# JOHN N. HUGHES 

Attorney at Law
Professional Service Corporation
124 West Todd Street
Frankfort, Kentucky 40601

July 29, 2022
Linda C. Bridwell
PSC Executive Director
Public Service Commission
211 Sower Blvd.
Frankfort, KY 40601
Re: Atmos Energy Corporation
Case No. 2022-00222
Dear Ms. Bridwell:
Atmos Energy Corporation submits its application to establish PRP Rider Rates for the twelve-month period commencing October 1, 2022 and a petition for confidentiality. I certify that the electronic documents are true and correct copies of the original documents.

If you have any questions about this filing, please contact me.

$$
\begin{aligned}
& \text { Submitted By: } \\
& \text { Mark R. Hutchinson } \\
& \text { Wilson, Hutchinson \& Littlepage } \\
& 611 \text { Frederica Street } \\
& \text { Owensboro, KY } 42301 \\
& \text { (270) 926-5011 } \\
& \text { randy@whplawfirm.com } \\
& \text { And } \\
& \text { Coan } \\
& \text { John N. Hughes } \\
& \text { Frankfort, KY } 40601 \\
& \text { (502) 227-7270 } \\
& \text { jnhughes@johnnhughespsc.com } \\
& \text { Attorneys for Atmos Energy Corporation }
\end{aligned}
$$

# COMMONWEALTH OF KENTUCKY <br> BEFORE THE PUBLIC SERVICE COMMISSION 

IN THE MATTER OF:
APPLICATION OF ATMOS ENERGY CORPORATION )
TO ESTABLISH PRP RIDER RATES FOR THE ) CASE NO. 2022-00222
TWELVE MONTH PERIOD BEGINNING )
OCTOBER 1, 2022 )

## APPLICATION

Atmos Energy Corporation ("Company"), by counsel, applies to the Kentucky Public Service Commission ("Commission"), for approval to establish PRP Rider Rates for the 12month period beginning October 1, 2022. In support of this Application, Company states as follows:

1. The Company is an operating public utility engaged in the business of supplying natural gas to the public in numerous cities, towns and communities in western and south central Kentucky. Correspondence and communications with respect to this Application should be directed to:

Brannon C. Taylor,
Atmos Energy Corporation, 810 Crescent Centre Dr. STE 600,
Franklin, TN 37067
(615) 771-8330 Ph
(615) 771-8301 fax
(brannon.taylor@atmosenergy.com)
Mark R. Hutchinson,
Wilson, Hutchinson \& Littlepage,
611 Frederica Street,
Owensboro, Kentucky 42301
2709265011 Ph
(270) 926-9394 fax
(randy@whplawfirm.com)
And

```
John N. Hughes
124 W. Todd St.
Frankfort, KY 40601
(502) 2277270 Ph
(jnhughes@johnnhughespsc.com)
```

2. The Company is a corporation duly qualified under the laws of the Commonwealth of Kentucky to carry on its business in the Commonwealth. A certified copy of Company's restated Articles of Incorporation, as amended, together with all amendments thereto, is on file in the records of the Commission and the same are incorporated herein by reference. See Case No. 2021-00214. The Company was initially incorporated in Texas on February 6, 1981 and in Virginia on July 21, 1997. Applicant attests that it is a foreign corporation in good standing to operate in Kentucky. Atmos Energy does not operate under an assumed name in Kentucky.
3. The Company is filing this application in compliance with the Commission's Order in Case No. 2021-00214 and Case No. 2020-00229. This Application and the attached supporting exhibits contain the facts on which the relief being requested is based, a request for the relief sought and references to the particular provisions of law requiring or providing for the relief sought as specified in 807 KAR 5:001
4. A petition for confidentiality for Exhibits TRA-1 through TRA-3 is being filed with the application.

WHEREFORE, the Company requests the Commission to approve the attached PRP Rider Rates for the 12-month period beginning October 1, 2022.

Respectfully submitted this 29th day of July, 2022.


John N. Hughes
124 W. Todd St.
Frankfort, KY 40601
(502) 227-7270 Ph
(jnhughes@johnnhughespsc.com)

WILSON, HUTCHINSON \& LITTLEPAGE
Mark R. Hutchinson
611 Frederica Street
Owensboro, Kentucky 42301
randy@whplawfirm.com

## CERTIFICATE

In accordance with the requirements of $807 \mathrm{KAR} 5: 001$, I certify that this electronic filing is a true and accurate copy of the documents filed that the electronic filing has been transmitted to the Commission on July 29, 2022 and that no party has been excused from participation by electronic means.


John N. Hughes

# COMMONWEALTH OF KENTUCKY <br> BEFORE THE PUBLIC SERVICE COMMISSION 

IN THE MATTER OF:

APPLICATION OF ATMOS ENERGY )
CORPORATION TO ESTABLISH PRP )
RIDER RATES FOR THE TWELVE MONTH ) CASE NO. 2022-00222
PERIOD BEGINNING OCTOBER 1, 2022

AFFIDAVIT

The Affiant, Brannon C. Taylor, being duly sworn, deposes and states that the statements contained in the attached Application are true and correct to the best of my knowledge and belief.


## STATE OF NORTH CAROLINA

## COUNTY OF HENDERSON

SUBSCRIBED AND SWORN to before me by Brannon C. Taylor on this the $26^{\text {th }}$ day of July, 2022.


In the Matter of:
Application Of Atmos Energy Corporation )
To Establish PRP Rider Rates for the
Twelve Month Period Beginning
October 1, 2022
) Case No. 2022-00222
)
)

## PETITION FOR CONFIDENTIALITY

Atmos Energy Corporation (Atmos) petitions the Commission ("Commission"), pursuant to 807 KAR 5:001, Section 13, and all other applicable law, for confidential treatment of certain information submitted to the Commission as part of its Application in this proceeding. The information submitted consists of maps of the Atmos gas distribution system.

KRS Chapter 61 requires information filed with the Commission to be available for public inspection unless specifically exempted by statute. Exemptions from public disclosure of the information relevant to this petition are provided in KRS 61.878(1)(m). Under the Kentucky Open Records Act, the Commission is entitled to withhold from public disclosure information disclosed to it to the extent that open disclosure would "have a reasonable likelihood of threatening the public safety by exposing a vulnerability in preventing, protecting against, mitigating, or responding to a terrorist act and limited to: . . ,
(f) infrastructure records that expose a vulnerability referred to in this subparagraph through the disclosure of the location, configuration, or security of critical systems, including public utility critical systems. These critical systems shall include but
not be limited to information technology, communications, electrical, fire suppression, ventilation, water, wastewater, sewage, and gas systems and;
(g) The following records when their disclosure will expose a vulnerability referred to in this subparagraph: detailed drawings, schematics, maps, or specifications of structural elements, floor plans, and operating, utility, or security systems of any building or facility owned, occupied, leased, or maintained by a public agency."

This Commission has recognized that maps "are infrastructure records that disclose the location, configuration, or security of public utility systems" and therefore, should be treated as confidential. See Case No. 2014-00166 In the Matter of 2104 Integrated Resource Plan of Big Rivers Electric Corporation, KY PSC Order, p. 7 (August 26, 2014).

The information contained in the specified document may provide detailed information about Atmos's distribution system and the location of critical components; as such, the disclosure of which could threaten the public safety generally and provide sensitive information relevant to the security against terroristic events. Atmos petitions the Commission to classify as confidential and protect from public disclosure the maps provided in Exhibits TRA-1 through TRA-3 as part of Atmos witness Ryan Austin's direct testimony.

The information for which the Company is seeking confidential treatment is not known outside of the Company, is not disseminated within the Company except to those employees with a legitimate business need to know and act upon the information and is generally recognized as confidential and proprietary information in the energy industry. If the Commission disagrees with this request for confidential protection, Atmos
requests that it hold an evidentiary hearing (a) to protect the Company's due process rights and (b) to supply the Commission with a complete record to enable it to reach a decision with regard to this matter. Utility Regulatory Commission v. Kentucky Water Service Company, Inc., Ky. App., 642 S.W.2d 591, 592-94 (1982).

Atmos requests that the information referenced herein be kept confidential for an indefinite period.

For these reasons, Atmos petitions the Commission to treat as confidential, indefinitely, the information referenced in this petition in its entirety

Submitted By:

Mark R. Hutchinson
Wilson, Hutchinson \& Littlepage
611 Frederica Street
Owensboro, KY 42301
(270) 926-5011
randy@whplawfirm.com
And


John N. Hughes 124 West Todd Street Frankfort, Kentucky 40601 502-227-7270 jnhughes@johnnhughespsc.com

Attorneys for Atmos Energy Corporation

# BEFORE THE PUBLIC SERVICE COMMISSION 

## COMMONWEALTH OF KENTUCKY

IN THE MATTER OF:

| APPLICATION OF ATMOS ENERGY | ) |  |
| :--- | :--- | :--- |
| CORPORATION TO ESTABLISH PRP | ) |  |
| RIDER RATES FOR THE TWELVE | ) | Case No. 2022-00222 |
| MONTH PERIOD BEGINNING | ) |  |
| OCTOBER 1, 2022 | ) |  |

TESTIMONY OF BRANNON C. TAYLOR

# INDEX TO THE DIRECT TESTIMONY OF BRANNON C TAYLOR, WITNESS FOR ATMOS ENERGY CORPORATION 

I. INTRODUCTION ..... 1
II. PURPOSE AND SUMMARY OF TESTIMONY ..... 2
III. PRP UPDATES ..... 2
IV. CONCLUSION ..... 4

## I. INTRODUCTION

Q. PLEASE STATE YOUR NAME, POSITION AND BUSINESS ADDRESS.
A. My name is Brannon C. Taylor. I am Vice President - Rates and Regulatory Affairs for the Kentucky/Mid-States Division of Atmos Energy Corporation ("Atmos Energy" or the "Company"). My business address is 810 Crescent Centre Dr. Ste 600, Franklin, Tennessee, 37067.

## Q. PLEASE BRIEFLY DESCRIBE YOUR CURRENT RESPONSIBILITIES, AND PROFESSIONAL AND EDUCATIONAL BACKGROUND.

A. I am responsible for all rate and regulatory matters in Kentucky, Tennessee, and Virginia. I graduated from Vanderbilt University in 2009 with a degree in Political Science. I also graduated from Emory University in 2012 with a law degree and am a licensed attorney. I have been with Atmos Energy Corporation since September 2012. I have served in a variety of positions of increasing responsibility in both the Corporate Rates and Regulatory Affairs group as well as the Kentucky/Mid-States Division prior to assuming my current responsibilities in 2020.
Q. HAVE YOU SUBMITTED TESTIMONY BEFORE THE KENTUCKY PUBLIC SERVICE COMMISSION ("COMMISSION")?
A. Yes, I submitted Direct Testimony in Case No 2021-00214 and 2021-00304.

## Q. HAVE YOU PREVIOUSLY SUBMITTED TESTIMONY ON MATTERS BEFORE OTHER STATE REGULATORY COMMISSIONS?

A. Yes, I have filed testimony before the Tennessee Public Utility Commission and participated in a proceeding to promulgate rules for the evaluation of utility
acquisitions.

## II. PURPOSE AND SUMMARY OF TESTIMONY

## Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY?

A. My direct testimony will address areas referenced in the Final Order in Case No. 2021-00214 issued by the Commission in the Company's 2021 general rate case, as well as introduce the Company's other witnesses in this case. Specifically, I will address our compliance with evaluating the return on equity in this case as well as addressing the Aldyl-A projects filed by the Company. ${ }^{1}$ I will sponsor the incorporation of the revenue requirement schedules to determine the PRP deficiency, incorporate the capital structure into the record in this case, and incorporate the addition of Aldyl-A projects.

## III. PRP UPDATES

## Q. HAS THE COMPANY UPDATED THE RATE OF RETURN USED IN THE PRP CALCULATION IN THIS FILING IN ACCORDANCE WITH THE CASE NOS. 2020-00229 and 2021-00214 ORDERS?

A. Yes. The Final Order from Case No 2020-00229 ordered the Company to amend its PRP tariff to reflect that the overall rate of return will be established in the annual PRP rate application, rather than defaulting to the return on equity ("ROE") ordered by the Commission in the Atmos Energy's prior general rate case. The Company has complied with this in its filing by engaging consultant Dylan D'Ascendis to provide testimony to support the ROE used in this case.

[^0]
## Q PLEASE DISCUSS THE RETURN ON EQUITY AMOUNT USED BY THE COMPANY IN THIS PRP FILING.

A. The Order in Case No. 2020-00229 stated " $[\mathrm{g}]$ iven the condensed timeline of these proceedings, the Commission strongly recommends that Atmos file adequate testimony to support its proposed rate of return, including a reasonable ROE." The testimony of Company Witness Dylan D'Ascendis sponsors the ROE calculations used by the Company. The overall rate of return is summarized in Table 1 below:

Table 1: Summary of Recommended Weighted Average Cost of Capital

| Type of Capital | Ratios | Cost Rate | Weighted Cost Rate |
| :---: | :---: | :---: | :---: |
| Long-Term Debt | $45.45 \%$ | $3.84 \%$ | $1.73 \%$ |
| Short-Term Debt | $0.05 \%$ | $80.94 \%$ | $0.04 \%$ |
| Common Equity | $\underline{54.50 \%}$ | $\underline{10.95 \%}$ | $\underline{5.97 \%}$ |
| Total | $\underline{\underline{100.00 \%}}$ |  | $\underline{\underline{7.75 \%}}$ |

Q. WHAT SUPPORT IS THE COMPANY PROVIDING FOR THE CAPITAL
STRUCTURE REFLECTED IN TABLE 1 ABOVE?

A. The Company has filed using the capital structure recently ordered by the
Commission in the Final Order of the Company's general rate case, Case No. 2021
00214.

Q. HAS THE COMPANY INCLUDED ALDYL-A PROJECTS IN THIS
FILING?
A. Yes. In Case No. 2021-00214, the Commission stated that the inclusion of AldylA pipelines will be determined on a case-by-case basis and any PRP applications including Aldyl-A projects should at a minimum including safety justifications for
such projects. ${ }^{2}$ In compliance with the Commission's order, Atmos Energy witness T. Ryan Austin provides the safety justifications and other factors for the Aldyl-A projects listed in this PRP filing. The Aldyl-A projects are listed in Exhibit K-1 of the Company's filing.

## Q. PLEASE EXPLAIN WHY A DELAY TO THE SCHEDULE OUTLINED IN THE PRP TARIFF UNDERMINES THE POLICY GOALS OF THE ANNUAL MECHANISM.

A. Delay beyond October 1 introduces additional regulatory lag. Forward-looking treatment, as generally described in the context of rate of return regulation, entails forecasting cost of service components and implementing rates such that the timing of the Company's revenues collected from customers aligns with the timing of its cost of service. In allowing such treatment, regulators ensure that the rates customers are paying more closely align with the utility's cost of service and the value of investment provided during the same time period. Any material delay would result in significant under-recovery of the Company's PRP investments. This under recovery could only be addressed two years from this PRP filing as contemplated by the Company's tariff as part of the balancing adjustment, and layer that additional amount on top of any new rates approved by the Commission in that future docket.

## IV. CONCLUSION

## Q. DOES THIS CONCLUDE YOUR TESTIMONY?

A. Yes, at this time.

[^1]
## BEFORE THE PUBLIC SERVICE COMMISSION

## APPLICATION OF ATMOS ENERGY ) CORPORATION TO ESTABLISH PRP ) RIDER RATES FOR THE TWELVE MONTH ) <br> CASE NO. 2022-00222 <br> PERIOD BEGINNING OCTOBER 1, 2022 <br> )

## CERTIFICATE AND AFFIDAVIT

The Affiant, Brannon C. Taylor, being duly sworn, deposes and states that the prepared testimony attached hereto and made a part hereof, constitutes the prepared direct testimony of this affiant in Case No. 2022-00222 and that if asked the questions propounded therein, this affiant would make the answers set forth in the attached prepared direct pre-filed testimony.


STATE OF NORTH CAROLINA

## COUNTY OF HENDERSON

SUBSCRIBED AND SWORN to before me by Brannon C. Taylor on this the $22^{\text {nd }}$ day of July, 2022.


# BEFORE THE PUBLIC SERVICE COMMISSION COMMONWEALTH OF KENTUCKY 

IN THE MATTER OF:

| APPLICATION OF ATMOS ENERGY | ) |
| :--- | :--- |
| CORPORATION TO ESTABLISH PRP | ) |
| RIDER RATES FOR THE TWELVE | ) |
| MONTH PERIOD BEGINNING | Case No. 2022-00222 |
| OCTOBER 1, 2022 | ) |

DIRECT TESTIMONY OF DYLAN W. D'ASCENDIS

RATE OF RETURN

## TABLE OF CONTENTS

I. Introduction and Purpose ..... 1
II. Summary of Testimony ..... 3
III. General Principles ..... 6
A. Business Risk ..... 10
B. Financial Risk ..... 12
IV. Atmos Energy's Kentucky Operations and the Utility Proxy Group ..... 13
V. Common Equity Cost Rate Models ..... 14
A. Discounted Cash Flow Model ..... 16
B. The Risk Premium Model ..... 18

1. The Predictive Risk Premium Model ..... 19
2. The Total Market Risk Premium Approach ..... 26
C. The Capital Asset Pricing Model. ..... 36
D. Common Equity Cost Rates for a Proxy Group of Domestic, Non-Price Regulated Companies Based on the DCF, RPM, and CAPM ..... 43
VI. Conclusion of Common Equity Cost Rate Before Adjustments ..... 46
VII. Adjustments to the Common Equity Cost Rate ..... 47
A. Size Adjustment ..... 48
B. Credit Risk Adjustment ..... 54
C. Flotation Cost Adjustment ..... 54
D. Other Considerations ..... 57
VIII. Conclusion ..... 60

## I. INTRODUCTION AND PURPOSE

## Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.

A. My name is Dylan W. D'Ascendis. My business address is 3000 Atrium Way, Suite 200, Mount Laurel, NJ 08054.

## Q. BY WHOM ARE YOU EMPLOYED AND IN WHAT CAPACITY?

A. I am a Partner at ScottMadden, Inc.
Q. PLEASE SUMMARIZE YOUR PROFESSIONAL EXPERIENCE AND EDUCATIONAL BACKGROUND.
A. I have offered expert testimony on behalf of investor-owned utilities in over 30 state regulatory commissions in the United States, the Federal Energy Regulatory Commission, the Alberta Utility Commission, one American Arbitration Association panel, and the Superior Court of Rhode Island on issues including, but not limited to, common equity cost rate, rate of return, valuation, capital structure, class cost of service, and rate design.

On behalf of the American Gas Association ("AGA"), I calculate the AGA Gas Index, which serves as the benchmark against which the performance of the American Gas Index Fund ("AGIF") is measured on a monthly basis. The AGA Gas Index and AGIF are a market capitalization-weighted index and mutual fund, respectively, comprised of the common stocks of the publicly traded corporate members of the AGA.

I am a member of the Society of Utility and Regulatory Financial Analysts ("SURFA"). In 2011, I was awarded the professional designation "Certified Rate
of Return Analyst" by SURFA, which is based on education, experience, and the successful completion of a comprehensive written examination.

I am also a member of the National Association of Certified Valuation Analysts ("NACVA") and was awarded the professional designation "Certified Valuation Analyst" by the NACVA in 2015.

I am a graduate of the University of Pennsylvania, where I received a Bachelor of Arts degree in Economic History. I have also received a Master of Business Administration with high honors and concentrations in Finance and International Business from Rutgers University.

The details of my educational background and expert witness appearances are included in Appendix A.

## Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS PROCEEDING?

A. The purpose of my testimony is to present evidence and provide a recommendation regarding Atmos Energy Corporation’s Kentucky operations’ ("Atmos Energy" or the "Company") return on common equity ("ROE") for use in setting rates pursuant to the Company's Pipeline Replacement Program ("PRP") tariff.
Q. HAVE YOU PREPARED EXHIBITS IN SUPPORT OF YOUR RECOMMENDATION?
A. Yes. I have prepared Exhibits DWD-1 through DWD-9, which were prepared by me or under my direction.

## Q. WHAT IS YOUR RECOMMENDED ROE FOR ATMOS ENERGY?

A. I recommend that the Kentucky Public Service Commission ("KY PSC" or the "Commission") authorize Atmos Energy the opportunity to earn an ROE of 10.95\% on its PRP investment. The ratemaking capital structure and debt cost rates are based on the approved capital structure for Atmos Energy in Case No. 2021-00214. The overall rate of return is summarized on page 1 of Exhibit DWD- 1 and in Table 1 below:

Table 1: Summary of Recommended Weighted Average Cost of Capital

| Type of Capital | Ratios | Cost Rate | Weighted Cost Rate |
| :---: | :---: | :---: | :---: |
| Long-Term Debt | $45.45 \%$ | $3.84 \%$ | $1.74 \%$ |
| Short-Term Debt | $0.05 \%$ | $80.94 \%$ | $0.04 \%$ |
| Common Equity | $\underline{54.50 \%}$ | $\underline{10.95 \%}$ | $\underline{\underline{5.97 \%}}$ |
| Total | $\underline{\underline{100.00 \%}}$ |  | $\underline{\underline{7.75 \%}}$ |

## II. SUMMARY OF TESTIMONY <br> Q. PLEASE SUMMARIZE YOUR RECOMMENDED COMMON EQUITY COST RATE. <br> A. My recommended common equity cost rate of $10.95 \%$ is summarized on page 2 of Exhibit DWD-1. In determining my recommendation, I have assessed the marketbased common equity cost rates of companies of relatively similar, but not necessarily identical, risk to Atmos Energy. Using companies of relatively comparable risk as proxies is consistent with the principles of fair rate of return established in the Hope ${ }^{1}$ and Bluefield ${ }^{2}$ decisions. Of course, no proxy group can be identical in risk to any single company. Consequently, there must be an

Bluefield Water Works Improvement Co. v. Public Serv. Comm'n, 262 U.S. 679 (1922).
evaluation of relative risk between the Company and the proxy group to determine if it is appropriate to adjust the proxy group's indicated rate of return.

My recommendation results from the application of several cost of common equity models, specifically the Discounted Cash Flow ("DCF") model, the Risk Premium Model ("RPM"), and the Capital Asset Pricing Model ("CAPM"), to the market data of a proxy group of six natural gas distribution utilities ("Utility Proxy Group") whose selection criteria will be discussed below. In addition, I applied these same models to a proxy group of 38 domestic, non-price regulated companies comparable in total risk to the Utility Proxy Group ("Non-Price Regulated Proxy Group"). The results derived from each are as follows:

Table 2: Summary of Common Equity Cost Rates

| Discounted Cash Flow Model | $9.73 \%$ |
| :--- | :---: |
| Risk Premium Model | $10.99 \%$ |
| Capital Asset Pricing Model | $11.14 \%$ |
| Market Models Applied to Comparable Risk, Non-Price | $\underline{12.03 \%}$ |
| Regulated Companies | $9.73 \%-12.03 \%$ |
| Indicated Range of Common Equity Cost Rates Before | $0.20 \%$ |
| Adjustments for Company-Specific Risk | $-0.06 \%$ |
| Size Adjustment | $\underline{0.05 \%}$ |
| Credit Risk Adjustment | $\underline{\underline{9.92 \%-12.22 \%}}$ |
| Flotation Cost Adjustment | $\underline{10.95 \%}$ |
| Indicated Range of Common Equity Cost Rates after |  |
| Adjustment |  |
| Recommended Cost of Common Equity |  |

After analyzing the indicated common equity cost rates derived through these models, the indicated range of common equity cost rates applicable to the Utility Proxy Group is between $9.73 \%$ and $12.03 \% .^{3}$

The indicated range of common equity cost rates applicable to the Utility Proxy Group was then adjusted by $0.20 \%$ and negative $0.06 \%$ to reflect the Company's greater relative business risk and lower credit risk, respectively, as compared to the Utility Proxy Group companies, and by $0.05 \%$ for flotation costs. ${ }^{4}$ These adjustments result in a Company-specific range of common equity cost rates between $9.92 \%$ and $12.22 \%$. From this range of results, I recommend the Commission consider a common equity cost rate of $10.95 \%$, for use in setting rates for the Company.

## Q. HOW IS THE REMAINDER OF YOUR DIRECT TESTIMONY ORGANIZED?

A. The remainder of my Direct Testimony is organized as follows:

- Section III - Provides a summary of financial theory and regulatory principles pertinent to the development of the cost of common equity;
- Section IV - Explains my selection of the Utility Proxy Group used to develop my Cost of Common Equity analytical results;
- Section V - Describes the analyses on which my Cost of Common Equity recommendation is based;

[^2]- Section VI - Summarizes my common equity cost rate before adjustments to reflect Company-specific factors;
- Section VII - Explains my adjustments to my common equity cost rate to reflect Company-specific factors; and
- Section VIII - Presents my conclusions.


## III. GENERAL PRINCIPLES

## Q. WHAT GENERAL PRINCIPLES HAVE YOU CONSIDERED IN ARRIVING AT YOUR RECOMMENDED COMMON EQUITY COST RATE?

A. In unregulated industries, marketplace competition is the principal determinant of the price of products or services. For regulated public utilities, regulation must act as a substitute for marketplace competition. Assuring that the utility can fulfill its obligations to the public, while providing safe and reliable service at all times, requires a level of earnings sufficient to maintain the integrity of presently invested capital. Sufficient earnings also permit the attraction of needed new capital at a reasonable cost, for which the utility must compete with other firms of comparable risk, consistent with the fair rate of return standards established by the U.S. Supreme Court in the previously cited Hope and Bluefield cases.

The U.S. Supreme Court affirmed the fair rate of return standards in Hope, when it stated:

The rate-making process under the Act, i.e., the fixing of 'just and reasonable' rates, involves a balancing of the investor and the consumer interests. Thus we stated in the Natural Gas Pipeline Co. case that 'regulation does not insure that the business shall produce net revenues.' 315 U.S. at page 590,62 S.Ct. at page 745 . But such considerations aside, the investor interest has a legitimate concern
with the financial integrity of the company whose rates are being regulated. From the investor or company point of view it is important that there be enough revenue not only for operating expenses but also for the capital costs of the business. These include service on the debt and dividends on the stock. Cf. Chicago \& Grand Trunk R. Co. v. Wellman, 143 U.S. 339, 345, 34612 S.Ct. 400,402. By that standard the return to the equity owner should be commensurate with returns on investments in other enterprises having corresponding risks. That return, moreover, should be sufficient to assure confidence in the financial integrity of the enterprise, so as to maintain its credit and to attract capital. ${ }^{5}$

In summary, the U.S. Supreme Court has found a return that is adequate to attract capital at reasonable terms enables the utility to provide service while maintaining its financial integrity. As discussed above, and in keeping with established regulatory standards, that return should be commensurate with the returns expected elsewhere for investments of equivalent risk. The Commission's decision in this proceeding, therefore, should provide the Company with the opportunity to earn a return that is: (1) adequate to attract capital at reasonable cost and terms; (2) sufficient to ensure their financial integrity; and (3) commensurate with returns on investments in enterprises having corresponding risks.

Lastly, the required return for a regulated public utility is established on a stand-alone basis, i.e., for the utility operating company at issue in a rate case. Parent entities, like other investors, have capital constraints and must look at the attractiveness of the expected risk-adjusted return of each investment alternative in their capital budgeting process. That is, utility holding companies that own many utility operating companies have choices as to where they will invest their capital

5 Hope, 320 U.S. 591 (1944), at 603.
within the holding company family. Therefore, the opportunity cost concept applies regardless of the source of the funding, public funding or corporate funding.

When funding is provided by a parent entity, the return still must be sufficient to provide an incentive to allocate equity capital to the subsidiary or business unit rather than other internal or external investment opportunities. That is, the regulated subsidiary must compete for capital with all the parent company's affiliates, and with other, similarly situated utility companies. In that regard, investors value corporate entities on a sum-of-the-parts basis and expect each division within the parent company to provide an appropriate risk-adjusted return.

It therefore is important that the authorized ROE reflects the risks and prospects of the utility's operations and supports the utility's financial integrity from a stand-alone perspective as measured by their combined business and financial risks. Consequently, the ROE authorized in this proceeding should be sufficient to support the operational (i.e., business risk) and financing (i.e., financial risk) of the Company's Kentucky utility operations on a stand-alone basis.

## Q. WITHIN THAT BROAD FRAMEWORK, HOW IS THE COST OF CAPITAL ESTIMATED IN REGULATORY PROCEEDINGS?

A. Regulated utilities primarily use common stock and long-term debt to finance their permanent property, plant, and equipment (i.e., rate base). The fair rate of return for a regulated utility is based on its weighted average cost of capital, in which, as noted earlier, the costs of the individual sources of capital are weighted by their respective book values.

The cost of capital is the return investors require to make an investment in a firm. Investors will provide funds to a firm only if the return that they expect is equal to, or greater than, the return that they require to accept the risk of providing funds to the firm.

The cost of capital (that is, the combination of the costs of debt and equity) is based on the economic principle of "opportunity costs." Investing in any asset (whether debt or equity securities) represents a forgone opportunity to invest in alternative assets. For any investment to be sensible, its expected return must be at least equal to the return expected on alternative, comparable risk investment opportunities. Because investments with like risks should offer similar returns, the opportunity cost of an investment should equal the return available on an investment of comparable risk.

Whereas the cost of debt is contractually defined and can be directly observed as the interest rate or yield on debt securities, the cost of common equity must be estimated based on market data and various financial models. Because the cost of common equity is premised on opportunity costs, the models used to determine it are typically applied to a group of "comparable" or "proxy" companies.

In the end, the estimated cost of capital should reflect the return that investors require in light of the subject company's business and financial risks, and the returns available on comparable investments.

## A. Business Risk

## Q. PLEASE DEFINE BUSINESS RISK AND EXPLAIN WHY IT IS IMPORTANT FOR DETERMINING A FAIR RATE OF RETURN.

A. The investor-required return on common equity reflects investors' assessment of the total investment risk of the subject firm. Total investment risk is often discussed in the context of business and financial risk.

Business risk reflects the uncertainty associated with owning a company's common stock without the company's use of debt and/or preferred stock financing. One way of considering the distinction between business and financial risk is to view the former as the uncertainty of the expected earned return on common equity, assuming the firm is financed with no debt.

Examples of business risks generally faced by utilities include, but are not limited to, the regulatory environment, mandatory environmental compliance requirements, customer mix and concentration of customers, service territory economic growth, market demand, risks and uncertainties of supply, operations, capital intensity, size, the degree of operating leverage, and the like, all of which have a direct bearing on earnings.

Although analysts, including rating agencies, may categorize business risks individually, as a practical matter, such risks are interrelated and not wholly distinct from one another. When determining an appropriate return on common equity, the relevant issue is where investors see the subject company in relation to other similarly situated utility companies (i.e., the Utility Proxy Group). To the extent
investors view a company as being exposed to higher risk, the required return will increase, and vice versa.

For regulated utilities, business risks are both long-term and near-term in nature. Whereas near-term business risks are reflected in year-to-year variability in earnings and cash flow brought about by economic or regulatory factors, long-term business risks reflect the prospect of an impaired ability of investors to obtain both a fair rate of return on, and return of, their capital. Moreover, because utilities accept the obligation to provide safe, adequate and reliable service at all times (in exchange for a reasonable opportunity to earn a fair return on their investment), they generally do not have the option to delay, defer, or reject capital investments. Because those investments are capital-intensive, utilities generally do not have the option to avoid raising external funds during periods of capital market distress, if necessary.

Because utilities invest in long-lived assets, long-term business risks are of paramount concern to equity investors. That is, the risk of not recovering the return on their investment extends far into the future. The timing and nature of events that may lead to losses, however, also are uncertain and, consequently, those risks and their implications for the required return on equity tend to be difficult to quantify. Regulatory commissions (like investors who commit their capital) must review a variety of quantitative and qualitative data and apply their reasoned judgment to determine how long-term risks weigh in their assessment of the market-required return on common equity.

## B. Financial Risk

## Q. PLEASE DEFINE FINANCIAL RISK AND EXPLAIN WHY IT IS IMPORTANT IN DETERMINING A FAIR RATE OF RETURN.

A. Financial risk is the additional risk created by the introduction of debt and preferred stock into the capital structure. The higher the proportion of debt and preferred stock in the capital structure, the higher the financial risk to common equity owners (i.e., failure to receive dividends due to default or other covenants). Therefore, consistent with the basic financial principle of risk and return, common equity investors demand higher returns as compensation for bearing higher financial risk.

## Q. CAN BOND AND CREDIT RATINGS BE A PROXY FOR A FIRM'S

 COMBINED BUSINESS AND FINANCIAL RISKS TO EQUITY OWNERS
## (I.E., INVESTMENT RISK)?

A. Yes, similar bond ratings/issuer credit ratings reflect, and are representative of, similar combined business and financial risks (i.e., total risk) faced by bond investors. ${ }^{6}$ Although specific business or financial risks may differ between companies, the same bond/credit rating indicates that the combined risks are roughly similar from a debtholder perspective. The caveat is that these debtholder risk measures do not translate directly to risks for common equity.

## Q. DO RATING AGENCIES ACCOUNT FOR COMPANY SIZE IN THEIR BOND RATINGS?

A. No. Neither Standard \& Poor's ("S\&P") nor Moody's Investor Service

6 Risk distinctions within S\&P's bond rating categories are recognized by a plus or minus, e.g., within the A category, an S\&P rating can by at A+, A, or A-. Similarly, risk distinction for Moody's ratings are distinguished by numerical rating gradations, e.g., within the A category, a Moody's rating can be A1, A2 and A3.
("Moody's") have minimum company size requirements for any given rating level. This means, all else equal, a relative size analysis must be conducted for equity investments in companies with similar bond ratings.

## IV. ATMOS ENERGY'S KENTUCKY OPERATIONS AND THE UTILITY PROXY GROUP

## Q. ARE YOU FAMILIAR WITH ATMOS ENERGY'S OPERATIONS? <br> A. Yes. Atmos Energy's operations serve approximately 183,000 customers in Kentucky. ${ }^{7}$ Atmos Energy's gas operations are not publicly-traded as they comprise an operating division of Atmos Energy Corporation ("ATO"), which operates in eight states ${ }^{8}$ and serves approximately 3.4 million gas customers ${ }^{9}$ and is publiclytraded under symbol ATO. <br> Q. PLEASE EXPLAIN HOW YOU CHOSE THE COMPANIES IN THE UTILITY PROXY GROUP.

A. The companies selected for the Utility Proxy Group met the following criteria:
(i) They were included in the Natural Gas Utility Group of Value Line's Standard Edition (Value Line) (May 27, 2022);
(ii) They have $60 \%$ or greater of fiscal year 2021 total operating income derived from, and $60 \%$ or greater of fiscal year 2021 total assets attributable to, regulated gas distribution operations;
(iii) At the time of preparation of this testimony, they had not publicly announced that they were involved in any major merger or acquisition activity (i.e., one publicly-traded utility merging with or acquiring another);
(iv) They have not cut or omitted their common dividends during the five years ended 2021 or through the time of preparation of this testimony;

7 Atmos Energy Corporation, 2021 SEC Form 10-K, at 4.
8 Atmos Energy Corporation, 2021 SEC Form 10-K, at 4, In addition to Kentucky, ATO also serves customers in Texas, Louisiana, Mississippi, Virginia, Ke, Kansas, and Tennessee.
9 Atmos Energy Corporation, 2021 SEC Form 10-K, at 4.
(v) They have Value Line and Bloomberg Professional Services ("Bloomberg") adjusted Beta coefficients ("beta");
(vi) They have positive Value Line five-year dividends per share ("DPS") growth rate projections; and
(vii) They have Value Line, Zacks, or Yahoo! Finance consensus five-year earnings per share ("EPS") growth rate projections.

The following six companies met these criteria: Atmos Energy Corporation, New Jersey Resources Corporation, NiSource Inc., Northwest Natural Holding Company, ONE Gas, Inc., and Spire Inc.

## Q. IS A UTILITY PROXY GROUP OF SIX COMPANIES SUFFICIENT FOR YOUR ANALYSIS?

A. Yes, it is. My objective in selecting a Utility Proxy Group is to develop a proxy group that is highly representative of the risks and prospects faced by Atmos Energy. Therefore, I developed and used selection criteria to accomplish that objective. Including additional companies solely for the purpose of increasing the size of the Utility Proxy Group produces results that may be less relevant to Atmos Energy.

## V. COMMON EQUITY COST RATE MODELS

## Q. IS IT IMPORTANT THAT COST OF COMMON EQUITY MODELS BE

 MARKET BASED?A. Yes. A public utility must compete for equity in capital markets along with all other companies of comparable risk, which includes non-utilities. The cost of common equity is thus determined based on equity market expectations for the returns of those comparable risk companies. When individual investors choose to invest their
capital among companies of comparable risk, they will choose a company providing a higher return over a company providing a lower return.

## Q. ARE YOUR COST OF COMMON EQUITY MODELS MARKET BASED?

A. Yes. The DCF model is market-based because market prices are used in developing the dividend yield component of the model. The RPM is market-based because the bond ratings and expected bond yields used in the application of the RPM reflect the market's assessment of bond/credit risk. In addition, the use of betas $(\beta)$ to determine the equity risk premium reflects the market's assessment of market/systematic risk, since betas are derived from regression analyses of market prices. The Predictive Risk Premium Model ("PRPM") uses monthly market returns in addition to expectations of the risk-free rate. The CAPM is market-based for many of the same reasons that the RPM is market-based (i.e., the use of expected bond yields and betas). Selection of the comparable risk non-price regulated companies is market-based because it is based on statistics which result from regression analyses of market prices and reflect the market's assessment of total risk.

## Q. WHAT ANALYTICAL APPROACHES DID YOU USE TO DETERMINE THE COMPANY'S ROE?

A. As discussed earlier, I have relied on the DCF model, the RPM, and the CAPM, which I apply to the Utility Proxy Group described above. I also applied these same models to a Non-Price Regulated Proxy Group described later in this section.

I rely on these models because reasonable investors use a variety of tools and do not rely exclusively on a single source of information or single model.

Moreover, the models on which I rely focus on different aspects of return requirements, and provide different insights to investors' views of risk and return. The DCF model, for example, estimates the investor-required return assuming a constant expected dividend yield and growth rate in perpetuity, while Risk Premium-based methods (i.e., the RPM and CAPM approaches) provide the ability to reflect investors' views of risk, future market returns, and the relationship between interest rates and the Cost of equity. Just as the use of market data for the Utility Proxy Group adds the reliability necessary to inform expert judgment in arriving at a recommended common equity cost rate, the use of multiple generally accepted common equity cost rate models also adds reliability and accuracy when arriving at a recommended common equity cost rate.

## A. Discounted Cash Flow Model

## Q. WHAT IS THE THEORETICAL BASIS OF THE DCF MODEL?

A. The theory underlying the DCF model is that the present value of an expected future stream of net cash flows during the investment holding period can be determined by discounting those cash flows at the cost of capital, or the investors' capitalization rate. DCF theory indicates that an investor buys a stock for an expected total return rate, which is derived from cash flows received in the form of dividends plus appreciation in market price (the expected growth rate). Mathematically, the dividend yield on market price plus a growth rate equals the capitalization rate, i.e., the total common equity return rate expected by investors.

## Q. WHICH VERSION OF THE DCF MODEL DID YOU USE?

A. I used the single-stage constant growth DCF model.

## Q. PLEASE DESCRIBE THE DIVIDEND YIELD YOU USED IN APPLYING THE CONSTANT GROWTH DCF MODEL.

A. The unadjusted dividend yields are based on the proxy companies' dividends as of May 31, 2022, divided by the average closing market price for the 60 trading days ended May 31, 2022. ${ }^{10}$

## Q. PLEASE EXPLAIN YOUR ADJUSTMENT TO THE DIVIDEND YIELD.

A. Because dividends are paid periodically (e.g. quarterly), as opposed to continuously (daily), an adjustment must be made to the dividend yield. This is often referred to as the discrete, or the Gordon Periodic, version of the DCF model.

DCF theory calls for using the full growth rate, or $\mathrm{D}_{1}$, in calculating the model's dividend yield component. Since the companies in the Utility Proxy Group increase their quarterly dividends at various times during the year, a reasonable assumption is to reflect one-half the annual dividend growth rate in the dividend yield component, or $\mathrm{D}_{1 / 2}$. Because the dividend should be representative of the next 12-month period, this adjustment is a conservative approach that does not overstate the dividend yield. Therefore, the actual average dividend yields in Column 1, page 1 of Exhibit DWD-2 have been adjusted upward to reflect one-half the average projected growth rate shown in Column 5.

## Q. PLEASE EXPLAIN THE BASIS FOR THE GROWTH RATES YOU APPLY TO THE UTILITY PROXY GROUP IN YOUR CONSTANT GROWTH DCF MODEL.

A. Investors are likely to rely on widely available financial information services, such
as Value Line, Zacks, and Yahoo! Finance. Investors realize that analysts have significant insight into the dynamics of the industries and individual companies they analyze, as well as companies' ability to effectively manage the effects of changing laws and regulations, and ever-changing economic and market conditions. For these reasons, I used analysts' five-year forecasts of EPS growth in my DCF analysis.

Over the long run, there can be no growth in DPS without growth in EPS. Security analysts' earnings expectations have a more significant influence on market prices than dividend expectations. Thus, using earnings growth rates in a DCF analysis provides a better match between investors' market price appreciation expectations and the growth rate component of the DCF.

## Q. PLEASE SUMMARIZE THE CONSTANT GROWTH DCF MODEL RESULTS.

A. As shown on page 1 of Exhibit DWD-2, for the Utility Proxy Group, the mean result of applying the single-stage DCF model is $9.71 \%$, the median result is $9.74 \%$, and the average of the two is $9.73 \%$. In arriving at a conclusion for the constant growth DCF-indicated common equity cost rate for the Utility Proxy Group, I relied on an average of the mean and the median results of the DCF. This approach considers all the proxy utilities' results, while mitigating the high and low outliers of those individual results.

## B. The Risk Premium Model

## Q. PLEASE DESCRIBE THE THEORETICAL BASIS OF THE RPM.

A. The RPM is based on the fundamental financial principle of risk and return; namely, that investors require greater returns for bearing greater risk. The RPM recognizes
that common equity capital has greater investment risk than debt capital, as common equity shareholders are behind debt holders in any claim on a company's assets and earnings. As a result, investors require higher returns from common stocks than from bonds to compensate them for bearing the additional risk.

While it is possible to directly observe bond returns and yields, investors' required common equity returns cannot be directly determined or observed. According to RPM theory, one can estimate a common equity risk premium over bonds (either historically or prospectively) and use that premium to derive a cost rate of common equity. The cost of common equity equals the expected cost rate for long-term debt capital, plus a risk premium over that cost rate, to compensate common shareholders for the added risk of being unsecured and last-in-line for any claim on the corporation's assets and earnings in the event of liquidation.

## Q. PLEASE EXPLAIN HOW YOU DERIVED YOUR INDICATED COST OF COMMON EQUITY BASED ON THE RPM.

A. I relied on the results of the application of two risk premium methods. The first method is the PRPM, while the second method is a risk premium model using a total market approach.

## 1. The Predictive Risk Premium Model

Q. PLEASE EXPLAIN THE PRPM.
A. The PRPM, published in the Journal of Regulatory Economics and The Electricity Journal, ${ }^{11}$ was developed from the work of Robert F. Engle, who shared the Nobel

11 Autoregressive conditional heteroscedasticity. See, "A New Approach for Estimating the Equity Risk Premium for Public Utilities", Pauline M. Ahern, Frank J. Hanley and Richard A. Michelfelder, The Journal of Regulatory Economics (December 2011), 40:261-278 and "Comparative Evaluation of the Predictive Risk Premium Model, the Discounted Cash Flow Model and the Capital Asset

Prize in Economics in 2003 "for methods of analyzing economic time series with time-varying volatility ("ARCH")". ${ }^{12}$ Engle found that volatility changes over time and is related from one period to the next, especially in financial markets. Engle discovered that the volatility in prices and returns clusters over time, and is therefore highly predictable, and can be used to predict future levels of risk and risk premiums.

