.6	1,152	120	5\%	78\%	17\%	0\%
440 FL	Debary	Debary	74.5	844.63		654	190	3\%	27\%	0\%	70\%
441 FL	Hawthorne	Horizon	74.5	684				3\%	81\%	16\%	0\%
484 VA	Newsoms	Southampton	100	3243.9		-	-	3\%	78\%	17\%	3\%
486 VA	Stuarts Draft	Augusta	125	3197.4	1147	588	165	16\%	61\%	16\%	7\%
491 NC	Misenheimer	Misenheimer 2018	80	740.2	687.2	504	130	11\%	40\%	22\%	27\%
494 VA	Shacklefords	Walnut	110	1700	1173	641	165	14\%	72\%	13\%	1\%
496 VA	Clover	Piney Creek	80	776.18	422	523	195	15\%	62\%	24\%	0\%
511 NC	Scotland Neck	American Beech	160	3255.2	1807.8	1,262	205	2\%	58\%	38\%	3\%
514 NC	Reidsville	Williamsburg	80	802.6	507	734	200	25\%	12\%	63\%	0\%
517 VA	Luray	Cape	100	566.53	461	519	110	42\%	12\%	46\%	0\%
518 VA	Emporia	Fountain Creek	80	798.3	595	862	300	6\%	23\%	71\%	0\%
525 NC	Plymouth	Macadamia	484	5578.7	4813.5	1,513	275	1\%	90\%	9\%	0\%
526 NC	Mooresboro	Broad River	50	759.8	365	419	70	29\%	55\%	16\%	0\%
555 FL	Mulberry	Durrance	74.5	463.57	324.65	438	140	3\%	97\%	0\%	0\%
560 NC	Yadkinville	Sugar	60	477	357	382	65	19\%	39\%	20\%	22\%
561 NC	Enfield	Halifax 80mw 2019	80	1007.6	1007.6	672	190	8\%	73\%	19\%	0\%
577 VA	Windsor	Windsor	85	564.1	564.1	572	160	9\%	67\%	24\%	0\%
579 VA	Paytes	Spotsylvania	500	6412	3500			9\%	52\%	11\%	27\%
582 NC	Salisbury	China Grove	65	428.66	324.26	438	85	58\%	4\%	38\%	0\%
583 NC	Walnut Cove	Lick Creek	50	1424	185.11	410	65	20\%	64\%	11\%	5\%
584 NC	Enfield	Sweetleaf	94	1956.3	1250	968	160	5\%	63\%	32\%	0\%
586 VA	Aylett	Sweet Sue	77	1262	576	1,617	680	7\%	68\%	25\%	0\%
593 NC	Windsor	Sumac	120	3360.6	1257.9	876	160	4\%	90\%	6\%	0\%
599 TN	Somerville	Yum Yum	147	4000	1500	1,862	330	3\%	32\%	64\%	1\%
602 GA	Waynesboro	White Oak	76.5	516.7	516.7	2,995	1,790	1\%	34\%	65\%	0\%
603 GA	Butler	Butler GA	103	2395.1	2395.1	1,534	255	2\%	73\%	23\%	2\%
604 GA	Butler	White Pine	101.2	505.94	505.94	1,044	100	1\%	51\%	48\%	1\%
605 GA	Metter	Live Oak	51	417.84	417.84	910	235	4\%	72\%	23\%	0\%
606 GA	Hazelhurst	Hazelhurst II	52.5	947.15	490.42	2,114	105	9\%	64\%	27\%	0\%
607 GA	Bainbridge	Decatur Parkway	80	781.5	781.5	1,123	450	2\%	27\%	22\%	49\%
608 GA	Leslie-DeSoto	Americus	1000	9661.2	4437	5,210	510	1\%	63\%	36\%	0\%
616 FL	Fort White	Fort White	74.5	570.5	457.2	828	220	12\%	71\%	17\%	0\%
621 VA	Spring Grove	Loblolly	150	2181.9	1000	1,860	110	7\%	62\%	31\%	0\%
622 VA	Scottsville	Woodridge	138	2260.9	1000	1,094	170	9\%	63\%	28\%	0\%
625 NC	Middlesex	Phobos	80	754.52	734	356	57	14\%	75\%	10\%	0\%
628 MI	Deerfield	Carroll Road	200	1694.8	1694.8	343	190	12\%	86\%	0\%	2\%
633 VA	Emporia	Brunswick	150.2	2076.4	1387.3	1,091	240	4\%	85\%	11\%	0\%
634 NC	Elkin	Partin	50	429.4	257.64	945	155	30\%	25\%	15\%	30\%

Parcel \# State	City	Name	Output Total		Used Acres	Avg. Dist to home	Home	Res	Agri	e by Acre	
			(MW)	Acres						Ag/R	Com
638 GA	Dry Branch	Twiggs	200	2132.7	2132.7	-	-	10\%	55\%	35\%	0\%
639 NC	Hope Mills	Innovative Solar 46	78.5	531.87	531.87	423	125	17\%	83\%	0\%	0\%
640 NC	Hope Mills	Innovative Solar 42	71	413.99	413.99	375	135	41\%	59\%	0\%	0\%
645 NC	Stanley	Hornet	75	1499.5	858.4	663	110	30\%	40\%	23\%	6\%
650 NC	Grifton	Grifton 2	56	681.59	297.6	363	235	1\%	99\%	0\%	0\%
651 NC	Grifton	Buckleberry	52.1	367.67	361.67	913	180	5\%	54\%	41\%	0\%
657 KY	Greensburg	Horseshoe Bend	60	585.65	395	1,394	63	3\%	36\%	61\%	0\%
658 KY	Campbellsville	Flat Run	55	429.76	429.76	408	115	13\%	52\%	35\%	0\%
666 FL	Archer	Archer	74.9	636.94	636.94	638	200	43\%	57\%	0\%	0\%
667 FL	New Smyrna Beє	Pioneer Trail	74.5	1202.8	900	1,162	225	14\%	61\%	21\%	4\%
668 FL	Lake City	Sunshine Gateway	74.5	904.29	472	1,233	890	11\%	80\%	8\%	0\%
669 FL	Florahome	Coral Farms	74.5	666.54	580	1,614	765	19\%	75\%	7\%	0\%
672 VA	Appomattox	Spout Spring	60	881.12	673.37	836	335	16\%	30\%	46\%	8\%
676 TX	Stamford	Alamo 7	106.4	1663.1	1050	-	-	6\%	83\%	0\%	11\%
677 TX	Fort Stockton	RE Roserock	160	1738.2	1500	-	-	0\%	100\%	0\%	0\%
678 TX	Lamesa	Lamesa	102	914.5	655	921	170	4\%	41\%	11\%	44\%
679 TX	Lamesa	Ivory	50	706	570	716	460	0\%	87\%	2\%	12\%
680 TX	Uvalde	Alamo 5	95	830.35	800	925	740	1\%	93\%	6\%	0\%
684 NC	Waco	Brookcliff	50	671.03	671.03	560	150	7\%	21\%	15\%	57\%
689 AZ	Arlington	Mesquite	320.8	3774.5	2617	1,670	525	8\%	92\%	0\%	0\%
692 AZ	Tucson	Avalon	51	479.21	352	-	-	0\%	100\%	0\%	0\%
			81								
		Average	111.80	1422.4	968.4	1031	263	10\%	62\%	22\%	6\%
		Median	80.00	914.5	646.0	836	188	7\%	64\%	17\%	0\%
		High	1000.00	9661.2	4813.5	5210	1790	58\%	100\%	100\%	70\%
		Low	50.00	347.1	185.1	343	57	0\%	0\%	0\%	0\%

IX. Distance Between Homes and Panels

I have measured distances at matched pairs as close as 105 feet between panel and home to show no impact on value. This measurement goes from the closest point on the home to the closest solar panel. This is a strong indication that at this distance there is no impact on adjoining homes.

However, in tracking other approved solar farms across Kentucky, North Carolina and other states, I have found that it is common for there to be homes within 100 to 150 feet of solar panels. Given the visual barriers in the form of privacy fencing or landscaping, there is no sign of negative impact.

I have also tracked a number of locations where solar panels are between 50 and 100 feet of singlefamily homes. In these cases the landscaping is typically a double row of more mature evergreens at time of planting. There are many examples of solar farms with one or two homes closer than 100feet, but most of the adjoining homes are further than that distance.

X. Topography

As shown on the summary charts for the solar farms, I have been identifying the topographic shifts across the solar farms considered. Differences in topography can impact visibility of the panels, though typically this results in distant views of panels as opposed to up close views. The topography noted for solar farms showing no impact on adjoining home values range from as much as 160 -foot shifts across the project. Given that appearance is the only factor of concern and that distance plus landscape buffering typically addresses up close views, this leaves a number of potentially distant views of panels. I specifically note that in Crittenden in KY there are distant views of panels from the adjoining homes that showed no impact on value.

General rolling terrain with some distant solar panel views are showing no impact on adjoining property value.

XI. Potential Impacts During Construction

I have previously been asked by the Kentucky Siting Board about potential impacts during construction. This is not a typical question I get as any development of a site will have a certain amount of construction, whether it is for a commercial agricultural use such as large-scale poultry operations or a new residential subdivision. Construction will be temporary and consistent with other development uses of the land and in fact dust from the construction will likely be less than most other construction projects given the minimal grading. I would not anticipate any impacts on property value due to construction on the site.

I note that in the matched pairs that I have included there have been a number of home sales that happened after a solar farm was approved but before the solar farm was built showing no impact on property value. Therefore the anticipated construction had no impact as shown by that data.

XII. Scope of Research

I have researched over 800 solar farms and sites on which solar farms are existing and proposed in Kentucky, Illinois, Tennessee, North Carolina, Virginia as well as other states to determine what uses are typically found in proximity with a solar farm. The data I have collected and provide in this report strongly supports the assertion that solar farms are having no negative consequences on adjoining agricultural and residential values.

Beyond these references, I have quantified the adjoining uses for a number of solar farm comparables to derive a breakdown of the adjoining uses for each solar farm. The chart below shows the breakdown of adjoining or abutting uses by total acreage.

Percentage By Adjoining Acreage									
						Closest		All Res All Comm	
	Res	Ag	Res/AG	Comm	Ind	Avg Home	Home	Uses	Uses
Average	19\%	53\%	20\%	2\%	6\%	887	344	91\%	8\%
Median	11\%	56\%	11\%	0\%	0\%	708	218	100\%	0\%
High	100\%	100\%	100\%	93\%	98\%	5,210	4,670	100\%	98\%
Low	0\%	0\%	0\%	0\%	0\%	90	25	0\%	0\%

Res $=$ Residential, Ag = Agriculture, Com = Commercial

Total Solar Farms Considered: 705

I have also included a breakdown of each solar farm by number of adjoining parcels to the solar farm rather than based on adjoining acreage. Using both factors provides a more complete picture of the neighboring properties.

Percentage By Number of Parcels Adjoining									
	Res	Ag	Res/AG	Comm	Ind	Avg Home	Closest Home	All Res Uses	1 Comm Uses
Average	61\%	24\%	9\%	2\%	4\%	887	344	93\%	6\%
Median	65\%	19\%	5\%	0\%	0\%	708	218	100\%	0\%
High	100\%	100\%	100\%	60\%	78\%	5,210	4,670	105\%	78\%
Low	0\%	0\%	0\%	0\%	0\%	90	25	0\%	0\%
Res = Residential, Ag = Agriculture, Com = Commercial									
Total Solar Farms Considered: 705									

Both of the above charts show a marked residential and agricultural adjoining use for most solar farms. Every single solar farm considered included an adjoining residential or residential/agricultural use.

XIII. Specific Factors Related To Impacts on Value

I have completed a number of Impact Studies related to a variety of uses and I have found that the most common areas for impact on adjoining values typically follow a hierarchy with descending levels of potential impact. I will discuss each of these categories and how they relate to a solar farm.

1. Hazardous material
2. Odor
3. Noise
4. Traffic
5. Stigma
6. Appearance

1. Hazardous material

A solar farm presents no potential hazardous waste byproduct as part of normal operation. Any fertilizer, weed control, vehicular traffic, or construction will be significantly less than typically applied in a residential development and even most agricultural uses.

The various solar farms that I have inspected and identified in the addenda have no known environmental impacts associated with the development and operation.

2. Odor

The various solar farms that I have inspected produced no odor.

3. Noise

Whether discussing passive fixed solar panels, or single-axis trackers, there is no negative impact associated with noise from a solar farm. The transformer reportedly has a hum similar to an HVAC that can only be heard in close proximity to this transformer and the buffers on the property are sufficient to make emitted sounds inaudible from the adjoining properties. No sound is emitted from the facility at night.

The various solar farms that I have inspected were inaudible from the roadways.

4. Traffic

The solar farm will have no onsite employee's or staff. The site requires only minimal maintenance. Relative to other potential uses of the site (such as a residential subdivision), the additional traffic generated by a solar farm use on this site is insignificant.

5. Stigma

There is no stigma associated with solar farms and solar farms and people generally respond favorably towards such a use. While an individual may express concerns about proximity to a solar farm, there is no specific stigma associated with a solar farm. Stigma generally refers to things such as adult establishments, prisons, rehabilitation facilities, and so forth.

Solar panels have no associated stigma and in smaller collections are found in yards and roofs in many residential communities. Solar farms are adjoining elementary, middle and high schools as well as churches and subdivisions. I note that one of the solar farms in this report not only adjoins a church, but is actually located on land owned by the church. Solar panels on a roof are often cited as an enhancement to the property in marketing brochures.

I see no basis for an impact from stigma due to a solar farm.

6. Appearance

I note that larger solar farms using fixed or tracking panels are a passive use of the land that is in keeping with a rural/residential area. As shown below, solar farms are comparable to larger greenhouses. This is not surprising given that a greenhouse is essentially another method for collecting passive solar energy. The greenhouse use is well received in residential/rural areas and has a similar visual impact as a solar farm.

The solar panels are all less than 15 feet high, which means that the visual impact of the solar panels will be similar in height to a typical greenhouse and lower than a single story residential dwelling. Were the subject property developed with single family housing, that development would have a much greater visual impact on the surrounding area given that a two-story home with attic could be three to four times as high as these proposed panels.

Whenever you consider the impact of a proposed project on viewshed or what the adjoining owners may see from their property it is important to distinguish whether or not they have a protected viewshed or not. Enhancements for scenic vistas are often measured when considering properties that adjoin preserved open space and parks. However, adjoining land with a preferred view today conveys no guarantee that the property will continue in the current use. Any consideration of the impact of the appearance requires a consideration of the wide variety of other uses a property already has the right to be put to, which for solar farms often includes subdivision development, agricultural business buildings such as poultry, or large greenhouses and the like.

Dr. Randall Bell, MAI, PhD, and author of the book Real Estate Damages, Third Edition, on Page 146 "Views of bodies of water, city lights, natural settings, parks, golf courses, and other amenities are considered desirable features, particularly for residential properties." Dr. Bell continues on Page 147 that "View amenities may or may not be protected by law or regulation. It is sometimes argued that views have value only if they are protected by a view easement, a zoning ordinance, or covenants, conditions, and restrictions (CC\&Rs), although such protections are relatively
uncommon as a practical matter. The market often assigns significant value to desirable views irrespective of whether or not such views are protected by law."

Dr. Bell concludes that a view enhances adjacent property, even if the adjacent property has no legal right to that view. He then discusses a "borrowed" view where a home may enjoy a good view of vacant land or property beyond with a reasonable expectation that the view might be partly or completely obstructed upon development of the adjoining land. He follows that with "This same concept applies to potentially undesirable views of a new development when the development conforms to applicable zoning and other regulations. Arguing value diminution in such cases is difficult, since the possible development of the offending property should have been known." In other words, if there is an allowable development on the site then arguing value diminution with such a development would be difficult. This further extends to developing the site with alternative uses that are less impactful on the view than currently allowed uses.

This gets back to the point that if a property has development rights and could currently be developed in such a way that removes the viewshed such as a residential subdivision, than a less intrusive use such as a solar farm that is easily screened by landscaping would not have a greater impact on the viewshed of any perceived value adjoining properties claim for viewshed. Essentially, if there are more impactful uses currently allowed, then there is no viewshed enhancement to adjoining parcels.

7. Conclusion

On the basis of the factors described above, it is my professional opinion that the proposed solar farm will not negatively impact adjoining property values. The only category of impact of note is appearance, which is addressed through setbacks and landscaping buffers. The matched pair data supports that conclusion.

XIV. Conclusion

The matched pair analysis shows no negative impact in home values due to abutting or adjoining a solar farm as well as no impact to abutting or adjacent vacant residential or agricultural land. The proposed setbacks are further than those measured showing no impact for similar price ranges of homes and for areas with similar demographics to the subject area. The criteria that typically correlates with downward adjustments on property values such as noise, odor, and traffic all support a finding of no impact on property value.

Very similar solar farms in very similar areas have been found by hundreds of towns and counties not to have a substantial injury to abutting or adjoining properties, and many of those findings of no impact have been upheld by appellate courts. Similar solar farms have been approved adjoining agricultural uses, schools, churches, and residential developments.

I have found no difference in the mix of adjoining uses or proximity to adjoining homes based on the size of a solar farm and I have found no significant difference in the matched pair data adjoining larger solar farms versus smaller solar farms. The data in the Southeast is consistent with the larger set of data that I have nationally, as is the more specific data located in and around Kentucky.

Based on the data and analysis in this report, it is my professional opinion that the solar farm proposed at the subject property will have no negative impact on the value of adjoining or abutting property. I note that some of the positive implications of a solar farm that have been expressed by people living next to solar farms include protection from future development of residential developments or other more intrusive uses, reduced dust, odor and chemicals from former farming operations, protection from light pollution at night, it's quiet, and there is no traffic.

Professional Experience
Kirkland Appraisals, LLC, Raleigh, N.C. 2003 - Present
Commercial appraiser
Hester \& Company, Raleigh, N.C. Commercial appraiser

$$
1996-2003
$$

Professional Affiliations
MAI (Member, Appraisal Institute) designation \#11796 2001
NC State Certified General Appraiser \# A4359 1999
VA State Certified General Appraiser \# 4001017291
SC State Certified General Appraiser \# 6209
FL State Certified General Appraiser \# RZ3950
GA State Certified General Appraiser \# 321885
MI State Certified General Appraiser \# 1201076620
PA State Certified General Appraiser \# GA004598
OH State Certified General Appraiser \# 2021008689
IN State Certified General Appraiser \# CG42100052
EdUCATION
Bachelor of Arts in English, University of North Carolina, Chapel Hill 1993
Continuing Education
Uniform Standards of Professional Appraisal Practice Update 2022
Sexual Harassment Prevention Training 2021
Appraisal of Land Subject to Ground Leases 2021
Michigan Appraisal Law 2020
Uniform Standards of Professional Appraisal Practice Update 2020
Uniform Appraisal Standards for Federal Land Acquisitions (Yellow Book) 2019
The Cost Approach 2019
Income Approach Case Studies for Commercial Appraisers 2018
Introduction to Expert Witness Testimony for Appraisers 2018
Appraising Small Apartment Properties 2018
Florida Appraisal Laws and Regulations 2018
Uniform Standards of Professional Appraisal Practice Update 2018
Appraisal of REO and Foreclosure Properties 2017
Appraisal of Self Storage Facilities 2017
Land and Site Valuation 2017
NCDOT Appraisal Principles and Procedures 2017
Uniform Standards of Professional Appraisal Practice Update 2016
Forecasting Revenue 2015
Wind Turbine Effect on Value 2015
Supervisor/Trainee Class 2015
Business Practices and Ethics 2014
Subdivision Valuation 2014
Uniform Standards of Professional Appraisal Practice Update 2014
Introduction to Vineyard and Winery Valuation 2013
Appraising Rural Residential Properties 2012
Uniform Standards of Professional Appraisal Practice Update 2012
Supervisors/Trainees 2011
Rates and Ratios: Making sense of GIMs, OARs, and DCFs 2011
Advanced Internet Search Strategies 2011
Analyzing Distressed Real Estate 2011
Uniform Standards of Professional Appraisal Practice Update 2011
Business Practices and Ethics 2011
Appraisal Curriculum Overview (2 Days - General) 2009
Appraisal Review - General 2009
Uniform Standards of Professional Appraisal Practice Update 2008
Subdivision Valuation: A Comprehensive Guide 2008
Office Building Valuation: A Contemporary Perspective 2008
Valuation of Detrimental Conditions in Real Estate 2007
The Appraisal of Small Subdivisions 2007
Uniform Standards of Professional Appraisal Practice Update 2006
Evaluating Commercial Construction 2005
Conservation Easements 2005
Uniform Standards of Professional Appraisal Practice Update 2004
Condemnation Appraising 2004
Land Valuation Adjustment Procedures 2004
Supporting Capitalization Rates 2004
Uniform Standards of Professional Appraisal Practice, C 2002
Wells and Septic Systems and Wastewater Irrigation Systems 2002
Appraisals 2002 2002
Analyzing Commercial Lease Clauses 2002
Conservation Easements 2000
Preparation for Litigation 2000
Appraisal of Nonconforming Uses 2000
Advanced Applications 2000
Highest and Best Use and Market Analysis 1999
Advanced Sales Comparison and Cost Approaches 1999
Advanced Income Capitalization 1998
Valuation of Detrimental Conditions in Real Estate 1999
Report Writing and Valuation Analysis 1999
Property Tax Values and Appeals 1997
Uniform Standards of Professional Appraisal Practice, A \& B 1997
Basic Income Capitalization 1996

SAR Exhibit C

HUMMINGBIRD SOLAR PROJECT PARCEL CONSTRAINTS MAP

FLEMING COUNTY, KENTUCKY

Fleming County, Kentucky

Westwood

RECURR=NT EN=RGY

Hummingbird
 Solar Project

Fleming County, Kentucky

Westwood
等

RECURR=NT EN=RGY

$\xrightarrow{\text { mamese }}$ (coment
LEGEND:
-

Hummingbird Solar Project

Fleming County, Kentucky

Westwood
 CAn

RECURR=NT EN=RGY

Hummingbird Solar Project

Fleming County, Kentucky

GENEVA EARLS

EGAL DESCRIPTIONS:

sChedule b-il Exceptions:

THE Fouownic matres affect The parce liscrebe above

UEAND ownc: 39339

eric carpenter and aileen m. CARPENTER

LEGAL DESCRIPTIONS:

9 Efective ate peccespr 201

tract one

 теаст тwo.

 \qquad
 \qquad

SCHEDULE B-II EXCEPTIONS:

Colowng Matresaffect The racti osccrbed above

 \qquad

ULA GRACE SKAGGS

EGAL DESCRIPTIONS:

tract one:

TAX IO No: 0800.000.00.012.0

теаст wo:
 $\underset{\substack{\text { frist rac } \\ \text { Aolomic } \\ \hline}}{ }$

teact trube and four.
ERST Tract:

 \qquad

scono trac

TAXID No: 088.40.000.001.00

tract fou

begnnng intecentro of the m.

Tax 10 No: 080.00.000.008.00

SCHEDULE B-II EXCEPTIONS:

THE FOUOWNG Matters Afect He react oiscribed above

preananer parci number o81.00.000.001.
pemanent parce

JIMMY D. KEGLEY AND GERALDINE V. KEGELY

LEGAL DESCRIPTIONS

Hummingbird Solar Project

,

(2)

Westwood

RECURR=NT EN=RGY

JIMMY D. KEGLEY AND GERALDINE V. KEGLEY (CONTINUED)

CCHEDUE 8 . 1 EXCPTIONS:

enven mantrantith Parcll Discribe Above

MARY LOU STEPHENS

LEGAL DESCRIPTIONS:

tract one:

tithe bisk
TRact wo

CHEDULE B-IIEXCEPTIONS:

.

THOMAS M. SKAGGS

EGAL DESCRIPTIONS:

 tract one

тваст тwo:

 теаст thre

 SCHEDULE B-IIEXCPTIONS:
THE FOLOWNG Matties affect the ractis oiscribed above

Westwood

SHedule b-il exceptions:

He folowng matres affect rie tracts dsccribed above

PoSIED PAl: ST711.18

THe Falure to compry wrh the trens ano conotions of the occaumens nsuer underscheviea

LARRY M. COFFEY AND DAVETTA COFFEY

RECURR=NT EN=RGY

123 Mision Street FH 18 San francisco, CA 9105

LEGAL DESCRIPTIONS:

react:

 tract 2
 north basto ona prevous sunver oateo march 15,2002

suectionerer

(Continve on sheter 10)

Hummingbird Solar Project

Fleming County, Kentucky

LARRY M. COFFEY AND DAVETTA COFFEY (CONTINUED)

geneva earls

LEGAL DESCRIPTIONS:

Ie commine min

Conssinng of 419.92 ACRES LOCariEO IN feemng countr, entuckr, And Discribed as folows

SCHEDULE B-II EXCEPTIONS:

THE Folownc matters affec the faccl liscrabe above

KEVIN LEE O'CULL AND GWEN DEE O'CULL

LEGAL DESCRIPTIONS:

OWNER REVN LEE OCUU AND © Wene Def occul

 SCHEDULE B-II EXCEPTIONS:

 PAab surver Marter

RECURR=NT EN=RGY | 123 Mision Street $\mathrm{F}, 18$ |
| :---: |
| San Francisco, CA 9410 s |

DOTTIE A. LIST

LEGAL DESCRIPTIONS:
owner dotite .lus

SCHEDULE B-IEXCEPTION

TiE Folowng matres affect The parcl oiscribe above

 Solar Project

Fleming County, Kentucky

BEN PEACHY

EGGAL DESCRIPTIONS:

2n
Teact:

 FEET TO THE EGGNNING AND CONTANIGG H1000 ACRES

 теаст I:

 .
 follows:

 теаст 2

graniors Lff Estare nit
tract :

 sChedule b-ilexceptions

HE Folowng Matres affect The pacel osccribe above

Hummingbird

 Solar ProjectFleming County, Kentucky

SANDRA D. CAUDILL

LEGAL DESCRIPTIONS:

owner Sanora D Canoul

THeNce along the centr of said road for the folomw sx (f) cals.
North 15 DEG. 25 MIN. 48 SEC E EASt, 6502 F. TT O A Nal LsET:

Thence north 16 deg. 41 MN. 11 SCC EAST, 9998 ff. To A Nal (SEt),

Tence wit the south line of ract ro. 7 for the folowng five g) cals

Sol

THENCE NORTH 65 EEG. 3 MN. 48 SECC EAST, 17527 f. TOA A Post:

Tax ID No. :06.00.00.0.04500

SCHEDULE B-I EXCEPTIONS:

THE FOLOWNG Mattrs Affect tef Parcl liscribed above

SPENCER RAPP AND REBECCA RAPP

LEGAL DESCRIPTIONS:

parcel no.

 acen no.

теаст No..

 теаст по. III
Acgran frat of Land fooning on kenvick higwn

 Properr subiect to all legl light of wavs, Easements of recoor, unecorobe converances and exsting right of war

TaX 10 No. Or7 100.000 .00400

SCHEDULEB-IIEXCPPTIONS

Pe folowng Matres affect The faccl oscribe above

Pesiol Paic: 3, 15095

(Nota Sunver Mat Ier)

 feeming conntr, kentucar
 KNTA A SUNVVE Matiter)

RECURR=NT EN=RGY

Hummingbird Solar Project

Fleming County, Kentucky

ROBERT A. LIST AND CYNTHIA G. LIST

LEGAL DESCRIPTIONS:
ownereen herel

 Noen Contanme iosecil

SCHEDULE B-IIEXCEPTIONS:

10.

RICHARD E. LOWE

LEGAL DESCRIPTIONS

$\frac{\text { owner RCCARo E LOWE }}{\text { Tracts 1-4 }}$
 tract:
 tractr:
 теаст ${ }^{\text {T}}$
 tract 4

tract No.

 tract No. 2

 Rect No. 3

 tract no. 4

[^1]WASIIN 1 IS5.34.

Ax II No. 058.00:00.0.35.00

schedule b-inexceptions

HE Folowng Matres affect the parcel osccrbed above
 Postie Pali: 51,19529

 Not A SUVVE M Matien)

Westwood

\qquad

RECURR=NT EN=RGY

Hummingbird Solar Project

Fleming County, Kentucky

DONOHOO RAPP PROPERTIES, LLC, A KENTUCKY

LIMITED LIABILITY COMPANY

LEGAL DESCRIPTIONS:
OwNER Donohoo Rape proeesen
tract1 \qquad

 ractiz

 TAX IO No. O5.0.0.0.0.0.01000

SCHEDULE B-I EXCEPTIONS:

THe Folowng Matires Affect the paccl Discribed abol

\qquad

 Keñocky
(NOTA Suviver Matrep

ANDREW WOODSON GRAHAM

LEGAL DESCRIPTIONS:

SCHEDLE B-IIEXCPPTIONS:

The followng matrgs affect The paccel isccried Above

 not A Suvere matren

SHERRI GRIFFITH

EGAL DESCRIPTIONS:

оwnve Sutrel Gerffith
Rect No. 1

 reactno. 2

 Sact vo. 3

 reaction. 4

\qquad

Westwood

RECURR=NT EN=RGY

Hummingbird Solar Project

Fleming County, Kentucky

SHERRI GRIFFITH (CONTINUED)

LEGAL DESCRIPTION (CONTINUED)

TAX 10 No: 069.0.0.0.0.35:00

SCHEDULE B-IEXCEPTIONS:

 dianct in Narvive Nor tlolvable

ANDREW T. HEFLIN

LEGAL DESCRIPTIONS:

owner anorewt hefun

TAX I N No: 069.00 .000 .00200
THE F FLO
 ${ }^{\text {PeRMANENT PARCCI NUMBERR 069.00000.0020 }}$

RICK HORD AND TERESA HORD

LEGAL DESCRIPTIONS
TLie commiment no aоз887,
owner Rick horo anv tressa horo

 TAXI No: O6: 0.0.0.0.0.02400

SCHEDULE B-IIEXCEPTIONS:

RICK HORD AND TERESA HORD

LEGAL DESCRIPTIONS:

Machano

 Mix Man

Westwood

RECURR=NT EN=RGY

San Francisco, CA 94105	

Hummingbird

 Solar ProjectFleming County, Kentucky

RICK HORD AND TERESA HORD (CONTINUED)

LEGAL DESCRIPTION (CONTINUED)

prooprr subiect to all leal light of wars, Easemenis of fecoro and unrecorede converances.

TAXID No: S5900.000.00500

SCHEDULE B.| ExCEPTIONS:

1. General taxes sad assessment for the fiscal vear 2019, A follows: Not A suvver matten

2. Easten ins clams of easement and rights or clams of fartis in possssion not shown ey the fuelic recoros.

LYLE B. UTTERBACK AND VICKIE UTTERBACK

 LEGAL DESCRIPTIONS:

Properar subect to all uturnes.