The PRPM estimates the risk / return relationship directly, as the predicted equity risk premium is generated by the prediction of volatility or risk. The PRPM is not based on an estimate of investor behavior, but rather on the evaluation of the results of that behavior (i.e., the variance of historical equity risk premiums).

## Q. PLEASE EXPLAIN YOUR APPLICATION OF THE PRPM.

A. The inputs to the model are the historical returns on the common shares of each company in the Utility Proxy Group minus the historical monthly yield on longterm U.S. Treasury securities through May 2022. Using a generalized form of ARCH, known as GARCH, I calculated each Utility Proxy Group company's projected equity risk premium using Eviews ${ }^{\text {© }}$ statistical software. When the GARCH Model is applied to the historical return data, it produces a predicted GARCH variance series ${ }^{13}$ and a GARCH coefficient. ${ }^{14}$ Multiplying the predicted monthly variance by the GARCH coefficient, then annualizing it, ${ }^{15}$ produces the predicted annual equity risk premium. I then added the forecasted 30 -year U.S.

[^3]Treasury Bond yield, $3.51 \%,{ }^{16}$ to each company's PRPM-derived equity risk premium to arrive at an indicated cost of common equity. The 30 -year Treasury yield is a consensus forecast derived from Blue Chip. ${ }^{17}$

## Q. WHAT IS THE INDICATED ROE USING THE PRPM?

A. The mean PRPM indicated common equity cost rate for the Utility Proxy Group is $11.69 \%$, the median is $10.62 \%$, and the average of the two is $11.16 \%$. Consistent with my reliance on the average of the median and mean results of the DCF, I relied on the average of the mean and median results of the Utility Proxy Group PRPM to calculate a cost of common equity rate of $11.16 \%$.

## Q. IS THE PRPM SUPPORTED BY ACADEMIC LITERATURE?

A. Yes, it is. The PRPM is based on the research of Dr. Robert F. Engle, dating back to the early 1980s. Dr. Engle discovered that the volatility of market prices, returns, and risk premiums clusters over time, making prices, returns, and risk premiums highly predictable.

In 2003, he shared the Nobel Prize in Economics for this work, characterized as "methods
of analyzing economic time series with time-varying volatility ("ARCH"). ${ }^{18}$ Dr. Engle ${ }^{19}$
noted that relative to volatility, "the standard tools have become the $\mathrm{ARCH} / \mathrm{GARCH}^{20}$

See, Column 6 of page 2 of Exhibit DWD-3.
Blue Chip Financial Forecasts, June 1, 2022 at 2 and 14.
www.nobelprize.org.
Robert Engle, "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics", Journal of Economic Perspectives, Volume 15, No. 4, Fall 2001, at 157-168.
Autoregressive Conditional Heteroskedasticity/Generalized Autoregressive Conditional Heteroskedasticity.
models." Hence, the methodology is not new.
In addition, the GARCH methodology has been well tested by academia since Engle's, et al. research was originally published in 1982, 40 years ago. I use the well-established GARCH methodology to estimate the PRPM model using a standard commercial and relatively inexpensive statistical package, Eviews, ${ }^{\text {©21 }}$ to develop a means by which to estimate a predicted equity risk premium which, when added to a bond yield, results in a cost of common equity.

Also, the PRPM is in the public domain, having been published six times in academically peer-reviewed journals: Journal of Economics and Business (June 2011 and April 2015), ${ }^{22}$ The Journal of Regulatory Economics (December 2011), ${ }^{23}$ The Electricity Journal (May 2013 and March 2020), ${ }^{24}$ and Energy Policy (April 2019). ${ }^{25}$ Notably, none of these articles have been rebutted in the academic literature.

In addition to Eviews, ${ }^{\circledR}$ the GARCH methodology can be applied and the PRPM derived using other standard statistical software packages such as SAS, RATS, S-Plus and JMulti, which are not costprohibitive. The software that I used in this proceeding, Eviews, ${ }^{\circledR}$ currently costs $\$ 600-\$ 700$ for a single user commercial license. In addition, JMulti is a free downloadable software with GARCH estimation applications.
Eugene A. Pilotte and Richard A. Michelfelder, "Treasury Bond Risk and Return, the Implications for the Hedging of Consumption and Lessons for Asset Pricing", Journal of Economics and Business, June 2011, 582-604. and Richard A. Michelfelder, "Empirical Analysis of the Generalized Consumption Asset Pricing Model: Estimating the Cost of Capital", Journal of Economics and Business, April 2015, 37-50.
Pauline M. Ahern, Frank J. Hanley, and Richard A. Michelfelder, "New Approach to Estimating the Equity Risk Premium for Public Utilities", The Journal of Regulatory Economics, December 2011, at 40:261-278.
Richard A. Michelfelder, Pauline M. Ahern, Dylan W. D'Ascendis, and Frank J. Hanley, "Comparative Evaluation of the Predictive Risk Premium Model, the Discounted Cash Flow Model and the Capital Asset Pricing Model for Estimating the Cost of Common Equity", The Electricity Journal, April 2013, at 84-89; and Richard A. Michelfelder, Pauline M. Ahern, and Dylan W. D'Ascendis, "Decoupling, Risk Impacts and the Cost of Capital", The Electricity Journal, January 2020.

Richard A. Michelfelder, Pauline M. Ahern, and Dylan W. D’Ascendis, "Decoupling Impact and Public Utility Conservation Investment", Energy Policy, April 2019, 311-319.

Finally, the PRPM has also been presented to a number of utility industry/regulatory/academic groups including the following: The Edison Electric Institute Cost of Capital Working Group; The NARUC Staff Subcommittee on Accounting and Finance; The National Association of Electric Companies Finance/Accounting/Taxation and Rates and Regulations Committees; the NARUC Electric Committee; The Wall Street Utility Group; the Indiana Utility Regulatory Commission Cost of Capital Task Force; the Financial Research Institute of the University of Missouri Hot Topic Hotline Webinar; and the Center for Research and Regulated Industries Annual Eastern Conference on two occasions.

## Q. HAS THE PRPM BEEN IMPLICITLY ACCEPTED BY OTHER REGULATORY COMMISSIONS?

A. Yes. In Docket No. 2017-292-WS, the Public Service Commission of South Carolina ("PSC SC") accepted Blue Granite Water Company's entire requested ROE, which included the PRPM. The relevant portion states:

The Commission finds Mr. D'Ascendis' arguments persuasive. He provided more indicia of market returns, by using more analytical methods and proxy group calculations. Mr. D'Ascendis' use of analysts' estimates for his DCF analysis is supported by consensus, as is his use of the arithmetic mean. The Commission also finds that Mr. D'Ascendis' non-price regulated proxy group more accurately reflects the total risk faced [by] price regulated utilities and CWS. Furthermore, there is no dispute that CWS is significantly smaller than its proxy group counterparts, and, therefore, it may present a higher risk. An appropriate ROE for CWS is $10.45 \%$ to $10.95 \%$. The Company used an ROE of $10.5 \%$ in computing its Application, a return on the low end of Mr. D'Ascendis' range, and the Commission finds that ROE is supported by the evidence. ${ }^{26}$

[^4] Carolina Utilities Commission ("NCUC") approved my RPM and CAPM analyses, which used PRPM analyses as presented in this proceeding. The relevant portion of the order states:

In doing so the Commission finds that the DCF (8.81\%), Risk Premium (10.00\%) and CAPM (9.29\%) model results provided by witness D'Ascendis, as updated to use current rates in D'Ascendis Late-Filed Exhibit No. 1, as well as the risk premium (9.57\%) analysis of witness Hinton, are credible, probative, and are entitled to substantial weight as set forth below. ${ }^{27}$

## Q. DID THE COMMISSION REJECT THE PRPM IN CASE NO. 2021-00214 CONCERNING ATMOS ENERGY?

A. Yes, it did. The Commission stated:

Even though the Commission supports the use and presentation of multiple modelling approaches, the Commission finds that Atmos Kentucky's use of the Predictive Risk Premium Model (PRPM) should be rejected. Though the PRPM model has been published and presented in multiple forums, it has been rejected by this Commission and only been addressed by three other regulatory jurisdictions thus far and is not universally accepted.

## Q. DO YOU HAVE A RESPONSE TO THE COMMISSION'S STATEMENT?

A. Yes, I do. I appreciate the Commission's openness to considering multiple models in its determination of ROEs for the utilities they regulate, but I respectfully disagree with their exclusion of the PRPM in Case No. 2021-00214. As noted above, the theory supporting the model is based on the Nobel Prize winning work of Engle, and the model itself has been published six times in four separate peerreviewed academic journals, which indicates that it has been thoroughly vetted by

NCUC Docket No. W-354, Sub 363, 364, 365, Order Granting Partial Rate Increase and Requiring Customer Notice, at PDF 72 (March 31, 2020).
the academic community. This, in addition to the fact that the model has not been rebutted in the academic literature in the over ten years since it has been presented should speak to the model's soundness.

Regarding the amount of times the model has been addressed in final orders; while it is true that only three (now four) regulatory commissions have addressed the PRPM in their final orders, the model has been presented in over 100 regulatory proceedings in over thirty U.S. regulatory jurisdictions and the Alberta Utilities Commission in Canada. This would indicate that while maybe not universally accepted, the model is widely disseminated across the U.S. regulatory landscape.

In view of the above, the soundness of the model, as evidenced in the underlying theory and the academic vetting of the PRPM, and the wide dissemination of the model in the U.S. regulatory landscape should lead the Commission reconsider the PRPM in its determination regarding the ROE for Atmos Energy in this proceeding.

## Q. HAVE YOU PRESENTED YOUR ROE MODEL RESULTS EXCLUDING THE PRPM?

A. Yes. While I respectfully disagree with the Commission's finding in Case No. 2021-00214, I have presented my ROE model results including and excluding the PRPM for the Commission's convenience. As can be gleaned from page 2 of Exhibit DWD-1, my recommended ROE of $10.95 \%$ is still within the range of ROEs produced by my models without the PRPM.

## 2. The Total Market Risk Premium Approach

## Q. PLEASE EXPLAIN THE TOTAL MARKET APPROACH RPM.

A. The total market approach RPM adds a prospective public utility bond yield to an average of: (1) an equity risk premium that is derived from a beta-adjusted total market equity risk premium; (2) an equity risk premium based on the S\&P Utilities Index; and (3) an equity risk premium based on authorized ROEs for gas distribution utilities.

## Q. PLEASE EXPLAIN THE BASIS OF THE EXPECTED BOND YIELD OF 5.30\% APPLICABLE TO THE UTILITY PROXY GROUP.

A. The first step in the total market approach RPM analysis is to determine the expected bond yield. Because both ratemaking and the cost of capital, including common equity cost rate, are prospective in nature, a prospective yield on similarlyrated long-term debt is essential. I relied on a consensus forecast of about 50 economists of the expected yield on Aaa-rated corporate bonds for the six calendar quarters ending with the third calendar quarter of 2023, and Blue Chip's long-term projections for 2024 to 2028 and 2029 to 2033. As shown on line 1, page 3 of Exhibit DWD-3, the average expected yield on Moody's Aaa-rated corporate bonds is $4.73 \%$. To derive an expected yield on Moody's A2-rated public utility bonds, I made an upward adjustment of $0.57 \%$, which represents a recent spread between Aaa-rated corporate bonds and A2-rated public utility bonds, in order to adjust the expected Aaa-rated corporate bond yield to an equivalent A2-rated public utility bond yield. ${ }^{28}$ Adding that recent $0.57 \%$ spread to the expected Aaa-rated corporate

[^5]bond yield of $4.73 \%$ results in an expected A2-rated public utility bond yield of 5.30\%.

Since the Utility Proxy Group's average Moody's long-term rating is A2, no additional adjustment is needed to reflect the rating of the Utility Proxy Group.

Table 5: Summary of the Calculation of the Utility Proxy Group Projected Bond Yield ${ }^{29}$

| Prospective Yield on Moody's Aaa-Rated Corporate <br> Bonds (Blue Chip) | $4.73 \%$ |
| :--- | :---: |
| Adjustment to Reflect Yield Spread Between Moody's <br> Aaa-Rated Corporate Bonds and Moody's A2-Rated <br> Utility Bonds | $\underline{\underline{0.57 \%}}$ |
| Prospective Bond Yield Applicable to the Utility <br> Proxy Group | $\underline{\underline{5.30 \%}}$ |

To develop the indicated ROE using the total market approach RPM, this prospective bond yield is then added to the average of the three different equity risk premiums described below.

## a. The Beta-Derived Risk Premium

## Q. PLEASE EXPLAIN HOW THE BETA-DERIVED EQUITY RISK PREMIUM IS DETERMINED.

A. The components of the beta-derived risk premium model are: (1) an expected market equity risk premium over corporate bonds, and (2) the beta. The derivation of the beta-derived equity risk premium that I applied to the Utility Proxy Group is shown on Lines 1 through 9 of page 8 of Exhibit DWD-3. The total beta-derived equity risk premium I applied was based on an average of: (1) Ibbotson-based equity risk premiums; (2) Value Line-based equity risk premiums; and (3) Bloomberg-based equity risk premiums. Each of these is described in turn.

As shown on page 3 of Exhibit DWD-3.

## Q. HOW DID YOU DERIVE A MARKET EQUITY RISK PREMIUM BASED ON LONG-TERM HISTORICAL DATA?

A. To derive a historical market equity risk premium, I used the most recent holding period returns for the large company common stocks from the Kroll 2022 SBBI® Yearbook Stocks, Bonds, Bills, and Inflation ("SBBI - 2022") ${ }^{30}$ less the average historical yield on Moody's Aaa/Aa-rated corporate bonds for the period 1928 to 2021. The use of holding period returns over a very long period of time is appropriate because it is consistent with the long-term investment horizon presumed by investing in a going concern, i.e., a company expected to operate in perpetuity.

The long-term arithmetic mean monthly total return rate on large company common stocks was $12.11 \%$ and the long-term arithmetic mean monthly yield on Moody's Aaa/Aa-rated corporate bonds was $5.98 \%$ from 1928 to $2021 .{ }^{31}$ As shown on Line 1 of page 8 of Exhibit DWD-3, subtracting the mean monthly bond yield from the total return on large company stocks results in a long-term historical equity risk premium of $6.13 \%$.

I used the arithmetic mean monthly total return rates for the large company stocks and yields (income returns) for the Moody's Aaa/Aa-rated corporate bonds, because they are appropriate for the purpose of estimating the cost of capital as noted in SBBI - 2022. ${ }^{32}$ The use of the arithmetic mean return rates and yields is appropriate because historical total returns and equity risk premiums provide
insight into the variance and standard deviation of returns needed by investors in estimating future risk when making a current investment. If investors relied on the geometric mean of historical equity risk premiums, they would have no insight into the potential variance of future returns because the geometric mean relates to the change over many periods to a constant rate of change, thereby obviating the year-to-year fluctuations, or variance, which is critical to risk analysis.

## Q. PLEASE EXPLAIN THE DERIVATION OF THE REGRESSION-BASED MARKET EQUITY RISK PREMIUM.

A. To derive the regression analysis-derived market equity risk premium of $7.67 \%$, shown on Line 2 of page 8 of Exhibit DWD-3, I used the same monthly annualized total returns on large company common stocks relative to the monthly annualized yields on Moody's Aaa/Aa-rated corporate bonds as mentioned above. The relationship between interest rates and the market equity risk premium was modeled using the observed monthly market equity risk premium as the dependent variable, and the monthly yield on Moody's Aaa/Aa-rated corporate bonds as the independent variable. I used a linear Ordinary Least Squares ("OLS") regression, in which the market equity risk premium is expressed as a function of the Moody's Aaa/Aa-rated corporate bonds yield:

$$
\mathrm{RP}=\alpha+\beta\left(\mathrm{R}_{\mathrm{Aaa} / \mathrm{Aa}}\right)
$$

## Q. PLEASE EXPLAIN THE DERIVATION OF THE PRPM EQUITY RISK PREMIUM.

A. I used the same PRPM approach described above to the PRPM equity risk premium. The inputs to the model are the historical monthly returns on large company
common stocks minus the monthly yields on Moody's Aaa/Aa-rated corporate bonds during the period from January 1928 through May 2022. ${ }^{33}$ Using the previously discussed generalized form of ARCH, known as GARCH, the projected equity risk premium is determined using Eviews ${ }^{\ominus}$ statistical software. The resulting PRPM predicted a market equity risk premium of $8.79 \% .{ }^{34}$

## Q. PLEASE EXPLAIN THE DERIVATION OF A PROJECTED EQUITY RISK PREMIUM BASED ON VALUE LINE SUMMARY \& INDEX DATA FOR YOUR RPM ANALYSIS.

A. As noted previously, because both ratemaking and the cost of capital are prospective, a prospective market equity risk premium is needed. The derivation of the forecasted or prospective market equity risk premium can be found in note 4 on page 9 of Exhibit DWD-3. Consistent with the concept of total investment returns being the sum of income and capital appreciation returns, this prospective market equity risk premium is derived from an average of the three to five-year median market price appreciation potential by Value Line Summary \& Index for the 13 weeks ending June 3 , 2022, plus an average of the median estimated dividend yield for the common stocks of the 1,700 firms covered in Value Line's Standard Edition. ${ }^{35}$

The average median expected price appreciation is $58 \%$, which translates to a $12.12 \%$ annual appreciation, and when added to the average of Value Line's median expected dividend yields of $1.98 \%$, equates to a forecasted annual total

33 Data from January 1928 to December 2021 is from SBBI - 2022. Data from January 2022 to May 2022 is from Bloomberg. Shown on line 3, page 8 of Exhibit DWD-3.
As explained in detail in page 2, note 1 of Exhibit DWD-3.
return rate on the market of $14.10 \%$. The forecasted Aaa-rated bond yield of $4.73 \%$ is deducted from the total market return of $14.10 \%$, resulting in an equity risk premium of $9.37 \%$, shown on page 8 , Line 4 of Exhibit DWD-3.

## Q. PLEASE EXPLAIN THE DERIVATION OF AN EQUITY RISK PREMIUM BASED ON THE S\&P 500 COMPANIES.

A. Using data from Value Line, I calculated an expected total return on the S\&P 500 companies using expected dividend yields and long-term growth estimates as a proxy for capital appreciation. The expected total return for the S\&P 500 is $16.29 \%$. Subtracting the prospective yield on Moody's Aaa-rated corporate bonds of 4.73\% results in an $11.56 \%$ projected equity risk premium.

## Q. PLEASE EXPLAIN THE DERIVATION OF AN EQUITY RISK PREMIUM BASED ON BLOOMBERG DATA.

A. Using data from Bloomberg, I calculated an expected total return on the S\&P 500 using expected dividend yields and long-term growth estimates as a proxy for capital appreciation, identical to the method described above. The expected total return for the S\&P 500 is $12.35 \%$. Subtracting the prospective yield on Moody's Aaa-rated corporate bonds of $4.73 \%$ results in a $7.62 \%$ projected equity risk premium.

## Q. WHAT IS YOUR CONCLUSION OF A BETA-DERIVED EQUITY RISK PREMIUM FOR USE IN YOUR RPM ANALYSIS?

A. I gave equal weight to the six equity risk premiums in arriving at my conclusion of $8.52 \% .{ }^{36}$
${ }^{36}$ See, line No. 7 on page 8 of Exhibit DWD-3.

Table 6: Summary of the Calculation of the Equity Risk Premium Using Total Market Returns ${ }^{37}$

| Historical Spread Between Total Returns of Large Stocks and <br> Aaa and Aa2-Rated Corporate Bond Yields (1928-2021) | $6.13 \%$ |
| :--- | :---: |
| Regression Analysis on Historical Data | $7.67 \%$ |
| PRPM Analysis on Historical Data | $8.79 \%$ |
| Prospective Equity Risk Premium using Total Market Returns <br> from Value Line Summary \& Index less Projected Aaa <br> Corporate Bond Yields | $9.37 \%$ |
| Prospective Equity Risk Premium using Measures of Capital <br> Appreciation and Income Returns from Value Line for the | $11.56 \%$ |
| S\&P 500 less Projected Aaa Corporate Bond Yields | $\underline{\underline{7.62 \%}}$ |
| Prospective Equity Risk Premium using Measures of Capital <br> Appreciation and Income Returns from Bloomberg <br> Professional Services for the S\&P 500 less Projected Aaa <br> Corporate Bond Yields | $\underline{\underline{8.52 \%}}$ |
| Average |  |

## b. The S\&P Utility Index-Derived Risk Premium

## Q. HOW DID YOU DERIVE THE EQUITY RISK PREMIUM BASED ON THE S\&P UTILITY INDEX AND MOODY'S A-RATED PUBLIC UTILITY BONDS?

A. I estimated three equity risk premiums based on S\&P Utility Index holding period returns, and two equity risk premiums based on the expected returns of the $\mathrm{S} \& \mathrm{P}$ Utilities Index, using Value Line and Bloomberg data, respectively. Turning first to the S\&P Utility Index holding period returns, I derived a long-term monthly arithmetic mean equity risk premium between the S\&P Utility Index total returns of $10.74 \%$, and monthly Moody's A-rated public utility bond yields of $6.46 \%$ from 1928 to 2021 , to arrive at an equity risk premium of $4.28 \%{ }^{38}$ I then used the same historical data to derive an equity risk premium of $5.28 \%$ based on a regression of the monthly equity risk premiums. The final S\&P Utility Index holding period equity risk premium involved applying the PRPM using the historical monthly equity risk premiums from January 1928 to May 2022 to arrive at a PRPM-derived equity risk premium of $5.85 \%$ for the S\&P Utility Index.

I then derived expected total returns on the S\&P Utilities Index of 10.58\% and $9.88 \%$ using data from Value Line and Bloomberg, respectively, and subtracted the prospective Moody's A2-rated public utility bond yield of $5.30 \%{ }^{39}$, which resulted in equity risk premiums of $5.28 \%$ and $4.58 \%$, respectively. As with the market equity risk premiums, I averaged each risk premium based on each source
(i.e., historical, Value Line, and Bloomberg) to arrive at my utility-specific equity risk premium of $5.05 \%$.

Table 7: Summary of the Calculation of the Equity Risk Premium Using S\&P Utility Index Holding Returns ${ }^{40}$

| Historical Spread Between Total Returns of the S\&P <br> Utilities Index and A2-Rated Utility Bond Yields <br> (1928-2021) | $4.28 \%$ |
| :--- | :---: |
| Regression Analysis on Historical Data | $5.28 \%$ |
| PRPM Analysis on Historical Data | $5.85 \%$ |
| Prospective Equity Risk Premium using Measures of <br> Capital Appreciation and Income Returns from <br> Value Line for the S\&P Utilities Index less Projected <br> A2 Utility Bond Yields | $5.28 \%$ |
| Prospective Equity Risk Premium using Measures of <br> Capital Appreciation and Income Returns from <br> Bloomberg Professional Services for the S\&P <br> Utilities Index less Projected A2 Utility Bond Yields | $\underline{4.58 \%}$ |
| Average | $\underline{\underline{5.05 \%}}$ |


#### Abstract

c. Authorized Return-Derived Equity Risk Premium Q. HOW DID YOU DERIVE AN EQUITY RISK PREMIUM OF 5.00\% BASED ON AUTHORIZED ROES FOR GAS DISTRIBUTION UTILITIES? A. The equity risk premium of $5.00 \%$ shown on line 3, page 7 of Exhibit DWD-3 is the result of a regression analysis based on regulatory awarded ROEs related to the yields on Moody's A-rated public utility bonds. That analysis is shown on page 13 of Exhibit DWD-3 which contains the graphical results of a regression analysis of 809 rate cases for gas distribution utilities which were fully litigated during the period from January 1, 1980 through May 31, 2022. It shows the implicit equity risk premium relative to the yields on A-rated public utility bonds immediately prior to the issuance of each regulatory decision. It is readily discernible that there is an


inverse relationship between the yield on A-rated public utility bonds and equity risk premiums. In other words, as interest rates decline, the equity risk premium rises and vice versa, a result consistent with financial literature on the subject. ${ }^{41}$ I used the regression results to estimate the equity risk premium applicable to the projected yield on Moody's A2-rated public utility bonds of $5.30 \%$. Given the expected A-rated utility bond yield of $5.30 \%$, it can be calculated that the indicated equity risk premium applicable to that bond yield is $5.00 \%$, which is shown on line 3, page 7 of Exhibit DWD-3.

## Q. WHAT IS YOUR CONCLUSION OF AN EQUITY RISK PREMIUM FOR USE IN YOUR TOTAL MARKET APPROACH RPM ANALYSIS?

A. The equity risk premium I apply to the Utility Proxy Group is $5.51 \%$, which is the average of the beta-adjusted equity risk premium for the Utility Proxy Group, the S\&P Utilities Index, and the authorized return utility equity risk premiums of $6.48 \%, 5.05 \%$, and $5.00 \%$, respectively. ${ }^{42}$

## Q. WHAT IS THE INDICATED RPM COMMON EQUITY COST RATE BASED ON THE TOTAL MARKET APPROACH?

A. As shown on line 5, page 3 of Exhibit DWD-3, I calculated a common equity cost rate of $10.81 \%$ for the Utility Proxy Group based on the total market approach RPM.

See, e.g., Robert S. Harris and Felicia C. Marston, The Market Risk Premium: Expectational Estimates Using Analysts' Forecasts, Journal of Applied Finance, Vol. 11, No. 1, 2001, at pages 11 to 12; Eugene F. Brigham, Dilip K. Shome, and Steve R. Vinson, The Risk Premium Approach to Measuring a Utility's Cost of Equity, Financial Management, Spring 1985, at pages 33 to 45. As shown on page 7 of Exhibit DWD-3.

Table 8: Summary of the Total Market Return Risk Premium Model ${ }^{43}$

| Prospective Moody's A2 -Rated Utility Bond Applicable to | $5.30 \%$ |
| :--- | ---: |
| the Utility Proxy Group |  |
| Prospective Equity Risk Premium | $\underline{5.51 \%}$ |
| Indicated Cost of Common Equity | $\underline{\underline{10.81 \%}}$ |

## Q. WHAT ARE THE RESULTS OF YOUR APPLICATION OF THE PRPM AND THE TOTAL MARKET APPROACH RPM?

A. As shown on page 1 of Exhibit DWD-3, the indicated RPM-derived common equity cost rate is $10.99 \%$, which gives equal weight to the PRPM (11.16\%) and the adjusted-market approach results (10.81\%).

## C. The Capital Asset Pricing Model

## Q. PLEASE EXPLAIN THE THEORETICAL BASIS OF THE CAPM.

A. CAPM theory defines risk as the co-variability of a security's returns with the market's returns as measured by beta $(\beta)$. A beta less than 1.0 indicates lower variability than the market as a whole, while a beta greater than 1.0 indicates greater variability than the market.

The CAPM assumes that all other risk (i.e., all non-market or unsystematic risk) can be eliminated through diversification. The risk that cannot be eliminated through diversification is called market, or systematic, risk. In addition, the CAPM presumes that investors require compensation only for systematic risk, which is the result of macroeconomic and other events that affect the returns on all assets. The model is applied by adding a risk-free rate of return to a market risk premium, which is adjusted proportionately to reflect the systematic risk of the individual security
relative to the total market as measured by beta. The traditional CAPM model is expressed as:

$$
\text { Where: } \quad \begin{array}{ll}
\mathrm{R}_{\mathrm{s}} & =\mathrm{R}_{\mathrm{f}}+\beta\left(\mathrm{R}_{\mathrm{m}}-\mathrm{R}_{\mathrm{f}}\right) \\
\mathrm{R}_{\mathrm{s}} & =\text { Return rate on the common stock } \\
\mathrm{R}_{\mathrm{f}} & =\text { Risk-free rate of return } \\
\mathrm{R}_{\mathrm{m}} & =\text { Return rate on the market as a whole } \\
\beta & =\text { Adjusted beta (volatility of the } \\
&
\end{array}
$$

Numerous tests of the CAPM have measured the extent to which security returns and betas are related as predicted by the CAPM, confirming its validity. The empirical CAPM ("ECAPM") reflects the reality that while the results of these tests support the notion that beta is related to security returns, the empirical Security Market Line ("SML") described by the CAPM formula is not as steeply sloped as the predicted SML. ${ }^{44}$

The ECAPM reflects this empirical reality. Fama and French clearly state regarding Figure 2, below, that " $[t]$ he returns on the low beta portfolios are too high, and the returns on the high beta portfolios are too low." 45

Roger A. Morin, Modern Regulatory Finance, Public Utility Reports, Inc., 2021, at 205-209. ("Morin")
Eugene F. Fama and Kenneth R. French, "The Capital Asset Pricing Model: Theory and Evidence", Journal of Economic Perspectives, Vol. 18, No. 3, Summer 2004 at 33 (Fama \& French).

Figure 2 http://pubs.aeaweb.org/doi/pdfplus/10.1257/0895330042162430
Average Annualized Monthly Return versus Beta for Value Weight Portfolios Formed on Prior Beta, 1928-2003


In addition, Morin observes that while the results of these tests support the notion that beta is related to security returns, the empirical SML described by the CAPM formula is not as steeply sloped as the predicted SML. Morin states:

With few exceptions, the empirical studies agree that ... low-beta securities earn returns somewhat higher than the CAPM would predict, and high-beta securities earn less than predicted. ${ }^{46}$

Therefore, the empirical evidence suggests that the expected return on a security is related to its risk by the following approximation:

$$
K=R_{F}+x \beta\left(R_{M}-R_{F}\right)+(1-x) \beta\left(R_{M}-R_{F}\right)
$$

where x is a fraction to be determined empirically. The value of x that best explains the observed relationship [is] Return $=0.0829+$ $0.0520 \beta$ is between 0.25 and 0.30 . If $x=0.25$, the equation becomes:

$$
\mathrm{K}=\mathrm{R}_{\mathrm{F}}+0.25\left(\mathrm{R}_{\mathrm{M}}-\mathrm{R}_{\mathrm{F}}\right)+0.75 \beta\left(\mathrm{R}_{\mathrm{M}}-\mathrm{R}_{\mathrm{F}}\right)^{47}
$$

Fama and French provide similar support for the ECAPM when they state:

[^6]The early tests firmly reject the Sharpe-Lintner version of the CAPM. There is a positive relation between beta and average return, but it is too 'flat.'... The regressions consistently find that the intercept is greater than the average risk-free rate... and the coefficient on beta is less than the average excess market return... This is true in the early tests... as well as in more recent crosssection regressions tests, like Fama and French (1992). ${ }^{48}$

Finally, Fama and French further note:
Confirming earlier evidence, the relation between beta and average return for the ten portfolios is much flatter than the Sharpe-Linter CAPM predicts. The returns on low beta portfolios are too high, and the returns on the high beta portfolios are too low. For example, the predicted return on the portfolio with the lowest beta is 8.3 percent per year; the actual return as 11.1 percent. The predicted return on the portfolio with the $t$ beta is 16.8 percent per year; the actual is 13.7 percent. ${ }^{49}$

Clearly, the justification from Morin, Fama, and French, along with their reviews of other academic research on the CAPM, validate the use of the ECAPM. In view of theory and practical research, I have applied both the traditional CAPM and the ECAPM to the companies in the Utility Proxy Group and averaged the results.

## Q. WHAT BETAS DID YOU USE IN YOUR CAPM ANALYSIS?

A. With respect to the beta, I considered two sources: Value Line and Bloomberg. While both of those services adjust their calculated (or "raw") betas to reflect the tendency of the beta to regress to the market mean of 1.00, Value Line calculates the beta over a five-year period, while Bloomberg's calculation is based on two years of data.

[^7]49

## Q. PLEASE DESCRIBE YOUR SELECTION OF A RISK-FREE RATE OF RETURN.

A. As shown in Exhibits DWD-3 and 4, the risk-free rate adopted for applications of the RPM and CAPM is $3.51 \%$. This risk-free rate is based on the average of the Blue Chip consensus forecast of the expected yields on 30-year U.S. Treasury bonds for the six quarters ending with the third calendar quarter of 2023, and longterm projections for the years 2024 to 2028 and 2029 to 2033.
Q. WHY DO YOU USE THE PROJECTED 30-YEAR TREASURY YIELD IN YOUR ANALYSES?
A. The yield on long-term U.S. Treasury bonds is almost risk-free and its term is consistent with the long-term cost of capital to public utilities measured by the yields on Moody's A2-rated public utility bonds; the long-term investment horizon inherent in utilities' common stocks; and the long-term life of the jurisdictional rate base to which the allowed fair rate of return (i.e., cost of capital) will be applied. In contrast, short-term U.S. Treasury yields are more volatile and largely a function of Federal Reserve monetary policy.
Q. PLEASE EXPLAIN THE ESTIMATION OF THE EXPECTED RISK PREMIUM FOR THE MARKET USED IN YOUR CAPM ANALYSES.
A. The basis of the market risk premium is explained in detail in note 1 on page 2 of Exhibit DWD-4. As discussed previously, the market risk premium is derived from an average of:
(i) Ibbotson-based market risk premiums;
(ii) Value Line data-based market risk premiums; and
(iii) Bloomberg data-based market risk premiums.

The long-term income return on U.S. Government Securities of $5.02 \%$ was deducted from the SBBI-2022 monthly historical total market return of $12.37 \%$, which results in an historical market equity risk premium of $7.35 \%{ }^{50}$ I applied a linear OLS regression to the monthly annualized historical returns on the S\&P 500 relative to historical yields on long-term U.S. Government Securities from SBBI 2022. That regression analysis yielded a market equity risk premium of $9.15 \%$. The PRPM market equity risk premium is $9.84 \%$ and is derived using the PRPM relative to the yields on long-term U.S. Treasury securities from January 1926 through May 2022.

The Value Line-derived forecasted total market equity risk premium is derived by deducting the forecasted risk-free rate of $3.51 \%$, discussed above, from the Value Line projected total annual market return of $14.10 \%$, resulting in a forecasted total market equity risk premium of $10.59 \%$. The S\&P 500 projected market equity risk premium using Value Line data is derived by subtracting the projected risk-free rate of $3.51 \%$ from the projected total return of the S\&P 500 of $16.29 \%$. The resulting market equity risk premium is $12.78 \%$.

The S\&P 500 projected market equity risk premium using Bloomberg data is derived by subtracting the projected risk-free rate of $3.51 \%$ from the projected total return of the $\mathrm{S} \& \mathrm{P} 500$ of $12.35 \%$. The resulting market equity risk premium is $8.84 \%$.

[^8]These six market risk premiums, when averaged, result in an average total market equity risk premium of $9.76 \%$.

Table 9: Summary of the Calculation of the Market Risk Premium for Use in the CAPM ${ }^{51}$

| Historical Spread Between Total Returns of Large Stocks and <br> Long-Term Government Bond Yields (1926-2021) | $7.35 \%$ |
| :--- | :---: |
| Regression Analysis on Historical Data | $9.15 \%$ |
| PRPM Analysis on Historical Data | $9.84 \%$ |
| Prospective Equity Risk Premium using Total Market Returns <br> from Value Line Summary \& Index less Projected 30-Year <br> Treasury Bond Yields | $10.59 \%$ |
| Prospective Equity Risk Premium using Measures of Capital <br> Appreciation and Income Returns from Value Line for the <br> S\&P 500 less Projected 30-Year Treasury Bond Yields | $12.78 \%$ |
| Prospective Equity Risk Premium using Measures of Capital <br> Appreciation and Income Returns from Bloomberg <br> Professional Services for the S\&P 500 less Projected 30-Year <br> Treasury Bond Yields | $\underline{\underline{8.84 \%}}$ |
| Average | $\underline{\underline{9.76 \%}}$ |

Q. WHAT ARE THE RESULTS OF YOUR APPLICATION OF THE TRADITIONAL AND EMPIRICAL CAPM TO THE UTILITY PROXY GROUP?
A. As shown on page 1 of Exhibit DWD-4, the mean result of my CAPM/ECAPM analyses is $11.18 \%$, the median is $11.09 \%$, and the average of the two is $11.14 \%$. Consistent with my reliance on the average of mean and median DCF results discussed above, the indicated common equity cost rate using the CAPM/ECAPM is $11.14 \%$.

## D. Common Equity Cost Rates for a Proxy Group of Domestic, NonPrice Regulated Companies Based on the DCF, RPM, and CAPM

## Q. WHY DO YOU ALSO CONSIDER A PROXY GROUP OF DOMESTIC, NON-PRICE REGULATED COMPANIES?

A. In the Hope and Bluefield cases, the U.S. Supreme Court did not specify that comparable risk companies had to be utilities. Since the purpose of rate regulation is to be a substitute for marketplace competition, non-price regulated firms operating in the competitive marketplace make an excellent proxy group if they are comparable in total risk to the Utility Proxy Group being used to estimate the cost of common equity. The selection of such domestic, non-price regulated competitive firms theoretically and empirically results in a proxy group which is comparable in total risk to the Utility Proxy Group.

## Q. HOW DID YOU SELECT NON-PRICE REGULATED COMPANIES THAT ARE COMPARABLE IN TOTAL RISK TO THE UTILITY PROXY GROUP?

A. In order to select a proxy group of domestic, non-price regulated companies similar in total risk to the Utility Proxy Group, I relied on the betas and related statistics derived from Value Line regression analyses of weekly market prices over the most recent 260 weeks (i.e., five years). Using these selection criteria resulted in a proxy group of 38 domestic, non-price regulated firms comparable in total risk to the Utility Proxy Group. Total risk is the sum of non-diversifiable market risk and diversifiable company-specific risks. The criteria used in the selection of the domestic, non-price regulated firms was:
(i) They must be covered by Value Line Investment Survey (Standard Edition);
(ii) They must be domestic, non-price regulated companies, i.e., not utilities;
(iii) Their beta must lie within plus or minus two standard deviations of the average unadjusted betas of the Utility Proxy Group; and
(iv) The residual standard errors of the Value Line regressions which gave rise to the unadjusted betas must lie within plus or minus two standard deviations of the average residual standard error of the Utility Proxy Group. Betas are a measure of market or systematic risk, which is not diversifiable. The residual standard errors of the regressions were used to measure each firm's company-specific, diversifiable risk. Companies that have similar betas and similar residual standard errors resulting from the same regression analyses have similar total investment risk.

## Q. HAVE YOU PREPARED AN EXHIBIT WHICH SHOWS THE DATA FROM WHICH YOU SELECTED THE 38 DOMESTIC, NON-PRICE REGULATED COMPANIES THAT ARE COMPARABLE IN TOTAL RISK TO THE UTILITY PROXY GROUP?

A. Yes, the basis of my selection and both proxy groups' regression statistics are shown in Exhibit DWD-5.

## Q. DID YOU CALCULATE COMMON EQUITY COST RATES USING THE DCF MODEL, RPM, AND CAPM FOR THE NON-PRICE REGULATED PROXY GROUP?

A. Yes. Because the DCF, RPM, and CAPM have been applied in an identical manner as described above, I will not repeat the details of the rationale and application of each model. One exception is in the application of the RPM, where I did not use
public utility-specific equity risk premiums, nor did I apply the PRPM to the individual companies.

Pages 2 of Exhibit DWD-6 contains the derivation of the DCF cost rates. As shown, the indicated common equity cost rate using the DCF for the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group, is 11.92\%.

Pages 3 through 5 of Exhibit DWD-6 contain the data and calculations that support the $12.65 \%$ RPM common equity cost rate. As shown on line 1 , page 3 of Exhibit DWD-6, the consensus prospective yield on Moody's Baa-rated corporate bonds for the six quarters ending in the third quarter of 2023, and for the years 2024 to 2028 and 2029 to 2033 , is $5.64 \% .{ }^{52}$ Since the Non-Price Regulated Proxy Group has an average Moody's long-term rating of Baa1, a downward adjustment of $0.15 \%$ to the projected Baa 2 corporate bond yield is necessary to reflect the difference in ratings. The adjustment results in a projected Baa1-rated corporate bond yield of 5.49\%.

When the beta-adjusted risk premium of $7.16 \%{ }^{53}$ relative to the Non-Price Regulated Proxy Group is added to the prospective Baa1-rated corporate bond yield of $5.49 \%$, the indicated RPM common equity cost rate is $12.65 \%$.

Page 6 of Exhibit DWD-6 contains the inputs and calculations that support my indicated CAPM/ECAPM common equity cost rate of $11.84 \%$.

## Q. WHAT IS THE COST RATE OF COMMON EQUITY BASED ON THE NON-PRICE REGULATED PROXY GROUP COMPARABLE IN TOTAL RISK TO THE UTILITY PROXY GROUP?

A. As shown on page 1 of Exhibit DWD-6, the results of the DCF, RPM, and CAPM applied to the Non-Price Regulated Proxy Group comparable in total risk to the Utility Proxy Group are $11.92 \%, 12.65 \%$, and $11.84 \%$, respectively. The average of the mean and median of these models is $12.03 \%$, which I used as the indicated common equity cost rate for the Non-Price Regulated Proxy Group.

## VI. CONCLUSION OF COMMON EQUITY COST RATE BEFORE ADJUSTMENTS

## Q. WHAT ARE THE INDICATED COMMON EQUITY COST RATES BEFORE ADJUSTMENTS?

A. Based on the results of the application of multiple cost of common equity models to the Utility Proxy Group, the range of ROEs attributable to the Utility Proxy Group is between $9.73 \%$ and $12.03 \%$.

I used multiple cost of common equity models as primary tools in arriving at my recommended common equity cost rate, because no single model is so inherently precise that it can be relied on solely to the exclusion of other theoretically sound models. The use of multiple models adds reliability to the estimation of the common equity cost rate, and the prudence of using multiple cost of common equity models is supported in both the financial literature and regulatory precedent.

As discussed previously, after determining the indicated range of ROEs attributable to a comparable group, there must be an evaluation of relative risk
between that group and the target company to determine whether it is appropriate to apply adjustments to the comparable group's indicated ROE to better reflect the target company's specific risks.

## VII. ADJUSTMENTS TO THE COMMON EQUITY COST RATE

Q. DID THE COMMISSION REJECT RELATIVE RISK ADJUSTMENTS TO THE ROE IN CASE NO. 2021-00214 CONCERNING ATMOS ENERGY?
A. Yes, it did. The Commission stated:

The Commission reiterates that it continues to reject use of flotation cost adjustments, financial risk adjustments, and size adjustments in the ROE analyses.

## Q. DO YOU HAVE A RESPONSE TO THE COMMISSION'S STATEMENT?

A. Yes, I do. I respectfully disagree with the Commission's continued rejection of Company-specific risk adjustments as stated in their Final Order in Case No. 202100214, especially when it does not point to evidence in the record to reject those adjustments. As will be explained in detail below, each adjustment is a common sense adjustment which is specific to Atmos Energy: (1) flotation costs are real costs to issue equity that cannot be recovered through rates; (2) financial risk adjustments are based in the fact that investors in higher risk companies require higher returns; and (3) size adjustments are based in the fact that smaller companies are riskier than larger companies, all else equal.
Q. DESPITE THE COMMISSION'S REJECTION OF THE ADJUSTMENTS IN CASE NO. 2021-00214, DOES IT IMPLICITLY TAKE INTO ACCOUNT BOTH BUSINESS AND FINANCIAL RISK IN THEIR ROE DETERMINATIONS?
A. Yes, it does. The Commission stated:

An ROE of 9.23 percent is lower than recent Commission awards for gas utilities, but those awards were tied to stay-out clauses for a utility that is significantly smaller, rural and had not requested a rate increase for over ten years. Additionally, in deciding upon the approved ROE, the Commission is also balancing the recent destruction due to the devastating tornadoes and customer bill impact during the region's recovery, as well as the still high equity percentage. (emphasis added)

## Q. SHOULD THE COMMISSION COMPARE ATMOS ENERGY TO OTHER UTILITIES IN KENTUCKY WHEN IT MAKES ITS ROE DETERMINATION?

A. No, it should not. Since the indicated ROE is determined using the market data of the Utility Proxy Group, any type of adjustment to the ROE must reflect relative differences between the Company and the Utility Proxy Group. Since this is the case, the relative risks of other Kentucky utilities is not relevant to determining the ROE for the Company.

## A. Size Adjustment

Q. DOES ATMOS ENERGY'S SMALLER SIZE RELATIVE TO THE UTILITY PROXY GROUP COMPANIES INCREASE ITS BUSINESS RISK?
A. Yes. Atmos Energy's smaller size relative to the Utility Proxy Group companies indicates greater relative business risk for the Company because, all else being equal, size has a material bearing on risk.

Size affects business risk because smaller companies generally are less able to cope with significant events that affect sales, revenues and earnings. For example, smaller companies face more risk exposure to business cycles and economic conditions, both nationally and locally. Additionally, the loss of revenues
from a few larger customers would have a greater effect on a small company than on a bigger company with a larger, more diverse, customer base.

As further evidence that smaller firms are riskier, investors generally demand greater returns from smaller firms to compensate for less marketability and liquidity of their securities. Kroll's Cost of Capital Navigator: U.S. Cost of Capital Module ("Kroll") discusses the nature of the small-size phenomenon, providing an indication of the magnitude of the size premium based on several measures of size. In discussing "Size as a Predictor of Equity Premiums," Kroll states:

The size effect is based on the empirical observation that companies of smaller size are associated with greater risk and, therefore, have greater cost of capital [sic]. The "size" of a company is one of the most important risk elements to consider when developing cost of equity capital estimates for use in valuing a business simply because size has been shown to be a predictor of equity returns. In other words, there is a significant (negative) relationship between size and historical equity returns - as size decreases, returns tend to increase, and vice versa. (footnote omitted) (emphasis in original) ${ }^{54}$

Furthermore, in "The Capital Asset Pricing Model: Theory and Evidence,"
Fama and French note size is indeed a risk factor which must be reflected when estimating the cost of common equity. On page 14, they note:
. . . the higher average returns on small stocks and high book-tomarket stocks reflect unidentified state variables that produce undiversifiable risks (covariances) in returns not captured in the market return and are priced separately from market betas. ${ }^{55}$

Based on this evidence, Fama and French proposed their three-factor model which includes a size variable in recognition of the effect size has on the cost of common equity.

54 Kroll, Cost of Capital Navigator: U.S. Cost of Capital Module, Size as a Predictor of Returns, at 1.

Also, it is a basic financial principle that the use of funds invested, and not the source of funds, is what gives rise to the risk of any investment. ${ }^{56}$ Eugene Brigham, a well-known authority, states:

A number of researchers have observed that portfolios of smallfirms (sic) have earned consistently higher average returns than those of large-firm stocks; this is called the "small-firm effect." On the surface, it would seem to be advantageous to the small firms to provide average returns in a stock market that are higher than those of larger firms. In reality, it is bad news for the small firm; what the small-firm effect means is that the capital market demands higher returns on stocks of small firms than on otherwise similar stocks of the large firms. (emphasis added) ${ }^{57}$

Consistent with the financial principle of risk and return discussed above, increased relative risk due to small size must be considered in the allowed rate of return on common equity. Therefore, the Commission's authorization of a cost rate of common equity in this proceeding must appropriately reflect the unique risks of Atmos Energy, including its small size, which is justified and supported above by evidence in the financial literature.

## Q. SHOULD THE COMMISSION CONSIDER ATMOS ENERGY AS A STAND-ALONE COMPANY?

A. Yes, it should. Because it is Atmos Energy's Kentucky rate base to which the overall rates of return set forth in this proceeding will be applied, they should be evaluated as a stand-alone entity. To do otherwise would be discriminatory, confiscatory, and inaccurate. It is also a basic financial precept that the use of the funds invested give rise to the risk of the investment. As Brealey and Myers state:

56 Brealey, Richard A. and Myers, Stewart C., Principles of Corporate Finance (McGraw-Hill Book Company, 1996), at 204-205, 229.
57 Brigham, Eugene F., Fundamentals of Financial Management, Fifth Edition (The Dryden Press, 1989), at 623.

The true cost of capital depends on the use to which the capital is put.

Each project should be evaluated at its own opportunity cost of capital; the true cost of capital depends on the use to which the capital is put. (italics and bold in original) ${ }^{58}$

Morin confirms Brealey and Myers when he states:
Financial theory clearly establishes that the cost of equity is the riskadjusted opportunity cost of the investors and not the cost of the specific capital sources employed by the investors. The true cost of capital depends on the use to which the capital is put and not on its source. The Hope and Bluefield doctrines have made clear that the relevant considerations in calculating a company's cost of capital are the alternatives available to investors and the returns and risks associated with those alternatives. ${ }^{59}$

Additionally, Levy and Sarnat state:
The firm's cost of capital is the discount rate employed to discount the firm's average cash flow, hence obtaining the value of the firm. It is also the weighted average cost of capital, as we shall see below. The weighted average cost of capital should be employed for project evaluation... only in cases where the risk profile of the new projects is a "carbon copy" of the risk profile of the firm. ${ }^{60}$

Although Levy and Sarnat discuss a project's cost of capital relative to a firm's cost of capital, these principles apply equally to the use of a proxy groupbased cost of capital. Each company must be viewed on its own merits, regardless of the source of its equity capital. As Bluefield clearly states:

A public utility is entitled to such rates as will permit it to earn a return on the value of the property which it employs for the convenience of the public equal to that generally being made at the same time and in the same general part of the country on investments

Richard A. Brealey and Stewart C. Myers, Principles of Corporate Finance, McGraw-Hill, Third Edition, 1988, at 173, 198.
Morin, at 581.
Haim Levy \& Marshall Sarnat, Capital Investment and Financial Decisions, Prentice/Hall International, 1986, at 465.
in other business undertakings which are attended by corresponding risks and uncertainties; ${ }^{61}$

In other words, it is the "risks and uncertainties" surrounding the property employed for the "convenience of the public" which determines the appropriate level of rates. In this proceeding, the property employed "for the convenience of the public" is the rate base of Atmos Energy's Kentucky operations. Thus, it is only the risk of investment in Atmos Energy's Kentucky operations that is relevant to the determination of the cost of common equity to be applied to the common equityfinanced portion of that rate base.

In addition, in the Fama and French article previously cited, the authors ${ }^{62}$ proposed that their three-factor model include the SMB (Small Minus Big) factor, which indicates that small capitalization firms are more risky than large capitalization firms, confirming that size is a risk factor which must be taken into account in estimating the cost of common equity.

Consistent with the financial principle of risk and return discussed previously, and the stand-alone nature of ratemaking, an upward adjustment must be applied to the indicated cost of common equity derived from the cost of equity models of the proxy groups used in this proceeding.

## Q. IS THERE A WAY TO QUANTIFY A RELATIVE RISK ADJUSTMENT DUE TO ATMOS ENERGY'S SMALL SIZE RELATIVE TO THE UTILITY PROXY GROUP?

A. Yes. Atmos Energy has greater relative risk than the average utility in the Utility

Proxy Group because of its smaller size compared with the utilities in that group, as measured by an estimated market capitalization of common equity for Atmos Energy.

Table 11: Size as Measured by Market Capitalization for Atmos Energy and the Utility Proxy Group

|  | Market <br> Capitalization* | Times <br> Greater than |
| :--- | :---: | :---: |
| (\$ Millions) |  |  |
| Atmompany |  |  |$|$

Atmos Energy's estimated market capitalization was $\$ 609.447$ million as of May 31, 2022, ${ }^{63}$ compared with the market capitalization of the median company in the Utility Proxy Group of $\$ 4.531$ billion as of May 31, 2022. The average company in the Utility Proxy Group has a market capitalization 7.4 times the size of Atmos Energy's estimated market capitalization.

As a result, it is necessary to upwardly adjust the range of indicated common equity cost rates to reflect Atmos Energy's greater risk due to their smaller relative size. The determination is based on the size premiums for portfolios of New York Stock Exchange, American Stock Exchange, and NASDAQ listed companies ranked by deciles for the 1926 to 2021 period. The median size premium for the Utility Proxy Group with a market capitalization of $\$ 4.531$ billion falls in the $5^{\text {th }}$ decile, while the Company's estimated market capitalization of $\$ 609.447$ million
$\$ 568,505,829$ (requested rate base) * 54.50\% (Case No. 2021-00214 final order equity ratio) * $196.7 \%$ (market-to-book ratio of the Utility Proxy Group) as demonstrated on page 2 of Exhibit DWD-7.
places it in the $9^{\text {th }}$ decile. The size premium spread between the $5^{\text {th }}$ decile and the $9^{\text {th }}$ decile is $1.21 \%$. Even though a $1.21 \%$ upward size adjustment is indicated, I applied a size premium of $0.20 \%$ to the Company's range of indicated common equity cost rates.

## B. Credit Risk Adjustment

## Q. PLEASE DISCUSS YOUR PROPOSED CREDIT RISK ADJUSTMENT.

A. Atmos Energy's long-term ratings are A1 and A from Moody's and S\&P, respectively, which are less risky than the average long-term ratings for the Utility Proxy Group of A2 and A-, respectively. ${ }^{64}$ Hence, a downward credit risk adjustment is necessary to reflect the less risky credit rating, i.e., A1, of Atmos Energy relative to the A2 average Moody's bond rating of the Utility Proxy Group. ${ }^{65}$

An indication of the magnitude of the necessary downward adjustment to reflect the lower credit risk inherent in an A1 bond rating is one-third of a recent three-month average spread between Moody's A- and Aa-rated public utility bond yields, shown on page 4 of Exhibit DWD-3, or 0.06\%. ${ }^{66}$

## C. Flotation Cost Adjustment

## Q. WHAT ARE FLOTATION COSTS?

A. Flotation costs are those costs associated with the sale of new issuances of common stock. They include market pressure and the mandatory unavoidable costs of issuance (e.g., underwriting fees and out-of-pocket costs for printing, legal,
registration, etc.). For every dollar raised through debt or equity offerings, the Company receives less than one full dollar in financing.

## Q. WHY IS IT IMPORTANT TO RECOGNIZE FLOTATION COSTS IN THE ALLOWED COMMON EQUITY COST RATE?

A. It is important because there is no other mechanism in the ratemaking paradigm through which such costs can be recognized and recovered. Because these costs are real, necessary, and legitimate, recovery of these costs should be permitted. As noted by Morin:

The costs of issuing these securities are just as real as operating and maintenance expenses or costs incurred to build utility plants, and fair regulatory treatment must permit recovery of these costs....

The simple fact of the matter is that common equity capital is not free....[Flotation costs] must be recovered through a rate of return adjustment. ${ }^{67}$

## Q. SHOULD FLOTATION COSTS BE RECOGNIZED ONLY IF THERE WAS AN ISSUANCE DURING THE TEST YEAR OR THERE IS AN IMMINENT POST-TEST YEAR ISSUANCE OF ADDITIONAL COMMON STOCK?

A. No. As noted above, there is no mechanism to recapture such costs in the ratemaking paradigm other than an adjustment to the allowed common equity cost rate. Flotation costs are charged to capital accounts and are not expensed on a utility's income statement. As such, flotation costs are analogous to capital investments, albeit negative, reflected on the balance sheet. Recovery of capital investments relates to the expected useful lives of the investment. Since common equity has a very long and indefinite life (assumed to be infinity in the standard
regulatory DCF model), flotation costs should be recovered through an adjustment to common equity cost rate, even when there has not been an issuance during the test year, or in the absence of an expected imminent issuance of additional shares of common stock.

Historical flotation costs are a permanent loss of investment to the utility and should be accounted for. When any company, including a utility, issues common stock, flotation costs are incurred for legal, accounting, printing fees and the like. For each dollar of issuing market price, a small percentage is expensed and is permanently unavailable for investment in utility rate base. Since these expenses are charged to capital accounts and not expensed on the income statement, the only way to restore the full value of that dollar of issuing price with an assumed investor required return of $10 \%$ is for the net investment, $\$ 0.95$, to earn more than $10 \%$ to net back to the investor a fair return on that dollar. In other words, if a company issues stock at $\$ 1.00$ with $5 \%$ in flotation costs, it will net $\$ 0.95$ in investment. Assuming the investor in that stock requires a $10 \%$ return on his or her invested $\$ 1.00$ (i.e., a return of $\$ 0.10$ ), the company needs to earn approximately $10.5 \%$ on its invested $\$ 0.95$ to receive a $\$ 0.10$ return.

## Q. DO THE COMMON EQUITY COST RATE MODELS YOU HAVE USED ALREADY REFLECT INVESTORS' ANTICIPATION OF FLOTATION COSTS?

A. No. All of these models assume no transaction costs. The literature is quite clear that these costs are not reflected in the market prices paid for common stocks. For example, Brigham and Daves confirm this and provide the methodology utilized to
calculate the flotation adjustment. ${ }^{68}$ In addition, Morin confirms the need for such an adjustment even when no new equity issuance is imminent. ${ }^{69}$ Consequently, it is proper to include a flotation cost adjustment when using cost of common equity models to estimate the common equity cost rate.

## Q. HOW DID YOU CALCULATE THE FLOTATION COST ALLOWANCE?

A. I modified the DCF calculation to provide a dividend yield that would reimburse investors for issuance costs in accordance with the method cited in literature by Brigham and Daves, as well as by Morin. The flotation cost adjustment recognizes the actual costs of issuing equity that were incurred by ATO in its equity issuances for the period beginning 2016. Based on the issuance costs shown on page 1 of Exhibit DWD-8, an adjustment of $0.05 \%$ is required to reflect the flotation costs applicable to the Utility Proxy Group.

## D. Other Considerations

## Q. DOES THE COMPANY'S UTILIZATION OF THE PRP AFFECT ITS RELATIVE RISK TO THE UTILITY PROXY GROUP?

A. No. The Hope and Bluefield "Comparable Earnings" standard requires the allowed ROE to be commensurate with the returns on investments of similar risk. The cost of capital is a comparative exercise, so if the mechanism is common throughout the companies on which one bases their analyses, the comparative risk is zero, because any effect of the perceived reduced risk of the mechanism(s) by investors would be reflected in the market data of the proxy group. To the extent the proxy companies

68 Eugene F. Brigham and Phillip R. Daves, Intermediate Financial Management, 9th Edition, Thomson/Southwestern, at 342.
Morin, at 337-339.
have mechanisms in place to address revenue shortfalls and cost recovery, the PRP only serves to make it more comparable to its peers and have no impact on comparative risk.

To that point, Exhibit DWD-9 provides a summary of rate stabilization mechanisms currently in effect at each gas utility subsidiary of the proxy group companies. As Exhibit DWD-9 demonstrates, substantially all the proxy companies have recovery mechanisms and/or annual formula-based rate mechanisms in place. ${ }^{70}$

## Q. ARE YOU AWARE OF ANY STUDIES THAT HAVE ADDRESSED THE RELATIONSHIP BETWEEN RATE STABILIZATION MECHANISMS, GENERALLY, AND ROE?

A. Yes. I, along with Richard A. Michelfelder of Rutgers University, and my colleague at ScottMadden, Pauline M. Ahern, examined the relationship between PRP-like mechanisms and ROE among electric, gas, and water utilities. Using the generalized consumption asset pricing model, also known as the PRPM, we found PRP-like mechanisms to have no statistically significant effect on investor perceived risk, and hence, ROE. ${ }^{71}$

Also, in March 2014, The Brattle Group (Brattle) published a study addressing the effect of revenue decoupling structures on the cost of capital for electric utilities. ${ }^{72}$ In its report, which extended a prior analysis focused on natural

70 Only two of the 23 proxy group operating companies do not have a capital recovery mechanism. The Cost of Capital of Public Utilities, Energy Policy 130 (2019), at 311-319.
The Brattle Group, The Impact of Revenue Decoupling on the Cost of Capital for Electric Utilities: An Empirical Investigation, Prepared for the Energy Foundation, March 20, 2014.
gas distribution utilities, Brattle pointed out that although decoupling structures may affect revenues, net income still can vary. Brattle further noted that the distinction between diversifiable and non-diversifiable risk is important to equity investors, and the relationship between decoupling and ROE should be examined in that context. Further to that point, Brattle noted that although reductions in total risk may be important to bondholders, only reductions in non-diversifiable business risk would justify a reduction to the ROE. In November 2016, the Brattle study was updated based on data through the fourth quarter of 2015. ${ }^{73}$

Brattle's empirical analysis examined the relationship between decoupling and the After-Tax WACC for a group of electric utilities that had implemented decoupling structures in various jurisdictions throughout the United States. As with Brattle's 2014 study, the updated study found no statistically significant link between the cost of capital and revenue decoupling structures. ${ }^{74}$

## Q. WHAT ARE YOUR CONCLUSIONS REGARDING THE EFFECT OF THE COMPANY'S PRP ON ROE?

A. The presence of Atmos Energy's PRP rider does not affect the Company's ROE. Atmos Energy's PRP rider does not affect the ROE because it is similar to riders present in the operating companies of the Utility Proxy Group used to derive the ROE. Since this is the case, the lower risk of having a PRP (if any) would already be subsumed in the market data for the Utility Proxy Group.

[^9]Furthermore, several studies show that rate stabilization mechanisms like the PRP do not materially affect the investor-required return for those companies. Given that, the Company's PRP rider does not lower the comparative risk of the Company relative to the Utility Proxy Group and therefore, the ROE should not be adjusted due to the Company's PRP rider.

## Q. WHAT IS THE INDICATED COST OF COMMON EQUITY AFTER TAKING INTO CONSIDERATION YOUR COMPANY-SPECIFIC ADJUSTMENTS AND THE PRESENCE OF THE COMPANY'S PRP?

A. As discussed above, no adjustment was made due to the presence of the Company's PRP. Therefore, applying the $0.20 \%$ size adjustment, the $-0.06 \%$ credit risk adjustment, and the $0.05 \%$ flotation cost adjustment to the $9.73 \%$ and $12.03 \%$ indicated range of common equity cost rates applicable to the Utility Proxy Group results in a Company-specific range of common equity rates between $9.92 \%$ and $12.22 \%$.

## VIII. CONCLUSION

## Q. WHAT IS YOUR RECOMMENDED ROE FOR ATMOS ENERGY?

A. Given the indicated ROE ranges applicable to the Utility Proxy Group and Company, I conclude that an appropriate ROE for the Company is $10.95 \%$.
Q. IN YOUR OPINION, IS YOUR PROPOSED ROE OF 10.95\% FAIR AND REASONABLE TO ATMOS ENERGY AND ITS CUSTOMERS?
A. Yes, it is.

## Q. DOES THIS CONCLUDE YOUR DIRECT TESTIMONY?

A. Yes, it does.

## COMMONWEALTH OF KENTUCKY

## BEFORE THE PUBLIC SERVICE COMMISSION


#### Abstract

APPLICATION OF ATMOS ENERGY ) CORPORATION TO ESTABLISH PRP ) RIDER RATES FOR THE TWELVE MONTH ) CASE NO. 2022-00222 PERIOD BEGINNING OCTOBER 1, 2022 )


## CERTIFICATE AND AFFIDAVIT

The Affiant, Dylan W. D'Ascendis, being duly sworn, deposes and states that the prepared testimony attached hereto and made a part hereof, constitutes the prepared direct testimony of this affiant in Case No. 2022-00222 and that if asked the questions propounded therein, this affiant would make the answers set forth in the attached prepared direct pre-filed testimony.


## STATE OF NEW JERSEY

COUNTY OF BURLINGTON

SUBSCRIBED AND SWORN to before me by Dylan W. D'Ascendis on this the $22^{n}$ day of July, 2022.


Appendix A - Resume \& Testimony Listing of: Dylan W. D'Ascendis, CRRA, CVA

Partner

## Summary

Dylan is an experienced consultant and a Certified Rate of Return Analyst (CRRA) and Certified Valuation Analyst (CVA). Dylan joined ScottMadden in 2016 and has become a leading expert witness with respect to cost of capital and capital structure. He has served as a consultant for investor-owned and municipal utilities and authorities for 14 years. Dylan has testified as an expert witness on over 100 occasions regarding rate of return, cost of service, rate design, and valuation before more than 30 regulatory jurisdictions in the United States and Canada, an American Arbitration Association panel, and the Superior Court of Rhode Island. He also maintains the benchmark index against which the Hennessy Gas Utility Mutual Fund performance is measured. Dylan holds a B.A. in economic history from the University of Pennsylvania and an M.B.A. with concentrations in finance and international business from Rutgers University.

## Areas of Specialization

| Regulation and Rates | Capital Market |
| :--- | :--- | :--- |
| Rate of Return |  |
| Valuation |  |
| Mutual Fund Benchmarking |  |
| Recent Expert Testimony Submission/Appearance |  |
| Regulatory Commission of Alaska - Capital Structure |  |
| Federal Energy Regulatory Commission - Rate of Return |  |
| Public Utility Commission of Texas - Return on Equity |  |
| Hawaii Public Utilities Commission - Cost of Service / Rate Design |  |
| Pennsylvania Public Utility Commission - Valuation |  |

## Recent Assignments

- Provided expert testimony on the cost of capital for ratemaking purposes before numerous state utility regulatory agencies
- Sponsored valuation testimony for a large municipal water company in front of an American Arbitration Association Board to justify the reasonability of their lease payments to the City
- Co-authored a valuation report on behalf of a large investor-owned utility company in response to a new state regulation which allowed the appraised value of acquired assets into rate base


## Recent Articles and Speeches

- Co-Author of: "Decoupling, Risk Impacts and the Cost of Capital", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. The Electricity Journal, March, 2020
- Co-Author of: "Decoupling Impact and Public Utility Conservation Investment", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University and Pauline M. Ahern. Energy Policy Journal, 130 (2019), 311-319
- "Establishing Alternative Proxy Groups", before the Society of Utility and Regulatory Financial Analysts: 51st Financial Forum, April 4, 2019, New Orleans, LA
- "Past is Prologue: Future Test Year", Presentation before the National Association of Water Companies 2017 Southeast Water Infrastructure Summit, May 2, 2017, Savannah, GA.
- Co-author of: "Comparative Evaluation of the Predictive Risk Premium Model ${ }^{\text {TM }}$, the Discounted Cash Flow Model and the Capital Asset Pricing Model", co-authored with Richard A. Michelfelder, Ph.D., Rutgers University, Pauline M. Ahern, and Frank J. Hanley, The Electricity Journal, May, 2013
- "Decoupling: Impact on the Risk and Cost of Common Equity of Public Utility Stocks", before the Society of Utility and Regulatory Financial Analysts: 45th Financial Forum, April 17-18, 2013, Indianapolis, IN

Resume and Testimony Listing of:

| Sponsor | Date | Case/Applicant | Docket No. | Subject |
| :---: | :---: | :---: | :---: | :---: |
| Regulatory Commission of Alaska |  |  |  |  |
| Cook Inlet Natural Gas Storage Alaska, LLC | 07/21 | Cook Inlet Natural Gas Storage Alaska, LLC | Docket No. TA45-733 | Capital Structure |
| Alaska Power Company | 09/20 | Alaska Power Company; Goat Lake Hydro, Inc.; BBL Hydro, Inc. | Tariff Nos. TA886-2; TA6521; TA4-573 | Capital Structure |
| Alaska Power Company | 07/16 | Alaska Power Company | Docket No. TA857-2 | Rate of Return |
| Alberta Uitilities Commission |  |  |  |  |
| AltaLink, L.P., and EPCOR Distribution \& Transmission, Inc. | 01/20 | AltaLink, L.P., and EPCOR Distribution \& Transmission, Inc. | 2021 Generic Cost of Capital, Proceeding ID. 24110 | Rate of Return |
| Arizona Corporation Commission |  |  |  |  |
| EPCOR Water Arizona, Inc. | 06/20 | EPCOR Water Arizona, Inc. | Docket No. WS-01303A-20-0177 | Rate of Return |
| Arizona Water Company | 12/19 | Arizona Water Company Western Group | Docket No. W-01445A-190278 | Rate of Return |
| Arizona Water Company | 08/18 | Arizona Water Company Northern Group | Docket No. W-01445A-180164 | Rate of Return |
| Arkansas Public Service Commission |  |  |  |  |
| Southwestern Electric Power Co. | 07/21 | Southwestern Electric Power Co. | Docket No. 21-070-U | Return on Equity |
| CenterPoint Energy Resources Corp. | 05/21 | CenterPoint Arkansas Gas | Docket No. 21-004-U | Return on Equity |
| Colorado Public Uitlities Commission |  |  |  |  |
| Summit Utilities, Inc. | 04/18 | Colorado Natural Gas Company | Docket No. 18AL-0305G | Rate of Return |
| Atmos Energy Corporation | 06/17 | Atmos Energy Corporation | Docket No. 17AL-0429G | Rate of Return |
| Delaware Public Service Commission |  |  |  |  |
| Delmarva Power \& Light Co. | 01/22 | Delmarva Power \& Light Co. | Docket No. 22-002 (Gas) | Return on Equity |
| Delmarva Power \& Light Co. | 11/20 | Delmarva Power \& Light Co. | Docket (Electric) No. 20-0149 | Return on Equity |
| Delmarva Power \& Light Co. | 10/20 | Delmarva Power \& Light Co. | Docket No. 20-0150 (Gas) | Return on Equity |
| Tidewater Utilities, Inc. | 11/13 | Tidewater Utilities, Inc. | Docket No. 13-466 | Capital Structure |
| Public Service Commission of the District of Columbia |  |  |  |  |
| Washington Gas Light Company | 04/22 | Washington Gas Light Company | Formal Case No. 1169 | Rate of Return |
| Washington Gas Light Company | 09/20 | Washington Gas Light Company | Formal Case No. 1162 | Rate of Return |
| Federal Energy Regulatory Commission |  |  |  |  |
| LS Power Grid California, LLC | 10/20 | LS Power Grid California, LLC | Docket No. ER21-195-000 | Rate of Return |
| Florida Public Service Commission |  |  |  |  |
| Tampa Electric Company | 04/21 | Tampa Electric Company | Docket No. 20210034-EI | Return on Equity |
| Peoples Gas System | 09/20 | Peoples Gas System | Docket No. 20200051-GU | Rate of Return |
| Utilities, Inc. of Florida | 06/20 | Utilities, Inc. of Florida | Docket No. 20200139-WS | Rate of Return |


| Sponsor | Date | Case/Applicant | Docket No. | Subject |
| :---: | :---: | :---: | :---: | :---: |
| Hawaii Public Utilities Commission |  |  |  |  |
| Launiupoko Irrigation Company, Inc. | 12/20 | Launiupoko Irrigation Company, Inc. | Docket No. 2020-0217 / <br> Transferred to 2020-0089 | Capital Structure |
| Lanai Water Company, Inc. | 12/19 | Lanai Water Company, Inc. | Docket No. 2019-0386 | Cost of Service / Rate Design |
| Manele Water Resources, LLC | 08/19 | Manele Water Resources, LLC | Docket No. 2019-0311 | Cost of Service / Rate Design |
| Kaupulehu Water Company | 02/18 | Kaupulehu Water Company | Docket No. 2016-0363 | Rate of Return |
| Aqua Engineers, LLC | 05/17 | Puhi Sewer \& Water Company | Docket No. 2017-0118 | Cost of Service / Rate Design |
| Hawaii Resources, Inc. | 09/16 | Laie Water Company | Docket No. 2016-0229 | Cost of Service / Rate Design |
| Illinois Commerce Commission |  |  |  |  |
| Utility Services of Illinois, Inc. | 02/21 | Utility Services of Illinois, Inc. | Docket No. 21-0198 | Rate of Return |
| Ameren Illinois Company d/b/a Ameren Illinois | 07/20 | Ameren Illinois Company d/b/a Ameren Illinois | Docket No. 20-0308 | Return on Equity |
| Utility Services of Illinois, Inc. | 11/17 | Utility Services of Illinois, Inc. | Docket No. 17-1106 | Cost of Service / Rate Design |
| Aqua Illinois, Inc. | 04/17 | Aqua Illinois, Inc. | Docket No. 17-0259 | Rate of Return |
| Utility Services of Illinois, Inc. | 04/15 | Utility Services of Illinois, Inc. | Docket No. 14-0741 | Rate of Return |
| Indiana Utility Regulatory Commission |  |  |  |  |
| Aqua Indiana, Inc. | 03/16 | Aqua Indiana, Inc. Aboite Wastewater Division | Docket No. 44752 | Rate of Return |
| Twin Lakes, Utilities, Inc. | 08/13 | Twin Lakes, Utilities, Inc. | Docket No. 44388 | Rate of Return |
| Kansas Corporation Commission |  |  |  |  |
| Atmos Energy | 07/19 | Atmos Energy | 19-ATMG-525-RTS | Rate of Return |
| Kentucky Public Service Commission |  |  |  |  |
| Atmos Energy Corporation | 07/21 | Atmos Energy Corporation | 2021-00304 | PRP Rider Rate |
| Atmos Energy Corporation | 06/21 | Atmos Energy Corporation | 2021-00214 | Rate of Return |
| Duke Energy Kentucky, Inc. | 06/21 | Duke Energy Kentucky, Inc. | 2021-00190 | Return on Equity |
| Bluegrass Water Utility Operating Company | 10/20 | Bluegrass Water Utility Operating Company | 2020-00290 | Return on Equity |
| Louisiana Public Service Commission |  |  |  |  |
| Utilities, Inc. of Louisiana | 05/21 | Utilities, Inc. of Louisiana | Docket No. U-36003 | Rate of Return |
| Southwestern Electric Power Company | 12/20 | Southwestern Electric Power Company | Docket No. U-35441 | Return on Equity |
| Atmos Energy | 04/20 | Atmos Energy | Docket No. U-35535 | Rate of Return |
| Louisiana Water Service, Inc. | 06/13 | Louisiana Water Service, Inc. | Docket No. U-32848 | Rate of Return |
| Maine Public Utilities Commission |  |  |  |  |
| Summit Natural Gas of Maine, Inc. | 03/22 | Summit Natural Gas of Maine, Inc. | Docket No. 2022-00025 | Rate of Return |
| The Maine Water Company | 09/21 | The Maine Water Company | Docket No. 2021-00053 | Rate of Return |

Resume and Testimony Listing of:

| Sponsor | Date | Case/Applicant | Docket No. | Subject |
| :---: | :---: | :---: | :---: | :---: |
| Maryland Public Service Commission |  |  |  |  |
| Washington Gas Light Company | 08/20 | Washington Gas Light Company | Case No. 9651 | Rate of Return |
| FirstEnergy, Inc. | 08/18 | Potomac Edison Company | Case No. 9490 | Rate of Return |
| Massachusettis Depariment of Public Uitlities |  |  |  |  |
| Unitil Corporation | 12/19 | Fitchburg Gas \& Electric Co. (Elec.) | D.P.U. 19-130 | Rate of Return |
| Unitil Corporation | 12/19 | Fitchburg Gas \& Electric Co. (Gas) | D.P.U. 19-131 | Rate of Return |
| Liberty Utilities | 07/15 | Liberty Utilities d/b/a New England Natural Gas Company | Docket No. 15-75 | Rate of Return |
| Minnesota Public Uitilities Commission |  |  |  |  |
| Northern States Power Company | 11/01 | Northern States Power Company | $\begin{aligned} & \text { Docket No. G002/GR-21- } \\ & 678 \end{aligned}$ | Return on Equity |
| Northern States Power Company | 10/21 | Northern States Power Company | Docket No. E002/GR-21630 | Return on Equity |
| Northern States Power Company | 11/20 | Northern States Power Company | $\begin{aligned} & \text { Docket No. E002/GR-20- } \\ & 723 \end{aligned}$ | Return on Equity |
| Mississippi Public Service Commission |  |  |  |  |
| Atmos Energy | 03/19 | Atmos Energy | Docket No. 2015-UN-049 | Capital Structure |
| Atmos Energy | 07/18 | Atmos Energy | Docket No. 2015-UN-049 | Capital Structure |
| Missouri Public Service Commission |  |  |  |  |
| Spire Missouri, Inc. | 12/20 | Spire Missouri, Inc. | Case No. GR-2021-0108 | Return on Equity |
| Indian Hills Utility Operating Company, Inc. | 10/17 | Indian Hills Utility Operating Company, Inc. | Case No. SR-2017-0259 | Rate of Return |
| Raccoon Creek Utility Operating Company, Inc. | 09/16 | Raccoon Creek Utility Operating Company, Inc. | Case No. SR-2016-0202 | Rate of Return |
| Public Utilities Commission of Nevada |  |  |  |  |
| Southwest Gas Corporation | 09/21 | Southwest Corporation $\quad$ Gas | Docket No. 21-09001 | Return on Equity |
| Southwest Gas Corporation | 08/20 | Southwest Gas Corporation | Docket No. 20-02023 | Return on Equity |
| New Hampshire Public Utilitites Commission |  |  |  |  |
| Aquarion Water Company of New Hampshire, Inc. | 12/20 | Aquarion Water Company of New Hampshire, Inc. | Docket No. DW 20-184 | Rate of Return |
| New Jersey Board of Public Utilities |  |  |  |  |
| Middlesex Water Company | 05/21 | Middlesex Water Company | Docket No. WR21050813 | Rate of Return |
| Atlantic City Electric Company | 12/20 | Atlantic City Electric Company | Docket No. ER20120746 | Return on Equity |
| FirstEnergy | 02/20 | Jersey Central Power \& Light Co. | Docket No. ER20020146 | Rate of Return |
| Aqua New Jersey, Inc. | 12/18 | Aqua New Jersey, Inc. | Docket No. WR18121351 | Rate of Return |
| Middlesex Water Company | 10/17 | Middlesex Water Company | Docket No. WR17101049 | Rate of Return |
| Middlesex Water Company | 03/15 | Middlesex Water Company | Docket No. WR15030391 | Rate of Return |

Resume and Testimony Listing of:
Dylan W. D'Ascendis, CRRA, CVA Partner

| Sponsor | Date | Case/Applicant | Docket No. | Subject |
| :---: | :---: | :---: | :---: | :---: |
| The Atlantic City Sewerage Company | 10/14 | The Atlantic City Sewerage Company | Docket No. WR14101263 | Cost of Service / Rate Design |
| Middlesex Water Company | 11/13 | Middlesex Water Company | Docket No. WR1311059 | Capital Structure |
| New Mexico Public Regulation Commission |  |  |  |  |
| Southwestern Public Service Co. | 01/21 | Southwestern Public Service Co. | Case No. 20-00238-UT | Return on Equity |
| North Carolina Utilities Commission |  |  |  |  |
| Carolina Water Service, Inc. | 07/21 | Carolina Water Service, Inc. | Docket No. W-354 Sub 384 | Rate of Return |
| Piedmont Natural Gas Co., Inc. | 03/21 | Piedmont Natural Gas Co., Inc. | Docket No. G-9, Sub 781 | Return on Equity |
| Duke Energy Carolinas, LLC | 07/20 | Duke Energy Carolinas, LLC | Docket No. E-7, Sub 1214 | Return on Equity |
| Duke Energy Progress, LLC | 07/20 | Duke Energy Progress, LLC | Docket No. E-2, Sub 1219 | Return on Equity |
| Aqua North Carolina, Inc. | 12/19 | Aqua North Carolina, Inc. | Docket No. W-218 Sub 526 | Rate of Return |
| Carolina Water Service, Inc. | 06/19 | Carolina Water Service, Inc. | Docket No. W-354 Sub 364 | Rate of Return |
| Carolina Water Service, Inc. | 09/18 | Carolina Water Service, Inc. | Docket No. W-354 Sub 360 | Rate of Return |
| Aqua North Carolina, Inc. | 07/18 | Aqua North Carolina, Inc. | Docket No. W-218 Sub 497 | Rate of Return |
| North Dakota Public Service Commission |  |  |  |  |
| Northern States Power Company | 09/21 | Northern States Power Company | Case No. PU-21-381 | Rate of Return |
| Northern States Power Company | 11/20 | Northern States Power Company | Case No. PU-20-441 | Rate of Return |
| Public Utilities Commission of Ohio |  |  |  |  |
| Duke Energy Ohio, Inc. | 10/21 | Duke Energy Ohio, Inc. | Case No. 21-887-EL-AIR | Return on Equity |
| Aqua Ohio, Inc. | 07/21 | Aqua Ohio, Inc. | Case No. 21-0595-WWAIR | Rate of Return |
| Aqua Ohio, Inc. | 05/16 | Aqua Ohio, Inc. | Case No. 16-0907-WWAIR | Rate of Return |
| Pennsylvania Public Utility Commission |  |  |  |  |
| Citizens' Electric Company of Lewisburg | 05/22 | C\&T Enterprises | Docket No. R-2022- 3032369 | Rate of Return |
| Valley Energy Company | 05/22 | C\&T Enterprises | $\begin{array}{lll} \hline \text { Docket } & \text { No. } & \text { R-2022- } \\ 3032300 \end{array}$ | Rate of Return |
| Community Utilities of Pennsylvania, Inc. | 04/21 | Community Utilities of Pennsylvania, Inc. | $\begin{array}{lll} \text { Docket } \\ 3025207 \end{array} \text { No. R-2021- }$ | Rate of Return |
| Vicinity Energy Philadelphia, Inc. | 04/21 | Vicinity Energy Philadelphia, Inc. | $\begin{array}{lll} \hline \text { Docket } & \text { No. } & \text { R-2021- } \\ 3024060 & & \\ \hline \end{array}$ | Rate of Return |
| Delaware County Regional Water Control Authority | 02/20 | Delaware County Regional Water Control Authority | $\begin{aligned} & \text { Docket } \quad \text { No. A-2019- } \\ & 3015173 \end{aligned}$ | Valuation |


| Sponsor | Date | Case/Applicant | Docket No. | Subject |
| :---: | :---: | :---: | :---: | :---: |
| Valley Energy, Inc. | 07/19 | C\&T Enterprises | Docket No. R-20193008209 | Rate of Return |
| Wellsboro Electric Company | 07/19 | C\&T Enterprises | Docket No. R-20193008208 | Rate of Return |
| Citizens' Electric Company of Lewisburg | 07/19 | C\&T Enterprises | Docket No. R-20193008212 | Rate of Return |
| Steelton Borough Authority | 01/19 | Steelton Borough Authority | Docket No. A-20193006880 | Valuation |
| Mahoning Township, PA | 08/18 | Mahoning Township, PA | Docket No. A-20183003519 | Valuation |
| SUEZ Water Pennsylvania Inc. | 04/18 | SUEZ Water Pennsylvania Inc. | Docket No. R-2018000834 | Rate of Return |
| Columbia Water Company | 09/17 | Columbia Water Company | Docket No. R-20172598203 | Rate of Return |
| Veolia Energy Philadelphia, Inc. | 06/17 | Veolia Energy Philadelphia, Inc | Docket No. R-20172593142 | Rate of Return |
| Emporium Water Company | 07/14 | Emporium Water Company | $\begin{aligned} & \hline \text { Docket No. R-2014- } \\ & 2402324 \end{aligned}$ | Rate of Return |
| Columbia Water Company | 07/13 | Columbia Water Company | Docket No. R-20132360798 | Rate of Return |
| Penn Estates Utilities, Inc. | 12/11 | Penn Estates, Utilities, Inc. | Docket No. R-20112255159 | Capital Structure / Long-Term Debt Cost Rate |
| South Carolina Public Service Commission |  |  |  |  |
| Blue Granite Water Co. | 12/19 | Blue Granite Water Company | Docket No. 2019-292-WS | Rate of Return |
| Carolina Water Service, Inc. | 02/18 | Carolina Water Service, Inc. | Docket No. 2017-292-WS | Rate of Return |
| Carolina Water Service, Inc. | 06/15 | Carolina Water Service, Inc. | Docket No. 2015-199-WS | Rate of Return |
| Carolina Water Service, Inc. | 11/13 | Carolina Water Service, Inc. | Docket No. 2013-275-WS | Rate of Return |
| United Utility Companies, Inc. | 09/13 | United Utility Companies, Inc. | Docket No. 2013-199-WS | Rate of Return |
| Utility Services of South Carolina, Inc. | 09/13 | Utility Services of South Carolina, Inc. | Docket No. 2013-201-WS | Rate of Return |
| Tega Cay Water Services, Inc. | 11/12 | Tega Cay Water Services, Inc. | Docket No. 2012-177-WS | Capital Structure |
| Tennessee Public Utility Commission |  |  |  |  |
| Piedmont Natural Gas Company | 07/20 | Piedmont Natural Gas Company | Docket No. 20-00086 | Return on Equity |
| Public Utility Commission of Texas |  |  |  |  |
| Oncor Electric Delivery Co. LLC | 05/22 | Oncor Electric Delivery Co. LLC | Docket No. 53601 | Return on Equity |
| Southwestern Public Service Co. | 02/21 | Southwestern Public Service Co. | Docket No. 51802 | Return on Equity |
| Southwestern Electric Power Co. | 10/20 | Southwestern Electric Power Co. | Docket No. 51415 | Rate of Return |


| Sponsor | Date | Case/Applicant | Docket No. | Subject |
| :--- | :---: | :--- | :--- | :--- |
| Virginia Natural Gas, Inc. | $04 / 21$ | Virginia Natural Gas, Inc. | PUR-2020-00095 | Return on Equity |
| Massanutten Public Service <br> Corporation | $12 / 20$ | Massanutten Public <br> Service Corporation | PUE-2020-00039 | Return on Equity |
| Aqua Virginia, Inc. | $07 / 20$ | Aqua Virginia, Inc. | PUR-2020-00106 | Rate of Return |
| WGL Holdings, Inc. | $07 / 18$ | Washington Gas Light <br> Company | PUR-2018-00080 | Rate of Return |
| Atmos Energy Corporation | $05 / 18$ | Atmos Energy Corporation | PUR-2018-00014 | Rate of Return |
| Aqua Virginia, Inc. | $07 / 17$ | Aqua Virgina, Inc. | PUR-2017-00082 | Rate of Return |
| Massanutten Public Service <br> Corp. | $08 / 14$ | Massanutten Public <br> Service Corp. | PUE-2014-00035 | Rate of Return / <br> Rate Design |
| Public Service Commission of West Virginia |  |  |  |  |
| Monongahela Power <br> Company and The Potomac <br> Edison Company | $12 / 21$ | Monongahela Power <br> Company and The <br> Potomac Edison Company | Case No. 21-0857-E-CN <br> (ELG) | Return on Equity |
| Monongahela Power <br> Company and The Potomac <br> Edison Company | Monongahela Power <br> Company and The <br> Potomac Edison Company | Case No. 21-0813-E-P <br> (Solar) | Return on Equity |  |

## Atmos Energy Corporation <br> Table of Contents <br> Supporting Attachments Accompanying the Direct Testimony of Dylan W. D'Ascendis, CRRA, CVA

Exhibit
Summary of Cost of Capital and Fair Rate of Return ..... 1
Indicated Common Equity Cost Rate Using the Discounted Cash Flow Model ..... 2
Indicated Common Equity Cost Rate Using the Risk Premium Model ..... 3
Indicated Common Equity Cost Rate Using the Capital Asset Pricing ModelBasis of Selection for the Non-Price Regulated CompaniesComparable in Total Risk to the Utility Proxy GroupCost of Common Equity Models Applied to theNon-Price Regulated Proxy Group6
Estimated Market Capitalization for Atmos Energy Corporation and the Utility Proxy Group ..... 7
Calculation of Flotation Costs ..... 8
Summary of Rate Adjustment Mechanisms in Place at the Utility Proxy Group ..... 9

## Atmos Energy Corporation

Recommended Capital Structure and Cost Rates
for Ratemaking Purposes

|  |  |  |  | Weighted <br> Type Of Capital |
| :--- | ---: | ---: | ---: | ---: |
|  |  | Ratios (1) |  | Cost Rate |
|  |  |  |  |  |
| Long-Term Debt Rate |  |  |  |  |

Notes:
(1) Company-provided
(2) From page 2 of this Exhibit.