\qquad

SCHEDULE B-IIEXCEPTIONS:

THE Followng Mattrs afect the parcl idscribe Above

DANNY MINEER, AS TO AN UNDIVIDED ONE-THIRD (1/3)
INTEREST, DARRELL MINEER AND KAREN MINEER, HIS WIFE, AS
TO AN UNDIVIDED ONE-THIRD (1/3) INTEREST, JAMES MINEER AND RUBY MINEER, HIS WIFE, AS TO AN UNDIVIDED ONE-THIRD (1/3) INTEREST

EGGAL DESCRIPTIONS:

SCHEDULE B-HEXCFPTIONS:

THE FOLOWUNG MATRES AFFGCTHE PARCCLDESCRBED ABOVE

JAMES CALVIN ROBINSON AND MARY MICHELLE ROBINSON

 LEGAL DESCRIPTIONS:

 and

Taxiono. 069.00.000.023.00

Chedule b-I ExCPTION

 CREMANEN PARCCL NUMBER 069000000.03300

Nater

,

JASON SCHWARTZ

LEGAL DESCRIPTIONS:

owner Ago N Schwartz

M
SIC CAP STAMP:T:TCGONE PISSIT

CHEDULE B-IIEXCEPTIONS:
The folowng matris affect the pacci describe above

 (Not A Suvve Mater)

\qquad

 (Nota suvever matren

DONALD EUGENE YOUNG AND SHARON K. YOUNG

LEGAL DESCRIPTIONS:
DAIE Jutr,2020

Less and oxcepr

 ano, Less ano becepr:

 anoaso uss an orcepr

react

TAX IO No: 059.0.0.00.012.00

SCHEDULEB-IIEXCEPTIONS:

THE Followng Mattrs afect the parcl idscribed above

MICHAEL HILL AND BARBARA L. HIL

LEGAL DESCRIPTIONS:

Westwood

 ax ID No. 085000.000.033.00

schedule b-in exceptions

narescreser
 poste Pal. S1.074.14

 (Not a suvever Mattre)

RECURR=NT EN=RGY

Hummingbird

 Solar ProjectFleming County, Kentucky

[^2]
James w. mineer and ruby f. mineer

LEGAL DESCRIPTIONS:

Atract of
foulows

TAX 10 No: 069.00000 .01200
${ }_{\text {react } 2}$

TAXII No: 081.00.00.007.700

SCHEDULE B-II ExCPPTIONS:

THE Folowng matres affect The parcl Discribe above,

EULA GRACE SKAGGS

LEGAL DESCRIPTIONS:

$\frac{\text { owner Elu Gract shacgs }}{\text { IRAct 1 }}$

 Properris subect to all Leal right of wars, easement of fecoro and uneccorped conveances Roofrry subect to all utumes.

tractr:
frost tract

 secono tract:

 Tax IONO: 081.40:00:000.0

SCHEDLE B-IEXCEPTIONS:

THe foluowing matres affect rie parce idscribed above

tract

tract 2

randall meadows and willa meadows

LEGAL DESCRIPTIONS:

Westwood
foll

SCHEDULE B-II EXCPPTIONS

The folowng matres affect the parcel oscribed Above

RECURR=NT EN=RGY

Hummingbird Solar Project

Fleming County, Kentucky

[^3]
DUANE R. LOWE

LEGAL DESCRIPTIONS:

\qquad

sChedule b-ilexceptions:

 (NOTA SUVVEV MARTE

ESTATE OF MARY ANN BREWER

LEGAL DESCRIPTIONS:

 Save and Excepr

 axxiono : 559000000000200

SCHEDLE B-IIEXCPTIONS:

THe folowng matres affect rie parcl loscribe above

 (NOTA SUuver Matrep

 (blanket in natue, not plotatall

RECURR=NT
EN=RGY

\section*{| 123 Mision Street $\mathrm{F}, 18$ |
| :---: |
| San Francisco, CA 9410 s |}

Hummingbird Solar Project

Fleming County, Kentucky

SAR Exhibit D

O Stantec

Hummingbird Solar Noise
 Assessment

Hummingbird Solar Facility

September 23, 2022

Prepared for:
Hummingbird Energy LLC

Prepared by:
Stantec Consulting Services, Inc Louisville, Kentucky

This document entitled Hummingbird Solar Noise Assessment was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Hummingbird Solar, LLC (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Amber Coleman

Mary Martin

Table of Contents

1.0 INTRODUCTION 1
1.1 PROJECT DESCRIPTION 1
1.2 EXISTING LAND USE AND SITE CONDITIONS 1
2.0 NOISE STUDY 2
2.1 EXISTING NOISE CONDITIONS 2
2.1.1 Noise Sensitive Receptors 2
2.1.2 Noise Ordinances
2.1.3 Existing Noise from Surrounding Areas 4
2.1.4 Existing On-Site Noise 4
2.2 PROPOSED CONSTRUCTION NOISE CONDITIONS 4
2.2.1 Equipment and Machinery 4
2.2.2 Roadway Noise During Construction 6
2.2.3 Assembly of Solar Array and Construction of Facilities 6
2.3 PROPOSED OPERATIONAL NOISE CONDITIONS 6
2.3.1 Solar Array and Tracking System 6
2.3.2 Inverters 6
2.3.3 Transformers 7
2.3.4 Site Operation and Maintenance 7
2.4 NOISE SUMMARY AND CONCLUSIONS 7
3.0 REFERENCES 13
LIST OF TABLES
Table 1. Nearest Sensitive Receptor to the Site 3
Table 2. Common Sources of Noise and Decibel Levels 4
Table 3. Construction Equipment Noise Emission Levels 5
Table 4. Calculated Noise Levels at Nearest Receptor Due to Construction (Sunrise to Sunset) 8
Table 5. Approximate Noise Levels During Operation (Sunrise to Sunset) 9
APPENDIX A FIGURES A. 1

HUMMINGBIRD SOLAR NOISE ASSESSMENT

Introduction

1.0 INTRODUCTION

1.1 PROJECT DESCRIPTION

The Hummingbird Solar Project (Project) is a proposed 200-megawatt (MW) photovoltaic (PV) solar power energy generating facility located in Fleming County, Kentucky. The project site is located within approximately 3,900 acres 2.5 miles northeast of Flemingsburg (Figure 1). The solar project consists of solar panels, a panel tracking system, inverters and electrical equipment associated with a solar facility and substation. The power generated by the proposed solar facility will be connected to the existing power grid using the existing transmission line connecting to the proposed Substation located on Carpenter Road. The generating facility will sell power on the wholesale market as a merchant power plant or independent power producer. The solar facility will be enclosed by a six (6)-foot chain link fence with three strand barbed wire. At the end of the project's life the equipment and electrical infrastructure will be decommissioned, and land may return to farming or other development.

A desktop noise assessment was completed to evaluate potential noise impacts to noise sensitive receptors within 1,000 feet from the project boundary (Noise Assessment Area). Background noise as well as noise generated during construction and operation of the Project were considered in the analysis.

1.2 EXISTING LAND USE AND SITE CONDITIONS

The Project is located in a rural area with gently sloping topography. Existing land use within the project site is cultivated cropland with small areas of deciduous forest. (MLRC 2016 and USDA-FSA 2018). Land use adjacent to the Project is comprised of scattered homes and cultivated cropland. The community of Mt. Carmel is located in the north central portion of the Project while Flemingsburg is located to the southeast. KY-57 transects the project site northeast to southwest while forested land is present to the southeast (Figure 2). There are two $138-\mathrm{kV}$ transmission lines that intersects the Project.

HUMMINGBIRD SOLAR NOISE ASSESSMENT

Noise Study

2.0 NOISE STUDY

2.1 EXISTING NOISE CONDITIONS

2.1.1 Noise Sensitive Receptors

A noise sensitive receptor is generally defined as locations where people reside or where the presence of unwanted sound may adversely affect the use of the land. Receptors may include but are not limited to schools, homes, churches, hospitals, and certain types of recreation or outdoor land uses such as outdoor restaurant seating.

Potential noise sensitive receptors were evaluated within a 1,000 foot buffer from the project boundary. High resolution aerial photography, topographic quadrangles and proposed site layouts were analyzed using ESRI ArcMap 10.8 and Google Earth Pro to determine the presence of potential noise sensitive receptors. These receptors include residential dwellings and are shown on Figure 2. Two churches are present within the study area: Mt. Carmel Christian Church and Mt. Carmel Bible Fellowship. Mt. Carmel Christian Church is located within the Mt. Carmel community near the north portion of the site while Mt. Carmel Bible Fellowship is located along Carpenter Road near the center of the site. The Fleming County Cemetery is located in the Mt. Carmel community and will not be analyzed further for this study. No schools, nursing homes, childcare centers, outdoor recreation, medical centers or other types of noise sensitive receptors were observed within the noise assessment area.

136 residences consisting of single family homes are located within the Noise Assessment Area. These dwellings are referred to as noise sensitive receptors within this report (R1-R139). Forty three (43) of these dwellings are located within areas that meet the definition of "residential neighborhood" according to KRS 278.700. These 43 dwellings are in one of five neighborhoods, which include populated areas of five or more acres containing at least one residential structure per acre. The five residential neighborhoods include an area along Beech Springs Drive, Maddox Road, Poplar Grove Road, Foxport Road and the community of Mt. Carmel. The nearest residence is approximately 260 feet from the nearest solar panel (Table 1). Proposed inverters are located even further away with the nearest being approximately 624 feet from a residence. Three adjacent residences along Botkins Lane are currently under a purchase option and will be removed prior to construction (R4, R5 and R6); therefore, they have not been considered as noise sensitive receptors in this study. These are labeled as Participating Structures on Figure 2.

HUMMINGBIRD SOLAR NOISE ASSESSMENT

Noise Study

Table 1. Nearest Sensitive Receptor to the Site

Type	Nearest to	Direction from Project Site	Distance from Fence	Distance from Nearest Solar Panel	Distance from Nearest Inverter or Transformer*
Residences - Beech Springs Drive Neighborhood (R17-R32)		West	Within 305 ft	Within 352 ft	Within 1,252 ft
Residences - Maddox Road Neighborhood (R40-R44)		West	Within 309 ft	Within 381 ft	Within 1,053 ft
Residence (R46)	Fence	West	Within 180 ft	Within 316 ft	Within 755 ft
Residences - Poplar Grove Road Neighborhood (R63-R73)		Northwest	Within 317 ft	Within 373 ft	Within $1,011 \mathrm{ft}$
Residences - Mount Carmel Neighborhood (R80-R85)		North Central	Within 320 ft	Within 394 ft	Within 1,529 ft
Residence (R91)	Substation	Central	Within 324 ft	Within 575 ft	Within $792 \mathrm{ft}^{*}$
Residence (R105)	Solar Panel / Tracking Motors	East	Within 208 ft	Within 260 ft	Within 788 ft
Residence (R109)	Inverter	East	Within 355 ft	Within 469 ft	Within 624 ft
Residences - Foxport Road Neighborhood (R126-R130)		Northeast	Within 243 ft	Within 306 ft	Within 1,287 ft

*All values reflect distance to inverters except for R91 which is the distance to the substation/transformer area.

2.1.2 Noise Ordinances

The unincorporated portions of Fleming and Lewis Counties do not appear to have a specific noise ordinance.

HUMMINGBIRD SOLAR NOISE ASSESSMENT

Noise Study

2.1.3 Existing Noise from Surrounding Areas

Noise is typically measured in decibels (dB_{A} - A-weighted sound levels) to describe the relative loudness of specific sounds. Unless otherwise noted, sound is presented as equivalent continuous sound level [Leq $\left.\left(\mathrm{dB}_{\mathrm{A}}\right)\right]$. This is defined as the steady sound pressure level which, over a given period of time, has the same total energy as the actual fluctuating noise. This can be generally thought of as average sound levels. $L_{\text {min }}\left(\mathrm{dB}_{\mathrm{A}}\right)$ and $\mathrm{L}_{\text {max }}\left(\mathrm{dB}_{\mathrm{A}}\right)$ are the minimum and maximum sound levels at a given period in time. See Table 2 for example sound levels from the Centers for Disease Control and Prevention (CDC 2020) and the Federal Railroad Administration (FRA 2010).

Table 2. Common Sources of Noise and Decibel Levels

Noise Source	Average Noise Level (dB ${ }_{\text {A }} \boldsymbol{*}^{*}$
Loud Entertainment Venues (Nightclubs, Bars and Rock Concerts)	$105-110$
Car horn at 16 ft / Sporting Events	100
Motorcycle	95
Locomotives and Rail Cars at 100 feet**	$80-90$
Gas powered lawnmowers and leaf blowers	$80-85$
Heavy Traffic	$80-85$
Washing Machine / Dishwasher	70
Normal Conversation / Air Conditioner	60
Soft Whisper	30

*CDC 2020 **FRA 2010
The primary source of noise from the surrounding area is similar to the Project site with sparse automotive traffic on rural roads and adjacent farms producing agricultural sounds related to tractors, farm machinery, trucks, and ATVs. Additionally, wildlife also contributes to the local noise including insects, birds and frogs.

2.1.4 Existing On-Site Noise

Existing noise on the Project site consists of noises typically produced by agricultural activities. These noises include tractors, trucks, and all-terrain vehicles. Rural wildlife noises contribute to the existing noise conditions including birds, frogs and insects.

2.2 PROPOSED CONSTRUCTION NOISE CONDITIONS

2.2.1 Equipment and Machinery

The Project's construction will require earthmoving and tree removal activities as well as typical solar panel and electrical equipment installation. Typical construction equipment is expected to be used for site preparation and infrastructure installation and may include dump trucks, pile drivers, backhoes, dozers,

HUMMINGBIRD SOLAR NOISE ASSESSMENT

Noise Study
and excavators. The Federal Transit Administration outlines typical construction equipment noise levels and is presented in Table 3 (FTA 2018). The Federal Highway Administration (FHWA) Roadway Construction Noise Model (RCNM) was used to evaluate noise during construction (FHWA 2006). Pile drivers are expected to be the loudest machinery and will only be used during installation of the solar panel supports. Since pile drivers will only be used during pole installation, nearest receptor model results have been presented both with and without pile drivers in use.

Table 3. Construction Equipment Noise Emission Levels

Equipment	Typical Noise Levels at 50 ft from Source (dBBA)*
Air Compressor	80
Backhoe	80
Ballast Equalizer	82
Ballast Tamper	83
Compactor	82
Concrete Mixer	85
Concrete Pump	82
Concrete Vibrator	76
Crane, Derrick	88
Crane, Mobile	83
Dozer	85
Generator	82
Grader	85
Impact Wrench	85
Jack Hammer	88
Loader	80
Paver	85
Pile Driver (Impact)	101
Pile Driver (Sonic)	95
Pneumatic Tool	85
Pump	77
Rail Saw	90
Rock Drill	95
Roller	85
Saw	76
Scarifier	83
Scraper	85
Shovel	82
Spike Driver	77
Tie Cutter	84
Tie Handler	80
Tie Inserter	85
Truck	84
a	

*Taken from FTA 2018

HUMMINGBIRD SOLAR NOISE ASSESSMENT

Noise Study

2.2.2 Roadway Noise During Construction

Traffic noise is expected to increase temporarily during construction due to the mobilization of labor and materials, equipment and staff moving between sections of the project and construction and equipment vehicles entering and leaving the site. Construction related activity is expected to occur mainly between 7 a.m. and 7 p.m. (sunrise and sunset) and will be of limited duration at any given location within the project.

2.2.3 Assembly of Solar Array and Construction of Facilities

The solar facility consists of solar panels, a panel tracking system, inverters and electrical equipment associated with the solar facility and substation. All solar module equipment is expected to be assembled using handheld equipment and power tools. Assembly will occur within the Project site several hundred to thousands of feet from the nearest receptors. Assembly will take place during daytime hours and will be of limited duration at any given location within the project.

2.3 PROPOSED OPERATIONAL NOISE CONDITIONS

2.3.1 Solar Array and Tracking System

The solar array associated with this project includes single-axis tracking panels distributed evenly across the site (Figure 2). Tracking systems involve the panels being driven by small, 24 -volt brushless DC motors to track the arc of the sun to maximize each panel's potential for solar absorption. Panels would turn no more than five (5) degrees every 15 minutes and would operate no more than one (1) minute out of every 15 -minute period during daylight hours. These tracking motors are a potential source of mechanical noise and are included in this assessment. Tracking motors will not be installed closer than 100 feet from the project boundary. The sound typically produced by panel tracking motors (NexTracker or equivalent) is approximately $78 \mathrm{dBA}_{\mathrm{A}}$. Comparing similar noise values and distances from the RCNM, at the nearest receptor (R105) the tracking system will be approximately $49.7 \mathrm{~dB}_{\mathrm{A}}$ as a worst-case maximum noise $\left[\mathrm{L}_{\text {max }}\left(\mathrm{dB}_{\mathrm{A}}\right)\right]$ which is similar to a refrigerator hum. The equivalent continuous sound level [$\left.\mathrm{L}_{\text {eq }}\left(\mathrm{dB}_{\mathrm{A}}\right)\right]$ from the tracking motors is $37.5 \mathrm{~dB}_{\mathrm{A}}$ which is around a soft whisper. Model results are presented in Table 5.

2.3.2 Inverters

Approximately 53 inverters are expected to be installed across the Project site. Inverters installed onsite are expected to be SMA Energy PCS or General Electric (GE) LV5 PCS or similar. Manufacturer's specifications for the equipment include a range of noise emission for SMA Energy PCS from $49 \mathrm{dBA}_{\mathrm{A}}$ at 50 meters (164 feet) distance to $67 \mathrm{~dB}_{\mathrm{A}}$ at 10 meters (32.8 feet) from the source which roughly translates to $31.1 \mathrm{~dB}_{\mathrm{A}}$ at the nearest receptor (R109), comparable to a computer. The GE LV5 PCS ranges from 73.6 dBA at lowest cooling level to $91.3 \mathrm{~dB}_{\mathrm{A}}$ at highest cooling levels at 10 meters (32.8 feet) from the source which is approximately 48 dBA at the nearest receptor (R109), comparable to a refrigerator. Since the GE approximate sound levels are higher, those were used for this assessment and results are shown in Table 5.

HUMMINGBIRD SOLAR NOISE ASSESSMENT

Noise Study

The noise produced by the inverters can be characterized as a hum and during average operation is similar in noise level to a household air conditioner at the unit. Proposed inverter locations are shown on Figure 2.

2.3.3 Transformers

The proposed substation and battery storage area covers approximately 14.0 acres and is located on the central portion of the Project. Transformers associated with the project will include a SBG-SMIT 3 phase 127 kVA transformer or similar. According to manufacturer specifications the loudest the transformer is expected to be is just over $60 \mathrm{~dB}_{\mathrm{A}}$, measured 1 meter (3.2 feet) from the source, or the level of a normal conversation. The nearest sensitive receptor (R91) is approximately 792 feet away which equates to a sound level of 12.2 dBA and is barely audible, comparable to normal breathing. Remaining model results can be found in Table 5.

2.3.4 Site Operation and Maintenance

2.3.4.1 Vehicular Traffic

During operation, the solar facility is expected to have a maximum of one technician visiting the site daily for inspection and two to three technicians up to 70 days per year. Operation and maintenance work may be expected at night for up to 30 days per year. Weekend work is not anticipated but may be required upon any component outages that may impact energy production from the site. Other than the scenarios mentioned, vehicular traffic onsite will be limited to typical weekday business hours. Technicians will drive mid- or full-sized trucks and will not contribute noticeably to the existing traffic noise levels.

2.3.4.2 Maintenance Activities

Typical maintenance activities may include inspection, minor repair and maintenance on the solar panels, the tracking system, wiring, and/or inverters. Grounds maintenance will include periodic inspection of the boundary fencing and vegetation control through mowing and herbicide applications.

2.4 NOISE SUMMARY AND CONCLUSIONS

Noise is expected to increase temporarily and intermittently during the construction phase of the project due to increases in vehicular traffic, construction equipment and assembly of the solar facility components. This increase in noise is expected to be within accepted ranges and of short duration at any given location within the project with the majority of the noise producing activities to occur many hundreds to thousands of feet from the nearest noise sensitive receptors. With the exception of the pile driving activities, the typical noise levels of construction equipment are not unlike the existing noise levels related to cultivation within and surrounding the Project.

The noisiest portion of the construction will be the use of pile drivers to install the solar panel supports. These will only be used very briefly for each pile. The pile driver's worst-case intermittent maximum noise

HUMMINGBIRD SOLAR NOISE ASSESSMENT

Noise Study
$\left[L_{\max }(\mathrm{dB} A)\right]$ level $\left(86.5 \mathrm{~dB}_{A}\right)$ is expected to occur at the nearest receptor (R 105) and is similar to a motorcyle. The equivalent continuous sound level $\left[\mathrm{L}_{\mathrm{eq}}\left(\mathrm{dB}_{\mathrm{A}}\right)\right]$ from construction including the pile driver is $79.6 \mathrm{~dB}_{\mathrm{A}}$ which is similar to the sound level of a leaf blower. The noise model was also evaluated without the inputs of the pile driver since that is more typical of ongoing construction sound levels. The sound levels for typical construction (without pile driving) onsite are approximately $64.2 \mathrm{~dB}_{\mathrm{A}}$ which around the sound level of a dishwasher (Table 4). Construction activities at the Project site would move around the site and are not anticipated to be performed near a sensitive receptor for more than a few weeks.

Table 4. Calculated Noise Levels at Nearest Receptor Due to Construction (Sunrise to Sunset)

	Panel Distance (ft)	Calculated $\mathbf{L}_{\max }$ $\left(\mathbf{d B}_{\mathrm{A}}\right)$	Calculated Leq $\left(\mathbf{d B}_{\mathbf{A}}\right)$
Noise Level at Nearest Residential Receptor (R105) (including pile driver)	260	86.5	79.6
Noise Level at Nearest Residential Receptor (R105) (minus pile driver)	260	66.2	64.2

During site operation, intermittent noise related to the panel tracking system and the constant noise of the inverters is expected. The increase in noise is negligible due to the distance between the panels / inverters and the nearest noise sensitive receptors. The nearest receptor (R 105) is approximately 260 feet from the closest solar panels (and approximately 788 feet from an inverter). Maximum sound levels from the tracking system can be expected to be the levels of a refrigerator hum at the nearest receptor ($\mathrm{R} 105,49.7 \mathrm{dBA}$), while the sounds will be much quieter at most receptors.

It should be noted that the trackers and the inverters for the panels themselves will not operate at night when residential receptors are most sensitive. During average daytime operation, the inverters will be similar in noise level ($\sim 48 \mathrm{~dB}_{\text {A max }}$) to a quiet library at the nearest receptor (R 109). According to manufacturer specifications the loudest the substation transformer is expected to be is just over $60 \mathrm{dBA}_{\mathrm{A}}$ at 1 m from the source, or the level of a normal conversation. Since the nearest receptor (R91) is approximately 792 ft from the substation, transformers are not expected to add additional noise above background noise as the noise levels are barely audible (12.2 dBA). Site visits and maintenance activities including single vehicular traffic and mowing will be negligible as they are similar to the background agricultural noise characteristics. All site visits, outside of emergency maintenance, will occur during daylight hours.

At the nearest receptors, besides intermittent and infrequent pile driver activity, no elevated and prolonged noise levels above background levels are expected either during construction or operation of the Project site. Construction (pile driving) is not expected to remain in any area beyond a week.

HUMMINGBIRD SOLAR NOISE ASSESSMENT

Noise Study

Table 5. Approximate Noise Levels During Operation (Sunrise to Sunset)

Receptor*	Nearest Panel / Panel Tracking System		Nearest Inverter		Nearest Transformer/Substation	
	Distance (ft)	$\mathrm{dB}_{\text {A }}$	Distance (ft)	$\mathrm{dB}_{\text {A }}$	Distance (ft)	dB_{A}
R1	542	43.3	1430	40.8	16205	<10
R2	913	38.8	1990	37.9	15231	<10
R3	477	44.4	989	44.0	13972	<10
R7	1027	37.7	1534	40.2	14700	<10
R8	903	38.9	1472	40.5	14960	<10
R9	668	41.5	1526	40.2	15850	<10
R10	386	46.2	1328	41.4	16538	<10
R11	823	39.7	1742	39.1	17479	<10
R12	441	45.1	1022	43.7	17351	<10
R13	733	40.7	1254	41.9	17802	<10
R14	1061	37.5	1522	40.2	18083	<10
R15	1003	38.0	1118	42.9	14049	<10
R16	988	38.1	1187	42.4	13587	<10
R17	880	39.1	1414	40.9	12999	<10
R18	1079	37.3	1706	39.2	12807	<10
R19	951	38.4	1605	39.8	12701	<10
R20	849	39.4	1550	40.1	12600	<10
R21	722	40.8	1460	40.6	12524	<10
R22	571	42.8	1410	40.9	12356	<10
R23	376	46.5	1349	41.3	12073	<10
R24	352	47.0	1333	41.4	11967	<10
R25	369	46.6	1412	40.9	11734	<10
R26	395	46.0	1252	41.9	11525	<10
R27	544	43.3	1475	40.5	11747	<10
R28	558	43.0	1538	40.1	11910	<10
R29	586	42.6	1552	40.1	12006	<10
R30	756	40.4	1627	39.6	12267	<10
R31	853	39.4	1668	39.4	12390	<10
R32	953	38.4	1725	39.1	12481	<10
R33	718	40.9	1657	39.5	10010	<10
R34	457	44.8	1402	40.9	9621	<10
R35	506	43.9	883	45.0	9441	<10
R36	1132	36.9	1400	40.9	8914	<10
R37	532	43.5	1291	41.7	11251	<10
R38	1077	37.3	1842	38.6	8626	<10
R39	350	47.1	1037	43.6	8220	<10

HUMMINGBIRD SOLAR NOISE ASSESSMENT
Noise Study

Receptor*	Nearest Panel / Panel Tracking System		Nearest Inverter		Nearest Transformer/Substation	
	Distance (ft)	dB_{A}	Distance (ft)	$\mathrm{dB}_{\text {A }}$	Distance (ft)	$\mathrm{dB}_{\text {A }}$
R40	398	46.0	1080	43.2	8581	<10
R41	439	45.1	1065	43.3	8702	<10
R42	440	45.1	1054	43.4	8800	<10
R43	381	46.4	1086	43.2	9072	<10
R44	462	44.7	1188	42.4	9344	<10
R45	474	44.5	893	44.9	9752	<10
R46	317	48.0	755	46.3	9712	<10
R47	902	38.9	1515	40.3	10854	<10
R48	1182	36.5	1901	38.3	11408	<10
R49	960	38.3	1653	39.5	11248	<10
R50	1047	37.6	1895	38.3	11288	<10
R51	1042	37.6	1939	38.1	11233	<10
R52	405	45.8	1320	41.5	7917	<10
R53	361	36.7	1157	42.6	7699	<10
R54	488	44.2	655	47.5	8026	<10
R55	682	41.3	901	44.8	8195	<10
R56	275	49.2	821	45.6	6181	<10
R57	348	47.1	757	46.3	3530	<10
R58	351	47.1	1246	42.0	3725	<10
R59	284	48.9	1306	41.6	4532	<10
R60	1035	37.7	1054	43.4	8084	<10
R61	829	39.6	2466	36.0	11207	<10
R62	405	45.8	1966	38.0	11006	<10
R63	914	38.8	2172	37.1	12787	<10
R64	613	42.1	1864	38.5	12484	<10
R65	615	42.2	1883	38.4	12481	<10
R66	445	45.0	1697	39.3	12257	<10
R67	385	46.3	1609	39.7	12148	<10
R68	373	46.5	1545	40.1	12054	<10
R69	408	45.8	1447	40.7	11903	<10
R70	485	44.3	1361	41.2	11762	<10
R71	381	46.4	1133	42.8	11603	<10
R72	526	43.6	1011	43.8	11317	<10
R73	672	41.4	1153	42.6	11380	<10
R74	920	38.7	2068	37.6	12463	<10
R75	807	39.8	1834	38.6	12159	<10
R76	787	40.1	1749	39.0	12046	<10

Noise Study

Receptor*	Nearest Panel / Panel Tracking System		Nearest Inverter		Nearest Transformer/Substation	
	Distance (ft)	dB $_{\mathbf{A}}$	Distance (ft)	$\mathbf{d B}_{\mathbf{A}}$	Distance (ft)	dB $_{\mathbf{A}}$
R77	1063	37.4	1526	40.2	11483	<10
R78	995	38.0	1272	41.8	9538	<10
R79	740	40.6	2193	37.0	6130	<10
R80	534	43.4	1529	40.2	3941	<10
R81	394	46.1	1740	39.1	3719	<10
R82	675	41.4	2006	37.8	3857	<10
R83	955	38.4	2309	36.6	3932	<10
R84	1046	37.6	2375	36.4	4011	<10
R85	463	44.7	2030	37.7	3162	<10
R86	1113	37.0	3056	34.2	3393	<10
R87	859	39.3	2916	34.6	2690	<10
R88	1708	33.3	1960	38.0	926	10.9
R89	1554	34.2	2018	37.8	895	11.3
R90	598	42.4	1571	39.9	1399	<10
R91	575	42.8	1624	39.7	792	12.2
R92	428	45.4	1386	41.0	906	11.2
R93	371	46.6	844	45.3	1514	<10
R94	727	40.7	1259	41.9	1220	<10
R95	631	42.0	1710	39.2	866	11.6
R96	369	46.6	2225	36.9	1251	<10
R97	590	42.6	1679	39.4	1882	<10
R98	412	45.7	1118	42.9	1974	<10
R99	371	46.6	1904	38.3	3043	<10
R100	750	40.5	1938	38.1	3549	<10
R101	406	45.8	1580	39.9	3819	<10
R102	469	44.6	862	45.2	5483	<10
R103	268	49.4	3100	34.0	4147	<10
R104	314	48.0	1584	39.9	5635	<10
R105	260	49.7	788	45.9	6267	<10
R106	286	48.9	650	47.6	6406	<10
R107	328	47.7	916	44.6	6652	<10
R108	941	38.5	975	44.1	8346	<10
R109	469	44.6	624	48.0	7851	<10
R110	374	46.5	1469	40.5	8326	<10
R111	564	43.0	2207	37.0	8969	<10
R112	371	46.6	2393	36.3	8792	<10
R113	906	38.8	2885	34.7	9291	<10

HUMMINGBIRD SOLAR NOISE ASSESSMENT

Noise Study

Receptor*	Nearest Panel / Panel Tracking System		Nearest Inverter		Nearest Transformer/Substation	
	Distance (ft)	dB_{A}	Distance (ft)	$\mathrm{dB}_{\text {A }}$	Distance (ft)	dB_{A}
R114	983	38.1	3203	33.8	9253	<10
R115	1053	37.5	3527	32.9	9359	<10
R116	1094	37.2	3664	32.6	9399	<10
R117	370	46.6	745	46.4	7302	<10
R118	542	43.3	967	44.2	7418	<10
R119	733	40.7	1357	41.2	8090	<10
R120	443	45.1	837	45.4	8189	<10
R121	648	41.7	770	46.1	8462	<10
R122	867	39.2	1325	41.4	9076	<10
R123	956	38.4	1801	38.8	9802	<10
R124	774	40.2	1351	41.3	11791	<10
R125	420	45.5	1328	41.4	12165	<10
R126	452	44.9	1435	40.7	9498	<10
R127	533	43.4	1427	40.8	9675	<10
R128	454	44.8	1352	41.3	9665	<10
R129	306	48.3	1287	41.7	9606	<10
R130	475	44.4	1313	41.5	9555	<10
R131	395	46.0	1392	41.0	9125	<10
R132	504	43.9	1639	39.6	8888	<10
R133	385	46.3	1258	41.9	9978	<10
R134	890	39.0	1797	38.8	9062	<10
R135	921	38.7	1589	39.8	8743	<10
R136	915	38.8	1685	39.3	11542	<10
R137	586	42.6	1300	41.6	12410	<10
R138	293	48.6	894	44.8	13064	<10
R139	317	48.0	907	44.7	13152	<10
Note	Operates 1 minute every 15 minutes during daylight hours		Continuous low hum during daylight hours		Substation area	

Noise Levels are Lmax - maximum noise levels expected. R4, R5, and R6 will be demolished prior to construction.

HUMMINGBIRD SOLAR NOISE ASSESSMENT

References

3.0 REFERENCES

CDC 2020. Loud Noise Can Cause Hearing Loss, Common Sources of Noise and Decibel Levels. U.S. Department of Health \& Human Services, Center for Disease Control and Prevention. Website accessed 12/3/2020. https://www.cdc.gov/nceh/hearing_loss/what_noises_cause_hearing_loss.html

FHWA 2006. Roadway Construction Noise Model User's Guide. U.S. Department of Transportation. U.S. Department of Transportation, Federal Highway Administration, FHWA-HEP-05-054, DOT-VNTSC-FHWA-05-01. January 2006. https://www.fhwa.dot.gov/environment/noise/construction noise/rcnm/rcnm.pdf

Flemingsburg, Kentucky Code of Ordinances. Chapter 98 Noise Regulation. Passed 4-29-2008. https://codelibrary.amlegal.com/codes/flemingsburg/latest/flemingsburg ky/0-0-0-8527

FTA 2018. Transit Noise and Vibration Impact Assessment Manual. U.S. Department of Transportation. Federal Transit Administration. FTA Report No. 0123. September 2018. https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-no-0123_0.pdf

Georgia State University. 2016. Estimating Sound Levels With the Inverse Square Law. HyperPhysics. http://hyperphysics.phy-astr.gsu.edu/hbase/Acoustic/isprob2.html. Accessed September 19, 2022.

KRS 278.700 2014. Kentucky Revised Statues, Chapter 278. Electric Generation and Tranmission Siting - Definitions for KRS 278.700 and 278.716. Effective April 10, 2014.

Lee, Chung-Won, Jiseong Kim, Gi-Chun Kang. 2018. Full-Scale Tests for Assessing Blasting-Induced Vibration and Noise. Hindawi. Shock and Vibration. Volume 2018, Article ID 9354349. June 2018.

MLRC 2016. National Land Cover Dataset (NLCD) Continental United States (CONUS) 2016 Land Cover. Multi-Resolution Land Characteristics Consortium. Web map service: https://www.mrlc.gov/geoserver/mrlc display/NLCD 2016 Land Cover L48/wms?service=WMS\&req uest=GetCapabilities

USDA-FSA 2018. Kentucky Statewide 2 Foot Aerial Imagery (2018). National Agricultural Imagery Program (NAIP). United States Department of Agriculture-Farm Service Agency Aerial Photography Field Office. Web map service.