Atmos Energy Corporation
Brief Summary of Common Equity Cost Rate

| Line No. | Principal Methods | Proxy Group of Six <br> Natural Gas <br> Distribution <br> Companies | Proxy Group of Six Natural Gas Distribution Companies (excl. PRPM) |
| :---: | :---: | :---: | :---: |
| 1. | Discounted Cash Flow Model (DCF) (1) | 9.73\% | 9.73\% |
| 2. | Risk Premium Model (RPM) (2) | 10.99\% | 10.73\% |
| 3. | Capital Asset Pricing Model (CAPM) (3) | 11.14\% | 11.13\% |
| 4. | Market Models Applied to Comparable Risk, Non-Price Regulated Companies (4) | 12.03\% | 12.02\% |
| 5. | Indicated Range of Common Equity Cost Rates before Adjustment for Company-Specific Risk | 9.73\%-12.03\% | 9.73\%-12.02\% |
| 6. | Size Adjustment (5) | 0.20\% | 0.20\% |
| 7. | Credit Risk Adjustment (6) | -0.06\% | -0.06\% |
| 8. | Flotation Cost Adjustment (7) | 0.05\% | 0.05\% |
| 9. | Recommended Range of Common Equity Cost Rates after Adjustment for Company-Specific Risk | 9.92\%-12.22\% | 9.92\%-12.21\% |
| 10 | Recommended Cost of Common Equity Cost Rate | 10.95\% |  |

Notes: (1) From page 1 of Exhibit DWD-2
(2) From page 1 of Exhibit DWD-3
(3) From page 1 of Exhibit DWD-4
(4) From page 1 of Exhibit DWD-6
(5) Adjustment to reflect the Company's greater business risk relative to the Utility Proxy Group as detailed in Mr. D'Ascendis' Direct Testimony.
(6) Company-specific risk adjustment to reflect Atmos' lower risk due to a lower long-term rating relative to the proxy group as detailed in Mr. D'Ascendis' Direct Testimony.
(7) From Exhibit DWD-8.
Atmos Energy Corporation



| CURRENT POSITION |  |  | 2020 | 2021 | 3/31/22 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cash Assets |  |  | 20.8 | 116.7 | 2.5 |
| Other |  |  | 450.5 | 722.0 | 2946.5 |
| Current Assets |  |  | 471.3 | 838.7 | 3529.0 |
| Accts Payable |  |  | 235.8 | 423.2 | 354.0 |
| Debt Due |  |  | 2 | 400.5 | 2201.4 |
|  |  |  | 546.4 | 686.7 | 653.0 |
| Current Liab. |  |  | 782.4 | 510.4 | 3208.4 |
| Fix. Chg. Cov. |  |  | 306\% | 457\% | 1445\% |
| ANNUAL RATES |  | $\mathrm{S} \quad \underset{10}{\mathrm{Pas}}$ |  | Est'd | d'19-'21 |
|  |  | -7.5 | \% -10. |  | 6.5\% |
| Revenues |  |  |  |  | 7.0\% |
|  |  | 8.5 | \% 8. | . $\%$ | 7.5\% |
| Earnings |  |  |  | \% | 7.0\% |
| ( Dividends |  | 8.5 | \% 11. |  | 7.5\% |
| Fiscal Year Ends | QUARTERLY REVENUES (\$ mill.) ${ }^{\text {A }}$ |  |  |  | Full Fiscal Year |
|  | Dec. 31 | Mar. 31 | Jun. 30 | Sep. 30 |  |
| 2019 | 877.8 | 1094.6 | 485.7 | 443.7 | 2901.8 |
| 2020 | 875.6 | 977.6 | 493.0 | 474.9 | 2821.1 |
| 2021 | 914.5 | 1319.1 | 605.6 | 568.3 | 3407.5 |
| 2022 | 1012.8 | 1649.8 | 640 | 597.4 | 3900 |
| 2023 | 1060 | 1720 | 730 | 690 | 4200 |
| Fiscal Year Ends | EARNINGS PER SHARE A B E |  |  |  | $\begin{aligned} & \text { Full } \\ & \text { Fiscal } \\ & \text { Year } \end{aligned}$ |
|  | Dec. 31 | Mar. 31 | Jun. 30 | Sep. 30 |  |
| 2019 | 1.38 | 1.82 | . 68 | . 49 | 4.35 |
| 2020 | 1.47 | 1.95 | . 79 | . 53 | 4.72 |
| 2021 | 1.71 | 2.30 | . 78 | . 37 | 5.12 |
| 2022 | 1.86 | 2.37 | . 82 | . 45 | 5.50 |
| 2023 | 2.02 | 2.43 | . 91 | . 54 | 5.90 |
| Cal-endar | QUARTERLY DIVIDENDS PAID ${ }_{\text {cm }}$ |  |  |  |  |
|  | Mar. 31 | Jun. 30 | Sep. 30 | Dec. 31 | Fear |
| 2018 | 485 | 485 | 485 | . 525 | 1.98 |
| 2019 | . 525 | . 525 | . 525 | . 575 | 2.15 |
| 2020 | . 575 | . 575 | . 575 | . 625 | 2.35 |
| 2021 | . 625 | . 625 | . 625 | . 68 | 2.56 |
| 2022 | 68 | 68 |  |  |  |

BUSINESS: Atmos Energy Corporation is engaged primarily in the
distribution and sale of natural gas to over three million customers through six regulated natural gas utility operations: Louisiana Division, West Texas Division, Mid-Tex Division, Mississippi Division, Colorado-Kansas Division, and Kentucky/Mid-States Division. Gas sales breakdown for fiscal 2021: $67.9 \%$, residential; $26.8 \%$, com-
Atmos Energy had a decent showing through the first half of fiscal 2022 (which ended last March 31st). Share net rose $5.5 \%$, to $\$ 4.23$, compared to $\$ 4.01$ for the same period in fiscal 2021. That was brought about partly by the distribution unit, helped by favorable rate case outcomes and an expanded customer base. A substantially diminished effective income tax rate also benefited the company. But the performance of the pipeline and storage division was held back a bit by heightened operating expenses. Nevertheless, assuming that the second half goes fairly well for Atmos, full-year earnings stand to increase around $7 \%$, to $\$ 5.50$ a share, relative to fiscal 2021's $\$ 5.12$ total. Regarding next year, share net might grow at a similar percentage rate, to $\$ 5.90$, as operating margins widen further.
The Financial Strength rating is A+. When the second quarter concluded, cash and equivalents resided at $\$ 582.5$ million. Also, long-term debt was manageable (roughly $40 \%$ of total capital) and shortterm commitments did not appear to be a major obstacle. Furthermore, $\$ 2.2$ billion
mercial; $3.6 \%$, industrial; and $1.7 \%$ other. The company sold Atmos Energy Marketing, 1/17. Officers and directors own approximately $.9 \%$ of common stock (12/21 Proxy). President and Chief Executive Officer: Kevin Akers. Incorporated: Texas. Address: Three Lincoln Centre, Suite 1800, 5430 LBJ Freeway, Dallas, Texas 75240. Telephone: 972-934-9227. Internet: www.atmosenergy.com.
remained available for issuance (out of \$5 billion) under a shelf registration statement expiring in June, 2024. Lastly, Atmos can access four revolving credit facilities aggregating $\$ 2.5$ billion plus a $\$ 1.5$ billion commercial paper program. So, there seems to be ample liquidity to satisfy working capital needs, capital expenditures, and other obligations for some time. Prospects out to 2025-2027 appear encouraging. The company ranks as one of the nation's largest natural gas-only distributors, with more than three million customers across several states, including Texas, Louisiana, and Mississippi. Moreover, we think the pipeline and storage segment has promising overall growth opportunities, given that it operates in one of the most-active drilling regions in the world. The healthy balance sheet is another positive.

## That said, these top-quality shares

 hold unimpressive long-term total return potential. Capital appreciation possibilities aren't exciting. Also, the dividend yield is below the average of Value Line's Natural Gas Utility group.Frederick L. Harris, III
May 27, 2022

[^10] of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic pubbication, service or product


| Cash Assets | 117.0 | 4.7 | 13.9 |  |
| :--- | :--- | ---: | ---: | ---: |
|  | Other | 505.3 | 629.6 | 542.1 |
|  | 622.3 | 634.3 | 556.0 | B |


| Accts Payable | 270.1 |  |  |
| :--- | ---: | ---: | ---: |
|  | 429.6 | 301.6 |  |
| Debt Due | 152.6 | 450.1 | 326.7 |
| Other | 111.0 | 171.7 | 253.8 |
| Current Liab. | 533.7 | 1051.4 | 882.1 |
| Fix. Chg. Cov. | $545 \%$ | $545 \%$ | $550 \%$ |
| ANNUAL RATES | Past | Past | Est'd '19-'21 |
| of change (per sh) | 10 Yrs. | 5 Yrs. | to '25-'27 |
| Revenues | $-3.0 \%$ | $-6.0 \%$ | $2.5 \%$ |
| "Cash Flow" | $7.0 \%$ | $4.5 \%$ | $5.0 \%$ |
| Earnings | $5.0 \%$ | $2.5 \%$ | $5.0 \%$ |
| Dividends | $6.5 \%$ | $6.5 \%$ | $5.0 \%$ |
| Book Value | $7.5 \%$ | $7.0 \%$ | $4.5 \%$ |


| Fiscal Year | QUARTERLY REVENUES (\$ mill.) A |  |  |  | $\begin{aligned} & \text { Full } \\ & \text { Fiscal } \\ & \text { Year } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ends | Dec. 31 | Mar 31 | Jun. 30 | Sep. 30 |  |
| 2019 | 811.8 | 866.2 | 434.9 | 479.1 | 2592.0 |
| 2020 | 615.0 | 639.6 | 299.0 | 400.1 | 1953.7 |
| 2021 | 454.3 | 802.2 | 367.6 | 532.5 | 2156.6 |
| 2022 | 675.8 | 912.3 | 430 | 481.9 | 2500 |
| 2023 | 695 | 930 | 450 | 495 | 2570 |
| Fiscal Year Ends | $\text { Dec. } 31$ | Ma | Ju | A B Sep. 30 | Full Fiscal Year |
| 2019 | . 61 | 1.27 | d. 20 | . 29 | 1.96 |
| 2020 | . 44 | 1.12 | d. 06 | . 57 | 2.07 |
| 2021 | . 46 | 1.77 | d. 15 | . 07 | 2.16 |
| 2022 | . 69 | 1.36 | d. 10 | . 35 | 2.30 |
| 2023 | . 73 | 1.38 | d. 08 | . 37 | 2.40 |
| Calendar | QUART <br> Mar. 31 | ERLY DIVI Jun. 30 | DENDS PA Sep. 30 | $\begin{aligned} & \text { ADC Cп } \\ & \text { Dec. } 31 \end{aligned}$ | Full Year |
| 2018 | . 273 | . 273 | . 273 | . 2925 | 1.11 |
| 2019 | . 2925 | . 2925 | . 2925 | . 3125 | 1.19 |
| 2020 | . 3125 | . 3125 | . 3125 | . 3325 | 1.27 |
| 2021 | . 3325 | . 3325 | . 3325 | . 3625 | 1.36 |
| 2022 | . 3625 | . 3625 |  |  |  |

## (A) Fiscal year ends Sept. 30th

(B) Diluted earnings. Qtly. revenues and egs. may not sum to total due to rounding and change in shares outstanding. Next earnings
report due early Aug.
(C) Dividends historically paid in early Jan. April, July, and October. ■ Dividend reinvestment plan available.

BUSINESS: New Jersey Resources Corp. is a holding company
providing retail/wholesale energy svcs. to customers in NJ, and in states from the Gulf Coast to New England, and Canada. New Jersey Natural Gas had 564,000 cust. at 9/30/21. Fiscal 2021 volume: 112 bill. cu. ft. ( $20 \%$ interruptible, $61 \%$ residential, commercial \& firm transportation, 19\% other). N.J. Natural Energy subsidiary pro-
Since our February review, shares of New Jersey Resources have continued to trend higher. In fact, the stock's price advanced another $9.5 \%$. In comparison, the S\&P 500 Index registered a downturn of nearly $10 \%$ for this same period.
Meanwhile, the retail and wholesale energy provider posted mixed Marchquarter results. To that point, revenues advanced $13.7 \%$, to $\$ 912.3$ million, besting our call for $\$ 855$ million. This reflected an impressive $49 \%$ spike in utility volumes, partially offset by a $9 \%$ downturn in nonutility volumes. On the margin front, total expenses increased 990 basis points, as a percentage of the top line. That margin compression completely offset the top-line growth, and after factoring in the dilutive effects of stock issuances, NJR's fiscal second-quarter (ended March 31, 2022) earnings declined $23 \%$, to $\$ 1.36$ a share. This fell short of our outlook of \$1.70.
We have left our fiscal 2022 (ends September 30th) bottom-line estimate unchanged at this time. Despite the lower-than-expected second-quarter earnings, management recently raised its guidance mange from $\$ 2.20-\$ 2.30$, to $\$ 2.30-\$ 2.40$ per
vides unregulated retail/wholesale natural gas and related energy svcs. 2021 dep. rate: $2.4 \%$. Has 1,251 empls. Off./dir. own less than $1 \%$ of common; BlackRock, 15.3\%; Vanguard, 10.6\% (12/21 Proxy). CEO, President \& Director: Steven D. Westhoven. Incorporated: New Jersey. Address: 1415 Wyckoff Road, Wall, NJ 07719. Telephone: 732-938-1480. Web: www.njiresources.com.
share. Our call of $\$ 2.30$ represents a year-over-year advance of about $6.5 \%$. Share net should be driven by an estimated uptick in the top line of approximately $16 \%$. This ought to be supported by the addition of more than 3,575 new customer accounts over the first half of the year. At the same time, steady contributions from the Storage \& Transportation arm will likely be nicely complementary this year. Alternatively, the Energy Services segment has been hurt by the increased volatility in energy prices over the past year. This will likely present some headwinds for the company as the year progresses.
At the recent quotation, these untimely shares have already realized the bulk of the earnings growth potential that we envision for the pull to 20252027. Due to this, the stock offers belowaverage capital appreciation potential over that time frame. That said, conservative investors will likely find the AboveAverage Safety rank and high Price Stability mark attractive features, given the recent market volatility. The attractive dividend yield is also a plus.

## Bryan J. Fong

May 27, 2022


| Cash Assets | 116.5 | 85.2 | 114.5 |
| :---: | :---: | :---: | :---: |
| Other | 1542.9 | 1835.6 | 1757.4 |
| Current Assets | 1659.4 | 1920.8 | 1871.9 |
| Accts Payable | 589.0 | 697.8 | 628.5 |
| Debt Due | 526.3 | 618.1 | 577.9 |
| Other | 1164.1 | 1430.3 | 1388.2 |
| Current Liab. | 2279.4 | 2746.2 | 2594.6 |
| Fix. Chg. Cov. | 250\% | 250\% | 255\% |

ANNUAL RATES Past Past Est'd '19-'21
$\begin{array}{llll}\text { of change (per sh) } & 10 \text { Yrs. } & 5 \text { Yrs. } & \text { to '25-'27 }\end{array}$ Revenues "Cash Flow" Earnings Dividends
Book Value

| Pars. | 5 Yrs. | to 25.27 |
| ---: | ---: | ---: |
| $-6.0 \%$ | $-5.0 \%$ | $5.5 \%$ |
| $.5 \%$ | $2.0 \%$ | $5.5 \%$ |
| $3.0 \%$ | $4.0 \%$ | $9.5 \%$ |
| $-1.0 \%$ | -- | $4.5 \%$ |
| $-3.0 \%$ | $-2.5 \%$ | $5.0 \%$ |

QUARTERLY REVENUES (\$ mill.) $\quad$ Full | endar | Mar. 31 | Jun. 30 | Sep. 30 | Dec. 31 | Year |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2019 | 1869.8 | 1010.4 | 9315 | 1397.2 | 52089 |

201918

| 2021 | 1605.5 | 962.7 | 902.5 | 1211.0 | 4681.7 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 2021 | 1545.6 | 986.0 | 959.4 | 1408.6 | 4899.6 |
| 2022 | 1873.3 | 1085 | 1035 | 1606.7 | 5600 | | 2022 | 1873.3 | 1085 | 1035 | 1606.7 | 5600 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2023 | 1960 | 1170 | 1120 | 1700 | 5950 |



| 2019 | .82 | .05 | -- | .45 | 1.31 |
| :---: | :---: | :---: | :---: | :---: | ---: |
| 2020 | .76 | .13 | .09 | .34 | 1.32 |
| 2021 | .77 | .13 | .11 | .39 | 1.37 |
| 2022 | .75 | .17 | .15 | .38 | 1.45 |
| 2023 | .80 | .20 | .20 | .40 | 1.60 |
| Cal- | QUARTERLY DIVIDENDS PAID B |  |  | Full |  |
| endar | Mar.31 | Jun.30 | Sep.30 | Dec. 31 | Year |
| 2018 | .195 | .195 | .195 | .195 | .78 |
| 2019 | .200 | .200 | .200 | .200 | .80 |
| 2020 | .21 | .21 | .21 | .21 | .84 |
| 2021 | .22 | .22 | .22 | .22 | .88 |
| 2022 | .235 | .235 |  |  |  |
|  |  |  |  |  |  |

BUSINESS: NiSource Inc. is a holding company for Northern Indiana Public Service Company (NIPSCO), which supplies electricity and gas to the northern third of Indiana. Customers: 479,185 electric in Indiana, 3,200,000 million gas in Indiana, Ohio, Pennsylvania, Kentucky, Virginia, Maryland, through its Columbia subsidiaries. Revenue breakdown, 2021: electrical, $31 \%$; gas, $69 \%$; other, less
Since our February review, shares of NiSource have continued on their upward trajectory. In fact, over that time frame, the stock's price advanced another roughly $7 \%$. In comparison, the S\&P 500 Index underwent a correction of approximately $10 \%$ over that same period.
Meantime, the supplier of electricity and gas to northern Indiana is off to a mixed start this year. To that point, revenues advanced $21.2 \%$, to $\$ 1.873$ billion, thanks to a solid, double-digit increase in customer revenues, partially offset by a modest decline in other volumes. This handily bested our call for $\$ 1.645$ billion. On the profitability front, total expenses declined 402 basis points, as a percentage of the top line. After accounting for the dilutive effects of a 13.3 million spike in the number of shares outstanding, NI's first-quarter share net fell $2.6 \%$, to $\$ 0.75$. This was modestly below our call for $\$ 0.80$. As a result, we have sliced a nickel off our 2022 and 2023 earnings estimates, $\$ 1.60$, respectively. In the current year, our revised call would still represent a
roughly $6 \%$ annual increase. This figure
than $1 \%$. Generating sources, coal, $69.4 \%$; purchased \& other, $30.6 \%$. 2021 reported depreciation rates: $2.9 \%$ electric, $2.2 \%$ gas. Has 7,304 employees. Chairman: Richard L. Thompson. President \& Chief Executive Officer: Lloyd Yates. Incorporated: Indiana. Address: 801 East 86th Avenue, Merrillville, Indiana 46410. Telephone: 877-647-5990. Internet: www.nisource.com.
also coincides with management's recently reiterated guidance range of $\$ 1.42$ to $\$ 1.48$. This ought to reflect an estimated revenue advance of more than $14 \%$, to $\$ 5.6$ billion. NiSource has roughly $\$ 10$ billion in capital growth projects on deck and planned to come into service through 2024. It is also transitioning away from coalfired generation and toward greener alternatives. Finally, the company has filed for roughly $\$ 475$ million in proposed rate-case increases across its various service territories. Those efforts ought to help the company recoup some of its already invested capital and offset growth costs.
This stock offers an above-average dividend yield when viewed against the Value Line median, which may appeal to income-oriented investors. That said, the stock's upside potential for the pull to 2025-2027 is below the Value Line median. What's more, momentum accounts would probably be better served elsewhere. Our Timeliness Ranking System has NiSource pegged to lag the broader market averages in the coming six to 12 months (Timeliness: 4).

## Bryan J. Fong

May 27, 2022
 '06, (11c); '07, 3¢;' '08, (\$1.14); '15, (30c); '18, Aug., Nov. - Div'd reinv. avail. $\quad \begin{aligned} & \text { (E) Spun off Columbia Pipeline Group (7/15) }\end{aligned}$ $\begin{array}{lll}\text { (\$1.48). Next egs. report due late July. Qtl'y } & \text { (C) Incl. intang in '21: } \$ 1485.9 \text { million, }\end{array}$ egs. may not sum to total due to rounding. $\$ 3.68 / \mathrm{sh}$.
© 2022 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind © 2022 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind.
THE PUBLISHER IS NOT RESPONSIBLE OR ANY ERRORS OR OMISIINS HEREIN. This publication is strictly for subscriber's own, non-commercial, internal use. No part of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or product



| Cal-endar | QUARTERLY REVENUES (\$ mill.) |  |  |  | Full Year |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mar. 31 | Jun. 30 | Sep. 30 | Dec. 31 |  |
| 2019 | 285.4 | 123.4 | 90.3 | 247.3 | 746.4 |
| 2020 | 285.2 | 135.0 | 93.3 | 260.2 | 773.7 |
| 2021 | 315.9 | 148.9 | 101.5 | 294.1 | 860.4 |
| 2022 | 350.3 | 150 | 110 | 279.7 | 890 |
| 2023 | 355 | 160 | 120 | 290 | 925 |
| $\begin{gathered} \text { Cal- } \\ \text { andar } \end{gathered}$ endar | EARNINGS PER SHARE A |  |  |  | Full Year |
| 2019 | 1.50 | . 07 | d. 61 | 1.26 | 2.19 |
| 2020 | 1.58 | d. 17 | d. 61 | 1.50 | 2.30 |
| 2021 | 1.94 | d. 02 | d. 67 | 1.31 | 2.56 |
| 2022 | 1.80 | . 01 | d. 56 | 1.30 | 2.55 |
| 2023 | 2.00 | . 05 | d. 55 | 1.35 | 2.85 |
|  | QUARTERLY DIVIDENDS PAID ${ }^{\text {B }}$ |  |  |  | Ill |
| endar | Mar. 31 | Jun. 30 | Sep. 30 | Dec. 31 | Year |
| 2018 | . 4725 | . 4725 | . 4725 | . 475 | 1.89 |
| 2019 | . 475 | . 475 | . 475 | . 4775 | 1.90 |
| 2020 | . 4775 | . 4775 | . 4775 | . 48 | 1.91 |
| 2021 | . 48 | . 48 | . 48 | . 483 | 1.92 |
| 2022 | . 483 | . 483 |  |  |  |

BUSINESS: Northwest Natural Holding Co. distributes natural gas to 1,000 communities, 775,000 customers, in Oregon ( $89 \%$ of customers) and in southwest Washington state. Principal cities served: Portland and Eugene, OR; Vancouver, WA. Service area population: 3.7 mill. ( $77 \%$ in OR). Company buys gas supply from Canadian and U.S. producers; has transportation rights on Northwest
Since our February review, shares of Northwest Natural Holding Co. have ticked modestly higher. In fact, the stock's price advanced nearly $7 \%$. In comparison, the S\&P 500 Index logged a correction of nearly $10 \%$ for that same period.
Meantime, the distributor of natural gas posted mixed financial results for the March quarter. On the upside, revenues increased $10.9 \%$, to $\$ 350.3$ million, thanks to incremental volumes associated
with the 10,800 natural gas meters added over the past 12 months. Additional benefits stemmed from a rate increase in Washington state. On the profitability front, total costs rose 498 basis points, as a percentage of the top line. After accountcrease in common stock outstanding, NWN's share net declined about $7 \%$, to $\$ 1.80$, versus the prior year. This was well below our call for $\$ 1.96$ per share.
Consequently, we have sliced $\$ 0.15$ off our bottom-line outlook for this year, to $\$ 2.55$ a share. Our revised figure would represent a less-than-1\% year-overyear earnings decline. This ought to reflect an estimated revenue advance of about Bryan J. Fons

Pipeline system. Owns local underground storage. Rev. breakdown: residential, $37 \%$; commercial, $22 \%$; industrial, gas transportation, $41 \%$. Employs 1,167. BlackRock Inc. owns $17.2 \%$ of shares; Vanguard, 11.8\%; Off./Dir., $.92 \%$ (4/22 proxy). CEO: David H. Anderson. Inc.: Oregon. Address: 220 NW 2nd Ave., Portland, OR 97209 . Tel.: $503-226-4211$. Internet: www.nwnatural.com.
$3.5 \%$, to $\$ 890$ million, as Northwest Natural continues to focus its efforts on growing its renewal operations, and moving its existing rate cases forward. In midDecember, it filed for a more-than- $\$ 365$ million hike with the Oregon Public Utility Commission, which is anticipated to go into effect around November 1st. The purpose of the higher rate is to support longterm investments in safety, reliability, and technology upgrades. That said, we look for costs to remain elevated as the year progresses. This will likely offset the topline gains and keep a lid on bottom-line growth until next year.
These shares have improved one notch in Timeliness since our last report. Still, they are ranked a 4 , suggesting NWN will lag the broader market averages in the year ahead. Meanwhile, the stock offers worthwhile capital appreciation potential for the pull to 2025-2027, even after reducing our 3- to 5 -year P/E multiple to 20 from 24. Additionally, NWN offers a dividend yield that is well above the Value Line median, which may appeal

May 27, 2022
(A) Diluted earnings per share. Excludes non- $\left(\right.$ (B) Dividends historically paid in mid-February, $\quad$ (D) Includes intangibles. In 2021: $\$ 70.6$ million, $\begin{array}{c}\text { Company's Financial Strength }\end{array}$ recurring items: '06, (\$0.06); '08, (\$0.03); '09, May, August, and November.

| ONEGAS, INC, NYSE-OGS |  |  | $\begin{aligned} & \text { RECENT } \\ & \text { PRICE } \end{aligned}$ | $85 .$ | $\left.\begin{array}{lll} \hline \text { P/E } & 21.2\left(\begin{array}{l} \text { Trailing: } 22.1 \\ \text { RATIO } \end{array}\right. \text { Median: NMF } \end{array}\right)$ |  |  |  | $\text { RELATIVE } 1.31$ |  | $\begin{array}{l\|l\|l\|} \hline & \text { DIV'D } \\ \hline \end{array}$ | $3.0 \%$ |  | $\begin{aligned} & \text { VALUE } \\ & \text { LINE } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TIMELINESS 3 Raised $5 / 3122$ |  | High: Low: | 44.3 31.9 | 51.8 38.9 | $\begin{aligned} & 67.4 \\ & 48.0 \end{aligned}$ | $\begin{aligned} & 79.5 \\ & 61.4 \end{aligned}$ | $\begin{aligned} & 87.8 \\ & 62.2 \end{aligned}$ | $\begin{aligned} & 96.7 \\ & 75.8 \end{aligned}$ | $\begin{aligned} & 97.0 \\ & 63.7 \end{aligned}$ | $\begin{aligned} & 81.9 \\ & 62.5 \end{aligned}$ | $\begin{aligned} & 92.3 \\ & 73.4 \end{aligned}$ |  |  | Target Price <br> 2025 2026 | Range 2027 |
|  | LEGENDS <br> 0.50 $\times$ Dividends $p$ sh <br> divived by Interest Rate <br> Onelative Srice Strength <br> Options: Yes <br> Shaded area indicates recession |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| TECHNICAL 1 Raised $5 / 20 / 22$.... divided by Int |  |  |  |  |  |  |  |  |  |  |  |  |  |  | -160 |
| BETA $.80 \quad(1.00=$ Market $) \quad$ Options: Yes $\begin{aligned} & \text { Shaded area indica } \\ & \text { Shan }\end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 18-Month Target Price Range  <br> Low-High Midpoint (\% to Mid) <br> $\$ 69-\$ 110$ $\$ 90(5 \%)$ |  |  |  |  |  |  |  |  | , |  | 1* |  |  |  | 100 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 80 |
|  |  |  |  |  |  |  |  |  |  |  | (1) |  |  |  | 60 |
| 2025-27 PROJECTIONS |  |  |  | $\left.11111\right\|^{\text {II }}$ |  |  |  |  |  |  |  |  |  |  |  |
| 2025-27    <br>  Price Gain Ann'l Total <br> High    <br> High 145 $(+70 \%)$ $16 \%$ <br> Low 105 $(+20 \%)$ $8 \%$ |  |  | "'1II |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | -20 |
| Institutional Decisions   <br>  102221 202021 <br>  302221  Percent |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} \text { T. RETURN } 4 / 22 \\ \text { THIS } \\ \text { THOCK } \\ \text { VLARITH.* } \\ \text { INDEX } \end{gathered}$ |  |
| to Buy 127 111 135 $\begin{array}{l}\text { Percent } \\ \text { Shares }\end{array}$ |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{ll}9.4 & -7.2 \\ 4.2 & 37.2\end{array}$ |  |
|  |  |  |  |  |  | 1 |  |  |  |  |  |  |  | $\begin{array}{lr}4.2 & 37.2 \\ 40.6 & 58.7\end{array}$ |  |
| The shares of ONE Gas, Inc. began trading "regular-way" on the New York Stock Exchange on February 3, 2014. That happened as a result of the separation of ONEOK's natural gas distribution operation. Regarding the details of the spinoff, on January 31, 2014, ONEOK distributed one share of OGS common stock for every four shares of ONEOK common stock held by ONEOK shareholders of record as of the close of business on January 21. It should be mentioned that ONEOK did not retain any ownership interest in the new company. | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | ${ }^{\circ} \mathrm{VAL}$ | UE LINE PUB. LLC | 25-27 |
|  | .- |  | 34.92 | 29.62 | 27.30 | 29.43 | 31.08 | 31.32 | 28.78 | 33.72 | 42.80 | 45.35 | Revenu | es per sh | 57.45 |
|  | -- |  | 4.52 | 4.82 | 5.43 | 5.96 | 6.32 | 6.96 | 7.36 | 7.71 | 8.25 | 8.70 | "Cash | low" per sh | 10.55 |
|  | -- |  | 2.07 | 2.24 | 2.65 | 3.02 | 3.25 | 3.51 | 3.68 | 3.85 | 4.05 | 4.25 | Earning | sper sh A | 5.30 |
|  |  |  | . 84 | 1.20 | 1.40 | 1.68 | 1.84 | 2.00 | 2.16 | 2.32 | 2.48 | 2.64 | Div'ds | Decl'd per sh Ba | 3.12 |
|  | $\cdots$ |  | 5.70 | 5.63 | 5.91 | 6.81 | 7.50 | 7.91 | 8.87 | 9.23 | 9.40 | 9.55 | Cap'IS | ending per sh | 9.85 |
|  |  |  | 34.45 | 35.24 | 36.12 | 37.47 | 38.86 | 40.35 | 42.01 | 43.81 | 59.70 | 60.65 | Book V | lue per sh | 71.60 |
|  | -- |  | 52.08 | 52.26 | 52.28 | 52.31 | 52.57 | 52.77 | 53.17 | 53.63 | 54.00 | 54.00 | Comme | Shs Outst'g ${ }^{\text {c }}$ | 57.00 |
|  |  |  | 17.8 | 19.8 | 22.7 | 23.5 | 23.1 | 25.3 | 21.7 | 18.9 | Bold figures are Value Line estimates |  | Avg Ann'I P/E Ratio |  | 23.5 |
|  | -- |  | . 94 | 1.00 | 1.19 | 1.18 | 1.25 | 1.35 | 1.11 | 1.03 |  |  | Relative P/E Ratio |  | 1.30 |
|  |  |  | 2.3\% | 2.7\% | 2.3\% | 2.4\% | 2.5\% | 2.3\% | 2.7\% | 3.2\% |  |  | Avg Ann'l Div'd Yield |  | 2.5\% |
|  | -- |  | 1818.9 | 1547.7 | 1427.2 | 1539.6 | 1633.7 | 1652.7 | 1530.3 | 1808.6 | 2310 | 2450 | Reve | es (\$mill) | 3275 |
|  |  |  | 109.8 | 119.0 | 140.1 | 159.9 | 172.2 | 186.7 | 196.4 | 206.4 | 218 | 230 | Net Pro | it (\$mill) | 300 |
|  | -- |  | 38.4\% | 38.0\% | 37.8\% | 36.4\% | 23.7\% | 18.7\% | 17.5\% | 16.3\% | 18.0\% | 18.5\% | Income | Tax Rate | 22.0\% |
| CAPITAL STRUCTURE as of $3 / 31 / 22$ <br> Total Debt $\$ 4188.8$ mill. Due in 5 Yrs $\$ 2900.0$ mill. <br> LT Debt $\$ 2283.6$ mill. LT Interest $\$ 140.0$ mill. | -- |  | 6.0\% | 7.7\% | 9.8\% | 10.4\% | 10.5\% | 11.3\% | 12.8\% | 11.4\% | 9.4\% | 9.4\% | Net Pro | it Margin | 9.2\% |
|  | -- | -- | 40.1\% | 39.5\% | 38.7\% | 37.8\% | 38.6\% | 37.7\% | 41.5\% | 61.0\% | 48.0\% | 49.0\% | Long-T | rm Debt Ratio | 52.0\% |
| (LT interest earned: 5.1x; total interest coverage: 5.1x) | -- | -- | 59.9\% | 60.5\% | 61.3\% | 62.2\% | 61.4\% | 62.3\% | 58.5\% | 39.0\% | 52.0\% | 51.0\% | Commo | Equity Ratio | 48.0\% |
| Leases, Uncapitalized Annual rentals $\$ 7.5$ mill. Pfd Stock None | -- | - | 2995.3 | 3042.9 | 3080.7 | 3153.5 | 3328.1 | 3415.5 | 3815.7 | 6032.9 | 6200 | 6420 | Total | pital (\$mill) | 8500 |
|  | -- | -- | 3293.7 | 3511.9 | 3731.6 | 4007.6 | 4283.7 | 4565.2 | 4867.1 | 5190.8 | 5500 | 5800 | Net Pla | t (\$mill) | 6750 |
|  | -. | - | 4.4\% | 4.7\% | 5.2\% | 5.8\% | 5.9\% | 6.4\% | 6.0\% | 3.9\% | 5.0\% | 5.0\% | Return | on Total Cap'I | 5.0\% |
|  | - | $\cdots$ | 6.1\% | 6.5\% | 7.4\% | 8.2\% | 8.4\% | 8.8\% | 8.8\% | 8.8\% | 7.0\% | 7.0\% | Return | on Shr. Equity | 7.5\% |
| Common Stock $54,089,905$ shs. as of 4/25/22 | -- | .- | 6.1\% | 6.5\% | 7.4\% | 8.2\% | 8.4\% | 8.8\% | 8.8\% | 8.8\% | 7.0\% | 7.0\% | Return | on Com Equity | 7.5\% |
| MARKET CAP: $\$ 4.6$ billion (Mid Cap) | - |  | 3.7\% | 3.1\% | 3.5\% | 3.7\% | 3.7\% | 3.8\% | 3.7\% | 3.5\% | 2.5\% | 2.5\% |  | do Com Eq | 3.0\% |
| $\begin{array}{llll}\text { CURRENT POSITION } & 2020 & 2021 & 3 / 31 / 22\end{array}$ | -- |  | 40\% | 53\% | 52\% | 55\% | 56\% | 56\% | 58\% | 60\% | 61\% | 62\% | All Div | ds to Net Prof | 59\% |


| (SMILL.) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cash Assets |  |  | 8.0 | 8.9 | . 4 |
|  |  |  | 531.92 | 2215.7 | 2262.1 |
| Current Assets |  |  | 539.92 | 2224.6 | 2274.5 |
| Accts Payable |  |  | 152.3 | 258.6 | 209.8 |
| Debt Due |  |  | 418.2 | 494.0 | 1905.2 |
| Other |  |  | 226.6 | 227.9 | 253.8 |
| Current Liab. 7 |  |  | 797.1 | 980.5 | 2368.8 |
| Fix. Chg. Cov. 5 |  |  | 587\% | 625\% | 632\% |
| ANNUAL RATES Past |  |  |  | Past Est'd'19-21 |  |
| of change (per sh) |  |  |  |  |  |
| Revenues |  |  |  | .5\% | 0.5\% |
| "Cash Flow" |  |  |  | 8.5\% | 6.5\% |
| Earnings |  |  |  | 9.5\% | 6.5\% |
| Dividends |  |  | 13. | 3.5\% | 6.5\% |
| Book Value |  |  |  | 3.5\% | 9.5\% |
| $\begin{array}{\|c} \text { Cal- } \\ \text { endar } \end{array}$ | QUARTERLY REVENUES (\$ mill.) |  |  |  | Full Year |
|  | Mar. 31 | Jun. 30 | Sep. 30 | Dec. 31 |  |
| 2019 | 661.0 | 290.6 | 248.6 | 452.5 | 1652.7 |
| 2020 | 528.2 | 273.3 | 244.6 | 484.2 | 1530.3 |
| 2021 | 625.3 | 315.6 | 273.9 | 593.8 | 1808.6 |
| 2022 | 971.5 | 400 | 323.5 | 615 | 2310 |
| 2023 | 1009 | 450 | 346 | 645 | 2450 |
| Cal-endar |  |  |  |  | Full Year |
|  | EARNINGS PER SHARE A <br> Mar. 31 Jun. 30 Sep. 30 Dec. 31 |  |  |  |  |
| 2019 | 1.76 | . 46 | . 33 | . 96 | 3.51 |
| 2020 | 1.72 | . 48 | . 39 | 1.09 | 3.68 |
| 2021 | 1.79 | . 56 | . 38 | 1.12 | 3.85 |
| 2022 | 1.83 | . 62 | . 45 | 1.15 | 4.05 |
| 2023 | 1.90 | . 67 | . 50 | 1.18 | 4.25 |
| Cal-endar | QUARTERLY DIVIDENDS PAID ${ }^{\text {B }}$ |  |  |  |  |
|  | Mar. 31 | Jun. 30 | Sep. 30 | Dec. 31 | Year |
| 2018 | 46 | . 46 | 46 | 46 | 1.84 |
| 2019 | . 50 | . 50 | . 50 | . 50 | 2.00 |
| 2020 | . 54 | . 54 | . 54 | 54 | 2.16 |
| 2021 | . 58 | . 58 | . 58 | 58 | 2.32 |
| 2022 | . 62 | . 62 |  |  |  |

BUSINESS: ONE Gas, Inc. provides natural gas distribution services to more than two million customers. There are three divisions: Oklahoma Natural Gas, Kansas Gas Service, and Texas Gas Service. The company purchased 164 Bcf of natural gas supply in 2021, compared to 153 Bcf in 2020. Total volumes delivered by customer (fiscal 2021): transportation, $59.3 \%$; residential, $30.4 \%$; commercial
ONE Gas' first-quarter 2022 results showed some improvement. Share net of $\$ 1.83$ was several pennies higher than last year's $\$ 1.79$ figure. That stemmed partially from benefits from new rates. Also, there was a rise in residential sales due to net customer growth. Bad-debt expense decreased, too. So, assuming that the business climate continues to be generally favorable over the course of the year, we believe that 2022 share net will increase around $5 \%$, to $\$ 4.05$, compared to the 2021 tally of $\$ 3.85$. Regarding next year, the company's bottom line might advance at a similar percentage rate, to $\$ 4.25$ a share, as operating margins expand further.
Prospects over the $\mathbf{2 0 2 5}-2027$ period appear promising. ONE Gas remains the top natural gas distributor (as measured by customer count) in both Oklahoma and Kansas, and holds the number-three position in Texas. Moreover, we think these markets have decent growth possibilities and are located in one of the most active drilling regions in the United States. Too, thanks to healthy finances, the company should continue to
\& industrial, $9.7 \%$; other, .6\%. ONE Gas has around 3,600 employees. BlackRock owns $12.2 \%$ of common stock; The Vanguard Group, 10.9\%; American Century Investment, 8.0\%; officers and directors, 1.5\% (4/22 Proxy). CEO: Robert S. McAnnally. Incorporated: Oklahoma. Address: 15 East Fifth Street, Tulsa, Oklahoma 74103. Tel.: 918-947-7000. Internet: www.onegas.com.
satisfy its working capital requirements, capital expenditures, and other commitments with little difficulty.
There are risks to bear in mind, though. ONE Gas' lack of geographic diversification leaves it somewhat more vulnerable to regional economic downturns and regulations. Also, there's competition from other energy suppliers, which include electric companies and propane dealers. Lastly, pipeline ruptures, leaks, and other unfortunate occurrences can take a big bite out of corporate profits if not adequately covered by insurance.
The good-quality stock has climbed roughly $15 \%$ in value since our last full-page report in February. It seems that can be traced, to some extent, to expectations of decent earnings for the energy provider in 2022. But the price action has dampened 3- to 5-year capital appreciation potential. Too, the dividend yield does not stand out from the average yield in Value Line's Natural Gas Utility group. Lastly, these shares are ranked to just approximate the market over the coming six to 12 months.
Frederick L. Harris, III
May 27, 2022


| Cash Assets | 4.1 | 4.3 | 8.3 |
| :--- | ---: | ---: | ---: |
| Other | 586.5 | 1312.2 | 1081.0 |
|  | 590.6 | 1316.5 | 1089.3 |


| Other | 586.5 | 1312.2 | 1081.0 |
| :---: | :---: | :---: | :---: |
| Current Assets | 590.6 | 1316.5 | 1089.3 |
| Accts Payable | 243.3 | 409.9 | 367.5 |
| Debt Due | 708.4 | 727.8 | 638.3 |
| Other | 497.5 | 470.6 | 390.0 |
| Current Liab. | 1449.2 | 1608.3 | 1395.8 |
| Fix. Chg. Cov. | 373\% | 448\% | 435\% |
| ANNUAL RATES | Past | Past Est | '19-'21 |
| of change (per sh) | 10 Yrs. | 5 Yrs. | '25-27 |
| Revenues | -6.5\% | -- | 8.5\% |
| "Cash Flow" | 5.0\% | 6.0\% | 7.5\% |
| Earnings | 2.0\% | 2.5\% | 9.0\% |
| Dividends | 4.5\% | 6.0\% | 5.0\% |
| Book Value | 6.5\% | 4.5\% | 7.0\% |


$\left.$| Fiscal <br> Year <br> Ends | QUARTERLY REVENUES (\$ mill.)A <br> Dec.31 |  |  | Mar.31 | Jun.30 |
| :---: | :---: | :---: | :---: | :---: | :---: | | Full |
| :---: |
| Sep.30 | | Fiscal |
| ---: |
| Year | \right\rvert\,

BUSINESS: Spire Inc., formerly known as the Laclede Group, Inc., is a holding company for natural gas utilities, which distributes natural gas across Missouri, including the cities of St. Louis and Kansas City, Alabama, and Mississippi. Has roughly 1.7 million customers. Acquired Missouri Gas 9/13, Alabama Gas Co 9/14. Utility therms sold and transported in fiscal 2021: 3.3 bill. Revenue mix for regu-
It's been a difficult year, thus far, for Spire Inc. (Fiscal 2022 ends on September 30th.) In fact, first-half share net of $\$ 4.28$ plummeted about $18 \%$, compared to the prior-year tally of $\$ 5.20$. This stemmed partially from substantially lower profits from the Gas Marketing unit, as fiscal 2021's results enjoyed very favorable market conditions created by extreme weather associated with Winter Storm Uri. Moreover, the Gas Utility division was held back, to a certain extent, by higher operating expenses. So, right now, it seems that full-year share net will plunge more than $20 \%$, to $\$ 3.90$, relative to fiscal 2021's $\$ 4.96$ figure. Please be aware that our fiscal 2023 estimate of $\$ 4.35$ a share is a bit tentative, in part, because of a pending rate case in Missouri. Too, the company is authorized by the Federal Energy Regulatory Commission to operate the key Spire STL Pipeline, temporarily, while it reviews whether permanent approval should be granted. (Leadership expects the process to continue into calendar 2023.)
The Financial Strength rating is B++. When the March period concluded, cash
lated operations: residential, 58\%; commercial and industrial, 28\%; transportation, $6 \%$; other, $8 \%$. Has about 3,710 employees. Officers and directors own 3.0\% of common shares; BlackRock, 11.5\% (1/22 proxy). Chairman: Edward Glotzzach; CEO: Suzanne Sitherwood. Inc.: Missouri. Address: 700 Market Street, St. Louis, Missouri 63101. Tel.: 314-342-0500. Internet: www.spireenergy.com.
Furthermore, there was $\$ 975$ million available through a revolving credit facility maturing in October, 2023. Elsewhere, long-term debt was a manageable $53 \%$ of total capital, and short-term borrowings were not a major stumbling block. So, Spire ought to be able to meet its various obligations for a while.

## We are optimistic about the compa-

 ny's performance out to 2025-2027. The gas utilities boast 1.7 million customers in Mississippi, Alabama, and Missouri, providing a measure of regional diversity. Also, the other businesses, especially pipelines, hold promise. Additional expansionary projects and technological enhancements in customer service and elsewhere should aid Spire, as well. Finally, acquisitions are plausible, supported by the decent balance sheet.These good-quality shares offer a solid dividend yield. Steady hikes in the payout appear to be in store during the 3to 5 -year period, too. But recent price strength has diminished long-term capital appreciation potential. Meanwhile, the stock is untimely.
Frederick L. Harris, III
May 27, 2022

[^11]
## Atmos Energy Corporation <br> Summary of Risk Premium Models for the Proxy Group of Six Natural Gas Distribution Companies

|  | Proxy Group of Six |
| :---: | :---: |
| Proxy Group of Six | Natural Gas |
| Natural Gas | Distribution |
| Distribution | Companies (excl. |
| Companies | PRPM) |

Predictive Risk Premium
Model (PRPM) (1)
11.16 \%

NA

Risk Premium Using an
Adjusted Total Market
Approach (2)

|  | 11.16 | \% | NA |
| :---: | :---: | :---: | :---: |
|  | 10.81 | \% | 10.73 |
| Average | 10.99 | \% | 10.73 |

Notes:
(1) From page 2 of this Exhibit.
(2) From page 3 of this Exhibit.
Atmos Energy Corporation

$$
\frac{\text { Atmos Energited ROE }}{\text { Indicated ROM }}
$$

Derived by the Predictive Risk Premium Model (1)


Atmos Energy Corporation
Indicated Common Equity Cost Rate
Through Use of a Risk Premium Model
Using an Adjusted Total Market Approach

| $\underline{\text { Line No. }}$ |  | Proxy Group of Six Natural Gas Distribution Companies | Proxy Group of Six <br> Natural Gas <br> Distribution <br> Companies (excl. <br> PRPM) |
| :---: | :---: | :---: | :---: |
| 1. | Prospective Yield on Aaa Rated Corporate Bonds (1) | 4.73 \% | 4.73 \% |
| 2. | Adjustment to Reflect Yield Spread Between Aaa Rated Corporate Bonds and A2 Rated Public Utility Bonds | 0.57 (2) | 0.57 (2) |
| 3. | Adjusted Prospective Yield on A2 Rated Public Utility Bonds | 5.30 \% | 5.30 \% |
| 4. | Equity Risk Premium (3) | 5.51 | 5.43 |
| 5. | Risk Premium Derived Common Equity Cost Rate | 10.81 \% | 10.73 \% |

Notes: (1) Consensus forecast of Moody's Aaa Rated Corporate bonds from Blue Chip Financial Forecasts (see pages 10 and 11 of this Exhibit).
(2) The average yield spread of A2 rated public utility bonds over Aaa rated corporate bonds of $0.57 \%$ from page 4 of this Exhibit.
(3) From page 7 of this Exhibit.

Atmos Energy Corporation
Interest Rates and Bond Spreads for Moody's Corporate and Public Utility Bonds

Selected Bond Yields - Moody's

|  | [1] | [2] | [3] | [4] |
| :---: | :---: | :---: | :---: | :---: |
|  | Aaa Rated Corporate Bond | Aa Rated Public Utility Bond | A2 Rated Public Utility Bond | Baa2 Rated Public Utility Bond |
| May-2022 | 4.13 \% | 4.55 \% | 4.75 \% | 5.07 \% |
| Apr-2022 | 3.75 | 4.09 | 4.30 | 4.60 |
| Mar-2022 | 3.43 | 3.81 | 3.98 | 4.28 |
| Average | 3.77 \% | 4.15 \% | 4.34 \% | 4.65 \% |

## Selected Bond Spreads

A2 Rated Public Utility Bonds Over Aaa Rated Corporate Bonds:

$$
0.57 \text { \% (1) }
$$

Baa2 Rated Public Utility Bonds Over A2 Rated Public Utility Bonds:
0.31 \% (2)

A2 Rated Public Utility Bonds Over Aa2 Rated Public Utility Bonds:

Notes:
(1) Column [3] - Column [1].
(2) Column [4] - Column [3].
(3) Column [3] - Column [2].

Source of Information:
Bloomberg Professional Service

Atmos Energy Corporation
Comparison of Long-Term Issuer Ratings for Proxy Group of Six Natural Gas Distribution Companies

| Moody's |
| :---: |
| Long-Term Issuer Rating |
| May 2022 |


| Standard \& Poor's |
| :---: |
| Mang-Term Issuer Rating 2022 |


| Proxy Group of Six Natural Gas Distribution Companies | Long-Term Issuer Rating (1) | $\begin{gathered} \text { Numerical } \\ \text { Weighting (2) } \end{gathered}$ | Long-Term Issuer Rating (1) | Numerical <br> Weighting (2) |
| :---: | :---: | :---: | :---: | :---: |
| Atmos Energy Corporation | A1 | 5.0 | A- | 7.0 |
| New Jersey Resources Corporation | A1 | 5.0 | NR | -- |
| NiSource Inc. | Baa1 | 8.0 | BBB+ | 8.0 |
| Northwest Natural Holding Company | Baa1 | 8.0 | A+ | 5.0 |
| ONE Gas, Inc. | A3 | 7.0 | BBB+ | 8.0 |
| Spire Inc. | A1/A2 | 5.5 | A- | 7.0 |
| Average | A2 | 6.4 | A- | 7.0 |

Notes:
(1) Ratings are that of the average of each company's utility operating subsidiaries.
(2) From page 6 of this Exhibit.

# Numerical Assignment for <br> Moody's and Standard \& Poor's Bond Ratings 

| Moody's Bond Rating | Numerical Bond Weighting | Standard \& Poor's Bond Rating |
| :---: | :---: | :---: |
| Aaa | 1 | AAA |
| Aa1 | 2 | AA+ |
| Aa2 | 3 | AA |
| Aa3 | 4 | AA- |
| A1 | 5 | A+ |
| A2 | 6 | A |
| A3 | 7 | A- |
| Baa1 | 8 | BBB+ |
| Baa2 | 9 | BBB |
| Baa3 | 10 | BBB- |
| Ba1 | 11 | BB+ |
| Ba2 | 12 | BB |
| Ba3 | 13 | BB- |
| B1 | 14 | B+ |
| B2 | 15 | B |
| B3 | 16 | B- |

Atmos Energy Corporation<br>Judgment of Equity Risk Premium for<br>Proxy Group of Six Natural Gas Distribution Companies

| $\begin{gathered} \text { Line } \\ \text { No. } \\ \hline \end{gathered}$ |  | Proxy Group of Six <br> Natural Gas <br> Distribution <br> Companies | Proxy Group of Six <br> Natural Gas <br> Distribution <br> Companies (excl. <br> PRPM) |
| :---: | :---: | :---: | :---: |
| 1. | Calculated equity risk premium based on the total market using the beta approach (1) | 6.48 \% | 6.44 \% |
| 2. | Mean equity risk premium based on a study using the holding period returns of public utilities with A rated bonds (2) | 5.05 | 4.85 |
| 3. | Predicted Equity Risk Premium Based on Regression Analysis of 810 Fully-Litigated Natural Gas Utility Rate Cases (3) | 5.00 | 5.00 |
| 4. | Average equity risk premium | 5.51 \% | 5.43 \% |

Notes: (1) From page 8 of this Exhibit.
(2) From page 12 of this Exhibit.
(3) From page 13 of this Exhibit.

Atmos Energy Corporation
Derivation of Equity Risk Premium Based on the Total Market Approach
Using the Beta for the
Proxy Group of Six Natural Gas Distribution Companies

| Line No. | Equity Risk Premium Measure | Proxy Group of Six Natural Gas Distribution Companies | Proxy Group of Six Natural Gas Distribution Companies (excl. PRPM) |
| :---: | :---: | :---: | :---: |
| 1. | Ibbotson Equity Risk Premium (1) | 6.13 \% | 6.13 \% |
| 2. | Regression on Ibbotson Risk Premium Data (2) | 7.67 | 7.67 |
| 3. | Ibbotson Equity Risk Premium based on PRPM (3) | 8.79 | NA |
| 4. | Equity Risk Premium Based on Value Line Summary and Index (4) | 9.37 | 9.37 |
| 5. | Equity Risk Premium Based on Value Line S\&P 500 Companies (5) | 11.56 | 11.56 |
| 6. | Equity Risk Premium Based on Bloomberg S\&P 500 Companies (6) | 7.62 | 7.62 |
| 7. | Conclusion of Equity Risk Premium | 8.52 \% | 8.47 \% |
| 8. | Adjusted Beta (7) | 0.76 | 0.76 |
| 9. | Forecasted Equity Risk Premium | 6.48 \% | 6.44 \% |

Notes provided on page 9 of this Exhibit.

Atmos Energy Corporation<br>Derivation of Equity Risk Premium Based on the Total Market Approach Using the Beta for the<br>Proxy Group of Six Natural Gas Distribution Companies

Notes:
(1) Based on the arithmetic mean historical monthly returns on large company common stocks from Ibbotson® SBBI® 2022 Market Report minus the arithmetic mean monthly yield of Moody's average Aaa and Aa corporate bonds from 1928-2021.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of large company common stocks relative to Moody's average Aaa and Aa2 rated corporate bond yields from 1928-2021 referenced in Note 1 above. Using the equation generated from the regression, an expected equity risk premium is calculated using the average consensus forecast of Aaa corporate bonds of 4.73\% (from page 3 of this Exhibit).
(3) The Predictive Risk Premium Model (PRPM) is discussed in the accompanying direct testimony. The Ibbotson equity risk premium based on the PRPM is derived by applying the PRPM to the monthly risk premiums between Ibbotson large company common stock monthly returns and average Aaa and Aa corporate monthly bond yields, from January 1928 through May 2022.
(4) The equity risk premium based on the Value Line Summary and Index is derived by subtracting the average consensus forecast of Aaa corporate bonds of $4.73 \%$ (from page 3 of this Exhibit) from the projected 3-5 year total annual market return of $14.10 \%$ (described fully in note 1 on page 2 of Exhibit DWD-4).
(5) Using data from Value Line for the S\&P 500, an expected total return of $16.29 \%$ was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of $4.73 \%$ results in an expected equity risk premium of $11.56 \%$.
(6) Using data from the Bloomberg Professional Service for the S\&P 500, an expected total return of $12.35 \%$ was derived based upon expected dividend yields and long-term earnings growth estimates as a proxy for capital appreciation. Subtracting the average consensus forecast of Aaa corporate bonds of $4.73 \%$ results in an expected equity risk premium of $7.62 \%$.
(7) Average of mean and median beta from Exhibit DWD-4.

## Sources of Information:

Stocks, Bonds, Bills, and Inflation - 2022 SBBI Yearbook, John Wiley \& Sons, Inc. Industrial Manual and Mergent Bond Record Monthly Update.
Value Line Summary and Index
Blue Chip Financial Forecasts, June 1, 2022
Bloomberg Professional Service

## Consensus Forecasts of U.S. Interest Rates and Key Assumptions

Interest Rates
Federal Funds Rate
Prime Rate
SOFR
Commercial Paper, 1-mo.
Treasury bill, 3 -mo.
Treasury bill, $6-\mathrm{mo}$.
Treasury bill, 1 yr.
Treasury note, 2 yr.
Treasury note, 5 yr.
Treasury note, 10 yr.
Treasury note, 30 yr.
Corporate Aaa bond
Corporate Baa bond
State \& Local bonds
Home mortgage rate

Key Assumptions
Fed's AFE $\$$ Index
Real GDP
GDP Price Index
Consumer Price Index
PCE Price Index

| ----------------------------------History------------------------------------------ |  |  |  |  |  |  |  | Consensus Forecasts-Quarterly Avg. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -------Average For Week Ending------ |  |  |  | ----Average For Month--- Latest Qtr |  |  |  | 2Q | 3Q | 4Q | 1Q | 2Q | 3Q |
| May 20 | May 13 | May 6 | Apr 29 | Apr | Mar | Feb | 1Q 2022 | $\underline{2022}$ | $\underline{2022}$ | 2022 | 2023 | $\underline{2023}$ | $\underline{2023}$ |
| 0.83 | 0.83 | 0.33 | 0.33 | 0.33 | 0.20 | 0.08 | 0.12 | 1.0 | 1.9 | 2.4 | 2.8 | 3.0 | 3.1 |
| 4.00 | 4.00 | 3.50 | 3.50 | 3.50 | 3.37 | 3.25 | 3.29 | 4.0 | 5.0 | 5.5 | 5.9 | 6.1 | 6.2 |
| 0.79 | 0.78 | 0.49 | 0.28 | 0.29 | 0.16 | 0.05 | 0.09 | 0.9 | 1.8 | 2.3 | 2.7 | 2.9 | 3.0 |
| 0.83 | 0.82 | 0.71 | 0.55 | 0.44 | 0.32 | 0.16 | 0.18 | 0.9 | 1.8 | 2.4 | 2.8 | 3.0 | 3.0 |
| 1.05 | 0.94 | 0.88 | 0.85 | 0.76 | 0.45 | 0.31 | 0.30 | 1.1 | 1.9 | 2.4 | 2.7 | 2.9 | 3.0 |
| 1.54 | 1.44 | 1.43 | 1.40 | 1.26 | 0.86 | 0.64 | 0.61 | 1.5 | 2.2 | 2.6 | 2.9 | 3.1 | 3.1 |
| 2.11 | 2.00 | 2.10 | 2.03 | 1.89 | 1.34 | 1.00 | 0.96 | 2.0 | 2.6 | 2.9 | 3.1 | 3.2 | 3.2 |
| 2.64 | 2.61 | 2.72 | 2.62 | 2.54 | 1.91 | 1.44 | 1.44 | 2.6 | 2.9 | 3.1 | 3.2 | 3.3 | 3.2 |
| 2.86 | 2.89 | 3.00 | 2.84 | 2.78 | 2.11 | 1.81 | 1.82 | 2.8 | 3.1 | 3.2 | 3.3 | 3.4 | 3.4 |
| 2.87 | 2.94 | 3.01 | 2.83 | 2.75 | 2.13 | 1.93 | 1.94 | 2.9 | 3.1 | 3.2 | 3.3 | 3.4 | 3.4 |
| 3.07 | 3.09 | 3.10 | 2.91 | 2.81 | 2.41 | 2.25 | 2.25 | 3.0 | 3.3 | 3.4 | 3.5 | 3.6 | 3.6 |
| 4.43 | 4.42 | 4.40 | 4.19 | 4.01 | 3.63 | 3.36 | 3.35 | 4.1 | 4.5 | 4.7 | 4.8 | 4.9 | 4.9 |
| 5.13 | 5.10 | 5.06 | 4.84 | 4.63 | 4.23 | 3.92 | 3.90 | 5.0 | 5.4 | 5.6 | 5.7 | 5.8 | 5.8 |
| 4.09 | 4.03 | 3.93 | 3.84 | 3.70 | 3.30 | 3.01 | 3.02 | 3.5 | 3.8 | 4.0 | 4.1 | 4.2 | 4.2 |
| 5.25 | 5.30 | 5.27 | 5.10 | 4.98 | 4.17 | 3.76 | 3.79 | 5.1 | 5.3 | 5.5 | 5.6 | 5.6 | 5.5 |
|  |  |  | -Histo |  |  |  |  |  | nsens | F Fore | casts- | Quarte |  |
| 2Q | 3Q | 4Q | 1Q | 2Q | 3Q | 4Q | 1Q | 2 Q | 3Q | 4Q | $1 Q$ | 2 Q | 3 Q |
| $\underline{2020}$ | $\underline{2020}$ | $\underline{2020}$ | $\underline{2021}$ | $\underline{2021}$ | $\underline{2021}$ | $\underline{2021}$ | $\underline{2022}$ | $\underline{2022}$ | 2022 | 2022 | 2023 | 2023 | $\underline{2023}$ |
| 112.4 | 107.2 | 105.1 | 103.4 | 102.9 | 105.0 | 107.0 | 108.4 | 112.7 | 113.9 | 114.1 | 114.0 | 113.6 | 112.9 |
| -31.2 | 33.8 | 4.5 | 6.3 | 6.7 | 2.3 | 6.9 | -1.5 | 2.9 | 2.5 | 2.2 | 1.8 | 1.6 | 1.6 |
| -1.5 | 3.6 | 2.2 | 4.3 | 6.1 | 6.0 | 7.1 | 8.1 | 5.9 | 4.6 | 3.5 | 3.1 | 2.8 | 2.7 |
| -3.4 | 4.8 | 2.2 | 4.1 | 8.2 | 6.7 | 7.9 | 9.2 | 7.6 | 4.8 | 3.4 | 3.0 | 2.6 | 2.6 |
| -1.6 | 3.7 | 1.5 | 3.8 | 6.5 | 5.3 | 6.4 | 7.0 | 5.8 | 4.3 | 3.2 | 2.8 | 2.6 | 2.5 |

Forecasts for interest rates and the Federal Reserve's Major Currency Index represent averages for the quarter. Forecasts for Real GDP, GDP Price Index, PCE Price Index and Consumer Price Index are seasonally-adjusted annual rates of change (saar). Individual panel members' forecasts are on pages 4 through 9 . Historical data: Treasury rates from the Federal Reserve Board's H.15; AAA-AA and A-BBB corporate bond yields from Bank of America-Merrill Lynch and are 15+ years, yield to maturity; State and local bond yields from Bank of America-Merrill Lynch, A-rated, yield to maturity; Mortgage rates from Freddie Mac, 30-year, fixed; LIBOR quotes from Intercontinental Exchange. All interest rate data are sourced from Haver Analytics. Historical data for Fed's Major Currency Index are from FRSR H.10. Historical data for Real GDP, GDP Price Index and PCE Price Index are from the Bureau of Economic Analysis (BEA). Consumer Price Index history is from the Department of Labor's Bureau of Labor Statistics (BLS).


Corporate Bond Spreads


US 3-Mo T-Bills \& 10-Yr T-Note Yield


## U.S. Treasury Yield Curve

As of week ended May 20, 2022


## Long-Range Survey:

The table below contains the results of our twice-annual long-range CONSENSUS survey. There are also Top 10 and Bottom 10 averages for each variable. Shown are consensus estimates for the years 2023 through 2028 and averages for the five-year periods 2024-2028 and 2029-2033. Apply these projections cautiously. Few if any economic, demographic and political forces can be evaluated accurately over such long time spans.

|  |  | 2023 |  |  |  |  | 2028 | Five-Year Averages |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2024 | 2025 | 2026 | 2027 |  | 2024-2028 | 2029-2033 |
| 1. Federal Funds Rate | consensus | 3.0 | 2.7 | 2.5 | 2.5 | 2.5 | 2.5 | 2.6 | 2.5 |
|  | Top 10 Average | 3.5 | 3.3 | 3.0 | 2.8 | 2.8 | 2.8 | 3.0 | 2.8 |
|  | Bottom 10 Average | 2.6 | 2.1 | 2.0 | 2.2 | 2.2 | 2.2 | 2.2 | 2.1 |
| 2. Prime Rate | consensus | 6.1 | 5.9 | 5.7 | 5.6 | 5.6 | 5.6 | 5.7 | 5.6 |
|  | Top 10 Average | 6.6 | 6.4 | 6.1 | 6.0 | 6.0 | 6.0 | 6.1 | 5.9 |
|  | Bottom 10 Average | 5.6 | 5.3 | 5.2 | 5.3 | 5.3 | 5.3 | 5.3 | 5.2 |
| 3. SOFR | consensus | 3.0 | 2.8 | 2.5 | 2.5 | 2.5 | 2.5 | 2.6 | 2.5 |
|  | Top 10 Average | 3.4 | 3.3 | 3.0 | 2.9 | 2.8 | 2.8 | 3.0 | 2.8 |
|  | Bottom 10 Average | 2.7 | 2.2 | 2.0 | 2.2 | 2.2 | 2.2 | 2.2 | 2.1 |
| 4. Commercial Paper, 1-Mo | consensus | 3.2 | 2.9 | 2.6 | 2.6 | 2.6 | 2.6 | 2.7 | 2.6 |
|  | Top 10 Average | 3.5 | 3.4 | 3.1 | 2.9 | 2.9 | 2.9 | 3.0 | 2.9 |
|  | Bottom 10 Average | 2.8 | 2.5 | 2.3 | 2.4 | 2.4 | 2.3 | 2.3 | 2.3 |
| 5. Treasury Bill Yield, 3-Mo | CONSENSUS | 3.0 | 2.8 | 2.6 | 2.6 | 2.6 | 2.5 | 2.6 | 2.5 |
|  | Top 10 Average | 3.6 | 3.4 | 3.1 | 3.1 | 3.0 | 2.9 | 3.1 | 2.9 |
|  | Bottom 10 Average | 2.5 | 2.2 | 2.0 | 2.1 | 2.2 | 2.2 | 2.1 | 2.2 |
| 6. Treasury Bill Yield, 6-Mo | consensus | 3.2 | 2.9 | 2.7 | 2.7 | 2.7 | 2.6 | 2.7 | 2.6 |
|  | Top 10 Average | 3.8 | 3.6 | 3.2 | 3.2 | 3.1 | 3.0 | 3.2 | 3.0 |
|  | Bottom 10 Average | 2.6 | 2.2 | 2.1 | 2.2 | 2.3 | 2.3 | 2.2 | 2.3 |
| 7. Treasury Bill Yield, 1-Yr | CONSENSUS | 3.2 | 3.0 | 2.9 | 2.9 | 2.8 | 2.8 | 2.9 | 2.8 |
|  | Top 10 Average | 3.9 | 3.8 | 3.5 | 3.4 | 3.3 | 3.2 | 3.4 | 3.2 |
|  | Bottom 10 Average | 2.6 | 2.4 | 2.2 | 2.4 | 2.4 | 2.4 | 2.3 | 2.4 |
| 8. Treasury Note Yield, 2-Yr | consensus | 3.4 | 3.2 | 3.1 | 3.1 | 3.0 | 3.0 | 3.1 | 3.0 |
|  | Top 10 Average | 4.3 | 4.1 | 3.8 | 3.6 | 3.5 | 3.5 | 3.7 | 3.5 |
|  | Bottom 10 Average | 2.7 | 2.4 | 2.3 | 2.5 | 2.6 | 2.5 | 2.4 | 2.5 |
| 9. Treasury Note Yield, 5-Yr | CONSENSUS | 3.5 | 3.4 | 3.3 | 3.3 | 3.3 | 3.2 | 3.3 | 3.3 |
|  | Top 10 Average | 4.3 | 4.2 | 4.1 | 3.9 | 3.8 | 3.8 | 3.9 | 3.8 |
|  | Bottom 10 Average | 2.8 | 2.6 | 2.5 | 2.7 | 2.7 | 2.7 | 2.6 | 2.8 |
| 10. Treasury Note Yield, 10-Yr | CONSENSUS | 3.5 | 3.5 | 3.4 | 3.5 | 3.5 | 3.4 | 3.5 | 3.5 |
|  | Top 10 Average | 4.4 | 4.4 | 4.2 | 4.2 | 4.1 | 4.1 | 4.2 | 4.1 |
|  | Bottom 10 Average | 2.8 | 2.5 | 2.6 | 2.9 | 2.9 | 2.8 | 2.7 | 2.8 |
| 11. Treasury Bond Yield, $30-\mathrm{Yr}$ | CONSENSUS | 3.8 | 3.8 | 3.8 | 3.9 | 3.8 | 3.8 | 3.8 | 3.9 |
|  | Top 10 Average | 4.6 | 4.7 | 4.5 | 4.5 | 4.4 | 4.5 | 4.5 | 4.5 |
|  | Bottom 10 Average | 3.0 | 2.9 | 3.0 | 3.3 | 3.2 | 3.2 | 3.1 | 3.2 |
| 12. Corporate Aaa Bond Yield | consensus | 5.0 | 5.0 | 4.9 | 5.0 | 5.0 | 4.9 | 4.9 | 5.0 |
|  | Top 10 Average | 5.7 | 5.7 | 5.6 | 5.5 | 5.5 | 5.5 | 5.5 | 5.6 |
|  | Bottom 10 Average | 4.4 | 4.2 | 4.3 | 4.4 | 4.4 | 4.4 | 4.3 | 4.4 |
| 13. Corporate Baa Bond Yield | CONSENSUS | 6.0 | 5.9 | 5.8 | 5.9 | 5.9 | 5.9 | 5.9 | 5.9 |
|  | Top 10 Average | 6.6 | 6.6 | 6.4 | 6.3 | 6.3 | 6.3 | 6.4 | 6.4 |
|  | Bottom 10 Average | 5.4 | 5.3 | 5.2 | 5.4 | 5.4 | 5.4 | 5.3 | 5.4 |
| 14. State \& Local Bonds Yield | CONSENSUS | 4.3 | 4.3 | 4.2 | 4.3 | 4.3 | 4.3 | 4.3 | 4.3 |
|  | Top 10 Average | 5.0 | 5.0 | 4.8 | 4.8 | 4.7 | 4.7 | 4.8 | 4.8 |
|  | Bottom 10 Average | 3.7 | 3.7 | 3.7 | 3.9 | 3.9 | 3.9 | 3.8 | 3.9 |
| 15. Home Mortgage Rate | consensus | 5.7 | 5.5 | 5.4 | 5.4 | 5.4 | 5.4 | 5.4 | 5.4 |
|  | Top 10 Average | 6.4 | 6.4 | 6.1 | 6.0 | 6.0 | 6.0 | 6.1 | 6.0 |
|  | Bottom 10 Average | 4.9 | 4.7 | 4.6 | 4.8 | 4.8 | 4.8 | 4.7 | 4.8 |
| A. Fed's AFE Nominal \$ Index | consensus | 113.8 | 112.8 | 111.9 | 111.0 | 110.6 | 110.4 | 111.3 | 109.8 |
|  | Top 10 Average | 115.6 | 114.7 | 114.0 | 113.4 | 113.1 | 112.8 | 113.6 | 112.7 |
|  | Bottom 10 Average | 112.2 | 111.0 | 109.9 | 108.8 | 108.2 | 107.9 | 109.2 | 107.4 |
|  |  |  |  | --Ove | \% Chan | ----- |  | Five-Yea | verages |
|  |  | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2024-2028 | 2029-2033 |
| B. Real GDP | consensus | 2.0 | 2.0 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.0 |
|  | Top 10 Average | 2.6 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.3 |
|  | Bottom 10 Average | 1.5 | 1.5 | 1.8 | 1.8 | 1.8 | 1.8 | 1.7 | 1.8 |
| C. GDP Chained Price Index | consensus | 3.0 | 2.4 | 2.3 | 2.3 | 2.2 | 2.2 | 2.3 | 2.2 |
|  | Top 10 Average | 3.7 | 2.8 | 2.7 | 2.6 | 2.6 | 2.6 | 2.7 | 2.6 |
|  | Bottom 10 Average | 2.3 | 2.0 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 |
| D. Consumer Price Index | CONSENSUS | 3.2 | 2.4 | 2.4 | 2.4 | 2.3 | 2.3 | 2.4 | 2.3 |
|  | Top 10 Average | 4.1 | 3.0 | 2.9 | 2.8 | 2.7 | 2.7 | 2.8 | 2.7 |
|  | Bottom 10 Average | 2.3 | 1.8 | 2.0 | 2.0 | 1.9 | 1.9 | 1.9 | 1.9 |
| E. PCE Price Index | consensus | 3.0 | 2.3 | 2.3 | 2.3 | 2.3 | 2.2 | 2.3 | 2.3 |
|  | Top 10 Average | 3.8 | 2.8 | 2.8 | 2.7 | 2.7 | 2.6 | 2.7 | 2.7 |
|  | Bottom 10 Average | 2.2 | 1.8 | 1.9 | 1.9 | 1.9 | 1.8 | 1.9 | 1.9 |

Atmos Energy Corporation<br>Derivation of Mean Equity Risk Premium Based Studies<br>Using Holding Period Returns and<br>Projected Market Appreciation of the S\&P Utility Index

| Line No. | Equity Risk Premium Measure |  | Implied Equity Risk <br> Premium | Implied Equity Risk <br> Premium ex PRPM |
| :---: | :--- | :---: | :---: | :---: |
| 1. | Historical Equity Risk Premium (1) | $4.28 \%$ |  |  |

Notes: (1) Based on S\&P Public Utility Index monthly total returns and Moody's Public Utility Bond average monthly yields from 1928-2021. Holding period returns are calculated based upon income received (dividends and interest) plus the relative change in the market value of a security over a one-year holding period.
(2) This equity risk premium is based on a regression of the monthly equity risk premiums of the S\&P Utility Index relative to Moody's A2 rated public utility bond yields from 1928-2021 referenced in note 1 above. Using the equation generated from the regression, an expected equity risk premium is calculated using the prospective A2 rated public utility bond yield of $5.30 \%$ (from line 3, page 3 of this Exhibit).
(3) The Predictive Risk Premium Model (PRPM) is applied to the risk premium of the monthly total returns of the S\&P Utility Index and the monthly yields on Moody's A2 rated public utility bonds from January 1928 May 2022.
(4) Using data from Value Line for the S\&P Utilities Index, an expected return of $10.58 \%$ was derived based on expected dividend yields and long-term growth estimates as a proxy for market appreciation. Subtracting the expected A2 rated public utility bond yield of $5.30 \%$, calculated on line 3 of page 3 of this Exhibit results in an equity risk premium of $5.28 \%$. $(10.58 \%-5.30 \%=5.28 \%)$
(5) Using data from Bloomberg Professional Service for the S\&P Utilities Index, an expected return of 9.88\% was derived based on expected dividend yields and long-term growth estimates as a proxy for market appreciation. Subtracting the expected A2 rated public utility bond yield of $5.30 \%$, calculated on line 3 of page 3 of this Exhibit results in an equity risk premium of $4.58 \%$. $(9.88 \%-5.30 \%=4.58 \%)$
(6) Average of lines 1 through 5.

Atmos Energy Corporation
Prediction of Equity Risk Premiums Relative to Moody's A2 Rated Utility Bond Yields


|  |  | Prospective |  |
| :---: | :---: | :---: | :---: |
|  |  | A2 Rated | Prospective |
|  |  | Utility Bond | Equity Risk |
| Constant | Slope | (1) | Premium |
| 7.5895 \% | -0.4879 | 5.30 | 5.00 |

Notes:
(1) From line 3 of page 3 of this Exhibit.

Source of Information: Regulatory Research Associates
Indicated Common Equity Cost Rate Through Use
of the Traditional Capital Asset Pricing Model（CAPM）and Empirical Capital Asset Pricing Model（ECAPM）

| \％$\overline{\text { EL＇LI }}$ | \％ | \％28＇01 |  |  | $9{ }^{\circ} 0$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \％80＇．IL | \％6と＇LI | \％LL＇0I |  |  | S $L^{\circ} 0$ |  |  |  |
| \％LI＇LI | \％9ガLI | \％L8＇0I |  |  | $9{ }^{\circ} 0$ |  |  |  |
| ZI＇LI | $\varepsilon \downarrow^{\prime} L I$ | 2801 | LS＇$\varepsilon$ | ゅ $2 \cdot 6$ | S $L^{\circ} 0$ | $0 L^{\circ} 0$ | 08.0 |  |
| ¢0＇LI | Sع＇IL | ZL＇0I | IS ${ }^{\text {c }}$ | ゅL＇6 | ゅL＇0 | $69^{\circ}$ | 08.0 |  |
| 82．01 | \＆1＇LI | とが0L | LS＇$\varepsilon$ | ゅL＇6 | L $\angle \cdot 0$ | \＆9\％ | 08.0 |  |
| てL＇tI | $\varepsilon \downarrow^{\prime \prime} \mathrm{L}$ | z801 | LS ${ }^{\text {c }}$ | ゅL＇6 | SL＇0 | ャ9\％ | S8．0 |  |
| 68＇LI | 80 ZI | $69^{\circ} \mathrm{IL}$ | LS ${ }^{\text {c }}$ | ゅL＇6 | ャ8．0 | $\varepsilon L^{\prime} 0$ | S6．0 | uo！̣eıodıoう səəunosəy Kəs．ıə［ MəN |
| \％ $50 \cdot L$ | \％SE＇LI | \％ZL＇OL | LS ${ }^{\text {c }}$ | ゅ L 6 | $\downarrow \angle .0$ | L9\％ | 08.0 |  |
| （t）дzey | әдеу | әтеу | （z）әғеу | （t）mn！ mal $_{\text {d }}$ | Ełコg | ełəg pałsn！py | 라g | sə！̣ueduo）uo！̣nq！u！ sej je．nmen xis jo dno．j Кхо．． |
| ұsoj Kı！nb иошшоэ рәъеэฺри | 7 Soj WdVJe | 7soj WdVJ <br> ［еио！̣！pe．． |  | уs！¢ ұәулер | әธฺ．ләлу | 8．ıәquoо！g | pəъsn！py <br> әи！̣ әпГр $\Lambda$ |  |
| ［8］ | ［L］ | ［9］ | ［s］ | ［ $\dagger$ ］ | ［ $¢$ | ［z］ | ［ $]$ |  |
|  |  |  |  |  |  |  |  |  |
| \％ $\begin{aligned} & \text { カI＇LI }\end{aligned}$ | \％ガさ | \％\＆80 |  |  | $9 L^{\circ} 0$ |  |  |  |
| $\%$ 60＇LI | \％0ヤ゙LI | \％8L＇0 |  |  | S $L^{\circ} 0$ | ие！рәW |  |  |
|  | \％8がLI | \％88＇01 |  |  | $9{ }^{\circ} 0$ | ueәW |  |  |
| EI＇LI | ガ・II | E8．0I | LS＇$\varepsilon$ | 92.6 | SL＇0 | $0 L^{\circ} 0$ | 08.0 |  |
| S0．LI | $\angle \varepsilon^{\prime \prime}$ LI | $\varepsilon \angle \prime 0$ I | LS＇$\varepsilon$ | 94.6 | †L＇0 | $69^{\circ}$ | 08.0 |  |
| 6L＇01 | SI＇LI | カャ゙0上 | LS＇$\varepsilon$ | $94^{\circ} 6$ | L $\angle \cdot 0$ | \＆9\％ 0 | 08.0 |  |
| EL＇LI | ガレしI | ع8．01 | LS＇$\varepsilon$ | 94.6 | S $L^{\circ} 0$ | ャ9\％ | S8．0 | ＇วul әjanos！n |
| $06^{\prime}$ LI | 0 I＇ZI | IL＇しI | LS＇$\varepsilon$ | 94.6 | ャ8．0 | $\varepsilon L^{\circ} 0$ | S6．0 |  |
| \％S0＇LI | \％LE＇LI | \％$\varepsilon^{\prime}{ }^{\prime} 0$ I | \％LS＇E | \％9L．6 | ゅL＇0 | L9\％ | 08.0 | uop̣e．od．ıo才 К8．ıәи日 Souz |
|  | әдеу | ә7ey | （z）әдеу | （t）mn！ mad $_{\text {d }}$ | ełpg | ełəg pəəsn！pt | ¢ ¢7．g |  |
| ұsoj Kı！inb иошшоэ рәұеэฺриі | 7 Soj WdVOE | łsoj WdVJ <br> ［еиоп！！pe．${ }_{\text {L }}$ | әәлы－ys！¢ | уs！¢ ұәулер |  | 8．дәquoо！g | pəュsn！${ }^{\text {p }}$ әи！̣ әп ${ }^{\text {® }} \Lambda$ |  |
| ［8］ | ［L］ | ［9］ | ［c］ | ［ $\dagger$ ］ | ［ $¢$ | ［z］ | ［ $]$ |  |
|  |  <br>  |  |  |  |  |  |  |  |

## Atmos Energy Corporation

Notes to Accompany the Application of the CAPM and ECAPM
Notes:
(1) The market risk premium (MRP) is derived by using six different measures from three sources: Ibbotson, Value Line, and Bloomberg as illustrated below:

Historical Data MRP Estimates:
Measure 1: Ibbotson Arithmetic Mean MRP (1926-2021)

| Arithmetic Mean Monthly Returns for Large Stocks 1926-2021: | 12.37 |
| :---: | :---: |
| Arithmetic Mean Income Returns on Long-Term Government Bonds: | 5.02 |
| MRP based on Ibbotson Historical Data: | 7.35 |
| Measure 2: Application of a Regression Analysis to Ibbotson Historical Data (1926-2021) | 9.15 |
| Measure 3: Application of the PRPM to Ibbotson Historical Data: (January 1926 - May 2022) | 9.84 |

Value Line MRP Estimates:
Measure 4: Value Line Projected MRP (Thirteen weeks ending June 03, 2022)
$\begin{array}{lc}\text { Total projected return on the market 3-5 years hence*: } & 14.10 \%\end{array}$ Projected Risk-Free Rate (see note 2): MRP based on Value Line Summary \& Index:
$\frac{3.51}{10.59}$$\%$
*Forcasted 3-5 year capital appreciation plus expected dividend yield
Measure 5: Value Line Projected Return on the Market based on the S\&P 500
$\begin{array}{ll}\text { Total return on the Market based on the S\&P 500: } & 16.29 \%\end{array}$
Projected Risk-Free Rate (see note 2):
MRP based on Value Line data

$$
\begin{array}{r}
16.29 \\
\% \\
\hline 12.51
\end{array} \text { \% }
$$

Measure 6: Bloomberg Projected MRP
Total return on the Market based on the S\&P 500:
$12.35 \%$

| 3.51 |
| :---: |
| 8.84 |$\%$

Projected Risk-Free Rate (see note 2): MRP based on Bloomberg data

Average of Value Line, Ibbotson, and Bloomberg MRP:
9.76 \%

Average MRP Excluding the PRPM MRP: $\quad 9.74 \%$
(2) For reasons explained in the direct testimony, the appropriate risk-free rate for cost of capital purposes is the average forecast of 30 year Treasury Bonds per the consensus of nearly 50 economists reported in Blue Chip Financial Forecasts. (See pages 10 and 11 of Exhibit DWD-3.) The projection of the risk-free rate is illustrated below:

| Second Quarter 2022 | $3.00 \%$ |
| ---: | :--- |
| Third Quarter 2022 | 3.30 |
| Fourth Quarter 2022 | 3.40 |
| First Quarter 2023 | 3.50 |
| Second Quarter 2023 | 3.60 |
| Third Quarter 2023 | 3.60 |
| 2024-2028 | 3.80 |
| 2029-2033 | - |

(3) Average of Column 6 and Column 7.

Sources of Information:
Value Line Summary and Index
Blue Chip Financial Forecasts, June 1, 2022
Stocks, Bonds, Bills, and Inflation - 2022 SBBI Yearbook, John Wiley \& Sons, Inc.
Bloomberg Professional Services

## Atmos Energy Corporation

Basis of Selection of the Group of Non-Price Regulated Companies
Comparable in Total Risk to the Utility Proxy Group

The criteria for selection of the Non-Price Regulated Proxy Group was that the non-price regulated companies be domestic and reported in Value Line Investment Survey (Standard Edition).

The Non-Price Regulated Proxy Group companies were then selected based on the unadjusted beta range of $0.59-0.87$ and residual standard error of the regression range of 2.5562 - 3.0486 of the Utility Proxy Group.

These ranges are based upon plus or minus two standard deviations of the unadjusted beta and standard error of the regression. Plus or minus two standard deviations captures $95.50 \%$ of the distribution of unadjusted betas and residual standard errors of the regression.

The standard deviation of the Gas Utility Proxy Group's residual standard error of the regression is 0.1231 . The standard deviation of the standard error of the regression is calculated as follows:

Standard Deviation of the Std. Err. of the Regr. $=\frac{\text { Standard Error of the Regression }}{\sqrt{2 N}}$

$$
\sqrt{2 N}
$$

where: $\mathrm{N}=\quad$ number of observations. Since Value Line betas are derived from weekly price change observations over a period of five years, $\mathrm{N}=259$

$$
\text { Thus, } 0.1231=\frac{2.8024}{\sqrt{518}}=\frac{2.8024}{22.7596}
$$

Source of Information: Value Line, Inc., March 2022
Value Line Investment Survey (Standard Edition)

Atmos Energy Corporation
Basis of Selection of Comparable Risk
Domestic Non-Price Regulated Companies

|  | [1] | [2] | [3] | [4] |
| :---: | :---: | :---: | :---: | :---: |
| Proxy Group of Six Natural Gas Distribution Companies | Value Line Adjusted Beta | Unadjusted Beta | Residual <br> Standard <br> Error of the <br> Regression | Standard Deviation of Beta |
| Atmos Energy Corporation | 0.80 | 0.68 | 2.7298 | 0.0675 |
| New Jersey Resources Corporation | 1.00 | 0.92 | 2.9340 | 0.0726 |
| NiSource Inc. | 0.85 | 0.71 | 2.4700 | 0.0611 |
| Northwest Natural Holding Company | 0.80 | 0.69 | 3.1119 | 0.0770 |
| ONE Gas, Inc. | 0.80 | 0.66 | 2.7138 | 0.0671 |
| Spire Inc. | 0.85 | 0.71 | 2.8551 | 0.0706 |
| Average | 0.85 | 0.73 | 2.8024 | 0.0693 |
| Beta Range (+/-2 std. Devs. of Beta) | 0.59 | 0.87 |  |  |
| 2 std. Devs. of Beta | 0.14 |  |  |  |
| Residual Std. Err. Range (+/-2 std. |  |  |  |  |
| Devs. of the Residual Std. Err.) | 2.5562 | 3.0486 |  |  |
| Std. dev. of the Res. Std. Err. | 0.1231 |  |  |  |
| 2 std. devs. of the Res. Std. Err. | 0.2462 |  |  |  |

## Atmos Energy Corporation <br> Proxy Group of Non-Price Regulated Companies <br> Comparable in Total Risk to the <br> Proxy Group of Six Natural Gas Distribution Companies

|  | [1] | [2] | [3] | [4] |
| :---: | :---: | :---: | :---: | :---: |
| Proxy Group of Thirty-Eight NonPrice Regulated Companies | Value Line <br> Adjusted <br> Beta | Unadjusted Beta | Residual <br> Standard <br> Error of the <br> Regression | Standard Deviation of Beta |
| Agilent Technologies | 0.90 | 0.78 | 2.7005 | 0.0668 |
| Abbott Labs. | 0.90 | 0.82 | 2.8039 | 0.0694 |
| Assurant Inc. | 0.90 | 0.84 | 2.7387 | 0.0677 |
| Smith (A.O.) | 0.85 | 0.77 | 2.8592 | 0.0707 |
| Air Products \& Chem. | 0.90 | 0.79 | 2.6168 | 0.0647 |
| Becton, Dickinson | 0.75 | 0.60 | 2.8626 | 0.0708 |
| Brown-Forman 'B' | 0.90 | 0.80 | 2.7317 | 0.0676 |
| Black Knight, Inc. | 0.75 | 0.60 | 2.6932 | 0.0666 |
| Bristol-Myers Squibb | 0.85 | 0.75 | 2.9154 | 0.0721 |
| Broadridge Fin'l | 0.85 | 0.73 | 2.7513 | 0.0681 |
| CACI Int'l | 0.90 | 0.84 | 2.8642 | 0.0709 |
| Cerner Corp. | 0.90 | 0.80 | 2.6984 | 0.0667 |
| Chemed Corp. | 0.85 | 0.70 | 2.8432 | 0.0703 |
| CSW Industrials | 0.90 | 0.80 | 2.8686 | 0.0710 |
| Exponent, Inc. | 0.90 | 0.79 | 3.0005 | 0.0742 |
| Ingredion Inc. | 0.95 | 0.85 | 2.7688 | 0.0685 |
| J\&J Snack Foods | 0.95 | 0.86 | 3.0009 | 0.0742 |
| Henry (Jack) \& Assoc | 0.85 | 0.70 | 2.9159 | 0.0721 |
| McCormick \& Co. | 0.80 | 0.65 | 2.8247 | 0.0699 |
| Monster Beverage | 0.85 | 0.75 | 2.9659 | 0.0734 |
| Altria Group | 0.95 | 0.86 | 3.0325 | 0.0750 |
| Merck \& Co. | 0.80 | 0.63 | 2.8110 | 0.0695 |
| Motorola Solutions | 0.90 | 0.79 | 2.6488 | 0.0655 |
| NewMarket Corp. | 0.75 | 0.60 | 2.7398 | 0.0678 |
| Northrop Grumman | 0.85 | 0.75 | 2.9830 | 0.0738 |
| Old Dominion Freight | 0.95 | 0.86 | 2.9874 | 0.0739 |
| Oracle Corp. | 0.75 | 0.61 | 2.8406 | 0.0703 |
| Pfizer, Inc. | 0.80 | 0.65 | 2.6589 | 0.0658 |
| Progressive Corp. | 0.75 | 0.59 | 2.9344 | 0.0726 |
| RLI Corp. | 0.80 | 0.65 | 2.8568 | 0.0707 |
| Selective Ins. Group | 0.90 | 0.81 | 2.9172 | 0.0722 |
| Sirius XM Holdings | 0.95 | 0.85 | 2.9761 | 0.0736 |
| Sensient Techn. | 0.90 | 0.82 | 2.6687 | 0.0660 |
| Thermo Fisher Sci. | 0.85 | 0.70 | 2.6150 | 0.0647 |
| Texas Instruments | 0.85 | 0.76 | 2.6869 | 0.0665 |
| VeriSign Inc. | 0.90 | 0.79 | 2.6081 | 0.0645 |
| Watsco, Inc. | 0.85 | 0.74 | 2.6836 | 0.0664 |
| Western Union | 0.80 | 0.64 | 2.8493 | 0.0705 |
| Average | 0.86 | 0.75 | 2.8138 | 0.0696 |
| Proxy Group of Six Natural Gas |  |  |  |  |
| Distribution Companies | 0.85 | 0.73 | 2.8024 | 0.0693 |

Atmos Energy Corporation
Summary of Cost of Equity Models Applied to Proxy Group of Thirty-Eight Non-Price Regulated Companies

Comparable in Total Risk to the
Proxy Group of Six Natural Gas Distribution Companies


Notes:
(1) From page 2 of this Exhibit.
(2) From page 3 of this Exhibit.
(3) From page 6 of this Exhibit.
(4) From page 7 of this Exhibit.