HUMMINGBIRD SOLAR NOISE ASSESSMENT
Appendix A Figures

Appendix A FIGURES

Notes
Nocordinate System: NAD 1983 StatePlane Kentucky North FIPS 1601
Feet
2. atata Sources: ESSI: Stantec
3. Background: BING Aerials Kentucky Transportation Cabinet (KYTC)

Legend

- 1000 ft Noise Assessment Area

Potential Fence Line

- Noise Sensitive Receptors
- Participating Structures
- Potential PV Layout
- Potential Inverter Locations

\square 55dBA Temporary Construction Noise Limit _-_ Residential Neighborhoods as per KRS 278.700 ---] Counties
(138kv Transmission Line
$0 \quad 3.000 \quad \mathrm{~N}$
$\underset{\text { (At original document size of } 11 \times 17 \text {) }}{1: 36,000}$ Feet

(1) Stantec

Project Location
Fleming County, K
Prepared by ALC o on 2022-09-1
TR by JA on 2020-09-1
ClientProject
Hummingbird Solar Facility

Noise Assessment Report
Figure No
2
Hummingbird Solar Project

SAR Exhibit E

OStantec

Hummingbird Solar Project

August 12, 2022

Prepared for:
Recurrent Energy
98 San Jacinto Blvd, Suite 750
Austin, Texas 78701

Prepared by:
Stantec Consulting Services Inc. 9200 Shelbyville Road, Suite 800 Louisville, Kentucky 40222

This document entitled Hummingbird Solar Project was prepared by Cardno now Stantec ("Stantec") for the account of Recurrent Energy (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Chad Martin

Table of Contents

EXECUTIVE SUMMARY I
1.0 INTRODUCTION 1
2.0 DATA COLLECTION 1
3.0 PROJECT TRIP GENERATION 6
3.1 CONSTRUCTION. 6
3.1.1 CONSTRUCTION ANALYSIS 6
3.2 OPERATION 8
4.0 CONCLUSION 8
LIST OF TABLES
Table 1: Level of Service Criteria for Two-Lane Highways 4
Table 2: Existing AM/PM Two-Lane Highway Analysis 5
Table 3: Construction Year (2023) AM/PM Two-Lane Highway Analysis 7
LIST OF FIGURES
Figure 1: Project Location 2
Figure 2: KYTC Count Stations 3
LIST OF APPENDICES
APPENDIX A A. 1
APPENDIX B B. 2

Executive Summary

The Hummingbird Solar Project development is proposed northeast of Flemingsburg in Fleming County, Kentucky on a property located south of KY 1237 (Burtonville Road), north of KY 559 (Fox Spring Avenue/Wallingford Road), mostly east of KY 57 (Mt. Carmel Road) and west of KY 1902. The petitioner proposes to utilize the existing land to establish a solar facility on the site. The development will have access points along several routes around the facility. Analyses of the 2022 existing conditions (based on most recent counts provided by the Kentucky Transportation Cabinet, KYTC) and the 2023 construction year were performed. The traffic impact study (TIS) evaluated the operating conditions for the AM and PM peak hours at the roadway segments below:

- Station 035080: CR 1027 (Carpenter Road)
- Station 035150: CR 1030 (Colgan Road)
- Station 035049: CR 1036 (Wilson Run Road)
- Station 035083: CR 1037 (Maddox Pike)
- Station 068811: KY 57 from Fleming/Lewis County Line (MP 0.00) to KY 1237 (MP 2.093)
- Station 035002: KY 57 from KY 344 (MP 8.232) to KY 3301 (2.567)
- Station 035104: KY 57 from KY 3301 (2.567) to KY 57 X (MP 1.728)
- Station 035001: KY 344 from KY 57 (MP 0.00) to KY 989 (MP 1.600)
- Station 035091: KY 344 from KY 989 (MP 1.600) to Licking River (MP 2.404)
- Station 035054: KY 559 from Stewart Lane (MP 5.455) to Dudley Hollow Road (MP 11.850)
- Station 068516: KY 989 from Fleming/Lewis County Line (MP 0.00) to KY 1237 (MP 1.214)
- Station 068517: KY 1237 from KY 989 (MP 0.00) to Ribolt-Epworth Road (MP 1.579)
- Station 068761: KY 1237 from Ribolt-Epworth Road (MP 1.579) to KY 57 (MP 3.163)
- Station 035087: KY 3301 from KY 57 (MP 0.00) to Colgan Road (MP 3.425)
- Station 035081: KY 3301 from Colgan Road (MP 3.425) to KY 559 (MP 6.387)

Based on the results of the analysis, the following conclusions were developed:

- During construction, all highway segments are anticipated to continue to operate at acceptable level of service (LOS) standards during both the peak hours. Therefore, the construction for this project will not adversely affect traffic operations on any of the roadways in and around the project area.
- After construction is complete, the site will be managed with negligible added traffic demand. During the operational phase of the project, the surrounding roadway network will continue to operate at an acceptable LOS during the peak hours.

HUMMINGBIRD SOLAR PROJECT

INTRODUCTION

1.0 INTRODUCTION

The purpose of this study is to estimate the traffic impacts of the proposed Hummingbird Solar Project located approximately three miles northeast of Flemingsburg in Fleming County, Kentucky. The project site can be generally described as south of KY 1237 (Burtonville Road), north of KY 559 (Fox Spring Avenue/Wallingford Road), mostly east of KY 57 (Mt. Carmel Road) and west of KY 1902. The proposed project site is shown in Figure 1.

The Project area encompasses approximately 3,900-acres in an agricultural area. The petitioner proposes to utilize the land to establish a 200-megawatt (MW), utility-scale, solar-powered electric generating facility. The Project will have access points around the site with major truck deliveries. A construction year of 2023 was evaluated as part of the study.

2.0 DATA COLLECTION

Traffic counts (including both 24 -hour and classification counts) were obtained from the Kentucky Transportation Cabinet (KYTC) to establish the existing traffic conditions. Figure 2 shows the locations of the primary / adjacent count stations used in this analysis. The summarized count data for each of these stations (plus additional stations outside the immediate area) is included in Appendix A for the following count stations:

- Station 035080: CR 1027 (Carpenter Road)
- Station 035150: CR 1030 (Colgan Road)
- Station 035049: CR 1036 (Wilson Run Road)
- Station 035083: CR 1037 (Maddox Pike)
- Station 068811: KY 57 from Fleming/Lewis County Line (MP 0.00) to KY 1237 (MP 2.093)
- Station 035002: KY 57 from KY 344 (MP 8.232) to KY 3301 (2.567)
- Station 035104: KY 57 from KY 3301 (2.567) to KY 57X (MP 1.728)
- Station 035001: KY 344 from KY 57 (MP 0.00) to KY 989 (MP 1.600)
- Station 035091: KY 344 from KY 989 (MP 1.600) to Licking River (MP 2.404)
- Station 035054: KY 559 from Stewart Lane (MP 5.455) to Dudley Hollow Road (MP 11.850)
- Station 068516: KY 989 from Fleming/Lewis County Line (MP 0.00) to KY 1237 (MP 1.214)
- Station 068517: KY 1237 from KY 989 (MP 0.00) to Ribolt-Epworth Road (MP 1.579)
- Station 068761: KY 1237 from Ribolt-Epworth Road (MP 1.579) to KY 57 (MP 3.163)
- Station 035087: KY 3301 from KY 57 (MP 0.00) to Colgan Road (MP 3.425)
- Station 035081: KY 3301 from Colgan Road (MP 3.425) to KY 559 (MP 6.387)

Figure 1: Project Location

Figure 2: KYTC Count Stations
KY 57 (Mt. Carmel Road), located directly west of most of the project site, is classified as a two-lane major collector with daily traffic volume of 2,300 vehicles per day (VPD). KY 57 has posted speed limits ranging from 35 miles per hour (mph) to 55 mph . To the north, KY 1237 in Lewis County is a two-lane urban minor collector with a posted speed limit of 55 mph and daily traffic of 700 VPD . To the east of the project site, KY 1902 is a two-lane urban local roadway with a posted speed limit of 55 mph . To the south, KY 559 (Fox Spring Avenue/Wallingford Road) is a two-lane urban minor collector from with a posted speed limit of 35 mph to 55 mph .

Two-lane analyses were used to evaluate the roadways based on methods described in the Highway Capacity Manual (HCM) and implemented within the Highway Capacity Software (HCS 2022). The results can be found in Appendix B. The analyses were used to estimate capacity and Level of Service (LOS) for given traffic and geometric conditions. LOS provides a measure of the quality of traffic flow provided

HUMMINGBIRD SOLAR PROJECT

DATA COLLECTION

by a roadway facility, expressed in terms of letter grades with LOS A representing the highest quality traffic flow and minimal delay, and LOS F representing poor traffic operations and significant delay. For rural areas, LOS C or better is generally considered to be desirable. In urban areas, LOS D or better is generally considered desirable.

The two-lane highways method utilizes follower density (followers/mile) as the service measure for LOS, as shown in Table 1.

Table 1: Level of Service Criteria for Two-Lane Highways

LOS	Density (followers $/ \mathrm{mi}$) Speed Limit $\geq 50 \mathrm{mph}$	Density (followers $/ \mathrm{mi}$) Speed Limit $<50 \mathrm{mph}$
A	≤ 2	≤ 2.5
B	$>2-4$	$>2.5-5.5$
C	$>4-8$	$>5-10$
D	$>8-12$	$>10-15$
E	>12	>15
F	Demand exceeds capacity	Demand exceeds capacity

The results of the existing AM and PM peak hour traffic analyses for two-lane roads are summarized in Table 2. The results indicate that all existing project-adjacent two-lane roadways currently operate at acceptable LOS during both the AM and PM peak hours.

HUMMINGBIRD SOLAR PROJECT

DATA COLLECTION

Table 2: Existing AM/PM Two-Lane Highway Analysis

Segment	Existing AM		Existing PM	
	$\begin{gathered} \text { Density } \\ \text { (followers/mi//n) } \end{gathered}$	LOS	Density (followers/mi/n)	LOS
CR 1027 (Carpenter Road)	0.2	A	0.3	A
CR 1030 (Colgan Road)	0.1	A	0.0	A
CR 1036 (Wilson Run Road)	0.1	A	0.1	A
CR 1037 (Maddox Pike)	0.1	A	0.1	A
KY 57 (Mt. Caramel Road) at:				
KY 1237 (Burtonville Road) to near north of Mandie Lane	0.2	A	0.6	A
North of Mandie Lane to south of Mandie Lane	0.1	A	0.5	A
South of Mandie Lane to Fleming/Lewis County Line	0.1	A	0.4	A
Fleming/Lewis County Line to near Perkins Lane	0.2	A	0.6	A
Near Perkins Lane to near KY 344 (Foxport Road)	0.1	A	0.4	A
Near KY 344 (Foxport Road) to J M Clary	0.3	A	0.2	A
J M Clary to near Kilbreth Valley Road	0.8	A	0.7	A
Kilbreth Valley Road to near Penny Patch Road	0.3	A	0.2	A
Near Penny Patch Road to near Murphy Lane	0.3	A	0.2	A
Near Murphy Lane to north of Logan Run Road	0.3	A	0.2	A
North of Logan Run Road to south of Logan Run Road	0.3	A	0.3	A
South of Logan Run Road to KY 3301 (Beechtree Pike)	0.3	A	0.2	A
KY 3301 (Beechtree Pike) to north of KY 57X (Mt. Caramel Road)	1.3	A	1.7	A
KY 344 (Foxport Road) at:				
KY 1902 to 2155 KY 344 (Foxport Road)	0.2	A	0.4	A
2155 KY 344 (Foxport Road) to 1680 Foxport Road	0.1	A	0.1	A
1680 Foxport Road to KY 989 (Burtonville Road)	0.1	A	0.2	A
KY 989 (Burtonville Road) to 1278 Foxport Road	0.1	A	0.2	A
1278 Foxport Road to near Saunders Lane	0.1	A	0.2	A
Near Saunders Lane to 875 KY 344 (Foxport Road)	0.1	A	0.3	A
875 KY 344 (Foxport Road) to Andrew Graham property	0.1	A	0.2	A
Andrew Graham Property to west of Breeze Road	0.1	A	0.2	A
West of Breeze Road to 234 KY 344 (Foxport Road)	0.1	A	0.2	A
234 KY 344 (Foxport Road) to KY 57 (Mt. Caramel Road)	0.1	A	0.3	A
KY 559 (Foxspring Avenue/Wallingford Road) at:				
Gulley Drive to near east of Sutton Road	0.2	A	0.2	A
East of Sutton Road to west of Botkins Lane	0.1	A	0.1	A
West of Botkins Lane to 3954 KY 559 (Wallingford Road)	0.1	A	0.2	A
3954 KY 559 (Wallingford Road) to near Crump Lane	0.1	A	0.1	A
Near Crump Lane to near Adams Lane	0.1	A	0.2	A
Near Adams Lane to 3215 KY 559 (Wallingford Road)	0.1	A	0.2	A
3215 KY 559 (Wallingford Road) to near Brookstone Drive	0.2	A	0.2	A
Near Brookstone Drive to near Stewart Lane	0.2	A	0.3	A
Near Stewart Lane to School Street	0.5	A	0.5	A
KY 989 (Burtonville Road/Salt Lick Road) at:				
KY 344 (Foxport Road) to Fleming/Lewis County Line	0.0	A	0.0	A
Fleming/Lewis County Line to KY 1237 (Burtonville Road)	0.0	A	0.0	A
KY 1237 (Burtonville Road) at:				
KY 989 (Salt Lick Road) to Thomas Lane/Ribolt Epworth Road	0.0	A	0.0	A
Thomas Lane/Ribolt Epworth Road to KY 57	0.0	A	0.1	A
KY 3301 (Beechtree Pike/Road) at:				
KY 57 (Mt. Carmel Road) to near Rebecca Lane	0.1	A	0.1	A
Near Rebecca Lane to near Penny Lane	0.0	A	0.0	A
Near Penny Lane to Licking River Bridge	0.0	A	0.1	A
Licking River Bridge to 1208 KY 3301 (Beechtree Pike)	0.0	A	0.0	A
1208 KY 3301 (Beechtree Pike) to Beech Spring Estates	0.0	A	0.0	A
Beech Spring Estates to Wilson Run Road	0.0	A	0.0	A
Wilson Run Road to 2810 KY 3301 (Beechtree Pike)	0.0	A	0.0	A
2810 KY 3301 (Beechtree Pike) to near Colgan Road	0.0	A	0.0	A
Near Colgan Road to Rice Lane	0.0	A	0.1	A

HUMMINGBIRD SOLAR PROJECT

PROJECT TRIP GENERATION

3.0 PROJECT TRIP GENERATION

3.1 CONSTRUCTION

The trip generation analysis for the construction of the Project would generally be based on the number of workers and the associated construction and delivery truck trips expected during the construction of the project. Construction workers will consist of laborers, equipment operators, electricians, supervisory personnel, support personnel, and construction management personnel. It is envisioned that workers will arrive/depart from passenger vehicles and trucks daily during the AM (7:00 - 9:00 AM) and PM (3:00 6:00 PM) peak hours. Equipment deliveries will occur on trailers, flatbeds, or other large vehicles at various times during the day. Specific details concerning construction duration and intensity are not currently known. Therefore, this study has employed a sensitivity analysis to demonstrate that likely construction traffic levels will not have a significant, adverse effect on peak hour traffic operations. For this analysis, AM and PM peak hour traffic volumes on roadways were increased by 50 percent which is far greater than would be anticipated for the actual construction of the Project.

3.1.1 CONSTRUCTION ANALYSIS

The 2023 construction year analysis assumed no changes to the existing roadway network and increases in traffic demand discussed above. The results of the construction year AM and PM peak hour two-lane analysis are summarized in Table 3. Complete output reports are included in Appendix B. The results indicate that all analyzed roadway segments are anticipated to continue to operate at acceptable LOS during construction for both peak hours.

HUMMINGBIRD SOLAR PROJECT

PROJECT TRIP GENERATION

Table 3: Construction Year (2023) AM/PM Two-Lane Highway Analysis

Segment	Construction AM		Construction PM	
	Density (followers/mi/ln)	LOS	Density (followers/mi/ln)	LOS
CR 1027 (Carpenter Road)	0.4	A	0.5	A
CR 1030 (Colgan Road)	0.1	A	0.1	A
CR 1036 (Wilson Run Road)	0.2	A	0.1	A
CR 1037 (Maddox Pike)	0.2	A	0.2	A
KY 57 (Mt. Caramel Road) at:				
KY 1237 (Burtonville Road) to near north of Mandie Lane	0.4	A	1.2	A
North of Mandie Lane to south of Mandie Lane	0.3	A	1.0	A
South of Mandie Lane to Fleming/Lewis County Line	0.2	A	0.8	A
Fleming/Lewis County Line to near Perkins Lane	0.3	A	1.1	A
Near Perkins Lane to near KY 344 (Foxport Road)	0.3	A	0.9	A
Near KY 344 (Foxport Road) to J M Clary	0.6	A	0.5	A
J M Clary to near Kilbreth Valley Road	1.5	A	1.3	A
Kilbreth Valley Road to near Penny Patch Road	0.5	A	0.4	A
Near Penny Patch Road to near Murphy Lane	0.5	A	0.5	A
Near Murphy Lane to north of Logan Run Road	0.6	A	0.5	A
North of Logan Run Road to south of Logan Run Road	0.6	A	0.5	A
South of Logan Run Road to KY 3301 (Beechtree Pike)	0.6	A	0.5	A
KY 3301 (Beechtree Pike) to north of KY 57X (Mt. Caramel Road)	2.4	B	3.2	B
KY 344 (Foxport Road) at:				
KY 1902 to 2155 KY 344 (Foxport Road)	0.4	A	0.8	A
2155 KY 344 (Foxport Road) to 1680 Foxport Road	0.1	A	0.3	A
1680 Foxport Road to KY 989 (Burtonville Road)	0.2	A	0.4	A
KY 989 (Burtonville Road) to 1278 Foxport Road	0.2	A	0.5	A
1278 Foxport Road to near Saunders Lane	0.1	A	0.4	A
Near Saunders Lane to 875 KY 344 (Foxport Road)	0.2	A	0.5	A
875 KY 344 (Foxport Road) to Andrew Graham property	0.1	A	0.3	A
Andrew Graham Property to west of Breeze Road	0.2	A	0.4	A
West of Breeze Road to 234 KY 344 (Foxport Road)	0.1	A	0.3	A
234 KY 344 (Foxport Road) to KY 57 (Mt. Caramel Road)	0.2	A	0.5	A
KY 559 (Foxspring Avenue/Wallingford Road) at:				
Gulley Drive to near east of Sutton Road	0.3	A	0.3	A
East of Sutton Road to west of Botkins Lane	0.2	A	0.2	A
West of Botkins Lane to 3954 KY 559 (Wallingford Road)	0.2	A	0.3	A
3954 KY 559 (Wallingford Road) to near Crump Lane	0.2	A	0.2	A
Near Crump Lane to near Adams Lane	0.2	A	0.3	A
Near Adams Lane to 3215 KY 559 (Wallingford Road)	0.2	A	0.3	A
3215 KY 559 (Wallingford Road) to near Brookstone Drive	0.4	A	0.3	A
Near Brookstone Drive to near Stewart Lane	0.4	A	0.5	A
Near Stewart Lane to School Street	0.7	A	0.8	A
KY 989 (Burtonville Road/Salt Lick Road) at:				
KY 344 (Foxport Road) to Fleming/Lewis County Line	0.0	A	0.0	A
Fleming/Lewis County Line to KY 1237 (Burtonville Road)	0.0	A	0.0	A
KY 1237 (Burtonville Road) at:				
KY 989 (Salt Lick Road) to Thomas Lane/Ribolt Epworth Road	0.0	A	0.1	A
Thomas Lane/Ribolt Epworth Road to KY 57	0.1	A	0.2	A
KY 3301 (Beechtree Pike/Road) at:				
KY 57 (Mt. Carmel Road) to near Rebecca Lane	0.1	A	0.1	A
Near Rebecca Lane to near Penny Lane	0.1	A	0.1	A
Near Penny Lane to Licking River Bridge	0.1	A	0.1	A
Licking River Bridge to 1208 KY 3301 (Beechtree Pike)	0.1	A	0.1	A
1208 KY 3301 (Beechtree Pike) to Beech Spring Estates	0.1	A	0.1	A
Beech Spring Estates to Wilson Run Road	0.1	A	0.1	A
Wilson Run Road to 2810 KY 3301 (Beechtree Pike)	0.1	A	0.1	A
2810 KY 3301 (Beechtree Pike) to near Colgan Road	0.1	A	0.1	A
Near Colgan Road to Rice Lane	0.1	A	0.1	A

HUMMINGBIRD SOLAR PROJECT

CONCLUSION

3.2 OPERATION

Once operational, the facility will be managed and monitored by a small number of employees. The facility will have one employee on site every day and up to three additional employees for 70 days a year for site inspections and repair. Operations workers are expected to commute to and from the project site individually during the peak AM and PM hours. Work can also be conducted at night up to thirty days a year. This additional volume of daily traffic is considered negligible, and the operational phase of the project will have no measurable impact on the traffic and/or transportation infrastructure.

4.0 CONCLUSION

As demonstrated in the traffic analysis, the construction period will not produce significant operational changes to existing roadways. All roadways within the project area will continue to operate at LOS B or better during peak construction traffic. Although no significant adverse traffic impacts are expected during project construction or operation, using mitigation measures such as ridesharing between construction workers, using appropriate traffic controls, or allowing flexible working hours outside of peak hours could be implemented to minimize any potential for delays during the AM and PM peak hours.

HUMMINGBIRD SOLAR PROJECT

Appendix A

Appendix A

TRAFFIC COUNTS AND CLASSIFICATION DATA

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 05/03/2017 through 05/05/2017

035081 Fleming R Minor Collector R Minor Collector 035-KY-3301-000 @

Seasonal Factor Grp: 2
Daily Factor Grp: 2
Axle Factor Grp: 08
Growth Factor Grp: 08

	Sun, Apr 30, 2017			Mon, May 1, 2017			Tue, May 2, 2017			Wed, May 3, 2017			Thu, May 4, 2017			Fri, May 5, 2017			Sat, May 6, 2017		
	Road	Pos	Neg																		
00:00													4			1					
01:00													0			0					
02:00													4			1					
03:00													3			0					
04:00													4			7					
05:00													14			12					
06:00													13			18					
07:00													49			37					
08:00													31			20					
09:00													11			7					
10:00										29			27								
11:00										16			31								
12:00										21			36								
13:00										34			32								
14:00										16			34								
15:00										37			39								
16:00										37			44								
17:00										50			50								
18:00										62			30								
19:00										34			14								
20:00										32			26								
21:00										27			17								
22:00										10			8								
23:00										3			4								
Total										408			525			103					
AM Peak Vol										0			49			0					
AM Peak Fct										0			1			0					
AM Peak Hr													7:00			:					
PM Peak Vol										62			50			0					
PM Peak Fct										1			1			0					
PM Peak Hr										18:00			17:00			:					
Seasonal Fct										. 955			. 955			. 955					
Daily Fct										. 995			. 953			. 860					
Axle Fct										. 489			. 489			. 489					
Pulse Fct										2.000			2.000			2.000					

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 09/01/2020 through 09/03/2020

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 06/24/2019 through 06/27/2019

035087 Fleming R Minor Collector ,
035-KY-3301-000 @ 1.200 From: KY 57 (NE

Daily Factor Grp:
Axle Factor Grp: 2
Axle Factor Grp:
Growth Factor Grp:

	Sun, Jun 23, 2019			Mon, Jun 24, 2019			Tue, Jun 25, 2019			Wed, Jun 26, 2019			Thu, Jun 27, 2019			Fri, Jun 28, 2019			Sat, Jun 29, 2019		
	Road	Pos	Neg																		
00:00							3			6			1								
01:00							1			3			2								
02:00							4			1			5								
03:00							6			5			5								
04:00							5			6			6								
05:00							19			20			11								
06:00							18			13			17								
07:00							46			32			51								
08:00							29			31											
09:00							24			40											
10:00				29			17			29											
11:00				38			33			32											
12:00				31			30			37											
13:00				40			29			38											
14:00				32			23			40											
15:00				33			38			40											
16:00				40			45			38											
17:00				48			39			45											
18:00				32			41			42											
19:00				16			30			32											
20:00				17			33			23											
21:00				11			14			21											
22:00				7			12			11											
23:00				3			9			9											
Total				377			548			594			98								
AM Peak Vol							46			40											
AM Peak Fct							. 767			. 714											
AM Peak Hr							7:00			8:45											
PM Peak Vol				53			54			50											
PM Peak Fct				. 779			. 9			. 735											
PM Peak Hr				16:45			16: 15			12:30											
Seasonal Fct				. 950			. 950			. 950			. 950								
Daily Fct				1.008			. 985			. 998			. 962								
Axle Fct				. 495			. 495			. 495			. 495								
Pulse Fct				2.000			2.000			2.000			2.000								

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 05/14/2019 through 05/17/2019

068517
Lewis
R Minor Collector
068-KY-1237-000

Seasonal Factor Grp: 2
Daily Factor Grp: 2
Axle Factor Grp: 2
08
068-KY-1237-000
Growth Factor Grp:
08

	Sun, May 12, 2019			Mon, May 13, 2019			Tue, May 14, 2019			Wed, May 15, 2019			Thu, May 16, 2019			Fri, May 17, 2019			Sat, May 18, 2019		
	Road	Pos	Neg																		
00:00										3			3			1					
01:00										1			1			0					
02:00										2			0			1					
03:00										3			3			1					
04:00										2			0			0					
05:00										12			8			6					
06:00										17			17			19					
07:00										16			16								
08:00							20			24			20								
09:00							18			27			24								
10:00							28			24			19								
11:00							22			32			18								
12:00							30			28			32								
13:00							42			31			33								
14:00							22			27			27								
15:00							28			38			31								
16:00							34			41			39								
17:00							39			35			38								
18:00							27			30			33								
19:00							37			22			31								
20:00							26			17			17								
21:00							17			14			18								
22:00							5			10			12								
23:00							5			6			6								
Total							400			462			446			28					
AM Peak Vol							28			36			24								
AM Peak Fct							. 636			. 529			. 75								
AM Peak Hr							10:00			10:45			8: 45								
PM Peak Vol							42			47			41								
PM Peak Fct							. 7			. 691			. 788								
PM Peak Hr							13:00			16: 45			16:45								
Seasonal Fct							. 931			. 931			. 931			. 931					
Daily Fct							. 977			. 982			. 970			. 863					
Axle Fct							. 494			. 494			. 494			. 494					
Pulse Fct							2.000			2.000			2.000			2.000					

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 06/08/2020 through 06/11/2020

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 06/12/2017 through 06/14/2017

068761
Lewis
R Minor Collector
068-KY-1237-000

Seasonal Factor Grp: 2
Daily Factor Grp: 2
Axle Factor Grp: 08
068-KY-1237-000 08
08

	Sun, Jun 11, 2017			Mon, Jun 12, 2017			Tue, Jun 13, 2017			Wed, Jun 14, 2017			Thu, Jun 15, 2017			Fri, Jun 16, 2017			Sat, Jun 17, 2017		
	Road	Pos	Neg																		
00:00							3			4											
01:00							0			0											
02:00							5			9											
03:00							3			5											
04:00							7			10											
05:00							29			31											
06:00							39			32											
07:00							46			42											
08:00				43			44			54											
09:00				41			50			45											
10:00				45			55														
11:00				40			42														
12:00				41			44														
13:00				46			47														
14:00				47			53														
15:00				49			62														
16:00				58			74														
17:00				79			65														
18:00				43			47														
19:00				41			44														
20:00				45			42														
21:00				23			28														
22:00				21			12														
23:00				13			4														
Total				675			845			232											
AM Peak Vol				0			55			0											
AM Peak Fct				0			1			0											
AM Peak Hr							10:00														
PM Peak Vol				79			74			0											
PM Peak Fct				1			1			0											
PM Peak Hr				17:00			16:00														
Seasonal Fct				. 950			. 950			. 950											
Daily Fct				1.016			1.015			. 984											
Axle Fct				. 488			. 488			. 488											
Pulse Fct				2.000			2.000			2.000											

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 05/14/2019 through 05/16/2019

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 06/24/2019 through 06/27/2019

035042

 leming R Minor Collector 35-K 035-KY-0559 -000 @ 13.200 From: DUDLEYSeasonal Factor Grp: 2
Daily Factor Grp: 2
Axle Factor Grp: 08
Growth Factor Grp:

	Sun, Jun 23, 2019			Mon, Jun 24, 2019			Tue, Jun 25, 2019			Wed, Jun 26, 2019			Thu, Jun 27, 2019			Fri, Jun 28, 2019			Sat, Jun 29, 2019		
	Road	Pos	Neg																		
00:00							2			2			0								
01:00							0			3			0								
02:00							2			1			2								
03:00							1			0			2								
04:00							2			1			2								
05:00							8			8			10								
06:00							12			10			11								
07:00							25			25			16								
08:00							19			20											
09:00							24			23											
10:00				25			22			30											
11:00				18			26			22											
12:00				23			26			28											
13:00				31			26			27											
14:00				17			32			37											
15:00				30			28			55											
16:00				44			31			36											
17:00				29			25			29											
18:00				24			26			25											
19:00				20			22			20											
20:00				16			18			19											
21:00				14			14			8											
22:00				9			5			8											
23:00				4			4			0											
Total				304			400			437			43								
AM Peak Vol							29			30											
AM Peak Fct							. 725			. 625											
AM Peak Hr							10: 15			10:00											
PM Peak Vol				46			34			60											
PM Peak Fct				. 676			. 708			. 469											
PM Peak Hr				16:15			15:15			15:15											
Seasonal Fct				. 950			. 950			. 950			. 950								
Daily Fct				1.008			. 985			. 998			. 962								
Axle Fct				. 495			. 495			. 495			. 495								
Pulse Fct				2.000			2.000			2.000			2.000								

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 04/06/2021 through 04/08/2021

035054 leming R Minor Collector R Minor Collector

Seasonal Factor Grp: 2
Daily Factor Grp: 2
Axle Factor Grp: 08
Growth Factor Grp: 08
08

	Sun, Apr 4, 2021			Mon, Apr 5, 2021			Tue, Apr 6, 2021			Wed, Apr 7, 2021			Thu, Apr 8, 2021			Fri, Apr 9, 2021			Sat, Apr 10, 2021		
	Road	Pos	Neg																		
00:00										6			4								
01:00										2			4								
02:00										1			2								
03:00										4			8								
04:00										14			7								
05:00										13			25								
06:00										49			45								
07:00										76			99								
08:00							78			62											
09:00							57			56											
10:00							64			62											
11:00							63			64											
12:00							76			79											
13:00							83			70											
14:00							79			89											
15:00							90			87											
16:00							96			97											
17:00							75			92											
18:00							65			80											
19:00							51			44											
20:00							34			38											
21:00							25			31											
22:00							13			16											
23:00							8			6											
Total							957			1,138			194								
AM Peak Vol										77											
AM Peak Fct										. 875											
AM Peak Hr										7:30											
PM Peak Vol							104			108											
PM Peak Fct							. 813			. 9											
PM Peak Hr							15:45			16:30											
Seasonal Fct							1.244			1.244			1.244								
Daily Fct							. 930			. 943			. 948								
Axle Fct							. 494			. 494			. 494								
Pulse Fct							2.000			2.000			2.000								

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 06/24/2019 through 06/27/2019

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 04/27/2020 through 04/29/2020

035091 leming R Minor Collector 035-KY-0344-000@ 1.800 From: KY 989

Seasonal Factor Grp: 2
Daily Factor Grp: 2
Axle Factor Grp:
Growth Factor Grp:

	Sun, Apr 26, 2020			Mon, Apr 27, 2020			Tue, Apr 28, 2020			Wed, Apr 29, 2020			Thu, Apr 30, 2020			Fri, May 1, 2020			Sat, May 2, 2020		
	Road	Pos	Neg																		
00:00							2			4											
01:00							0			3											
02:00										3											
03:00							3			2											
04:00							4			7											
05:00							25			22											
06:00							36			22											
07:00							30			36											
08:00							29			29											
09:00							38			41											
10:00							55			46											
11:00							35			53											
12:00							58			40											
13:00							40			48											
14:00				48			35														
15:00				48			70														
16:00				64			72														
17:00				75			92														
18:00				71			56														
19:00				46			46														
20:00				38			26														
21:00				19			31														
22:00				6			13														
23:00				2			5														
Total				417			802			356											
AM Peak Vol							55			53											
AM Peak Fct							. 688			. 663											
AM Peak Hr							10:00			11:00											
PM Peak Vol							97														
PM Peak Fct							. 808														
PM Peak Hr							16:45														
Seasonal Fct				1.244			1.244			1.244											
Daily Fct				. 942			. 930			. 943											
Axle Fct				. 494			. 494			. 494											
Pulse Fct				2.000			2.000			2.000											

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 08/16/2017 through 08/18/2017

035091 Fleming R Minor Collector
035-KY-0344-000 @ 1.800 From: KY 989

Seasonal Factor Grp: 2
Daily Factor Grp: 2
Axle Factor Grp:
Growth Factor Grp:

	Sun, Aug 13, 2017			Mon, Aug 14, 2017			Tue, Aug 15, 2017			Wed, Aug 16, 2017			Thu, Aug 17, 2017			Fri, Aug 18, 2017			Sat, Aug 19, 2017		
	Road	Pos	Neg																		
00:00													6			3					
01:00													2			1					
02:00													1			3					
03:00													10			3					
04:00													13			16					
05:00													33			34					
06:00													65			54					
07:00													61			56					
08:00													53			44					
09:00										55			45								
10:00										49			44								
11:00										70			67								
12:00										52			53								
13:00										46			53								
14:00										56			66								
15:00										73			80								
16:00										64			60								
17:00										95			93								
18:00										55			62								
19:00										37			44								
20:00										38			35								
21:00										22			21								
22:00										12			13								
23:00										2			4								
Total										726			984			214					
AM Peak Vol										0			67			0					
AM Peak Fct										0			1			0					
AM Peak Hr													11:00			:					
PM Peak Vol										95			93			0					
PM Peak Fct										1			1			0					
PM Peak Hr										17:00			17:00			:					
Seasonal Fct										. 957			. 957			. 957					
Daily Fct										. 990			. 939			. 867					
Axle Fct										. 489			. 489			. 489					
Pulse Fct										2.000			2.000			2.000					

Count Class Distribution for
04/27/2020
through 04/29/2020

Site names:
County:
Funct Class:
Location:
035002
Fleming
R Major Collector
035-KY-0057 -000 @ 5.407 From: KY 3301 To: KY 344

	Road	Pos	Neg	Pos Lane1	Neg Lane1
MC	$\begin{gathered} 7 \\ .18 \% \end{gathered}$	$\begin{gathered} 3 \\ .16 \% \end{gathered}$	$\begin{gathered} 4 \\ .20 \% \end{gathered}$	$\begin{gathered} 3 \\ .16 \% \end{gathered}$	$\begin{gathered} 4 \\ .20 \% \end{gathered}$
CAR	$\begin{gathered} 1,997 \\ 51.39 \% \end{gathered}$	$\begin{gathered} 966 \\ 50.63 \% \end{gathered}$	$\begin{gathered} 1,031 \\ 52.12 \% \end{gathered}$	$\begin{gathered} 966 \\ 50.63 \% \end{gathered}$	$\begin{gathered} 1,031 \\ 52.12 \% \end{gathered}$
PU	$\begin{gathered} 1,343 \\ 34.56 \% \end{gathered}$	$\begin{gathered} 643 \\ 33.70 \% \end{gathered}$	$\begin{gathered} 700 \\ 35.39 \% \end{gathered}$	$\begin{gathered} 643 \\ 33.70 \% \end{gathered}$	$\begin{gathered} 700 \\ 35.39 \% \end{gathered}$
BUS	$\begin{gathered} 42 \\ 1.08 \% \end{gathered}$	$\begin{gathered} 26 \\ 1.36 \% \end{gathered}$	$\begin{aligned} & 16 \\ & .81 \% \end{aligned}$	$\begin{gathered} 26 \\ 1.36 \% \end{gathered}$	$\begin{gathered} 16 \\ .81 \% \end{gathered}$
2D	$\begin{gathered} 352 \\ 9.06 \% \end{gathered}$	$\begin{gathered} 183 \\ 9.59 \% \end{gathered}$	$\begin{gathered} 169 \\ 8.54 \% \end{gathered}$	$\begin{gathered} 183 \\ 9.59 \% \end{gathered}$	$\begin{gathered} 169 \\ 8.54 \% \end{gathered}$
SU 3	$\begin{gathered} 7 \\ .18 \% \end{gathered}$	$\begin{gathered} 4 \\ .21 \% \end{gathered}$	$\begin{gathered} 3 \\ .15 \% \end{gathered}$	$\begin{gathered} 4 \\ .21 \% \end{gathered}$	$\begin{gathered} 3 \\ .15 \% \end{gathered}$
SU 4+	$\begin{gathered} 4 \\ .10 \% \end{gathered}$	$\begin{gathered} 2 \\ .10 \% \end{gathered}$			
ST 4-	$\begin{gathered} 130 \\ 3.35 \% \end{gathered}$	$\begin{gathered} 77 \\ 4.04 \% \end{gathered}$	$\begin{gathered} 53 \\ 2.68 \% \end{gathered}$	$\begin{gathered} 77 \\ 4.04 \% \end{gathered}$	$\begin{gathered} 53 \\ 2.68 \% \end{gathered}$
ST 5	$\begin{gathered} 3 \\ .08 \% \end{gathered}$	$\begin{gathered} 3 \\ .16 \% \end{gathered}$	$\begin{gathered} 0 \\ .00 \% \end{gathered}$	$\begin{gathered} 3 \\ .16 \% \end{gathered}$	$\begin{gathered} 0 \\ .00 \% \end{gathered}$
ST 6+	$\begin{gathered} 0 \\ .00 \% \end{gathered}$				
MT 5-	$\begin{gathered} 1 \\ .03 \% \end{gathered}$	$\begin{gathered} 1 \\ .05 \% \end{gathered}$	$\begin{gathered} 0 \\ .00 \% \end{gathered}$	$\begin{gathered} 1 \\ .05 \% \end{gathered}$	$\begin{gathered} 0 \\ .00 \% \end{gathered}$
MT 6	$\begin{gathered} 0 \\ .00 \% \end{gathered}$				
MT 7+	$\begin{gathered} 0 \\ .00 \% \end{gathered}$				
NA	$\begin{gathered} 0 \\ .00 \% \end{gathered}$				
UNCLS	$\begin{gathered} 0 \\ .00 \% \end{gathered}$				
Trucks	$\begin{gathered} 539 \\ 13.87 \% \end{gathered}$	$\begin{gathered} 296 \\ 15.51 \% \end{gathered}$	$\begin{gathered} 243 \\ 12.29 \% \end{gathered}$	$\begin{gathered} 296 \\ 15.51 \% \end{gathered}$	$\begin{gathered} 243 \\ 12.29 \% \end{gathered}$
Combo Trucks	$\begin{gathered} 134 \\ 3.45 \% \end{gathered}$	$\begin{gathered} 81 \\ 4.25 \% \end{gathered}$	$\begin{gathered} 53 \\ 2.68 \% \end{gathered}$	$\begin{gathered} 81 \\ 4.25 \% \end{gathered}$	$\begin{gathered} 53 \\ 2.68 \% \end{gathered}$
Classified	$\begin{gathered} 3,886 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 1,908 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 1,978 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 1,908 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 1,978 \\ 100.00 \% \end{gathered}$
Unclassified	$\begin{gathered} 0 \\ .00 \% \end{gathered}$				
Total	$\begin{gathered} 3,886 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 1,908 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 1,978 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 1,908 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 1,978 \\ 100.00 \% \end{gathered}$

Seasonal Factor Grp: 2
Daily Factor Grp: 2
Axle Factor Grp: 07
Growth Factor Grp: 07

Count Class Distribution for
06/03/2014
through 06/05/2014

Site names:
County:
Funct Class:
Location:
035002
Fleming
R Major Collector
035-KY-0057 -000 @ 5.407 From: KY 3301 To: KY 344

	Road	Pos	Neg	Pos Lane1	Neg Lane1
MC	$\begin{gathered} 17 \\ .49 \% \end{gathered}$	$\begin{gathered} 11 \\ .65 \% \end{gathered}$	$\begin{gathered} 6 \\ .33 \% \end{gathered}$	$\begin{gathered} 11 \\ .65 \% \end{gathered}$	$\begin{gathered} 6 \\ .33 \% \end{gathered}$
CAR	$\begin{gathered} 2,259 \\ 64.64 \% \end{gathered}$	$\begin{gathered} 1,104 \\ 65.33 \% \end{gathered}$	$\begin{array}{r} 1,1555 \\ 63.99 \% \end{array}$	$\begin{gathered} 1,104 \\ 65.33 \% \end{gathered}$	$\begin{gathered} 1,155 \\ 63.99 \% \end{gathered}$
PU	$\begin{gathered} 888 \\ 25.41 \% \end{gathered}$	$\begin{gathered} 413 \\ 24.44 \% \end{gathered}$	$\begin{gathered} 475 \\ 26.32 \% \end{gathered}$	$\begin{gathered} 413 \\ 24.44 \% \end{gathered}$	$\begin{gathered} 475 \\ 26.32 \% \end{gathered}$
BUS	$\begin{gathered} 19 \\ .54 \% \end{gathered}$	$\begin{gathered} 9 \\ .53 \% \end{gathered}$	$\begin{gathered} 10 \\ .55 \% \end{gathered}$	$\begin{gathered} 9 \\ .53 \% \end{gathered}$	$\begin{gathered} 10 \\ .55 \% \end{gathered}$
2D	$\begin{gathered} 133 \\ 3.81 \% \end{gathered}$	$\begin{gathered} 65 \\ 3.85 \% \end{gathered}$	$\begin{gathered} 68 \\ 3.77 \% \end{gathered}$	$\begin{gathered} 65 \\ 3.85 \% \end{gathered}$	$\begin{gathered} 68 \\ 3.77 \% \end{gathered}$
SU 3	$\begin{gathered} 27 \\ .77 \% \end{gathered}$	$\begin{gathered} 17 \\ 1.01 \% \end{gathered}$	$\begin{gathered} 10 \\ .55 \% \end{gathered}$	$\begin{gathered} 17 \\ 1.01 \% \end{gathered}$	$\begin{gathered} 10 \\ .55 \% \end{gathered}$
SU 4+	$\begin{gathered} 11 \\ .31 \% \end{gathered}$	$\begin{gathered} 6 \\ .36 \% \end{gathered}$	$\begin{gathered} 5 \\ .28 \% \end{gathered}$	$\begin{gathered} 6 \\ .36 \% \end{gathered}$	$\begin{gathered} 5 \\ .28 \% \end{gathered}$
ST 4-	$\begin{gathered} 54 \\ 1.55 \% \end{gathered}$	$\begin{gathered} 22 \\ 1.30 \% \end{gathered}$	$\begin{gathered} 32 \\ 1.77 \% \end{gathered}$	$\begin{gathered} 22 \\ 1.30 \% \end{gathered}$	$\begin{gathered} 32 \\ 1.77 \% \end{gathered}$
ST 5	$\begin{gathered} 78 \\ 2.23 \% \end{gathered}$	$\begin{gathered} 38 \\ 2.25 \% \end{gathered}$	$\begin{gathered} 40 \\ 2.22 \% \end{gathered}$	$\begin{gathered} 38 \\ 2.25 \% \end{gathered}$	$\begin{gathered} 40 \\ 2.22 \% \end{gathered}$
ST 6+	$\begin{gathered} 7 \\ .20 \% \end{gathered}$	$\begin{gathered} 3 \\ .18 \% \end{gathered}$	$\begin{gathered} 4 \\ .22 \% \end{gathered}$	$\begin{gathered} 3 \\ .18 \% \end{gathered}$	$\begin{gathered} 4 \\ .22 \% \end{gathered}$
MT 5-	$\begin{gathered} 0 \\ .00 \% \end{gathered}$				
MT 6	$\begin{gathered} 0 \\ .00 \% \end{gathered}$				
MT 7+	$\begin{gathered} 1 \\ .03 \% \end{gathered}$	$\begin{gathered} 1 \\ .06 \% \end{gathered}$	$\begin{gathered} 0 \\ .00 \% \end{gathered}$	$\begin{gathered} 1 \\ .06 \% \end{gathered}$	$\begin{gathered} 0 \\ .00 \% \end{gathered}$
NA	$\begin{gathered} 0 \\ .00 \% \end{gathered}$				
UNCLS	$\begin{gathered} 1 \\ .03 \% \end{gathered}$	$\begin{gathered} 1 \\ .06 \% \end{gathered}$	$\begin{gathered} 0 \\ .00 \% \end{gathered}$	$\begin{gathered} 1 \\ .06 \% \end{gathered}$	$\begin{gathered} 0 \\ .00 \% \end{gathered}$
Trucks	$\begin{gathered} 330 \\ 9.44 \% \end{gathered}$	$\begin{gathered} 161 \\ 9.53 \% \end{gathered}$	$\begin{gathered} 169 \\ 9.36 \% \end{gathered}$	$\begin{gathered} 161 \\ 9.53 \% \end{gathered}$	$\begin{gathered} 169 \\ 9.36 \% \end{gathered}$
Combo Trucks	$\begin{gathered} 140 \\ 4.01 \% \end{gathered}$	$\begin{gathered} 64 \\ 3.79 \% \end{gathered}$	$\begin{gathered} 76 \\ 4.21 \% \end{gathered}$	$\begin{gathered} 64 \\ 3.79 \% \end{gathered}$	$\begin{gathered} 76 \\ 4.21 \% \end{gathered}$
Classified	$\begin{gathered} 3,494 \\ 99.97 \% \end{gathered}$	$\begin{gathered} 1,689 \\ 99.94 \% \end{gathered}$	$\begin{gathered} 1,805 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 1,689 \\ 99.94 \% \end{gathered}$	$\begin{gathered} 1,805 \\ 100.00 \% \end{gathered}$
Unclassified	$\begin{gathered} 1 \\ .03 \% \end{gathered}$	$\begin{gathered} 1 \\ .06 \% \end{gathered}$	$\begin{gathered} 0 \\ .00 \% \end{gathered}$	$\begin{gathered} 1 \\ .06 \% \end{gathered}$	$\begin{gathered} 0 \\ .00 \% \end{gathered}$
Total	$\begin{gathered} 3,495 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 1,690 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 1,805 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 1,690 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 1,805 \\ 100.00 \% \end{gathered}$

Seasonal Factor Grp: 2
Daily Factor Grp:
2
07
07

Count Class Distribution for 04/26/2022

Site names:	035103
County:	Fleming
Funct Class:	R Major Collector
Location:	035-KY-0057-000 @ 1.202 From: KY 597 To: KY 57X

	Road	Pos	Neg	Pos Lane1	Neg Lane1
MC	10 15%	3 09%	7 20%	3 09%	7 20%

Count Class Distribution for 05/16/2018

Site names:
County:
Funct Class:
Location:
035103
Fleming
R Major Collector
035-KY-0057-000 @ 1.202 From: KY 597 To: KY 57X

	Road	Pos	Neg	Pos Lane1	Neg Lane1
MC	$\begin{gathered} 10 \\ .22 \% \end{gathered}$	$\begin{gathered} 6 \\ .28 \% \end{gathered}$	$\begin{gathered} 4 \\ .17 \% \end{gathered}$	$\begin{gathered} 6 \\ .28 \% \end{gathered}$	$\begin{gathered} 4 \\ .17 \% \end{gathered}$
CAR	$\begin{gathered} 2,452 \\ 54.97 \% \end{gathered}$	$\begin{gathered} 1,136 \\ 53.53 \% \end{gathered}$	$\begin{gathered} 1,336 \\ 56.26 \% \end{gathered}$	$\begin{gathered} 1,1366 \\ 53.53 \% \end{gathered}$	$\begin{gathered} 1,316 \\ 56.26 \% \end{gathered}$
PU	$\begin{gathered} 1,332 \\ 29.86 \% \end{gathered}$	$\begin{gathered} 627 \\ 29.55 \% \end{gathered}$	$\begin{gathered} 705 \\ 30.14 \% \end{gathered}$	$\begin{gathered} 627 \\ 29.55 \% \end{gathered}$	$\begin{gathered} 705 \\ 30.14 \% \end{gathered}$
BUS	$\begin{gathered} 38 \\ .85 \% \end{gathered}$	$\begin{gathered} 16 \\ .75 \% \end{gathered}$	$\begin{gathered} 22 \\ .94 \% \end{gathered}$	$\begin{gathered} 16 \\ .75 \% \end{gathered}$	$\begin{gathered} 22 \\ .94 \% \end{gathered}$
2D	$\begin{gathered} 288 \\ 6.46 \% \end{gathered}$	$\begin{gathered} 154 \\ 7.26 \% \end{gathered}$	$\begin{gathered} 134 \\ 5.73 \% \end{gathered}$	$\begin{gathered} 154 \\ 7.26 \% \end{gathered}$	$\begin{gathered} 134 \\ 5.73 \% \end{gathered}$
SU 3	$\begin{gathered} 78 \\ 1.75 \% \end{gathered}$	$\begin{gathered} 61 \\ 2.87 \% \end{gathered}$	$\begin{gathered} 17 \\ .73 \% \end{gathered}$	$\begin{gathered} 61 \\ 2.87 \% \end{gathered}$	$\begin{gathered} 17 \\ .73 \% \end{gathered}$
SU 4+	$\begin{gathered} 35 \\ .78 \% \end{gathered}$	$\begin{gathered} 3 \\ .14 \% \end{gathered}$	$\begin{gathered} 32 \\ 1.37 \% \end{gathered}$	$\begin{gathered} 3 \\ .14 \% \end{gathered}$	$\begin{gathered} 32 \\ 1.37 \% \end{gathered}$
ST 4-	$\begin{gathered} 100 \\ 2.24 \% \end{gathered}$	$\begin{gathered} 47 \\ 2.21 \% \end{gathered}$	$\begin{gathered} 53 \\ 2.27 \% \end{gathered}$	$\begin{gathered} 47 \\ 2.21 \% \end{gathered}$	$\begin{gathered} 53 \\ 2.27 \% \end{gathered}$
ST 5	$\begin{gathered} 125 \\ 2.80 \% \end{gathered}$	$\begin{gathered} 70 \\ 3.30 \% \end{gathered}$	$\begin{gathered} 55 \\ 2.35 \% \end{gathered}$	$\begin{gathered} 70 \\ 3.30 \% \end{gathered}$	$\begin{gathered} 55 \\ 2.35 \% \end{gathered}$
ST 6+	$\begin{gathered} 1 \\ .02 \% \end{gathered}$	$\begin{gathered} 1 \\ .05 \% \end{gathered}$	$\begin{gathered} 0 \\ .00 \% \end{gathered}$	$\begin{gathered} 1 \\ .05 \% \end{gathered}$	$\begin{gathered} 0 \\ .00 \% \end{gathered}$
MT 5-	$\begin{gathered} 1 \\ .02 \% \end{gathered}$	$\begin{gathered} 1 \\ .05 \% \end{gathered}$	$\begin{gathered} 0 \\ .00 \% \end{gathered}$	$\begin{gathered} 1 \\ .05 \% \end{gathered}$	$\begin{gathered} 0 \\ .00 \% \end{gathered}$
MT 6	$\begin{gathered} 1 \\ .02 \% \end{gathered}$	$\begin{gathered} 0 \\ .00 \% \end{gathered}$	$\begin{gathered} 1 \\ .04 \% \end{gathered}$	$\begin{gathered} 0 \\ .00 \% \end{gathered}$	$\begin{gathered} 1 \\ .04 \% \end{gathered}$
MT 7+	$\begin{gathered} 0 \\ .00 \% \end{gathered}$				
NA	$\begin{gathered} 0 \\ .00 \% \end{gathered}$				
UNCLS	$\begin{gathered} 0 \\ .00 \% \end{gathered}$				
Trucks	$\begin{gathered} 667 \\ 14.95 \% \end{gathered}$	$\begin{gathered} 353 \\ 16.64 \% \end{gathered}$	$\begin{gathered} 314 \\ 13.42 \% \end{gathered}$	$\begin{gathered} 353 \\ 16.64 \% \end{gathered}$	$\begin{gathered} 314 \\ 13.42 \% \end{gathered}$
Combo Trucks	$\begin{gathered} 228 \\ 5.11 \% \end{gathered}$	$\begin{gathered} 119 \\ 5.61 \% \end{gathered}$	$\begin{gathered} 109 \\ 4.66 \% \end{gathered}$	$\begin{gathered} 119 \\ 5.61 \% \end{gathered}$	$\begin{gathered} 109 \\ 4.66 \% \end{gathered}$
Classified	$\begin{gathered} 4,461 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 2,122 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 2,339 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 2,122 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 2,339 \\ 100.00 \% \end{gathered}$
Unclassified	$\begin{gathered} 0 \\ .00 \% \end{gathered}$				
Total	$\begin{gathered} 4,461 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 2,122 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 2,339 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 2,122 \\ 100.00 \% \end{gathered}$	$\begin{gathered} 2,339 \\ 100.00 \% \end{gathered}$

Seasonal Factor Grp: 2
Daily Factor Grp: 2
Axle Factor Grp: 07
Growth Factor Grp: 07

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 04/27/2020 through 04/29/2020

035002
Fleming
R Major Collector
035-KY-0057-000

Seasonal Factor Grp: 2
Daily Factor Grp: 2
Axle Factor Grp: 07
035-KY-0057

	Sun, Apr 26, 2020			Mon, Apr 27, 2020			Tue, Apr 28, 2020			Wed, Apr 29, 2020			Thu, Apr 30, 2020			Fri, May 1, 2020			Sat, May 2, 2020		
	Road	Pos	Neg																		
00:00							6	4	2	10	7	3									
01:00							13	9	4	3	0	3									
02:00							4	1	3	3	0	3									
03:00							7	3	4	6	4	2									
04:00							15	5	10	13	5	8									
05:00							46	15	31	39	9	30									
06:00							57	17	40	64	20	44									
07:00							130	28	102	119	28	91									
08:00							101	41	60	102	37	65									
09:00							89	44	45	103	45	58									
10:00							120	59	61	129	58	71									
11:00							118	54	64	152	77	75									
12:00							138	62	76	130	63	67									
13:00							136	69	67	142	72	70									
14:00				152	71	81	147	83	64												
15:00				155	84	71	158	73	85												
16:00				156	100	56	151	91	60												
17:00				190	112	78	190	124	66												
18:00				118	69	49	92	65	27												
19:00				67	40	27	76	37	39												
20:00				56	30	26	62	33	29												
21:00				39	23	16	34	16	18												
22:00				13	7	6	19	11	8												
23:00				6	0	6	10	3	7												
Total				952	536	416	1,919	947	972	1,015	425	590									
AM Peak Vol							133	60	102	153	78	93									
AM Peak Fct							. 693	. 789	. 607	. 797	. 65	. 802									
AM Peak Hr							7:30	10: 15	7:00	10:45	10: 45	7:15									
PM Peak Vol							199	139	85												
PM Peak Fct							. 905	. 772	. 759												
PM Peak Hr							16:45	16: 45	15:00			:									
Seasonal Fct				1.244	1.244	1.244	1.244	1.244	1.244	1.244	1.244	1.244									
Daily Fct				. 942	. 942	. 942	. 930	. 930	. 930	. 943	. 943	. 943									
Axle Fct				. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500									
Pulse Fct				2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000									

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 05/03/2017 through 05/05/2017

035002
Fleming
R Major Collector
035-KY-0057-000

Seasonal Factor Grp:	2
Daily Factor Grp:	2
Axle Factor Grp:	07

Location:
035-KY-0057
Axle Factor Grp: 07

	Sun, Apr 30, 2017			Mon, May 1, 2017			Tue, May 2, 2017			Wed, May 3, 2017			Thu, May 4, 2017			Fri, May 5, 2017			Sat, May 6, 2017		
	Road	Pos	Neg																		
00:00													13	8	5	11	8	3			
01:00													2	1	1	7	3	4			
02:00													11	4	7	10	4	6			
03:00													26	6	20	33	12	21			
04:00													22	9	13	16	6	10			
05:00													45	11	34	35	5	30			
06:00													89	28	61	73	20	53			
07:00													164	36	128	157	39	118			
08:00													116	37	79	113	37	76			
09:00													109	47	62	126	62	64			
10:00													107	53	54	103	47	56			
11:00													111	53	58	145	66	79			
12:00													104	56	48	151	83	68			
13:00													138	80	58	132	63	69			
14:00													154	76	78	142	73	69			
15:00										143	78	65	159	90	69						
16:00										163	102	61	175	113	62						
17:00										168	118	50	157	97	60						
18:00										123	75	48	84	50	34						
19:00										86	57	29	58	40	18						
20:00										88	56	32	62	46	16						
21:00										51	28	23	30	13	17						
22:00										25	16	9	10	7	3						
23:00										22	13	9	18	12	6						
Total										869	543	326	1,964	973	991	1,254	528	726			
AM Peak Vol										0	0	0	164	53	128	157	66	118			
AM Peak Fct										0	0	0	1	1	1	1	1	1			
AM Peak Hr													7:00	10:00	7:00	7:00	11:00	7:00			
PM Peak Vol										0	0	0	175	113	78	0	0	0			
PM Peak Fct										0	0	0	1	1	1	0	0	0			
PM Peak Hr													16:00	16:00	14:00	:		:			
Seasonal Fct										. 955	. 955	. 955	. 955	. 955	. 955	. 955	. 955	. 955			
Daily Fct										. 995	. 995	. 995	. 953	. 953	. 953	. 860	. 860	. 860			
Axle Fct										. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500			
Pulse Fct										2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000			

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 04/06/2021 through 04/08/2021

035104 Fleming R Major Collector 035-KY-0057-000 @ 2.147 From: KY 57X

Seasonal Factor Grp: 2
Daily Factor Grp: 2
Axle Factor Grp:
Growth Factor Grp:

	Sun, Apr 4, 2021			Mon, Apr 5, 2021			Tue, Apr 6, 2021			Wed, Apr 7, 2021			Thu, Apr 8, 2021			Fri, Apr 9, 2021			Sat, Apr 10, 2021		
	Road	Pos	Neg																		
00:00										20			12								
01:00										10			13								
02:00										7			10								
03:00										42			37								
04:00										50			46								
05:00										81			72								
06:00										145			124								
07:00										263			287								
08:00										194			220								
09:00										208			200								
10:00										216			236								
11:00										201			194								
12:00										228			233								
13:00										214			245								
14:00							241			222											
15:00							309			236											
16:00							324			367											
17:00							336			329											
18:00							179			214											
19:00							152			172											
20:00							129			120											
21:00							88			83											
22:00							58			48											
23:00							25			34											
Total							1,841			3,704			1,929								
AM Peak Vol										281			287								
AM Peak Fct										. 798			. 854								
AM Peak Hr										7:30			7:00								
PM Peak Vol										394											
PM Peak Fct										. 879											
PM Peak Hr										16: 15											
Seasonal Fct							1.244			1.244			1.244								
Daily Fct							. 930			. 943			. 948								
Axle Fct							. 492			. 492			. 492								
Pulse Fct							2.000			2.000			2.000								

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 06/08/2020 through 06/11/2020

Kentucky Transportation Cabinet

Short-term Hourly Traffic Volume for 06/12/2017 through 06/14/2017

Site names: County: Funct Clas
Location: Lewis R Major Collector @ . 308 From: ??? To: ???

Seasonal Factor Grp: 2
Daily Factor Grp: 2
Axle Factor Grp:
Growth Factor Grp:

2
07
07

	Sun, Jun 11, 2017			Mon, Jun 12, 2017			Tue, Jun 13, 2017			Wed, Jun 14, 2017			Thu, Jun 15, 2017			Fri, Jun 16, 2017			Sat, Jun 17, 2017		
	Road	Pos	Neg																		
00:00							16			39											
01:00							8			11											
02:00							8			9											
03:00							11			7											
04:00							26			24											
05:00							31			39											
06:00							81			77											
07:00							96			78											
08:00							148			133											
09:00				99			115			110											
10:00				147			118			118											
11:00				119			128														
12:00				121			131														
13:00				137			135														
14:00				119			149														
15:00				116			130														
16:00				155			140														
17:00				162			199														
18:00				186			171														
19:00				136			131														
20:00				79			87														
21:00				64			79														
22:00				40			50														
23:00				29			23														
Total				1,709			2,211			645											
AM Peak Vol				0			148			0											
AM Peak Fct				0			1			0											
AM Peak Hr							8: 00														
PM Peak Vol				186			199			0											
PM Peak Fct				1			1			0											
PM Peak Hr				18:00			17:00														
Seasonal Fct				. 950			. 950			. 950											
Daily Fct				1.016			1.015			. 984											
Axle Fct				. 484			. 484			. 484											
Pulse Fct				2.000			2.000			2.000											

Peek Traffic
5401 N Sam Houston Pkwy W Houston, Tx 77086 1-800-848-7025

Volume by Lane
Name:
R1037 0018T9-035083A2AV11
Site:
Latitude:
R1037 0018T9
0.000000 N

Started:
10/19/2009 2:00:00 PM

Station:
Longitude:
Ended:

035083A2AV11
0.000000 E

10/21/2009 1:59:59 PM

Hasta 24 horas comenzando en Monday, October 19, 2009
Interval
All Lanes

14:00
14
15:00 33
16:00
13
17:00
18
18:00
16
19:00 13
20:00 2
21:00 3
22:00 0
23:00 0
00:00 0
01:00 0
02:00
0
03:00
0
04:00
0
05:00
1
06:00
8
07:00
12
08:00
24
09:00 18
10:00 10
11:00
9
12:00 12
13:00 19
24 Hour Total AM Peak

24 (starting at 08:00:00)
PM Peak
33 (starting at 15:00:00)

Hasta 24 horas comenzando en Tuesday, October 20, 2009
Interval All Lanes11
15:00 16
16:00 6
17:00 15
18:00 15
19:00 13
20:00 4
21:00 2
22:00 7
23:00 0
00:00 0
01:00 1
02:00 0
03:00 0
04:00 0
05:00 0
06:00 6
07:00 14
08:00 10
09:00 10
10:00 7
11:00 11
12:00 3
13:00
165
AM Peak 14 (starting at 07:00:00)
PM Peak 16 (starting at 15:00:00)
Average Interval 8
Maximum in one Interval 33
Grand Total 390

Peek Traffic
5401 N Sam Houston Pkwy W Houston, Tx 77086 1-800-848-7025

\Leftrightarrow sipnal

Volume by Lane

Name:
Site:
Latitude:
Started:
R1036 0004T9-035049A2AV11

R1036_0004T9 0.000000 N

10/19/2009 2:00:00 PM

Station:
Longitude:
Ended:

035049A2AV11
0.000000 E

10/21/2009 1:59:59 PM

Hasta 24 horas comenzando en Monday, October 19, 2009

Interval	All Lanes
14:00	8
15:00	17
16:00	10
17:00	12
18:00	10
19:00	1
20:00	5
21:00	5
22:00	2
23:00	0
00:00	0
01:00	0
02:00	0
03:00	1
04:00	1
05:00	0
06:00	5
07:00	19
08:00	8
09:00	6
10:00	7
11:00	11
12:00	6
13:00	4
24 Hour Total	138

19 (starting at 07:00:00)
PM Peak
17 (starting at 15:00:00)

Hasta 24 horas comenzando en Tuesday, October 20, 2009

Interval	All Lanes
14:00	4
15:00	3
16:00	14
17:00	14
18:00	8
19:00	6
20:00	5
21:00	3
22:00	1
23:00	1
00:00	1
01:00	0
02:00	0
03:00	2
04:00	2
05:00	0
06:00	7
07:00	12
08:00	5
09:00	7
10:00	7
11:00	9
12:00	3
13:00	7
24 Hour Total	121
AM Peak	12 (starting at 07:00:00)
PM Peak	14 (starting at 16:00:00)
Average Interval	5
Maximum in one Interval	19
Grand Total	259

Peek Traffic
5401 N Sam Houston Pkwy W
Houston, Tx 77086
1-800-848-7025

$\stackrel{\Longrightarrow}{\Rightarrow}$ sipnal

Volume by Lane

Name:
Site:
Latitude:
Started:
R1030 0009T9-035Z81A2AV11

> R1030_0009T9
0.000000 N

10/19/2009 12:00:00 PM
Longitude:

Station:

Ended:
0.000000 E
$10 / 21 / 2009$ 11:59:59 AM

Hasta 24 horas comenzando en Monday, October 19, 2009
Interval
All Lanes

12:00
4
13:00 13
14:00
7
15:00 8
16:00 9
17:00 2
18:00 9
19:005

20:00 6
21:00 5
22:00
0

23:00 0

00:00 0
01:00
0

02:00
0

03:00 0
04:00 0
05:00
0
06:00
4

07:00 2
08:00 4
09:00 4
10:00 12
11:00 10
24 Hour Total
AM Peak
104

PM Peak
12 (starting at 10:00:00)
MM Peak 13 (starting at 13:00:00)

Hasta 24 horas comenzando en Tuesday, October 20, 2009
Interval All Lanes

12:00
5
13:00 7
14:00 15
15:00 15
16:00 13
17:00 10
18:00 8
19:00 2
20:00 0
21:00 0
22:00 1

23:00 0
00:00 0
01:00 0
02:00 0
03:00 0
04:00 3
05:00 2
06:00 3
07:00 5
08:00 13
09:00 4
10:00 12
11:00 8
24 Hour Total 126
AM Peak
13 (starting at 08:00:00)
PM Peak 15 (starting at 14:00:00)

Average Interval

Maximum in one Interval
Grand Total 230

Peek Traffic
5401 N Sam Houston Pkwy W Houston, Tx 77086 1-800-848-7025

Volume by Lane

Hasta 24 horas comenzando en Monday, October 19, 2009
Interval
All Lanes

12:00
15
13:00 25
14:00
31
15:0031

16:00 33
17:00 37
18:00 32
19:00 25
20:00 13
21:00 10

22:00 9

23:00 1
00:001

01:00 0
02:00 1
03:00 1
04:00 2
05:00 9
06:00 8
07:00 27

08:00 14
09:00 11
10:00 13
11:00 17
24 Hour Total AM Peak

366

PM Peak

Hasta 24 horas comenzando en Tuesday, October 20, 2009

Interval	All Lanes
12:00	21
13:00	17
14:00	26
15:00	28
16:00	36
17:00	31
18:00	26
19:00	14
$20: 00$	4
$21: 00$	11
$22: 00$	5
$23: 00$	1
$00: 00$	0
$01: 00$	0
$02: 00$	2
$03: 00$	0
$04: 00$	0
$05: 00$	6
$06: 00$	11
$07: 00$	25
$08: 00$	17
$09: 00$	25
10:00	20
$11: 00$	25
24 Hour Total	351

AM Peak

25 (starting at 07:00:00)
PM Peak 36 (starting at 16:00:00)

Average Interval

Maximum in one Interval
Grand Total37

717

HUMMINGBIRD SOLAR PROJECT

Appendix B

Appendix B

HIGHWAY CAPACITY SOFTWARE (HCS 2022) FILES
EXISTING
CONSTRUCTION PERIOD

EXISTING

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing AM
Project Description	CR 1027	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2575
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	25	Access Point Density, pts/mi	6.1

Demand and Capacity

Directional Demand Flow Rate, veh/h	28	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	20.9
Speed Slope Coefficient (m)	1.66210	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.30998	PF Power Coefficient (p)	0.59048
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2575	-	-	20.9

Vehicle Results

Average Speed, mi/h	20.9	Percent Followers, \%	14.6
Segment Travel Time, minutes	1.40	Follower Density (FD), followers/mi/ln	0.2
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD $\mathbf{v e h}-\mathbf{h / p}$	Follower Density, followers/ $\mathbf{m i / l n}$	LOS
1	3	0.00	0.2	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing PM
Project Description	CR 1027	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2575
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	25	Access Point Density, pts/mi	6.1