Atmos Energy Corporation
DCF Results for the Proxy Group of Non-Price-Regulated Companies Comparable in Total Risk to the
Proxy Group of Six Natural Gas Distribution Companies

|  | [1] | [2] | [3] | [5] | [6] | [7] | [8] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Proxy Group of Thirty- <br> Eight Non-Price Regulated <br> Companies | Average Dividend Yield | Value Line <br> Projected Five Year Growth in EPS | Zack's Five <br> Year Projected Growth Rate in EPS | Yahoo! Finance Projected Five Year Growth in EPS | Average <br> Projected Five <br> Year Growth <br> Rate in EPS | Adjusted Dividend Yield | Indicated <br> Common Equity <br> Cost Rate (1) |
| Agilent Technologies | 0.66 \% | 11.50 \% | 10.00 \% | 13.98 \% | 11.83 \% | 0.70 \% | 12.53 \% |
| Abbott Labs. | 1.61 | 8.00 | 7.80 | 11.53 | 9.11 | 1.68 | 10.79 |
| Assurant Inc. | 1.50 | 15.50 | 17.20 | 17.20 | 16.63 | 1.62 | 18.25 |
| Smith (A.O.) | 1.77 | 11.50 | 9.00 | 8.00 | 9.50 | 1.85 | 11.35 |
| Air Products \& Chem. | 2.71 | 12.00 | 13.10 | 12.13 | 12.41 | 2.88 | 15.29 |
| Becton, Dickinson | 1.35 | 5.50 | 5.40 | 4.85 | 5.25 | 1.39 | 6.64 |
| Brown-Forman 'B' | 1.14 | 12.00 | NA | 7.01 | 9.51 | 1.19 | 10.70 |
| Black Knight, Inc. | - | 9.50 | 9.60 | 11.23 | 10.11 | - | NA |
| Bristol-Myers Squibb | 2.90 | NMF | 6.20 | 4.43 | 5.32 | 2.98 | 8.30 |
| Broadridge Fin'l | 1.73 | 9.00 | NA | 11.80 | 10.40 | 1.82 | 12.22 |
| CACI Int'l | - | 7.00 | 4.10 | 2.40 | 4.50 | - | NA |
| Cerner Corp. | 1.15 | 9.50 | 12.80 | 13.30 | 11.87 | 1.22 | 13.09 |
| Chemed Corp. | 0.29 | 7.00 | 8.50 | 7.00 | 7.50 | 0.30 | 7.80 |
| CSW Industrials | 0.61 | 12.00 | NA | 12.00 | 12.00 | 0.65 | 12.65 |
| Exponent, Inc. | 0.98 | 9.50 | NA | 15.00 | 12.25 | 1.04 | 13.29 |
| Ingredion Inc. | 2.94 | 8.00 | NA | 7.72 | 7.86 | 3.06 | 10.92 |
| J\&J Snack Foods | 1.75 | 8.50 | NA | 6.00 | 7.25 | 1.81 | 9.06 |
| Henry (Jack) \& Assoc | 1.03 | 9.00 | 9.00 | 14.00 | 10.67 | 1.08 | 11.75 |
| McCormick \& Co. | 1.50 | 6.00 | 6.10 | 6.95 | 6.35 | 1.55 | 7.90 |
| Monster Beverage | - | 11.50 | 15.70 | 14.58 | 13.93 | - | NA |
| Altria Group | 6.74 | 5.50 | 4.00 | 5.51 | 5.00 | 6.91 | 11.91 |
| Merck \& Co. | 3.23 | 8.00 | 10.10 | 11.62 | 9.91 | 3.39 | 13.30 |
| Motorola Solutions | 1.41 | 8.00 | 9.00 | 14.27 | 10.42 | 1.48 | 11.90 |
| NewMarket Corp. | 2.55 | (0.50) | NA | 7.70 | 7.70 | 2.65 | 10.35 |
| Northrop Grumman | 1.53 | 7.50 | 6.10 | 6.10 | 6.57 | 1.58 | 8.15 |
| Old Dominion Freight | 0.43 | 10.50 | 17.30 | 25.56 | 17.79 | 0.47 | 18.26 |
| Oracle Corp. | 1.67 | 9.00 | 8.00 | 10.24 | 9.08 | 1.75 | 10.83 |
| Pfizer, Inc. | 3.12 | 6.50 | 12.50 | (0.80) | 9.50 | 3.27 | 12.77 |
| Progressive Corp. | 0.36 | 4.50 | 17.30 | 30.32 | 17.37 | 0.39 | 17.76 |
| RLI Corp. | 0.92 | 12.00 | NA | 9.80 | 10.90 | 0.97 | 11.87 |
| Selective Ins. Group | 1.34 | 11.00 | 3.00 | 13.40 | 9.13 | 1.40 | 10.53 |
| Sirius XM Holdings | 1.39 | 32.50 | 9.70 | 9.75 | 17.32 | 1.51 | 18.83 |
| Sensient Techn. | 1.98 | 2.50 | NA | 3.80 | 3.15 | 2.01 | 5.16 |
| Thermo Fisher Sci. | 0.21 | 10.00 | 13.00 | 8.70 | 10.57 | 0.22 | 10.79 |
| Texas Instruments | 2.64 | 8.50 | 9.30 | 10.00 | 9.27 | 2.76 | 12.03 |
| VeriSign Inc. | - | 11.00 | NA | 8.00 | 9.50 | - | NA |
| Watsco, Inc. | 3.14 | 11.00 | NA | 15.00 | 13.00 | 3.34 | 16.34 |
| Western Union | 5.20 | 8.00 | NA | 6.84 | 7.42 | 5.39 | 12.81 |
|  |  |  |  |  |  | Mean | 11.94 \% |
|  |  |  |  |  |  | Median | 11.89 \% |
|  |  |  |  |  | Average of M | Median | 11.92 \% |

NA= Not Available
NMF $=$ Not Meaningful Figure
(1) The application of the DCF model to the domestic, non-price regulated comparable risk companies is identical to the application of the DCF to the Utility Proxy Group. The dividend yield is derived by using the 60 day average price and the spot indicated dividend as of May 31,2022 . The dividend yield is then adjusted by $1 / 2$ the average projected growth rate in EPS, which is calculated by averaging the 5 year projected growth in EPS provided by Value Line, www.zacks.com, and www.yahoo.com (excluding any negative growth rates) and then adding that growth rate to the adjusted dividend yield.

Source of Information:
Value Line Investment Survey
www.zacks.com Downloaded on 05/31/2022
www.yahoo.com Downloaded on 05/31/2022

Atmos Energy Corporation<br>Indicated Common Equity Cost Rate<br>Through Use of a Risk Premium Model<br>Using an Adjusted Total Market Approach

| Line No. |  | Proxy Group of Thirty-Eight NonPrice Regulated Companies | Proxy Group of Thirty-Eight NonPrice Regulated Companies (excl. PRPM) |
| :---: | :---: | :---: | :---: |
| 1. | Prospective Yield on Baa2 Rated Corporate Bonds (1) | 5.64 \% | 5.64 \% |
| 2. | Adjustment to Reflect Bond rating Difference of Non-Price Regulated Companies (2) | (0.15) | (0.15) |
| 3. | Adjusted Prospective Bond Yield | 5.49 \% | 5.49 \% |
| 4. | Equity Risk Premium (3) | 7.16 | 7.11 |
| 5. | Risk Premium Derived Common Equity Cost Rate | 12.65 \% | 12.60 \% |

Notes: (1) Average forecast of Baa2 corporate bonds based upon the consensus of nearly 50 economists reported in Blue Chip Financial Forecasts dated June 1, 2022 (see pages 10 and 11 of Exhibit DWD-3). The estimates are detailed below.

| Second Quarter 2022 | $5.00 \quad \%$ |
| ---: | ---: |
| Third Quarter 2022 | 5.40 |
| Fourth Quarter 2022 | 5.60 |
| First Quarter 2023 | 5.70 |
| Second Quarter 2023 | 5.80 |
| Third Quarter 2023 | 5.80 |
| 2024-2028 | 5.90 |
| 2029-2033 | 5.90 |
| Average | 5.64 |

(2) The average yield spread of Baa rated corporate bonds over A corporate bonds for the three months ending May 2022 . To reflect the Baa1 average rating of the non-utility proxy group, the prosepctive yield on Baa corporate bonds must be adjusted by $1 / 3$ of the spread between A and Baa corporate bond yields as shown below:

(3) From page 5 of this Exhibit.

Atmos Energy Corporation
Comparison of Long-Term Issuer Ratings for the
Proxy Group of Thirty-Eight Non-Price Regulated Companies of Comparable risk to the
Proxy Group of Six Natural Gas Distribution Companies

| Proxy Group of Thirty-Eight NonPrice Regulated Companies | Moody's Long-Term Issuer Rating May 2022 |  | Standard \& Poor's Long-Term Issuer Rating May 2022 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Long-Term Issuer Rating | Numerical Weighting (1) | Long-Term Issuer Rating | Numerical Weighting (1) |
| Agilent Technologies | Baa2 | 9.0 | BBB+ | 8.0 |
| Abbott Labs. | A1 | 5.0 | AA- | 4.0 |
| Assurant Inc. | Baa3 | 10.0 | BBB | 9.0 |
| Smith (A.O.) | NA | -- | NA | -- |
| Air Products \& Chem. | A2 | 6.0 | A | 6.0 |
| Becton, Dickinson | Baa3 | 10.0 | BBB | 9.0 |
| Brown-Forman 'B' | A1 | 5.0 | A- | 7.0 |
| Black Knight, Inc. | Ba3 | 13.0 | BB | 12.0 |
| Bristol-Myers Squibb | A2 | 6.0 | A+ | 5.0 |
| Broadridge Fin'l | Baa1 | 8.0 | BBB+ | 8.0 |
| CACI Int'l | NA | -- | BB+ | 11.0 |
| Cerner Corp. | NA | -- | NA | -- |
| Chemed Corp. | WR | -- | NR | -- |
| CSW Industrials | NA | -- | NA | -- |
| Exponent, Inc. | NA | -- | NA | -- |
| Ingredion Inc. | Baa1 | 8.0 | BBB | 9.0 |
| J\&J Snack Foods | NA | -- | NA | -- |
| Henry (Jack) \& Assoc | NA | -- | NA | -- |
| McCormick \& Co. | Baa2 | 9.0 | BBB | 9.0 |
| Monster Beverage | NA | -- | NA | -- |
| Altria Group | A3 | 7.0 | BBB | 9.0 |
| Merck \& Co. | A1 | 5.0 | A+ | 5.0 |
| Motorola Solutions | Baa3 | 10.0 | BBB- | 10.0 |
| NewMarket Corp. | Baa2 | 9.0 | BBB+ | 8.0 |
| Northrop Grumman | Baa1 | 8.0 | BBB+ | 8.0 |
| Old Dominion Freight | NA | -- | NA | -- |
| Oracle Corp. | Baa2 | 9.0 | BBB+ | 8.0 |
| Pfizer, Inc. | A2 | 6.0 | A+ | 5.0 |
| Progressive Corp. | A2 | 6.0 | A | 6.0 |
| RLI Corp. | Baa2 | 9.0 | BBB | 9.0 |
| Selective Ins. Group | Baa2 | 9.0 | BBB | 9.0 |
| Sirius XM Holdings | NA | -- | BB | 12.0 |
| Sensient Techn. | WR | -- | NR | -- |
| Thermo Fisher Sci. | A3 | 7.0 | BBB+ | 8.0 |
| Texas Instruments | Aa3 | 4.0 | A+ | 5.0 |
| VeriSign Inc. | Baa3 | 10.0 | BBB | 9.0 |
| Watsco, Inc. | NA | -- | NA | -- |
| Western Union | Baa2 | 9.0 | BBB | 9.0 |
| Average | Baa1 | 7.9 | BBB+ | 8.0 |

Notes:
(1) From page 6 of Exhibit DWD-3.

Source of Information:
Bloomberg Professional Services

Atmos Energy Corporation<br>Derivation of Equity Risk Premium Based on the Total Market Approach Using the Beta for Proxy Group of Thirty-Eight Non-Price Regulated Companies of Comparable risk to the Proxy Group of Six Natural Gas Distribution Companies

| Line No. | Equity Risk Premium Measure | Proxy Group of Thirty-Eight NonPrice Regulated Companies | Proxy Group of Thirty-Eight NonPrice Regulated Companies (excl. PRPM) |
| :---: | :---: | :---: | :---: |
| 1. | Ibbotson Equity Risk Premium (1) | 6.13 \% | 6.13 \% |
| 2. | Regression on Ibbotson Risk Premium Data (2) | 7.67 | 7.67 |
| 3. | Ibbotson Equity Risk Premium based on PRPM (3) | 8.79 | NA |
| 4. | Equity Risk Premium Based on Value Line Summary and Index (4) | 9.37 | 9.37 |
| 5 | Equity Risk Premium Based on Value Line S\&P 500 Companies (5) | 11.56 | 11.56 |
| 6. | Equity Risk Premium Based on Bloomberg S\&P 500 Companies (6) | 7.62 | 7.62 |
| 7. | Conclusion of Equity Risk Premium | 8.52 \% | 8.47 \% |
| 8. | Adjusted Beta (7) | 0.84 | 0.84 |
| 9. | Forecasted Equity Risk Premium | 7.16 \% | 7.11 \% |

Notes:
(1) From note 1 of page 9 of Exhibit DWD-3.
(2) From note 2 of page 9 of Exhibit DWD-3.
(3) From note 3 of page 9 of Exhibit DWD-3.
(4) From note 4 of page 9 of Exhibit DWD-3.
(5) From note 5 of page 9 of Exhibit DWD-3.
(6) From note 6 of page 9 of Exhibit DWD-3.
(7) Average of mean and median beta from page 6 of this Exhibit.

Sources of Information:
Stocks, Bonds, Bills, and Inflation-2022 SBBI Yearbook, John Wiley \& Sons, Inc.
Value Line Summary and Index
Blue Chip Financial Forecasts, June 1, 2022
Bloomberg Professional Services

## Atmos Energy Corporation

Traditional CAPM and ECAPM Results for the Proxy Group of Non-Price-Regulated Companies Comparable in Total Risk to the Proxy Group of Six Natural Gas Distribution Companies

|  | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Proxy Group of Thirty- <br> Eight Non-Price Regulated <br> Companies | Value Line Adjusted Beta | Bloomberg Beta | Average <br> Beta | Market Risk <br> Premium (1) | Risk-Free Rate <br> (2) | Traditional CAPM Cost Rate | ECAPM Cost Rate | Indicated <br> Common Equity Cost Rate (3) |
| Agilent Technologies | 0.90 | 0.99 | 0.95 | 9.76 \% | 3.51 \% | 12.78 \% | 12.90 \% | 12.84 \% |
| Abbott Labs. | 0.90 | 0.76 | 0.83 | 9.76 | 3.51 | 11.61 | 12.02 | 11.82 |
| Assurant Inc. | 0.90 | 0.73 | 0.82 | 9.76 | 3.51 | 11.51 | 11.95 | 11.73 |
| Smith (A.O.) | 0.85 | 1.00 | 0.93 | 9.76 | 3.51 | 12.59 | 12.76 | 12.67 |
| Air Products \& Chem. | 0.90 | 0.84 | 0.87 | 9.76 | 3.51 | 12.00 | 12.32 | 12.16 |
| Becton, Dickinson | 0.75 | 0.57 | 0.66 | 9.76 | 3.51 | 9.95 | 10.78 | 10.37 |
| Brown-Forman 'B' | 0.90 | 0.87 | 0.89 | 9.76 | 3.51 | 12.20 | 12.46 | 12.33 |
| Black Knight, Inc. | 0.75 | 0.65 | 0.70 | 9.76 | 3.51 | 10.34 | 11.07 | 10.71 |
| Bristol-Myers Squibb | 0.85 | 0.61 | 0.73 | 9.76 | 3.51 | 10.63 | 11.29 | 10.96 |
| Broadridge Fin'l | 0.85 | 0.87 | 0.86 | 9.76 | 3.51 | 11.90 | 12.24 | 12.07 |
| CACI Int'l | 0.90 | 0.73 | 0.82 | 9.76 | 3.51 | 11.51 | 11.95 | 11.73 |
| Cerner Corp. | 0.90 | 0.62 | 0.76 | 9.76 | 3.51 | 10.93 | 11.51 | 11.22 |
| Chemed Corp. | 0.85 | 0.82 | 0.83 | 9.76 | 3.51 | 11.61 | 12.02 | 11.82 |
| CSW Industrials | 0.90 | 0.90 | 0.90 | 9.76 | 3.51 | 12.29 | 12.54 | 12.41 |
| Exponent, Inc. | 0.90 | 1.07 | 0.98 | 9.76 | 3.51 | 13.07 | 13.12 | 13.10 |
| Ingredion Inc. | 0.95 | 0.71 | 0.83 | 9.76 | 3.51 | 11.61 | 12.02 | 11.82 |
| J\&J Snack Foods | 0.95 | 0.71 | 0.83 | 9.76 | 3.51 | 11.61 | 12.02 | 11.82 |
| Henry (Jack) \& Assoc | 0.85 | 0.74 | 0.79 | 9.76 | 3.51 | 11.22 | 11.73 | 11.48 |
| McCormick \& Co. | 0.80 | 0.65 | 0.73 | 9.76 | 3.51 | 10.63 | 11.29 | 10.96 |
| Monster Beverage | 0.85 | 0.92 | 0.89 | 9.76 | 3.51 | 12.20 | 12.46 | 12.33 |
| Altria Group | 0.95 | 0.80 | 0.87 | 9.76 | 3.51 | 12.00 | 12.32 | 12.16 |
| Merck \& Co. | 0.80 | 0.50 | 0.65 | 9.76 | 3.51 | 9.85 | 10.71 | 10.28 |
| Motorola Solutions | 0.90 | 0.95 | 0.93 | 9.76 | 3.51 | 12.59 | 12.76 | 12.67 |
| NewMarket Corp. | 0.75 | 0.58 | 0.67 | 9.76 | 3.51 | 10.05 | 10.85 | 10.45 |
| Northrop Grumman | 0.85 | 0.67 | 0.76 | 9.76 | 3.51 | 10.93 | 11.51 | 11.22 |
| Old Dominion Freight | 0.95 | 1.10 | 1.03 | 9.76 | 3.51 | 13.56 | 13.49 | 13.52 |
| Oracle Corp. | 0.75 | 0.90 | 0.83 | 9.76 | 3.51 | 11.61 | 12.02 | 11.82 |
| Pfizer, Inc. | 0.80 | 0.67 | 0.73 | 9.76 | 3.51 | 10.63 | 11.29 | 10.96 |
| Progressive Corp. | 0.75 | 0.74 | 0.74 | 9.76 | 3.51 | 10.73 | 11.37 | 11.05 |
| RLI Corp. | 0.80 | 0.85 | 0.83 | 9.76 | 3.51 | 11.61 | 12.02 | 11.82 |
| Selective Ins. Group | 0.90 | 0.98 | 0.94 | 9.76 | 3.51 | 12.68 | 12.83 | 12.76 |
| Sirius XM Holdings | 0.95 | 0.80 | 0.87 | 9.76 | 3.51 | 12.00 | 12.32 | 12.16 |
| Sensient Techn. | 0.90 | 0.95 | 0.92 | 9.76 | 3.51 | 12.49 | 12.68 | 12.59 |
| Thermo Fisher Sci. | 0.85 | 0.86 | 0.86 | 9.76 | 3.51 | 11.90 | 12.24 | 12.07 |
| Texas Instruments | 0.85 | 0.93 | 0.89 | 9.76 | 3.51 | 12.20 | 12.46 | 12.33 |
| VeriSign Inc. | 0.90 | 0.91 | 0.90 | 9.76 | 3.51 | 12.29 | 12.54 | 12.41 |
| Watsco, Inc. | 0.85 | 0.91 | 0.88 | 9.76 | 3.51 | 12.10 | 12.39 | 12.24 |
| Western Union | 0.80 | 0.86 | 0.83 | 9.76 | 3.51 | 11.61 | 12.02 | 11.82 |
|  |  | Mean | 0.84 |  |  | 11.66 \% | 12.06 \% | 11.86 \% |
|  |  | Median | 0.83 |  |  | 11.61 \% | 12.02 \% | 11.82 \% |
|  | Average of | and Median | 0.84 |  |  | 11.64 \% | 12.04 \% | 11.84 \% |

Notes:
(1) From note 1 of page 2 of Exhibit DWD-4.
(2) From note 2 of page 2 of Exhibit DWD-4.
(3) Average of CAPM and ECAPM cost rates.

## Atmos Energy Corporation

Traditional CAPM and ECAPM Results (excluding the PRPM MRP) for the Proxy Group of Non-Price-Regulated Companies Comparable in Total Risk to the Proxy Group of Six Natural Gas Distribution Companies

|  | [1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Proxy Group of Thirty- <br> Eight Non-Price Regulated <br> Companies | Value Line Adjusted Beta | Bloomberg Beta | Average <br> Beta | Market Risk <br> Premium (1) | Risk-Free Rate <br> (2) | Traditional CAPM Cost Rate | ECAPM Cost Rate | Indicated <br> Common Equity Cost Rate (3) |
| Agilent Technologies | 0.90 | 0.99 | 0.95 | 9.74 \% | 3.51 \% | 12.77 \% | 12.89 \% | 12.83 \% |
| Abbott Labs. | 0.90 | 0.76 | 0.83 | 9.74 | 3.51 | 11.60 | 12.01 | 11.80 |
| Assurant Inc. | 0.90 | 0.73 | 0.82 | 9.74 | 3.51 | 11.50 | 11.94 | 11.72 |
| Smith (A.O.) | 0.85 | 1.00 | 0.93 | 9.74 | 3.51 | 12.57 | 12.74 | 12.66 |
| Air Products \& Chem. | 0.90 | 0.84 | 0.87 | 9.74 | 3.51 | 11.99 | 12.30 | 12.14 |
| Becton, Dickinson | 0.75 | 0.57 | 0.66 | 9.74 | 3.51 | 9.94 | 10.77 | 10.35 |
| Brown-Forman 'B' | 0.90 | 0.87 | 0.89 | 9.74 | 3.51 | 12.18 | 12.45 | 12.31 |
| Black Knight, Inc. | 0.75 | 0.65 | 0.70 | 9.74 | 3.51 | 10.33 | 11.06 | 10.70 |
| Bristol-Myers Squibb | 0.85 | 0.61 | 0.73 | 9.74 | 3.51 | 10.62 | 11.28 | 10.95 |
| Broadridge Fin'l | 0.85 | 0.87 | 0.86 | 9.74 | 3.51 | 11.89 | 12.23 | 12.06 |
| CACI Int'l | 0.90 | 0.73 | 0.82 | 9.74 | 3.51 | 11.50 | 11.94 | 11.72 |
| Cerner Corp. | 0.90 | 0.62 | 0.76 | 9.74 | 3.51 | 10.91 | 11.50 | 11.21 |
| Chemed Corp. | 0.85 | 0.82 | 0.83 | 9.74 | 3.51 | 11.60 | 12.01 | 11.80 |
| CSW Industrials | 0.90 | 0.90 | 0.90 | 9.74 | 3.51 | 12.28 | 12.52 | 12.40 |
| Exponent, Inc. | 0.90 | 1.07 | 0.98 | 9.74 | 3.51 | 13.06 | 13.11 | 13.08 |
| Ingredion Inc. | 0.95 | 0.71 | 0.83 | 9.74 | 3.51 | 11.60 | 12.01 | 11.80 |
| J\&J Snack Foods | 0.95 | 0.71 | 0.83 | 9.74 | 3.51 | 11.60 | 12.01 | 11.80 |
| Henry (Jack) \& Assoc | 0.85 | 0.74 | 0.79 | 9.74 | 3.51 | 11.21 | 11.72 | 11.46 |
| McCormick \& Co. | 0.80 | 0.65 | 0.73 | 9.74 | 3.51 | 10.62 | 11.28 | 10.95 |
| Monster Beverage | 0.85 | 0.92 | 0.89 | 9.74 | 3.51 | 12.18 | 12.45 | 12.31 |
| Altria Group | 0.95 | 0.80 | 0.87 | 9.74 | 3.51 | 11.99 | 12.30 | 12.14 |
| Merck \& Co. | 0.80 | 0.50 | 0.65 | 9.74 | 3.51 | 9.84 | 10.70 | 10.27 |
| Motorola Solutions | 0.90 | 0.95 | 0.93 | 9.74 | 3.51 | 12.57 | 12.74 | 12.66 |
| NewMarket Corp. | 0.75 | 0.58 | 0.67 | 9.74 | 3.51 | 10.04 | 10.84 | 10.44 |
| Northrop Grumman | 0.85 | 0.67 | 0.76 | 9.74 | 3.51 | 10.91 | 11.50 | 11.21 |
| Old Dominion Freight | 0.95 | 1.10 | 1.03 | 9.74 | 3.51 | 13.54 | 13.47 | 13.51 |
| Oracle Corp. | 0.75 | 0.90 | 0.83 | 9.74 | 3.51 | 11.60 | 12.01 | 11.80 |
| Pfizer, Inc. | 0.80 | 0.67 | 0.73 | 9.74 | 3.51 | 10.62 | 11.28 | 10.95 |
| Progressive Corp. | 0.75 | 0.74 | 0.74 | 9.74 | 3.51 | 10.72 | 11.35 | 11.04 |
| RLI Corp. | 0.80 | 0.85 | 0.83 | 9.74 | 3.51 | 11.60 | 12.01 | 11.80 |
| Selective Ins. Group | 0.90 | 0.98 | 0.94 | 9.74 | 3.51 | 12.67 | 12.81 | 12.74 |
| Sirius XM Holdings | 0.95 | 0.80 | 0.87 | 9.74 | 3.51 | 11.99 | 12.30 | 12.14 |
| Sensient Techn. | 0.90 | 0.95 | 0.92 | 9.74 | 3.51 | 12.47 | 12.67 | 12.57 |
| Thermo Fisher Sci. | 0.85 | 0.86 | 0.86 | 9.74 | 3.51 | 11.89 | 12.23 | 12.06 |
| Texas Instruments | 0.85 | 0.93 | 0.89 | 9.74 | 3.51 | 12.18 | 12.45 | 12.31 |
| VeriSign Inc. | 0.90 | 0.91 | 0.90 | 9.74 | 3.51 | 12.28 | 12.52 | 12.40 |
| Watsco, Inc. | 0.85 | 0.91 | 0.88 | 9.74 | 3.51 | 12.08 | 12.38 | 12.23 |
| Western Union | 0.80 | 0.86 | 0.83 | 9.74 | 3.51 | 11.60 | 12.01 | 11.80 |
|  |  | Mean | 0.84 |  |  | 11.65 \% | 12.05 \% | 11.85 \% |
|  |  | Median | 0.83 |  |  | 11.60 \% | 12.01 \% | 11.80 \% |
|  | Average of | and Median | 0.84 |  |  | 11.63 \% | 12.03 \% | 11.83 \% |

Notes:
(1) From note 1 of page 2 of Exhibit DWD-4.
(2) From note 2 of page 2 of Exhibit DWD-4.
(3) Average of CAPM and ECAPM cost rates.
 $\begin{array}{r}1.21 \% \\ \text { [D] } \\ \\ \text { Size Premium } \\ \text { (Return in } \\ \text { Excess of } \\ \text { CAPM)* } \\ \hline\end{array}$








$36,099.221$
$16,738.364$



と08 LZ9

$$
\text { From page } 2 \text { of this Exhibit. }
$$

(2) Gleaned from Columns $[B]$ and $[C]$ on the bottom of this page. The appropriate decile (Column $[\mathrm{A}]$ ) corresponds to the market capitalization of the proxy group, which is found in Column [1].
 follows $1.21 \%=2.1 \%-0.89 \%$.
[七]

$\begin{array}{ll}\text { s larger) } \\ & \\ & 7.4 \\ {[A]} & \end{array}$

## [2]

2.10\%
0.89\%
[ว]
Market
Capitalization of
Largest Company
\$ 36,160.584

$8,216.356$
$5,019.883$


8LI'6Z9
290.18
:səəon
ว!!วəव

(3) Corresponding risk premium to the decile is provided in Column [ D ] on the bottom of this page.
Atmos Energy Corporation
Market Capitalization of Atmos Energy Corporation and the
Proxy Group of Six Natural Gas Distribution Companies


| \％¢S＇I | 99S＇L6E＇St \＄ | 908＇90S＇ゅt ${ }^{\prime}$＇Z | \＄ | ZLE＇ $868^{\prime} 6 \mathrm{~S} 6^{\prime}$ | \＄ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \％0ヤ＇I | 000＇00才＇工 \＄ | 000＇009＇86 | \＄ | 000＇000＇00I | \＄ | L6SガZL | \＄ | 988で $\mathcal{L}$ | \＄ | 9S $\iota^{\prime} 09 \varepsilon^{\prime}$ L |  | 9102 |
| \％ $0 z^{\prime}$ I | 000＇00Z＇亡 \＄ | 000＇008＇86 | \＄ | 000＇000＇00 | \＄ | E96L＇SL | \＄ | 691L＇9 | \＄ | ャ6ヶ＇ 0 ¢ $\varepsilon^{\prime}$ L |  | LIOZ |
| \％ Ez＇I $^{\text {I }}$ | 000＇006＇t \＄ | 000＇00I＇S6E | \＄ | 000＇000＇00ヶ | \＄ | LSL9＇98 | \＄ | 00SL＇L8 | \＄ | ャ0t＇8SS＇t |  | 8102 |
| \％8I＇L | 000＇006＇S ${ }^{\text {S }}$ S | 000＇00I＇t6 ${ }^{\text {¢ }}$ | \＄ | 000＇000＇00S | \＄ | SSS9＊L6 | \＄ | 00SL＇Z6 | \＄ | 9¢8＇06E＇S |  | 6102 |
| \％90＇L | 699＇SEL＇9 \＄ | 66S＇t68＇s ${ }^{\text {c }}$ | \＄ | 69Z＇0¢9＇z\＆9 | \＄ | VN |  | VN |  | 916＇10I＇9 |  | 0z0z |
| \％ Es＇z $^{\prime}$ | It6＇LSL＇SI \＄ | عE8＇000＇L09 | \＄ | SLL＇8SL＇ZZ9 | \＄ | ZL00＇66 | \＄ | SLLS＇LOL | \＄ | SL8＇0¢I＇9 |  | LZ0Z |
| \％$\angle S^{\prime}$ L | 956＇L6ヤ＇6 \＄ | $\varepsilon L \varepsilon^{\prime}$ ILO＇S6S | \＄ | 6Zと＇60S＇ャ09 | \＄ | ZLSS＂96 | \＄ | S860＇86 | \＄ | 692＇Z9I＇9 |  | ZZ02 |
|  <br>  |  |  |  |  |  | （z）ә．еччS ．गәd spәәэо．$_{\mathrm{d}} \not$ ¥ə $^{\mathrm{N}}$ |  |  |  | panssi saxeys | （I）uo！̣วesue．．．${ }_{\text {L }}$ | ．${ }^{\text {end }}$［［ess！${ }^{\text {d }}$ |
| ［८ uminos］ | ［9 umijoj］ | ［s umijoj］ |  | ［t ummoj］ |  | ［ $¢$ umijoj］ |  | ［z ummjoj］ |  | ［［ umioo ］ |  |  |

[^12]| Cost Adjustment |
| :--- |
|  |
| Average DCF |
| Cost Rate |
| Unadjusted for |
| Flotation（5） |

Atmos Energy Corporation<br>Notes to Accompany the<br>Derivation of the Flotation Cost Adjustment to the Cost of Common Equity

(1) Atmos Energy Corporation SEC Filings, Company-provided.
(2) Column $5 \div$ Column 1.
(3) Column 4 - Column 5.
(4) Column $6 \div$ Column 4.
(5) Using the average growth rate from Attachment DWD-2.
(6) Adjustment for flotation costs based on adjusting the average DCF constant growth cost rate in accordance with the following:

$$
K=\frac{D(1+0.5 g)}{P(1-F)}+g,
$$

where $g$ is the growth factor and $F$ is the percentage of flotation costs.
(7) Flotation cost adjustment of 0.05\% equals the difference between the flotation adjusted average DCF cost rate of $9.77 \%$ and the unadjusted average DCF cost rate of $9.72 \%$ of the Utility Proxy Group.

Sources of Information:
Company SEC Filings; Company-Provided
Atmos Energy Corporation
Summary of Adjustment Clauses \& Alternative Regulation/Incentive Plans


[^13]
## BEFORE THE PUBLIC SERVICE COMMISSION

## COMMONWEALTH OF KENTUCKY

| APPLICATION OF ATMOS ENERGY | ) |
| :--- | :--- |
| CORPORATION TO ESTABLISH PRP | ) |
| RIDER STATES FOR HE TWELVE | ) |
| MONTH PERIOD BEGINNING No. 2022-00222 |  |
| OCTOBER 1, 2022 | ) |

TESTIMONY OF T. RYAN AUSTIN

## I. INTRODUCTION

## Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS AND AN EXECUTIVE SUMMARY OF THE PURPOSE AND CONTENT OF YOUR TESTIMONY.

A. My name is T. Ryan Austin. My business address is 3275 Highland Pointe Drive, Owensboro, KY 42303.

## II. EXECUTIVE SUMMARY AND PURPOSE OF TESTIMONY

Atmos Energy continuously strives to improve the safety and reliability of its pipeline system. Vital steps in this process include (1) proactively identifying assets where the risk of failure is higher and then (2) designing and implementing a plan to mitigate those risks. Through that process, Atmos Energy has identified a need to continue its Pipeline Replacement Program ("PRP") in Kentucky and adapt that program to include projects that target a certain type and generation of polyethylene ("PE") pipe known as Aldyl-A, in addition to the bare steel pipe that is already the focus of our program. The Company outlined in its most recent general rate case, Case No. 2021-00214, the supporting reasons for the replacement of Aldyl-A in its system as needed. Pursuant to the Commission's Final Order, "[ $t]$ he inclusion of Aldyl-A pipelines will be determined in a case-bycase basis and any PRP applications including Aldyl-A projects should include minimum safety justifications for such projects." The primary purpose of my testimony is to support the specific Aldyl-A projects that the Company has included in this PRP filing.

While the safety and reliability of our system is the paramount goal for Atmos Energy, the Company understands the Commission's obligation to balance safety and cost. Atmos Energy believes that inclusion of the Aldyl-A projects in this filing is appropriate and will strike the right balance between increased safety for the community, our customers, and property while ensuring rates continue to be reasonable for our natural gas customers.

## III. INTRODUCTION OF WITNESS

## Q. BY WHOM ARE YOU EMPLOYED AND IN WHAT CAPACITY?

A. I am the Vice President of Technical Services for Atmos Energy Corporation's Kentucky/Mid-States Division (hereinafter "Atmos Energy" or the "Company").

## Q. WHAT ARE YOUR JOB RESPONSIBILITIES?

A. My current responsibilities for the Company include oversight of engineering, geographic information systems, measurement, compliance, safety, related information technology, and procurement. My department is responsible for execution of Projects within our Pipeline Integrity Plan, Annual DOT filings, Contracting, and Project Management for planned system growth, improvement, and replacement projects. I previously served as the Program Manager for the Kentucky PRP from 2015 through 2017.

## Q. PLEASE DESCRIBE YOUR EDUCATIONAL BACKGROUND AND PROFESSIONAL EXPERIENCE.

A. I earned a Bachelor of Science degree in Civil Engineering from The University of Evansville in 2000. I am a Registered Professional Engineer in the Commonwealth of Kentucky. I have been employed by Atmos Energy for 12 years. During my
time at Atmos Energy I have held engineering positions of increasing responsibility (Engineer 1 - Senior 2009-2015) in Owensboro, Manager of Engineering Services with responsibilities of the Kentucky Bare Steel Pipe Replacement Program (20152017) and VP of Operations for Kentucky (2017-2019) - before moving to my current role as Vice President of Technical Services in June of 2019.

## Q. ARE YOU A MEMBER OF ANY PROFESSIONAL ORGANIZATIONS?

A. Yes, I am a member of the American Gas Association. I am also a member of the Kentucky Gas Association where I currently serve as a member of the Operations and Engineering Committee.
Q. HAVE YOU PREVIOUSLY TESTIFIED BEFORE THE KENTUCKY PUBLIC SERVICE COMMISSION?
A. Yes. I testified before the Commission in Case No. 2021-00214.

## Q. ARE YOU SPONSORING ANY EXHIBITS?

A. Yes. I am sponsoring the following exhibits, which are attached to my testimony:

Exhibit TRA-1 (Confidential): Aldyl.2736.Lincoln Ave
Exhibit TRA-2 (Confidential): Aldyl.2736.Cunningham Ave
Exhibit TRA-3 (Confidential): Aldyl.2635.St Charles
Exhibit TRA-4: ADB-2007-01 - PHMSA Advisory Bulletin, Pipeline Safety: Updated Notification of the Susceptibility to Premature Brittle-Like Cracking of Older Plastic Pipe.

## IV. DESCRIPTION OF PROPOSED ALDYL-A PROJECTS

## Q. HAS THE COMPANY INCLUDED SPECIFIC ALDYL-A PROJECTS IN THIS PRP FILING FOR APPROVAL BY THIS COMMISSION?

A. Yes. In addition to the steel projects included for review and approval, the Company has submitted the following three Aldyl-A projects in this filing for approval:

Table TRA-1 - Proposed Aldyl-A Projects for Fiscal Year 2023

| Project Name | Project Description |
| :---: | :---: |
| Aldyl.2736.Lincoln Ave | Replace 2,599' of 2" Aldyl A, 3,407' of 2"' <br> PE, 1,002' of 1" Adly A, Install 7,008' of <br>  <br>  <br> Aldyl. HDPE. 53 Services |
| Al36.Cunningham Ave | Replace 3,573' of 2" Aldyl A, 5' of 2" PE, <br> $100^{\prime}$ of unknown Plastic, 2,399' of 1" <br> Aldyl A 5' od 1" PE, Install 6,100' of 2" <br>  <br>  <br> HDPE. 80 services |
| Aldyl.2635.St Charles | Replace 612' of 1.25" Mill Wrap, 305' of |
|  | $2^{\prime \prime}$ PE, 449' of 2" Aldyl-A and 8,718' of |
|  | 1.25 Aldyl-A, Install 10,085' of 2" |
|  | HDPE. 90 Services |


#### Abstract

Q. ARE BOTH THE PROPOSED LINCOLN AVENUE AND CUNNINGHAM AVENUE PROJECTS LOCATED IN CADIZ, KENTUCKY? A. Yes. The Company submitted testimony in Case No. 2021-00214 concerning the Aldyl-A located in the Company's Cadiz, Kentucky system and the need for its replacement in a ratable manner beginning in our Fiscal 2022 budget. Case No. 2021-00214 included four_projects that were approved by the Commission as just and reasonable. The two Cadiz projects included in this filing are a continuation of the Company's efforts to tackle the risk in this system with targeted replacement.


## Q. PLEASE DISCUSS THE COMPANY'S SYSTEM IN CADIZ.

A. Atmos Energy's system in Cadiz, Kentucky is a good example of the susceptibility to cracking of Aldyl-A. The Cadiz system was installed in the mid-1960s and is entirely Aldyl-A pipe. The system has had a history of leaks caused by the rocky bedding conditions impinging on the Aldyl-A pipe which has, with the passage of time, proven to lead to increased cracking. This area also has tracer wire with the pipe that has deteriorated over time which makes the pipeline in Cadiz difficult to locate. As I mentioned in Case No. 2021-00214, the Cadiz area is one of the areas we are targeting first for replacement because of the knowledge we have from the historical records of the system and the risk factors involved. The Lincoln Avenue and Cunningham Avenue projects are a continuation of our efforts to safely replace the system in Cadiz over time.

## Q. PLEASE DISCUSS COMPANY'S LINCOLN AVENUE PROJECT.

A. The Lincoln Avenue project is located in Cadiz, Kentucky. As listed above, the Company plans to replace approximately 3,601 feet of Aldyl-A and 3,407 feet of polyethylene (PE), and install 7,008 feet of high density polyethylene (HDPE) pipe. The Aldyl-A being replaced around Lincoln Avenue was installed in 1966 and is entirely pre-1973 Aldyl-A vintage with higher relative susceptibility to cracking and leakage. To uniformly make this area of the system consistent with the current standards the Company will install HDPE. Lincoln Avenue is located in the middle of Cadiz, and in addition, portions of Trigg County Middle School and Trigg County Primary School, are located off of the end of Lincoln Avenue. A map of the Lincoln Avenue project is provided in Confidential Exhibit TRA-1.

## Q. PLEASE DISCUSS THE COMPANY'S CUNNINGHAM AVENUE PROJECT.

A. The Cunningham Avenue project is located in Cadiz, Kentucky. In the proposed project, the Company plans to replace approximately 5,972 feet of Aldyl-A, 10 feet of PE, 100 feet of unknown plastic and install 6,100 feet of HDPE. The Aldyl-A being replaced was also installed in 1966 and is also entirely pre-1973 vintage. Cunningham Avenue is one of the longest residential streets in Cadiz and is located just off Main Street. The pipe on Cunningham Avenue is almost entirely Aldyl-A and due to the vintage, heavy residential presence, and underlying soil conditions in Cadiz the Company believes the safest action to mitigate failure risk is replacement of this pipe. A map of the Cunningham Avenue project is provided in Confidential Exhibit TRA-2.