Demand and Capacity

Directional Demand Flow Rate, veh/h	36	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	20.9
Speed Slope Coefficient (m)	1.66210	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.30998	PF Power Coefficient (p)	0.59048
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.3
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2575	-	-	20.9

Vehicle Results

Average Speed, mi/h	20.9	Percent Followers, \%	16.8
Segment Travel Time, minutes	1.40	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.3
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ $\mathbf{m i / l n}$	LOS
1	4	0.00	0.3	A
Copyright © 2022 University of Florida. All Rights Reserved.	HCS Existing PM CR			

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing AM
Project Description	KY 3301	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1584
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi / h	55	Access Point Density, pts $/ \mathrm{mi}$	33.3

Demand and Capacity

Directional Demand Flow Rate, veh/h	27	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	48.4
Speed Slope Coefficient (m)	3.13556	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.46639	PF Power Coefficient (p)	0.71076
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1584	-	-	48.4

Vehicle Results

Average Speed, mi/h	48.4	Percent Followers, \%	10.5
Segment Travel Time, minutes	0.37	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1732
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	24.2
Demand and Capacity	Opposing Demand Flow Rate, veh/h	19	
Directional Demand Flow Rate, veh/h	27	Total Trucks, \%	0.00
Peak Hour Factor	0.94		

Segment Capacity, veh/h	1700	Demand/Capacity (D/C)		0.02
Intermediate Results				
Segment Vertical Class	1	Free-Flow Speed, mi/h		50.6
Speed Slope Coefficient (m)	2.90478	Speed Power Coefficient (p)		0.62836
PF Slope Coefficient (m)	-1.22654	PF Power Coefficient (p)		0.78245
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln		0.0
\%Improvement to Percent Followers	0.0	\%Improvement to Speed		0.0
Subsegment Data				
\# Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1 Tangent	1732	-	-	50.6
Vehicle Results				
Average Speed, mi/h	50.6	Percent Followers, \%		6.9
Segment Travel Time, minutes	0.39	Follower Density (FD), followers/mi/ln		0.0
Vehicle LOS	A			

Segment 3

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1056
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	27	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	53.7
Speed Slope Coefficient (m)	3.41926	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.44983	PF Power Coefficient (p)	0.72120
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1056	-	-	53.7

Vehicle Results

Average Speed, mi/h	53.7	Percent Followers, \%	10.1
Segment Travel Time, minutes	0.22	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.0
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1796
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	2.9

Demand and Capacity

Directional Demand Flow Rate, veh/h	27	Opposing Demand Flow Rate, veh/h	19
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	56.0
Speed Slope Coefficient (m)	3.19448	Speed Power Coefficient (p)	0.62836
PF Slope Coefficient (m)	-1.21184	PF Power Coefficient (p)	0.80011
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, $\%$	Average Speed, mi / h
1	Tangent	1796	-	-	56.0

Vehicle Results

Average Speed, mi / h	56.0	Percent Followers, \%	6.4
Segment Travel Time, minutes	0.36	Follower Density (FD), followers/mi/ln	0.0
Vehicle LOS	A		

Segment 5

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2565
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.2

Demand and Capacity

Directional Demand Flow Rate, veh/h	27	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	53.6
Speed Slope Coefficient (m)	3.43628	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.39290	PF Power Coefficient (p)	0.73652
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	2565	-	-	53.6

Vehicle Results

Average Speed, mi/h	53.6	Percent Followers, \%	9.2
Segment Travel Time, minutes	0.54	Follower Density (FD), followers/mi/ln	0.0
Vehicle LOS	A		
Segment 6			
Vehicle Inputs			
Segment Type	Passing Zone	Length, ft	2067
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	15.4
Demand and Capacity			
Directional Demand Flow Rate, veh/h	27	Opposing Demand Flow Rate, veh/h	19
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02
Intermediate Results			
Segment Vertical Class	1	Free-Flow Speed, mi/h	52.9
Speed Slope Coefficient (m)	3.03029	Speed Power Coefficient (p)	0.62836
PF Slope Coefficient (m)	-1.20996	PF Power Coefficient (p)	0.79496
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 2067 | - | - | 52.9 |
| | | | | | |
| Vehicle Results | 52.9 | Percent Followers, \% | 6.5 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.0 | | | |
| Segment Travel Time, minutes | A | | | | |
| Vehicle LOS | | | | | |

Segment 7

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	4526
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	10.5

Demand and Capacity

Directional Demand Flow Rate, veh/h	27	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	54.1
Speed Slope Coefficient (m)	3.48395	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.35008	PF Power Coefficient (p)	0.74489
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.0
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 4526 | - | - | 54.1 |
| | | | | | |
| Vehicle Results | 54.1 | Percent Followers, \% | 8.7 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.0 | | | |
| Segment Travel Time, minutes | 0.95 | | | | |
| Vehicle LOS | A | | | | |

Segment 8

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	3016	
Lane Width, ft	9	Shoulder Width, ft	0	
Speed Limit, mi/h	55	Access Point Density, pts/mi	15.8	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	27	Opposing Demand Flow Rate, veh/h	19	
Peak Hour Factor	Total Trucks, \%	0.00		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.02		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	52.8		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.62836		
PF Slope Coefficient (m)	3.03813	-1.18454	Total Segment Density, veh/mi/ln	0.80498
In Passing Lane Effective Length?	No	\%lmprovement to Speed	0.0	
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	3016	-	-	52.8

Vehicle Results

Average Speed, mi / h	52.8	Percent Followers, \%	6.2
Segment Travel Time, minutes	0.65	Follower Density (FD), followers/mi/ln	0.0
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	3185
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	15.0
Demand and Capacity			
Directional Demand Flow Rate, veh/h	26	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02
Intermediate Results			
Segment Vertical Class	1	Free-Flow Speed, mi/h	53.0
Speed Slope Coefficient (m)	3.40708	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.38055	PF Power Coefficient (p)	0.73849
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

\#	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	3185	-	-	53.0
Vehicle Results					
Average Speed, mi/h		53.0	Percent Followers, \%		8.8
Segm	ment Travel Time, minutes	0.68	Follower Density (FD), followers/mi/ln		0.0
Vehicl	le LOS	A	\square		
Facility Results					
T	VMT veh-mi/p	$\begin{aligned} & \text { VHD } \\ & \text { veh-h/p } \end{aligned}$		Follower Density, followers/ $\mathrm{mi} / \mathrm{ln}$	LOS
1	25	0.00		0.0	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing PM
Project Description	KY 3301	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1584
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	Access Point Density, pts/mi	33.3	

Demand and Capacity

Directional Demand Flow Rate, veh/h	28	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	48.4
Speed Slope Coefficient (m)	3.13556	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.46639	PF Power Coefficient (p)	0.71076
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1584	-	-	48.4

Vehicle Results

Average Speed, mi/h	48.4	Percent Followers, \%	10.8
Segment Travel Time, minutes	0.37	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1732
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	24.2
Demand and Capacity	Opposing Demand Flow Rate, veh/h	19	
Directional Demand Flow Rate, veh/h	28	Total Trucks, \%	0.00
Peak Hour Factor	0.94		

Segment Capacity, veh/h	1700	Demand/Capacity (D/C)		0.02
Intermediate Results				
Segment Vertical Class	1	Free-Flow Speed, mi/h		50.6
Speed Slope Coefficient (m)	2.90478	Speed Power Coefficient (p)		0.62836
PF Slope Coefficient (m)	-1.22654	PF Power Coefficient (p)		0.78245
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln		0.0
\%Improvement to Percent Followers	0.0	\%Improvement to Speed		0.0
Subsegment Data				
\# Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1 Tangent	1732	-	-	50.6
Vehicle Results				
Average Speed, mi/h	50.6	Percent Followers, \%		7.1
Segment Travel Time, minutes	0.39	Follower Density (FD), followers/mi/ln		0.0
Vehicle LOS	A			

Segment 3

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1056
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	28	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	53.7
Speed Slope Coefficient (m)	3.41926	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.44983	PF Power Coefficient (p)	0.72120
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1056	-	-	53.7

Vehicle Results

Average Speed, mi/h	53.7	Percent Followers, \%	10.3
Segment Travel Time, minutes	0.22	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1796
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	2.9

Demand and Capacity

Directional Demand Flow Rate, veh/h	28	Opposing Demand Flow Rate, veh/h	19
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	56.0
Speed Slope Coefficient (m)	3.19448	Speed Power Coefficient (p)	0.62836
PF Slope Coefficient (m)	-1.21184	PF Power Coefficient (p)	0.80011
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, $\%$	Average Speed, mi / h
1	Tangent	1796	-	-	56.0

Vehicle Results

Average Speed, mi / h	56.0	Percent Followers, \%	6.6
Segment Travel Time, minutes	0.36	Follower Density (FD), followers/mi/ln	0.0
Vehicle LOS	A		

Segment 5

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2565
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.2

Demand and Capacity

Directional Demand Flow Rate, veh/h	28	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	53.6
Speed Slope Coefficient (m)	3.43628	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.39290	PF Power Coefficient (p)	0.73652
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	2565	-	-	53.6

Vehicle Results

Average Speed, mi/h	53.6	Percent Followers, \%	9.4
Segment Travel Time, minutes	0.54	Follower Density (FD), followers/mi/ln	0.0
Vehicle LOS	A		
Segment 6			
Vehicle Inputs			
Segment Type	Passing Zone	Length, ft	2067
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	15.4
Demand and Capacity			
Directional Demand Flow Rate, veh/h	28	Opposing Demand Flow Rate, veh/h	19
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02
Intermediate Results			
Segment Vertical Class	1	Free-Flow Speed, mi/h	52.9
Speed Slope Coefficient (m)	3.03029	Speed Power Coefficient (p)	0.62836
PF Slope Coefficient (m)	-1.20996	PF Power Coefficient (p)	0.79496
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 2067 | - | - | 52.9 |
| | | | | | |
| Vehicle Results | 52.9 | Percent Followers, \% | 6.7 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.0 | | | |
| Segment Travel Time, minutes | A | | | | |
| Vehicle LOS | | | | | |

Segment 7

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	4526
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	10.5

Demand and Capacity

Directional Demand Flow Rate, veh/h	28	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	54.1
Speed Slope Coefficient (m)	3.48395	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.35008	PF Power Coefficient (p)	0.74489
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.0
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 4526 | - | - | 54.1 |
| | | | | | |
| Vehicle Results | 54.1 | Percent Followers, \% | 8.9 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.0 | | | |
| Segment Travel Time, minutes | 0.95 | | | | |
| Vehicle LOS | A | | | | |

Segment 8

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	3016	
Lane Width, ft	9	Shoulder Width, ft	0	
Speed Limit, mi/h	55	Access Point Density, pts/mi	15.8	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	28	Opposing Demand Flow Rate, veh/h	19	
Peak Hour Factor	Total Trucks, \%	0.00		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.02		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	52.8		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.62836		
PF Slope Coefficient (m)	3.03813	-1.18454	Total Segment Density, veh/mi/ln	0.80498
In Passing Lane Effective Length?	No	\%lmprovement to Speed	0.0	
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	3016	-	-	52.8

Vehicle Results

Average Speed, mi/h	52.8	Percent Followers, \%	6.4
Segment Travel Time, minutes	0.65	Follower Density (FD), followers/mi/ln	0.0
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	3185	
Lane Width, ft	9	Shoulder Width, ft	0	
Speed Limit, mi/h	55	Access Point Density, pts/mi	15.0	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	30	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	0.00		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.02		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	0.93 .0		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.41674		
PF Slope Coefficient (m)	3.40708	Total Segment Density, veh/mi/ln	0.73849	
In Passing Lane Effective Length?	No	\%lmprovement to Speed	0.1	
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

\#	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	3185	-	-	53.0
Vehicle Results					
Average Speed, mi/h		53.0	Percent Followers, \%		9.8
Segm	ment Travel Time, minutes	0.68	Follower Density (FD), followers/mi/ln		0.1
Vehicl	le LOS	A	\square		
Facility Results					
T	VMT veh-mi/p	$\begin{aligned} & \text { VHD } \\ & \text { veh-h/p } \end{aligned}$		Follower Density, followers/ $\mathrm{mi} / \mathrm{ln}$	LOS
1	27	0.00		0.0	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing AM
Project Description	KY 1237	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	8337
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	18.4

Demand and Capacity

Directional Demand Flow Rate, veh/h	14	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.01

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	52.7
Speed Slope Coefficient (m)	3.44540	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.34677	PF Power Coefficient (p)	0.72875
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	8337	-	-	52.7

Vehicle Results

Average Speed, mi/h	52.7	Percent Followers, \%	5.8
Segment Travel Time, minutes	1.80	Follower Density (FD), followers/mi/ln	0.0
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	8264	
Lane Width, ft	9	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	21.7	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	27	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	2.00		

Segment Capacity, veh/h		1700		Dem	and/Capacity (D/C)	0.02
Intermediate Results						
Segment Vertical Class		1		Free-	Flow Speed, mi/h	51.9
Speed Slope Coefficient (m)		3.40003		Spee	d Power Coefficient (p)	0.41674
PF Slope Coefficient (m)		-1.35159		PF Po	wer Coefficient (p)	0.72676
In Passing Lane Effective Length?		No		Total	Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers		0.0		\%Imp	provement to Speed	0.0
Subsegment Data						
\#	Segment Type	Length, ft		Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	8264		-	-	51.9
Vehicle Results						
Average Speed, mi/h		51.9		Perce	nt Followers, \%	9.2
Segment Travel Time, minutes		1.81		Follo	wer Density (FD), followers/mi/ln	0.0
Vehicle LOS		A				
Facility Results						
T	VMT veh-mi/p		VHD veh-h/p		Follower Density, followers/ $\mathbf{m i} / \mathbf{l}$	LOS
1	15		0.00		0.0	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing PM
Project Description	KY 1237	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	8337
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	18.4

Demand and Capacity

Directional Demand Flow Rate, veh/h	23	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.01

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	52.7
Speed Slope Coefficient (m)	3.44540	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.34677	PF Power Coefficient (p)	0.72875
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	8337	-	-	52.7

Vehicle Results

Average Speed, mi/h	52.7	Percent Followers, \%	8.4
Segment Travel Time, minutes	1.80	Follower Density (FD), followers/mi/ln	0.0
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	8264	
Lane Width, ft	9	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	21.7	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	43	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	0.94	Total Trucks, \%	2.00	

Segment Capacity, veh/h		1700		Dem	and/Capacity (D/C)	0.03
Intermediate Results						
Segment Vertical Class		1		Free-	Flow Speed, mi/h	51.9
Speed Slope Coefficient (m)		3.40003		Spee	d Power Coefficient (p)	0.41674
PF Slope Coefficient (m)		-1.35159		PF Po	wer Coefficient (p)	0.72676
In Passing Lane Effective Length?		No		Total	Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers		0.0		\%Imp	provement to Speed	0.0
Subsegment Data						
\#	Segment Type	Length, ft		Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	8264		-	-	51.9
Vehicle Results						
Average Speed, mi/h		51.9		Perce	nt Followers, \%	12.7
Segment Travel Time, minutes		1.81		Follo	wer Density (FD), followers/mi/ln	0.1
Vehicle LOS		A				
Facility Results						
T	VMT veh-mi/p		VHD veh-h/p		Follower Density, followers/ $\mathrm{mi} / \mathrm{ln}$	LOS
1	24		0.00		0.1	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing AM
Project Description	KY 989	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	5412
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	10.7

Demand and Capacity

Directional Demand Flow Rate, veh/h	6	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.00

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	54.7
Speed Slope Coefficient (m)	3.52422	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.33772	PF Power Coefficient (p)	0.74619
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	5412	-	-	54.7

Vehicle Results

Average Speed, mi/h	54.7	Percent Followers, \%	3.0
Segment Travel Time, minutes	1.13	Follower Density (FD), followers/mi/ln	0.0
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	6410	
Lane Width, ft	9	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.4	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	6	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	2.00		

Segment Capacity, veh/h		1700		Dem	and/Capacity (D/C)	0.00
Intermediate Results						
Segment Vertical Class		1		Free-	Flow Speed, mi/h	54.2
Speed Slope Coefficient (m)		3.51015		Spee	d Power Coefficient (p)	0.41674
PF Slope Coefficient (m)		-1.33606		PF Po	wer Coefficient (p)	0.74237
In Passing Lane Effective Length?		No		Total	Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers		0.0		\%Imp	rovement to Speed	0.0
Subsegment Data						
\#	Segment Type	Length, ft		Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	6410		-	-	54.2
Vehicle Results						
Average Speed, mi/h		54.2		Perce	nt Followers, \%	3.1
Segment Travel Time, minutes		1.34		Follo	wer Density (FD), followers/mi/ln	0.0
Vehicle LOS		A				
Facility Results						
T	VMT veh-mi/p		VHD veh-h/p		Follower Density, followers/ $\mathbf{m i} / \mathbf{l n}$	LOS
1	3		0.00		0.0	A

Speed Distribution			
$55-$			
Speed (mi/h) -50			- Speed > 60 O $50<$ Speed ≤ 60 O $40<$ Speed ≤ 50 O $30<$ Speed ≤ 40 O $20<$ Speed ≤ 30 Speed ≤ 20
	AP1		

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing PM
Project Description	KY 989	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	5412
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts/mi	10.7	

Demand and Capacity

Directional Demand Flow Rate, veh/h	13	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.01

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	54.7
Speed Slope Coefficient (m)	3.52422	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.33772	PF Power Coefficient (p)	0.74619
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	5412	-	-	54.7

Vehicle Results

Average Speed, mi/h	54.7	Percent Followers, \%	5.0
Segment Travel Time, minutes	1.13	Follower Density (FD), followers/mi/ln	0.0
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	6410	
Lane Width, ft	9	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.4	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	13	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	0.94	Total Trucks, \%	2.00	

Segment Capacity, veh/h		1700		Dema	nd/Capacity (D/C)	0.01
Intermediate Results						
Segment Vertical Class		1		Free-	Flow Speed, mi/h	54.2
Speed Slope Coefficient (m)		3.51015		Speed	Power Coefficient (p)	0.41674
PF Slope Coefficient (m)		-1.33606		PF Po	wer Coefficient (p)	0.74237
In Passing Lane Effective Length?		No		Total	Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers		0.0		\%Imp	rovement to Speed	0.0
Subsegment Data						
\#	Segment Type	Length, ft		Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	6410		-	-	54.2
Vehicle Results						
Average Speed, mi/h		54.2		Perce	nt Followers, \%	5.1
Segment Travel Time, minutes		1.34		Follow	wer Density (FD), followers/mi/ln	0.0
Vehicle LOS		A				
Facility Results						
T	VMT veh-mi/p		$\begin{aligned} & \text { VHD } \\ & \text { veh-h/p } \end{aligned}$		Follower Density, followers/ $\mathrm{mi} / \mathrm{ln}$	LOS
1	7		0.00		0.0	A

Speed Distribution			
$55-$			
Speed (mi/h) -50			- Speed > 60 O $50<$ Speed ≤ 60 O $40<$ Speed ≤ 50 O $30<$ Speed ≤ 40 O $20<$ Speed ≤ 30 Speed ≤ 20
	AP1		

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing AM
Project Description	KY 559	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2862
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi / h	Access Point Density, pts $/ \mathrm{mi}$	31.5	

Demand and Capacity

Directional Demand Flow Rate, veh/h	53	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	49.4
Speed Slope Coefficient (m)	3.20852	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.40969	PF Power Coefficient (p)	0.72659
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2862	-	-	49.4

Vehicle Results

Average Speed, mi/h	49.4	Percent Followers, \%	15.4
Segment Travel Time, minutes	0.66	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	2899	
Lane Width, ft	10	Shoulder Width, ft	0	
Speed Limit, mi/h	55	Access Point Density, pts/mi	20.0	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	53	Opposing Demand Flow Rate, veh/h	40	
Peak Hour Factor	0.94	Total Trucks, \%	2.00	

Segment Capacity, veh/h	1700	Demand/Capacity (D/C)		0.03
Intermediate Results				
Segment Vertical Class	1	Free-Flow Speed, mi/h		52.2
Speed Slope Coefficient (m)	3.02857	Speed Power Coefficient (p)		0.60883
PF Slope Coefficient (m)	-1.20604	PF Power Coefficient (p)		0.79798
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln		0.1
\%Improvement to Percent Followers	0.0	\%Improvement to Speed		0.0
Subsegment Data				
\# Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1 Tangent	2899	-	-	52.2
Vehicle Results				
Average Speed, mi/h	52.2	Percent Followers, \%		11.0
Segment Travel Time, minutes	0.63	Follower Density (FD), followers/mi/ln		0.1
Vehicle LOS	A			

Segment 3

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	4715
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	15.7

Demand and Capacity

Directional Demand Flow Rate, veh/h	53	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	53.3
Speed Slope Coefficient (m)	3.44342	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.35294	PF Power Coefficient (p)	0.74299
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	4715	-	-	53.3

Vehicle Results

Average Speed, mi/h	53.3	Percent Followers, \%	14.2
Segment Travel Time, minutes	1.01	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	317
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	4.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	53	Opposing Demand Flow Rate, veh/h	40
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	56.2
Speed Slope Coefficient (m)	3.22057	Speed Power Coefficient (p)	0.60883
PF Slope Coefficient (m)	-1.25169	PF Power Coefficient (p)	0.78709
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	317	-	-	56.2

Vehicle Results

Average Speed, mi/h	56.2	Percent Followers, \%	11.7
Segment Travel Time, minutes	0.06	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		

Segment 5

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	3168
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	8.3

Demand and Capacity

Directional Demand Flow Rate, veh/h	53	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	55.2
Speed Slope Coefficient (m)	3.52656	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.36536	PF Power Coefficient (p)	0.74471
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	3168	-	-	55.2

Vehicle Results

Average Speed, mi/h	55.2	Percent Followers, \%	14.2
Segment Travel Time, minutes	0.65	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		
Segment 6			
Vehicle Inputs			
Segment Type	Passing Zone	Length, ft	1584
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	26.7
Demand and Capacity			
Directional Demand Flow Rate, veh/h	53	Opposing Demand Flow Rate, veh/h	40
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03
Intermediate Results			
Segment Vertical Class	1	Free-Flow Speed, mi/h	50.6
Speed Slope Coefficient (m)	2.91831	Speed Power Coefficient (p)	0.60883
PF Slope Coefficient (m)	-1.25193	PF Power Coefficient (p)	0.77544
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 1584 | - | - | 50.6 |
| | | | | | |
| Vehicle Results | 50.6 | Percent Followers, \% | 12.1 | | |
| Average Speed, mi/h | 0.36 | Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$ | 0.1 | | |
| Segment Travel Time, minutes | A | | | | |
| Vehicle LOS | | | | | |

Segment 7

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	12302
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	8.6

Demand and Capacity

Directional Demand Flow Rate, veh/h	53	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	55.1
Speed Slope Coefficient (m)	3.59986	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.36038	PF Power Coefficient (p)	0.70449
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 12302 | - | - | 55.1 |
| | | | | | |
| Vehicle Results | 55.1 | Percent Followers, \% | 15.8 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.2 | | | |
| Segment Travel Time, minutes | 2.54 | | | | |
| Vehicle LOS | A | | | | |

Segment 8

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1003	
Lane Width, ft	10	Shoulder Width, ft	0	
Speed Limit, mi/h	45	Access Point Density, pts/mi	20.0	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	53	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	2.00		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.03		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	40.8		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.41674		
PF Slope Coefficient (m)	2.72189	-1.50480	Total Segment Density, veh/mi/ln	0.68051
In Passing Lane Effective Length?	No	\%lmprovement to Speed		
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1003	-	-	40.8

Vehicle Results

Average Speed, mi/h	40.8	Percent Followers, \%	18.5
Segment Travel Time, minutes	0.28	Follower Density (FD), followers/mi/ln	0.2
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1869	
Lane Width, ft	10	Shoulder Width, ft	0	
Speed Limit, mi/h	35	Access Point Density, pts/mi	57.1	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	53	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	2.00		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.03		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	0.41674		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.60433		
PF Slope Coefficient (m)	1.84278	Total Segment Density, veh/mi/ln	0.5	
In Passing Lane Effective Length?	No	\%lmprovement to Speed	0.0	
\%lmprovement to Percent Followers	0.0			

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	1869	-	-	24.4

Vehicle Results

Average Speed, mi/h	24.4	Percent Followers, \%	20.9
Segment Travel Time, minutes	0.87	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.5
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ $\mathbf{m i} / \mathbf{l n}$	LOS
1	73	0.00	0.2	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing PM
Project Description	KY 559	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2862
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi / h	Access Point Density, pts $/ \mathrm{mi}$	31.5	

Demand and Capacity

Directional Demand Flow Rate, veh/h	59	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	49.4
Speed Slope Coefficient (m)	3.20852	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.40969	PF Power Coefficient (p)	0.72659
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2862	-	-	49.4

Vehicle Results

Average Speed, mi/h	49.4	Percent Followers, \%	16.4
Segment Travel Time, minutes	0.66	Follower Density (FD), followers/mi/ln	0.2
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	2899	
Lane Width, ft	10	Shoulder Width, ft	0	
Speed Limit, mi/h	55	Access Point Density, pts/mi	20.0	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	59	Opposing Demand Flow Rate, veh/h	44	
Peak Hour Factor	0.94	Total Trucks, \%	2.00	

Segment Capacity, veh/h	1700	Demand/Capacity (D/C)		0.03
Intermediate Results				
Segment Vertical Class	1	Free-Flow Speed, mi/h		52.2
Speed Slope Coefficient (m)	3.03197	Speed Power Coefficient (p)		0.60561
PF Slope Coefficient (m)	-1.20906	PF Power Coefficient (p)		0.79721
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln		0.1
\%Improvement to Percent Followers	0.0	\%Improvement to Speed		0.0
Subsegment Data				
\# Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1 Tangent	2899	-	-	52.2
Vehicle Results				
Average Speed, mi/h	52.2	Percent Followers, \%		11.8
Segment Travel Time, minutes	0.63	Follower Density (FD), followers/mi/ln		0.1
Vehicle LOS	A			

Segment 3

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	4715
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	15.7

Demand and Capacity

Directional Demand Flow Rate, veh/h	59	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	53.3
Speed Slope Coefficient (m)	3.44342	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.35294	PF Power Coefficient (p)	0.74299
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	4715	-	-	53.3

Vehicle Results

Average Speed, mi/h	53.3	Percent Followers, \%	15.1
Segment Travel Time, minutes	1.01	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	317
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	4.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	59	Opposing Demand Flow Rate, veh/h	44
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	56.2
Speed Slope Coefficient (m)	3.22398	Speed Power Coefficient (p)	0.60561
PF Slope Coefficient (m)	-1.25480	PF Power Coefficient (p)	0.78639
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	317	-	-	56.2

Vehicle Results

Average Speed, mi/h	56.2	Percent Followers, \%	12.6
Segment Travel Time, minutes	0.06	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		

Segment 5

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	3168
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	8.3

Demand and Capacity

Directional Demand Flow Rate, veh/h	59	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	55.2
Speed Slope Coefficient (m)	3.52656	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.36536	PF Power Coefficient (p)	0.74471
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	3168	-	-	55.2

Vehicle Results

Average Speed, mi/h	55.2	Percent Followers, \%	15.2
Segment Travel Time, minutes	0.65	Follower Density (FD), followers/mi/ln	0.2
Vehicle LOS	A		
Segment 6			
Vehicle Inputs			
Segment Type	Passing Zone	Length, ft	1584
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	26.7
Demand and Capacity			
Directional Demand Flow Rate, veh/h	59	Opposing Demand Flow Rate, veh/h	44
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03
Intermediate Results			
Segment Vertical Class	1	Free-Flow Speed, mi/h	50.6
Speed Slope Coefficient (m)	2.92171	Speed Power Coefficient (p)	0.60561
PF Slope Coefficient (m)	-1.25510	PF Power Coefficient (p)	0.77474
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	1584	-	-	50.6

Vehicle Results

Average Speed, mi/h	50.6	Percent Followers, \%	13.0
Segment Travel Time, minutes	0.36	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Segment 7

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	12302
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	8.6

Demand and Capacity

Directional Demand Flow Rate, veh/h	59	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	55.1
Speed Slope Coefficient (m)	3.59986	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.36038	PF Power Coefficient (p)	0.70449
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 12302 | - | - | 55.1 |
| | | | | | |
| Vehicle Results | 55.1 | Percent Followers, \% | 16.8 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.2 | | | |
| Segment Travel Time, minutes | 2.54 | | | | |
| Vehicle LOS | A | | | | |

Segment 8

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1003	
Lane Width, ft	10	Shoulder Width, ft	0	
Speed Limit, mi/h	45	Access Point Density, pts/mi	20.0	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	59	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	2.00		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.03		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	40.8		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.41674		
PF Slope Coefficient (m)	2.72189	-1.50480	Total Segment Density, veh/mi/ln	0.68051
In Passing Lane Effective Length?	No	\%lmprovement to Speed		
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1003	-	-	40.8

Vehicle Results

Average Speed, mi/h	40.8	Percent Followers, \%	19.6
Segment Travel Time, minutes	0.28	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.3
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1869	
Lane Width, ft	10	Shoulder Width, ft	0	
Speed Limit, mi/h	35	Access Point Density, pts/mi	57.1	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	59	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	2.00		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.03		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	24.4		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.41674		
PF Slope Coefficient (m)	1.84278	Total Segment Density, veh/mi/ln	0.60433	
In Passing Lane Effective Length?	No	\%lmprovement to Speed		
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

\#	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1869	-	-	24.4
Vehicle Results					
Average Speed, mi/h		24.4	Percent Followers, \%		22.0
Segm	ment Travel Time, minutes	0.87	Follower Density (FD), followers/mi/ln		0.5
Vehic	le LOS	A			
Facility Results					
T	VMT veh-mi/p	$\begin{aligned} & \text { VHD } \\ & \text { veh-h/p } \end{aligned}$		Follower Density, followers/ $\mathrm{mi} / \mathrm{ln}$	LOS
1	80	0.00		0.2	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing AM
Project Description	KY 344	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	512
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	35	Access Point Density, pts/mi	20.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	35	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	29.5
Speed Slope Coefficient (m)	2.10943	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.46561	PF Power Coefficient (p)	0.62573
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	512	-	-	29.5

Vehicle Results

Average Speed, mi/h	29.5	Percent Followers, \%	16.5
Segment Travel Time, minutes	0.20	Follower Density (FD), followers/mi/ln	0.2
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	2518	
Lane Width, ft	9	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	27.1	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	35	Opposing Demand Flow Rate, veh/h	27	
Peak Hour Factor	0.94	Total Trucks, \%	2.00	

Segment Capacity, veh/h	1700	Demand/Capacity (D/C)		0.02
Intermediate Results				
Segment Vertical Class	2	Free-Flow Speed, mi/h		50.5
Speed Slope Coefficient (m)	3.11550	Speed Power Coefficient (p)		0.62179
PF Slope Coefficient (m)	-1.20383	PF Power Coefficient (p)		0.77717
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln		0.1
\%Improvement to Percent Followers	0.0	\%Improvement to Speed		0.0
Subsegment Data				
\# Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1 Tangent	2518	-	-	50.5
Vehicle Results				
Average Speed, mi/h	50.5	Percent Followers, \%		8.5
Segment Travel Time, minutes	0.57	Follower Density (FD), followers/mi/ln		0.1
Vehicle LOS	A			

Segment 3

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	327
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts/mi	24.0	

Demand and Capacity

Directional Demand Flow Rate, veh/h	35	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	51.3
Speed Slope Coefficient (m)	3.29099	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.46577	PF Power Coefficient (p)	0.71525
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	327	-	-	51.3

Vehicle Results

Average Speed, mi / h	51.3	Percent Followers, \%	12.5
Segment Travel Time, minutes	0.07	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1592
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	20.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	37	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	52.3
Speed Slope Coefficient (m)	3.35025	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.44258	PF Power Coefficient (p)	0.72248
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	1584	-	-	52.3

Vehicle Results

Average Speed, mi/h	52.3	Percent Followers, \%	12.5
Segment Travel Time, minutes	0.35	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		

Segment 5

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1525
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	26.7

Demand and Capacity

Directional Demand Flow Rate, veh/h	37	Opposing Demand Flow Rate, veh/h	28
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	50.7
Speed Slope Coefficient (m)	2.91171	Speed Power Coefficient (p)	0.61936
PF Slope Coefficient (m)	-1.24427	PF Power Coefficient (p)	0.77686
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	1584	-	-	50.7

Vehicle Results

Average Speed, mi/h	50.7	Percent Followers, \%	9.2
Segment Travel Time, minutes	0.34	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		
Segment 6			
Vehicle Inputs			
Segment Type	Passing Constrained	Length, ft	528
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	30.0
Demand and Capacity			
Directional Demand Flow Rate, veh/h	37	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02
Intermediate Results			
Segment Vertical Class	1	Free-Flow Speed, mi/h	49.8
Speed Slope Coefficient (m)	3.20969	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.47482	PF Power Coefficient (p)	0.71104
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 528 | - | - | 49.8 |
| | | | | | |
| Vehicle Results | 49.8 | Percent Followers, \% | 13.2 | | |
| Average Speed, mi/h | 0.12 | Follower Density (FD), followers/mi/ln | 0.1 | | |
| Segment Travel Time, minutes | A | | | | |
| Vehicle LOS | | | | | |

Segment 7

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1584
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts $/ \mathrm{mi}$	10.0	