## Q. PLEASE DISCUSS THE COMPANY'S PROPOSED ST. CHARLES PROJECT.

A. St. Charles is a small town in Hopkins County, Kentucky, with an estimated population of 277 people. The St. Charles project will replace all the remaining Aldyl-A pipe in Atmos Energy's system in St. Charles which is almost entirely Aldyl-A and was installed in 1969. While St. Charles does not have the same underlying soil conditions as Cadiz, the pipe itself is extremely shallow with very little cover. This fact, along with the fact that the pipe is extremely difficult to locate, has led to higher relative risk of damage from excavation and other external forces that can impact the pipe as it crosses road ditches and areas of field drainage. The amount of Aldyl-A pipelines in the relatively small area and the leakage and
damage history lead to St. Charles being one of the highest relative failure risks in Atmos Energy's system. Replacing the Aldyl-A pipe in St. Charles will prevent further elevated risk to the customers in this area. A map of the St. Charles project is provided in Confidential Exhibit TRA-3.

## Q. HOW DID THE COMPANY CHOOSE THESE ALDYL-A PROJECTS?

A. In considering the listed Aldyl-A projects, the Company has taken into consideration factors such as age of material, location of the pipe in relation to population and high consequence facilities, and relative risk from third party damage as described above. All three of the proposed projects ranked high in risk factors in the Company's assessment.

## Q. PLEASE LIST SOME ADDITIONAL RISK FACTORS THAT LED THE COMPANY TO PROPOSE THESE THREE PROJECTS.

A. The existing pipe in all three projects is exceptionally difficult to locate. For all three sections, the tracer wire has deteriorated and to find the existing pipe the Company or its contractors must rely on the use of hand tools for excavation, which greatly increases the time it takes to conduct locates in turn reducing efficiency and potentially increasing risk of damage. In Cadiz, for example, similar pipe the Company has been replacing in FY 2022 has required up to a week for the crews to locate a small section of the pipe. By replacing this pipe, which is already prone to cracking, the Company also substantially mitigates the risk of third-party damage as well mitigating future $\mathrm{O} \& \mathrm{M}$ expenses by having pipe that is easily locatable.


#### Abstract

Q. PLEASE LIST ANY ADDITIONAL ATTRIBUTES THAT THE CHOSEN ALDYL-A PROJECTS PROVIDE. A. The Cunningham Avenue and Lincoln Avenue projects are both in Cadiz, Kentucky, and this helps create operational synergies with the local government to efficiently replace those systems while ensuring minimal disruption in the community and quickly and efficiently rehabilitating the area. Similarly, the St. Charles replacement project will allow the Company to completely replace all of the AldylA located in St. Charles, Kentucky, and coordinate with the local community to accomplish this work all at once to ensure an efficient replacement process and to work to keep rehabilitation costs lower than a longer more drawn-out project or projects.


## V. ALDYL-A REPLACEMENT

## Q. PLEASE PROVIDE ADDITIONAL DETAIL ABOUT ATMOS ENERGY'S ALDYL-A PIPE.

A. Atmos Energy's Kentucky gas distribution system still contains approximately 201miles of Aldyl-A pipe. While this pipe is not generally as old as the bare steel pipe in Atmos Energy's Kentucky distribution system, it is nonetheless made of materials that are considered obsolete and no longer used in the natural gas industry. Following bare steel pipe, the Company considers Aldyl-A the vintage material that presents the next most significant risks on its system and has been studying the change in leakage rates of Aldyl-A systems as bare steel pipe replacement within PRP has progressed.

## Q. WHAT ARE THE MAIN CAUSES OF LEAKS ON ALDYL-A PIPE?

A. As these materials age, the structure of the pipe weakens, becomes brittle and eventually cracks. In 2007, PHMSA issued an Advisory Bulletin ADB-07-01 for updated notification of the susceptibility of older plastic pipes to premature brittlelike cracking. The older pipes listed included Aldyl-A. The advisory bulletin noted that:

Brittle-like cracking refers to crack initiation in the pipe wall not immediately resulting a full break followed by stable crack growth at stress levels much lower than the stress required for yielding. This results in very tight, slit-like, openings and gas leaks. Although significant cracking may occur at point of stress concentration and near improperly designed or installed fittings, small brittle-like cracks may be difficult to detect until a significant amount of gas leaks out of the pipe, and potentially migrates into an enclosed space such as a basement.

A copy of the Advisory Bulletin is included as Exhibit TRA-4. The brittle-like cracking characteristic could cause a leak on an early vintage plastic pipeline such as Aldyl-A to grow and release additional natural gas than would normally be released, increasing the risk of natural gas gathering and igniting.

## Q. DOES PHMSA BULLETIN ADB-07-01 MAKE A DISTINCTION AMONG TYPES OF ALDYL-A PIPE?

A. Yes. PHMSA Advisory Bulletin ADB-07-01 follows up on Advisory Bulletins ADB-99-01, ADB-99-02, and ADB-02-07 and provides updated notification of the susceptibility of older plastic pipes to premature brittle-like cracking. Among older polyethylene pipe materials these included, but are not limited, to Aldyl-A manufactured before 1973. The American Gas Association has also produced a technical document that expands on the pipe manufactured between 1971 and 1983.

This pipe still has issues with brittle cracking and should be replaced as well. Table TRA-2 below is a summary of the American Gas Association documents highlighting the risks of cracking associated with various types of Aldyl-A pipe:

Table TRA-2

| Years of Manufacture | Pipe Resin | Relative Resistance to Slow Crack Growth | Summary Notes |
| :---: | :---: | :---: | :---: |
| 1965-1971 | Alathon ${ }^{\circ} 5040$ | Low | Initial Product Marketed as AldyI $A^{*}$ |
| $1971-1983{ }^{14}$ | Alathon ${ }^{\circ} 5043$ | Low ${ }^{15}$ | Resin Improvement. Low Ductile Inner Wall (LDIW) pipe manufacturing defect ('70-72)* |
| 1983-1989 ${ }^{17}$ | Alathon ${ }^{\circ}$ 5046-C | Medium ${ }^{18}$ | Resin Improvement-- Sold as "Improved Aldyl A" |
| 1989-1992 | Alathon ${ }^{\circ}$ 5046-U | High | Resin Improvement --"Improved Aldyl A" |
| 1992-1999 | Alathon ${ }^{\circ}$ 5046-O | Very High | Resin Improvement |
| *Note: Low Ductile Inner Wall (LDIW) manufacturing defect primarily occurring in some pipe manufactured in years 1970 through 1972 and resulting in possible lower slow crack resistance. |  |  |  |

Table 1. DuPont Aldyl A Pipe Resins 1965-1999

- Pre-1973 Aldyl A - Pipe installed prior to 1973, from the first two resin formulations, and including pipe having low ductile inner wall. Susceptible to brittle-like failures due to rock impingement or squeeze-off.
- 1973-1983 Aldyl A - Aldyl A pipe manufactured from Alathon ${ }^{\circ} 5043$ resin, but only that pipe manufactured after 1972 and through 1983. Susceptible to brittle-like failures due to rock impingement.
- 1984 and Later Aldyl A - Pipe manufactured from the improved Alathon ${ }^{\circ} 5046-\mathrm{C}, 5046-\mathrm{U}$ and 5046-O resins.


## Q. WHAT TYPE OF ALDYL-A PIPE IS PROPOSED FOR REPLACEMENT IN THE LINCOLN AVENUE, CUNNINGHAM AVENUE, AND ST. CHARLES PROJECTS?

A. The Lincoln Avenue and Cunningham Avenue Aldyl-A is from 1966, and St. Charles is from 1969. This pipe resin is the Alathon 5040 which as the table above shows has a low relative resistance to slow crack growth. The Company's AldylA projects it is targeting for replacement are pre-1973 Aldyl-A pipe with the exception of some smaller sections identified that we feel warrant the replacement ahead of others due to additional risk factors or operational synergies. For example, there may be a small section of post-1973 Aldyl-A pipe in the near vicinity of a project of older vintage already identified for replacement. While this relatively newer section of Aldyl-A or PE may not have been identified as a standalone project, it may be included because of the operational efficiencies of replacing it simultaneously with the adjacent sections and/or because there are risk factors other than age that influence the priority of the project, such as location in a highly populated or growing area with high probability of construction.

## Q. IS REPLACEMENT OF THIS PIPE THE ONLY POSSIBLE REMEDY FOR THESE THREE PROJECTS?

A. Yes, replacement is the only remedy for these pipes over time. As stated above, Aldyl-A pipe is no longer used for new installations. There is no remedial action that will reverse the brittle cracking of this early generation plastic pipe.

2 Q. DOES THIS CONCLUDE YOUR DIRECT TESTIMONY?
3 A. Yes.

## COMMONWEALTH OF KENTUCKY

## BEFORE THE PUBLIC SERVICE COMMISSION

| APPLICATION OF ATMOS ENERGY | ) |
| :--- | :--- |
| CORPORATION TO ESTABLISH PRP | ) |
| RIDER RATES FOR THE TWELVE MONTH | ) |
| PERIOD BEGINNING OCTOBER 1,2022 | ) |

## CERTIFICATE AND AFFIDAVIT

The Affiant, T. Ryan Austin, being duly sworn, deposes and states that the prepared testimony attached hereto and made a part hereof, constitutes the prepared direct testimony of this affiant in Case No. 2022-00222 and that if asked the questions propounded therein, this affiant would make the answers set forth in the attached prepared direct pre-filed testimony.

T. Ryan Austin

STATE OF KENTUCKY
COUNTY OF DAVIESS

SUBSCRIBED AND SWORN to before me by T. Ryan Austin on this the $2 / 6$ day of July, 2022.


## Exhibit TRA-1 (CONFIDENTIAL)

## Exhibit TRA-2 (CONFIDENTIAL)

## Exhibit TRA-3 (CONFIDENTIAL)

safety procedures used for filling, operating, and discharging MATs to determine whether additional safety procedures should be implemented. To this end, we request that persons who use such transportation systems to provide us with information on the effectiveness of the current DOT regulations, consensus standards, and industry best practices. We are also interested in any other procedures utilized to ensure that operations related to the transportation of acetylene on MATs are performed safely.
We would also like to work with shippers, carriers, and facilities that receive shipments of acetylene in MATs to develop and implement a pilot program to test the effectiveness of current or alternative procedures or methods designed to enhance the safety of transportation operations involving acetylene on MATs. As part of this program, we will assist individual companies or facilities to evaluate the effectiveness of their current procedures and to identify additional measures that should be implemented. We welcome suggestions concerning how such a program should be structured and the entities that should participate.
To ensure that our message reaches all stakeholders affected by these risks, we plan to communicate this advisory through our public affairs notification and outreach processes. For additional visibility, we have made this advisory available on the PHMSA homepage at http://www.phmsa.dot.gov and the DOT electronic docket site at http:// $d m s . d o t . g o v$. In addition, if you are aware of other companies that are involved in the charging, operating, and discharging MATs, please share this advisory notice with them and, if possible, identify them in your correspondence with this agency. We believe a collaborative effort involving an integrated and cooperative approach will help us to address safety risks, reduce incidents, enhance safety, and protect the public.
Issued in Washington, DC on August 30, 2007.

Theodore L. Willke,
Associate Administrator for Hazardous Materials Safety.
[FR Doc. 07-4355 Filed 9-5-07; 8:45 am] billing Code 4910-60-P

# DEPARTMENT OF TRANSPORTATION 

## Pipeline and Hazardous Materials Safety Administration

[Docket No. PHMSA-2004-19856]

## Pipeline Safety: Updated Notification of the Susceptibility to Premature Brittle-Like Cracking of Older Plastic Pipe

AGENCY: Pipeline and Hazardous
Materials Safety Administration
(PHMSA); DOT.
ACTION: Notice; Issuance of Advisory Bulletin.

SUMMARY: PHMSA is issuing this
updated advisory bulletin to owners and operators of natural gas pipeline distribution systems concerning the susceptibility of older plastic pipe to premature brittle-like cracking. PHMSA previously issued three advisory bulletins on this subject: Two on March 11, 1999 and one on November 26, 2002. This advisory bulletin expands on the information provided in the three prior bulletins by listing two additional pipe materials with poor performance histories relative to brittle-like cracking and by updating pipeline owners and operators on the ongoing voluntary efforts to collect and analyze data on plastic pipe performance. Owners and operators of natural gas pipeline distribution systems are encouraged to review the three previous advisory bulletins in their entirety.

## FOR FURTHER INFORMATION CONTACT:

Richard Sanders at (405) 954-7214, or by e-mail at richard.sanders@dot.gov.
SUPPLEMENTARY INFORMATION:

## I. National Transportation Safety Board (NTSB) Investigation

On April 23, 1998, the National Transportation Safety Board (NTSB) issued its Special Investigation Report, Brittle-Like Cracking in Plastic Pipe for Gas Service, NTSB/SIR-98/01. The report described the results of the NTSB's special investigation of polyethylene gas service pipe, which addressed three major safety issues: (1) Vulnerability of plastic piping to premature failures due to brittle-like cracking; (2) adequacy of available guidance relating to the installation and protection of plastic piping connections to steel mains; and, (3) effectiveness of performance monitoring of plastic pipeline systems to detect unacceptable performance in piping systems.
(1) Vulnerability of plastic piping to premature failures due to brittle-like cracking: The NTSB found that failures in polyethylene pipe in actual service are frequently brittle-like, slit failures,
not ductile failures. It concluded the number and similarity of plastic pipe accident and non-accident failures indicate past standards used to rate the long-term strength of plastic pipe may have overrated the strength and resistance to brittle-like cracking for much of the plastic pipe manufactured and used for gas service from the 1960s through the early 1980s. The NTSB also concluded any potential public safety hazards from these failures are likely to be limited to locations where stress intensification exists. The NTSB went on to state that more durable modern plastic piping materials and better strength testing have made the strength ratings of modern plastic piping more reliable.
(2) Adequacy of available guidance relating to the installation and protection of plastic piping connections to steel mains: The NTSB concluded that gas pipeline operators had insufficient notification of the brittlelike failure potential for plastic pipe manufactured and used for gas service from the 1960s to the early 1980s. The NTSB also concluded this may not have allowed companies to implement adequate surveillance and replacement programs for older plastic piping. The NTSB explained the Gas Research Institute (GRI) developed a significant amount of data on older plastic pipe but the data was published in codified terms making it insufficient for use by pipeline system operators. The NTSB recommended that manufacturers of resin and pipe, industry trade groups and the Federal government do more to alert pipeline operators to the role played by stress intensification from external forces in the premature failure of plastic pipe due to brittle-like cracking.
(3) Effectiveness of performance monitoring of plastic pipeline systems as a way of detecting unacceptable performance in piping systems: The NTSB's analysis noted that Federal regulations require pipeline operators to have an ongoing program to monitor the performance of their pipeline systems. However, the NTSB investigation revealed some gas pipeline operators' performance monitoring programs did not effectively collect and analyze data to determine the extent of possible hazards associated with plastic pipeline systems. The NTSB pointed out, 'such a program must be adequate to detect trends as well as to identify localized problem areas, and it must be able to relate poor performance to specific factors such as plastic piping brands, dates of manufacture (or installation dates), and failure conditions."

Copies of this report may be obtained by searching the NTSB Web site at www.ntsb.gov.

## II. Advisory Bulletins Previously Issued by PHMSA

The NTSB made several recommendations to PHMSA and to trade organizations in its 1998 special investigation report. In response, PHMSA issued three advisory bulletins. The first advisory bulletin, ADB-99-01, Potential Failure Due to Brittle-Like Cracking of Certain Polyethylene Plastic Pipe Manufactured by Century Utility Products Inc, was published in the Federal Register (FR) on March 11, 1999 ( 64 FR 12211) to advise natural gas pipeline distribution system operators that brittle-like cracking may occur on certain polyethylene pipe manufactured by Century Utility Products, Inc.

The second advisory bulletin, ADB-99-02, Potential Failures Due to BrittleLike Cracking of Older Plastic Pipe in Natural Gas Distribution Systems, was also published in the Federal Register on March 11, 1999 ( 64 FR 12212) to advise natural gas pipeline distribution system operators of the potential for brittle-like cracking of plastic pipes installed between the 1960s and early 1980s.

The third advisory bulletin, ADB-0207, Notification of the Susceptibility To Premature Brittle-Like Cracking of Older Plastic Pipe, was published in the
Federal Register on November 26, 2002
( 67 FR 70806) to reiterate to natural gas pipeline distribution system operators the susceptibility of older plastic pipe to premature brittle-like cracking. The older polyethylene pipe materials specifically identified in ADB-02-07 included, but were not limited to:

- Century Utility Products, Inc. products;
- Low-ductile inner wall "Aldyl A" piping manufactured by DuPont Company before 1973; and
- Polyethylene gas pipe designated PE 3306.
This third advisory bulletin also listed several environmental, installation and service conditions in which plastic piping is used that could lead to premature brittle-like cracking failure. PHMSA also described six recommended practices for polyethylene gas pipeline system operators to aid them with identifying and managing brittle-like cracking problems.


## III. Plastic Pipe Studies

Beginning January 25, 2001, the American Gas Association (AGA) began to collect data on in-service plastic piping material failures with the
objective of identifying trends in the performance of these materials. The resulting leak survey data, collected from 2001 to present, on the county's natural gas distribution systems includes both actual failure information and negative reports (reports of no leads) submitted voluntarily by participating pipeline operating companies.
The AGA, PHMSA, and other industry and state organizations continue to collect and analyze the data. Unfortunately, the data cannot be correlated with the quantities of each plastic pipe material that may be in service across the United States. Therefore, the data does not assess the failure rates of individual plastic pipe materials on a linear basis (i.e. per foot, per mile, etc.). However, the failure data reinforces what is historically known about certain older plastic piping and components. The data also indicates the susceptibility of additional specific materials to brittle-like cracking.

## IV. Advisory Bulletin ADB-07-01

To: Owners and Operators of Natural Gas Pipeline Distribution Systems.

Subject: Updated Notification of the Susceptibility of Older Plastic Pipes to Premature Brittle-Like Cracking.

Advisory: All owners and operators of natural gas distribution systems who have installed and operate plastic piping are reminded of the phenomenon of brittle-like cracking. Brittle-like cracking refers to crack initiation in the pipe wall not immediately resulting in a full break followed by stable crack growth at stress levels much lower than the stress required for yielding. This results in very tight, slit-like, openings and gas leaks. Although significant cracking may occur at points of stress concentration and near improperly designed or installed fittings, small brittle-like cracks may be difficult to detect until a significant amount of gas leaks out of the pipe, and potentially migrates into an enclosed space such as a basement. Premature brittle-like cracking requires relatively high localized stress intensification that may result from geometrical discontinuities, excessive bending, improper installation of fittings, dents and/or gouges. Because this failure mode exhibits no evidence of gross yielding at the failure location, the term brittle-like cracking is used. This phenomenon is different from brittle fracture, in which the pipe failure causes fragmentation of the pipe.

All owners and operators of natural gas distribution systems are future advised to review the three earlier advisory bulletins on this issue. In addition to being available in the

Federal Register, these advisory
bulletins are available in the docket, and on PHMSA's Web site at http:// phmsa.dot.gov/ under Pipeline Safety Regulations.

In the first advisory bulletin, ADB-99-01, published on March 11, 1999 (64 FR 12211), PHMSA advises natural gas distribution system operators of the potential for poor resistance to brittlelike cracking of certain polyethylene pipe manufactured by Century Utility Products, Inc. In the second advisory bulletin, ADB-99-02, published on March 11, 1999 ( 64 FR 12212), PHMSA advises natural gas distribution system operators of the potential for brittle-like cracking of plastic pipes installed between the 1960s and early 1980s.

In the third advisory bulletin, ADB-02-07, published on November 26, 2002 ( 67 FR 70806), PHMSA reiterates to pipeline operators the susceptibility of some older plastic pipe to premature brittle-like cracking which could substantially reduce the service life of natural gas distribution systems and to explain the mission of the Plastic Pipe Database Committee (PPDC) "to develop and maintain a voluntary data collection process that supports the analysis of the frequency and causes of in-service plastic piping material failures." The advisory bulletin also lists several environmental, installation and service conditions under which plastic piping is used which is used which could lead to premature brittle-like cracking failure. PHMSA also describes six recommended practices for polyethylene gas pipeline system operators to aid them with identifying and managing brittle-like cracking problems.

Lastly, the susceptibility of some polyethylene pipes to brittle-like cracking is dependent on the resin, pipe processing, and service conditions. As noted in ADB-02-07, these older polyethylene pipe materials include, but are not limited to:

- Century Utility Products, Inc. products;
- Low-ductile inner wall "Aldyl A" piping manufactured by DuPont Company before 1973; and
- Polyethylene gas pipe designated PE 3306.
The data now supports adding the following pipe materials to this list:
- Delrin insert tap tees; and,
- Plexco service tee Celcon
(polyacetal) caps.
Authority: 49 U.S.C. chapter 601 and 49 CFR 1.53 .

Issued in Washington, DC, on August 28, 2007.

Jeffrey D. Wiese,
Associate Administrator for Pipeline Safety. [FR Doc. 07-4309 Filed 9-5-07; 8:45 am] BILLING CODE 4910-60-M

## DEPARTMENT OF TRANSPORTATION

## Pipeline and Hazardous Materials Safety Administration

[Docket No. PHMSA-2007-28993]
Pipeline Safety: Adequacy of Internal Corrosion Regulations for Hazardous Liquid Pipelines
agencr: Pipeline and Hazardous Materials Safety Administration (PHMSA), U.S. Department of Transportation (DOT).
ACTION: Notice of availability of materials; request for comments.

SUMMARY: This notice announces the availability of materials, including a briefing paper prepared for PHMSA's Technical Hazardous Liquid Pipeline Safety Standards Committee (THLPSSC) and data on risks posed by internal corrosion on hazardous liquid pipelines. PHMSA is preparing a report to Congress on the adequacy of the internal corrosion regulations for hazardous liquid pipelines. Participants at a meeting of the THLPSSC discussed issues involved in examining the adequacy of the regulations and requested additional data. PHMSA requests public comment on these matters.
DATES: Submit comments by October 9, 2007.
adDresses: Comments should reference Docket No. PHMSA-2007-28993 and may be submitted in the following ways:

- E-Gov Web site: http://
www.regulations.gov. This Web site allows the public to enter comments on any Federal Register notice issued by any agency. Follow the instructions for submitting comments.
- Fax: 1-202-493-2251.
- Mail: Docket Management System: U.S. Department of Transportation, Docket Operations, M-30, Room W12140, 1200 New Jersey Avenue, SE., Washington, DC 20590-0001.
- Hand Delivery: DOT Docket Management System, West Building Ground Floor, Room W12-140, 1200 New Jersey Avenue, SE., Washington, DC 20590-0001 between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

Instructions: Identify the docket number, PHMSA-2007-28993, at the
beginning of your comments. If you submit your comments by mail, submit two copies. To receive confirmation that PHMSA received your comments, include a self-addressed stamped postcard. Internet users may submit comments at http:// www.regulations.gov.
Note: Comments are posted without changes or edits to http:// www.regulations.gov, including any personal information provided. There is a privacy statement published on http://
www.regulations.gov.

## FOR FURTHER INFORMATION CONTACT:

Barbara Betsock at (202) 366-4361, or by e-mail at barbara.betsock@dot.gov.
SUPPLEMENTARY INFORMATION: The Pipeline Inspection, Protection, Enforcement, and Safety Act of 2006 directs PHMSA to review the internal corrosion regulations in subpart H of 49 CFR part 195 to determine if they are adequate to ensure adequate protection of the public and environment and to report to Congress on the results of the review. As an initial step in the review, PHMSA consulted the THLPSSC at its meeting on July 24, 2007. The briefing paper prepared for the committee members contains preliminary data on risk history as well as questions relating to the internal corrosion regulations. This briefing paper is posted on PHMSA's pipeline Web site (http:// ops.dot.gov) and has been placed in the docket.

At the meeting, PHMSA officials committed to gathering additional data responding to questions posed by the committee members. PHMSA has updated the data and included data responsive to the committee members. This data is also posted on the pipeline Web site and contained in the docket.

PHMSA requests comments on the adequacy of the internal corrosion regulations and answers to the questions posed in the briefing paper. PHMSA will use these comments in its review of the internal corrosion regulations.

Authority: 49 U.S.C. 60102, 60115, 60117: Sec. 22, Pub. L. 109-468, 120 Stat. 3499.

Issued in Washington, DC on August 27, 2007.

Jeffrey D. Wiese,
Associate Administrator for Pipeline Safety. [FR Doc. E7-17538 Filed 9-5-07; 8:45 am] BILLING CODE 4910-60-P

## DEPARTMENT OF VETERANS AFFAIRS

[OMB Control No. 2900-0675]

## Proposed Information Collection Activity: Proposed Collection; Comment Request

Agency: Center for Veterans Enterprise, Department of Veterans Affairs. ACTION: Notice.
summary: The Center for Veterans Enterprise (CVE), Department of Veterans Affairs (VA), is announcing an opportunity for public comment on the proposed collection of certain information by the agency. Under the Paperwork Reduction Act (PRA) of 1995, Federal agencies are required to publish notice in the Federal Register concerning each proposed collection of information, including each proposed extension of a currently approved collection, and allow 60 days for public comment in response to the notice. This notice solicits comments for information needed to identify veteran-owned businesses.
DATES: Written comments and recommendations on the proposed collection of information should be received on or before November 5, 2007.
ADDRESSES: Submit written comments on the collection of information through http://www.Regulations.gov; or Gail Wegner (00VE), Department of Veterans Affairs, 810 Vermont Avenue, NW., Washington, DC 20420 or e-mail: gail.wegner@va.gov. Please refer to "OMB Control No. 2900-0675" in any correspondence. During the comment period, comments may be viewed online through the Federal Docket Management System (FDMS) at http://
www.Regulations.gov.
FOR FURTHER INFORMATION CONTACT: Gail Wegner at (202) 303-3296 or FAX (202) 254-0238.
SUPPLEMENTARY INFORMATION: Under the PRA of 1995 (Pub. L. 104-13; 44 U.S.C. 3501-3521), Federal agencies must obtain approval from the Office of Management and Budget (OMB) for each collection of information they conduct or sponsor. This request for comment is being made pursuant to section 3506(c)(2)(A) of the PRA.
With respect to the following collection of information, CVE invites comments on: (1) Whether the proposed collection of information is necessary for the proper performance of CVE's functions, including whether the information will have practical utility;
(2) the accuracy of CVE's estimate of the burden of the proposed collection of

PSC KY. No. 2
Eleventh Revised SHEET No. 39

## ATMOS ENERGY CORPORATION

(NAME OF UTILITY)

## Cancelling

Tenth Revised SHEET No. 39

## Pipeline Replacement Program Rider

4. Pipe Replacement Rider Rates

The charges for the respective gas service schedules for the revenue month beginning October 1,2022 per billing period are:

|  | Monthly <br> Customer Charge |  |
| :--- | :--- | :--- |
| Rate G-1 (Residential) | $\$ 0.00$ | $1-300$ <br> $301-15,000$ <br> Over 15,000 |
| Rate G-1 (Non-Residential) | $\$ 0.00$ | $1-300$ <br> $301-15,000$ <br> Over 15,000 |
| Rate G-2 | $\$ 0.00$ | $1-15,000$ <br> Over 15,000 |
| Rate T-3 | $\$ 0.00$ | $1-15,000$ <br> Over 15,000 |
| Rate T-4 | $\$ 0.00$ | $1-300$ <br> $301-15,000$ <br> Over 15,000 |

Distribution
Charge per Mcf
$\$ 0.1245$ per 1000 cubic feet $\$ 0.1245$ per 1000 cubic feet $\$ 0.1245$ per 1000 cubic feet
$\$ 0.0909$ per 1000 cubic feet $\$ 0.0632$ per 1000 cubic feet $\$ 0.0632$ per 1000 cubic feet
$\$ 0.0300$ per 1000 cubic feet $\$ 0.0246$ per 1000 cubic feet
$\$ 0.0223$ per 1000 cubic feet $\$ 0.0183$ per 1000 cubic feet
$\$ 0.0371$ per 1000 cubic feet $\$ 0.0258$ per 1000 cubic feet $\$ 0.0213$ per 1000 cubic feet

DATE OF ISSUE
July 29, 2022
Month/Date/Year
DATE EFFECTIVE
$\qquad$

## Atmos Energy Corporation Pipe Replacement Program Filing <br> Table of Contents

Exhibit A Surcharge Summary ..... Tab 1
Exhibit B Deficiency Calculation ..... Tab 2
Exhibit B-1 Net Rate Base for Fiscal Year 2023 ..... Tab 3
Exhibit B-2 Recovery Schedule ..... Tab 4
Exhibit B-3 True Up of 2021 Project Costs. ..... Tab 5
Exhibit Cumulative Additions ..... Tab 6
Exhibit C-1 Monthly Depreciation Expense for Fiscal Year 2023 ..... Tab 7
Exhibit C-2 Monthly Cost of Removal for Fiscal Year 2023 ..... Tab 8
Exhibit D Cumulative Retirements ..... Tab 9
Exhibit E Depreciation Expense Calculation ..... Tab 10
Exhibit F Deferred Income Tax Calculation ..... Tab 11
Exhibit F-1 Deferred Income Tax Calculation Workpaper ..... Tab 12
Exhibit G Rate of Return Calculation ..... Tab 13
Exhibit H Projected O\&M Savings ..... Tab 14
Exhibit I Rate Design ..... Tab 15
Exhibit J Customers and Volumes ..... Tab 16
Exhibit K-1 2023 Project Details ..... Tab 17

## ATMOS ENERGY CORPORATION <br> KENTUCKY PIPE REPLACEMENT PROGRAM SURCHARGE CALCULATION OF FORECASTED ACTIVITY AS OF OCTOBER 2022 THROUGH SEPTEMBER 2023 SURCHARGE SUMMARY

| Line <br> Number | Tariff Schedule |  | Customer <br> Charge |  | Volumetric Charge |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | RESIDENTIAL (Rate G-1) |  | \$ | - | 0.1245 |
| 2 | NON-RESIDENTIAL (Rate G-1) |  | \$ | - |  |
| 3 |  | Sales: 1-300 |  |  | 0.0909 |
| 4 |  | Sales: 301-15000 |  |  | 0.0632 |
| 5 |  | Sales: Over 15000 |  |  | 0.0000 |
| 6 | INTERRUPTIBLE (Rate G-2) |  | \$ | - |  |
| 7 |  | Sales: 1-15,000 |  |  | 0.0300 |
| 8 |  | Sales: Over 15,000 |  |  | 0.0246 |
| 9 | TRANSPORTATION (T-3) |  | \$ | - |  |
| 10 |  | Interrupt Transport: 1-15,000 |  |  | 0.0223 |
| 11 |  | Interrupt Transport: Over 15,000 |  |  | 0.0183 |
| 12 | TRANSPORTATION (T-4) |  | \$ | - |  |
| 13 |  | Firm Transport: 1-300 |  |  | 0.0371 |
| 14 |  | Firm Transport: 301-15,000 |  |  | 0.0258 |
| 15 |  | Firm Transport: Over 15,000 |  |  | 0.0213 |

## ATMOS ENERGY CORPORATION

## KENTUCKY PIPE REPLACEMENT PROGRAM

SURCHARGE CALCULATION OF FORECASTED ACTIVITY AS OF OCTOBER 2022 THROUGH SEPTEMBER 2023

DEFICIENCY

Line

| Number | Description | Total |  |
| :---: | :---: | :---: | :---: |
| 1 | Project Additions | \$ | 15,586,559 |
| 2 | Project Retirements | \$ | $(3,039,583)$ |
| 3 | Net Change to Gross Plant | \$ | 12,546,976 |
| 4 |  |  |  |
| 5 | Cost of Removal to Accumulated Depr. | \$ | 790,841 |
| 6 | Retirements from Accumulated Depr. |  | 3,039,583 |
| 7 | Depreciation Accrual to Accumulated Depr. |  | $(63,621)$ |
| 8 | Net Change to Accumulated Depreciation |  | 3,766,802 |
| 9 |  |  |  |
| 10 | Net Change to Net Plant | \$ | 16,313,779 |
| 11 |  |  |  |
| 12 | Accumulated Deferred Income Taxes |  | $(317,361)$ |
| 13 | Net Change to Rate Base | \$ | 15,996,418 |
| 14 |  |  |  |
| 15 | Rate of Return |  | 7.75\% |
| 16 | Required Operating Income | \$ | 1,240,282 |
| 17 |  |  |  |
| 18 | Depreciation \& Amortization Expense |  | 216,445 |
| 19 | O\&M Savings |  | $(4,474)$ |
| 20 | Ad Valorem Tax Increase |  | 122,265 |
| 21 | Income Taxes on Cost of Service Items |  | $(83,392)$ |
| 22 | Income Taxes on Adjusted Interest Expense |  | $(71,271)$ |
| 23 | Operating Income at Present Rates | \$ | 179,573 |
| 24 |  |  |  |
| 25 | Deficiency | \$ | 1,419,855 |
| 26 | Tax Factor |  | 74.56\% |
| 27 | Total Rate Adjustment | \$ | 1,904,243 |
| 28 |  |  |  |
| 29 | Project Cost True-up | \$ | 237,735 |
| 30 | Revenue Recovery True-up |  | 99,746 |
| 31 | Total True-up | \$ | 337,481 |
| 32 |  |  |  |
| 33 | Total Rate Adjustment | \$ | 2,241,724 |

$$
\begin{aligned}
& \text { KENTUCKY PIPE REPLACEMENT PROGRAM } \\
& \text { SURCHARGE CALCUATIN OF FORECASED ACTVITY } \\
& \text { AS OF OCTOBER } 2022 \text { THROUGH SEPTEMBER } 2023
\end{aligned}
$$

$$
\begin{aligned}
& \text { OF OCTOBER } 2022 \text { THROUGH SEPTEMBER } \\
& \text { NET RATE BASE FOR FISCAL YEAR } 2023
\end{aligned}
$$

## Cumulative

No. Description

Retirements
Reirements nestments Activity (Additions net of Retirements)


## Accumulated Depreciation

```
Depreciation Expens
```

Depreciation
Reitrement
Cost of Removal
Cost of Removal
Accumulated Depreciation

| s | - | s | (2,129 | \$ | (5,595) | \$ | (10,513) | \$ | (17,190) | s | (26,322) | \$ | (38,098) | \$ | (53,305) | \$ | (72,288) | s | (95,869) | \$ | (125,653) | \$ | (163.665) | \$ | (216.445) | s | $(63,621)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \$ | - | \$ | 17 | \$ | 1,094,662 | \$ | 1,499,864 | \$ | 1,939,816 | \$ | 2,477,961 | \$ | 2,987,505 | \$ | 3,552,051 | \$ | 073,910 | \$ | 4,581,911 | \$ | 5,097,403 | \$ | 5,555,53 | \$ | 5,969,04 | \$ | 3,039,583 |
| s |  | s | 2.926 | \$ | 94,712 | \$ | 395,008 | \$ | 505,340 | s | 646,771 | \$ | 778,535 | \$ | 926,576 | s | 1,059,816 | S | 1,189,915 | \$ | 1,320,555 | \$ | 1,434,82 | \$ | 1,535,948 | s | 790,841 |
| \$ |  | \$ | 875,714 | \$ | 1,383,779 | \$ | 1,884,358 | \$ | 2,427,966 | \$ | 3,098,410 | \$ | 3,727,942 | \$ | 4,425,322 | \$ | 5,061,438 | \$ | 5,675,957 | \$ | 6,292,305 | \$ | 6,826,696 | \$ | 7,288,544 | \$ | 3,766,802 |

Accumulated Deferred Income Taxes
ADIT
NOLC Variable
Net ADIT
Proration Adjustmen



# ATMOS ENERGY CORPORATION 

KENTUCKY PIPE REPLACEMENT PROGRAM

## SURCHARGE CALCULATION OF FORCASTED ACTIVITY

AS OF OCTOBER 2020 THROUGH SEPTEMBER 2021 RECOVERY SCHEDULE

| Line No. | Surcharge Report | Actual Recovery Year |  |  | Approved Recovery Amt |  | ual Recovery Amt |  | (Under) vered |  | rying <br> arges |  | Total Over / (Under) | Weighted Average Cost of Capital |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2021 | Oct-20 | Sep-21 |  | 4,474,439 |  | 4,381,643 |  | $(92,796)$ |  | $(6,950)$ |  | (99,746) | 7.49\% |
| 2 |  |  |  | \$ | 4,474,439 | \$ | 4,381,643 | \$ | $(92,796)$ |  | $(6,950)$ |  | $(99,746)$ |  |

## ATMOS ENERGY CORPORATION

## KENTUCKY PIPE REPLACEMENT PROGRAM

 SURCHARGE CALCULATION OF FORCASTED ACTIVITY AS OF OCTOBER 2020 THROUGH SEPTEMBER 2021 DEFICIENCY| Line |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number |  | Actual |  | As Filed |  |
| 1 | Project Additions | \$ | 39,519,538 | \$ | 39,996,032 |
| 2 | Project Retirements |  | (1,674,531) |  | (9,137,846) |
| 3 | Net Change to Gross Plant | \$ | 37,845,007 | \$ | 30,858,185 |
| 4 |  |  |  |  |  |
| 5 | Cost of Removal to Accumulated Depr. |  | 2,079,976 |  | 2,014,401 |
| 6 | Retirements from Accumulated Depr. |  | 1,674,531 |  | 9,137,846 |
| 7 | Depreciation Accrual to Accumulated Depr. |  | $(543,200)$ |  | $(711,874)$ |
| 8 | Net Change to Accumulated Depreciation |  | 3,211,306 |  | 10,440,373 |
| 9 |  |  |  |  |  |
| 10 | Net Change to Net Plant | \$ | 41,056,314 | \$ | 41,298,558 |
| 11 |  |  |  |  |  |
| 12 | Accumulated Deferred Income Taxes |  | $(1,233,814)$ |  | (1,930,185) |
| 13 | Net Change to Rate Base | \$ | 39,822,499 | \$ | 39,368,374 |
| 14 |  |  |  |  |  |
| 15 | Rate of Return |  | 7.49\% |  | 7.49\% |
| 16 | Required Operating Income | \$ | 2,982,553 | \$ | 2,948,541 |
|  |  |  |  |  |  |
| 18 | Depreciation \& Amortization Expense |  | 655,514 |  | 533,873 |
| 19 | O\&M Savings |  | $(12,409)$ |  | $(18,695)$ |
| 20 | Ad Valorem Tax Increase |  | 301,841 |  | 246,116 |
| 21 | Income Taxes on Cost of Service Items |  | $(235,764)$ |  | $(189,943)$ |
| 22 | Income Taxes on Adjusted Interest Expense |  | $(180,004)$ |  | $(185,332)$ |
| 23 | Operating Income at Present Rates | \$ | 529,178 | \$ | 386,019 |
| 24 |  |  |  |  |  |
| 25 | Deficiency | \$ | 3,511,731 | \$ | 3,334,560 |
| 26 | Tax Factor |  | 74.52\% |  | 74.52\% |
| 27 | Total Proposed Rate Adjustment | \$ | 4,712,174 | \$ | 4,474,439 |
| 28 ( 20 |  |  |  |  |  |
| 29 | 2021 approved deficiency | \$ | 4,474,439 | \$ | 4,474,439 |
| 30 |  |  |  |  |  |
| 31 | Increase in deficiency | \$ | 237,735 | \$ | - |

## ATMOS ENERGY CORPORATION <br> KENTUCKY PIPE REPLACEMENT PROGRAM SURCHARGE CALCULATION OF FORECASTED ACTIVITY AS OF OCTOBER 2022 THROUGH SEPTEMBER 2023 ADDITIONS

| Line Number | Description |  | Mains |  | Services |  | Meters |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |  |  |  |
| 2 | Current Year: 2023 |  | 22,437,148 |  | 7,581,265 |  | 319,583 |  | 30,337,995 |
| 3 |  |  |  |  |  |  |  |  |  |
| 4 | Total Additions | \$ | 22,437,148 | \$ | 7,581,265 | \$ | 319,583 | \$ | 30,337,995 |



ATMOS ENERGY CORPORATION
KENTUCKY PIPE REPLACEMENT PROGRAM URCHARGE CALCULATION OF FORECASTED ACTIVIT
AS OF OCTOBER 2022 THROUGH SEPTEMBER 2023
MONTHLY COST OF REMOVAL FOR FISCAL YEAR 2023


## ATMOS ENERGY CORPORATION

KENTUCKY PIPE REPLACEMENT PROGRAM SURCHARGE CALCULATION OF FORECASTED ACTIVITY AS OF OCTOBER 2022 THROUGH SEPTEMBER 2023 RETIREMENTS
Line

Number
Description

Current Year: 2023
2

3
Total Retirements

|  | Mains | Services | Meters | Total |  |
| :---: | :--- | :--- | :--- | :--- | :--- |
|  | $3,708,968$ | $2,133,914$ | 126,159 | $5,969,041$ |  |
| $\$$ | $3,708,968$ | $\$ 2,133,914$ | $\$$ | 126,159 | $\$$ |

## ATMOS ENERGY CORPORATION <br> KENTUCKY PIPE REPLACEMENT PROGRAM SURCHARGE CALCULATION OF FORECASTED ACTIVITY AS OF OCTOBER 2022 THROUGH SEPTEMBER 2023 DEPRECIATION EXPENSE

| Line Jumbe | Description |  | Mains |  | Services |  | Meters |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Net Change to Gross Plant | \$ | 18,728,180 | \$ | 5,447,351 | \$ | 193,424 |  |  |
| 2 | Depreciation Rates |  | 1.54\% |  | 2.48\% |  | 4.85\% |  |  |
| 3 | Proforma Annual Depreciation Expense | \$ | 288,414 | \$ | 135,094 | \$ | 9,381 | \$ | 432,889 |
| 4 |  |  |  |  |  |  |  |  |  |
| 5 | Current Year Net Change to Gross Plant | \$ | 18,728,180 | \$ | 5,447,351 | \$ | 193,424 |  |  |
| 6 | Depreciation Rates |  | 1.54\% |  | 2.48\% |  | 4.85\% |  |  |
| 7 | Proforma Annual Depreciation Expense | \$ | 288,414 | \$ | 135,094 | \$ | 9,381 | \$ | 432,889 |
| 8 |  |  |  |  |  |  |  |  |  |
| 9 | Depreciation Accrual to Accumulated Dep | iatio | on from Prior A | pp | ved Filing |  |  | \$ | - |
| 10 | Accumulated Depreciation on Prior Additio | (fu | ll years deprec |  |  |  |  |  | - |
| 11 | Accumulated Depreciation on Current Additions (half-year convention) |  |  |  |  |  |  |  | 216,445 |
| 12 |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  | Depreciation Accrual to Accumulated Depreciation |  |  |  |  |  |  | \$ | 216,445 |

Note:

## ine No

## Book Cost Tax Cost <br> Tax Cost FXA01 <br> Prior Yr Bal <br> Current Yr FX001 Cumulative <br> Deferred Rate FXA01 Tax Ef <br> FXA01 Prorated <br> Book Depreciation Tax Depreciation <br> FXA02