Demand and Capacity

Directional Demand Flow Rate, veh/h	37	Opposing Demand Flow Rate, veh/h	28
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	3	Free-Flow Speed, mi/h	54.6
Speed Slope Coefficient (m)	3.11550	Speed Power Coefficient (p)	0.70657
PF Slope Coefficient (m)	-1.16319	PF Power Coefficient (p)	0.78625
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 1584 | - | - | 54.6 |
| | | | | | |
| Vehicle Results | 54.6 | Percent Followers, \% | 8.4 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.1 | | | |
| Segment Travel Time, minutes | 0.33 | | | | |
| Vehicle LOS | A | | | | |

Segment 8

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	528	
Lane Width, ft	9	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	0.0	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	37	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	2.00		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.02		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	57.3		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.41674		
PF Slope Coefficient (m)	3.61619	-1.42067	Total Segment Density, veh/mi/ln	0.73029
In Passing Lane Effective Length?	No	\%lmprovement to Speed		
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	528	-	-	57.3

Vehicle Results

Average Speed, mi/h	57.3	Percent Followers, \%	12.1
Segment Travel Time, minutes	0.10	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	2112
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	5.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	37	Opposing Demand Flow Rate, veh/h	28
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	56.0
Speed Slope Coefficient (m)	3.11550	Speed Power Coefficient (p)	0.65161
PF Slope Coefficient (m)	-1.20105	PF Power Coefficient (p)	0.79250
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, $\%$	Average Speed, mi / h
1	Tangent	2112	-	-	56.0

Vehicle Results

Average Speed, mi / h	56.0	Percent Followers, \%	8.5
Segment Travel Time, minutes	0.43	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		

Segment 10

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1056
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	28.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	37	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	50.3
Speed Slope Coefficient (m)	3.23679	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.47191	PF Power Coefficient (p)	0.71247
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

\#	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1056	-	-	50.3
Vehicle Results					
Average Speed, mi/h		50.3	Percent Followers, \%		13.2
Segm	ment Travel Time, minutes	0.24	Follower Density (FD), followers/mi/ln		0.1
Vehicl	le LOS	A			
Facility Results					
T	VMT veh-mi/p	$\begin{aligned} & \text { VHD } \\ & \text { veh-h/p } \end{aligned}$		Follower Density, followers/ $\mathrm{mi} / \mathrm{ln}$	LOS
1	20	0.00		0.1	A

Speed Distribution

Followers Density Distribution
5-
5-_

$\mathrm{FD} \leq 2$
O $2<\mathrm{FD} \leq 4$
O $4<\mathrm{FD} \leq 8$
O $8<\mathrm{FD} \leq 12$
O $12<\mathrm{FD} \leq 99$

- FD >99

Copyright © 2022 University of Florida. All Rights Reserved

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing PM
Project Description	KY 344	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	512
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	35	Access Point Density, pts/mi	20.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	57	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	29.5
Speed Slope Coefficient (m)	2.10943	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.46561	PF Power Coefficient (p)	0.62573
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.4
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	512	-	-	29.5

Vehicle Results

Average Speed, mi/h	29.5	Percent Followers, \%	21.8
Segment Travel Time, minutes	0.20	Follower Density (FD), followers/mi/ln	0.4
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	2518
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	27.1
Demand and Capacity	Opposing Demand Flow Rate, veh/h	43	
Directional Demand Flow Rate, veh/h	57	Total Trucks, \%	2.00
Peak Hour Factor	0.94		

Segment Capacity, veh/h	1700	Demand/Capacity (D/C)		0.03
Intermediate Results				
Segment Vertical Class	2	Free-Flow Speed, mi/h		50.5
Speed Slope Coefficient (m)	3.11550	Speed Power Coefficient (p)		0.60526
PF Slope Coefficient (m)	-1.21726	PF Power Coefficient (p)		0.77397
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln		0.1
\%Improvement to Percent Followers	0.0	\%Improvement to Speed		0.0
Subsegment Data				
\# Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1 Tangent	2518	-	-	50.5
Vehicle Results				
Average Speed, mi/h	50.5	Percent Followers, \%		12.5
Segment Travel Time, minutes	0.57	Follower Density (FD), followers/mi/ln		0.1
Vehicle LOS	A			

Segment 3

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	327
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts/mi	24.0	

Demand and Capacity

Directional Demand Flow Rate, veh/h	57	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	51.3
Speed Slope Coefficient (m)	3.29099	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.46577	PF Power Coefficient (p)	0.71525
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	327	-	-	51.3

Vehicle Results

Average Speed, mi/h	51.3	Percent Followers, \%	17.3
Segment Travel Time, minutes	0.07	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1592
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	20.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	67	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	52.3
Speed Slope Coefficient (m)	3.35025	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.44258	PF Power Coefficient (p)	0.72248
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	1584	-	-	52.3

Vehicle Results

Average Speed, mi/h	52.3	Percent Followers, \%	18.5
Segment Travel Time, minutes	0.35	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Segment 5

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1525
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	26.7

Demand and Capacity

Directional Demand Flow Rate, veh/h	67	Opposing Demand Flow Rate, veh/h	48
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	50.7
Speed Slope Coefficient (m)	2.92891	Speed Power Coefficient (p)	0.60294
PF Slope Coefficient (m)	-1.26041	PF Power Coefficient (p)	0.77331
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	1584	-	-	50.7

Vehicle Results

Average Speed, mi/h	50.7	Percent Followers, \%	14.4
Segment Travel Time, minutes	0.34	Follower Density (FD), followers/mi/ln	0.2
Vehicle LOS	A		
Segment 6			
Vehicle Inputs			
Segment Type	Passing Constrained	Length, ft	528
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	30.0
Demand and Capacity			
Directional Demand Flow Rate, veh/h	67	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04
Intermediate Results			
Segment Vertical Class	1	Free-Flow Speed, mi/h	49.8
Speed Slope Coefficient (m)	3.20969	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.47482	PF Power Coefficient (p)	0.71104
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.3
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	528	-	-	49.8

Vehicle Results

Average Speed, mi/h	49.8	Percent Followers, \%	19.4
Segment Travel Time, minutes	0.12	Follower Density (FD), followers/mi/ln	0.3
Vehicle LOS	A		

Segment 7

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1584
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts $/ \mathrm{mi}$	10.0	

Demand and Capacity

Directional Demand Flow Rate, veh/h	67	Opposing Demand Flow Rate, veh/h	48
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04

Intermediate Results

Segment Vertical Class	3	Free-Flow Speed, mi/h	54.6
Speed Slope Coefficient (m)	3.11550	Speed Power Coefficient (p)	0.67969
PF Slope Coefficient (m)	-1.18377	PF Power Coefficient (p)	0.78189
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 1584 | - | - | 54.6 |
| | | | | | |
| Vehicle Results | 54.6 | Percent Followers, \% | 13.3 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.2 | | | |
| Segment Travel Time, minutes | 0.33 | | | | |
| Vehicle LOS | A | | | | |

Segment 8

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	528	
Lane Width, ft	9	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	0.0	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	67	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	2.00		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.04		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	57.3		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.41674		
PF Slope Coefficient (m)	3.61619	-1.42067	Total Segment Density, veh/mi/ln	0.73029
In Passing Lane Effective Length?	No	\%lmprovement to Speed		
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	528	-	-	57.3

Vehicle Results

Average Speed, mi/h	57.3	Percent Followers, \%	17.9
Segment Travel Time, minutes	0.10	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	2112
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	5.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	67	Opposing Demand Flow Rate, veh/h	48
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04

Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	56.0
Speed Slope Coefficient (m)	3.11550	Speed Power Coefficient (p)	0.63164
PF Slope Coefficient (m)	-1.21718	PF Power Coefficient (p)	0.78859
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, $\%$	Average Speed, mi / h
1	Tangent	2112	-	-	56.0

Vehicle Results

Average Speed, mi/h	56.0	Percent Followers, \%	13.5
Segment Travel Time, minutes	0.43	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Segment 10

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1056
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	28.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	67	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	50.3
Speed Slope Coefficient (m)	3.23679	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.47191	PF Power Coefficient (p)	0.71247
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.3
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

\#	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1056	-	-	50.3
Vehicle Results					
Average Speed, mi/h		50.3	Percent Followers, \%		19.3
Segm	ment Travel Time, minutes	0.24	Follower Density (FD), followers/mi/ln		0.3
Vehicl	le LOS	A	\qquad		
Facility Results					
T	VMT veh-mi/p	$\begin{aligned} & \text { VHD } \\ & \text { veh-h/p } \end{aligned}$		Follower Density, followers/ $\mathrm{mi} / \mathrm{ln}$	LOS
1	35	0.00		0.2	A

Speed Distribution

Followers Density Distribution

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing AM
Project Description	KY 57	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	3833
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts $/ \mathrm{mi}$	24.7	

Demand and Capacity

Directional Demand Flow Rate, veh/h	61	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	51.1
Speed Slope Coefficient (m)	3.31561	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.37832	PF Power Coefficient (p)	0.73598
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	3833	-	-	51.1

Vehicle Results

Average Speed, mi/h	51.1	Percent Followers, \%	16.1
Segment Travel Time, minutes	0.85	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	528	
Lane Width, ft	9	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.0	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	61	Opposing Demand Flow Rate, veh/h	32	
Peak Hour Factor	Total Trucks, \%	3.50		

Segment Capacity, veh/h	1700	Demand/Capacity (D/C)		0.04
Intermediate Results				
Segment Vertical Class	1	Free-Flow Speed, mi/h		54.3
Speed Slope Coefficient (m)	3.10797	Speed Power Coefficient (p)		0.61544
PF Slope Coefficient (m)	-1.25102	PF Power Coefficient (p)		0.78296
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln		0.1
\%Improvement to Percent Followers	0.0	\%Improvement to Speed		0.0
Subsegment Data				
\# Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1 Tangent	528	-	-	54.3
Vehicle Results				
Average Speed, mi/h	54.3	Percent Followers, \%		13.0
Segment Travel Time, minutes	0.11	Follower Density (FD), followers/mi/ln		0.1
Vehicle LOS	A			

Segment 3

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	2580
Lane Width, ft	9	Shoulder Width, ft	6
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	4.1

Demand and Capacity

Directional Demand Flow Rate, veh/h	61	Opposing Demand Flow Rate, veh/h	32
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04

Intermediate Results

Segment Vertical Class	3	Free-Flow Speed, mi/h	59.3
Speed Slope Coefficient (m)	4.07289	Speed Power Coefficient (p)	0.78235
PF Slope Coefficient (m)	-1.11374	PF Power Coefficient (p)	0.81930
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	2580	-	-	59.3

Vehicle Results

Average Speed, mi/h	59.3	Percent Followers, \%	10.6
Segment Travel Time, minutes	0.49	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1400	
Lane Width, ft	12	Shoulder Width, ft	6	
Speed Limit, mi/h	55	Access Point Density, pts/mi	7.7	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	61	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	3.50		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.04		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	60.1		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.53696		
PF Slope Coefficient (m)	4.77922	-1.47099	Total Segment Density, veh/mi/ln	0.73766
In Passing Lane Effective Length?	No	\%lmprovement to Speed	0.2	
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	1400	-	-	60.1

Vehicle Results

Average Speed, mi/h	60.1	Percent Followers, \%	17.0
Segment Travel Time, minutes	0.26	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Segment 5

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1399
Lane Width, ft	12	Shoulder Width, ft	6
Speed Limit, mi/h	55	Access Point Density, pts/mi	7.4

Demand and Capacity

Directional Demand Flow Rate, veh/h	61	Opposing Demand Flow Rate, veh/h	32
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04

Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	60.6
Speed Slope Coefficient (m)	3.11550	Speed Power Coefficient (p)	0.68039
PF Slope Coefficient (m)	-1.22401	PF Power Coefficient (p)	0.79499
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1399	-	-	60.6

Vehicle Results

Average Speed, mi/h	60.6	Percent Followers, \%	12.4
Segment Travel Time, minutes	0.26	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		
Segment 6			
Vehicle Inputs			
Segment Type	Passing Constrained	Length, ft	4187
Lane Width, ft	10	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	8.9
Demand and Capacity			
Directional Demand Flow Rate, veh/h	83	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.05
Intermediate Results			
Segment Vertical Class	1	Free-Flow Speed, mi/h	55.7
Speed Slope Coefficient (m)	3.56613	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.34280	PF Power Coefficient (p)	0.74945
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.3
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	4187	-	-	55.7

Vehicle Results

Average Speed, mi/h	55.7	Percent Followers, \%	18.8
Segment Travel Time, minutes	0.85	Follower Density (FD), followers/mi/ln	0.3
Vehicle LOS	A		

Segment 7

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	4905
Lane Width, ft	10	Shoulder Width, ft	1
Speed Limit, mi / h	35	Access Point Density, pts $/ \mathrm{mi}$	39.8

Demand and Capacity

Directional Demand Flow Rate, veh/h	83	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.05

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	25.1
Speed Slope Coefficient (m)	1.91896	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.32538	PF Power Coefficient (p)	0.62496
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.8
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 4905 | - | - | 25.1 |
| | | | | | |
| Vehicle Results | 25.1 | Percent Followers, \% | 24.4 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.8 | | | |
| Segment Travel Time, minutes | 2.22 | | | | |
| Vehicle LOS | A | | | | |

Segment 8

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1162
Lane Width, ft	10	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	8.0
Demand and Capacity			
Directional Demand Flow Rate, veh/h	83	Opposing Demand Flow Rate, veh/h	45
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.05
Intermediate Results			
Segment Vertical Class	2	Free-Flow Speed, mi/h	55.8
Speed Slope Coefficient (m)	3.11550	Speed Power Coefficient (p)	0.63900
PF Slope Coefficient (m)	-1.26501	PF Power Coefficient (p)	0.77411
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.3
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1162	-	-	55.8

Vehicle Results

Average Speed, mi/h	55.8	Percent Followers, \%	16.8
Segment Travel Time, minutes	0.24	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.3
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	8686	
Lane Width, ft	12	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	7.3	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	83	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	3.50		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.05		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	57.3		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.41674		
PF Slope Coefficient (m)	3.69306	-1.31619	Total Segment Density, veh/mi/ln	0.73942
In Passing Lane Effective Length?	No	\%lmprovement to Speed	0.3	
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	8686	-	-	57.3

Vehicle Results

Average Speed, mi/h	57.3	Percent Followers, \%	18.9
Segment Travel Time, minutes	1.72	Follower Density (FD), followers/mi/ln	0.3
Vehicle LOS	A		

Segment 10

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1177
Lane Width, ft	10	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts/mi	28.0	

Demand and Capacity

Directional Demand Flow Rate, veh/h	83	Opposing Demand Flow Rate, veh/h	45
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.05

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	50.9
Speed Slope Coefficient (m)	2.93442	Speed Power Coefficient (p)	0.60522
PF Slope Coefficient (m)	-1.26835	PF Power Coefficient (p)	0.77025
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.3
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1177	-	-	50.9

Vehicle Results

Average Speed, mi/h	50.9	Percent Followers, \%	17.0
Segment Travel Time, minutes	0.26	Follower Density (FD), followers/mi/ln	0.3
Vehicle LOS	A		

Segment 11

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1420
Lane Width, ft	12	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts $/ \mathrm{mi}$	11.1	

Demand and Capacity

Directional Demand Flow Rate, veh/h	83	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.05

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	56.3
Speed Slope Coefficient (m)	3.56256	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.42277	PF Power Coefficient (p)	0.72994
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.3
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

\#	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	1420	-	-	56.3

Vehicle Results

Average Speed, mi/h	56.3	Percent Followers, \%	20.6
Segment Travel Time, minutes	0.29	Follower Density (FD), followers/mi/ln	0.3
Vehicle LOS	A		

Segment 12

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	10212
Lane Width, ft	11	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.4

Demand and Capacity

Directional Demand Flow Rate, veh/h	83	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.05

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	55.4
Speed Slope Coefficient (m)	3.60216	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.33893	PF Power Coefficient (p)	0.72336
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.3
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 10212 | - | - | 55.4 |
| | | | | | |
| Vehicle Results | 55.4 | Percent Followers, \% | 19.8 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.3 | | | |
| Segment Travel Time, minutes | 2.10 | | | | |
| Vehicle LOS | A | | | | |

Segment 13

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	608	
Lane Width, ft	11	Shoulder Width, ft	1	
Speed Limit, mi/h	Access Point Density, pts/mi	4.0		
Demand and Capacity	55	Opposing Demand Flow Rate, veh/h	-	
Directional Demand Flow Rate, veh/h	189	Total Trucks, \%	3.50	
Peak Hour Factor	Demand/Capacity (D/C)	0.11		
Segment Capacity, veh/h	1700		57	
Intermediate Results	Free-Flow Speed, mi/h			
Segment Vertical Class	Speed Power Coefficient (p)	0.42136		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.71538		
PF Slope Coefficient (m)	3.11550	-1.52652	Total Segment Density, veh/mi/ln	1.3
In Passing Lane Effective Length?	No	\%lmprovement to Speed	0.0	
\%lmprovement to Percent Followers	0.0			

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	608	-	-	56.2

Vehicle Results

Average Speed, mi/h	56.2	Percent Followers, \%	37.1
Segment Travel Time, minutes	0.12	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	1.3
Vehicle LOS	A		

Facility Results

	veh-mi/p	veh-h/p	$\mathbf{m i} / \mathbf{l n}$	
1	149	0.00	0.3	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing PM
Project Description	KY 57	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	3833
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts $/ \mathrm{mi}$	24.7	

Demand and Capacity

Directional Demand Flow Rate, veh/h	124	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.07

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	51.1
Speed Slope Coefficient (m)	3.31561	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.37832	PF Power Coefficient (p)	0.73598
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.6
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	3833	-	-	50.4

Vehicle Results

Average Speed, mi/h	50.4	Percent Followers, \%	25.7
Segment Travel Time, minutes	0.86	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.6
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	528
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts/mi	12.0	
Demand and Capacity	55	Opposing Demand Flow Rate, veh/h	68
Directional Demand Flow Rate, veh/h	124	Total Trucks, \%	3.50
Peak Hour Factor	0.94		

Segment Capacity, veh/h	1700	Demand/Capacity (D/C)		0.07
Intermediate Results				
Segment Vertical Class	1	Free-Flow Speed, mi/h		54.3
Speed Slope Coefficient (m)	3.13495	Speed Power Coefficient (p)		0.59025
PF Slope Coefficient (m)	-1.27577	PF Power Coefficient (p)		0.77756
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln		0.5
\%Improvement to Percent Followers	0.0	\%Improvement to Speed		0.0
Subsegment Data				
\# Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1 Tangent	528	-	-	53.9
Vehicle Results				
Average Speed, mi/h	53.9	Percent Followers, \%		22.3
Segment Travel Time, minutes	0.11	Follower Density (FD), followers/mi/ln		0.5
Vehicle LOS	A			

Segment 3

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	2580
Lane Width, ft	9	Shoulder Width, ft	6
Speed Limit, mi/h	55	Access Point Density, pts/mi	4.1

Demand and Capacity

Directional Demand Flow Rate, veh/h	124	Opposing Demand Flow Rate, veh/h	68
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.07

Intermediate Results

Segment Vertical Class	3	Free-Flow Speed, mi/h	59.3
Speed Slope Coefficient (m)	4.16555	Speed Power Coefficient (p)	0.74144
PF Slope Coefficient (m)	-1.14385	PF Power Coefficient (p)	0.81165
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.4
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	2580	-	-	59.0

Vehicle Results

Average Speed, mi/h	59.0	Percent Followers, \%	19.0
Segment Travel Time, minutes	0.50	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.4
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1400	
Lane Width, ft	12	Shoulder Width, ft	6	
Speed Limit, mi/h	55	Access Point Density, pts/mi	7.7	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	124	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	3.50		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.07		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	60.1		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.53696		
PF Slope Coefficient (m)	4.77922	Total Segment Density, veh/mi/ln	0.73766	
In Passing Lane Effective Length?	No	\%lmprovement to Speed	0.6	
\%lmprovement to Percent Followers	0.0	0.0		

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, $\%$	Average Speed, mi / h
1	Tangent	1400	-	-	59.5

Vehicle Results

Average Speed, mi/h	59.5	Percent Followers, \%	27.1
Segment Travel Time, minutes	0.27	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.6
Vehicle LOS	A		

Segment 5

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1399
Lane Width, ft	12	Shoulder Width, ft	6
Speed Limit, mi/h	55	Access Point Density, pts/mi	7.4

Demand and Capacity

Directional Demand Flow Rate, veh/h	124	Opposing Demand Flow Rate, veh/h	68
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.07

Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	60.6
Speed Slope Coefficient (m)	3.11550	Speed Power Coefficient (p)	0.64975
PF Slope Coefficient (m)	-1.24948	PF Power Coefficient (p)	0.78919
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.4
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1399	-	-	60.3

Vehicle Results

Average Speed, mi/h	60.3	Percent Followers, \%	21.4
Segment Travel Time, minutes	0.26	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.4
Vehicle LOS	A		
Segment 6			
Vehicle Inputs			
Segment Type	Passing Constrained	Length, ft	4187
Lane Width, ft	10	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	8.9
Demand and Capacity			
Directional Demand Flow Rate, veh/h	74	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04
Intermediate Results			
Segment Vertical Class	1	Free-Flow Speed, mi/h	55.7
Speed Slope Coefficient (m)	3.56613	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.34280	PF Power Coefficient (p)	0.74945
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	4187	-	-	55.7

Vehicle Results

Average Speed, mi/h	55.7	Percent Followers, \%	17.4
Segment Travel Time, minutes	0.85	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Segment 7

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	4905
Lane Width, ft	10	Shoulder Width, ft	1
Speed Limit, mi / h	35	Access Point Density, pts $/ \mathrm{mi}$	39.8

Demand and Capacity

Directional Demand Flow Rate, veh/h	74	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	25.1
Speed Slope Coefficient (m)	1.91896	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.32538	PF Power Coefficient (p)	0.62496
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.7
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 4905 | - | - | 25.1 |
| | | | | | |
| Vehicle Results | 25.1 | Percent Followers, \% | 23.0 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.7 | | | |
| Segment Travel Time, minutes | 2.22 | | | | |
| Vehicle LOS | A | | | | |

Segment 8

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1162	
Lane Width, ft	10	Shoulder Width, ft	1	
Speed Limit, mi/h	Access Point Density, pts/mi	8.0		
Demand and Capacity	55	Opposing Demand Flow Rate, veh/h	40	
Directional Demand Flow Rate, veh/h	74	Total Trucks, \%	3.50	
Peak Hour Factor	0.94	Demand/Capacity (D/C)	0.04	
Segment Capacity, veh/h	1700	Free-Flow Speed, mi/h		
Intermediate Results	Speed Power Coefficient (p)	55.8		
Segment Vertical Class	PF Power Coefficient (p)	0.64288		
Speed Slope Coefficient (m)	3.11550	Total Segment Density, veh/mi/ln	0.77479	
PF Slope Coefficient (m)	\%	\%lmprovement to Speed		
In Passing Lane Effective Length?	No	0.26168		0.0
\%lmprovement to Percent Followers	0.0			

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1162	-	-	55.8

Vehicle Results

Average Speed, mi/h	55.8	Percent Followers, \%	15.5
Segment Travel Time, minutes	0.24	Follower Density (FD), followers/mi/ln	0.2
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	8686	
Lane Width, ft	12	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	7.3	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	74	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	3.50		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.04		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	57.3		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.41674		
PF Slope Coefficient (m)	3.69306	-1.31619	Total Segment Density, veh/mi/ln	0.73942
In Passing Lane Effective Length?	No	\%lmprovement to Speed	0.2	
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	8686	-	-	57.3

Vehicle Results

Average Speed, mi/h	57.3	Percent Followers, \%	17.5
Segment Travel Time, minutes	1.72	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Segment 10

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1177
Lane Width, ft	10	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts/mi	28.0	

Demand and Capacity

Directional Demand Flow Rate, veh/h	74	Opposing Demand Flow Rate, veh/h	40
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	50.9
Speed Slope Coefficient (m)	2.93104	Speed Power Coefficient (p)	0.60842
PF Slope Coefficient (m)	-1.26517	PF Power Coefficient (p)	0.77093
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1177	-	-	50.9

Vehicle Results

Average Speed, mi/h	50.9	Percent Followers, \%	15.7
Segment Travel Time, minutes	0.26	Follower Density (FD), followers/mi/ln	0.2
Vehicle LOS	A		

Segment 11

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1420
Lane Width, ft	12	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts $/ \mathrm{mi}$	11.1	

Demand and Capacity

Directional Demand Flow Rate, veh/h	74	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	56.3
Speed Slope Coefficient (m)	3.56256	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.42277	PF Power Coefficient (p)	0.72994
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.3
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

\#	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	1420	-	-	56.3

Vehicle Results

Average Speed, mi/h	56.3	Percent Followers, \%	19.2
Segment Travel Time, minutes	0.29	Follower Density (FD), followers/mi/ln	0.3
Vehicle LOS	A		

Segment 12

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	10212
Lane Width, ft	11	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.4

Demand and Capacity

Directional Demand Flow Rate, veh/h	74	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	55.4
Speed Slope Coefficient (m)	3.60216	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.33893	PF Power Coefficient (p)	0.72336
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 10212 | - | - | 55.4 |
| | | | | | |
| Vehicle Results | 55.4 | Percent Followers, \% | 18.5 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.2 | | | |
| Segment Travel Time, minutes | 2.10 | | | | |
| Vehicle LOS | A | | | | |

Segment 13

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	608	
Lane Width, ft	11	Shoulder Width, ft	1	
Speed Limit, mi/h	Access Point Density, pts/mi	4.0		
Demand and Capacity	55	Opposing Demand Flow Rate, veh/h	-	
Directional Demand Flow Rate, veh/h	230	Total Trucks, \%	3.50	
Peak Hour Factor	Demand/Capacity (D/C)	0.14		
Segment Capacity, veh/h	1700			
Intermediate Results	Free-Flow Speed, mi/h			
Segment Vertical Class	Speed Power Coefficient (p)	0.97 .3		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.42136		
PF Slope Coefficient (m)	3.11550	-1.52652	Total Segment Density, veh/mi/ln	1.7
In Passing Lane Effective Length?	No	\%lmprovement to Speed	0.0	
\%lmprovement to Percent Followers	0.0			

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	608	-	-	56.0

Vehicle Results

Average Speed, mi/h	56.0	Percent Followers, \%	41.3
Segment Travel Time, minutes	0.12	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	1.7
Vehicle LOS	A		

Facility Results

	veh-mi/p	veh-h/p	$\mathbf{m i} / \mathbf{l n}$	
1	165	0.01	0.4	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing AM
Project Description	CR 1037	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2558
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	25	Access Point Density, pts $/ \mathrm{mi}$	14.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	15	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.01

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	18.9
Speed Slope Coefficient (m)	1.55508	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.27783	PF Power Coefficient (p)	0.57790
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2558	-	-	18.9

Vehicle Results

Average Speed, mi/h	18.9	Percent Followers, \%	10.6
Segment Travel Time, minutes	1.54	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	$\begin{aligned} & \text { VHD } \\ & \text { veh-h/p } \end{aligned}$	Follower Density, followers/ $\mathrm{mi} / \mathrm{ln}$	LOS
1	2	0.00	0.1	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing PM
Project Description	CR 1037	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2558
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	25	Access Point Density, pts/mi	14.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	18	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.01

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	18.9
Speed Slope Coefficient (m)	1.55508	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.27783	PF Power Coefficient (p)	0.57790
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2558	-	-	18.9

Vehicle Results

Average Speed, mi/h	18.9	Percent Followers, \%	11.6
Segment Travel Time, minutes	1.54	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ $\mathbf{m i / l n}$	LOS
1	2	0.00	0.1	A
Copyright © 2022 University of Florida. All Rights Reserved.	HCS Existing PM CR			

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing AM
Project Description	CR 1036	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	3025
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	25	Access Point Density, pts/mi	12.1

Demand and Capacity

Directional Demand Flow Rate, veh/h	20	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.01

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	19.4
Speed Slope Coefficient (m)	1.58682	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.27434	PF Power Coefficient (p)	0.58479
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	3025	-	-	19.4

Vehicle Results

Average Speed, mi/h	19.4	Percent Followers, \%	12.2
Segment Travel Time, minutes	1.77	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ $\mathbf{m i / l n}$	LOS
1	3	0.00	0.1	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing PM
Project Description	CR 1036	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	3025
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	Access Point Density, pts/mi	12.1	

Demand and Capacity

Directional Demand Flow Rate, veh/h	15	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.01

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	19.4
Speed Slope Coefficient (m)	1.58682	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.27434	PF Power Coefficient (p)	0.58479
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	3025	-	-	19.4

Vehicle Results

Average Speed, mi/h	19.4	Percent Followers, \%	10.3
Segment Travel Time, minutes	1.77	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD $\mathbf{v e h}-\mathbf{h / p}$	Follower Density, followers/ $\mathbf{m i / l n}$	LOS
1	2	0.00	0.1	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing AM
Project Description	CR 1030	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	4172
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	25	Access Point Density, pts/mi	7.6

Demand and Capacity

Directional Demand Flow Rate, veh/h	13	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.01

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	20.5
Speed Slope Coefficient (m)	1.66165	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.27316	PF Power Coefficient (p)	0.59682
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	4172	-	-	20.5

Vehicle Results

Average Speed, mi/h	20.5	Percent Followers, \%	9.2
Segment Travel Time, minutes	2.31	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ $\mathbf{m i / l n}$	LOS
1	2	0.00	0.1	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Existing PM
Project Description	CR 1030	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	4172
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	25	Access Point Density, pts/mi	7.6

Demand and Capacity

Directional Demand Flow Rate, veh/h	12	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.01

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	20.5
Speed Slope Coefficient (m)	1.66165	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.27316	PF Power Coefficient (p)	0.59682
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.0
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	4172	-	-	20.5

Vehicle Results

Average Speed, mi/h	20.5	Percent Followers, \%	8.6
Segment Travel Time, minutes	2.31	Follower Density (FD), followers/mi/ln	0.0
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ $\mathbf{m i / l n}$	LOS
1	2	0.00	0.0	A
Copyright © 2022 University of Florida. All Rights Reserved.	HCS Existing PM CR			

CONSTRUCTION

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction AM
Project Description	CR 1027	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2575
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	25	Access Point Density, pts/mi	6.1

Demand and Capacity

Directional Demand Flow Rate, veh/h	41	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	20.9
Speed Slope Coefficient (m)	1.66210	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.30998	PF Power Coefficient (p)	0.59048
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.4
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2575	-	-	20.9

Vehicle Results

Average Speed, mi/h	20.9	Percent Followers, \%	18.1
Segment Travel Time, minutes	1.40	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.4
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ $\mathbf{m i / l n}$	LOS
1	5	0.00	0.4	A
Copyright © 2022 University of Florida. All Rights Reserved.	HCS			

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction PM
Project Description	CR 1027	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2575
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	25	Access Point Density, pts/mi	6.1

Demand and Capacity

Directional Demand Flow Rate, veh/h	54	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	20.9
Speed Slope Coefficient (m)	1.66210	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.30998	PF Power Coefficient (p)	0.59048
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.5
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2575	-	-	20.9

Vehicle Results

Average Speed, mi/h	20.9	Percent Followers, \%	20.9
Segment Travel Time, minutes	1.40	Follower Density (FD), followers/mi/ln	0.5
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ $\mathbf{m i / l n}$	LOS
1	6	0.00	0.5	A
Copyright © 2022 University of Florida. All Rights Reserved.	HCS			

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction AM
Project Description	KY 3301	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1584
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi / h	55	Access Point Density, pts $/ \mathrm{mi}$	33.3

Demand and Capacity

Directional Demand Flow Rate, veh/h	36	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	48.4
Speed Slope Coefficient (m)	3.13556	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.46639	PF Power Coefficient (p)	0.71076
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1584	-	-	48.4

Vehicle Results

Average Speed, mi/h	48.4	Percent Followers, \%	12.9
Segment Travel Time, minutes	0.37	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1732	
Lane Width, ft	9	Shoulder Width, ft	0	
Speed Limit, mi/h	55	Access Point Density, pts/mi	24.2	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	36	Opposing Demand Flow Rate, veh/h	26	
Peak Hour Factor	0.94	Total Trucks, \%	0.00	

Segment Capacity, veh/h	1700	Demand/Capacity (D/C)		0.02
Intermediate Results				
Segment Vertical Class	1	Free-Flow Speed, mi/h		50.6
Speed Slope Coefficient (m)	2.91212	Speed Power Coefficient (p)		0.62113
PF Slope Coefficient (m)	-1.23351	PF Power Coefficient (p)		0.78085
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln		0.1
\%Improvement to Percent Followers	0.0	\%Improvement to Speed		0.0
Subsegment Data				
\# Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1 Tangent	1732	-	-	50.6
Vehicle Results				
Average Speed, mi/h	50.6	Percent Followers, \%		8.8
Segment Travel Time, minutes	0.39	Follower Density (FD), followers/mi/ln		0.1
Vehicle LOS	A			

Segment 3

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1056
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	36	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	53.7
Speed Slope Coefficient (m)	3.41926	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.44983	PF Power Coefficient (p)	0.72120
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1056	-	-	53.7

Vehicle Results

Average Speed, mi/h	53.7	Percent Followers, \%	12.3
Segment Travel Time, minutes	0.22	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1796
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	2.9