ATMOS ENERGY CORPORATION
KENTUCKY PIPE REPLACEMENT PROGRAM
SURCHARGE CALCULATION OF FORECASTED ACTIVITY
AS OF OCTOBER 2022 THROUGH SEPTEMBER 2023
KENTUCKY PRP ADIT CALCULATION

| Line No |  |  |  | Oct-22 | Nov-22 |  | Dec-22 |  | Jan-23 |  | Feb-23 |  | Mar-23 |  | Apr-23 | May-23 |  | Jun-23 | Jul-23 |  | Aug-23 |  | Sep-23 |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Book Cost |  |  | 3,060,348 | 1,615,030 |  | 1,591,409 |  | 1,750,593 |  | 2,243,818 |  | 2,090,507 |  | 2,348,687 | 2,113,986 |  | 2,064,137 | 2,072,762 |  | 1,813,105 |  | 1,604,572 |  | 24,368,954 |
| 2 | Tax Cost |  |  | 1,172,972 | 619,010 |  | 609,956 |  | 670,968 |  | 860,012 |  | 801,251 |  | 900,206 | 810,250 |  | 791,144 | 794,450 |  | 694,928 |  | 615,001 |  | 9,340,148 |
| 3 | FXA01 |  |  | $(1,887,376)$ s | (996,020) | s | $\xrightarrow{(981,453) ~}{ }^{\text {S }}$ |  | $(1,079,625)$ | S | $(1,383,806)$ | s | $(1,289,256)$ | S | $(1,448,481)$ ¢ | (1,303,736) | s | $(1,272,944) \mathrm{s}$ | (1,278,312) | s | $(1,118,177)$ | s | (989,571) | s | $\underline{(15,028,806)}$ |
| 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 | Prior Yr Bal |  |  | - | - |  | - |  | - |  | - |  | - |  | - | - |  | - | - |  | - |  | - |  | - |
| 7 | Current Yr |  |  | $(1,887,376)$ | $(996,020)$ |  | $(981,453)$ |  | $(1,079,625)$ |  | $(1,383,806)$ |  | $(1,289,256)$ |  | $(1,448,481)$ | $(1,303,736)$ |  | $(1,272,994)$ | $(1,278,312)$ |  | $(1,118,177)$ |  | $(989,571)$ |  | $(15,028,806)$ |
| 8 | FXA01 Cumulative |  |  | $(1,887,376)$ | $(2,883,396)$ |  | $(3,864,849)$ |  | (4,944,474) |  | (6,328,279) |  | $(7,617,535)$ |  | (9,066,016) | $(10,369,753)$ |  | (11,642,746) | (12,921,059) |  | $(14,039,236)$ |  | $(15,028,806)$ |  | ( $15,028,806$ ) |
| 9 | Deferred Rate |  |  | 24.95\% | 24.95\% |  | 24.95\% |  | 24.95\% |  | 24.95\% |  | 24.95\% |  | 24.95\% | 24.95\% |  | 24.95\% | 24.95\% |  | 24.95\% |  | 24.95\% |  | 24.95\% |
| 10 | FXA01 Tax Effected |  | s | $(470,900)$ S | ¢ $(719,407)$ S | \$ | ${ }_{(964,280) \mathrm{s}}$ |  | $(1,233,646) \mathrm{S}$ | 5 | $(1,578,906) \mathrm{S}$ | S | $(1,900,575)$ | 5 | $(2,261,971)$ S | ( $2,587,253)$ S | S | $(2,904,865) \mathrm{s}$ | (3,223,804) | S | $(3,502,789)$ | S | $(3,749,687)$ | 5 | (3,749,687) |
| 11 | FXA01 Prorated |  |  | $(450,903)$ \$ | \$ $(668,432) \$$ | \$ | $(861,982)$ |  | $(1,052,014) \$$ | \$ | (1,269,102) ${ }^{\text {s }}$ | \$ | $(1,444,037)$ | \$ | $(1,610,874)$ \$ | ¢ $(1,733,411)$ \$ |  | $(1,826,955)$ \$ | ( $1,893,801$ ) |  | $(1,928,578)$ |  | $(1,939,063)$ | \$ | $(1,939,063)$ |
| 12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 15 | Book Depreciation |  |  | 2,129 | 3,466 |  | 4,918 |  | 6,677 |  | 9,132 |  | 11,776 |  | 15,207 | 18,983 |  | 23,581 | 29,784 |  | 38,012 |  | 52,780 |  | 216,445 |
| 16 | Tax Depreciation |  |  | 4,314 | 7,022 |  | 9,964 |  | 13,528 |  | 18,502 |  | 23,858 |  | 30,811 | 38,460 |  | 47,777 | 60,343 |  | 77,015 |  | 106,935 |  | 438,530 |
| 17 | FXA02 |  | S | $(2,185)$ \$ | ( 3,556 ) s | s | $\stackrel{(5,046) S}{ }$ |  | (6,851) S |  | (9,370) |  | (12,082) | S | ${ }_{(15,603) ~}^{\text {S }}$ | $(19,478) \mathrm{S}$ |  | $\stackrel{(24,196) \mathrm{S}}{ }$ | $\stackrel{(30,560)}{ }$ |  | $\stackrel{(39,003)}{ }$ | s | $\stackrel{(54,155)}{ }$ | s | $\stackrel{(222,086)}{ }$ |
| 18 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21 | Prior Yr Bal |  |  | - | - |  | - |  | - |  | - |  | - |  | - | - |  | - | - |  | - |  | - |  | - |
| 22 | Current Yr |  |  | $(2,185)$ | $(3,556)$ |  | $(5,046)$ |  | $(6,851)$ |  | $(9,370)$ |  | $(12,082)$ |  | $(15,603)$ | (19,478) |  | $(24,196)$ | $(30,560)$ |  | $(39,003)$ |  | $(54,155)$ |  | $(222,086)$ |
| 23 | FXA02 Cumulative |  |  | $(2,185)$ | $(5,741)$ |  | $(10,787)$ |  | $(17,638)$ |  | $(27,008)$ |  | $(39,090)$ |  | $(54,694)$ | (74,172) |  | $(98,367)$ | $(128,927)$ |  | $(167,930)$ |  | $(222,086)$ |  | $(222,086)$ |
| 24 | Deferred Rate |  |  | 24.95\% | 24.95\% |  | 24.95\% |  | 24.95\% |  | 24.95\% |  | 24.95\% |  | 24.95\% | 24.95\% |  | 24.95\% | 24.95\% |  | 24.95\% |  | 24.95\% |  | 24.95\% |
| 25 | FXA02 Tax Effected |  |  | (545) \$ | $(1,432)$ | S | $(2,691) \mathrm{s}$ |  | $(4,401) \mathrm{s}$ | S | $(6,739)$ S | S | (9,753) | S | (13,644) s | (18,506) S |  | (24,543) s | (32,167) |  | (41,899) | S | (55,410) | S | (55,410) |
| 26 | FXA02 Prorated |  | \$ | (522) \$ | \% $(1,299)$ | \$ | $(2,294)$ |  | $(3,500) 9$ | \$ | (4,970) | \$ | $(6,609)$ | 5 | $(8,406)$ \$ | \% (10,237) | \$ | $(12,015)$ \$ | \% (13,613) | \$ | $(14,826)$ | \$ | $(15,400)$ | \$ | $(15,400)$ |
| 27 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 28 | Cumulative Deferred Inc. Taxes and Investment Tax | Credits |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | \$ | $(1,954,463)$ |
| 29 | (excluding forecasted change in NOLC) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 30 | Forecasted Change in NOLC |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | \$ | 3,502,155 |
| 31 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 32 | Forecasted ADIT in Rate Base |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | \$ | 1,547,692 |
| 33 |  | ADIT Proration: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 34 |  | days in month |  | 31 | 30 |  | 31 |  | 31 |  | 28 |  | 31 |  | 30 | 31 |  | 30 | 31 |  | 31 |  | 30 |  | 365 |
| 35 |  | mid month convention |  | 15.5 | 30 |  | 31 |  | 31 |  | 28 |  | 31 |  | 30 | 31 |  | 30 | 31 |  | 31 |  | 30 |  |  |
| 36 |  | days remaining |  | 350 | 320 |  | 289 |  | 258 |  | 230 |  | 199 |  | 169 | 138 |  | 108 | 77 |  | 46 |  | 16 |  |  |
| 37 |  | pro ration factor |  | 95.75\% | 87.53\% |  | 79.04\% |  | 70.55\% |  | 62.88\% |  | 54.38\% |  | 46.16\% | 37.67\% |  | 29.45\% | 20.96\% |  | 12.47\% |  | 4.25\% |  |  |
| 38 39 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 39 40 | Calculation of Change in NOLC | Schedule |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 41 | Forecasted Test Period | Reference |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 42 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 43 | Net Change to Rate Base | Exhibit B |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 15,996,418 |
| $\begin{aligned} & 44 \\ & 45 \end{aligned}$ | Required Operating Income | Exhibit B |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1,240,282 |
| 46 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 47 | Interest Deduction | Exhibit B |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 285,656 |
| 48 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 49 | Return on Equity Portion of Rate Base | line 36 - line 38 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 954,626 |
| 50 51 | Return, grossed up for Income Tax | Line 40 / (1-tax rate) |  | 24.95\% |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1,271,987 |
| 52 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 53 | Tax Expense on Return | Line $42 \times$ tax rate |  | 24.95\% |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 317,361 |
| 54 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 55 | Change in ADIT, excluding forecasted change in N | Line 22 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | \$ | $(3,805,097)$ |
| 56 | Required Change in NOLC |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 3,502,155 |
| 57 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 58 | Total Required Change in Accumulated Deferre, | Exhibit B |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $(317,361)$ |
| 59 60 | ${ }^{1}$ Because the Company is in a NOLC position, the tota | otal change in ADIT mu |  | ual the tax expe | penses include | ed in | in revenue |  | ment |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

ATMOS ENERGY CORPORATION
KENTUCKY PIPE REPLACEMENT PROGRAM
SURCHARGE CALCULATION OF FORECASTED ACTIVITY
AS OF OCTOBER 2022 THROUGH SEPTEMBER 2023
DEFERRED INCOME TAXES
Line

| Number | Description |  | Mains |  | Services |  | Meters |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |  |  |  |
| 2 | Additions to Gross Plant - Book 2023 | \$ | 22,437,148 | \$ | 7,581,265 | \$ | 319,583 | \$ | 30,337,995 |
| 3 | Less: Retirements to Book 2023 |  | $(3,708,968)$ |  | (2,133,914) |  | $(126,159)$ |  | (5,969,041) |
| 4 | Book Basis | \$ | 18,728,180 | \$ | 5,447,351 | \$ | 193,424 | \$ | 24,368,954 |
| 5 | Repairs Percentage |  | 69.95\% |  | 69.95\% |  | 0.00\% |  |  |
| 6 | Less: Repairs | \$ | (15,694,761) | \$ | $(5,303,087)$ | \$ | - | \$ | $(20,997,847)$ |
| 7 | Add: Deferred Retirements | \$ | 3,708,968 |  | 2,133,914 | \$ | 126,159 |  | 5,969,041 |
| 8 | Tax Basis Before Bonus | \$ | 6,742,387 | \$ | 2,278,178 | \$ | 319,583 | \$ | 9,340,148 |
| 9 | Bonus Depreciation \% |  | 0.00\% |  | 0.00\% |  | 0.00\% |  |  |
| 10 | Bonus Depreciation | S | - | S | - | \$ | - | \$ | - |
| 11 | Tax Basis | \$ | 6,742,387 | \$ | 2,278,178 | \$ | 319,583 | s | 9,340,148 |
| 12 |  |  |  |  |  |  |  |  |  |
| 13 | FXA01-Gross | \$ | $(11,985,793)$ | \$ | $(3,169,172)$ | \$ | 126,159 | \$ | $(15,028,807)$ |
| 14 | Deferred Rate |  | 24.95\% |  | 24.95\% |  | 24.95\% |  |  |
| 15 | FXA01-Tax Effected | \$ | $(2,990,455)$ | \$ | $(790,709)$ | \$ | 31,477 | \$ | (3,749,687) |
| 16 | FXA01-Tax Effected Prorated |  |  |  |  |  |  | S | (1,939,063) |
| 17 |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |
| 19 | Book Depreciation 2023 |  | 144,207 | \$ | 67,547 | \$ | 4,691 | \$ | 216,445 |
| 20 | Book Depreciation | \$ | 144,207 | S | 67,547 | \$ | 4,691 | \$ | 216,445 |
| 21 ( ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |
| 22 | Tax Depreciation 2023 | \$ | 337,119 | \$ | 85,432 | \$ | 15,979 | \$ | 438,530 |
| 23 | Tax Depreciation | \$ | 337,119 | \$ | 85,432 | \$ | 15,979 | \$ | 438,530 |
| 24 ( ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |
| 25 | FXA02-Gross | \$ | $(192,912)$ | \$ | $(17,885)$ | \$ | $(11,289)$ | \$ | $(222,085)$ |
| 26 | Deferred Rate |  | 24.95\% |  | 24.95\% |  | 24.95\% |  |  |
| 27 | FXA02-Tax Effected | \$ | $(48,132)$ | \$ | $(4,462)$ | \$ | $(2,817)$ | S | (55,410) |
| 29 年 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 30 | Calculation of Book Depreciation |  |  |  |  |  |  |  |  |
| 31 |  |  |  |  |  |  |  |  |  |
| 32 | Book Basis - 2023 | \$ | 18,728,180 | \$ | 5,447,351 | \$ | 193,424 | \$ | 24,368,954 |
| 33 | Book Depreciation Rates - Year 1 |  | 0.77\% |  | 1.24\% |  | 2.43\% |  |  |
| 34 | Book Depreciation 2023 | S | 144,207 | \$ | 67,547 | \$ | 4,691 | \$ | 216,445 |
| 35 |  |  |  |  |  |  |  |  |  |
| 36 | Calculation of Tax Depreciation |  |  |  |  |  |  |  |  |
| 37 ( 37 |  |  |  |  |  |  |  |  |  |
| 38 | Tax Basis - 2023 | \$ | 6,742,387 | \$ | 2,278,178 | \$ | 319,583 | \$ | 9,340,148 |
| 39 | Tax Depreciation Rates - Year 1 |  | 5.00\% |  | 3.75\% |  | 5.00\% |  |  |
| 40 | Tax Depreciation 2023 | \$ | 337,119 | \$ | 85,432 | \$ | 15,979 | \$ | 438,530 |
| 41 |  |  |  |  |  |  |  |  |  |
| 42 |  |  |  |  |  |  |  |  |  |
| 43 |  |  |  |  |  |  |  |  |  |
| 44 |  |  |  |  |  |  |  |  |  |
| 45 | Tax Rates |  |  |  |  |  |  |  |  |
| 46 | Ad Valorem Tax Rate |  | 0.974\% |  |  |  |  |  |  |
| 47 | Income Tax Rate |  | 24.950\% |  |  |  |  |  |  |
| 48 | State Tax Rate |  | 5.00\% |  |  |  |  |  |  |
| 49 | Federal Tax Rate |  | 21.00\% |  |  |  |  |  |  |
| 50 | Uncollectible accounts expense |  | 0.50\% |  |  |  |  |  |  |
| 51 | PSC Assessment |  | 0.1493\% |  |  |  |  |  |  |
| 52 | Gross Up Factor |  | 1.3412 |  |  |  |  |  |  |

## ATMOS ENERGY CORPORATION <br> KENTUCKY PIPE REPLACEMENT PROGRAM SURCHARGE CALCULATION OF FORECASTED ACTIVITY AS OF OCTOBER 2022 THROUGH SEPTEMBER 2023 RATE OF RETURN

| Line <br> Number | Description | Percent | Cost | Weighted <br> Cost |
| :---: | :--- | ---: | ---: | ---: |
|  | ST Debt |  |  |  |
| 1 | $0.05 \%$ | $80.94 \%$ | $0.04 \%$ |  |
| 2 | LT Debt | $45.45 \%$ | $3.84 \%$ | $1.75 \%$ |
| 3 | Equity | $54.50 \%$ | $10.95 \%$ | $5.97 \%$ |
| 4 |  | $100.0 \%$ |  | $7.75 \%$ |

## ATMOS ENERGY CORPORATION KENTUCKY PIPE REPLACEMENT PROGRAM SURCHARGE CALCULATION OF FORECASTED ACTIVITY AS OF OCTOBER 2022 THROUGH SEPTEMBER 2023 O\&M SAVINGS

| Line <br> Number | Description |  | Annual <br> Savings | Cumulative <br> Savings |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Current Year: 2023 | $\$$ | 4,474 | $\$$ | 4,474 |

## TMOS ENERGY CORPORATION

## KENTUCKY PIPE REPLACEMENT PROGRAM

SURCHARGE CALCULATION OF FORECASTED ACTIVITY AS OF OCTOBER 2022 THROUGH SEPTEMBER 2023

| $\begin{gathered} \text { Line } \\ \text { Number } \end{gathered}$ | Class of Customers | $2020-$ <br> Rate | 14 Total | Total Dollars | Ratio | Volumetric <br> Charge Ratio | Revenue increase <br> by Class |  | Budgeted Volumes | Budgeted <br> Customer Counts | Customer Charge |  |  | Volumetric Charge |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | RESIDENTIAL (Rate G-1) |  |  |  |  |  | \$ | 1,245,957 |  | 1,941,034 |  |  |  |  |
| 2 | FIRM BILLS | \$19.30 | 1,930,462 | \$37,257,917 |  |  |  |  |  |  | \$ | - |  |  |
| 3 | Sales: 1-300 | 1.5483 | 10,018,608 | \$15,511,811 |  | 100.00\% |  |  | 10,005,605 |  |  |  |  | 0.1245 |
| 4 | Sales: 301-15000 | 1.0762 | 0 | \$0 |  | 0.00\% |  |  | 0 |  |  |  |  |  |
| 5 | Sales: Over 15000 | 0.8888 | 0 | \$0 |  | 0.00\% |  |  | 0 |  |  |  |  |  |
| 6 | CLASS TOTAL (Mcf/month) |  | 10,018,608 | 52,769,728 |  |  |  |  | 10,005,605 |  |  |  |  |  |
| 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 | NON-RESIDENTIAL (Rate G-1) |  |  |  | 26.86\% |  | \$ | 602,073 |  | 240,676 |  |  |  |  |
| 9 | FIRM BILLS | 66.00 | 239,727 | \$15,821,982 |  |  |  |  |  |  | \$ | - |  |  |
| 10 | Sales: 1-300 | 1.5483 | 5,456,430 | \$8,448,191 |  | 87.30\% |  |  | 5,779,978 |  |  |  |  | 0.0909 |
| 11 | Sales: 301-15000 | 1.0762 | 1,142,223 | \$1,229,260 |  | 12.70\% |  |  | 1,209,953 |  |  |  |  | 0.0632 |
| 12 | Sales: Over 15000 | 0.8888 | 0 | \$0 |  | 0.00\% |  |  | 0 |  |  |  |  |  |
| 13 | CLASS TOTAL (Mcf/month) |  | 6,598,653 | 25,499,433 |  |  |  |  | 6,989,931 |  |  |  |  |  |
| 14 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 15 | INTERRUPTIBLE (G-2) |  |  |  | 0.31\% |  | \$ | 6,998 |  | 88 |  |  |  |  |
| 16 | INT BILLS | 520.00 | 97 | \$50,440 |  |  |  |  |  |  | \$ | - |  |  |
| 17 | Sales: 1-15000 | 0.9557 | 216,799 | \$207,195 |  | 84.24\% |  |  | 196,639 |  |  |  |  | 0.0300 |
| 18 | Sales: Over 15000 | 0.7837 | 49,469 | \$38,769 |  | 15.76\% |  |  | 44,869 |  |  |  |  | 0.0246 |
| 19 | CLASS TOTAL (Mcf/month) |  | 266,268 | 296,404 |  |  |  |  | 241,508 |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21 | TRANSPORTATION (T-3) |  |  |  | 8.24\% |  |  | 184,737 |  | 840 |  |  |  |  |
| 22 | TRANSPORTATION BILLS | 520.00 | 838 | \$435,760 |  |  |  |  |  |  | \$ | - |  |  |
| 23 | Interrupt Transport: 1-15000 | 0.9557 | 4,937,981 | \$4,719,228 |  | 63.87\% |  |  | 5,285,147 |  |  |  |  | 0.0223 |
| 24 | Interrupt Transport: Over 15000 | 0.7837 | 3,405,818 | \$2,669,140 |  | 36.13\% |  |  | 3,645,265 |  |  |  |  | 0.0183 |
| 25 | CLASS TOTAL (Mcf/month) |  | 8,343,799 | 7,824,128 |  |  |  |  | 8,930,412 |  |  |  |  |  |
| 26 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 27 | TRANSPORTATION (T-4) |  |  |  | 9.01\% |  |  | 201,958 |  | 1,464 |  |  |  |  |
| 28 | TRANSPORTATION BILLS | 520.00 | 1,429 | \$742,877 |  |  |  |  |  |  | \$ | - |  |  |
| 29 | Firm Transport: 1-300 | 1.5483 | 412,985 | \$639,425 |  | 8.19\% |  |  | 446,010 |  |  |  |  | 0.0371 |
| 30 | Firm Transport: 301-15000 | 1.0762 | 5,249,162 | \$5,649,148 |  | 72.33\% |  |  | 5,668,919 |  |  |  |  | 0.0258 |
| 31 | Firm Transport: Over 15000 | 0.8888 | 1,712,468 | \$1,522,042 |  | 19.49\% |  |  | 1,849,408 |  |  |  |  | 0.0213 |
| 32 | CLASS TOTAL (Mcf/month) |  | 7,374,615 | 8,553,492 |  |  |  |  | 7,964,337 |  |  |  |  |  |
| 33 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 34 | Total Revenue |  |  | 94,943,184 | 100.00\% |  | \$ | 2,241,724 | 34,131,793 | 2,184,103 |  |  |  |  |
| 35 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 36 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 37 |  |  |  |  |  |  |  |  | KY | Revenue Requirem |  |  | \$ | 2,241,724 |

ATMOS ENERGY CORPORATION
KENTUCKY PIPE REPLACEMENT PROGRAM
SURCHARGE CALCULATION OF FORECASTED ACTIVIT
AS OF OCTOBER 2022 THROUGH SEPTEMBER 2023
CUSTOMERS \& VOLUMES

| $\begin{gathered} \text { Line } \\ \text { Number } \end{gathered}$ | Tariff | Description |  | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Customers |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | G-1 | Residential | Fiscal 2023 Bud | 158,399 | 160,564 | 162,424 | 163,942 | 163,310 | 164,591 | 164,062 | 164,142 | 161,415 | 160,986 | 159,343 | 157,855 | 1,941,034 |
| 2 | G-1 | Commercial Firm | Fiscal 2023 Bud | 17,846 | 18,111 | 18,496 | 18,718 | 18,569 | 18,804 | 18,637 | 18,460 | 18,109 | 17,959 | 17,923 | 17,942 | 219,573 |
| 3 | G-1 | Public Authority | Fiscal 2023 Bud | 1,529 | 1,518 | 1,535 | 1,539 | 1,531 | 1,539 | 1,523 | 1,534 | 1,532 | 1,527 | 1,515 | 1,523 | 18,343 |
| 4 | G-1 | Industrial Firm | Fiscal 2023 Bud | 230 | 230 | 230 | 230 | 230 | 230 | 230 | 230 | 230 | 230 | 230 | 230 | 2,760 |
| 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 | G-2 | Commercial Interruptible | Fiscal 2023 Bud | 2 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 28 |
| 7 | G-2 | Industrial Interruptible | Fiscal 2023 Bud | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 60 |
| 8 | G-2 | Public Authority Interruptible | Fiscal 2023 Bud | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 | T-3 | Transportation Interruptible | Fiscal 2023 Bud | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 840 |
| 11 | T-4 | Transportation Firm | Fiscal 2023 Bud | 122 | 122 | 122 | 122 | 122 | 122 | 122 | 122 | 122 | 122 | 122 | 122 | 1,464 |
| 12 |  |  |  | 178,203 | 180,623 | 182,885 | 184,629 | 183,840 | 185,364 | 184,651 | 184,564 | 181,485 | 180,901 | 179,210 | 177,748 | 2,184,103 |
| 13 14 Volumes |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 14 |  |  | Volumes |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 15 - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 16 | G-1 | Residential | Fiscal 2023 Bud | 168,214 | 609,665 | 1,465,801 | 2,081,448 | 2,007,745 | 1,590,244 | 1,028,050 | 414,625 | 162,415 | 161,983 | 160,329 | 155,086 | 10,005,605 |
| 17 | G-1 | Commercial Firm | Fiscal 2023 Bud | 246,332 | 330,086 | 672,117 | 989,567 | 921,281 | 771,762 | 486,190 | 222,389 | 168,055 | 153,679 | 138,362 | 234,078 | 5,333,897 |
| 18 | G-1 | Public Authority | Fiscal 2023 Bud | 30,377 | 57,641 | 121,222 | 175,090 | 165,833 | 137,258 | 90,822 | 48,889 | 29,897 | 21,373 | 21,215 | 24,579 | 924,195 |
| 19 | G-1 | Industrial Firm | Fiscal 2023 Bud | 30,212 | 51,894 | 91,049 | 115,667 | 141,499 | 111,219 | 56,661 | 33,687 | 23,737 | 26,318 | 22,174 | 27,722 | 731,839 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21 | G-2 | Commercial Interruptible | Fiscal 2023 Bud | 102 | 805 | 1,484 | 1,819 | 2,032 | 1,939 | 816 | 380 | 160 | 25 | 25 | 29 | 9,617 |
| 22 | G-2 | Industrial Interruptible | Fiscal 2023 Bud | 16,601 | 21,713 | 22,852 | 27,389 | 19,704 | 12,435 | 18,194 | 23,233 | 17,077 | 19,775 | 16,421 | 16,497 | 231,891 |
| 23 | G-2 | Public Authority Interruptible | Fiscal 2023 Bud | - | - | - | - | - | - | - | - | - | - | - | - | - |
| $24 \sim$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 25 | T-3 | Transportation Interruptible | Fiscal 2023 Bud | 676,269 | 747,827 | 846,239 | 802,581 | 828,913 | 759,563 | 791,169 | 738,898 | 747,919 | 713,837 | 591,498 | 685,698 | 8,930,412 |
| 26 | T-4 | Transportation Firm | Fiscal 2023 Bud | 560,042 | 615,961 | 766,185 | 718,101 | 890,462 | 824,442 | 733,337 | 628,376 | 574,066 | 543,477 | 548,376 | 561,511 | 7,964,337 |
| 27 |  |  |  | 1,728,149 | 2,435,592 | 3,986,948 | 4,911,662 | 4,977,471 | 4,208,864 | 3,205,241 | 2,110,476 | 1,723,325 | 1,640,468 | 1,498,400 | 1,705,199 | 34,131,793 |

ATMOS ENERGY CORPORATION
KENTUCKY PIPE REPLACEMENT PROGRAM

## SURCHARGE CALCULATION OF FORCASTED ACTIVITY

2023 PROJECT DETAILS


## ATMOS ENERGY CORPORATION

KENTUCKY PIPE REPLACEMENT PROGRAM
SURCHARGE CALCULATION OF FORCASTED ACTIVITY

## 2023 PROJECT DETAILS

| Projects | Project Description | No. of services | Installation |  |  | Cost of Removal |  |  | Retirements |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Main | Services | Meters | Main | Services | Meters | Main | Services | Meters |
| PRP.W Depot St | Replace 125' of 2" Steel unknown coating, 269' of unknown diameter and unknown coating pipe, 276' of 4" Mill Wrap, 204' of 4" Painted, 65' of 2" Epoxy, 604' of 4" Bare, 909 ' of 2" Bare, Install 1,581' of 2" and 871' of 4" HDPE, 33 services. | 33 | 272,399 |  |  | \$14,337 |  |  |  |  |  |
|  | Contractor |  |  | 106,590 |  |  | 5,610 |  |  |  |  |
|  | Material |  |  | 13,200 | 5,050 |  |  |  |  |  |  |
|  | Overhead |  |  | 26,390 | 1,112 |  | 1,236 |  |  |  |  |
| PRP.2635.Maple Street | Replace 1268' of 2" Epoxy,527' of 1.25 Bare Stl., 63 ' of 3" Epoxy, 218' of 2" N/A Plastic, 108' of 1" Bare Stl.,2491' of 2" Bare Stl., 1684' of 3" Bare Stl., 130' of 1.25 PE, Install 5359' of 2" HDPE 110 services | 110 | 929,700 |  |  | \$48,932 |  |  |  |  |  |
|  | Contractor |  |  | 355,300 |  |  | 18,700 |  |  |  |  |
|  | Material |  |  | 44,000 | 16,832 |  |  |  |  |  |  |
|  | Overhead |  |  | 87,966 | 3,708 |  | 4,120 |  |  |  |  |
| PRP.2635.E Keigan St | Replace 5,570' of 2" Mill Wrap Bare Joint, 1,044' of 4" Mill Wrap Bare Joint, 201' of 2" Steel unknown coating, 76' of 2" Painted, Install 5,847' of 2" and 1044' of 4" HDPE. 95 services | 95 | 686,640 |  |  | \$36,139 |  |  |  |  |  |
|  | Contractor |  |  | 306,850 |  |  | 16,150 |  |  |  |  |
|  | Material |  |  | 38,000 | 14,537 |  |  |  |  |  |  |
|  | Overhead |  |  | 75,970 | 3,202 |  | 3,558 |  |  |  |  |
| Adyl.2635.St Charles Replacement | Replace 612' of 1.25" Mill Wrap, 305' of 2" PE, 449' of 2" Aldyl-A and 8,718' of 1.25" Adlyl-A, Install 10,085' of 2" HDPE. 90 Services |  |  |  |  |  |  |  |  |  |  |
|  | $10,085^{\prime}$ of $2^{\prime \prime}$ HDPE. 90 Services <br> Contractor | 90 | 1,134,333 | 290,700 |  | \$59,702 | 15,300 |  |  |  |  |
|  | Material |  |  | 36,000 | 13,772 |  |  |  |  |  |  |
|  | Overhead |  |  | 71,972 | 3,034 |  | 3,371 |  |  |  |  |
| PRP.2637.Washington St | Replace 219' of 1.25" Fusion Bond Epoxy, 392' of 2" |  |  |  |  |  |  |  |  |  |  |
|  | PE, 111' of 2" Steel unknown coating, 411' of 2" Mill |  |  |  |  |  |  |  |  |  |  |
|  | Wrap, $611^{\prime}$ of 2 " Bare Steel, 1,037 ' of Mill Wrap Bare joint, 4,430' of 4" bare Steel, Install 2,782' of 2" and |  |  |  |  |  |  |  |  |  |  |
|  | 4,430 of 4 HDPE. 68 services <br> Contractor |  |  | 219,640 |  |  | 11,560 |  |  |  |  |
|  | Material |  |  | 27,200 | 10,405 |  |  |  |  |  |  |
|  | Overhead |  |  | 54,379 | 2,292 |  | 2,547 |  |  |  |  |

ATMOS ENERGY CORPORATION
KENTUCKY PIPE REPLACEMENT PROGRAM

## SURCHARGE CALCULATION OF FORCASTED ACTIVITY

## 2023 PROJECT DETAILS

| Projects | Project Description | No. of services | Installation |  |  | Cost of Removal |  |  | Retirements |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Main | Services | Meters | Main | Services | Meters | Main | Services | Meters |
| PRP.2637.Hilldale Dr | Replace $66^{\prime}$ of $3^{\prime \prime}$ Mill Wrap Bare joint, 216' of 2" PE, 703' of $3^{\prime \prime}$ Mill Wrap, 245' of 2" Bare Steel, 3,236' of 2" Mill Wrap Bare joint, 1,334' of 2" Mill Wrap, 40 ' of 2" Fusion Bond Epoxy, Install 6,116' of 2" HDPE. 80 services | 80 | 501,116 |  |  | \$26,375 |  |  |  |  |  |
|  | Contractor |  |  | 258,400 |  |  | 13,600 |  |  |  |  |
|  | Material |  |  | 32,000 | 12,242 |  |  |  |  |  |  |
|  | Overhead |  |  | 63,975 | 2,697 |  | 2,996 |  |  |  |  |
| PRP.2637.Sunset Ave | Replace 99' of 2" Steel unknown coating, 20' of 6" |  |  |  |  |  |  |  |  |  |  |
|  | Mill Wrap, 100' of 2" Bare Steel, 2,515 ' of 2" Mill |  |  |  |  |  |  |  |  |  |  |
|  | Wrap, 1' of 2"Epoxy, $1^{\prime}$ of 3 " Epoxy, 3,560 ' of 6 " Mill |  |  |  |  |  |  |  |  |  |  |
|  | Wrap Bare joint, 931' of 3" Mill Wrap Bare joint, |  |  |  |  |  |  |  |  |  |  |
|  | Install $3,668^{\prime}$ of $2^{\prime \prime}$ and $3,560^{\prime}$ of $6^{\prime \prime}$ HDPE. 92 services | 92 | 704,072 |  |  | \$37,056 |  |  |  |  |  |
|  | Contractor |  |  | 297,160 |  |  | 15,640 |  |  |  |  |
|  | Material |  |  | 36,800 | 14,078 |  |  |  |  |  |  |
|  | Overhead |  |  | 73,571 | 3,101 |  | 3,445 |  |  |  |  |
| PRP.2637.Lone Oak 2 | Replace 1,260' of 4" Steel unknown coating, 479' of |  |  |  |  |  |  |  |  |  |  |
|  | 2" PE, 238' of 2" Steel unknown coating, 106' of 8" |  |  |  |  |  |  |  |  |  |  |
|  | Mill Wrap, 1,928' of 8 " Mill Wrap Bare joint, 1,711' |  |  |  |  |  |  |  |  |  |  |
|  | of 2" Mill Wrap Bare joint, 171' of 2" Mill Wrap, 73' |  |  |  |  |  |  |  |  |  |  |
|  | of Fusion Bond Epoxy, Install 2,672' of 2' , 1,260' of |  |  |  |  |  |  |  |  |  |  |
|  | 4 " and $2,032{ }^{\prime}$ of 8 " HDPE 30 services | 30 | 683,341 |  |  | \$35,965 |  |  |  |  |  |
|  | Contractor |  |  | 96,900 |  |  | 5,100 |  |  |  |  |
|  | Material |  |  | 12,000 | 4,591 |  |  |  |  |  |  |
|  | Overhead |  |  | 23,991 | 1,011 |  | 1,124 |  |  |  |  |
| PRP.2637.North 8th and 11th St | Replace 56' of 2"Steel unknown coating, 1,365' of 2" |  |  |  |  |  |  |  |  |  |  |
|  | Mill Wrap Bare joint, 8' of 4" Mill Wrap, 1,465' of 2" |  |  |  |  |  |  |  |  |  |  |
|  | Mill Wrap, 314' of 2" Fusion Bond Epoxy, 3,759' of 4" |  |  |  |  |  |  |  |  |  |  |
|  | Mill Wrap Bare joint, 513' of 2" PE, 100' of 2" Epoxy, |  |  |  |  |  |  |  |  |  |  |
|  | 18' of 4"Epoxy, Install 5,719' of 2" and 1,880' of 4" |  |  |  |  |  |  |  |  |  |  |
|  | HDPE. 62 services | 62 | 601,738 |  |  | \$31,670 |  |  |  |  |  |
|  | Contractor |  |  | 200,260 |  |  | 10,540 |  |  |  |  |
|  | Material |  |  | 24,800 | 9,487 |  |  |  |  |  |  |
|  | Overhead |  |  | 49,581 | 2,090 |  | 2,322 |  |  |  |  |
| PRP.2734.US 31W | Replace 978' of 1.25" Fusion Bond Epoxy, 12' of 2" |  |  |  |  |  |  |  |  |  |  |
|  | Fusion Bond Epoxy, 462' of 4" Mill Wrap, 19' of 4" |  |  |  |  |  |  |  |  |  |  |
|  | PE, 254' of 2" Epoxy, 108' of 1.25" Epoxy, 1,889' of |  |  |  |  |  |  |  |  |  |  |
|  | 4" Bare Steel, 490' of 491' of 2" Mill Wrap, 778' of 2" |  |  |  |  |  |  |  |  |  |  |
|  | Bare Steel, $30^{\prime}$ of 2" PE, with 2,513' of 2 " and $1,895^{\prime}$ |  |  |  |  |  |  |  |  |  |  |
|  | of 4 " HDPE. 37 services | 37 | 578,739 |  |  | \$30,460 |  |  |  |  |  |
|  | Contractor |  |  | 119,510 |  |  | 6,290 |  |  |  |  |
|  | Material |  |  | 14,800 | 5,662 |  |  |  |  |  |  |
|  | Overhead |  |  | 29,588 | 1,247 |  | 1,386 |  |  |  |  |

## ATMOS ENERGY CORPORATION

KENTUCKY PIPE REPLACEMENT PROGRAM

## SURCHARGE CALCULATION OF FORCASTED ACTIVIT

## 2023 PROJECT DETAILS



ATMOS ENERGY CORPORATION
KENTUCKY PIPE REPLACEMENT PROGRAM
SURCHARGE CALCULATION OF FORCASTED ACTIVITY

## 2023 PROJECT DETAILS

| Projects | Project Description | No. of services | Installation |  |  | Cost of Removal |  |  | Retirements |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Main | Services | Meters | Main | Services | Meters | Main | Services | Meters |
| PRP.2737.Locust St | Replace 1,557'of 2" Bare Stl., 141' of 2" Hot Tar,324' of 2" Mill Wrap, 803' of Fusion Bond Epoxy, 970' of 4" Bare Stl.,Install 2,919' of 2" and 851' of 4" HDPE 88 services | 88 | 436,750 |  |  | \$22,987 |  |  |  |  |  |
|  | Contractor |  |  | 284,240 |  |  | 14,960 |  |  |  |  |
|  | Material |  |  | 35,200 | 13,466 |  |  |  |  |  |  |
|  | Overhead |  |  | 70,373 | 2,967 |  | 3,296 |  |  |  |  |
| PRP.2737.Orchard St | Replace 809' of 2" Unknown coating, 2,252' of 2" |  |  |  |  |  |  |  |  |  |  |
|  | Bare Stl., 1,382' of 2" Mill Wrap , 227' of 2" Hot Tar, |  |  |  |  |  |  |  |  |  |  |
|  | Install 4,670' of $\mathbf{2}^{\prime \prime}$ HDPE 98 services | 98 | 504,607 |  |  | \$26,558 |  |  |  |  |  |
|  | Contractor |  |  | 316,540 |  |  | 16,660 |  |  |  |  |
|  | Material |  |  | 39,200 | 14,996 |  |  |  |  |  |  |
|  | Overhead |  |  | 78,370 | 3,304 |  | 3,670 |  |  |  |  |
| PRP.2738.Mulberry St | Replace 537' of 4"Epoxy, 1,949' of 6" Bare Stl., 151' |  |  |  |  |  |  |  |  |  |  |
|  | of 2" Stl. Unknown coating, 67 ' of 4" Mill Wrap, |  |  |  |  |  |  |  |  |  |  |
|  | 1,643' of of 2" Bare Stl., 72' of 2" Fusion Bond Epoxy, |  |  |  |  |  |  |  |  |  |  |
|  | 602' of Mill Wrap Bare Joint, 384' of 2" Mill Wrap, |  |  |  |  |  |  |  |  |  |  |
|  | 508 ' of 2" Painted, 361' of 2" PE, 159' of 2"Epoxy, |  |  |  |  |  |  |  |  |  |  |
|  | Install 4,678' of 2" and 1,754' of 4" HDPE 90 services. | 90 | 657,106 |  |  | \$34,585 |  |  |  |  |  |
|  | Contractor |  |  | 290,700 |  |  | 15,300 |  |  |  |  |
|  | Material |  |  | 36,000 | 13,772 |  |  |  |  |  |  |
|  | Overhead |  |  | 71,972 | 3,034 |  | 3,371 |  |  |  |  |
|  | Total specific budgeted projects \& bare steel functional |  | 22,437,148 | 7,526,042 | 317,255 | 1,180,903 | 352,459 | - | - | - | - |
|  | Non specfic bare steel functional |  |  | 55,223 | 2,328 | - | 2,586 |  |  |  |  |
|  | Total budgeted 2023 projects |  | 22,437,148 | 7,581,265 | 319,583 | 1,180,903 | 355,045 | - | 3,708,968 | 2,133,914 | 126,159 |


[^0]:    ${ }^{1}$ (1) Calculating the PRP rate base in a forecasted period in a manner consistent with 807 KAR 5:001, Section 16(6)(c) and reflect an overall rate of return established in the annual PRP rate application.

[^1]:    ${ }^{2}$ Case No. 2021-00214, Electronic Application of Atmos Energy Corporation for an Adjustment of Rates (Ky. PSC May 19, 2022), final Order at 60.

[^2]:    3 The indicated range of ROEs applicable to the Utility Proxy Group excluding the Predictive Risk Premium Model ("PRPM") is $9.73 \%$ to $12.02 \%$.
    4 See Section VII for a detailed discussion of my cost of common equity adjustments.

[^3]:    Pricing Model for Estimating the Cost of Common Equity", Richard A. Michelfelder, Pauline M. Ahern, Dylan W. D'Ascendis, and Frank J. Hanley, The Electricity Journal (May 2013), 84-89. www.nobelprize.org.
    Illustrated on Columns 1 and 2 of page 2 of Exhibit DWD-3.
    Illustrated on Column 4 of page 2 of Exhibit DWD-3.
    Annualized Return $=(1+\text { Monthly Return })^{\wedge} 12-1$.

[^4]:    ${ }^{26}$ PSC SC Docket No. 2017-292-WS - Order No. 2018-345, at 14. (May 17, 2018)

[^5]:    As shown on line 2 and explained in note 2, page 3 of Exhibit DWD-3.

[^6]:    46 Morin, at 207.
    47 Morin, at 221.

[^7]:    $48 \quad$ Fama \& French, at 32.

[^8]:    $\underline{\text { SBBI - 2022, at 256-258, 274-276. }}$

[^9]:    73
    Michael J. Vilbert, Joseph B. Wharton, Shirley Zhang and James Hall, Effect on the Cost of Capital of Innovative Ratemaking that Relaxes the Linkage between Revenue and kWh Sales - An Updated Empirical Investigation, November 2016.
    Ibid.

[^10]:    | (A) Fiscal year ends Sept. 30th.; (B) Diluted | '17, 13c. Next egs. rpt. due early Aug. | (D) In millions. |
    | :--- | :--- | :--- | :--- |
    | shrs. Excl. nonrec. gains (loss): '10, 5c; '11, | (C) Dividends historically paid in early March, | (E) Qtrs may not add due to change in shrs | (1¢); '18, \$1.43; '20, 17c. Excludes discontin- June, Sept., and Dec. - Div. reinvestment plan. ued operations: '11, 10¢; '12, 27¢; '13, 14¢; | Direct stock purchase plan avail.

    © 2022 Value Line, Inc. All rights reserved. Factual material is obtained from sources believed to be reliable and is provided without warranties of any kind.

[^11]:    | (A) Fiscal year ends Sept. 30th. (B) Based on | due late July. (C) Dividends paid in early Janu- | (E) In millions. (F) Qtly. egs. may not sum due |
    | :--- | :--- | :--- |
    | diluted shares outstanding. Excludes nonrecur- |  |  |
    | ary, April, July, and October. - Dividend rein- |  |  | diluted shares outstanding. Excludes nonrecur- ary, April, July, and October. - Dividend rein-

    of it may be reproduced, resold, stored or transmitted in any printed, electronic or other form, or used for generating or marketing any printed or electronic publication, service or product.

[^12]:    $\begin{array}{r}\begin{array}{c}\text { Flotation Cost } \\ \text { Adjustment（7）}\end{array} \\ \hline\end{array}$
    
    9.72 \％
    
    

    Source of Information：Atmos Energy Corporation SEC Form 10－Ks，Company－Provided Data

[^13]:    Notes:
    
    adjustments.
    [2] Includes recovery of costs related to infrastructure replacement, system integrity/hardening, and other capital expenditures.
    [4] Pension expenses, bad debt costs, storm costs, transmission/transportation costs, environmental, regulatory fee, government \& franchise fees and taxes, economic development, and low income programs. $[5] \mathrm{K}=$ Known and Measurable or similar language, partially forecasted test years are included.
    Sources: Company SEC Form 10-Ks; Operating company tariffs; Regulatory Research Associates.