Demand and Capacity

Directional Demand Flow Rate, veh/h	36	Opposing Demand Flow Rate, veh/h	26
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	56.0
Speed Slope Coefficient (m)	3.20182	Speed Power Coefficient (p)	0.62113
PF Slope Coefficient (m)	-1.21865	PF Power Coefficient (p)	0.79846
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, $\%$	Average Speed, mi / h
1	Tangent	1796	-	-	56.0

Vehicle Results

Average Speed, mi / h	56.0	Percent Followers, \%	8.2
Segment Travel Time, minutes	0.36	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		

Segment 5

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2565
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.2

Demand and Capacity

Directional Demand Flow Rate, veh/h	36	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	53.6
Speed Slope Coefficient (m)	3.43628	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.39290	PF Power Coefficient (p)	0.73652
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	2565	-	-	53.6

Vehicle Results

Average Speed, mi/h	53.6	Percent Followers, \%	11.3
Segment Travel Time, minutes	0.54	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		
Segment 6			
Vehicle Inputs			
Segment Type	Passing Zone	Length, ft	2067
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	15.4
Demand and Capacity			
Directional Demand Flow Rate, veh/h	36	Opposing Demand Flow Rate, veh/h	26
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02
Intermediate Results			
Segment Vertical Class	1	Free-Flow Speed, mi/h	52.9
Speed Slope Coefficient (m)	3.03763	Speed Power Coefficient (p)	0.62113
PF Slope Coefficient (m)	-1.21680	PF Power Coefficient (p)	0.79330
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 2067 | - | - | 52.9 |
| | | | | | |
| Vehicle Results | 52.9 | Percent Followers, \% | 8.3 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.1 | | | |
| Segment Travel Time, minutes | A | | | | |
| Vehicle LOS | | | | | |

Segment 7

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	4526
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	10.5

Demand and Capacity

Directional Demand Flow Rate, veh/h	36	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	54.1
Speed Slope Coefficient (m)	3.48395	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.35008	PF Power Coefficient (p)	0.74489
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 4526 | - | - | 54.1 |
| | | | | | |
| Vehicle Results | 54.1 | Percent Followers, \% | 10.7 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.1 | | | |
| Segment Travel Time, minutes | 0.95 | | | | |
| Vehicle LOS | A | | | | |

Segment 8

Vehicle Inputs

| Segment Type | Passing Zone | Length, ft | 3016 |
| :--- | :--- | :--- | :--- | :--- |
| Lane Width, ft | 9 | Shoulder Width, ft | 0 |
| Speed Limit, mi/h | Access Point Density, pts/mi | 15.8 | |
| Demand and Capacity | 55 | Opposing Demand Flow Rate, veh/h | 26 |
| Directional Demand Flow Rate, veh/h | 36 | Total Trucks, \% | 0.00 |
| Peak Hour Factor | 0.94 | Demand/Capacity (D/C) | 0.02 |
| Segment Capacity, veh/h | 1700 | Free-Flow Speed, mi/h | |
| Intermediate Results | Speed Power Coefficient (p) | 52.8 | |
| Segment Vertical Class | PF Power Coefficient (p) | 0.62113 | |
| Speed Slope Coefficient (m) | 3.04547 | Total Segment Density, veh/mi/ln | 0.80322 |
| PF Slope Coefficient (m) | -1.19121 | \%lmprovement to Speed | |
| In Passing Lane Effective Length? | No | 0.0 | 0.0 |
| \%lmprovement to Percent Followers | 0.0 | | |

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	3016	-	-	52.8

Vehicle Results

Average Speed, mi/h	52.8	Percent Followers, \%	7.9
Segment Travel Time, minutes	0.65	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	3185	
Lane Width, ft	9	Shoulder Width, ft	0	
Speed Limit, mi/h	55	Access Point Density, pts/mi	15.0	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	34	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	0.00		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.02		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	0.93 .0		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.41674		
PF Slope Coefficient (m)	3.40708	-1.38055	Total Segment Density, veh/mi/ln	0.73849
In Passing Lane Effective Length?	No	\%lmprovement to Speed	0.0	
\%lmprovement to Percent Followers	0.0			

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	3185	-	-	53.0

Vehicle Results

Average Speed, mi / h	53.0	Percent Followers, \%	10.8
Segment Travel Time, minutes	0.68	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ $\mathbf{m i / l n}$	LOS
1	34	0.00	0.1	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction PM
Project Description	KY 3301	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1584
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi / h	55	Access Point Density, pts $/ \mathrm{mi}$	33.3

Demand and Capacity

Directional Demand Flow Rate, veh/h	37	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	48.4
Speed Slope Coefficient (m)	3.13556	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.46639	PF Power Coefficient (p)	0.71076
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1584	-	-	48.4

Vehicle Results

Average Speed, mi / h	48.4	Percent Followers, \%	13.2
Segment Travel Time, minutes	0.37	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1732	
Lane Width, ft	9	Shoulder Width, ft	0	
Speed Limit, mi/h	55	Access Point Density, pts/mi	24.2	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	37	Opposing Demand Flow Rate, veh/h	26	
Peak Hour Factor	Total Trucks, \%	0.00		

Segment Capacity, veh/h	1700	Demand/Capacity (D/C)		0.02
Intermediate Results				
Segment Vertical Class	1	Free-Flow Speed, mi/h		50.6
Speed Slope Coefficient (m)	2.91212	Speed Power Coefficient (p)		0.62113
PF Slope Coefficient (m)	-1.23351	PF Power Coefficient (p)		0.78085
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln		0.1
\%Improvement to Percent Followers	0.0	\%Improvement to Speed		0.0
Subsegment Data				
\# Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1 Tangent	1732	-	-	50.6
Vehicle Results				
Average Speed, mi/h	50.6	Percent Followers, \%		9.0
Segment Travel Time, minutes	0.39	Follower Density (FD), followers/mi/ln		0.1
Vehicle LOS	A			

Segment 3

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1056
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	37	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	53.7
Speed Slope Coefficient (m)	3.41926	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.44983	PF Power Coefficient (p)	0.72120
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1056	-	-	53.7

Vehicle Results

Average Speed, mi/h	53.7	Percent Followers, \%	12.7
Segment Travel Time, minutes	0.22	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1796
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	2.9

Demand and Capacity

Directional Demand Flow Rate, veh/h	37	Opposing Demand Flow Rate, veh/h	26
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	56.0
Speed Slope Coefficient (m)	3.20182	Speed Power Coefficient (p)	0.62113
PF Slope Coefficient (m)	-1.21865	PF Power Coefficient (p)	0.79846
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, $\%$	Average Speed, mi / h
1	Tangent	1796	-	-	56.0

Vehicle Results

Average Speed, mi / h	56.0	Percent Followers, \%	8.4
Segment Travel Time, minutes	0.36	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		

Segment 5

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2565
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.2

Demand and Capacity

Directional Demand Flow Rate, veh/h	37	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	53.6
Speed Slope Coefficient (m)	3.43628	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.39290	PF Power Coefficient (p)	0.73652
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	2565	-	-	53.6

Vehicle Results

Average Speed, mi/h	53.6	Percent Followers, \%	11.6
Segment Travel Time, minutes	0.54	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		
Segment 6			
Vehicle Inputs			
Segment Type	Passing Zone	Length, ft	2067
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	15.4
Demand and Capacity			
Directional Demand Flow Rate, veh/h	37	Opposing Demand Flow Rate, veh/h	26
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02
Intermediate Results			
Segment Vertical Class	1	Free-Flow Speed, mi/h	52.9
Speed Slope Coefficient (m)	3.03763	Speed Power Coefficient (p)	0.62113
PF Slope Coefficient (m)	-1.21680	PF Power Coefficient (p)	0.79330
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 2067 | - | - | 52.9 |
| | | | | | |
| Vehicle Results | 52.9 | Percent Followers, \% | 8.6 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.1 | | | |
| Segment Travel Time, minutes | A | | | | |
| Vehicle LOS | | | | | |

Segment 7

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	4526
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	10.5

Demand and Capacity

Directional Demand Flow Rate, veh/h	37	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	0.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	54.1
Speed Slope Coefficient (m)	3.48395	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.35008	PF Power Coefficient (p)	0.74489
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 4526 | - | - | 54.1 |
| | | | | | |
| Vehicle Results | 54.1 | Percent Followers, \% | 11.0 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.1 | | | |
| Segment Travel Time, minutes | 0.95 | | | | |
| Vehicle LOS | A | | | | |

Segment 8

Vehicle Inputs

| Segment Type | Passing Zone | Length, ft | 3016 |
| :--- | :--- | :--- | :--- | :--- |
| Lane Width, ft | 9 | Shoulder Width, ft | 0 |
| Speed Limit, mi/h | Access Point Density, pts/mi | 15.8 | |
| Demand and Capacity | 55 | Opposing Demand Flow Rate, veh/h | 26 |
| Directional Demand Flow Rate, veh/h | 37 | Total Trucks, \% | 0.00 |
| Peak Hour Factor | 0.94 | Demand/Capacity (D/C) | 0.02 |
| Segment Capacity, veh/h | 1700 | Free-Flow Speed, mi/h | |
| Intermediate Results | Speed Power Coefficient (p) | 52.8 | |
| Segment Vertical Class | PF Power Coefficient (p) | 0.62113 | |
| Speed Slope Coefficient (m) | 3.04547 | Total Segment Density, veh/mi/ln | 0.80322 |
| PF Slope Coefficient (m) | -1.19121 | \%lmprovement to Speed | |
| In Passing Lane Effective Length? | No | 0.0 | 0.0 |
| \%lmprovement to Percent Followers | 0.0 | | |

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	3016	-	-	52.8

Vehicle Results

Average Speed, mi / h	52.8	Percent Followers, \%	8.1
Segment Travel Time, minutes	0.65	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	3185	
Lane Width, ft	9	Shoulder Width, ft	0	
Speed Limit, mi/h	55	Access Point Density, pts/mi	15.0	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	40	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	0.00		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.02		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	0.43 .0		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.41674		
PF Slope Coefficient (m)	3.40708	Total Segment Density, veh/mi/ln	0.73849	
In Passing Lane Effective Length?	No	\%lmprovement to Speed	0.1	
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	3185	-	-	53.0

Vehicle Results

Average Speed, mi/h	53.0	Percent Followers, \%	12.1
Segment Travel Time, minutes	0.68	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ $\mathbf{m i / l n}$	LOS
1	36	0.00	0.1	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction AM
Project Description	KY 1237	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	8337
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi / h	55	Access Point Density, pts/mi	18.4

Demand and Capacity

Directional Demand Flow Rate, veh/h	19	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.01

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	52.7
Speed Slope Coefficient (m)	3.44540	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.34677	PF Power Coefficient (p)	0.72875
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	8337	-	-	52.7

Vehicle Results

Average Speed, mi/h	52.7	Percent Followers, \%	7.3
Segment Travel Time, minutes	1.80	Follower Density (FD), followers/mi/ln	0.0
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	8264	
Lane Width, ft	9	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	21.7	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	36	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	0.94	Total Trucks, \%	2.00	

Segment Capacity, veh/h		1700		Dem	and/Capacity (D/C)	0.02
Intermediate Results						
Segment Vertical Class		1		Free-	Flow Speed, mi/h	51.9
Speed Slope Coefficient (m)		3.40003		Spee	d Power Coefficient (p)	0.41674
PF Slope Coefficient (m)		-1.35159		PF Po	wer Coefficient (p)	0.72676
In Passing Lane Effective Length?		No		Total	Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers		0.0		\%Imp	provement to Speed	0.0
Subsegment Data						
\#	Segment Type	Length, ft		Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	8264		-	-	51.9
Vehicle Results						
Average Speed, mi/h		51.9		Perce	nt Followers, \%	11.3
Segment Travel Time, minutes		1.81		Follo	wer Density (FD), followers/mi/ln	0.1
Vehicle LOS		A				
Facility Results						
T	VMT veh-mi/p		VHD veh-h/p		Follower Density, followers/ $\mathrm{mi} / \mathrm{ln}$	LOS
1	20		0.00		0.1	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction PM
Project Description	KY 1237	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	8337
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi / h	55	Access Point Density, pts/mi	18.4

Demand and Capacity

Directional Demand Flow Rate, veh/h	32	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	52.7
Speed Slope Coefficient (m)	3.44540	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.34677	PF Power Coefficient (p)	0.72875
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	8337	-	-	52.7

Vehicle Results

Average Speed, mi/h	52.7	Percent Followers, \%	10.3
Segment Travel Time, minutes	1.80	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	8264	
Lane Width, ft	9	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	21.7	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	57	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	2.00		

Segment Capacity, veh/h		1700		Dem	and/Capacity (D/C)	0.03
Intermediate Results						
Segment Vertical Class		1		Free-	Flow Speed, mi/h	51.9
Speed Slope Coefficient (m)		3.40003		Spee	d Power Coefficient (p)	0.41674
PF Slope Coefficient (m)		-1.35159		PF Po	wer Coefficient (p)	0.72676
In Passing Lane Effective Length?		No		Total	Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers		0.0		\%Imp	rovement to Speed	0.0
Subsegment Data						
\#	Segment Type	Length, ft		Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	8264		-	-	51.9
Vehicle Results						
Average Speed, mi/h		51.9		Perce	nt Followers, \%	15.6
Segment Travel Time, minutes		1.81		Follo	wer Density (FD), followers/mi/ln	0.2
Vehicle LOS		A				
Facility Results						
T	VMT veh-mi/p		VHD veh-h/p		Follower Density, followers/ $\mathrm{mi} / \mathrm{ln}$	LOS
1	33		0.00		0.1	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction AM
Project Description	KY 989	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	5412
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	10.7

Demand and Capacity

Directional Demand Flow Rate, veh/h	9	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.01

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	54.7
Speed Slope Coefficient (m)	3.52422	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.33772	PF Power Coefficient (p)	0.74619
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	5412	-	-	54.7

Vehicle Results

Average Speed, mi/h	54.7	Percent Followers, \%	3.7
Segment Travel Time, minutes	1.13	Follower Density (FD), followers/mi/ln	0.0
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	6410	
Lane Width, ft	9	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.4	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	9	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	2.00		

Segment Capacity, veh/h		1700		Dema	nd/Capacity (D/C)	0.01
Intermediate Results						
Segment Vertical Class		1		Free-	Flow Speed, mi/h	54.2
Speed Slope Coefficient (m)		3.51015		Speed	Power Coefficient (p)	0.41674
PF Slope Coefficient (m)		-1.33606		PF Po	wer Coefficient (p)	0.74237
In Passing Lane Effective Length?		No		Total	Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers		0.0		\%Imp	rovement to Speed	0.0
Subsegment Data						
\#	Segment Type	Length, ft		Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	6410		-	-	54.2
Vehicle Results						
Average Speed, mi/h		54.2		Perce	nt Followers, \%	3.8
Segment Travel Time, minutes		1.34		Follow	wer Density (FD), followers/mi/ln	0.0
Vehicle LOS		A				
Facility Results						
T	VMT veh-mi/p		$\begin{aligned} & \text { VHD } \\ & \text { veh-h/p } \end{aligned}$		Follower Density, followers/ $\mathrm{mi} / \mathrm{ln}$	LOS
1	4		0.00		0.0	A

Speed Distribution			
$55-$			
Speed (mi/h) -50			- Speed > 60 O $50<$ Speed ≤ 60 O $40<$ Speed ≤ 50 O $30<$ Speed ≤ 40 O $20<$ Speed ≤ 30 Speed ≤ 20
	AP1		

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction PM
Project Description	KY 989	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	5412
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts/mi	10.7	

Demand and Capacity

Directional Demand Flow Rate, veh/h	17	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.01

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	54.7
Speed Slope Coefficient (m)	3.52422	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.33772	PF Power Coefficient (p)	0.74619
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	5412	-	-	54.7

Vehicle Results

Average Speed, mi/h	54.7	Percent Followers, \%	6.2
Segment Travel Time, minutes	1.13	Follower Density (FD), followers/mi/ln	0.0
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	6410	
Lane Width, ft	9	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.4	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	17	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	2.00		

Segment Capacity, veh/h		1700		Dema	nd/Capacity (D/C)	0.01
Intermediate Results						
Segment Vertical Class		1		Free-	Flow Speed, mi/h	54.2
Speed Slope Coefficient (m)		3.51015		Speed	Power Coefficient (p)	0.41674
PF Slope Coefficient (m)		-1.33606		PF Po	wer Coefficient (p)	0.74237
In Passing Lane Effective Length?		No		Total	Segment Density, veh/mi/ln	0.0
\%Improvement to Percent Followers		0.0		\%Imp	rovement to Speed	0.0
Subsegment Data						
\#	Segment Type	Length, ft		Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	6410		-	-	54.2
Vehicle Results						
Average Speed, mi/h		54.2		Perce	nt Followers, \%	6.3
Segment Travel Time, minutes		1.34		Follow	wer Density (FD), followers/mi/ln	0.0
Vehicle LOS		A				
Facility Results						
T	VMT veh-mi/p		$\begin{aligned} & \text { VHD } \\ & \text { veh-h/p } \end{aligned}$		Follower Density, followers/ $\mathrm{mi} / \mathrm{ln}$	LOS
1	9		0.00		0.0	A

Speed Distribution			
$55-$			
Speed (mi/h) -50			- Speed > 60 O $50<$ Speed ≤ 60 O $40<$ Speed ≤ 50 O $30<$ Speed ≤ 40 O $20<$ Speed ≤ 30 Speed ≤ 20
	AP1		

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction AM
Project Description	KY 559	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2862
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi / h	Access Point Density, pts $/ \mathrm{mi}$	31.5	

Demand and Capacity

Directional Demand Flow Rate, veh/h	72	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	49.4
Speed Slope Coefficient (m)	3.20852	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.40969	PF Power Coefficient (p)	0.72659
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.3
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2862	-	-	49.4

Vehicle Results

Average Speed, mi/h	49.4	Percent Followers, \%	18.8
Segment Travel Time, minutes	0.66	Follower Density (FD), followers/mi/ln	0.3
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	2899
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	20.0
Demand and Capacity	Opposing Demand Flow Rate, veh/h	55	
Directional Demand Flow Rate, veh/h	72	Total Trucks, \%	2.00
Peak Hour Factor	0.94		

Segment Capacity, veh/h	1700	Demand/Capacity (D/C)		0.04
Intermediate Results				
Segment Vertical Class	1	Free-Flow Speed, mi/h		52.2
Speed Slope Coefficient (m)	3.03967	Speed Power Coefficient (p)		0.59843
PF Slope Coefficient (m)	-1.21582	PF Power Coefficient (p)		0.79548
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln		0.2
\%Improvement to Percent Followers	0.0	\%Improvement to Speed		0.0
Subsegment Data				
\# Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1 Tangent	2899	-	-	52.2
Vehicle Results				
Average Speed, mi/h	52.2	Percent Followers, \%		13.9
Segment Travel Time, minutes	0.63	Follower Density (FD), followers/mi/ln		0.2
Vehicle LOS	A			

Segment 3

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	4715
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	15.7

Demand and Capacity

Directional Demand Flow Rate, veh/h	72	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	53.3
Speed Slope Coefficient (m)	3.44342	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.35294	PF Power Coefficient (p)	0.74299
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	4715	-	-	53.3

Vehicle Results

Average Speed, mi/h	53.3	Percent Followers, \%	17.4
Segment Travel Time, minutes	1.01	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	317
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	4.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	72	Opposing Demand Flow Rate, veh/h	55
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	56.2
Speed Slope Coefficient (m)	3.23168	Speed Power Coefficient (p)	0.59843
PF Slope Coefficient (m)	-1.26178	PF Power Coefficient (p)	0.78483
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	317	-	-	56.2

Vehicle Results

Average Speed, mi/h	56.2	Percent Followers, \%	14.8
Segment Travel Time, minutes	0.06	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Segment 5

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	3168
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	8.3

Demand and Capacity

Directional Demand Flow Rate, veh/h	72	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	55.2
Speed Slope Coefficient (m)	3.52656	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.36536	PF Power Coefficient (p)	0.74471
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	3168	-	-	55.2

Vehicle Results

Average Speed, mi/h	55.2	Percent Followers, \%	17.5
Segment Travel Time, minutes	0.65	Follower Density (FD), followers/mi/ln	0.2
Vehicle LOS	A		
Segment 6			
Vehicle Inputs			
Segment Type	Passing Zone	Length, ft	1584
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	26.7
Demand and Capacity			
Directional Demand Flow Rate, veh/h	72	Opposing Demand Flow Rate, veh/h	55
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04
Intermediate Results			
Segment Vertical Class	1	Free-Flow Speed, mi/h	50.6
Speed Slope Coefficient (m)	2.92941	Speed Power Coefficient (p)	0.59843
PF Slope Coefficient (m)	-1.26220	PF Power Coefficient (p)	0.77317
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 1584 | - | - | 50.6 |
| | | | | | |
| Vehicle Results | 50.6 | Percent Followers, \% | 15.2 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.2 | | | |
| Segment Travel Time, minutes | A | | | | |
| Vehicle LOS | | | | | |

Segment 7

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	12302
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	8.6

Demand and Capacity

Directional Demand Flow Rate, veh/h	72	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.04

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	55.1
Speed Slope Coefficient (m)	3.59986	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.36038	PF Power Coefficient (p)	0.70449
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 12302 | - | - | 55.1 |
| | | | | | |
| Vehicle Results | 55.1 | Percent Followers, \% | 19.2 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.2 | | | |
| Segment Travel Time, minutes | 2.54 | | | | |
| Vehicle LOS | A | | | | |

Segment 8

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1003	
Lane Width, ft	10	Shoulder Width, ft	0	
Speed Limit, mi/h	45	Access Point Density, pts/mi	20.0	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	72	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	2.00		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.04		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	40.8		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.41674		
PF Slope Coefficient (m)	2.72189	-1.50480	Total Segment Density, veh/mi/ln	0.68051
In Passing Lane Effective Length?	No	\%lmprovement to Speed		
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1003	-	-	40.8

Vehicle Results

Average Speed, mi/h	40.8	Percent Followers, \%	22.2
Segment Travel Time, minutes	0.28	Follower Density (FD), followers/mi/ln	0.4
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1869	
Lane Width, ft	10	Shoulder Width, ft	0	
Speed Limit, mi/h	35	Access Point Density, pts/mi	57.1	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	72	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	2.00		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.04		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	0.41674		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.60433		
PF Slope Coefficient (m)	1.84278	Total Segment Density, veh/mi/ln	0.7	
In Passing Lane Effective Length?	No	\%lmprovement to Speed	0.0	
\%lmprovement to Percent Followers	0.0			

Subsegment Data

\#	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1869	-	-	24.4
Vehicle Results					
Average Speed, mi/h		24.4	Percent Followers, \%		24.6
Segm	ent Travel Time, minutes	0.87	Follower Density (FD), followers/mi/ln		0.7
Vehic	le LOS	A			
Facility Results					
T	VMT veh-mi/p	$\begin{aligned} & \text { VHD } \\ & \text { veh-h/p } \end{aligned}$		Follower Density, followers/ $\mathrm{mi} / \mathrm{ln}$	LOS
1	98	0.00		0.3	A

Speed Distribution

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2022
Jurisdiction		Time Analyzed	Construction PM
Project Description	KY 559	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2862
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi / h	Access Point Density, pts $/ \mathrm{mi}$	31.5	

Demand and Capacity

Directional Demand Flow Rate, veh/h	79	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.05

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	49.4
Speed Slope Coefficient (m)	3.20852	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.40969	PF Power Coefficient (p)	0.72659
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.3
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2862	-	-	49.4

Vehicle Results

Average Speed, mi/h	49.4	Percent Followers, \%	20.0
Segment Travel Time, minutes	0.66	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.3
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	2899
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	20.0
Demand and Capacity	Opposing Demand Flow Rate, veh/h	60	
Directional Demand Flow Rate, veh/h	79	Total Trucks, \%	2.00
Peak Hour Factor	0.94		

Segment Capacity, veh/h	1700	Demand/Capacity (D/C)		0.05
Intermediate Results				
Segment Vertical Class	1	Free-Flow Speed, mi/h		52.2
Speed Slope Coefficient (m)	3.04360	Speed Power Coefficient (p)		0.59482
PF Slope Coefficient (m)	-1.21923	PF Power Coefficient (p)		0.79461
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln		0.2
\%lmprovement to Percent Followers	0.0	\%Improvement to Speed		0.0
Subsegment Data				
\# Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1 Tangent	2899	-	-	52.2
Vehicle Results				
Average Speed, mi/h	52.2	Percent Followers, \%		15.0
Segment Travel Time, minutes	0.63	Follower Density (FD), followers/mi/ln		0.2
Vehicle LOS	A			

Segment 3

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	4715
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	15.7

Demand and Capacity

Directional Demand Flow Rate, veh/h	79	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.05

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	53.3
Speed Slope Coefficient (m)	3.44342	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.35294	PF Power Coefficient (p)	0.74299
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.3
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	4715	-	-	53.3

Vehicle Results

Average Speed, mi/h	53.3	Percent Followers, \%	18.6
Segment Travel Time, minutes	1.01	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.3
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	317
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	4.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	79	Opposing Demand Flow Rate, veh/h	60
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.05

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	56.2
Speed Slope Coefficient (m)	3.23561	Speed Power Coefficient (p)	0.59482
PF Slope Coefficient (m)	-1.26530	PF Power Coefficient (p)	0.78405
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	317	-	-	56.2

Vehicle Results

Average Speed, mi/h	56.2	Percent Followers, \%	15.9
Segment Travel Time, minutes	0.06	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Segment 5

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	3168
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	8.3

Demand and Capacity

Directional Demand Flow Rate, veh/h	79	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.05

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	55.2
Speed Slope Coefficient (m)	3.52656	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.36536	PF Power Coefficient (p)	0.74471
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.3
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	3168	-	-	55.2

Vehicle Results

Average Speed, mi/h	55.2	Percent Followers, \%	18.6
Segment Travel Time, minutes	0.65	Follower Density (FD), followers/mi/ln	0.3
Vehicle LOS	A		
Segment 6			
Vehicle Inputs			
Segment Type	Passing Zone	Length, ft	1584
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts/mi	26.7
Demand and Capacity			
Directional Demand Flow Rate, veh/h	79	Opposing Demand Flow Rate, veh/h	60
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.05
Intermediate Results			
Segment Vertical Class	1	Free-Flow Speed, mi/h	50.6
Speed Slope Coefficient (m)	2.93334	Speed Power Coefficient (p)	0.59482
PF Slope Coefficient (m)	-1.26579	PF Power Coefficient (p)	0.77239
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.3
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	1584	-	-	50.6

Vehicle Results

Average Speed, mi/h	50.6	Percent Followers, \%	16.3
Segment Travel Time, minutes	0.36	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.3
Vehicle LOS	A		

Segment 7

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	12302
Lane Width, ft	10	Shoulder Width, ft	0
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	8.6

Demand and Capacity

Directional Demand Flow Rate, veh/h	79	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.05

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	55.1
Speed Slope Coefficient (m)	3.59986	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.36038	PF Power Coefficient (p)	0.70449
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.3
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 12302 | - | - | 55.1 |
| | | | | | |
| Vehicle Results | 55.1 | Percent Followers, \% | 20.3 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.3 | | | |
| Segment Travel Time, minutes | 2.54 | | | | |
| Vehicle LOS | A | | | | |

Segment 8

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1003	
Lane Width, ft	10	Shoulder Width, ft	0	
Speed Limit, mi/h	45	Access Point Density, pts/mi	20.0	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	79	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	2.00		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.05		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	40.8		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.41674		
PF Slope Coefficient (m)	2.72189	-1.50480	Total Segment Density, veh/mi/ln	0.68051
In Passing Lane Effective Length?	No	\%lmprovement to Speed		
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1003	-	-	40.8

Vehicle Results

Average Speed, mi/h	40.8	Percent Followers, \%	23.5
Segment Travel Time, minutes	0.28	Follower Density (FD), followers/mi/ln	0.5
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1869	
Lane Width, ft	10	Shoulder Width, ft	0	
Speed Limit, mi/h	35	Access Point Density, pts/mi	57.1	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	79	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	2.00		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.05		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	24.4		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.41674		
PF Slope Coefficient (m)	1.84278	Total Segment Density, veh/mi/ln	0.60433	
In Passing Lane Effective Length?	No	\%lmprovement to Speed		
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	1869	-	-	24.4

Vehicle Results

Average Speed, mi/h	24.4	Percent Followers, \%	25.8
Segment Travel Time, minutes	0.87	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.8
Vehicle LOS	A		

Facility Results

\mathbf{T}	VMT veh-mi/p	VHD $\mathbf{v e h}-\mathbf{h} / \mathbf{p}$	Follower Density, followers/ $\mathbf{m i} / \mathbf{l n}$	LOS
1	108	0.00	0.3	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction AM
Project Description	KY 344	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	512
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	35	Access Point Density, pts/mi	20.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	53	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	29.5
Speed Slope Coefficient (m)	2.10943	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.46561	PF Power Coefficient (p)	0.62573
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.4
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	512	-	-	29.5

Vehicle Results

Average Speed, mi/h	29.5	Percent Followers, \%	20.8
Segment Travel Time, minutes	0.20	Follower Density (FD), followers/mi/ln	0.4
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	2518	
Lane Width, ft	9	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	27.1	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	53	Opposing Demand Flow Rate, veh/h	40	
Peak Hour Factor	0.94	Total Trucks, \%	2.00	

Segment Capacity, veh/h	1700	Demand/Capacity (D/C)		0.03
Intermediate Results				
Segment Vertical Class	2	Free-Flow Speed, mi/h		50.5
Speed Slope Coefficient (m)	3.11550	Speed Power Coefficient (p)		0.60723
PF Slope Coefficient (m)	-1.21564	PF Power Coefficient (p)		0.77436
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln		0.1
\%Improvement to Percent Followers	0.0	\%Improvement to Speed		0.0
Subsegment Data				
\# Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1 Tangent	2518	-	-	50.5
Vehicle Results				
Average Speed, mi/h	50.5	Percent Followers, \%		11.8
Segment Travel Time, minutes	0.57	Follower Density (FD), followers/mi/ln		0.1
Vehicle LOS	A			

Segment 3

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	327
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	24.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	53	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	51.3
Speed Slope Coefficient (m)	3.29099	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.46577	PF Power Coefficient (p)	0.71525
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	327	-	-	51.3

Vehicle Results

Average Speed, mi/h	51.3	Percent Followers, \%	16.5
Segment Travel Time, minutes	0.07	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1592
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	20.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	56	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	52.3
Speed Slope Coefficient (m)	3.35025	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.44258	PF Power Coefficient (p)	0.72248
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	1584	-	-	52.3

Vehicle Results

Average Speed, mi/h	52.3	Percent Followers, \%	16.5
Segment Travel Time, minutes	0.35	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Segment 5

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1525
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	26.7

Demand and Capacity

Directional Demand Flow Rate, veh/h	56	Opposing Demand Flow Rate, veh/h	41
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	50.7
Speed Slope Coefficient (m)	2.92396	Speed Power Coefficient (p)	0.60760
PF Slope Coefficient (m)	-1.25581	PF Power Coefficient (p)	0.77432
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	1584	-	-	50.7

Vehicle Results

Average Speed, mi/h	50.7	Percent Followers, \%	12.7
Segment Travel Time, minutes	0.34	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		
Segment 6			
Vehicle Inputs			
Segment Type	Passing Constrained	Length, ft	528
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	30.0
Demand and Capacity			
Directional Demand Flow Rate, veh/h	56	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03
Intermediate Results			
Segment Vertical Class	1	Free-Flow Speed, mi/h	49.8
Speed Slope Coefficient (m)	3.20969	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.47482	PF Power Coefficient (p)	0.71104
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h	
1	Tangent	528	-	-	49.8	
Vehicle Results						49.8
Average Speed, mi/h	Percent Followers, \%	17.4				
Segment Travel Time, minutes	0.12	Follower Density (FD), followers/mi/ln	0.2			
Vehicle LOS	A					

Segment 7

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1584
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts/mi	10.0	

Demand and Capacity

Directional Demand Flow Rate, veh/h	56	Opposing Demand Flow Rate, veh/h	41
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	3	Free-Flow Speed, mi/h	54.6
Speed Slope Coefficient (m)	3.11550	Speed Power Coefficient (p)	0.68727
PF Slope Coefficient (m)	-1.17787	PF Power Coefficient (p)	0.78312
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 1584 | - | - | 54.6 |
| | | | | | |
| Vehicle Results | 54.6 | Percent Followers, \% | 11.7 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.1 | | | |
| Segment Travel Time, minutes | 0.33 | | | | |
| Vehicle LOS | A | | | | |

Segment 8

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	528	
Lane Width, ft	9	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	0.0	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	56	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	2.00		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.03		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	57.3		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.41674		
PF Slope Coefficient (m)	3.61619	-1.42067	Total Segment Density, veh/mi/ln	0.73029
In Passing Lane Effective Length?	No	\%lmprovement to Speed		
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	528	-	-	57.3

Vehicle Results

Average Speed, mi/h	57.3	Percent Followers, \%	16.0
Segment Travel Time, minutes	0.10	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	2112
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	5.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	56	Opposing Demand Flow Rate, veh/h	41
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	56.0
Speed Slope Coefficient (m)	3.11550	Speed Power Coefficient (p)	0.63731
PF Slope Coefficient (m)	-1.21256	PF Power Coefficient (p)	0.78971
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, $\%$	Average Speed, mi / h
1	Tangent	2112	-	-	56.0

Vehicle Results

Average Speed, mi/h	56.0	Percent Followers, \%	11.8
Segment Travel Time, minutes	0.43	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.1
Vehicle LOS	A		

Segment 10

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1056
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	28.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	56	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.03

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	50.3
Speed Slope Coefficient (m)	3.23679	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.47191	PF Power Coefficient (p)	0.71247
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

\#	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1056	-	-	50.3
Vehicle Results					
Average Speed, mi/h		50.3	Percent Followers, \%		17.3
Segm	ment Travel Time, minutes	0.24	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$		0.2
Vehicl	le LOS	A			
Facility Results					
T	VMT veh-mi/p	$\begin{aligned} & \text { VHD } \\ & \text { veh-h/p } \end{aligned}$		Follower Density, followers/ $\mathrm{mi} / \mathrm{ln}$	LOS
1	30	0.00		0.2	A

Speed Distribution

Followers Density Distribution

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction PM
Project Description	KY 344	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	512
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	35	Access Point Density, pts/mi	20.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	86	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.05

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	29.5
Speed Slope Coefficient (m)	2.10943	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.46561	PF Power Coefficient (p)	0.62573
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.8
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	512	-	-	29.5

Vehicle Results

Average Speed, mi/h	29.5	Percent Followers, \%	27.1
Segment Travel Time, minutes	0.20	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.8
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	2518
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	27.1
Demand and Capacity	Opposing Demand Flow Rate, veh/h	64	
Directional Demand Flow Rate, veh/h	86	Total Trucks, \%	2.00
Peak Hour Factor	0.94		

Segment Capacity, veh/h	1700	Demand/Capacity (D/C)		0.05
Intermediate Results				
Segment Vertical Class	2	Free-Flow Speed, mi/h		50.5
Speed Slope Coefficient (m)	3.11550	Speed Power Coefficient (p)		0.58813
PF Slope Coefficient (m)	-1.23157	PF Power Coefficient (p)		0.77061
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln		0.3
\%Improvement to Percent Followers	0.0	\%Improvement to Speed		0.0
Subsegment Data				
\# Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1 Tangent	2518	-	-	50.5
Vehicle Results				
Average Speed, mi/h	50.5	Percent Followers, \%		17.0
Segment Travel Time, minutes	0.57	Follower Density (FD), followers/mi/ln		0.3
Vehicle LOS	A			

Segment 3

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	327
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts/mi	24.0	

Demand and Capacity

Directional Demand Flow Rate, veh/h	86	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.05

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	51.3
Speed Slope Coefficient (m)	3.29099	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.46577	PF Power Coefficient (p)	0.71525
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.4
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	327	-	-	51.3

Vehicle Results

Average Speed, mi/h	51.3	Percent Followers, \%	22.4
Segment Travel Time, minutes	0.07	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.4
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1592
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	20.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	101	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.06

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	52.3
Speed Slope Coefficient (m)	3.35025	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.44258	PF Power Coefficient (p)	0.72248
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.5
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, $\%$	Average Speed, mi / h
1	Tangent	1584	-	-	52.1

Vehicle Results

Average Speed, mi/h	52.1	Percent Followers, \%	24.1
Segment Travel Time, minutes	0.35	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.5
Vehicle LOS	A		

Segment 5

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1525
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	26.7

Demand and Capacity

Directional Demand Flow Rate, veh/h	101	Opposing Demand Flow Rate, veh/h	72
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.06

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	50.7
Speed Slope Coefficient (m)	2.94536	Speed Power Coefficient (p)	0.58788
PF Slope Coefficient (m)	-1.27544	PF Power Coefficient (p)	0.77005
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.4
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1584	-	-	50.6

Vehicle Results

Average Speed, mi/h	50.6	Percent Followers, \%	19.6
Segment Travel Time, minutes	0.34	Follower Density (FD), followers/mi/ln	0.4
Vehicle LOS	A		
Segment 6			
Vehicle Inputs			
Segment Type	Passing Constrained	Length, ft	528
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	30.0
Demand and Capacity			
Directional Demand Flow Rate, veh/h	101	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.06
Intermediate Results			
Segment Vertical Class	1	Free-Flow Speed, mi/h	49.8
Speed Slope Coefficient (m)	3.20969	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.47482	PF Power Coefficient (p)	0.71104
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.5
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	528	-	-	49.6

Vehicle Results

Average Speed, mi/h	49.6	Percent Followers, \%	25.1
Segment Travel Time, minutes	0.12	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.5
Vehicle LOS	A		

Segment 7

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1584
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts $/ \mathrm{mi}$	10.0	

Demand and Capacity

Directional Demand Flow Rate, veh/h	101	Opposing Demand Flow Rate, veh/h	72
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.06

Intermediate Results

Segment Vertical Class	3	Free-Flow Speed, mi/h	54.6
Speed Slope Coefficient (m)	3.11550	Speed Power Coefficient (p)	0.65542
PF Slope Coefficient (m)	-1.20321	PF Power Coefficient (p)	0.77793
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.3
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 1584 | - | - | 54.5 |
| | | | | | |
| Vehicle Results | 54.5 | Percent Followers, \% | 18.3 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.3 | | | |
| Segment Travel Time, minutes | 0.33 | A | | | |
| Vehicle LOS | | | | | |

Segment 8

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	528	
Lane Width, ft	9	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	0.0	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	101	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	0.94	Total Trucks, \%	2.00	
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.06		
Intermediate Results	1700	Free-Flow Speed, mi/h		
Segment Vertical Class	Speed Power Coefficient (p)	57.3		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.41674		
PF Slope Coefficient (m)	3.61619	-1.42067	Total Segment Density, veh/mi/ln	0.73029
In Passing Lane Effective Length?	No	\%lmprovement to Speed		
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	528	-	-	57.1

Vehicle Results

Average Speed, mi/h	57.1	Percent Followers, \%	23.4
Segment Travel Time, minutes	0.11	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.4
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	2112
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	5.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	101	Opposing Demand Flow Rate, veh/h	72
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.06

Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	56.0
Speed Slope Coefficient (m)	3.11550	Speed Power Coefficient (p)	0.61333
PF Slope Coefficient (m)	-1.23244	PF Power Coefficient (p)	0.78494
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.3
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, $\%$	Average Speed, mi / h
1	Tangent	2112	-	-	56.0

Vehicle Results

Average Speed, mi/h	56.0	Percent Followers, \%	18.4
Segment Travel Time, minutes	0.43	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.3
Vehicle LOS	A		

Segment 10

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1056
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts $/ \mathrm{mi}$	28.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	101	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.06

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	50.3
Speed Slope Coefficient (m)	3.23679	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.47191	PF Power Coefficient (p)	0.71247
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.5
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

\#	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1056	-	-	50.1
Vehicle Results					
Average Speed, mi/h		50.1	Percent Followers, \%		25.0
Segm	ment Travel Time, minutes	0.24	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$		0.5
Vehicl	le LOS	A			
Facility Results					
T	VMT veh-mi/p	$\begin{aligned} & \text { VHD } \\ & \text { veh-h/p } \end{aligned}$		Follower Density, followers/ $\mathrm{mi} / \mathrm{ln}$	LOS
1	53	0.00		0.4	A

Speed Distribution

Followers Density Distribution
5-

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction AM
Project Description	KY 57	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	3833
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	24.7

Demand and Capacity

Directional Demand Flow Rate, veh/h	91	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.05

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	51.1
Speed Slope Coefficient (m)	3.31561	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.37832	PF Power Coefficient (p)	0.73598
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.4
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	3833	-	-	51.1

Vehicle Results

Average Speed, mi/h	51.1	Percent Followers, \%	21.1
Segment Travel Time, minutes	0.85	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.4
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	528
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.0
Demand and Capacity	Opposing Demand Flow Rate, veh/h	48	
Directional Demand Flow Rate, veh/h	91	Total Trucks, \%	3.50
Peak Hour Factor	0.94		

Segment Capacity, veh/h	1700	Demand/Capacity (D/C)		0.05
Intermediate Results				
Segment Vertical Class	1	Free-Flow Speed, mi/h		54.3
Speed Slope Coefficient (m)	3.12113	Speed Power Coefficient (p)		0.60294
PF Slope Coefficient (m)	-1.26325	PF Power Coefficient (p)		0.78028
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln		0.3
\%Improvement to Percent Followers	0.0	\%Improvement to Speed		0.0
Subsegment Data				
\# Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1 Tangent	528	-	-	54.3
Vehicle Results				
Average Speed, mi/h	54.3	Percent Followers, \%		17.8
Segment Travel Time, minutes	0.11	Follower Density (FD), followers/mi/ln		0.3
Vehicle LOS	A			

Segment 3

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	2580
Lane Width, ft	9	Shoulder Width, ft	6
Speed Limit, mi/h	55	Access Point Density, pts/mi	4.1

Demand and Capacity

Directional Demand Flow Rate, veh/h	91	Opposing Demand Flow Rate, veh/h	48
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.05

Intermediate Results

Segment Vertical Class	3	Free-Flow Speed, mi/h	59.3
Speed Slope Coefficient (m)	4.11812	Speed Power Coefficient (p)	0.76192
PF Slope Coefficient (m)	-1.12853	PF Power Coefficient (p)	0.81549
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	2580	-	-	59.3

Vehicle Results

Average Speed, mi/h	59.3	Percent Followers, \%	14.8
Segment Travel Time, minutes	0.49	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1400	
Lane Width, ft	12	Shoulder Width, ft	6	
Speed Limit, mi/h	55	Access Point Density, pts/mi	7.7	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	91	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	3.50		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.05		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	60.1		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.53696		
PF Slope Coefficient (m)	4.77922	-1.47099	Total Segment Density, veh/mi/ln	0.73766
In Passing Lane Effective Length?	No	\%lmprovement to Speed	0.3	
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, $\%$	Average Speed, mi / h
1	Tangent	1400	-	-	60.1

Vehicle Results

Average Speed, mi/h	60.1	Percent Followers, \%	22.3
Segment Travel Time, minutes	0.26	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.3
Vehicle LOS	A		

Segment 5

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1399
Lane Width, ft	12	Shoulder Width, ft	6
Speed Limit, mi/h	55	Access Point Density, pts/mi	7.4

Demand and Capacity

Directional Demand Flow Rate, veh/h	91	Opposing Demand Flow Rate, veh/h	48
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.05

Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	60.6
Speed Slope Coefficient (m)	3.11550	Speed Power Coefficient (p)	0.66519
PF Slope Coefficient (m)	-1.23651	PF Power Coefficient (p)	0.79213
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.3
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1399	-	-	60.6

Vehicle Results

Average Speed, mi/h	60.6	Percent Followers, \%	17.0
Segment Travel Time, minutes	0.26	Follower Density (FD), followers/mi/ln	0.3
Vehicle LOS	A		
Segment 6			
Vehicle Inputs			
Segment Type	Passing Constrained	Length, ft	4187
Lane Width, ft	10	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	8.9
Demand and Capacity			
Directional Demand Flow Rate, veh/h	124	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.07
Intermediate Results			
Segment Vertical Class	1	Free-Flow Speed, mi/h	55.7
Speed Slope Coefficient (m)	3.56613	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.34280	PF Power Coefficient (p)	0.74945
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/In	0.6
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	4187	-	-	54.9

Vehicle Results

Average Speed, mi/h	54.9	Percent Followers, \%	24.6
Segment Travel Time, minutes	0.87	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.6
Vehicle LOS	A		

Segment 7

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	4905
Lane Width, ft	10	Shoulder Width, ft	1
Speed Limit, mi / h	35	Access Point Density, pts $/ \mathrm{mi}$	39.8

Demand and Capacity

Directional Demand Flow Rate, veh/h	124	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.07

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	25.1
Speed Slope Coefficient (m)	1.91896	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.32538	PF Power Coefficient (p)	0.62496
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	1.5
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 4905 | - | - | 24.7 |
| | | | | | |
| Vehicle Results | 24.7 | Percent Followers, \% | 30.3 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 1.5 | | | |
| Segment Travel Time, minutes | 2.25 | | | | |
| Vehicle LOS | A | | | | |

Segment 8

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1162	
Lane Width, ft	10	Shoulder Width, ft	1	
Speed Limit, mi/h	Access Point Density, pts/mi	8.0		
Demand and Capacity				
Directional Demand Flow Rate, veh/h	124	Opposing Demand Flow Rate, veh/h	67	
Peak Hour Factor	0.94	Total Trucks, \%	3.50	
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.07		
Intermediate Results	1700	Free-Flow Speed, mi/h		
Segment Vertical Class	Speed Power Coefficient (p)	55.8		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.62152		
PF Slope Coefficient (m)	3.11550	-1.28024	Total Segment Density, veh/mi/ln	0.77103
In Passing Lane Effective Length?	No	\%lmprovement to Speed		
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1162	-	-	55.5

Vehicle Results

Average Speed, mi/h	55.5	Percent Followers, \%	22.6
Segment Travel Time, minutes	0.24	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.5
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	8686	
Lane Width, ft	12	Shoulder Width, ft	1	
Speed Limit, mi/h	Access Point Density, pts/mi	7.3		
Demand and Capacity	55	Opposing Demand Flow Rate, veh/h	-	
Directional Demand Flow Rate, veh/h	124	Total Trucks, \%	3.50	
Peak Hour Factor	0.94	Demand/Capacity (D/C)	0.07	
Segment Capacity, veh/h	1700	Free-Flow Speed, mi/h		
Intermediate Results	Speed Power Coefficient (p)	57.3		
Segment Vertical Class	PF Power Coefficient (p)	0.41674		
Speed Slope Coefficient (m)	3.69306	-1.31619	Total Segment Density, veh/mi/ln	0.73942
PF Slope Coefficient (m)	\%olmprovement to Speed			
In Passing Lane Effective Length?	No	0.0	0.0	
\%lmprovement to Percent Followers	0.0			

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	8686	-	-	56.5

Vehicle Results

Average Speed, mi/h	56.5	Percent Followers, \%	24.6
Segment Travel Time, minutes	1.75	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.5
Vehicle LOS	A		

Segment 10

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1177
Lane Width, ft	10	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts/mi	28.0	

Demand and Capacity

Directional Demand Flow Rate, veh/h	124	Opposing Demand Flow Rate, veh/h	67
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.07

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	50.9
Speed Slope Coefficient (m)	2.95000	Speed Power Coefficient (p)	0.59085
PF Slope Coefficient (m)	-1.28278	PF Power Coefficient (p)	0.76722
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.6
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1177	-	-	50.6

Vehicle Results

Average Speed, mi/h	50.6	Percent Followers, \%	22.8
Segment Travel Time, minutes	0.26	Follower Density (FD), followers/mi/ln	0.6
Vehicle LOS	A		

Segment 11

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1420
Lane Width, ft	12	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts $/ \mathrm{mi}$	11.1	

Demand and Capacity

Directional Demand Flow Rate, veh/h	124	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.07

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	56.3
Speed Slope Coefficient (m)	3.56256	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.42277	PF Power Coefficient (p)	0.72994
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.6
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1420	-	-	55.5

Vehicle Results

Average Speed, mi/h	55.5	Percent Followers, \%	26.7
Segment Travel Time, minutes	0.29	Follower Density (FD), followers/mi/ln	0.6
Vehicle LOS	A		

Segment 12

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	10212
Lane Width, ft	11	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.4

Demand and Capacity

Directional Demand Flow Rate, veh/h	124	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.07

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	55.4
Speed Slope Coefficient (m)	3.60216	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.33893	PF Power Coefficient (p)	0.72336
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.6
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	10212	-	-	54.6
Vehicle Results	54.6	Percent Followers, \%	25.7		
Average Speed, mi/h	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.6			
Segment Travel Time, minutes	2.12				
Vehicle LOS	A				

Segment 13

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	608	
Lane Width, ft	11	Shoulder Width, ft	1	
Speed Limit, mi/h	Access Point Density, pts/mi	4.0		
Demand and Capacity	55	Opposing Demand Flow Rate, veh/h	-	
Directional Demand Flow Rate, veh/h	284	Total Trucks, \%	3.50	
Peak Hour Factor	Demand/Capacity (D/C)	0.17		
Segment Capacity, veh/h	1700			
Intermediate Results	Free-Flow Speed, mi/h			
Segment Vertical Class	Speed Power Coefficient (p)	0.97 .3		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.42136		
PF Slope Coefficient (m)	3.11550	-1.52652	Total Segment Density, veh/mi/ln	2.4
In Passing Lane Effective Length?	No	\%lmprovement to Speed	0.0	
\%lmprovement to Percent Followers	0.0			

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	608	-	-	55.8

Vehicle Results

Average Speed, mi/h	55.8	Percent Followers, \%	46.2
Segment Travel Time, minutes	0.12	Follower Density (FD), followers/mi/ln	2.4
Vehicle LOS	B		

Facility Results

	veh-mi/p	veh-h/p	$\mathbf{m i} / \mathbf{l n}$	
1	223	0.06	0.6	A

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction PM
Project Description	KY 57	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	3833
Lane Width, ft	9	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts $/ \mathrm{mi}$	24.7	

Demand and Capacity

Directional Demand Flow Rate, veh/h	187	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.11

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	51.1
Speed Slope Coefficient (m)	3.31561	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.37832	PF Power Coefficient (p)	0.73598
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	1.2
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	3833	-	-	49.9

Vehicle Results

Average Speed, mi/h	49.9	Percent Followers, \%	33.1
Segment Travel Time, minutes	0.87	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	1.2
Vehicle LOS	A		

Segment 2

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	528	
Lane Width, ft	9	Shoulder Width, ft	1	
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.0	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	187	Opposing Demand Flow Rate, veh/h	102	
Peak Hour Factor	Total Trucks, \%	3.50		

Segment Capacity, veh/h	1700	Demand/Capacity (D/C)		0.11
Intermediate Results				
Segment Vertical Class	1	Free-Flow Speed, mi/h		54.3
Speed Slope Coefficient (m)	3.15417		Speed Power Coefficient (p)	0.57329
PF Slope Coefficient (m)	-1.29266	PF Power Coefficient (p)		0.77391
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln		1.0
\%Improvement to Percent Followers	0.0	\%Improvement to Speed		0.0
Subsegment Data				
\# Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1 Tangent	528	-	-	53.5
Vehicle Results				
Average Speed, mi/h	53.5	Percent Followers, \%		29.8
Segment Travel Time, minutes	0.11	Follower Density (FD), followers/mi/ln		1.0
Vehicle LOS	A			

Segment 3

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	2580
Lane Width, ft	9	Shoulder Width, ft	6
Speed Limit, mi/h	55	Access Point Density, pts/mi	4.1

Demand and Capacity

Directional Demand Flow Rate, veh/h	187	Opposing Demand Flow Rate, veh/h	102
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.11

Intermediate Results

Segment Vertical Class	3	Free-Flow Speed, mi/h	59.3
Speed Slope Coefficient (m)	4.23153	Speed Power Coefficient (p)	0.71457
PF Slope Coefficient (m)	-1.16478	PF Power Coefficient (p)	0.80653
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.8
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	2580	-	-	58.5

Vehicle Results

Average Speed, mi/h	58.5	Percent Followers, \%	26.0
Segment Travel Time, minutes	0.50	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.8
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1400	
Lane Width, ft	12	Shoulder Width, ft	6	
Speed Limit, mi/h	55	Access Point Density, pts/mi	7.7	
Demand and Capacity				
Directional Demand Flow Rate, veh/h	187	Opposing Demand Flow Rate, veh/h	-	
Peak Hour Factor	Total Trucks, \%	3.50		
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.11		
Intermediate Results	1700		Free-Flow Speed, mi/h	
Segment Vertical Class	Speed Power Coefficient (p)	60.1		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.53696		
PF Slope Coefficient (m)	4.77922	Total Segment Density, veh/mi/ln	1.1	
In Passing Lane Effective Length?	No	\%lmprovement to Speed	0.73766	
\%lmprovement to Percent Followers	0.0			

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	1400	-	-	58.8

Vehicle Results

Average Speed, mi/h	58.8	Percent Followers, \%	34.8
Segment Travel Time, minutes	0.27	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	1.1
Vehicle LOS	A		

Segment 5

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1399
Lane Width, ft	12	Shoulder Width, ft	6
Speed Limit, mi/h	55	Access Point Density, pts/mi	7.4

Demand and Capacity

Directional Demand Flow Rate, veh/h	187	Opposing Demand Flow Rate, veh/h	102
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.11

Intermediate Results

Segment Vertical Class	2	Free-Flow Speed, mi/h	60.6
Speed Slope Coefficient (m)	3.11550	Speed Power Coefficient (p)	0.62914
PF Slope Coefficient (m)	-1.26730	PF Power Coefficient (p)	0.78517
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.9
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	1399	-	-	59.9

Vehicle Results

Average Speed, mi/h	59.9	Percent Followers, \%	28.8
Segment Travel Time, minutes	0.27	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.9
Vehicle LOS	A		
Segment 6			
Vehicle Inputs			
Segment Type	Passing Constrained	Length, ft	4187
Lane Width, ft	10	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	8.9
Demand and Capacity			
Directional Demand Flow Rate, veh/h	112	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.07
Intermediate Results			
Segment Vertical Class	1	Free-Flow Speed, mi/h	55.7
Speed Slope Coefficient (m)	3.56613	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.34280	PF Power Coefficient (p)	0.74945
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.5
\%Improvement to Percent Followers	0.0	\%Improvement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi / h
1	Tangent	4187	-	-	55.1

Vehicle Results

Average Speed, mi/h	55.1	Percent Followers, \%	22.9
Segment Travel Time, minutes	0.86	Follower Density (FD), followers/mi/ln	0.5
Vehicle LOS	A		

Segment 7

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	4905
Lane Width, ft	10	Shoulder Width, ft	1
Speed Limit, mi / h	35	Access Point Density, pts $/ \mathrm{mi}$	39.8

Demand and Capacity

Directional Demand Flow Rate, veh/h	112	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.07

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	25.1
Speed Slope Coefficient (m)	1.91896	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.32538	PF Power Coefficient (p)	0.62496
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	1.3
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 4905 | - | - | 24.8 |
| | | | | | |
| Vehicle Results | 24.8 | Percent Followers, \% | 28.6 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 1.3 | | | |
| Segment Travel Time, minutes | 2.24 | | | | |
| Vehicle LOS | A | | | | |

Segment 8

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1162	
Lane Width, ft	10	Shoulder Width, ft	1	
Speed Limit, mi/h	Access Point Density, pts/mi	8.0		
Demand and Capacity				
Directional Demand Flow Rate, veh/h	112	Opposing Demand Flow Rate, veh/h	61	
Peak Hour Factor	0.94	Total Trucks, \%	3.50	
Segment Capacity, veh/h	Demand/Capacity (D/C)	0.07		
Intermediate Results	1700	Free-Flow Speed, mi/h		
Segment Vertical Class	Speed Power Coefficient (p)	55.8		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.62611		
PF Slope Coefficient (m)	3.11550	-1.27620	Total Segment Density, veh/mi/ln	0.77185
In Passing Lane Effective Length?	No	\%lmprovement to Speed		
\%lmprovement to Percent Followers	0.0		0.0	

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1162	-	-	55.6

Vehicle Results

Average Speed, mi/h	55.6	Percent Followers, \%	20.9
Segment Travel Time, minutes	0.24	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.4
Vehicle LOS	A		

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	8686	
Lane Width, ft	12	Shoulder Width, ft	1	
Speed Limit, mi/h	Access Point Density, pts/mi	7.3		
Demand and Capacity	55	Opposing Demand Flow Rate, veh/h	-	
Directional Demand Flow Rate, veh/h	112	Total Trucks, \%	3.50	
Peak Hour Factor	0.94	Demand/Capacity (D/C)	0.07	
Segment Capacity, veh/h	1700	Free-Flow Speed, mi/h		
Intermediate Results	Speed Power Coefficient (p)	57.3		
Segment Vertical Class	PF Power Coefficient (p)	0.41674		
Speed Slope Coefficient (m)	3.69306	-1.31619	Total Segment Density, veh/mi/ln	0.73942
PF Slope Coefficient (m)	\%olmprovement to Speed			
In Passing Lane Effective Length?	No	0.0	0.0	
\%lmprovement to Percent Followers	0.0			

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	8686	-	-	56.7

Vehicle Results

Average Speed, mi/h	56.7	Percent Followers, \%	22.9
Segment Travel Time, minutes	1.74	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.5
Vehicle LOS	A		

Segment 10

Vehicle Inputs

Segment Type	Passing Zone	Length, ft	1177
Lane Width, ft	10	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	28.0

Demand and Capacity

Directional Demand Flow Rate, veh/h	112	Opposing Demand Flow Rate, veh/h	61
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.07

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	50.9
Speed Slope Coefficient (m)	2.94585	Speed Power Coefficient (p)	0.59462
PF Slope Coefficient (m)	-1.27898	PF Power Coefficient (p)	0.76801
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.5
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1177	-	-	50.7

Vehicle Results

Average Speed, mi/h	50.7	Percent Followers, \%	21.1
Segment Travel Time, minutes	0.26	Follower Density (FD), followers/mi/ln	0.5
Vehicle LOS	A		

Segment 11

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	1420
Lane Width, ft	12	Shoulder Width, ft	1
Speed Limit, mi/h	Access Point Density, pts $/ \mathrm{mi}$	11.1	

Demand and Capacity

Directional Demand Flow Rate, veh/h	112	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.07

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	56.3
Speed Slope Coefficient (m)	3.56256	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.42277	PF Power Coefficient (p)	0.72994
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.5
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	1420	-	-	55.8

Vehicle Results

Average Speed, mi/h	55.8	Percent Followers, \%	25.0
Segment Travel Time, minutes	0.29	Follower Density (FD), followers/mi/ln	0.5
Vehicle LOS	A		

Segment 12

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	10212
Lane Width, ft	11	Shoulder Width, ft	1
Speed Limit, mi/h	55	Access Point Density, pts/mi	12.4

Demand and Capacity

Directional Demand Flow Rate, veh/h	112	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	3.50
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.07

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	55.4
Speed Slope Coefficient (m)	3.60216	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.33893	PF Power Coefficient (p)	0.72336
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.5
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

| $\#$ | Segment Type | Length, ft | Radius, ft | Superelevation, \% | Average Speed, mi/h |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Tangent | 10212 | - | - | 54.8 |
| | | | | | |
| Vehicle Results | 54.8 | Percent Followers, \% | 24.0 | | |
| Average Speed, mi/h | Follower Density (FD), followers/mi/ln | 0.5 | | | |
| Segment Travel Time, minutes | 2.12 | | | | |
| Vehicle LOS | A | | | | |

Segment 13

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	608	
Lane Width, ft	11	Shoulder Width, ft	1	
Speed Limit, mi/h	Access Point Density, pts/mi	4.0		
Demand and Capacity	55	Opposing Demand Flow Rate, veh/h	-	
Directional Demand Flow Rate, veh/h	345	Total Trucks, \%	3.50	
Peak Hour Factor	Demand/Capacity (D/C)	0.20		
Segment Capacity, veh/h	1700			
Intermediate Results	Free-Flow Speed, mi/h			
Segment Vertical Class	Speed Power Coefficient (p)	0.97 .3		
Speed Slope Coefficient (m)	PF Power Coefficient (p)	0.42136		
PF Slope Coefficient (m)	3.11550	-1.52652	Total Segment Density, veh/mi/ln	3.2
In Passing Lane Effective Length?	No	\%lmprovement to Speed	0.0	
\%lmprovement to Percent Followers	0.0			

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	608	-	-	55.6

Vehicle Results

Average Speed, mi/h	55.6	Percent Followers, \%	51.0
Segment Travel Time, minutes	0.12	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	3.2
Vehicle LOS	B		

Facility Results

	veh-mi/p	veh-h/p	$\mathbf{m i} / \mathbf{l n}$	
1	248	0.07	0.7	A

Followers Density Distribution

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction AM
Project Description	CR 1037	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2558
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	Access Point Density, pts/mi	14.0	

Demand and Capacity

Directional Demand Flow Rate, veh/h	22	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.01

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	18.9
Speed Slope Coefficient (m)	1.55508	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.27783	PF Power Coefficient (p)	0.57790
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2558	-	-	18.9

Vehicle Results

Average Speed, mi/h	18.9	Percent Followers, \%	13.2
Segment Travel Time, minutes	1.54	Follower Density (FD), followers/mi/ln	0.2
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ $\mathbf{m i / l n}$	LOS
1	3	0.00	0.2	A
Copyright © 2022 University of Florida. All Rights Reserved.	HCS TNW			

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction PM
Project Description	CR 1037	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	2558
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	Access Point Density, pts/mi	14.0	

Demand and Capacity

Directional Demand Flow Rate, veh/h	28	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	18.9
Speed Slope Coefficient (m)	1.55508	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.27783	PF Power Coefficient (p)	0.57790
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	2558	-	-	18.9

Vehicle Results

Average Speed, mi/h	18.9	Percent Followers, \%	14.8
Segment Travel Time, minutes	1.54	Follower Density (FD), followers/mi/ln	0.2
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ $\mathbf{m i / l n}$	LOS
1	3	0.00	0.2	A
Copyright © 2022 University of Florida. All Rights Reserved.	HCS			

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction AM
Project Description	CR 1036	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	3025
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	25	Access Point Density, pts/mi	12.1

Demand and Capacity

Directional Demand Flow Rate, veh/h	30	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.02

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	19.4
Speed Slope Coefficient (m)	1.58682	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.27434	PF Power Coefficient (p)	0.58479
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.2
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	3025	-	-	19.4

Vehicle Results

Average Speed, mi/h	19.4	Percent Followers, \%	15.2
Segment Travel Time, minutes	1.77	Follower Density (FD), followers $/ \mathrm{mi} / \mathrm{ln}$	0.2
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ $\mathbf{m i / l n}$	LOS
1	4	0.00	0.2	A
Copyright © 2022 University of Florida. All Rights Reserved.	HCS			

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction PM
Project Description	CR 1036	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	3025
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	25	Access Point Density, pts/mi	12.1

Demand and Capacity

Directional Demand Flow Rate, veh/h	22	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.01

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	19.4
Speed Slope Coefficient (m)	1.58682	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.27434	PF Power Coefficient (p)	0.58479
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	3025	-	-	19.4

Vehicle Results

Average Speed, mi/h	19.4	Percent Followers, \%	12.9
Segment Travel Time, minutes	1.77	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ $\mathbf{m i / l n}$	LOS
1	3	0.00	0.1	A
Copyright © 2022 University of Florida. All Rights Reserved.	HCSTM Highways Version 2022 Construction PM CR $1036 . x u f$	Generated: $05 / 12 / 2022$ 17:17:43		

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction AM
Project Description	CR 1030	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	4172
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	25	Access Point Density, pts/mi	7.6

Demand and Capacity

Directional Demand Flow Rate, veh/h	21	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.01

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	20.5
Speed Slope Coefficient (m)	1.66165	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.27316	PF Power Coefficient (p)	0.59682
In Passing Lane Effective Length?	No	Total Segment Density, veh $/ \mathrm{mi} / \mathrm{ln}$	0.1
\%Improvement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	4172	-	-	20.5

Vehicle Results

Average Speed, mi/h	20.5	Percent Followers, \%	11.8
Segment Travel Time, minutes	2.31	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ $\mathbf{m i / l n}$	LOS
1	4	0.00	0.1	A
Copyright © 2022 University of Florida. All Rights Reserved.	HCS			

HCS Two-Lane Highway Report

Project Information

Analyst	ATW	Date	$5 / 4 / 2022$
Agency	Stantec	Analysis Year	2023
Jurisdiction		Time Analyzed	Construction PM
Project Description	CR 1030	Units	U.S. Customary

Segment 1

Vehicle Inputs

Segment Type	Passing Constrained	Length, ft	4172
Lane Width, ft	9	Shoulder Width, ft	0
Speed Limit, mi/h	25	Access Point Density, pts/mi	7.6

Demand and Capacity

Directional Demand Flow Rate, veh/h	18	Opposing Demand Flow Rate, veh/h	-
Peak Hour Factor	0.94	Total Trucks, \%	2.00
Segment Capacity, veh/h	1700	Demand/Capacity (D/C)	0.01

Intermediate Results

Segment Vertical Class	1	Free-Flow Speed, mi/h	20.5
Speed Slope Coefficient (m)	1.66165	Speed Power Coefficient (p)	0.41674
PF Slope Coefficient (m)	-1.27316	PF Power Coefficient (p)	0.59682
In Passing Lane Effective Length?	No	Total Segment Density, veh/mi/ln	0.1
\%lmprovement to Percent Followers	0.0	\%lmprovement to Speed	0.0

Subsegment Data

$\#$	Segment Type	Length, ft	Radius, ft	Superelevation, \%	Average Speed, mi/h
1	Tangent	4172	-	-	20.5

Vehicle Results

Average Speed, mi/h	20.5	Percent Followers, \%	10.8
Segment Travel Time, minutes	2.31	Follower Density (FD), followers/mi/ln	0.1
Vehicle LOS	A		

Facility Results

T	VMT veh-mi/p	VHD veh-h/p	Follower Density, followers/ $\mathbf{m i / l n}$	LOS
1	3	0.00	0.1	A
Copyright © 2022 University of Florida. All Rights Reserved.	HCS			

[^0]: Responses: 39
 Negative Impact on Adjoining Value = Yes: 0
 Negative Impact on Adjoining Value $=$ No: 39

[^1]: (his paccio

[^2]: date 04/03/2022
 Shet: $\quad 17$ OF 19

[^3]: DATE: 04/03/2022
 Shet: $\quad 18$ OF 19

